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Abstract Vilho Halonen, Accuracy analysis of uncertain variational problems with an-
alytical and machine learning methods, mathematics master’s thesis, 55 p., Jyväskylän
yliopisto, Department of Mathematics and Statistics, Fall 2021.

In this thesis we compare the performance of analytical methods and neural net-
works trained with numerically produced data in controlling uncertainty errors of a
linear variational problem. We find that neural networks perform well and are feasible
to use in practical computations in place of analytical control methods.

Analytical methods for controlling uncertainty errors have been derived for various
differential problems (see [1], [2]) in recent decades. The first chapters are devoted to
deriving by known methods analytical error bounds for the linear variational problem
which we will study. These error bounds are numerically tested and we find that the
bounds while they are guaranteed and cheap to compute are not always as sharp as
an engineer might hope.

The second part of this thesis consists of creating machine learning models with
the goal of approximating the exact error caused by uncertainty in our mathematical
model. The chosen type of machine learning model is a deep neural network. The
training data used for training the models is generated by numerical computations.

In the final chapter we compare the performance of the analytical methods and
machine learning models and we conclude that neural networks can be competitive in
this task. If such models are made and found to work for more complicated nonlinear
PDE’s this method could prove very useful in computer simulations and engineering.
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Tiivistelmä Vilho Halonen, Accuracy analysis of uncertain variational problems
with analytical and machine learning methods, Matematiikan Gradu, 55 s., Jyväskylän
yliopisto, Matematiikan ja Tilastotieteen laitos, Syksy 2021.

Tässä tutkielmassa verrataan analyyttisien menetelmien ja koneoppimismallien
toimivuutta epätarkkuudesta johtuvien virheiden kontrolloinnissa. Tarkasteltavana
matemaattisena esimerkkiongelmana käytetään lineaarista variaatio-ongelmaa. Tu-
loksena havaitaan, että neuroverkot toimivat hyvin ja ovat käytäntöön mahdollisesti
soveltuva keino tehdä virhearviointia.

Monille osittaisdifferentiaaliyhtälöille on johdettu analyyttisia kontrollointikeinoja
viime vuosikymmenien aikana (katso [1], [2]). Ensimmäiset luvut käytämme analyyt-
tisien virhearvioiden todistamiseen tunnettujen analyysin työkalujen avulla tarkasteltavalle
variaatio-ongelmalle. Virhearvioita testataan numeerisesti ja huomataan, että vaikka
analyyttiset rajat ovat varmoja ja halpoja laskennallisesti, ne ovat monesti toivottua
epätarkempia.

Tutkielman toisessa osiossa luodaan koneoppimismalleja, joilla pyritään arvioimaan
tarkalleen epätarkkuuden aiheuttamaa virhettä. Valittu koneoppimismalli on neu-
roverkko. Mallien kouluttamiseen käytetty data luodaan itse numeerisilla menetelmillä.

Viimeisessä luvussa verrataan analyyttisien metodien ja luotujen neuroverkkojen
toimivuutta. Vertailussa käytetään koulutusdatasta eroavaa generoitua dataa jolle
lasketaan analyyttiset rajat, numeeriset approksimaatiot ja neuroverkkojen tulokset.
Havaitaan, että neuroverkot suoriutuvat tehtävästä niin hyvin, että voidaan sanoa
niiden olevan kilpailullisia analyyttisien metodien kanssa. Jos vastaavia koneoppimis-
malleja pystytään luomaan vaikeammille moniulotteisille ongelmille, tämä menetelmä
voi osoittautua varsin hyödylliseksi simuloinnissa ja insinöörityössä.
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Introduction

Data uncertainty is an ever present problem in mathematical modeling, simulation
and computation (see e.g. [8]). In this thesis we present three different methods for
controlling errors generated by uncertainty in the case of a linear variational problem.
First in Chapter 2 we derive error bounds using mathematical analysis. In Chapter
3 we present a numerical method which uses pure computation to approximate the
error quantity of interest. Finally in Chapter 4 we create a machine learning model
to do the same. In section 4.4 we test all three methods against one another and see
how well each one performs.

Consider first an abstract uncertain mathematical problem of the form: Find
u ∈ V such that

Au = f.

The operator A and source term f are objects which are related to some physical
phenomenon. For example, in linear elasticity the operator A depends on the Lamè
parameters of the material and the source term f describes the forces that deform
our material. In a heat equation the operator A depends on the thermal diffusivity
of the medium and the source term f describes heatflow from outside the system.

In reality we never know the exact value of A and f . Physical paremeters are
always given in some set of indeterminacy. We denote the set of admissible data by
D. In this case we only know that

(A, f) ∈ D.

We wish to quantify the distance between solutions generated by different elements
of D. Assume (A1, f1), (A2, f2) ∈ D and (A1, f1) 6= (A2, f2). Solving the problems

A1u = f1 and

A2u = f2,

the solutions u1 and u2 may not be the same. The quantity of interest is the distance

d = |u1 − u2|,

where | · | is a suitable norm in the problem setting. It is even more interesting if we
can quantify the maximum distance between any two solutions. For this we define the
diameter quantity

Diam = sup
(A1,f1),(A2,f2)∈D

|u1 − u2|.

We will derive methods to control the diameter by analytical, numerical and machine
learning tools. The analytical control scheme is presented in chapter 2, the numerical
brute-force method in chapter 3 and the machine learning model in chapter 4.
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2 INTRODUCTION

In the past, this problem has been dealt with by many different methods such as
the probabilistic method [8] and the worst case scenario method [9]. More recently in
the works [1] and [2], analytical tools for controlling uncertainty errors in a guaranteed
way have been derived for various PDE’s and these are the methods we will present
in Chapter 2.

Many important effects related to uncertainty can be seen even in simple problem
settings. We analyse them using the problem: Find u ∈ V such that

J(u) = inf
v∈V

J(v), where J(v) :=

∫ b

a

(
1

2
α|v′|2 +

1

2
β|v|2 + fv

)
dx.

In this case, the indeterminacy is present in the coefficients α, β and f . They are not
exactly known but instead belong to some admissible set D. For this simple problem,
analytical methods are well known and sufficiently sharp for practical computations
and numerical methods are sufficiently inexpensive to use. Because of this it is not
apparent why alternative approaches are required. Our goal is to give a proof of
concept which can be extended to linear and nonlinear PDE’s. For very difficult PDE’s
analytical methods do not exist and numerical methods require a lot of computation.
For such problems, an inexpensive method to check our accuracy would be very useful
in for example computer simulations.

In chapter 3, we present various tests to show that it is not obvious how changes in
the indeterminacy of the data affect the numerical approximations and the analytical
bounds. In the tests of section 4.4, we find that in some cases our neural network
could be preferred over analytical methods even in our constrained problem setting
(see Figure 4.9).



CHAPTER 1

Uncertainty Errors in Mathematical Modeling

In this chapter, we introduce the model problem and the important quantities we
wish to control when our problem involves uncertainty. Reliably solving an uncer-
tain mathematical model requires knowledge about the distance between all possible
solutions of the problem. The maximum distance between two different solutions is
the most useful information. To quantify this distance we define the diameter of the
solution set. In chapters 2, 3 and 4, we create and compare different methods for
controlling the diameter quantity.

We start this chapter by describing the main sources of errors in mathematical
modeling (see [10, chapter 1]). The theory of error control has been widely studied
with various approaches in for example [11]. In section 1.2, we present the model
problem and give the required definitions for analysing errors generated by uncertain
data.

