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Abstract

Väisänen, Olli Jaakko Rikhard
Simulating inhomogeneous spacetimes using the ADM-formalism
Master’s thesis
Department of Physics, University of Jyväskylä, 2021, 99 pages.

There is an extensive literature on the effects of inhomogeneities on the expansion
of the universe and measurable quantities. However, as there is no known general
solution to Einstein’s field equations, much of the analysis relies on perturbation
theory and very symmetric toy models. In this thesis, I will assess a method of
studying the effects of inhomogeneities using fully relativistic simulations. To this
end, I will introduce the Arnowitt-Deser-Misner- and Baumgarte-Shapiro-Shibata-
Nakamura -formulations (ADM- and BSSN-formulations) for general relativity and
discuss the numerical stability of the ADM-formalism with different initial conditions
in a matter dominated universe. The stability of the results depends heavily on the
chosen length scale. On very large scales (∼ 500 Mpc) the results appear reliable until
late in the evolution, whereas on more physically relevant scales (∼ 100 Mpc) the
equations are almost immediately unstable. Further research should move on to the
more stable BSSN-formalism. In addition, I implemented a simulation for calculating
observed redshifts in numerical spacetimes and assessed its results qualitatively. The
preliminary results suggest an apparent deformation of density perturbations due to
gravitational lensing.

Keywords: General relativity, Numerical relativity, ADM-formalism, Inhomogeneous
cosmological models, Numerically simulated redshift
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Tiivistelmä

Väisänen, Olli Jaakko Rikhard
Epähomogeenisten aika-avaruuksien simuloiminen ADM-formalismin avulla
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2021, 99 sivua

Maailmankaikkeuden epähomogeenisuuksien vaikutuksia sen laajenemiseen ja mit-
taustuloksiin on tutkittu kirjallisuudessa paljon. Koska Einsteinin yhtälöille ei tun-
neta yleisiä ratkaisuja, nämä tutkimukset ovat kuitenkin perustuneet häiriöteoriaan
ja hyvin symmetrisiin, yksinkertaistettuihin malleihin. Tässä tutkielmassa selvitän,
kuinka epähomogeenisuuksien vaikutuksia olisi mahdollista tutkia käyttämällä täysin
relativistisia numeerisia simulaatioita. Tätä varten esittelen Arnowitt-Deser-Misner-
ja Baumgarte-Shapiro-Shibata-Nakamura -formalismit (ADM- ja BSSN-formalismit)
yleiselle suhteellisuusteorialle ja tutkin ADM-formalismin numeerista stabiiliutta
erilaisilla alkuarvoilla aineen dominoimassa maailmankaikkeudessa. Saamieni tulos-
ten stabiilius riippui vahvasti simulaatioille valitusta pituusskaalasta. Hyvin suurilla
skaaloilla (∼ 500 Mpc) tulokset olivat varsin luotettavia simulaation loppuhetkiä
lukuun ottamatta, kun taas fysikaalisesti merkittävillä pituusskaaloilla (∼ 100 Mpc)
yhtälöt olivat lähes välittömästi epästabiilit. Jatkotutkimuksissa tulisi siirtyä ADM-
formalismista luotettavampaan BSSN-formalismiin. Tämän lisäksi laadin simulaation
havaittujen punasiirtymien laskemiseksi numeerisista aika-avaruuksista ja arvioin
sen tuloksia kvalitatiivisesti. Alustavien tulosten mukaan näennäiset tiheysvaihtelut
vääristyvät gravitaatiolinssi-ilmiön vuoksi.

Avainsanat: Yleinen suhteellisuusteoria, Numeerinen suhteellisuusteoria, ADM-
formalismi, Epähomogeeniset kosmologiset mallit, Numeerisesti simuloitu punasiir-
tymä
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1 Introduction

An observation at the heart of modern cosmology is the cosmological principle. The
principle states that at large enough scales, typically taken to be approximately 300
Mpc, the universe is both homogeneous and isotropic1 [1]. In truth, the principle is
in part an assumption, as our observations are naturally limited to our own location
on Earth, and there still exists some debate on whether the universe actually is
homogeneous on the very largest scales [2, 3]. However, despite the limitations
the cosmological models relying on the cosmological principle have been extremely
successful.

The simplest of such models, the Friedmann-Lemaître-Robertson-Walker -universe
(FLRW-universe), is found by applying Einstein’s general relativity and our knowledge
of the matter content of the universe on a homogeneous and isotropic spacetime [4].
The result is the familiar picture of an expanding universe with a hot and dense Big
Bang at the beginning and an end state dependent on the matter composition [4].

Nevertheless, there are aspects of our observed universe which cannot be captured
by such a simple model. In particular, from everyday experience we know that
the universe contains inhomogeneities, such as galaxies, stars and humans, which
cannot arise in the perfectly homogeneous FLRW-universe. A solution can be found
by noting that since gravity tends to draw matter together, in the distant past
these inhomogeneities must have been much smaller. Thus, if one assumes that on
average the universe behaves as if it was homogeneous, it is possible to treat small
inhomogeneities using linear perturbation theory [5, 6]. These small initial ripples,
perhaps arising from the quantum fluctuations of the Big Bang, would then grow
and eventually collapse into the gravitationally bound objects we observe today [6].
A model of this kind fits our observational data very well and forms the so-called
standard model of cosmology, or ΛCDM [4].

However, the above description does contain assumptions that warrant a closer
look. The one I will focus on in this text is whether the average behavior of the

1Homogeneous: The universe looks the same at every point. Isotropic: The universe looks the
same in every direction.
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universe matches the homogeneous case. Setting the question of the homogeneity of
the very largest scales aside, the effects of the structure at and below the scale of
100 Mpc is not entirely clear either.

On a theoretical level, the origin of many of the issues is the nonlinear nature of
the Einstein’s field equations. As opposed to averaging a linear equation, taking the
average of Einstein’s equations will yield extra terms compared with the homogeneous
case [7]. This effect is called cosmological backreaction, and there exists a considerable
amount of literature on the subject. The reader may consult [8] for a review.

Another problem arises from the observations we use to test our models themselves.
Apart from the recent observations of gravitational waves, all of our observations on
the distant universe rely on received electromagnetic radiation. The problem with
the measurements is that the way the quantities of interest are calculated from the
measured data can in general depend on the inhomogeneities the radiation encounters
on the way [8, 9].

An important example of this are the measurements of distance and redshift.
Distances in cosmology are typically measured by comparing either the apparent
luminosity or the angular size of an object to a theoretical prediction. As the
curvature of the spacetime can affect the trajectories of light rays, inhomogeneities
can act as a lens and modify the observed distances [9, 10]. The measured redshifts
are changed in a similar way [9], and it is not clear whether or not these alterations
average to zero over long distances.

A third issue is due to the increasing accuracy of the observations. Recent cosmo-
logical measurements, such as the Planck survey [11], provide tests to cosmological
models with unprecedented accuracy, and even if the effects of inhomogeneities
remain small, they can no longer be ruled out as sources of possible discrepancies
with the data.

One particularly large such discrepancy is the so-called Hubble tension. The
rate of the expansion of the universe, the Hubble constant, can be measured in
several different ways. Some methods rely on measurements of the cosmic microwave
background (CMB) [11] and consequently on information from the very early universe.
In contrast, many other methods, such as those in [12], observe phenomena which
occur at much later times. The early- and the late-time methods result in different
Hubble rates, and the statistical significance of this discrepancy has only grown with
more accurate measurements. Various different explanations have been proposed to
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the Hubble tension [13]. Some models explore the effects of inhomogeneities on the
tension, although there is recent evidence against it as well [14]. No explanation is
deemed conclusive at this moment.

These problems would naturally vanish if one could obtain an exact solution for
the spacetime of the universe. As solutions to Einstein’s field equations are only
known for the most symmetric physical situations, until very recently the study of
inhomogeneities has focused on very simplified toy models [15]. One well-studied
class of models are the spherically symmetric Lemaitre-Tolman-Bondi -spacetimes
(LTB-spacetimes) and the "Swiss cheese -models" derived from them [16]. The
results obtained using models such as these often suggest that the effects of the
inhomogeneities are small, but it is possible that this is only an artefact of the high
degree of symmetry involved [15].

The situation is likely to change, as the numerical methods for solving Einstein’s
equations have seen remarkable development over the past couple decades. Numerical
relativity itself is not a new field of study. For instance, one particularly influential
formulation by Arnowitt, Deser and Misner dates back to 1959 (ADM-formalism) [17].
However, the early attempts at numerical relativity suffered from severe numerical
instability which limited their applications to very symmetric spacetimes such as the
ones mentioned above [18].

Many of the stability issues were only solved very recently. While there are many
different modern formulations [18], the most commonly used one is the Baumgarte-
Shapiro-Shibata-Nakamura -formalism (BSSN-formalism) developed two decades ago
[19, 20]. The modern formulations have seen remarkable success in running previously
unstable simulations, the most well known of which is the successful calculation of a
gravitational wave waveform [21, 22]. In the past ten years, numerical relativity has
also found its way to cosmology due to the availability of tools such as the Einstein
toolkit [23–26].

In this thesis, I will explore how to simulate the large scale structure of the
universe, such as galaxy filaments, using numerical relativity. The simulation will
loosen the spherical symmetry of the simplest models. However, to manage the
computational time, I will consider two models with cubic lattice symmetry and
assume that the universe is filled with pressureless dust. In order to limit the scope
of the thesis, I will only implement the ADM-solver for the Einstein equations. For
future use I will still detail the theory behind the BSSN-formulation and address
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whether it is necessary for performing the calculation accurately. Lastly, I will
implement a numerical simulation for calculating the trajectories of light rays and
the associated redshifts in an inhomogeneous spacetime.

I will begin by briefly describing some basic results necessary for later development
in chapter 2. After this, I will detail the ADM- and BSSN-formulations of Einstein’s
field equations and their respective initial conditions in chapters 3 through 5. In
the last theoretical chapter, I will discuss light propagation in a curved spacetime.
Afterwards in chapter 7, I will go through the numerical methods necessary in
implementing the ADM-equations. To end the thesis, I will give some preliminary
results of the ADM-simulations and discuss them more closely in chapters 8 and 9.

1.1 Notation and conventions

This text will largely use the notation and conventions in [18]. I will use the signature
(− + ++) for the metric throughout the text and always set the speed of light and
the gravitational constant c = G = 1 unless specified otherwise. Greek letter indices
are assumed to run over all four coordinates, while Latin indices run over only the
spatial ones. Symmetric and antisymmetric parts of a tensor are defined in the usual
way,

T(ab) = 1
2(Tab + Tba) (1)

and
T[ab] = 1

2(Tab − Tba), (2)

with the obvious generalization to more indices. Covariant derivatives will be denoted
by ∇, and the derivatives will always be taken with respect to the Levi-Civita
connection defined below in section 2.
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2 Basic results in cosmology

In order to begin, I need to introduce some results that will turn out to be useful
later on. Both here and later on in this text, I will assume that the reader is familiar
with the basic concepts of differential geometry, tensor calculus and general relativity.
For a more complete treatment on the mathematics involved the reader may consult
for example [27, 28], and I will only skim through the details on these subjects. I
will start this section by giving a short overview on what our current understanding
on large-scale structure of the observed universe is and how it has developed. After
this, I will introduce the FLRW-model for a homogeneous and isotropic universe and
briefly touch on how to treat small perturbations on the FLRW-background.

2.1 The large-scale structure of the observed universe

The first indications of structure beyond our own Milky Way were the observations
of nebulae, and there was speculation that they were similar in nature to the Milky
Way already in the 18th century [29]. Actual rigorous evidence of this had to wait
for improvements in technology. Early 20th century measurements of the redshifts of
nebulae revealed that their velocities were far larger than those of stars in the Milky
way and shortly thereafter the best telescopes could resolve the spiral structure of
some nebulae [29]. The matter was largely settled by 1929, when Edwin Hubble
published a paper on resolving Cepheid variable stars in the Andromeda galaxy,
which could be used in more accurate measurements of distance [30].

The theory of the evolution of the universe got its start roughly in parallel with
these developments. One key advance that marked the turn of the twentieth century
was Einstein’s general relativity, which was introduced in 1915. Shortly thereafter,
general relativity was independently applied to a homogeneous universe by Friedmann
and Lemaître [31, 32], and over time these models led to the current Friedmann-
Lemaître-Robertson-Walker -models [33–36]. These models introduced the idea of an
expanding universe, which was soon confirmed by Hubble’s observations in 1929 [37].

The development since has been rapid. A landmark discovery was the accidental
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measurement of the cosmic microwave background by Wilson and Penzias in 1965
[38]. This cemented the consensus around the hot Big Bang-models of the early
universe. On another note, the presence of dark matter was discovered both in
the rotation curves of individual galaxies and in the large-scale behaviour of galaxy
clusters in various studies in the first half of the twentieth century [39, 40]. By the
end of 1980s, dark matter was understood to form the skeleton structure around
which luminous matter coalesces [41].

For the majority of the twentieth century, the large-scale structure of the universe
was thought to consist of galaxy groups and galaxy clusters, ranging in scale up to 5
Mpc. However, starting from the 1980s, galaxy surveys have found even structures,
such as galaxy filaments and voids. (See [42, 43] for examples.) This development
has continued all the way up to present day, which has raised some questions about
the validity of the cosmological principle.

By the turn of the twenty-first century, cosmology had largely entered its current
era with the discovery of the dark energy [44, 45] and the various microphysical
processes underlying the evolution of the early universe [4]. As I mentioned in the
introduction, precision measurements have shifted the focus in cosmology to small
deviations from the standard models.

I will now give a short summary of the structure of the universe according to the
our current knowledge. The energy density of our universe consists of approximately
63.8% dark energy, 26.5% dark matter and 4.9% ordinary baryonic matter [11]. On
the smallest length scales, ordinary matter has collapsed into planets, stars and
galaxies, and on these scales dark matter forms a massive but dilute halo around
each galaxy. Galaxies in turn form groups and clusters, which again group into
larger structures. In the end, these clusters lie in massive string-like structures called
galaxy filaments, whose mass consists mainly of dark matter. The filaments are
embedded into nearly empty void and together they form the aforementioned cosmic
web [4]. Figure 1 depicts a portion of simulated cosmic web from the Millenium
simulation [46]. Beyond the scale of the cosmic web, at scales upwards from 300
Mpc, the universe is usually deemed to become homogeneous [1].

According to the best models of today, the evolution of this structure began with
small perturbations in energy density, which arose as a result of inflation or some
other process during a hot Big Bang. The energy density of very early universe was
dominated by relativistic particles, or radiation. The current particle composition
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Figure 1. A simulated portion of the cosmic web produced by the Millenium
Simulation [46]. Image retrieved from https://wwwmpa.mpa-garching.mpg.de/
galform/virgo/millennium/.

was created in various processes during the early radiation-dominated era, but the
density perturbations did not yet start growing [41]. As the universe cooled down
non-relativistic matter eventually became the dominant component of energy density.
The cosmic microwave background formed approximately 380 000 years after the Big
Bang or equivalently at redshift2 z ≈ 1100, when electrons and protons combined
to form atoms and the universe became electrically neutral. This allowed radiation
to propagate unimpeded, and thus the CMB is the earliest electromagnetic signal
measurable. [4]

The existing density perturbations began growing due to their gravitational pull
at the onset of the matter-dominated era [41]. Over time the baryonic matter would
coalesce at the same structure due to the gravitational attraction of the dark matter.
Eventually the density perturbations grew enough to enter the nonlinear regime and
collapsed forming the largest gravitationally bound objects such as galaxy clusters,
though the specifics of the collapse depend on the models used [41]. The collapse
would occur on smaller scales as well forming galaxies and the first stars. This
process as a whole is known as the structure formation. Currently the energy density

2See chapter 6 for more information on redshift.

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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of the universe is dominated by dark energy [4].

2.2 The Friedmann-Lemaître-Robertson-Walker -universe

The behavior of the universe as a whole is determined by general relativity accom-
panied with the microphysics that determine the equation of state for the matter.
While there is extensive literature on the subject, I will only give the most relevant
results. A more complete treatment can be found in [27].

The curvature of a manifold such as the spacetime is determined by the metric
gµν specifying the length element

ds2 = gµνdx
µdxν . (3)

More specifically, the curvature is expressed with the Christoffel symbols associated
with the metric,

Γµ
αβ = 1

2g
µν(∂αgνβ + ∂βgνα − ∂νgαβ), (4)

and the Riemann tensor

Rµ
ναβ = ∂αΓµ

βν − ∂βΓµ
αν + Γµ

αλΓλ
βν − Γµ

βλΓλ
αν (5)

constructed using them [27]. The contractions of the Riemann tensor, namely the
Ricci tensor Rµν = Rα

µαν and the Ricci scalar R = gµνRµν , are further used to
define the Einstein tensor Gµν = Rµν − 1

2gµνR. These objects have a variety of useful
symmetry properties, and the reader is encouraged to consult [27] for them. Most
importantly, both the metric and the Ricci tensor are symmetric tensors.

The Einstein tensor constitutes the geometric part of the Einstein equation [27]

Gµν = 8πTµν . (6)

The right hand side of the equation is determined by the matter content of the
spacetime, and Tµν is the energy-momentum tensor. While Tµν can in principle be
rather complicated, in cosmology matter can be treated as an ideal fluid to a very
good approximation [27]. In this case, the energy-momentum tensor takes the simple
form

Tµν = (ρ+ p)uµuν + pgµν , (7)
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where ρ and p are the energy density and pressure measured in the rest frame and uµ

is the 4-velocity [27]. The dynamics of matter are given by the continuity equation
∇µT

µν = 0, where ∇ is the covariant derivative [27].
As I noted in the introduction, the main assumption usually made in cosmology

is that on a large enough scale the universe is both homogeneous and isotropic. This
assumption breaks obviously on the smaller scales, and the majority of this thesis is
dedicated to solving the full system of Einstein equations numerically. However, the
homogeneous and isotropic solution serves as a useful background solution for both
the perturbation theory and the full relativistic equations.

With the assumption of homogeneity and isotropy there is always a coordinate
system in which the metric takes the form

ds2 = −dt2 + a2(t)
(︄

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
)︄
, (8)

where a(t) is the scale factor and k is the spatial curvature parameter [27]. This
metric is called the Friedmann-Lemaître-Robertson-Walker -metric (FLRW-metric).
The flat FLRW-universe is the special case of zero curvature. The assumption
of homogeneity and isotropy also prohibits any peculiar velocity3 for the matter
content, and so in this coordinate system the 4-velocity of the matter content is just
uµ = (1,0,0,0) [27]. In turn, the components of the energy-momentum tensor reduce
into T µν = diag(ρ,p,p,p), where ρ and p are by assumption constants in space.

Calculating the components of the Einstein tensor and plugging the results in
the Eisntein equation yields the Friedmann equations [27]

ȧ2

a2 = 8πρ
3 − k

a2 (9)

ä

a
= −4π(ρ+ 3p)

3 , (10)

and continuity equation takes the form [27]

ρ̇ = −3 ȧ
a

(ρ+ p). (11)

However, these equations are not yet closed by themselves, as an equation of state
p = p(ρ) is still needed. The equation of state is usually written as p = wρ, where

3Peculiar velocity: Velocity not arising from the expansion of the universe.
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w is a constant in the most common applications. The choices most relevant for
cosmology are w = 0 for pressureless matter, often called dust, w = 1/3 for radiation
and w = −1 for dark energy [27].

One could continue from here and solve the Friedmann equations for a multiple-
component fluid. However, in this thesis I will deal solely with the Einstein-de Sitter
-universe, or a spatially flat matter dominated universe. Thus, I will set w = 0 and
k = 0. The corresponding solutions the Friedmann equations and the continuity
equation are

a(t) = a0(t/t0)2/3 (12)

and
ρ(a) = ρ(a0)(a0/a)3, (13)

where a0, t0 and ρ(a0) are arbitrary constants. The rate of expansion for a FLRW-
universe is usually characterized by the Hubble rate H = ȧ/a [4]. In an Einstein-de
Sitter -universe the Hubble rate is given by

HEdS = 2
3t = 2

3t0

(︃
a

a0

)︃−3/2
. (14)

In most applications the scale factor is a monotonous function of coordinate time
and it serves as a natural choice of time parameter. However, in cosmology it is
customary to parametrize time in terms of the redshift z. The frequency of light
changes due to the expansion of the FLWR-universe as

z = ωsr − ωobs

ωobs

= aobs

asr

− 1, (15)

where ωsr, ωobs, asr and aobs are the frequency of the radiation and the scale factor
at the source and the observer respectively. While this is a standard expression [4], I
will discuss redshift in a more general context in section 6.2.
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2.3 Cosmological perturbation theory

By definition, the homogeneous and isotropic model of the universe cannot account
for many phenomena such as structure formation. The full inhomogeneous Einstein
equations are usually too complicated to solve analytically, and the traditional way
to deal with this is linear perturbation theory. I will again only give the most relevant
results of perturbation theory, and the reader can find the full calculation in [5, 6].

In principle, linear cosmological perturbation theory is very straightforward. The
linearized equations are found simply by choosing a background metric which solves
the Einstein equations, writing the full metric as a sum of the background and a
perturbation and dropping the higher order terms from the Einstein equations. A
similar split is introduced with all fields defined on the spacetime. However, it turns
out that this split into the perturbation and the background is dependent on the
chosen coordinate system, or gauge dependent, which introduces some subtlety into
the picture.

Split the metric as gµν(t,x⃗) = ḡµν(t) + δgµν(t,x⃗). The most common background
used in cosmology is the spatially flat FLRW-metric, and here I will always assume
that the background quantities are constants in space. The gauge dependence of
the split can be seen by considering the infinitesimal coordinate transformation
xµ → x̃µ = xµ + ζµ. The metric transforms in the usual way [27],

g̃µν(x̃) = ∂xα

∂x̃µ

∂xβ

∂x̃ν gαβ(x), (16)

and expanding the left hand side to the first order in ζµ results in

g̃µν(x̃) = ḡµν(t̃) + δg̃µν(x̃) = ḡµν(t) + ζ0∂0ḡµν(t) + δg̃µν(x̃). (17)

Solving for the transformed perturbation and plugging in the partial derivatives
leaves to first order

δg̃µν(x̃) = δgµν(x) − ζ0∂0ḡµν(t) − 2ḡα(µ∂ν)ζ
α. (18)

The gauge transformation rules for tensors of other ranks can be derived in an
analogous way [5]. It is worth noting that even the perturbations of scalar quantities
are gauge dependent.



22

The next step after choosing the background split is to write the evolution
equations for the perturbations [5]. The background must satisfy the Einstein
equations Ḡµν = 8πT̄ µν , where Ḡµν and T̄ µν are the background Einstein tensor
and energy-momentum tensor respectively. As such, the evolution equations are
found simply by calculating the perturbations of the tensors and equating them
δGµν = 8πδTµν . Similarly, expanding the continuity equations to first order results
in ∇µδT

µν = 0.

The evolution equations can naturally be written in many different forms. The
most widely used one is to decompose the metric perturbations into the scalar, vector
and tensor parts as each of these components evolve independently of each other.
This approach is detailed in most textbooks on the subject, for example [6].

However, the aim in this text is to eventually write down the full Einstein equations
and the linear perturbation theory serves mainly for comparing their solutions to the
linear approximation. The usual decomposition makes this comparison somewhat
more complicated than necessary. For my purposes it is sufficient to fix a gauge at
the beginning and write the evolution equations for the metric components directly.

It is always possible to find a gauge transformation which sets g0i = 0 and
g00 = −1 [5]. This gauge choice is called the synchronous gauge. In fact, this is not
only possible in linear theory, but it also extends to the full theory as well. This is
the gauge I will choose with the full Einstein equations later on.

The reader can find the calculation for the synchronous gauge perturbation
equations with ideal fluid matter in [5]. I denote δgij = a2hij and in order to condense
the notation, I will be implicitly summing over all repeated indices regardless of their
position. For instance, I will denote h = hii := ∑︁

i hii. I will also split the rest frame
energy density as

ρ = ρ̄(1 + δ). (19)

The linear perturbation equations read

1
2 ḧ+ ȧ

a
ḣ = 4πρ̄(1 + cs)δ (20)

ḣ,i − ḣij,j = −16πρ̄(1 + w)avi (21)

R
(3)
ij − a2

[︃3
2
ȧ

a
ḣij + 1

2
ȧ

a
ḣδij + 1

2 ḧij

]︃
= 4πa2δij ρ̄(1 − cs)δ, (22)

where c2
s = ∂p/∂ρ is the speed of sound, vi is the peculiar velocity of the fluid and
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w = p/ρ is the ratio of the pressure and the energy energy density [5]. Here R(3)
ij

is the three-dimensional Ricci tensor calculated using only the spatial part of the
metric.

The continuity equations can be linearized in the same way, resulting in the
equations

δ̇ + (1 + w)(θ − ḣ/2) = 3 ȧ
a

(w − c2
s)δ (23)

∂

∂t
[(1 + w)θ] + (2 − 3w)(1 + w)θ ȧ

a
= −c2

s∇2
(︄
δ

a2

)︄
, (24)

where θ = ∂iv
i/a is the expansion parameter [5]. Note that for a pressureless fluid

cs = 0 and with this choice vi ≡ 0 solves equation 24. The system never develops
peculiar velocity in the synchronous gauge if the velocity vanishes at the initial time.
This property will turn out to be of use with the full Einstein equations as well.
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3 ADM-formalism

Einstein’s field equations in the form of equation 6 do not immediately lend themselves
to numerical solutions. In order to proceed, the equations should be written in the so
called 3+1-form by choosing a time coordinate and solving for the time derivatives.
One of the original formulations in this vein was done by Arnowitt, Deser and Misner
in 1959, and the resulting equations are often called the ADM-equations [17]. I
will not follow this original formulation. Instead, this section will closely follow an
equivalent derivation by Baumgarte and Shapiro in [18].

3.1 Deriving the ADM-equations

I begin by assuming that there exists a global time function t such that its set of
level surfaces covers the entire spacetime4. From now on these level surfaces will be
called timeslices. The tangent spaces to the timeslices can be characterized by the
gradient one-form

Ωµ = ∇µt, (25)

and a normal vector to the surface is found by raising its index using the metric.
The rate of change of t for an observer with the velocity Ωµ is determined by the
length of the vector. It is useful to define the lapse function α by

ΩµΩµ = − 1
α2 (26)

and the unit normal vector
nµ = −αΩµ. (27)

The lapse function is always taken to be positive. Note that nµn
µ = −1 by definition.

Constructing the spatial metric γµν on a timeslice is now simple. The length of a
curve calculated with the spatial metric on a timeslice should be the same as when
measured using the full metric gµν . Moreover, the t-component of γµν should vanish,

4Mathematically speaking, I assume that the solution manifold allows a foliation. For more
information on the underlying mathematics the reader can consult [28].
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that is nµγµν = 0. The spatial metric must then be the projection operator

γµν = gµν + nµnν . (28)

It is simple to verify that γµν is the inverse to γµν . Note that raising and lowering
indices is always done using the full metric. However, if the tensor being operated
on is purely spatial, that is nµTµν = 0 for all indices with obvious generalizations to
other ranks, the same result is obtained by using the spatial metric as well.

The timeslice equipped with the spatial metric is a Riemannian submanifold and
so covariant derivatives and curvature can be defined in the usual way [18]. I define
the covariant derivative D on the timeslice to be torsionless and compatible with the
spatial metric. The Christoffel symbols associated with D are then [18]

Γµ
αβ = 1

2γ
µν(∂αγνβ + ∂βγνα − ∂νγαβ). (29)

The spatial Riemann tensor, Ricci tensor and the Ricci scalar are defined analogously
to their four-dimensional counterparts. From now on the Rµ

ναβ will refer to the
spatial tensor and the notation R

(4) µ
ναβ is used for the four-dimensional version. I

will use a similar notation for other tensors as well.
Since the spatial metric is a projection of the full metric on a timeslice, it is clear

that it is missing some of the information necessary to construct the full metric. In
particular, while the spatial metric contains all information on the intrinsic curvature
of the timeslices, it doesn’t constrain how the timeslices are embedded in the four-
dimensional spacetime [18]. Thus, I still need another object for that purpose, namely
the extrinsic curvature.

I define the extrinsic curvature tensor Kµν as

Kµν = −γ α
µ γ β

ν ∇αnβ. (30)

Next, note that n[α∇µnν] = 0, which can be seen by explicitly writing nα in terms of
derivatives of t. The antisymmetric part of the extrinsic curvature is

K[µν] = 1
2 [∇µnν − ∇νnµ + nαnν∇µnα − nαnµ∇νnα

+nαnν∇αnµ − nαnµ∇αnν ] (31)

= −3nαn[α∇µnν] = 0. (32)
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Like the metric, the extrinsic curvature is then a symmetric tensor. The extrinsic
curvature can be written in a more easily interpreted form using the Lie derivative
[27]. Consider the Lie derivative of the spatial metric:

Lnγµν = Ln(gµν + nµnν) = 2∇(µnν) + nµLnnν + nνLnnµ, (33)

where I used the product rule and substituted in the expression for the Lie derivative
of the metric [27]. Expanding the Lie derivatives, [27]

Lnnν = nα∇αnν + nα∇νn
α, (34)

and noting that the latter term vanishes results in

Lnγµν = 2(∇(µnν) + n(µ|n
α∇αn|ν)) (35)

=
(︂
(δα

µ + nαnµ)(δβ
ν + nβnν)∇αnβ

)︂
+ (µ ↔ ν) (36)

= −2K(µν) = −2Kµν . (37)

Since the Lie derivative Ln acts like a directional derivative of an object along the
flow generated by the normal vector field n, the extrinsic curvature measures how
much the spatial metric deforms between timeslices.