1.1. Sources of Errors in Mathematical Modeling

In any mathematical model of a real-world problem a number of different sources
of errors are present (see Figure 1.1).The first error comes from the fact that reality
and the mathematical model are not exactly the same. Our models are always looking
at an idealized version of what is truly occurring. This error is called the modeling
error and we denote it E1. The modeling error describes the distance between the
solution U of the real world problem and the solution u of the mathematical model.

E1 = |U − u|.

The modeling error arises from uncertainty in measurements and the simplifying
assumptions of the model. For example, models of elasticity often make assumptions
about elasticity constants of a material being homogenous. Such models may produce
good results but in reality any material constant has variance. The modeling error
also accounts for uncertainty in measurements. In practice there is always some level
of uncertainty in data. For a model to be considered reliable, effects of uncertainty
on possible solutions must be understood. The uncertainty error and methods of
controlling it are our main interest.

Continual models describing a real world problem are made such that in theory
an exact solution exists. Unfortunately, exact solutions are rarely at our disposal.
Models describing complicated phenomena often lead to models like nonlinear PDE’s
for which analytical solutions are unknown. In order to find quantitative answers the
model must be reduced to a discrete model which is solvable by numerical methods.
The loss of information caused by the discretization is called the approximation error.
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4 1. UNCERTAINTY ERRORS IN MATHEMATICAL MODELING

We denote the approximation error E2. The approximation error describes the dis-
tance between the solution u of the continual model and the solution v of the discrete
model.

E2 = |u− v|.

After a discrete model has been constructed, it remains to solve it correctly. Nu-
merical methods are subject to numerical errors so we still have to account for the
numerical error E3 which consists of roundoff errors, stopping conditions which dont
allow arbitrary amounts of computation and bugs in the code of our solver. The
numerical error describes the difference between the solution v of the discrete model
and the quantitative result v̂ produced by some numerical method.

E3 = |v − v̂|.

In quantitative research, all of the errors described above are important to have
controls for. Our goal in this thesis is to present and compare different methods for
controlling the part of the modeling error E1 which comes from data uncertainty.

Real-world problem

Mathematical model

Discrete model

Numerical result

Modeling Error E1

Approximation Error E2

Numerical Error E3

Figure 1.1. Error types

1.2. Notation and Definitions

Uncertainty errors in mathematical modeling appear because measuring accuracy
in any real-world phenomenon is not exact. In this section we define the set of
admissible data, solution sets and the diameter of the solution set. The quantity of
interest in later chapters is the diameter. In this section, the definitions are given in
abstract form and in the following section we specify them for the model problem.

Definition 1.1. Consider an abstract differential problem of the form: Find
u ∈ V such that

Au = f.
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The operator A and source term f may be incompletely known and instead it is
known that

(A, f) ∈ D.

The set D is called the set of admissible data.

Next we define the set of solutions which contains all the different solutions gen-
erated by D. In later chapters we derive analytical, numerical and machine learning
methods that control the ”size” of this set.

Definition 1.2. Let D be the admissible dataset of a differential problem of the
type from Definition 1.1. We define the solution mapping S : D → V as the mapping
that takes an input (Ax, fx) ∈ D and outputs the exact solution ux ∈ V of the related
problem Axu = fx. The image S(D) is called the Solution Set of the uncertain
problem.

It remains to define a quantity which is suitable to describe the ”size” of the
solution set. In our case, we define the diameter and radius of the set with respect to
some suitable norm.

Definition 1.3. The diameter of the solution set S(D) is

Diam(S(D)) := sup
u1,u2∈S(D)

|||u1 − u2|||,

where ||| · ||| is a suitable norm in the Banach space V .

The radius is defined with respect to a ”mean” element of the admissible data.
The admissible dataset may be not symmetric so ”mean” in this case is simply an
element of our choice.

Definition 1.4. The radius of the solution set S(D) is

r := sup
u∈S(D)

|||u◦ − u|||,

where u◦ = S(α◦, β◦, f◦) is the ”mean” solution and ||| · ||| is a suitable norm for the
problem.

Note that r ≤ Diam(S(D)) ≤ 2r. The quantity Diam(S(D)) is useful in practical
computations for two reasons:

• It gives us an idea of whether or not our measurements are sufficiently accu-
rate.
• When we approximate an exact solution u by some v and have a way of

estimating the approximation error |||u− v||| it gives us an accuracy limit on
this error (see Figure 1.2).
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Diam(S(D))

S(D)

v

u

|||u− v||| < Diam(S(D))

Figure 1.2. If v is the approximation of u, in this case v could already be
inside the solution set! There is no point in sharpening the approximation
scheme.

1.3. Model Problem Definition

The model problem is a linear variational minimization problem. It is referred
to in all chapters as problem P or P(α, β, f) if there is possibility of confusion with
related problem data.

Problem P(α, β, f): Find u ∈ H1(a, b) (see definition A.2) such that

J(u) = inf
v∈H1

J(v), where J(v) :=

∫ b

a

1

2
α|v′|2 +

1

2
β|v|2 + fv dx,(1.1)

0 < α(x) ≤ α⊕, 0 < β(x) ≤ β⊕, f ∈ L2(a, b),(1.2)

u(a) = A, and u(b) = B.(1.3)

The functional J is convex so problem P is equivalent to the boundary value problem

(αu′)′ − βu = f,(1.4)

u(a) = A, u(b) = B.

Problem P can be understood as an uncertain problem when the coefficient func-
tions α, β and f are incompletely known.

Definition 1.5. The admissible dataset of the uncertain problem P is

D := Dα ×Dβ ×Df ,

where

Dα := {α = α◦ + δ1g : ||g||∞ ≤ 1},
Dβ := {β = β◦ + δ2g : ||g||∞ ≤ 1},
Df := {f = f◦ + δ3g : ||g||∞ ≤ 1}.

The functions α◦, β◦ and f◦ are the ”mean” elements of the sets and the functions
δi(x) ≥ 0 are the maximum perturbations from the central elements.

Defining the admissible data in this way is convenient for our later analysis and
it is a common way to describe uncertainty in practice.
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Solutions of problem P are analysed with the so called energy norm

||v||α,β =

(∫ b

a

α|v′|2 + β|v|2 dx
) 1

2

.(1.5)

The natural choice to compare distances between different solutions of the uncertain
problem P is the mean energy norm

||w||◦ := ||w||α◦,β◦ =

(∫ b

a

α◦|w′|2 + β◦|w|2 dx
) 1

2

,(1.6)

where α◦, β◦ and f are from definition 1.5. The diameter and radius of the solution
set of problem P are defined using the mean energy norm with definitions 1.3 and
1.4.





CHAPTER 2

Quantifying Uncertainty Errors by Analytical Methods

In this chapter we derive a lower bound and four different upper bounds for the
quantity Diam(S(D)) of problem P . In section 2.1 some preliminary lemmas are
introduced and in section 2.2 the bounds are derived.

2.1. Preliminary Tools

The most important tool needed for deriving the bounds are the functional a
posteriori error minorant and majorants. These bounds control the approximation
and numerical error of a problem in a guaranteed way (see Figure 1.1). This theory
is discussed at length in [1] and [2] where bounds for various differential problems are
derived.