The next step is to write the Einstein equation in terms of the spatial metric
and the extrinsic curvature. All information about the four-dimensional curvature
can be expressed through different projections of the Riemann tensor [18]. These
projections can be expressed in terms of the spatial tensors through the equations of
Gauss, Codazzi and Ricci. The derivation for each of these equations can be found
in [18, 28] and the equations read:

Rµναβ +KµνKαβ −KµβKνα = γ λ
µ γ ρ

ν γ ζ
α γ χ

β R
(4)

λρζχ (Gauss’ equation) (38)

DνKµα −DµKνα = γ λ
µ γ ρ

ν γ ζ
α nχ R

(4)
λρζχ (Codazzi equation) (39)

LnKµν = nαnλγ β
µ γ ρ

ν R
(4)

αβλρ − 1
α
DµDνα−Kα

νKµα.(Ricci equation) (40)

The first two equations consist only of objects on one timeslice and cannot therefore
describe the evolution of the metric at different times. These constraint equations
should be satisfied on each timeslice separately. The Ricci equation in turn determines
the evolution of the extrinsic curvature due to the Lie derivative.
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The spatial Ricci tensor and scalar are found easiest by contracting the Gauss’
equation. The resulting expressions are

γαβγλ
µγ

ρ
ν R

(4)
αλβρ = Rµν +KKµν −Kα

νKαµ, (41)

γαβγλρ R
(4)

αλβρ = R +K2 −KαβK
αβ. (42)

The left hand side of the latter equation can be expressed using the four-dimensional
Ricci tensor and scalar by expanding the spatial metrics, resulting in

γαβγλρ R
(4)

αλβρ = (gαβ + nαnβ)(gλρ + nλnρ) R
(4)

αλβρ = R(4) + 2nαnβ R
(4)

αβ . (43)

The term with four normal vectors vanishes due to the antisymmetric indices of the
Riemann tensor. Noting that nαnβgαβ = −1, the right hand side of equation 43 can
be written as

2nαnβ
(︃

R
(4)

αβ − 1
2 R(4) gαβ

)︃
= 2nαnβGαβ. (44)

Then, the contracted Gauss’ equation is

R +K2 −KαβK
αβ = 2nαnβGαβ = 16πnαnβTαβ = 16πρ̃, (45)

where ρ̃ = nαnβT
αβ is the energy density measured by a normal observer. Equation

45 is called the Hamiltonian constraint.

Another constraint equation is obtained by contracting the Codazzi equation.
The contraction reads

DαK
α

µ −DµK = γα
µγ

βλnρ R
(4)

αβλρ = −γα
µ(gβλ + nβnλ)nρ R

(4)
βαλρ. (46)

The latter term again vanishes due to the antisymmetry of the Riemann tensor,
leaving

DαK
α

µ −DµK = −γα
µn

β R
(4)

αβ . (47)

Note next that γα
µn

βgαβ = 0, and so the right hand side can again be expressed
as a contraction of the Einstein tensor, γα

µn
β R

(4)
αβ = γα

µn
βGαβ = 8πγα

µn
βTαβ.

Defining the momentum density measured by a normal observer Sµ as [18]

Sµ = −γα
µn

βTαβ (48)
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results in the constraint equation

DαK
α

µ −DµK = 8πSµ. (49)

This equation is called the momentum constraint.

The last remaining pieces are the evolution equations themselves. The spatial
metrics between different timeslices are connected by equation 37, the definition of
the extrinsic curvature. The Ricci equation then completes the system of equations.

There is still one more contraction of the four-dimensional Riemann tensor to
deal with in the Ricci equation. However, the contraction is simple to express in a
form that has already been calculated:

nαnβγ λ
µ γ ρ

ν R
(4)

αλβρ = (γαβ − gαβ)γ λ
µ γ ρ

ν R
(4)

αλβρ

= γαβγ λ
µ γ ρ

ν R
(4)

αλβρ − γ α
µ γ β

ν R
(4)

αβ . (50)

The first term is just the left hand side of the once-contracted Gauss’ equation.
Substituting in that along with the Einstein equation results in

nαnβγ λ
µ γ ρ

ν R
(4)

αλβρ = Rµν +KKµν −KµαK
α

ν − 8πγ α
µ γ β

ν (Tαβ − 1
2gαβT ). (51)

This can be expressed in a more compact form by defining the spatial stress tensor
and its trace as Sµν = γ α

µ γ β
ν Tαβ and S = Sα

α .

In its current form the Ricci equation and equation 37 describe the evolution
of γµν and Kµν along the integral curve of the vector field nµ. However, the rate
of change of t along these integral curves is given by na∇at = 1/α. In particular,
the rate of change is not a constant in space for a general α, and therefore points at
different spatial points end up in different timeslices after evolving the same length
on the integral curve.

This problem can be solved by defining another vector field tµ = αnµ +βµ, where
βµ is any spatial vector field, nµβµ = 0. The field βµ is called the shift vector. The
rate of change along the integral curves of tµ is now a constant, tµΩµ = 1, and thus
Lt is a suitable time derivative. Due to the linearity of the Lie derivative [27], Lt

can be written as
LtKµν = αLnKµν + LβKµν , (52)
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and so the Ricci equation becomes

LtKµν = −DµDνα + α (Rµν − 2KµαK
α

ν +KKµν)

− 8πα
(︃
Sµν − 1

2γµν(S − ρ̃)
)︃

+ LβKµν . (53)

The evolution equation for the spatial metric can be treated in the same way,

Ltγµν = −2αKµν + Lβγµν . (54)

There is still one more simplification that can be done. Note that all tensors
involved in the constraint and the evolution equations are spatial. Therefore the
amount of non-zero components can be reduced by choosing a suitable coordinate
system. As expected, this coordinate system involves using t as the time coordinate.

The observers stationary with respect to this coordinate system are moving along
the integral curves of the vector field tµ. The components of tµ in this coordinate
system must then be tµ = (1,0,0,0). The other coordinates should specify the location
of a point on each timeslice, and as such the rest of the coordinate basis vectors eµ

(i)

must be purely spatial. Such a coordinate frame is constructed explicitly in [18].

An immediate consequence of this is that nαe
α
(i) = 0, and so in this coordinate

system na = (n0,0,0,0). The contravariant components of nµ are simple to find
using the definition of tµ to get nµ = (tµ − βµ)/α. Since βµ is a spatial vector,
nαβ

α = n0β
0 = 0, and the components of the shift vector must be βµ = (0,βi). The

resulting contravariant components are

nµ = (α−1,α−1βi), (55)

and using the normalization nαn
α = −1 the covariant components reduce into

nµ = (α,0,0,0). (56)

This in turn implies that the zeroth components of any contravariant spatial tensor
must vanish.

In particular, the spatial metric and the extrinsic curvature have γ0µ = 0 and
K0µ = 0 for all µ, which reduces the number of independent components each has
from ten to six. The spatial components of the metric are just γij = gij + ninj = gij .
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In this coordinate system, γij is the matrix inverse of γij:

δi
j = giµgµj = (γiµ − nµni)(γµj − nµnj) (57)

= γiµγµj − ninj = γikγkj. (58)

The full metric can then be written using gab = γab − nanb and inverting the matrix.
The resulting metric is

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt). (59)

I can now finally write the ADM-equations. As the Lie derivative Lt acts as the
derivative along the integral curves of ta, it can be written as just the time derivative
∂t [27]. Also, all temporal terms vanish in contractions between spatial tensors, and
it is sufficient to sum over the spatial indices. Collecting the relevant equations and
expanding the Lie derivatives with respect to the shift Lβ results in [18]

∂tγij = −2αKij +Diβj +Djβi, (60)

∂tKij = −DiDjα + α(Rij − 2KikK
k
j +KKij) − 8πα(Sij − 1

2γij(S − ρ̃))

+ βkDkKij +KikDjβ
k +KjkDiβ

k, (61)

R +K2 −KijK
ij = 16πρ̃, (62)

Dj(Kij − γijK) = 8πSi. (63)

Taking the trace of equation 61 and substituting the momentum constraint for the
Ricci scalar results in the evolution equation for the trace of the extrinsic curvature,

∂tK = −D2α + α(KijK
ij + 4π(ρ̄+ S)) + βiDiK. (64)

While this equation is not necessary to evolve the metric, it will turn out to be of
use later.
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3.2 Fluid equations and fixing the gauge

The ADM-equations by themselves are not enough to close the system of equations.
The missing piece are the fluid equations governing the dynamics of the energy-
momentum tensor. As I will only consider matter dominated systems in this project,
I will set p = 0 from now on. I will also write the 4-velocity as ua = γv(α−1,vi), where
γv = (1 − viv

i)−1/2 is the Lorentz factor and vi is the peculiar 3-velocity [47]. With
this notation the energy-momentum tensor of an ideal fluid has the components

T µν = ρuµuν =
⎛⎝ ργ2

v/α
2 ργ2

vv
i/α

ργ2
vv

j/α ργ2
vv

ivj

⎞⎠ . (65)

After some effort expanding the continuity equation ∇αT
αµ = 0 results in the

equations

v̇k = −vivjα(Γk
ij + vkKij) + vi(2αK k

i − vk
,iα− vkα,i)

− γkiα,i − 2vkα̇/α (66)

and

ρ̇ = −2ργ2
vγijv

iv̇j + αρ(1 + 2γ2
v)Kijv

ivj + 2ρα̇/α

− Γi
ijραv

j + αKρ− α(viρ,i + ρvi
,i) − 2αρviγv,i/γv. (67)

As I mentioned when discussing linear perturbation theory, in this project I will
be adopting the synchronous gauge by setting α ≡ 1. For simplicity, I will also set
βi ≡ 0, which implies tµ = nµ. I will refer to the resulting coordinate system as the
comoving coordinates.

The normal energy density is ρ̃ = T 00 as expected, which can be expressed in
terms of the usual rest frame energy density ρ as

ρ̃ = ρu0u0 = γ2
vρ. (68)

The momentum density is in turn

Si = −γiµnνT
µν = −αγiµT

µ0 = −γijT
j0 (69)

= −γij

(︂
ρu0uj

)︂
= −ργ2

vvi. (70)
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where I used the fact that γi0 = gi0 +nin0 = 0 when βi = 0. With similar calculations
the spatial stress tensor and its trace can be written as

Sij = vivjγ
2
vρ, (71)

S = viv
iγ2

vρ. (72)

Substituting the gauge choice into the evolution equation for the peculiar fluid
velocity results in

v̇k = −vivj(Γk
ij + vkKij) + 2viK k

i − vivk
,i. (73)

Note that every term in the above equation is proportional to the velocity itself. As
was the case with the linear perturbation theory, the system cannot develop peculiar
velocity in the synchronous gauge if the velocity is zero at the initial timeslice. Then,
with a suitable choice of initial conditions I can set vi ≡ 0. With our gauge choice
and zero velocity the evolution equations reduce into

γ̇ij = −2Kij (74)

K̇ij = Rij − 2KikK
k
j +KKij − 4πργij (75)

ρ̇ = Kρ. (76)

3.3 ADM-equations for perturbations

Even the simple form of the ADM-equations with the fixed gauge is still not usable
in a numerical calculation. The initial conditions I will be using in this project
consist of a spatially flat FLRW-background with a small perturbation on top of
it. I will discuss this in more detail in section 5. The problem arises with the
spatial derivatives in the evolution equations and the Ricci tensor in particular. As
the spatial derivatives must be calculated numerically, the numerical error will be
prohibitively large relative to the size perturbation at early times.

In order to address this problem, I will now split the equations into the background
part and the perturbation. Note that as with linear perturbation theory, this split
is gauge dependent. I will avoid the problem of gauge transformations by only
considering the gauge choice discussed above.
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I define the split metric as

γij = a2(δij + δγij), (77)

where a is the scale factor for the flat Einstein-de Sitter -universe. The time derivative
of γij reads

γ̇ij = 2aȧγij + a2δγ̇ij (78)

and comparing this with the evolution equation for γij suggests that the extrinsic
curvature should be split as

Kij = −aȧ(δij + δKij). (79)

For the energy density, I take cue from the usual linear perturbation theory and
write

ρ = ρ̄(1 + δ), (80)

where ρ̄ is the FLRW energy density. For convenience, I also define δγ̃ij such that

γij = a−2(δij + δγ̃ij). (81)

Note that δγ̃ij is not the matrix inverse of δγij, but instead it must be solved from
the equation γijγjk = δi

k as

δγ̃ij = −a2γikδγklδ
lj. (82)

A simple calculation shows that entire background part of the evolution equations
reduces into Friedmann equations and cancels. The remaining parts of the evolution
equations describe the time evolution of the perturbations. I will again implicitly
sum over all repeated indices in a term regardless of their position. The equations
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for the perturbations read

δγ̇ij = 2ȧ
a
δKij − 2ȧ

a
δγij, (83)

δK̇ij = − 1
aȧ
Rij + ȧ

a

(︃1
2δKij + 2δγ̃ij − δKaaδij − δγ̃aaδij

−δKaaδKij − δγ̃aaδKij − δγ̃klδKklδij + 2δKikδKkj

+2δγ̃klδKljδki + 2δγ̃klδKliδkj + 2δγ̃klδKikδKlj − δγ̃klδKklδKij

)︂
+ 4πρ̄a

ȧ
(δδij + δγij + δδγij) , (84)

δ̇ = − ȧ

a

(︂
δγ̃ii + δKii + δδKii + δδγ̃ii + δγ̃ijδKij + δδγ̃ijδKij

)︂
. (85)

It is not necessary to split the spatial Christoffel symbol and Ricci tensor, as the
background is spatially flat on each timeslice.

The constraint equations split in the same way and the background terms cancel
due to the Friedmann equations. The split Hamiltonian constraint becomes

R +
(︃
ȧ

a

)︃2 [︂
δKii + δγ̃ii − δKijδKij − δγ̃ijδKij − δγ̃ijδγ̃ij

+(δKii)2 + (δγ̃ii)2 + 2δγ̃iiδKjj + 2δγ̃kkδγ̃ijδKij + 2δKkkδγ̃
ijδKij

−2δγ̃ikδγ̃kjδKij − 2δγ̃ijδKikδKkj + (δγ̃ijδKij)2 − δγ̃ikδγ̃jlδKijδKkl

]︂
= 16πρ̄δ. (86)

With the gauge choice specified above and zero peculiar velocity the right hand
side of the momentum constraint vanishes. The background part of the extrinsic
curvature is a constant in space and the background spatial Christoffel symbols
vanish. Thus, the background part of the momentum constraint is zero, and a split
is not necessary in the equation.

This form of the ADM equations closely resembles the equations found using linear
perturbation theory. The linear equations can be recovered from the ADM equations
by eliminating the extrinsic curvature from the ADM equations by differentiating
equation 83 and dropping the higher order terms. Equation 20 is found immediately
by using the same procedure on the trace equation 64.
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3.4 Issues with the ADM-formalism

Numerical implementations of the ADM-equations have seen some success in calculat-
ing the spacetime when the setup is simple enough. Spherical or cylindrical symmetry
is often enough to ensure a numerically stable solution [18]. In particular, symmetries
of the spacetime can allow substituting one or more constraint equations directly
into the evolution equations, considerably improving the stability. For instance, the
evolution of the LTB-spacetime can be calculated in this way [16].

However, when there are no applicable symmetries, the weaknesses of the ADM
formulation are far more apparent. For example, the lack of stability in full three-
dimensional black hole simulations was a long-standing problem in numerical relativity.
The numerical issues can be traced back to the structure of the second order spatial
derivatives in the ADM-equations. I will not go into the mathematical details in this
text, and the reader will find more discussion on the topic in [18].

Luckily, the numerical stability of the Einstein equations depends heavily on the
exact form of the second derivatives in the equations. This portion can be modified
by adding zero to the equations in the form of the constraint equations, which has a
large effect on the overall numerical behaviour [48]. An alternate formulation to the
Einstein equations to address the issues will be discussed in the next section.
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4 BSSN-formalism

The instability of the ADM-formalism has generally made it unusable for all but
the most symmetric systems. As I mentioned in the introduction, the instability
was a long standing problem in general relativity. For instance, calculating the
accurate gravitational wave waveform was achieved only due to new developments
during the past three decades [18, 22]. One solution to the problem is the so called
Baumgarte-Shapiro-Shibata-Nakamura -formalism (BSSN-formalism). Even though
the numerical implementation of the BSSN-equations will be left out of this thesis in
order to manage its scope, I will still detail the formalism here for future use. The
discussion here will closely follow the derivation by Baumgarte and Shapiro in [18].
Some additional details can be found in the original publications [19] and [20].

4.1 Deriving the BSSN-equations

The main issue with the stability of the ADM-formalism arises from the mixed spatial
second derivative terms in the Ricci tensor [19]. The stability of the solution can be
improved by rewriting the equations as a system of wave equations, which involves
eliminating all second derivatives apart from the Laplace operator γklDkDl [18]. This
will be achieved by promoting the troublesome terms into dynamical variables which
will be evolved with their own equations.

I begin with a conformal transformation of the spatial metric,

γij = e4ϕγ̄ij, (87)

where γ̄ij is the conformally related metric. I choose the exponent as ϕ = ln(γ)/12,
where γ is the determinant of the spatial metric. With this choice the determinant
of the conformally related metric γ̄ is unity.

It is also useful to split the extrinsic curvature into its trace and the traceless
part

Kij = Aij + 1
3γijK, (88)
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where K = γijKij. I will also conformally transform the traceless part

Aij = e4ϕĀij (89)

so that the conformally related metric can be used to raise and lower indices of Āij.
In particular Aij = e−4ϕĀ

ij.

In order to continue, I need to rewrite the Ricci tensor and scalar in terms of
the conformal factor and the conformally related metric. Plugging the conformal
transformation into the Christoffel symbol in equation 4 results in

Γi
jk = Γ̄i

jk + 2(δi
jD̄kϕ+ δi

kD̄j − γ̄jkγ̄
ilD̄lϕ). (90)

Here Γ̄i

jk are obtained by substituting the conformally related metric into equation 4
and D̄ is the covariant derivative associated with these conformally related Christoffel
symbols. Note that just as the spatial covariant derivative is defined as metric
compatible with γij, D̄ is compatible with the conformally related metric, that is
D̄kγ̄ij = 0. The proof for these identities is identical to the case with the full spatial
metric.

It is clear from the conformal transformation of the Christoffel symbols that
the Ricci tensor must transform as Rij = R̄ij + Rϕ

ij, where R̄ij is the Ricci tensor
constructed using the conformally related Christoffel symbols and Rϕ

ij contains the
remaining terms. A lengthy but straightforward calculation gives the full expression,

Rϕ
ij = −2(D̄iD̄jϕ+ γ̄ijγ

lmD̄lD̄mϕ) + 4((D̄iϕ)(D̄jϕ) − γ̄ij γ̄
lm(D̄lϕ)(D̄mϕ)). (91)

It will be useful later on to calculate a similar split for the Ricci scalar. The result is

R = γijRij = e−4ϕ
[︂
R̄ − 8γ̄ij(D̄iD̄jϕ+ (D̄iϕ)(D̄jϕ))

]︂
, (92)

where R̄ = γ̄ijR̄ij.

The most troublesome terms with mixed derivatives can be found in R̄ij and more
specifically in the terms involving the derivatives of the barred Christoffel symbols.
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Expanding the Christoffel symbols and reordering the terms yields

R̄ij = −1
2 γ̄

kl(∂k∂lγ̄ij + ∂i∂j γ̄kl − ∂k∂iγ̄lj − ∂l∂j γ̄ki)

+ γ̄kl
[︂
Γ̄m

il Γ̄mkj − Γ̄m

ij Γ̄mkl

]︂
, (93)

where I denoted Γ̄ijk = γ̄ilΓ̄
l

jk for compactness. Note that the last two terms are not
the same as the usual two quadratic terms of the Ricci tensor. The first of the second
derivative terms is just the Laplacian γ̄kl∂k∂lγ̄ij, and it doesn’t cause any problems.
However, the other second derivative terms cause major numerical issues [18, 19].

In BSSN-formalism the method of dealing with the issues is to rewrite these terms
using auxiliary fields which are then evolved using their own evolution equations. I
define

Γ̄i := γ̄klΓ̄i

kl. (94)

This can be rewritten in another form using metric compatibility

0 = D̄kγ̄
ki = ∂kγ̄

ki + Γ̄k

klγ̄
li + Γ̄i

klγ̄
lk. (95)

The middle term vanishes as

Γ̄k

ki = ∂i ln
√︂

|γ̄| (96)

and the determinant of the scaled metric is unity [10]. The two remaining terms give
the relation

Γ̄i = −∂kγ̄
ki, (97)

which acts as an additional constraint equation.

The second derivatives in the Ricci tensor should be related to the derivatives of
the auxiliary fields, as they arise from differentiating the Christoffel symbols. This
indeed turns out to be the case, as the first partial derivatives of Γ̄k satisfy the
equation

γ̄ki∂jΓ̄
k = γ̄mn

[︃
∂j∂mγ̄ni − 1

2∂i∂j γ̄mn

]︃
+ Γ̄imn(∂j γ̄

mn)

+ γ̄mlγ̄nk
[︂
(∂j γ̄ik)Γ̄nml + (∂j γ̄nl)Γ̄imk

]︂
. (98)

Comparing the first brackets with equation 93 suggests that the troublesome second
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derivatives can be eliminated with a term γ̄k(i∂j)Γ̄
k. After some effort one finds that

−1
2 γ̄

kl(∂i∂j γ̄kl − ∂k∂iγ̄lj − ∂l∂j γ̄ki) = γ̄k(i∂j)Γ̄
k + γ̄mlΓ̄n

ijΓ̄nml + Γ̄kΓ̄(ij)k

+ 1
2 γ̄

mlγ̄nk
[︂
(∂j γ̄nl)Γ̄imk + (∂iγ̄nl)Γ̄jmk

]︂
, (99)

and substituting this into equation 93 results finally in

R̄ij = −1
2 γ̄

kl∂k∂lγ̄ij + γ̄k(i∂j)Γ̄
k + Γ̄kΓ̄(ij)k + γ̄kl(2Γ̄m

l(iΓ̄j)mk + Γ̄m

il Γ̄mkj). (100)

All of the second derivatives apart from the Laplacian term are now absorbed into
the derivatives of Γ̄k.

Now with the Ricci tensor in a more numerically stable form, what remains is to
write the evolution and constraint equations for the new set of dynamical fields ϕ,
γ̄ij, K, Āij and Γ̄i. For the sake of generality, I will keep the lapse function α and
shift β in the equations for the moment.

I will start with the scalar quantities ϕ and K. Since the spatial metric is
invertible by definition, the Jacobi formula states that

∂tγ = γγikγ̇ki (101)

and substituting in equation 60 for γ̇ij leaves

∂tγ = −2αγK + 2γDiβ
i. (102)

This form simplifies somewhat by writing the full spatial covariant derivative in
terms of the BSSN-variables:

Diβ
i = ∂iβ

i + Γi
ikβ

k = ∂iβ
i + 1

2γ ∂kγ. (103)

Noting that γ = e12ϕ and cancelling the overall factor of γ gives the evolution
equation for the conformal factor,

∂tϕ = −1
6αK + 1

6∂iβ
i + βk∂kϕ. (104)

The evolution of K is simpler to obtain, as it is sufficient to rewrite the term KijK
ij
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in equation 64. The resulting equation is

∂tK = −D2α + α(ĀijĀ
ij + 1

3K
2) + 4πα(ρ̃+ S) + βi∂iK. (105)

With ϕ accounted for, the evolution equation for γ̄ij can now be obtained from
equation 60 by substituting in the expression for ϕ̇:

∂tγ̄ij = −2αĀij − 2
3 γ̄ij∂kβ

k − 4γ̄ijβ
k∂kϕ+ e−4ϕ(Diβj +Djβi). (106)

By expanding the covariant derivatives in terms of the BSSN variables and raising
the indices on βi, the equation becomes

∂tγ̄ij = −2αĀij − 2
3 γ̄ij∂kβ

k + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄jk∂iβ

k, (107)

which is somewhat simpler to implement numerically. The evolution of Āij is found
in a similar way from equation 61 by subtracting its trace, resulting eventually in

∂tĀij = e−4ϕ
(︂
(−DiDjα)T F + α(RT F

ij − 8πST F
ij )

)︂
+ α(KĀij − 2ĀikĀ

k

j)

+ βk∂kĀij + Āik∂jβ
k + Ājk∂iβ

k − 2
3Āij∂kβ

k. (108)

Here

RT F
ij = Rij − 1

3γijR (109)

ST F
ij = Sij − 1

3γijS (110)

(DiDjα)T F = DiDjα− 1
3γijγ

klDkDlα (111)

are the trace-free parts of the tensors.
The last remaining equations necessary are the evolution equations for the

auxiliary fields Γ̄i. These equations are relatively simple to obtain by differentiating
both sides of equation 97 and substituting in the time derivative of the conformally
related metric. This results in

∂tΓ̄
i = −∂j(2αĀ

ij − 2γ̄k(j∂kβ
i) + 2

3 γ̄
ij∂kβ

k + βk∂kγ̄
ij). (112)

However, it turns out that the divergence ∂jĀ
ij causes numerical issues that can
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be solved by eliminating it using the momentum constraint [19]. Note first that
DjA

ij = e−10ϕD̄j(e6ϕĀ
ij), which can be verified by a brief calculation. With this

substitution the momentum constraint becomes

D̄jĀ
ij = −6Āij

∂jϕ+ 2
3 γ̄

ij∂jK + 8πγ̄ijSj. (113)

After solving for ∂jĀ
ij and plugging it into equation 112, the evolution equation is

finally

∂tΓ̄
i = −Āij

∂jα + 2α
(︃

Γ̄i

jkĀ
kj − 2

3 γ̄
ij∂jK − 8πγ̄ijSj + 6Āij

∂jϕ
)︃

+ βj∂jΓ̄
i − Γ̄j

∂jβ
i + 2

3Γ̄i
∂jβ

j + 1
3 γ̄

ki∂k∂jβ
j + γ̄kj∂k∂jβ

i. (114)

As the last thing, I need to rewrite the Hamiltonian constraint equation using
the new set of variables. Splitting the trace away from the extrinsic curvature leaves
the constraint equation as

R − ĀijĀ
ij + 2

3K
2 = 16πρ̃. (115)

While this is the form of the constraint equation most convenient to implement
numerically, in the next section another form will prove useful. Noting that

e5ϕγij
[︂
D̄iD̄jϕ+ (D̄iϕ)(D̄jϕ)

]︂
= γ̄ijD̄iD̄je

ϕ (116)

and substituting equations 92 and 116 into the Hamiltonian constraint results in

γ̄ijD̄iD̄je
ϕ − eϕ

8 R̄ + e5ϕ

8 ĀijĀ
ij − e5ϕ

12 K
2 = −2πe5ϕρ̃. (117)

Equations 104, 105, 107, 108 and 114 together constitute the BSSN-equations,
and they are equivalent to the ADM-system of equations [18]. As is the case with
the ADM-formalism, the continuity equation is still needed to close the system and
the Hamiltonian and momentum constraints should be fulfilled on each timeslice.
Introducing the auxiliary fields Γ̄i added one more constraint in equation 97, and in
addition splitting off the conformal factor also requires γ̄ = 1, which acts as another
constraint. In principle these relations could be used to solve some of the variables
instead of evolving them freely.
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As with the ADM-formalism, I choose the synchronous gauge with zero shift.
In the synchronous gauge choosing zero initial velocity ensures that the velocity is
always zero and the velocity can then be dropped from the equations. With these
choices the evolution equations for the BSSN-variables along with the continuity
equation reduce into

∂tϕ = −1
6K (118)

∂tK = ĀijĀ
ij + 1

3K
2 + 4πρ (119)

∂tγ̄ij = −2Āij (120)

∂tĀij = e−4ϕRT F
ij +KĀij − 2ĀikĀ

k

j (121)

∂tΓ̄
i = 2Γ̄i

jkĀ
kj − 4

3 γ̄
ij∂jK + 12Āij

∂jϕ (122)

ρ̇ = Kρ. (123)

4.2 BSSN-equations for perturbations

As was the case with the ADM-equations, the numerical error at the early times
will be prohibitively large if this system is evolved directly without subtracting the
background quantities analytically. Luckily, this turns out to be somewhat simpler
in BSSN-formalism due to the conformal transverse-traceless split.

I denote5 ϕ = ϕ0 + δϕ, K = K0(1 + δK) and ρ = ρ0(1 + δ). As the background
spatial metric is just a2δij, it is natural to split γ̄ij = δij + hij and so the spatial
metric becomes

γij = e4ϕ0δij + e4ϕ0(e4δϕ − 1)δij + e4(ϕ0+δϕ)hij. (124)

The first term is the only one zeroth order in the perturbation and I can identify

ϕ0 = 1
2 ln a. (125)

The split in the trace K was already discussed in the ADM case and so

K0 = −3ȧ
a

(126)

5In the context of the BSSN-formalism I will use the subscript 0 for the background quantities
so that there is no confusion with the conformally related tensors.