Assume that u is the exact solution of P(α, β, f) and v is an approximation of u
computed by any method. A posteriori bounds are quantities M and M which do
not depend on the exact solution u and control the errors E2 and E3 by

M (α,β,f)(v, y) ≤ ||u− v||α,β ≤M (α,β,f)(v, y).(2.1)

These quantities depend only on the approximation v, the problem data (α, β, f) and
a free function y ∈ H1

0 (a, b). The tricky part is choosing the free function y such that
the bounds are sharp. If we know the exact solution u, we can pick y such that 2.1 is
an equality for the minorant and one of the majorants. In practice, the bounds can
be optimized with respect to y by any numerical method.

The error minorant M follows directly from the definition of problem P with some
algebraic manipulations.

Lemma 2.1. Let u ∈ V be an exact solution of P and v ∈ H1(a, b) be an
approximation of u. Then

||u− v||2α,β ≥Mα,β,f (v, w) := −||w||2α,β − 2

∫ b

a

αv′w′ + βvw + fw dx,

where w ∈ H1
0 (a, b).

Proof. Notice that 1
2
||u− v||2α,β = J(v)− J(u). This is shown as follows:

J(v)− J(u) =

∫ b

a

1

2
α|v′|2 +

1

2
β|v|2 + fv − 1

2
α|u′|2 − 1

2
β|u|2 − fu dx.(2.2)

Since u is a solution to P , for any g ∈ H1
0 (a, b) we have∫ b

a

αu′g′ + βug dx =

∫ b

a

−fg dx.

9



10 2. QUANTIFYING UNCERTAINTY ERRORS BY ANALYTICAL METHODS

Substituting fv and fu in (2.2) we have

J(v)− J(u) =

∫ b

a

1

2
α|v′|2 +

1

2
β|v|2 − αu′v′ − βuv +

1

2
α|u′|2 +

1

2
β|u|2 dx

=
1

2

∫
α|u′ − v′|2 + β|u− v|2 dx

=
1

2
||u− v||α,β.

Since u is a minimizer of J , for any v + w ∈ H1
0 (a, b) we find

1

2
||u− v||2α,β = J(v)− J(u) ≥ J(v)− J(v + w)

=

∫ b

a

1

2
α|v′|2 +

1

2
β|v|2 − 1

2
α|v′ + w′|2 − 1

2
β|v + w|2 − fw dx

=

∫ b

a

−1

2
α|w′|2 − 1

2
β|w|2 − αv′w′ − βvw − fw dx

= −1

2
||w||2α,β −

∫ b

a

αv′w′ + βvw + fw dx.

Multiplying both sides by 2 completes the proof. �

The minorant M (α,β,f)(v, w) is sharp. If we know the exact solution we can pick
w = u− v and have

||u− v||2α,β = Mα,β,f (v, u− v).

The majorants are derived similarily as in [1, Section 3.1]. There are two variations
of the upper bound and depending on the values of the coefficient β in P one of them
is better. In practical computations both should be computed and the better one
used.

Lemma 2.2. Let u ∈ V be an exact solution of P and v ∈ V be an approximation
of u computed by some method. Then

||u− v||α,β ≤M1(α,β,f)(v, y) :=

(∫ b

a

1

α
(y − αv′)2dx

)1/2

+ CF ||y′ − βv − f ||,

where CF = b−a
π

(ess supα(x)−1)
1
2 and y ∈ H1(a, b).

Proof. A minimizer of (1.1) satisfies the weak Euler-Lagrange equation (see A.5)∫ b

a

αu′ϕ′ + βuϕ dx =

∫ b

a

(−fϕ) dx ∀ϕ ∈ H1
0(a, b).(2.3)

Adding −αv′ϕ′ − βvϕ to both sides of (2.3) gives∫ b

a

α(u′ − v′)ϕ′ + β(u− v)ϕ dx =

∫ b

a

(−fϕ− βϕv − αv′ϕ′) dx.(2.4)

Since ∫ b

a

(yϕ)′dx =

∣∣∣∣∣
b

a

(yϕ) = 0 for any y ∈ H1(a, b),
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we have ∫ b

a

α(u′ − v′)ϕ′ + β(u− v)ϕ dx =

∫ b

a

ϕ(y′ − f − βv) + ϕ′(y − αv′) dx.(2.5)

Both u and v satisfy the boundary conditions (1.3), so u − v ∈ H1
0. Substituting

ϕ = u− v in (2.5) we have

||u− v||2α,β =

∫ b

a

(u− v)(y′ − f − βv) + (u− v)′(y − αv′) dx.(2.6)

We multiply the second term the right hand side of (2.6) by
√

α
α

(α is strictly positive).
Afterwards we use Hölder’s inequality and have

∫ b

a

(u− v)′(y − αv′) ≤
(∫ b

a

α(u′ − v′)2dx
) 1

2
(∫ b

a

1

α
(y − αv′)2dx

) 1
2

(2.7)

≤
(∫ b

a

α(u′ − v′)2 + β(u− v)2dx

) 1
2
(∫ b

a

1

α
(y − αv′)2dx

) 1
2

= ||u− v||α,β
(∫ b

a

1

α
(y − αv′)2dx

) 1
2

.

Using Hölder’s inequality and Theorem A.8 for the first term on the right hand side
of (2.6) we have∫ b

a

(u− v)(y′ − f − βv) ≤ ||u− v|| ||y′ − f − βv||(2.8)

≤ CF ||u− v||α,β||y′ − f − βv||.

Using the estimates (2.7) and (2.8) for (2.6) we obtain

||u− v||2α,β ≤ ||u− v||α,β

((∫ b

a

1

α
(y − αv′)2dx

) 1
2

+ CF ||y′ − f − βv||

)
.

Dividing by ||u− v||α,β completes the proof. �

The second majorant is derived similarly but we do not use Theorem A.8.

Lemma 2.3. Let u ∈ V be an exact solution of P and v ∈ V be an approximation
of u computed by some method. Then

||u− v||α,β ≤M2(α,β,f)(v, y) :=

(∫ b

a

1

α
(y − αv′)2 +

1

β
(y′ − f − βv)2 dx

) 1
2

,

where y ∈ H1(a, b).

Proof. We follow the proof of Lemma 2.2 closely. We only modify the estimate
in (2.8). Looking at the first term on the right hand side of (2.6), we estimate using
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Hölder’s inequality and multiplying by
√
β√
β∫ b

a

(u− v)(y′ − f − βv) ≤
(∫ b

a

β(u− v)2 dx

) 1
2
(∫ b

a

1

β
(y′ − f − βv)2 dx

) 1
2

(2.9)

≤ ||u− v||α,β
(∫ b

a

1

β
(y′ − f − βv)2 dx

) 1
2

(2.10)

Now using (2.7), (2.10) and the algebraic inequality t1λ1+t2λ2 ≤
√
λ21 + λ22

√
t21 + t22,

we estimate (2.6) and find

||u− v||2α,β =

∫ b

a

(u− v)(y′ − f − βv) + (u− v)′(y − αv′) dx

≤
(∫ b

a

α(u′ − v′)2dx
) 1

2
(∫ b

a

1

α
(y − αv′)2dx

) 1
2

+

(∫ b

a

β(u− v)2 dx

) 1
2
(∫ b

a

1

β
(y′ − f − βv)2 dx

) 1
2

≤||u− v||α,β
(∫ b

a

1

α
(y − αv′)2 +

1

β
(y′ − f − βv)2 dx

) 1
2

.

Dividing by ||u− v||α,β completes the proof. �

If the coefficient β has very small values the majorant M1 will often outperform
M2. If we know the exact solution u we can pick y = αu′ and find that

||u− v||α,β = M2(α,β,f)(v, αu
′).