44

as before. Writing the extrinsic curvature in terms of the split quantities gives

Kij = −aȧ
(︂
δij + (e4δϕ − 1)δij + e4δϕδKδij

+e4δϕ(1 + δK)hij − a

ȧ
e4δϕĀij

)︃
. (127)

The entire background is accounted for in the first term and, so the traceless part
Āij must be entirely perturbation. The last variables to consider are Γ̄i. However, as
the background metric is a constant in space, the background auxiliary fields must
be zero by equation 97. Then, Γ̄i must be purely perturbation as well.

I can now plug in the background split into the BSSN-equations with synchronous
gauge and zero peculiar velocity. All terms in equations 113, 120, 121 and 122 are
already proportional to the perturbation and so it is not necessary to subtract the
background. In the rest of the equations the background terms cancel due to the
Friedmann equations, leaving

∂tδϕ = 1
2
ȧ

a
δK (128)

∂tδK = − a

3ȧ (̄δik + h̃
ik)(δjl + h̃

jl)ĀijĀkl − 1
2
ȧ

a
δK − ȧ

a
δ2

K − 1
2
ȧ

a
δ (129)

∂thij = −2Āij (130)

∂tĀij = e−4ϕRT F
ij − 3ȧ

a
(1 + δK)Āij − 2(δkl + h̃

kl)ĀikĀlj (131)

∂tΓ̄
i = 2Γ̄i

jk(δkl + h̃
kl)(δjn + h̃

jn)Āln + 4ȧ
a

(δij + h̃
ij)∂jδK

+ 12(δil + h̃
il)(δjn + h̃

jn)Āln∂jϕ (132)

∂tδ = −3ȧ
a

(δK + δδK). (133)

R − (δik + h̃
ik)(δjl + h̃

jl)ĀijĀkl + 6ȧ2

a2 (2δK + δ2
K) = 6ȧ2

a2 δ (134)

(δjk + h̃
jk)D̄jĀik + 6(δjk + h̃

jk)Āik∂jδϕ+ 2ȧ
a
∂iδK = 0 (135)

In order to preserve numerical accuracy, the perturbation of the inverse conformally
related metric h̃ij should be calculated in an analogous way to equation 82.
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5 Initial conditions

In the previous two sections, I discussed two different sets of equations for evolving a
spacetime starting from some initial configuration. However, constructing this initial
configuration is a somewhat more subtle problem than one might imagine. In this
subsection, I will construct the initial data I will be using by adopting a simplifying
assumption from [23]. The reader should consult [18] for a more general discussion.

5.1 Solving the constraint equations

As is the case on any other timeslice as well, the initial data is constrained by the
Hamiltonian and momentum constraint equations. One could expect that the matter
of solving the initial conditions amount to simply solving the constraint equations
for the given initial energy density and velocity configuration. However, counting
the available degrees of freedom reveals that there is more to the problem. The
degrees of freedom are the simplest to count in the ADM-formalism. The variables
to specify are the initial spatial metric and extrinsic curvature, both of which have
six independent components. There are then twelve degrees of freedom to specify in
the initial data, whereas there are only four constraint equations.

This is not too surprising: In general relativity there is always the freedom to
choose the coordinate system as one sees fit. Specifying the spatial coordinates on
the initial timeslice takes three degrees of freedom, while specifying the initial time
takes one more. This leaves four degrees of freedom, which correspond with the two
modes of gravitational radiation [18].

While all degrees of freedom are now accounted for, actually specifying how these
degrees of freedom correspond with the variables at hand is more difficult. It turns
out to be easiest to start from the conformal transformation of the BSSN-formalism.
Adopting the notation again from [18], I will denote ψ ≡ eϕ. With this notation the
constraint equations read

D̄
i
D̄iψ − 1

8ψR̄ + 1
8ψ

5ĀijĀ
ij − 1

12ψ
5K2 = −2πψ5ρ (136)
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and
D̄j(ψ6Ā

ij) − 2
3ψ

6D̄
i
K = 8πψ6Si. (137)

For given ρ and Si these equations serve to determine the conformal factor ψ and
the divergence of Āij. This leaves K, γ̄ij and the transverse, or divergence free, part
of Āij to be freely specified.

These last variables specify the gauge and the initial gravitational wave content,
although the exact way depends on the initial conditions in question. It is common
to associate K with the choice of time coordinate and the transverse part of Āij with
the gravitational radiation [18].

While this issue is of great importance when discussing, say, initial conditions
for black holes, the physical situation in my case makes the problem somewhat
simpler. I want to consider a FLRW-background with a small initial perturbation.
The initial choices for variables should then reduce to their FLRW-values in the limit
of vanishing perturbation. The FLRW-initial values have a flat spatial metric with a
constant K and zero Āij.

Following [23], I demand that the initial spatial metric is conformally flat, γ̄ij = δij .
For the rest of the variables, I require that they take their FLRW values with constant
K and vanishing Āij [23]. Moving into the synchronous gauge and requiring zero
initial peculiar velocity, the momentum constraint reduces into

D̄j(ψ6Ā
ij) = 0, (138)

which is clearly satisfied by the choice Āij = 0.

In turn, the Hamiltonian constraint with the above choices at the initial slice
becomes [23]

∇2ψ =
(︃ 1

12K
2 − 2πρ

)︃
ψ5. (139)

Substituting in K = −3ȧ/a into the Hamiltonian constraint, writing ρ = ρ0(1 + δ)
and cancelling the background terms using the Friedmann equations results in

∇2ψ = −3
4
ȧ2

a2 δψ
5. (140)

Denoting

f(x⃗) = −3
4
ȧ2

a2 δ(x⃗), (141)



47

where all quantities are evaluated at the initial timeslice, brings the equation to the
simple form

∇2ψ = f(x⃗)ψ5. (142)

Despite its simplicity, equation 142 is rather difficult to solve exactly. It is possible
to solve the equation numerically, although specific methods have to be utilised
in order to have the solution converge [49]. However, there is some simplification
that can be gained by noting that the function f is proportional to the density
perturbation.

In order to make this more apparent, I write the initial density perturbation as
δ(x⃗) = δ0δ̃(x⃗), where the values of δ̃ are of order unity. Similarly, I can then denote
f = δ0f̃ . In the case of a vanishing perturbation, ψ should reduce to its FLRW value
of ψ =

√
a, and so ψ should have the form

ψ =
√
a(1 + δ0ψ1), (143)

where ψ1 is some unknown function. Substituting this into equation 142 results in

∇2ψ1 = a2f̃(1 + δ0ψ1)5 = a2f̃ + 5a2δ0f̃ψ1 + O(δ2
0). (144)

In principle, one could iterate this procedure to solve ψ to the desired order of
accuracy.

However, this approach is not without its issues. To first order in δ0, the
Hamiltonian constraint reduces into a simple Poisson equation. By expanding the
conformal factor in powers of δ0,

ψ =
√
a(1 + δ0ψ1 + δ2

0ψ2 + ...) (145)

the constraint equation 142 becomes

δ0
[︂
∇2ψ1 − a2f̃

]︂
+ δ2

0

[︂
∇2ψ2 − 5a2f̃ψ1

]︂
+ ... = 0. (146)
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Requiring each of the coefficients to vanish results in the set of Poisson equations
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇2ψ1 = a2f̃

∇2ψ2 = 5a2f̃ψ1

∇2ψ3 = ...

. (147)

As the source term of each equation depends only on the solution to the equations
above it, this system can be solved starting from the first equation.

However, for certain initial data and boundary conditions the system of equations
does not have any solutions. A simple example of this in one dimension is a sinusoidal
initial perturbation with periodic boundary conditions,

f ∝ sin(2πx/L), (148)

and the domain [0,L]. The solution to the first equation is clearly also sinusoidal,
ψ1 ∝ sin(2πx/L), and so the second equation is

∂2
xψ2 ∝ sin2(2πx/L). (149)

This equation has no solutions satisfying the periodic boundary conditions. This
can be seen by integrating both sides of the equation over the entire domain. The
integral of the left hand side is

∫︂ L

0
∂2

xψ2dx = ∂xψ2(L) − ∂xψ2(0) = 0, (150)

where the derivatives cancel due to the periodicity. This is in contrast with the right
hand side, which has the same sign everywhere, and therefore its integral cannot
vanish. This same approach generalizes to higher dimensions as well.

Whether or not this is an indication of a deeper problem is not clear at this
point. It is possible that the issue is due to the expansion procedure and could be
avoided with a different expansion scheme. The original equation 142 can be solved
numerically even for the sinusoidal initial perturbation of the example [49], which
lends credibility for this claim. For the current purposes, I will settle to solving the
constraint equation to first order, but further research is necessary on this topic.

These problems withstanding, after solving for ϕ from equation 139 the rest of
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the initial conditions are simple, particularly in the BSSN-formalism. The conformal
factor perturbation δϕ can be solved from

eδϕ = 1 + δ0ψ1 (151)

to the desired accuracy and the rest of the initial conditions were chosen to be
hij = Āij = δK = 0. As the initial spatial metric is conformally flat, the auxiliary
functions must be Γ̄i = 0 at the initial time as well.

The ADM initial conditions can then be constructed using the BSSN variables.
Comparing the definitions for the split spatial metric in the two formalisms shows
that the perturbation of the spatial metric is

δγij = (e4δϕ − 1)δij + e4δϕhij = 4δϕδij + O(δ2
0). (152)

The perturbation of Kij in terms of the BSSN-variables was already calculated in
equation 127 and plugging in the BSSN-initial conditions results in

δKij = (e4δϕ − 1)δij = 4δϕδij + O(δ2
0). (153)

5.2 The initial density perturbation

In this thesis, I will consider two different initial density configurations. The first
of these is a sinusoidal density perturbation which will be used for testing purposes
and comparisons with existing literature. The second configuration is a cubic lattice
with overdensities at the edges of the cube, as mentioned in the introduction. For
both initial conditions I will impose periodic boundary conditions. I will also choose
a = 1 at the initial time for simplicity.

I will start with the simpler sinusoidal configuration. The density profile is

δs(x⃗) = δ0 [sin(2πx/L) + sin(2πy/L) + sin(2πz/L)] , (154)

where δ0 is the initial amplitude of the perturbation and L is the comoving length
of the computation lattice. The main advantage of this configuration is that to
first order in δ0 the constraint equations are particularly easy to solve on the initial
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timeslice. Equation 142 reduces into

∇2ψ1 =
∑︂

i

sin(2πxi/L) + O(δ0), (155)

and the solution for ψ is

ψ(x⃗) = 1 + δ0
L2

4π2

∑︂
i

sin(2πxi/L) + O(δ2
0). (156)

It must be noted that these initial conditions are subject to the problems discussed
in the previous section. However, the sinusoidal solution is visually close to the
numerical solution depicted in [49]. The resulting violation of the Hamiltonian
constraint will be discussed in more detail in chapter 8.

The second density configuration is chosen to emulate an arrangement of filaments
in the early universe. The actual universe has structure on multiple different scales
and no easily usable symmetries. I will settle for a toy model in which I require
again a cubic lattice symmetry and the filaments follow the edges of a lattice box.

A simple choice for the cross section of a filament is the Gaussian

g(x,y) = exp(−(x2 + y2)/σ2), (157)

where σ is the width parameter of the filament. Filaments can be placed at each
edge of the box [0,L]3 with the sum

F (x,y,z) = g(x,y) + g(x− L,y) + g(x,y − L) + g(x− L,y − L)

+ g(x,z) + g(x− L,z) + g(x,z − L) + g(x− L,z − L)

+ g(y,z) + g(y − L,z) + g(y,z − L) + g(y − L,z − L). (158)

In this configuration the different filaments overlap at the vertices of the box and so
the value of F at each vertex is triple the typical value on each edge. As such, it is
useful to regulate F with a function that saturates to some value. I define the final
density profile as

δf (x⃗) = δ0(tanh(F (x⃗)) − p), (159)
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Figure 2. The three-dimensional density perturbation δf as defined in equation
159. The color of each marker represents the density perturbation at the point
and the side of the box was chosen L = 1.

where the parameter p is chosen such that
∫︂

Box
d3xδf (x⃗) = 0. (160)

The resulting density perturbation is depicted in figure 2.
For each of these initial conditions, I will employ periodic boundary conditions.

The main advantage to this assumption is that the metric of the entire timeslice can
be determined by simulating just one lattice box. This will turn out to be useful in
particular when analyzing light propagation in the resulting spacetimes.
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5.3 The length scale of the initial conditions

A last thing to note is the length scale of the initial conditions. In the numerical
implementation, it is convenient to use units of length lu in which the physical length
of the computation box on the initial timeslice is L = 1 lu. Similarly, I will use a
units of time tu in which the initial time is tinit = b−1 tu for some dimensionless
parameter b. I will refer to this unit system as the code units. As I have set c = 1 in
code units, the physical units of length and time must be related by lu = ctu. The
units of length and time never explicitly enter the ADM- and BSSN-equations, and
they are only used in interpreting the results. Thus, one simulation can correspond
to multiple physical situations with different length scales and initial times.

In this text, I will assume that the initial time corresponds to the cosmic microwave
background. The Hubble rate at the CMB can be expressed using equation 14 as

HCMB = H0(1 + zCMB)3/2, (161)

where zCMB ≈ 1100 is the redshift at the CMB and H0 ≈ 70 km/s/Mpc is the current
Hubble rate [4]. The initial time can then be solved from equation 14 as

tinit = 2
3HCMB

= 2
3(1 + zCMB)3/2H0

≈ 80 kpc/c, (162)

where c ≈ 3.0 · 105 km/s is the speed of light in physical units [4]. The units of time
in the numerical implementation must then be tu ≈ b · 80 kpc/c, and the units of
length are lu ≈ b−1 · 80 kpc.

The comoving length scale of a structure is now the physical length of the box
measured on the present timeslice [4]. Denoting the current scale factor as a0, the
comoving length of the box Lcm is

Lcm = a0

aCMB

L = (1 + zCMB)L ≈ b · 90 Mpc. (163)

The initial time parameter b corresponding to a given comoving length scale is then
simply

b = Lcm

90 Mpc . (164)

From now on I will not explicitly write out the code units lu and tu. Instead, I will
treat the length and time coordinates as if they were dimensionless.
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6 Light propagation

As I noted in the introduction, the spacetime metric itself is not an observable
quantity. Instead, comparisons between the simulations and observations must be
done on the ways the curvature affects the motion of the matter and the radiation
in the universe. The focus of this thesis is on the latter, and I will discuss how to
calculate the trajectory and the redshift of a light ray in this section. I will discuss
both of these in the context of a FLRW-universe and in the inhomogeneous case.