The majorant M1 is not sharp in the same sense since

M1(α,β,f)(v, αu
′) =

(∫ b

a

α|u′ − v′|2 dx
) 1

2

+ CF ||β(u− v)||.

For M1 to be equal to the norm, the approximation has to agree with the exact
solution v = u.

Next we derive the energy estimate which we will use for two of the bounds. This
only works in the special case where the boundary conditions are zeros.

Lemma 2.4. Let u = (S(α, β, f)) and let the boundary conditions of P be zeros.
Then

||u||α,β ≤ C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣, where C⊕ := sup
α∈Dα

{
b− a
π

(ess sup{α(x)−1})
1
2

}
.

This is referred to as the energy estimate.

Proof. The function u satisfies the weak Euler-Lagrange equation∫ b

a

ϕ′u′α + ϕβu dx =

∫ b

a

(−fϕ) dx ∀ϕ ∈ H1
0(a, b).



2.2. TWO-SIDED BOUNDS OF THE SOLUTION SET DIAMETER 13

Since the boundary conditions are zeros, we can substitute ϕ = u and obtain∫ b

a

u′u′α + uβu dx = ||u||2α,β =

∫ b

a

(−fu) dx.

Using Hölder inequality and Theorem A.8 we have

||u||2α,β ≤ ||f ||2||u||2 ≤ ||f ||2CF ||u||α,β ≤ CF

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣||u||α,β.
Dividing by ||u||α,β we have

||u||α,β ≤ CF

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣
Choosing the supremum of CF over α ∈ Dα makes this hold regardless of which energy
norm is on the left hand side. �

2.2. Two-Sided Bounds of the Solution Set Diameter

Using the error minorant M and the majorants M1 and M2, two-sided bounds
which control errors generated by data uncertainty can be derived. The quantity we
wish to control is the diameter of the solution cloud (see Definition 1.3). The bounds
control this quantity by

B ≤ Diam(S(D)) ≤ B.

First we follow the methods in [1, Chapter 5] to derive two upper bounds and a
lower bound which can be computed if the ”mean” solution u◦ = P(α◦, β◦, f◦) is at
our disposal. Afterwards, we derive two upper bounds using the energy estimate from
Lemma 2.4. The bounds that use energy estimates depend only on the problem data
but usually the bounds which utilize the ”mean” solution are sharper. In chapter 3,
we numerically test how each of the bounds behave in a few example cases. It is not
easy to say which bound is optimal in what situation but in practice one can compute
all of them and pick the best one.

In order for the following analysis to be sensible the mean coefficients and inde-
terminacy functions must be constrained as follows. From now on we assume that

δ1(x)

α◦(x)− δ1(x)
< 1 and

δ2
β◦(x)− δ2(x)

< 1, ∀ x ∈ (a, b).(2.11)

If (2.11) does not hold the bounds are not defined as real numbers. In practice, this is
a reasonable assumption since relative errors of more then 50% are rarely interesting.

For abuse of notation we denote

c1 := min
x∈(a,b)

δ1(x)

α◦(x)− δ1(x)
and c2 := min

x∈(a,b)

δ2(x)

β◦(x)− δ2(x)
.

Before deriving the bounds we need one more technical result.

Theorem 2.5. Let w ∈ V and the uncertain problem P be such that it satisfies
(2.11). Then, for all elements of the data (α, β) ∈ Dα ×Dβ,

K||w||α,β ≤ ||w||◦ ≤ K||w||α,β,
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where

K :=
√

1 + max {c1, c2} and K :=
√

1−max {c1, c2}.

Proof. First the lower bound

||w||2◦ =

∫ b

a

α◦|w′|2 + β◦|w|2 dx

≥
∫ b

a

(α− δ1)|w′|2 + (β − δ2)|w|2 dx

≥
∫ b

a

(α− δ1)|w′|2 + (β − δ2)|w|2 dx

= ||w||α,β −
∫ b

a

δ1|w′|2 + δ2|w|2 dx

≥ ||w||α,β −
∫ b

a

δ1
α◦ − δ1

α|w′|2 +
δ2

β◦ − δ2
β|w|2 dx

≥ ||w||α,β −
∫ b

a

c1α|w′|2 + c2β|w|2 dx

≥ ||w||α,β (1−max{c1, c2}) .

Taking square root completes the lower bound. Similarily we have

||w||2◦ ≤
∫ b

a

(α + δ1)|w′|2 + (β + δ2)|w|2 dx

= ||w||α,β +

∫ b

a

δ1|w′|2 + δ2|w|2 dx

≤ ||w||α,β +

∫ b

a

δ1
α◦ − δ1

α|w′|2 +
δ2

β◦ − δ2
β|w|2 dx

≤ ||w||α,β +

∫ b

a

c1α|w′|2 + c2|w|2 dx

≤ ||w||α,β (1 + max{c1, c2}) .

Taking square root completes the proof. �

Now we have all the tools required to derive bounds for Diam(S(D)). We start
with the lower bound.

Theorem 2.6. The diameter of the solution set S(D) of the uncertain problem P
with admissible dataset D has a guaranteed lower bound given by

Diam(S(D)) ≥ K

∫ b
a
δ1|u′◦|2 + δ2|u◦|2 + δ3|u◦| dx(

||u◦||2◦ −
∫ b
a
δ1|u′◦|2 + δ2|u◦|2 dx

) 1
2

,

where K is from Theorem 2.5.
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Proof. Using Theorem 2.5 and applying the error minorant from Lemma 2.1 we
have

r2 = sup
u∈S(D)

||u◦ − u||2◦

≥ K2 sup
(α,β,f)∈D

sup
u∈S(D)

||u◦ − u||2α,β

≥ K2 sup
(α,β,f)∈D

sup
w∈H1

0

Mα,β,f (u◦, w)

≥ K2 sup
(α,β,f)∈D

sup
w∈H1

0

(
−||w||2α,β − 2

∫ b

a

αu′◦w
′ + βu◦w + fw dx

)
.

Substituting α, β and f with equivalent forms from definition 1.5 we have

≥ K2 sup
||gi||∞≤1

sup
w∈H1

0

(
−
∫ b

a

(α◦ + δ1g1)|w′|2 + (β◦ + δ2g2)|w|2 dx(2.12)

− 2

∫ b

a

α◦u
′
◦w
′ + β◦u◦w + f◦w dx

− 2

∫ b

a

δ1g1u
′
◦w
′ + δ2g2u◦w + δ3g3w dx

)
.

The function u◦ is the solution of P◦ so∫ b

a

α◦u
′
◦h
′ + β◦u◦h dx =

∫ b

a

−f◦h dx for any h ∈ H1
0

Therefore the second term in (2.12) disappears. Estimating the supremum of (2.12)
from below by setting w = tu◦, where t > 0 is a constant, we have

≥ K2 sup
||gi||∞≤1

(
−
∫ b

a

(α◦ + δ1g1)|tu′◦|2 + (β◦ + δ2g2)|tu◦|2 dx

− 2

∫ b

a

δ1g1u
′
◦tu
′
◦ + δ2g2u◦tu◦ + δ3g3tu◦ dx

)

= K2 sup
||gi||∞≤1

(
− t2

(
||u◦||2◦ +

∫ b

a

δ1g1|u′◦|2 + δ2g2|u◦|2 dx
)

− 2t

∫ b

a

δ1g1|u′◦|2 + δ2g2|u◦|2 + δ3g3u◦ dx

)
.