6.1 The geodesic equation

From elementary optics we know that rays of light in vacuum propagate along straight
lines. However, generalizing the notion of a straight line to a curved spacetime is not
entirely straightforward. One defining property of a straight line in a flat space is
that it minimizes the distance between its endpoints. Mimicking this, the notion of
a geodesic can be defined as a path which is an extremum of the space-time interval

l[xµ(u)] =
∫︂
ds =

∫︂
du

√︄
gµν

dxµ

du

dxν

du
, (165)

where the integral is calculated along the path x(u) in question.
In general relativity, freely falling objects move along geodesics by assumption.

Denoting kµ = dxµ/du, it can be proven that the geodesics are found as solutions to
the geodesic equation [27]

kν∇νk
µ = 0, (166)

or equivalently
d2xµ

du2 + Γµ
νρ

dxν

du

dxρ

du
= 0. (167)

Note that these equations are sensitive to the parametrization of the geodesic. The
curve parameter u satisfying the above equations is called the affine parameter.
While equation 167 is assumed for point particles, it is also valid for radiation
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whose wavelength is much smaller than the scale of the curvature6 [9]. Given this
assumption, radiation moves along null geodesics whose velocity vectors satisfy

kµk
µ = 0. (168)

This relation is often written as ds2 = 0 along null geodesics.

The solutions for the geodesic equation can be found easily in the homogeneous
case. Consider the FLRW-metric in the form of equation 8. A radial trajectory with
dθ = 0 = dϕ satisfies the null condition ds2 = 0 if

dt = ±a(1 − kr2)−1/2dr. (169)

This relation can be integrated to find

∫︂ t2

t1

dt

a(t) = ±
∫︂ r2

r1

dr√
1 − kr2

= ±(χ(r2) − χ(r1)), (170)

where the form of χ(r) depends on the curvature:

χ(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
k

sin(
√
kr), k > 0

r, k = 0
1√
−k

sinh(
√

−kr), k < 0

. (171)

The coordinate system can always be chosen so that the geodesic starts at the origin,
so the above equations actually describe general null geodesics in a FLRW-universe.

In the inhomogeneous case, it is usually necessary to solve the geodesic equation
numerically. Following the approach in [50], the solver is easiest to implement starting
from the form in equation 166. I will consider metrics of the form

ds2 = −α2dt2 + γijdx
idxj. (172)

Using metric compatibility the geodesic equation becomes

0 = gµαkν∇νkα, (173)

6This assumption is called the geometrical optics approximation.
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which is only satisfied if

kν∇νkα = kν∂νkα − Γβ
ναkβk

ν = 0. (174)

Note that here Γµ
να is the full four-dimensional Christoffel symbol. The first term is

clearly just the derivative of kα along the geodesic. The second term on the other
hand is

Γβ
ναkβk

ν = Γβανk
βkα = 1

2k
αkβ∂νgαβ. (175)

and so the geodesic equation becomes

dkµ

du
= −1

2(k0)2∂µ(α2) + 1
2k

ikj∂µγij. (176)

This equation can be simplified somewhat by noting that

k0 = dt

du
(177)

along the curve by definition. The derivatives along the curve can then be exchanged
for time derivatives, resulting in

dkµ

dt
= −k0α∂µα + 1

2(k0)−1kikj∂µγij, (178)

where the zeroth component k0 should be solved from the normalization

0 = kµkµ = −α2(k0)2 + γijk
ikj. (179)

Note that the geodesic equation preserves this normalization, since

d

du
(kµk

µ) = kα∂α(kµk
µ) = kαkµkν∂αg

µν + 2gµνkν
dkµ

du
(180)

= −kαkµkν∂αgµν + gµνkνk
αkβ∂µgαβ = 0. (181)

The evolution of k0 can therefore be accounted for analytically.
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In the end the geodesic equation can be expressed as the system

dxi

dt
= (k0)−1ki (182)

dki

dt
= −k0α∂iα + 1

2(k0)−1kkkl∂iγkl. (183)

In the absence of pathologies, in the metric this form of the geodesic equation is
simple to solve numerically. As the equation is a second order ordinary differential
equation, the initial conditions one needs are both the initial location in the spacetime
and the initial 4-velocity vector of the trajectory. The latter is just the photon wave
4-vector. In the coordinate system comoving with the matter flow, its components
are kµ = ω(1,k⃗), where ω is the frequency of the radiation measured by a comoving
observer at the source and k⃗ is the spatial wave vector. The normalization of the
latter at the initial time is fixed by the null condition.

6.2 Redshift

Once the null geodesic has been calculated, finding the redshift along it is not
complicated. The frequency of the observed photon is just the zero-component of
its wave vector in the rest frame of the observer. Denoting the 4-velocity of the
observer as uµ

O, the observed frequency is then ωO = uµ
Ok

O
µ , where kO

µ is evaluated at
the observer. Similarly, the source frequency is ωS = uµ

Sk
S
µ . The redshift is then by

definition the relative difference between the observer and source frequencies, [9]

z = ωS − ωO

ωO

=
uµ

Sk
S
µ

uν
Ok

O
ν

− 1. (184)

For comoving sources and observers this simplifies even more into

z = k0(tS)
k0(tO) − 1, (185)

as long as the photon trajectory is parametrized by the affine parameter. Note that
any overall constant multiple of kµ cancels in the geodesic equations 182 and 183.
Thus, the redshift is independent of the initial frequency as a ratio of frequencies on
the same geodesic.

It is simple to show that these formulas reduce into the familiar FLRW-results
in the case γij = a2(t)δij. For a homogeneous metric, the covariant 3-momentum
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components ki are constants and so

k0(O) =
√︂
a−2(tobs)δijkikj = a(tem)

a(tobs)
√︂
a−2(tem)δijkikj = a(tem)

a(tobs)
k0(S), (186)

where tobs and tem are the times of observing and emitting the light ray respectively.
Plugging this into the equation 185 results in

z = a(tobs)
a(tem) − 1, (187)

which is a relation found section 2.2 and in any textbook [27].
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7 Numerical methods

Here, I will discuss the numerical implementation of the solver to the Einstein
equations. I will first go through how to solve a system of hyperbolic partial
differential equations using the method of lines. In order to do this, I will first briefly
explain the method of finite differences for calculating numerical derivatives. After
this, I will discuss relaxation methods for solving elliptic differential equations, and
lastly I will give some additional details on the implementation of the simulation.

7.1 Finite differences

As any physical computer is capable of storing only a finite amount of data points,
any numerical function must either be defined on a finite lattice or in terms of a
finite number of basis functions. The limiting processes used in defining derivatives
in mathematics are therefore impossible to reproduce perfectly, and we must settle
for approximations. The most commonly used approximation is the finite differences.
As the topic is discussed in any textbook on numerical methods [51], I will only give
a rough overview of it.

It is illustrative to start with a simple example. Consider a function f with the
Taylor expansion

f(x) = f(x0) + f ′(x0)h+ 1
2f

′′(x0)h2 + 1
6f

′′′(x)h3 + O(h4), (188)

where h = x− x0. There are several different ways to solve the first derivative, the
simplest of which are

f ′(x) = f(x+ h) − f(x)
h

+ O(h2). (189)

f ′(x) = f(x) − f(x− h)
h

+ O(h2) (190)

f ′(x) = f(x+ h) − f(x− h)
2h + O(h3). (191)

For a function defined on discrete points, the small number h is usually taken to be
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the grid spacing. Equations 189, 190 and 191 are called the forwards, backwards
and central finite differences of the first derivative. Note also that in the central
difference the second order terms vanish exactly and the derivative is accurate to
third order in h.

A similar procedure can be extended to any derivative of any order of accuracy.
Defining fn(x) = f(x+ nh) for any integer n, the finite differences take the form

f (m)(x) = 1
hm

∞∑︂
n=−∞

cnfn(x), (192)

where cn are the finite difference coefficients which can be found in tables [52]. Note
also that the same formulas are applicable to partial derivatives with respect to a
single variable as well.

A cursory inspection of the Einstein equation shows that I need approximations
for only first and second derivatives. As the boundary conditions are periodic, I
can use the central finite differences throughout the lattice instead of switching to a
forwards or backwards difference at the boundary. Choosing fourth order accuracy
results in the finite differences [52]

f ′ = 1
h

(︃
− 1

12f2 + 2
3f1 − 2

3f−1 + 1
12f−2

)︃
(193)

f ′′ = 1
h2

(︃
− 1

12f2 + 4
3f1 − 5

2f0 + 4
3f1 − 1

12f2

)︃
. (194)

All that remains is to find approximations for the mixed second derivatives.
Consider a function f(x,y) and denote7 fnm(x,y) = f(x+ nh,y +mh). I also write
f y = ∂yf to avoid clutter. The mixed second derivative is then to fourth order

∂x∂yf = 1
h

(︃
− 1

12f
y
20 + 2

3f
y
10 − 2

3f
y
−10 + 1

12f
y
−20

)︃
+ O(h4) (195)

7Here, I assume that the grid spacing is identical in both directions.
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and plugging in the finite difference for f y gives the result

∂x∂yf = 1
h2

(︃ 1
144f22 − 1

18f21 + 1
18f2−1 − 1

144f2−2

− 1
18f12 + 4

9f11 − 4
9f1−1 + 1

18f1−2

+ 1
18f−12 − 4

9f−11 + 4
9f−1−1 − 1

18f−1−2

− 1
144f−22 + 1

18f−21 − 1
18f−2−1 + 1

144f−2−2

)︃
+ O(h4). (196)

7.2 Method of lines

While there are many different schemes for solving hyperbolic differential equations,
I chose the method of lines for the problem. In this section, I will first describe the
general procedure for the method following [18]. Afterwards, I will apply the method
of lines to the simple example of the one-dimensional wave equation, as this will
avoid the complications of the full Einstein equations.

In principle, the procedure of the method of lines is very simple. Consider a
hyperbolic partial differential equation of the form

∂y

∂t
= F (y,∂1y,...), (197)

where y = y(t,x1,...,xk) and F is a given function of yi and its partial derivatives.
I then discretize the domain in all but one direction into a N1 × ... × Nk-lattice,
on which the function y is represented by N1...Nk functions yi(t) = y(t,x⃗i) of one
variable only.

As I discussed in the previous section, the partial derivatives of y can be approxi-
mated by finite differences to a desired order of accuracy. The finite differences are
just linear combinations of the functions yi, and so the right hand side of 197 can be
written as

F (y(t,x⃗i),∂1y(t,x⃗i),...) = F (yi(t),Aiy⃗(t),...) ≡ F̃ i(y⃗(t)), (198)

where Ai is the matrix operator for the partial derivative at the point x⃗i. The partial
differential equation can therefore be expressed as

∂yi

∂t
= F̃ i(y⃗(t)). (199)
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The result is a system of coupled ordinary differential equations, which can be solved
utilizing the method of one’s choosing. Note also that the method of lines generalizes
to systems of partial differential equations.

The freedom to use any method for solving the system of ordinary differential
equations is the main advantage of the method of lines. In the simulations performed
in this thesis, I will always utilize the Runge-Kutta (4,5) -method packaged in the
Matlab ode45-algorithm [53]. As the details of the ODE-solver are by design not
necessary for using the method of lines, I will not discuss them here.

However, there are some disadvantages to the method as well. The most prominent
of these is that the method is difficult to generalize to less symmetric domains, which
cannot be expressed as a k-dimensional rectangle. This weakness is shared by most
other methods relying on finite differences as well.

I will now turn to the example of an one-dimensional wave equation. Consider
the equation

∂2y

∂t2
= c2 ∂

2y

∂x2 , (200)

where x ∈ [0,1] over the time t ∈ [0,10] and c ∈ R. I discretize then the spatial
domain into N grid points x1,...,xN and denote ui = y(t,xi). As most ODE-solvers
are only applicable to first order differential equations, I also set uN+i = ẏ(t,xi). The
wave equation on the lattice becomes the system of equations

∂tui = uN+i (201)

∂tuN+i = c2∂
2ui

∂x2 . (202)

For the sake of clarity, I choose the simple second order finite difference for the
spatial derivative. Plugging this in results in

∂tui = uN+i (203)

∂tuN+i = c2

h2 (ui+1 − 2ui + ui−1), (204)

with the boundary points determined by the chosen boundary conditions. Adopting
periodic boundary conditions results in

∂tuN+1 = c2

h2 (uN − 2u1 + u2) (205)



63

and the other boundary is handled analogously. The solution to this system of
equations can be found with any ODE-solver.

For this example, I choose c = 1 and the sinusoidal initial conditions

y(0,x) = sin(2πx) (206)

ẏ(0,x) = 2π cos(2πx). (207)

A plot of the solutions to the wave equation using the method of lines and N = 32 is
presented in figure 3a along with the analytic solution

ya(t,x) = sin (2π(x+ t)) . (208)

The error of the method can be estimated with the L1-norm defined as

EN =
∫︂ 1

0
dx
∫︂ 1

0
dt|ya(t,x) − yN(t,x)|, (209)

where yN is the numerical solution with the grid size N . The errors for solutions
with various N can be found in figure 3b, and they show a clear convergence towards
the correct solution as the grid spacing decreases.

7.3 Relaxation

In contrast to the hyperbolic evolution equations8, the constraint equations necessary
for solving the initial conditions are elliptic partial differential equations. As the
solutions are determined by boundary conditions instead of initial values, the method
of lines cannot be be used to find the solution. Because of this, I will utilize the
method of relaxation [51].

Relaxation is a method for solving elliptic partial differential equations involving
the Laplace operator. Instead of giving a general treatment for the method, it is
most illustrative to give an example straight away. Consider the three-dimensional
Poisson equation

∇2u = f, (210)

where f = f(x⃗) is a given function. I discretize the the domain with a cubic lattice

8The ADM-equations can be classified as weakly hyperbolic partial differential equations, and
the BSSN-equations are strongly hyperbolic [18].
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(a)

(b)

Figure 3. (a) The method of lines -solution to the wave equation y(t,x) at the
point x = 0 as a function of time along with the analytic solution (dashed). The
grid spacing used was N = 32. (b) The error EN calculated for the method of
lines -solutions for the wave equations with different N .
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and adopt the notation from section 7.1, that is u(ih,jh,kh) ≡ uijk. For clarity, I
will use the second order finite difference for the second derivatives, which leaves the
equation as

1
h2 (−6uijk + ui+1jk + ui−1jk + uij+1k + uij−1k + uijk−1 + uijk−1) = fijk. (211)

Note that boundary points should be handled separately according to the boundary
conditions. The value uijk can be solved as

uijk = 1
6
(︂
ui+1jk + ui−1jk + uij+1k + uij−1k + uijk−1 + uijk−1 − h2fijk

)︂
. (212)

The solution to the Poisson equation is now found by iterating equation 212 starting
from some initial configuration [51]. The convergence of the solution for equation
144 with the filament initial conditions is depicted in figure 4.

The same procedure works for other equations involving the Laplace operator
as well, the only modification being extra terms in equation 212. The method can
be used even for equations nonlinear in u, although the equivalent of equation 212
cannot necessarily be solved explicitly [54]. In that case, it is common to use a small
number of iterations with Newton’s method to obtain an approximate solution for
uijk [54]. However, these methods will not be necessary in this thesis.

There are many different schemes for how to perform the iteration. I will adopt
the Jacobi iteration

uN+1
ijk = Fijk(...,uN

i−1jk,u
N
ijk,u

N
i+1jk,...), (213)

where Fijk is the right hand side of the equivalent for equation 212 [51]. The main
advantage to the Jacobi iteration is that the right hand side of equation 213 only
depends on the values of u at the previous state of iteration, which makes the process
easy to vectorize.
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Figure 4. The error E = max(|∇2ψ1 − f̄ |) for the approximate solutions
to the Poisson equation ∇2ψ1 = f̄ as a function of relaxation iteration step.
Derivatives were approximated with second order finite differences and f̄ was
chosen according to the filament initial conditions described in section 5.

7.4 Implementation

Here, I will details some of the practical concerns involved with the project. As
I stated in the introduction, the goal in this thesis is to implement a numerical
simulation of a spacetime using the ADM-formalism and then analyze the behavior
of the geodesics in the resulting metric. Even though there are concerns about the
stability of the ADM-equations, I will leave the implementation of the BSSN-equations
for future research in order to manage the scope of this thesis.

The implementation of the simulations I performed has three main steps:

1. Solve the initial conditions to first order in δ0 from equation 144 using relaxation.
This step can be omitted for the sinusoidal initial conditions, as the Poisson
equation can be solved analytically.

2. Starting from the initial conditions, solve the ADM-equations (equations 83 -
85) using the method of lines. As the state vector of the system of differential
equations is very large, the progress should be saved to disk periodically in
order to free memory.
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Figure 5. A future solver for the filament initial conditions would only need
to simulate one eight of the lattice box due to the reflection symmetries of the
problem.

3. Using the saved solution to the ADM-equations as the metric, integrate the
geodesic equations (equations 182 and 183) numerically backwards in time for
a set of incoming momenta. Calculate the measure of distance, in this case the
redshift, along the geodesics and assume that the geodesics are perceived as
straight lines to determine the observed pattern of density perturbations.

All the code for this thesis was written in Matlab. The code was intended to be
able to run on a consumer laptop, although the runs detailed in the next section
were calculated using the Oberon- and Puck-clusters which belong to University of
Jyväskylä.

The main limitations to this numerical implementation were the computation
time and the available memory. Of these two the computation time was the more
constraining one, a full ADM-simulation requiring approximately three days of
running time on the cluster with a 50 × 50 × 50 -grid. The system of equations which
arises from discretizing the ADM-equations is heavily coupled, and as such major
improvements are difficult to achieve using parallelization.

The random-access memory (RAM) available serves as an upper limit to the
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size of the computational grid on current hardware. In addition to containing the
state vector itself, implementing the ADM-equations efficiently required tabulating
the finite differences required in calculating the right-hand side of equation 199
on each timestep. One gigabyte of required RAM for the code is reached with an
approximately 256 × 256 × 256-grid, with the requirement increasing as N3. Thus,
it is hard to increase the grid size beyond this on our current hardware even if the
computational time is increased considerably.

However, a future implementation of the ADM- or BSSN-equations could improve
the resolution by a factor of two by utilizing the symmetries of the filament model.
As the filament initial conditions have reflection symmetry with respect to the three
planes x1 = 1/2, x2 = 1/2 and x3 = 1/2, it is only necessary to simulate one eighth
of the lattice box with the proper boundary conditions. This is depicted in figure 5.
The solution for the rest of the box could be obtained for analysis by symmetrically
extending the solution.
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Table 1. The initial condition parameters for each ADM-simulation in this
thesis. The different initial condition types are described in section 5.2 and δ0
is the amplitude parameter of the initial perturbations. The initial time tinit

was assumed to correspond to the CMB, and the side of the computation box
is always L = 1 in code units. The corresponding comoving length scale was
calculated as detailed in section 5.3.

Run Initial conditions δ0 tinit Comoving length scale
A Sinusoidal 10−5 1/6 ∼ 540 Mpc
B Sinusoidal 10−3 1/6 ∼ 540 Mpc
C Filament 10−3 1/6 ∼ 540 Mpc
D Filament 10−3 1 ∼ 90 Mpc

8 Preliminary results and discussion

In this section, I will discuss the results from both the ADM- and the light propagation
simulations. The results presented here are preliminary, and the main question I
will address is whether our chosen methods are viable. As such, the results will
not correspond to physically realistic situations and will instead serve to highlight
different aspects of the simulation. In particular, the density perturbations discussed
here are larger than those expected in the actual large scale structure in order to
test the nonlinear behaviour of our simulations. I will first focus on the results of
the ADM-simulation for the two different initial conditions detailed in section 5.
After this, I will move to the light propagation results for the numerical spacetimes
obtained from the ADM-equations.

8.1 Sinusoidal initial conditions

The first set of two simulations have the sinusoidal initial conditions as described in
section 5.2. Both simulations were run on a N × N × N -grid, with N = 50. The
length of the side of the lattice box was set L = 1 for simplicity, and the initial time
was chosen to be tinit = 1/6 in code units. As I discussed in section 5.3, I assume
that the initial time corresponds to the CMB. With this assumption the choice of
tinit results in the comoving length scale of 540 Mpc.
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As I mentioned in section 5.2, I will choose the initial scale factor ainit = 1. Since
the initial conditions correspond to redshift zCMB ≈ 1100, the scale factor at the
present day should be a0 ≈ 1100. I will always plot the results of the simulations
with respect to the FLRW-redshift

(1 + z̄)−1 := a(t)
a0

= a(t)
1100 , (214)

where a(t) is the background scale factor as a function of time. However, note that
due to the inhomogeneities, z̄ is not the actual redshift measured by an observer at
the present day. Runs A and B were both set to range from a = 1 to a = 1000, or
equivalently from z̄ = 1099 until z̄ = 0.1.

The first of the two simulations had the initial density perturbation amplitude
δ0 = 10−5, and it serves mainly as a comparison with the linear perturbation theory
results. Linear perturbation theory predicts that the density perturbations grow
approximately linearly with the scale factor in a matter dominated universe [41].
The initial amplitude of the second simulation was δ0 = 10−3 to ensure that the
simulation reaches the nonlinear regime before its end. I will denote these simulations
run A and run B respectively. The parameters of the runs can be found in table 1.

The behaviour of the different simulations is the clearest to see by following the
the density perturbation at an arbitrarily chosen point. The evolution of the density
perturbations are depicted in figure 6 alongside the linear perturbation theory results
calculated using equation 20. As expected, the simulation with the small initial
perturbation follows closely the linear evolution. However, a close-up of the solution
reveals a small oscillation about the analytical result. In contrast, the evolution in
run B deviates from the linear result at δ ∼ 0.1 as the nonlinear terms grow relevant.
At z̄ ≈ 0.33 the timestep chosen by the ode45-algorithm decreases to zero and the
simulation terminates.

Estimating the numerical error of the simulations is difficult, as the analytical
solutions are not available for comparison outside the limit of small perturbation. As
the constraint equations should be zero on each timeslice, I will settle for monitoring
the violation of the Hamiltonian constraint. Following [26], I define the normalized
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(a) Run A

(b) Run B

Figure 6. The evolution of the relative density perturbation δ at the comoving
point (x1,x2,x3) = (0.3,0.16,0.36) as a function of the FLRW-redshift z̄ for runs
A and B. The corresponding results from linear perturbation theory (dashed)
are also plotted for comparison. There is no visible oscillation in the results of
run B and the simulation terminates at z̄ = 0.33.
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violation of the Hamiltonian constraint EHC as the L1-norm

EHC := 1
N3

∑︂
x⃗

|R +K2 −KijK
ij − 16πρ|/N (215)

N := 1
N3

∑︂
x⃗

√︂
R2 +K4 + (KijKij)2 + (16πρ)2, (216)

where the sums range over each point on a timeslice.
The errors for the two runs can be found in figure 7. Both cases show similar

overall behaviour: The initial errors are small, and they differ by approximately
three orders of magnitude. An initial difference by two orders of magnitude or more
is to be expected as the initial conditions were solved to a linear approximation. The
error decreases for the first few timesteps but then quickly grows rapidly. However,
after a period of rapid, noisy fluctuations, the error stabilises and decreases to values
smaller than the initial error. The violation of the constraint equation eventually
starts to grow again but never reaches the order of unity. The oscillation apparent
with the smaller initial perturbation can be seen in the errors of both simulations
in the last portion of the simulation. The two simulations differ at the end of the
simulation, as the end of simulation B is marked by the error suddenly blowing up.

The overall small scale of EHC increases the confidence in the results. In particular,
the fact that the error decreases for a significant portion of the runs suggests that
the error present in the initial conditions smooths itself out somewhat. The error
starts increasing again at z̄ ≈ 4.5 and z̄ ≈ 1.8 for runs A and B respectively. In
particular, this happens later for the larger density contrast and as such it is unlikely
that the increase in EHC happens as a result of the nonlinear terms.

A possible source of the initial jump in error are the extrinsic curvature terms in
the Hamiltonian constraint. The initial conditions were chosen so that they cancel
exactly with the background part of the density term. This is no longer the case
after a few timesteps, and if the error in δKij grows much faster than the error in
the metric and the density perturbation, this growth could produce the simulation
results.

As opposed to the smaller initial perturbation, the evolution of the larger pertur-
bation differs considerably from the linear perturbation theory. As such, it warrants
further attention. While visualizing entire tensor fields is cumbersome, it is useful to
consider the evolution of the relative density perturbation δ and the determinant of
the spatial metric γ. The spatial volume element is given by the square root

√︂
|γ|,
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(a) Run A

(b) Run B

Figure 7. The evolution of the violation of the Hamiltonian constraint EHC as
a function of FLRW-redshift z̄ for runs A and B.
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(a) Initial density contrast

(b) Initial volume element

Figure 8. The relative density contrast δ and the normalized deviation of the
volume element

√︂
|γ|/a3 − 1 on the spatial slice x3 = 0.2 at the initial time

z̄ = 1099 for run B. The initial conditions for run A are identical up to a constant
factor. The distributions are shown in the comoving coordinates and in the code
units.
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and it is useful to define the average scale factor aavg as

a3
avg =

∫︂
d3x

√︂
|γ|. (217)

Note that the average scale factor for the flat FLRW-universe is just a.

Figures 8a and 8b show the initial conditions for δ and
√︂

|γ|/a3 respectively in
run B and the first two panels of figure 9 depicts the evolution of the volume element
immediately afterwards. At the initial time, both the volume element and the density
perturbation have a sinusoidal deviation from the homogeneous case, with the peaks
and the valleys of the two perturbations overlapping. However, the volume element
perturbation moves rapidly to an opposite configuration after the simulation begins.

This development happens entirely between two timeslices saved by our simulation.
Thus, the possibility that the sudden change is of a numerical origin should not be
discounted at this point. A simulation of the early evolution with a smaller time
resolution would be warranted to study this.

Disregarding possible numerical issues for now, the behaviour is likely the results
of the simplified initial conditions. At the initial time, I required that the trace K is
a constant. Since the extrinsic curvature is the time derivative of the spatial metric,
K is roughly proportional to the direction-averaged expansion rate. However, since
gravity is attractive, an overdense area should expand slower than the average. In
order to retain the constant expansion rate, the initial conditions have to introduce
a larger initial volume element to compensate for the overdensity. A similar process
applies for the underdensities as well.

This evolution suggests that the chosen initial conditions do not match the
physical reality. The rapid change in the form of the volume element perturbation
happens as the time evolution corrects for the unstable initial configuration. This
development can also be connected to the suddenly increasing error in the initial
timesteps. The change of the spatial metric is rapid, and so the extrinsic curvature,
along with its error, has to be large. This explanation cannot be taken as a certainty,
as the large increase in error happens somewhat before the change occurs at z̄ ≈ 240.
However, it is possible that the error builds up before the change due to the unstable
physical configuration and the change occurs when the system hits a tipping point.
I will discuss this further in the context of the subsequent runs. Once the volume
element has settled to a more stable form, the evolution proceeds more slowly, and
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Figure 9. The evolution of the normalized deviation of the volume element√︂
|γ|/a3 − 1 on the spatial slice x3 = 0.2 for different timeslices in run B. The

distributions are presented in the comoving coordinates and in the code units.

the large error vanishes. The initial stages of the simulation suggest that the resulting
metric late in the time evolution is relatively insensitive to the exact initial conditions
for the spatial metric and the extrinsic curvature.

After the initial developments, the evolution of the metric and the density
perturbations is slow and gradual. The density perturbation and the volume element
at the end of the simulation, but before the error blows up, can be found in figures
10a and 10b. The shape of the density perturbation does not change dramatically
over the course of the simulation. In the comoving coordinates, the overdensities
expand somewhat, although their fraction of the physical volume naturally decreases
due to the changes in the volume element. The overdensities are surrounded by a
web of underdensities, and the end density contrast between the two extremes is
(1 + δmax)/(1 + δmin) ≈ 16. Note that the results presented here appear visually
different from [24] due to a different gauge choice.

The late evolution of the volume element is very similar to the density perturba-
tion, although the decrease of the comoving volume of the underdensities is more
pronounced. The volume element develops a relatively sharp peak in the deepest
part of the underdensities. Despite the large maximum of the volume element size, a
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(a) Final density contrast

(b) Final volume element

Figure 10. The relative density contrast δ and the normalized deviation of the
volume element

√︂
|γ|/a3 − 1 on the spatial slice x3 = 0.2 in the end of run B at

z̄ = 0.33. The distributions are shown in the comoving coordinates and in the
code units.
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Figure 11. The relative difference of the average scale factor aavg to the FLRW-
scale factor a as a function of the FLRW-redshift z̄ in runs A, B and C. The
average scale factor in run C drops below the FLRW-value before the simulation
crashes due to large oscillations in the solution.

large portion of the volume of the underdensities is still located directly between the
overdensities, where the volume expands approximately at the same rate as in the
homogeneous FLRW-universe.

The overall expansion of the sinusoidal universe is still faster than in a corre-
sponding FLRW-universe, as can be seen from figure 11. At the end of run B, the
difference in volumes is approximately 7%, although this result naturally depends
heavily on the chosen initial density perturbation. The final density contrast in run
B is larger than the contrast expected on the large scales of our own universe [55],
and as such the overall expansion rate is likely an overestimate as well.