It is clear that the supremum with respect to gi is reached when g1 := −1, g2 := −1
and g3(x) = −sgn(u◦(x)), so

= K2

(
− t2

(
||u◦||2◦ −

∫ b

a

δ1|u′◦|2 + δ2|u◦|2 dx
)

+ 2t

∫ b

a

δ1|u′◦|2 + δ2|u◦|2 + δ3|u◦| dx

)
.

(2.13)

The expression (2.13) is a second order polynomial with a negative second order con-
stant with respect to t. Maximum over t > 0 is reached at the zero of the derivative.
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For abuse of notation we denote

T1 = ||u◦||2◦ −
∫ b

a

δ1|u′◦|2 + δ2|u◦|2 dx,

T2 =

∫ b

a

δ1|u′◦|2 + δ2|u◦|2 + δ3|u◦| dx.

The derivative of (2.13) with respect to t is

d

dt
K2
(
−t2T1 + 2tT2

)
= K2 (−2tT1 + 2T2) .

Zero of the derivative is at the point t = T2/T1. Substituting t = T2/T1 in (2.13) we
find

K2
(
−t2T1 + 2tT2

)
= K2

(
−
(
T2
T1

)2

T1 + 2
T2
T1
T2

)
= K2T

2
2

T1

= K2

(∫ b
a
δ1|u′◦|2 + δ2|u◦|2 + δ3|u◦| dx)

)2
||u◦||2◦ −

∫ b
a
δ1|u′◦|2 + δ2|u◦|2 dx

.

By taking square roots we arrive at the result

Diam(S(D)) ≥ r ≥ K

∫ b
a
δ1|u′◦|2 + δ2|u◦|2 + δ3|u◦| dx(

||u◦||2◦ −
∫ b
a
δ1|u′◦|2 + δ2|u◦|2 dx

) 1
2

.

�

Next we derive upper bounds using first the majorant M1 from Lemma 2.2 and
then M2 from Lemma 2.3.

Theorem 2.7. The diameter of the solution set S(D) of the uncertain problem P
with admissible dataset D has a guaranteed upper bound given by

Diam(S(D)) ≤ B1 := 2K

((∫ b

a

(δ1u
′
◦)

2

α◦ − δ1
dx

) 1
2

+ CF ||δ2|u◦|+ δ3||

)
,

where K is from Theorem 2.5

Proof. Using Theorem 2.5 and the majorant M1 from Lemma 2.2 we have

r = sup
u∈S(D)

||u− u◦||◦ ≤ K sup
u∈S(D)

||u− u◦||α,β

≤ K sup
(α,β,f)∈D

inf
y∈H1

M1(α,β,f)(u◦, y), (Theorem A.6)

≤ K inf
y∈H1

sup
(α,β,f)∈D

M1(α,β,f)(u◦, y),

we estimate the infimum from above by setting y = α◦u
′
◦,
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≤ K sup
(α,β,f)∈D

M2(α,β,f)(u◦, α◦u
′
◦)

= K sup
(α,β,f)∈D

((∫ b

a

1

α
(α◦u

′
◦ − αu′◦)2dx

)1/2

+ CF ||(α◦u′◦)′ − βu◦ − f ||

)
.

Rewriting α, β and f with equivalent forms from Definition 1.5

= K sup
||gi||∞≤1

((∫ b

a

(α◦u
′
◦ − (α◦ + δ1g1)u

′
◦)

2

α◦ + δ1g1
dx

)1/2

+ CF ||(α◦u′◦)′ − (β◦ + δ2g2)u◦ − (f◦ + δ3g3)||

)
.

u◦ satisfies (1.4) (α◦u
′
◦)
′ − β◦u◦ = f◦, so

= K sup
||gi||∞≤1

((∫ b

a

(−δ1g1u′◦)2

α◦ + δ1g1
dx

)1/2

+ CF || − δ2g2u◦ − δ3g3||

)
.

Maximizing with respect to gi leads to g1 = −1, g2 = −sgn(u◦(x)) and g3 = −1.
Therefore

= K

((∫ b

a

(δ1u
′
◦)

2

α◦ − δ1
dx

)1/2

+ CF ||δ2|u◦|+ δ3||

)
,

The result follows from the fact that Diam(S(D)) ≤ 2r.
�

Next we make another upper bound using instead the majorant M1 from Theorem
2.3.

Theorem 2.8. The diameter of the solution set S(D) of the uncertain problem P
with admissible dataset D has a guaranteed upper bound given by

Diam(S(D)) ≤ B2 := 2K

(∫ b

a

(δ1u
′
◦)

2

α◦ − δ1
+

(δ3 + δ2|u◦|)2

β◦ − δ2
dx

) 1
2

,

where K is from Theorem 2.5

Proof. Using Theorem 2.5 and the majorant M2 from Lemma 2.3 we have

r = sup
u∈S(D)

||u− u◦||◦ ≤ K sup
u∈S(D)

||u− u◦||α,β

≤ K sup
(α,β,f)∈D

inf
y∈H1

M2(α,β,f)(u◦, y)

≤ K inf
y∈H1

sup
(α,β,f)∈D

M1(α,β,f)(u◦, y),
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again we estimate the infimum from above by setting y = α◦u
′
◦,

≤ K sup
(α,β,f)∈D

M1(α,β,f)(u◦, α◦u
′
◦)(2.14)

= K sup
(α,β,f)∈D

(∫ b

a

1

α
(α◦u

′
◦ − αu′◦)2 +

1

β
((α◦u

′
◦)
′ − f − βu◦)2 dx

) 1
2

,

now replace α, β, f with equivalent forms from Definition 1.5,

= K sup
||gi||∞≤1

(∫ b

a

(α◦u
′
◦ − (α◦ + δ1g1)u

′
◦)

2

α◦ + δ1g1
+

((α◦u
′
◦)
′ − (f◦ + δ3g3)− (β◦ + δ2g2)u◦)

2

β◦ + δ2g2
dx

) 1
2

,

since u◦ satisfies (1.4) we have

= K sup
||gi||∞≤1

(∫ b

a

(−δ1g1u′◦)2

α◦ + δ1g1
+

(−δ3g3 − δ2g2u◦)2

β◦ + δ2g2
dx

) 1
2

,

we estimate gi as the maximum in the denominator and minimum in the numerator,

≤ K

(∫ b

a

(δ1u
′
◦)

2

α◦ − δ1
+

(δ3 + δ2|u◦|)2

β◦ − δ2
dx

) 1
2

.

Now the proof follows from the fact that Diam(S(D)) ≤ 2r. �

Next we present an alternate approach which does not require the mean solution
u◦ . This is based on the energy-estimate. Two different bounds can be made using
the different majorants M1 and M2.

Theorem 2.9. Assume the boundary conditions of the uncertain problem P are
zeros. Then the diameter of the solution set S(D) has a guaranteed upper bound given
by

Diam(S(D)) ≤ B3 := 2C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣ (H + δ2 C
2

⊕ + ||δ3||
)
,

where C⊕ is from Theorem 2.4,

H := sup
x∈(a,b)

{
δ1(x)

(α◦(x)(α◦ − δ1)(x))
1
2

}
and δ2 := sup

x∈(a,b)
{δ2(x)}.
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Proof. We use the majorant M1 such that the exact solution is u◦. We denote
M1(α◦,β◦,f◦) =: M1◦.

r = sup
u∈S(D)

||u− u◦||◦ = sup
u∈S(D)

inf
y∈H1

M1◦(u, y)

≤ inf
y∈H1

sup
u∈S(D)

M1◦(u, y) ≤ sup
(α,β,f)∈D
u=S(α,β,f)

M1◦(u, αu
′)

= sup
(α,β,f)∈D
u=S(α,β,f)

((∫ b

a

1

α◦
(αu′ − α◦u′)2 dx

) 1
2

+ CF ||(αu′)′ − β◦u− f◦||

)

≤ sup
(α,β,f)∈D
u=S(α,β,f)

((∫ b

a

1

α◦
(αu′ − α◦u′)2 dx

) 1
2

+ C⊕||βu+ f − β◦u− f◦||

)
.