As I noted above, the simulation with the large initial perturbation terminates
at approximately z̄ ≈ 0.33. One possible explanation for this is the instability of
the ADM-equations. The ADM-instability can manifest itself as an uncontrollable
oscillation in the solution [18, 19]. The oscillations present in the latter portions of
the error plot suggest that the ASM-instability is developing. Moreover, at the very
end of the simulation, the downward slopes of the oscillation keep turning up, and
the error blows up when the slopes become level.
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The ADM instability is not the only possible explanation. The resolution of the
computational grid use was 0.02 units of length, and at the end of the simulation, the
width of the peak in the volume element approaches this scale. The simulation could
then become unstable simply due to the limits of the resolution. This scenario could
be either confirmed or ruled out by performing the same simulation with a smaller
resolution and seeing if this would affect the point where the simulation ends.

8.2 Filament initial conditions

The last two runs I performed used the cubic filament initial density perturbation
defined in section 5.2. I used again a N ×N ×N -grid with N = 50 and the length
of the side of the grid was set L = 1 in code units. The first of the runs used the
same initial time tinit = 1/6 as the sinusoidal runs, which sets the comoving length
scale as 540 Mpc. However, I chose the initial time for the latter run as tinit = 1
so that the comoving length scale is approximately 90 Mpc. In both simulations,
the width parameter of the filaments was σ = 0.15 in order to ensure that the grid
can resolve the filament, while the initial amplitude of the density perturbation was
set δ0 = 10−3. I will denote these simulations run C and run D respectively, and
summaries of their parameters are found in table 1.

I solved the initial configuration for the spatial metric to first order in δ0 from
equation 144 using second order relaxation. The convergence for the initial conditions
in run C is presented in 4. The initial perturbations for the density and the volume
element for run C are presented in figure 12a and the first panel of figure 14a. The
corresponding figures for run D differ only by a multiplicative constant.

The behaviour of run C is very similar to run B. As is shown in figure 13a, the
error EHC has a similar evolution as before, with the error sharply increasing at the
beginning and then dropping gradually until it reaches a minimum value. Afterwards,
the error begins to build up at z̄ ≈ 2.7 until it blows up and the simulation terminates
at z̄ ≈ 0.80. The increase in error in the latter part of the run is somewhat faster
than in run B. As with run B, the configuration of the volume element inverses
sharply at the beginning of the run. The shift is somewhat slower than in run B, and
the volume element flowing from the filaments to the void can be seen in figure 14a.
The change coincides with the initial jump in EHC , which lends credibility to the
idea that the jump is a result of the initial conditions. The subsequent evolution of
the volume element and the density contrast are very gradual, although the volume
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(a) z̄ = 1099

(b) z̄ = 0.83

Figure 12. The relative density contrast δ on the spatial slice x3 = 0 at the
beginning and the end of run C. The simulation crashed at z̄ = 0.80. The density
configuration is depicted with respect to the comoving coordinates and in the
code units.
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element develops visible oscillations right before the simulation terminates. As one
can see in figure 12b, the same oscillations are present in the density contrast.

As run C terminates earlier than run B, its end density contrast is far smaller.
This gives further evidence that the increasing density contrast and the nonlinear
terms are not the main reason for the simulation ending. However, the difference in
the rate of expansion is not only due to the end time. As can be seen from figure
11, the average expansion in run C is two orders of magnitude smaller than in run
B at comparable times. This is in spite of the similar amplitudes of initial density
contrast. Thus, it appears that the noticeable increase in the average expansion rate
found in many inhomogeneous models [15] is not present in our filament model.

Run D differs considerably from the others. As was the case with the other runs,
run D was set to span from z̄ = 1099 until z̄ = 0.1. However, the behaviour of run D
was immediately less stable than that of the others. The timesteps chosen by the
ode45-routine were from the start of the simulation shorter than in the previous
runs, resulting in a slower progress of the simulation. In the end, I terminated the
simulation manually at z̄ ≈ 26 due to EHC increasing exponentially.

The error during run D is depicted in figure 13b and its behaviour has some
similarities to runs A, B and C. The initial violation of the Hamiltonian constraint
is small, and the initial error is, in fact, smaller for run D than for run B. As before,
there is a large increase in error early on in the simulation, and the error begins to
decrease afterwards. This change again coincides with a shift in the configuration of
the volume element, which can be seen in figure 14b. However, instead of stabilising
the error starts to increase again at z̄ ≈ 110 and grows rapidly afterwards. The run
was terminated when the error became larger than the scale of the relative density
perturbation.

The configuration of the volume element is visually constant until z̄ ≈ 43, at
which point the volume element starts to exhibit a visible oscillation. The amplitude
of the oscillation grows alongside the error and eventually smears out the entire
filament structure. Figure 15 depicts a closeup of the oscillation at z̄ = 33.4.
Notably, the wavelength of the oscillation is roughly the same as the resolution of
the computational grid.

The most likely explanations for the failure of the simulation are the same as for
the termination of runs B and C. The instability of the ADM-formalism is the most
likely scenario. In this case, the trigger for the instability appears to be the change
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(a) Run C

(b) Run D

Figure 13. The evolution of the violation of the Hamiltonian constraint EHC

in runs C and D as a function of the FLRW-redshift z̄. The timestep of run C
approaches zero at z̄ = 0.8, while run D was terminated manually at z̄ = 26. The
spikes in figure (b) result from individual tentative timesteps of the ode45-routine
and should be disregarded.
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(a) Run C

(b) Run D

Figure 14. The evolution of the normalized deviation of the volume element√︂
|γ|/a3 − 1 on the spatial slice x3 = 0 in runs C and D. Run D was manually

terminated at z̄ = 26. The figures are plotted in comoving coordinates and in
the code units.
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Figure 15. A closeup of the normalized volume element
√︂

|γ|/a3 − 1 on the
spatial slice x3 = 0 at z̄ = 33.4 in run D. The dots indicate the locations of the
grid points and the heatmap is constructed using interpolation. The figure uses
comoving coordinates and the code units.

of the scale of the structure. This is not entirely surprising. Due to the change in
scale, information travels between different portions of the structure faster, which
could explain the drastic difference from the previous runs.

A possible scenario for the developing instability goes as follows: The state of
the system develops oscillations along the run, perhaps from numerical inaccuracies
or the initial conditions themselves. As the simulation time goes on, the causally
connected regions grow, eventually letting the oscillations evolve and terminate the
run. It is also worth noting that oscillations were visually present in the solution of
run A and could be seen in the errors of all other runs. It is then possible that a
similar instability is already developing in the other runs as well, although it didn’t
grow enough to cause issues early on in the run due to the difference in scale.

As with the end of run B, the lack of resolution could also be at fault. The
structures present at the beginning of the run D were somewhat smaller than in
the sinusoidal case, which could impact the stability of the early parts of the run.
However, as can be seen from figure 15, in the latter part of run D, both the central
void and the filaments were large enough to be resolved by the grid. Moreover,
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the scale of the filaments compared with the resolution is not changed from run C.
Therefore, the resolution by itself appears less likely to be at fault.

8.3 Light propagation simulations

As a last part of this thesis, I calculated the behaviour of light trajectories in the
numerical spacetimes. Despite the issues with the solutions, I performed the analysis
with the results of runs B and C. The light was propagated backwards in time from
a chosen end point using equations 182 and 183, and the measured redshift9 along
the rays was obtained from equation 185. The geodesic equations were solved using
the Matlab ode45-routine, and I used an interpolation of the ADM-results as the
background spacetime. Outside the unit box, I assumed that the spacetime continues
periodically.

The first set of 200 light rays have their end point at origin of run B. The incoming
momenta were picked in the x3 = 0 -plane at equally spaced angles. The portion
of the trajectory from z̄ = 0.33 until z̄ = 0.83 for every other ray is depicted in
figure 16. As expected, the trajectories show clear gravitational lensing towards
the overdensities. Also, in the comoving coordinates, the rays propagate noticeably
slower in the voids than in the denser regions due to the difference in the physical
volume.

However, the trajectories in the comoving coordinates themselves are not observ-
able. Rather, the measurements observe rays of light from all directions and the
distance to an object is determined by using measures of distance such as redshift,
luminosity or angular size. The latter two were left out of the scope of this thesis,
but the redshift measured by the observer is simple to obtain by using the solutions
to the geodesic equation.

The two-dimensional density variation in the x3 = 0 -plane observed in the
spacetime of run B is presented in figures 17a and 17b. The observed pattern at
z̄ = 0.33 was determined for two different observer locations, the outskirts of one of
the overdensities and in the middle of one of the voids. The patterns were calculated
by tracing backwards the incoming light rays arriving at 200 equally spaced angles
in the x3 = 0 -plane and assigning the redshift measured by the observer as the

9Note that this observed redshift is separate from the FLRW-redshift z̄ used as a time parameter.
The former is the actual redshift measured by an observer at a past point in the inhomogeneous
spacetime, while the latter is simply a time parameter defined using the homogeneous background
solution.
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Figure 16. The trajectories of 100 light rays (black) projected to the x3 = 0
spatial plane in run B. The rays end at the origin at z̄ = 0.33 with no momentum
in the x3-direction. The light was propagated backwards in time until z̄ = 0.83
and the trajectories are superimposed on the contours of energy density at
z̄ = 0.33. The figure is presented in the comoving coordinates and in code the
units.

radial coordinate. Between the rays I used cubic interpolation. I also performed an
equivalent calculation for the results of run C with an observer located at z̄ = 0.83.
The observed density perturbations can be found in figures 18a and 18b for observers
in the crossing of filaments and in a void respectively.

While a more quantitative analysis and comparisons with measurements will
have to wait for further research, there are some general observations to be made.
First of all, the angular size of nearby overdensities is magnified compared to their
physical size due to gravitational lensing. Similarly, light rays are deflected away
from the deepest parts of the voids, which underestimates their size. However, due
to the difference in the expansion rates between the two, an inverse effect happens
in the redshift. As a result, the voids appear in our observations as stretched in the
radial direction, whereas the overdensities stretch in the angular one. This effect
is particularly visible with the sinusoidal runs due to the large density contrast,
although the elongation of the voids can be seen in run C as well.
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(a) (x1
obs,x2

obs) = (0,0)

(b) (x1
obs,x2

obs) = (−0.25, − 0.25)

Figure 17. The relative density contrast on the spatial slice x3 = 0 measured
by an observer at (x1

obs,x
2
obs,0) and z̄ = 0.33 in run B. The radial coordinate

represents the redshift measured by the observer and the light was propagated
back in time until z̄ = 0.83.



88

(a) (x1
obs,x2

obs) = (0,0)

(b) (x1
obs,x2

obs) = (−0.25, − 0.25)

Figure 18. The relative density contrast on the spatial slice x3 = 0 measured
by an observer at (x1

obs,x
2
obs,0) and z̄ = 0.83 in run C. The radial coordinate

represents the redshift measured by the observer and the light was propagated
back in time until z̄ = 2.66. Note that the oscillations present at the late stages
of run C create small distortions in both patterns.
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The distortion of the light rays could have many effects on measured quantities.
For instance, a method for determining the low-redshift expansion rate of the universe
is measuring phenomena such as variable stars or supernovae [13]. As the measured
events occur disproportionately in the overdense areas, it could be instructive to
study whether the gravitational lensing of light in the large-scale structure could
bias the measurements in some way.

Another effect visible in the observed patterns is the major asymmetry induced
by the location of the observer. This asymmetry is the most pronounced close to the
observer, but it is visible even on higher redshifts. In partucular, figure 17a shows
how the density perturbations at comparable redshifts appear larger on lower left
half of the figure than on the upper right half. However, the asymmetry is heavily
dependent on the density contrast, and it is not visible in figure 18b.
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9 Summary and outlook

In this thesis, I have presented the ADM- and BSSN-formulations of general relativity
in a form ready for numerical implementation. The results are collected in equations
83 - 86 and 128 - 135. I also tested the implementation of the ADM-equations
numerically, and to this end I have described two sets of simple initial conditions
in section 5. As the metric of the spacetime itself is not an observable quantity, I
have also discussed the propagation of light in a general spacetime in section 6 and
presented some preliminary results of the simulations in section 8.

The results of the ADM-simulations are mixed. On the one hand, on very large
length scales the ADM-formalism produced physically sensible results with a small
estimated error for both the sinusoidal and filament initial conditions. This is in
the spite of the instability inherent to the ADM-equations, and it might even be
interesting to study why the solutions are as stable as they are. On the other hand, at
the more physically relevant length scale of 100 Mpc the solutions were immediately
unstable and reliable results could not be obtained. There are two main explanations
for the numerical issues, the aforementioned ADM-instability and the limits of the
resolution. While the results so far suggest the former is the main problem, both of
these issues must be addressed before any results can be trusted.

Aside from the numerical issues, the models used in calculating the spacetimes
in this thesis have several other main limitations. The assumption that the matter
consists of pressureless dust limits the accuracy of the results, as pressure could play
a role in matter forming stable halos [56]. Also, the assumption of zero peculiar
velocity excludes any possible turbulence. Lastly, in addition to its largest features
the actual cosmic web has similar structure on all smaller scales as well. The possible
effects of this are very difficult to address numerically due to the finite resolution of
any computer simulation.

As opposed to the calculation of the spacetime, the results with the light propa-
gation appear strictly promising. In particular, an interesting aspect of the simulated
measurements is the apparent relative size of the voids and the overdensities. While
this thesis only discussed this subject on a qualitative basis, a quantitative study of
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whether the curved trajectories of light bias the measurements could be interesting.
However, it must be noted that the density contrast and the overall length scale in
our simulated spacetime was far larger than that in the observed large scale structure.
Thus, the effects of the curvature seen here are magnified as well.

All in all, there are several avenues for further research. A major focus should
be on finding stable solutions on smaller length scales. Resolution as a source
of instability could be either confirmed or ruled out by performing simulations
with larger grid sizes and comparing the lengths of the simulations. While a naive
implementation of this would run into issues with memory and computational time
limitations, the resolution could be improved by a factor of two by fully utilising
the symmetries of the lattice as described in section 7.4. In principle, many of these
problems could also be solved by using an adaptive grid, although implementing one
would require a considerable amount of work.

Regardless of whether an increase in resolution solves the pressing issues, it
appears necessary to move on to the BSSN-formalism. The simulations run here
seem to lie close to the limits of the ADM-formulation. Thus, the same results
should be obtained with the BSSN-equations before they can be relied on. Should
moving to BSSN-equations fail to solve the stability issues, the solution for the
spacetime could be calculated using the Einstein toolkit [25]. The applicability of
the full BSSN-formalism even with small grid sizes has already been demonstrated
by simulations such as [24].

Even though the light propagation simulations presented here appear to function
without major issues, it is still missing a large component as well, namely the
calculation of the luminosity- and angular distances. Calculating these as a function
of redshift along different rays of light would allow comparisons with the supernova
distance measurements [57, 58]. The angular distance in a general spacetime has
been calculated in [9, 10], which could serve as the starting point for a numerical
implementation.
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