Replacing α, β, f with equivalent forms from (1.5)

= sup
||gi||∞≤1
u=S(α,β,f)

((∫ b

a

1

α◦
((α◦ + δ1g1)u

′ − α◦u′)2 dx
) 1

2

+ C⊕||(β◦ + δ2g2)u+ (f◦ + δ3g3)− β◦u− f◦||

)

= sup
||gi||∞≤1
u=S(α,β,f)

((∫ b

a

(δ1g1u
′)2

α◦
dx

) 1
2

+ C⊕||δ2g2u+ δ3g3||

)

≤ sup
u∈S(D)

(∣∣∣∣∣∣∣∣ δ1u′
(α◦)

1
2

∣∣∣∣∣∣∣∣+ C⊕||δ2u||+ C⊕||δ3||

)

≤ sup
u∈S(D)

(
sup
x∈(a,b)

{
δ1(x)

(α◦(x)(α◦ − δ1)(x))
1
2

}
||u||α,β + sup

x∈(a,b)
{δ2(x)}C2

⊕||u||α,β + C⊕||δ3||

)
,

(2.15)

Denote

H := sup
x∈(a,b)

{
δ1(x)

(α◦(x)(α◦ − δ1)(x))
1
2

}
and δ2 := sup

x∈(a,b)
{δ2(x)}.

We use the energy estimate from Theorem 2.4 to get rid of the unknown u in (2.15)

sup
u∈S(D)

(
H||u||α,β + δ2 C

2

⊕||u||α,β + C⊕||δ3||
)

≤ HC⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣+ δ2 C
3

⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣+ C⊕||δ3||

= C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣ (H + δ2 C
2

⊕ + ||δ3||
)
.

Since Diam(S(D)) ≤ 2r the proof follows. �
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Next we do the same but we use the majorant M2.

Theorem 2.10. Assume the boundary conditions of the uncertain problem P are
zeros. Then the diameter of the solution set Diam(S(D)) has a guaranteed upper
bound given by

Diam(S(D)) ≤ B4 := 2C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣ (H1 +H2C⊕
)

+ 2

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣,
where C⊕ is from Theorem 2.4 and

H1 := ess sup
x∈(a,b)

{
δ1(x)

(α◦(x)(α◦ − δ1)(x))
1
2

}
and H2 := ess sup

x∈(a,b)

{
δ2(x)

(β◦(x))
1
2

}
.

Proof. Following the proof of Theorem 2.9 we have

r ≤ sup
(α,β,f)∈D
u=S(α,β,f)

M2◦(u, αu
′)

= sup
(α,β,f)∈D
u=S(α,β,f)

(∫ b

a

1

α◦
(αu′ − α◦u′)2 +

1

β◦
((αu′)′ − f◦ − β◦u)2 dx

) 1
2

= sup
||gi||∞≤1
u=S(α,β,f)

(∫ b

a

((α◦ + δ1g1)u
′ − α◦u′)2

α◦
+

((β◦ + δ2g2)u+ f◦ + δ3g3 − β◦u− f◦)2

β◦
dx

)

≤ sup
u∈S(D)

(∫ b

a

(δ1|u′|)2

α◦
+

(δ2|u|+ δ3)
2

β◦
dx

) 1
2

≤ sup
u∈S(D)

∫ b

a

(
δ1|u′|
(α◦)

1
2

+
δ2|u|+ δ3

(β◦)
1
2

)2

dx

 1
2

≤ sup
u∈S(D)

((∫ b

a

δ21
α◦
|u′|2 dx

) 1
2

+

(∫ b

a

δ22
β◦
|u|2 dx

) 1
2

+

(∫ b

a

δ23
β◦

dx

) 1
2

)

≤ sup
u∈S(D)

((∫ b

a

δ21
α◦(α◦ − δ1)

α|u′|2 dx
) 1

2

+

(∫ b

a

δ22
β◦
|u|2 dx

) 1
2

+

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣
)
.

Denote

H1 := ess sup
x∈(a,b)

{
δ1(x)

(α◦(x)(α◦ − δ1)(x))
1
2

}
and H2 := ess sup

x∈(a,b)

{
δ2(x)

(β◦(x))
1
2

}
.
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Now we have

≤ sup
u∈S(D)

((∫ b

a

H2
1α|u′|2 dx

) 1
2

+

(∫ b

a

H2
2 |u|2 dx

) 1
2

+

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣
)

≤ sup
u∈S(D)

(
H1

(∫ b

a

α|u′|2 + β|u|2 dx
) 1

2

+H2

(∫ b

a

|u|2 dx
) 1

2

+

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣
)

≤ sup
u∈S(D)

(
H1||u||α,β +H2C⊕||u||α,β +

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣
)

≤ H1C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣+H2C
2

⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣
= C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣ (H1 +H2C⊕
)

+

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣.
Since Diam(S(D)) ≤ 2r the proof follows. �





CHAPTER 3

Sensitivity Analysis and Numerical Approximation of Diam(S(D))

The contents of the following chapters are numerical results and the tests were
implemented in Matlab. All of the codes used can be found at https://github.com/
Yzivv/Accuracy-Analysis-Thesis-Codes.

In this chapter we investigate the sensitivity of the bounds B and B from Chapter
2 with respect to changes in the admissible data D. We present numerical tests which
illustrate that there is no obvious way to determine which bound will perform the
best. Additionally, we show a method of numerically approximating Diam(S(D)) and
include this approximation in all of the tests.

The following things are tested:

• Increasing the value of one of the indeterminacy parameters δi
• Increasing the difference between the coefficients α◦, β◦ and f◦
• Adding oscillation to α◦, β◦ or f◦

Recall that the formulas for the upper bounds are (Theorems 2.7, 2.8, 2.9, 2.10)

B1 = 2K

((∫ b

a

(δ1u
′
◦)

2

α◦ − δ1
dx

) 1
2

+ CF ||δ2|u◦|+ δ3||

)
,

B2 = 2K

(∫ b

a

(δ1u
′
◦)

2

α◦ − δ1
+

(δ3 + δ2|u◦|)2

β◦ − δ2
dx

) 1
2

,

B3 = 2C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣ (H + δ2 C
2

⊕ + ||δ3||
)
,

B4 = 2C⊕

∣∣∣∣∣∣|f◦|+ δ3

∣∣∣∣∣∣ (H1 +H2C⊕
)

+ 2

∣∣∣∣∣∣∣∣ δ3
β

1
2
◦

∣∣∣∣∣∣∣∣
and the lower bound is (Theorem 2.6)

B =

∫ b
a
δ1|u′◦|2 + δ2|u◦|2 + δ3|u◦| dx(

||u◦||2◦ −
∫ b
a
δ1|u′◦|2 + δ2|u◦|2 dx

) 1
2

.

It is clear that there is little hope of understanding these formulas intuitively. In
our numerical tests we find that B1 may be the most commonly reliable but the
recommended tactic is to simply calculate all of the bounds to find the best one.
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3.1. Brute-force Method for Approximating the Diameter

The exact value of Diam(S(D)) is not a computable quantity. It can be approxi-
mated by taking a finite subset U ∈ S(D) and computing the quantity

Approx = sup
v,w∈U

||v − w||◦ ≈ Diam(S(D))

In order to quickly generate a subset U ∈ S(D) we choose the coefficients α, β, f
from D such that they are piecewise constant. This reduces the differential equation
(1.4) to a linear system of equations which can be rapidly solved. Note that functions
of this type are dense in the set D if we allow arbitrary amount of pieces in the
domain. In practice the mesh needs to be fine enough to reasonably account for the
oscillations of D.

After the subset U is created it remains to compute the quantity supv,w∈U ||v−w||◦.
This takes the bulk of the computation time. We use the most obvious algorithm to
compute it (see Algorithm 1). The algorithm calculates the distance between each
possible pair in the set and outputs the largest distance found. This algorithm has
time complexity O(n

2

2
) when duplicate comparisons are removed.

The formulas for how the problem P can be solved for piecewise constant coeffi-
cients are as follows. Let [x0, · · · , xn] be a mesh with n points in the domain [a, b],
where x0 = a and xn = b and let the coefficient functions be piecewise constants such
that

α(x) = αk, when x ∈ [xk−1, xk],

β(x) = βk, when x ∈ [xk−1, xk],

f(x) = fk, when x ∈ [xk−1, xk].

The differential equation (1.4) can now be solved separately on each subinterval
with boundary conditions imposed by the adjacent equations. A single equation of
the type

αu′′ − βu = f

where α, β and f are constant has a general solution of the form

u = c1e

(√
β/α
)
x + c2e

−
(√

β/α
)
x − f

β
.(3.1)

With n subintervals we will have n equations of the form (3.1). We denote the
solutions u1, u2, · · · , un such that

uk(x) = ck1e

(√
βk/αk

)
x + ck2e

−
(√

βk/αk

)
x − fk

βk
.

This leads to 2n unknown parameters cij. On the boundary of each subinterval
the function values and derivative values must be equal. The boundary conditions
(1.4) also need to be satisfied. Now there are 2n equations which is enough to solve
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the system. The system has the form
u1(x0) = A,

ui(xi)− ui+1(xi) = 0 for i = 1, 2, . . . , n− 1,

u′i(xi)− u′i+1(xi) = 0 for i = 1, 2, . . . , n− 1,

un(xn) = B.

(3.2)

To help with notation denote

hk =

√
βk
αk
.

Writing out (3.2) we have
c11e

h1x0 + c12e
−h1x0 − f1

β1
= A,

ci1e
hixi + ci2e

−hixi − fi
βi
− c(i+1)1e

hi+1xi − ci2e−hi+1xi + fi+1

βi+1
= 0, for i = 1, . . . , n− 1,

hi
(
ci1e

hixi − ci2e−hixi
)
− hi+1

(
c(i+1)1e

hi+1xi − ci2e−hi+1xi
)

= 0, for i = 1, . . . , n− 1,

cn1e
hnxn + cn2e

−hnxn − fn
βn

= B,

In matrix form this becomes

Ac = F ,

where

A =



eh1x0 e−h1x0 0 0 0 0 · · · 0 0
eh1x1 e−h1x1 −eh2x1 −e−h2x1 0 0 · · · 0 0
h1e

h1x1 −h1e−h1x1 −h2eh2x1 h2e
−h2x1 0 0 · · · 0 0

0 0 eh2x2 e−h2x2 −eh3x2 −e−h3x2 · · · 0 0
0 0 h2e

h2x2 −h2e−h2x2 −h3eh3x2 h3e
−h3x2 · · · 0 0

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 · · · ehnxn e−hnxn


,

c =



c11
c12
c21
c22
c31
c32
...
cn1
cn2


and F =



f1
β1

+ A
f1
β1
− f2

β2

0
f2
β2
− f3

β3

0
...

fn
βn

+B


.

A linear system of equations of this kind is solved by numerical programs very
quickly. In our case, we used matlab. Algorithm 1 is used to find the quantity
supv,w∈U ||v − w||.
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Algorithm 1: Brute Force Algorithm

Compute the Subset U ∈ S(D).
N = Amount of elements in U
Denote the nth element of U as U(n).
result = 0
for k=1:N

for h=k+1:N
distance = ||U(k)− U(h)||◦
if distance > result

result = distance
Approximated Diameter = result
Result: Approximated Diameter

3.2. Numerical Tests for Sensitivity

We start by setting each of the coefficient functions α, β and f as the constant
value 1. Later tests add modifications to the first test. The boundary conditions are
zeros and the domain is (0, 1) in all tests.

Test 1. The mean coefficients are

α◦(x) = β◦(x) = f◦(x) = 1,

and the indeterminacy parameters are

δ1(x) = δ2(x) = δ3(x) = 0.05.

We test how changing each of the indeterminacy parameters affects the bounds. In
Figure 3.1 we can see that the magnitude of the bounds and approximations is most
sensitive to changes in δ1 and δ3. Indeterminacy of β has a very small effect on the
approximation. Changes with respect to δ1 and δ2 are nonlinear and with respect to
changes of δ3 they are linear for both the approximation and the bounds.

The bounds B1 and B3 which use the majorant M1 are sharper then their coun-
terparts B2 and B4 which use the majorant M2. The best bound to use in this case
would be B1.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.1. Test 1 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.

Test 2. Results are shown in Figure 3.2. The mean coefficients are

α◦(x) = 10, β◦(x) = f◦(x) = 1,

and the indeterminacy parameters are

δ1(x) = 0.5, δ2(x) = δ3(x) = 0.05.

The magnitude of indeterminacy when any of the indeterminacy parameters are in-
creased is now lower then in test 1 but the best bound is still B1. Differences between
using the majorant M1 and M2 is even higher. B1 and B3 are much sharper then the
bounds that use M2. This effect is most prominent when δ3 is increased since B2 and
B4 rapidly increase and even start off rather far from the approximation.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.2. Test 2 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.

Test 3. Results are shown in Figure 3.3. The mean coefficients are

α◦(x) = 1, β◦(x) = 10, f◦(x) = 1,

and the indeterminacy parameters are

δ1(x) = 0.05, δ2(x) = 0.5, δ3(x) = 0.05.

In this case, the bound B2 is outperforming B1. The main difference is not with
which majorant is used. Bounds B1 and B2 use the mean solution and outperform
the bounds B3 and B4 which use the energy-estimate. As we stated in Chapter 2,
when the value of β is high the majorant M2 is usually better which we see since B2

is sharper then B1 and B4 is sharper then B3.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.3. Test 3 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.

Test 4. Results are shown in Figure 3.4. The mean coefficients are

α◦(x) = 1, β◦(x) = 1, f◦(x) = 10,

and the indeterminacy parameters are

δ1(x) = 0.05, δ2(x) = 0.05, δ3(x) = 0.5.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.4. Test 4 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.

Note that the magnitudes of approximations and bounds are very high now. When
δ3 or δ2 is changed the only bound that remains quite sharp is B1. The energy-estimate
bound B3 is extremely coarse in all cases even though it uses the same majorant as
B1.
Test 5. Results are shown in Figure 3.5. In the remaining tests 5-7 we add oscillation
to one of the coefficients. The mean coefficients are

α◦(x) =
sin(12x)

4
+ 1, β◦(x) = 1, f◦(x) = 1,

and the indeterminacy parameters are

δ1(x) = 0.05, δ2(x) = 0.05, δ3(x) = 0.05.

Adding oscillation to the coefficient α interestingly causes the energy estimate bound
B3 to perform the best. The bounds which use the majorant M1 are still the best
since β is rather small. Compared to test 1, the magnitudes are quite similar.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.5. Test 5 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.

Test 6. Results are shown in Figure 3.6. The mean coefficients are

α◦(x) = 1, β◦(x) =
sin(12x)

4
+ 1, f◦(x) = 1,

and the indeterminacy parameters are

δ1(x) = 0.05, δ2(x) = 0.05, δ3(x) = 0.05.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.6. Test 6 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.

Adding a bit of oscillation to β has almost no effect on the bounds or approxima-
tion. Comparing with test 1 the figures are nearly identical.
Test 7. Results are shown in Figure 3.7. The mean coefficients are

α◦(x) = 1, β◦(x) = 1, f◦(x) =
sin(12x)

4
+ 1,

and the indeterminacy parameters are

δ1(x) = 0.05, δ2(x) = 0.05, δ3(x) = 0.05.

As with test 6, a small oscillation in f is having very little effect on the results.
Magnitude is more or less the same as in test 1 and the bounds are similarly spaced
from one another.
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(a) Changing δ1. (b) Changing δ2.

(c) Changing δ3.

Figure 3.7. Test 7 Results. A is the brute-force approximation, B is the
lower bound and B1-B4 are the upper bounds.





CHAPTER 4

Machine Learning Model for Quantifying Size of the Solution Set

In this chapter we create neural networks which approximate the brute-force
method discussed in section (3.1) (see Figure 4.1). In our case, since we have an-
alytical methods to control Diam(S(D)), it is not clear why one would want to use
such a model. The main advantages compared to the brute-force method and analyt-
ical bounds are:

• Using a model like this requires no knowledge of analysis
• It is inexpensive to use unlike the brute-force method
• Analytical bounds can be coarse (see Chapter 3)

Even in such a simple case, it is reasonable to use this type of model. It is even
more interesting if this method can be extended to problems where analytical methods
are not an option and the brute-force method is even more expensive. We only focus
on problem P but in future research this will be tried for more complicated problems.
The main goal of this chapter is to give a proof of concept that training machine
learning models to analyze uncertainty errors is a feasible task.

D ApproxNeural Network

Figure 4.1. Purpose of the model.

We do not go into technical details about how neural networks work and for
those who want to review basic facts about machine learning and neural networks we
recommend the freely available books [3] or for finnish readers [7].

4.1. Model Description

The size and geometry of our model depends on how general the inputs D can be.
Simple dense neural networks are suitable for our analysis but in more complicated
problems it may be required to use some more elaborate models.

First we transform the set D into something that can be input into a neural net-
work which has a finite input layer. This is done by scanning the ”strip” of admissible
data of each function α, β and f . We pick a finite number of equidistant points
[x0, . . . , xn] in the domain (a, b) and look at the maximum and minimum values of
each function at these points.

In Figure 4.2 the function admissible dataset Dα is scanned at ten points. This is
done also for Dβ and Df so in total this produces 60 inputs for our neural network.

35
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Figure 4.2. Admissible dataset Dα and network input.

The amount of looking points is at our disposal and a good choice depends on how
much the value of δi changes in the domain and how much the central element α◦ is
allowed to oscillate.

The training output of our model is generated with the brute-force method dis-
cussed in section (3.1). This means that our network output is not the true diameter
but an approximation of an approximation. In our case, the brute-force method
works well since the problem is simple but how one makes sure that approximations
are accurate is non-trivial in general.

4.2. Constraining and Generating Training Data

For all of the example models we present in the next section we will have con-
straints on the possible inputs D. Usually it would not make sense to include an
admissible dataset where

(α(x) = 1050, β(x) = 1050, f(x) = 1050) ∈ D.

In real world problems we have some clue as to what range our coefficients can rea-
sonably be in and also how pathologically they can oscillate. For this reason we
impose that the mean coefficients and indeterminacy parameters of each example in
our training data are in some constraint sets

(α◦, β◦, f◦) ∈ C◦,
(δ1, δ2, δ3) ∈ Cu.

The choice of these sets C◦ and Cu is up to us and we will have a different choice for
each of our example models.
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Once we have chosen the constraints for our training examples we generate a
sufficiently large set of input-output pairs to use as training data for our neural
network. The generation of this training set is described in algorithm 2.

Algorithm 2: Generating Training Data

Pick the constraint sets for training data C◦, Cu
Pick the size of the training set and amount of looking points

size of training set = N;
amount of looking points = K;

Initialize the network input and target output matrices
NetworkInputs = zeros(6K,N);
TargetOutputs = zeros(1,N);

while i ≤ N do
Pick random mean coefficients and indeterminacies such that

(α◦, β◦, f◦) ∈ C◦;
(δ1, δ2, δ3) ∈ Cu;

Scan the indeterminacy set formed by the above choices
X = scanned input vector;
NetworkInputs(:,i) = X;

Compute the brute-force approximation of Diam(S(D))
output = Brute Force Approximation;
TargetOutputs(1,i) = output;

end
Result: NetworkInputs and TargetOutputs

4.3. Example Models

We present two different example models. The models differ on four things: the
amount of looking-points where the admissible data is scanned (see Figure 4.2), the
constraints on the inputs that our training data has, the size of the training data and
the structure of the neural network.

In real-world problems we always have some idea of the kind of admissible datasets
our problem setting may have. This would guide us in how we construct our training
data. In our case, we do not have a real-world example but we still constrain the
training data to a reasonable generality.

For creating and training our neural networks we used the Deep Learning Toolbox
of Matlab. We will present present the results of training for each model. The
algorithm used for training the networks is the Levenberg-Marquardt algorithm.

4.3.1. Model 1. The first model has the following structure:

(1) The number of looking-points is 4.
(2) Neural Network has an input layer with 24 neurons and one hidden layer

with 10 neurons using sigmoid activation (see Figure 4.3).
(3) The possible training inputs have the constraints (4.1)-(4.3).
(4) We use 2000 training examples which are split into 70% training, 15% vali-

dation and 15% testing.
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Diam(S(D))D

Input Layer Hidden Layer Output Layer

Figure 4.3. Structure of Example Neural Network 1.

We use a special case of possible training inputs D. The central functions and
indeterminacy parameters are piecewise constant such that

α◦(x) = α◦i, when x ∈ [xi−1, xi],(4.1)

β◦(x) = β◦i, when x ∈ [xi−1, xi],

f◦(x) = f◦i, when x ∈ [xi−1, xi],

δj(x) = δji, when x ∈ [xi−1, xi].

where [x0, x1, x2, x3, x4] = [0, 0.25, 0.5, 0.75, 1]. The mean elements and indetermina-
cies are given range constraints

α◦(x) ∈ [1, 3], β◦(x) ∈ [1, 3], f◦(x) ∈ [3, 10](4.2)

δ1(x) ≤ 0.3α◦(x), δ2(x) ≤ 0.3β◦(x), δ3(x) ≤ 0.3f◦(x).(4.3)

For illustration of a possible input D1 and the corresponding solution set see Figures
(4.4) and (4.5). In Figure (4.4) the input D1 is scanned at four points on the domain.
This produces the input vector

Network Input: D̂1 = 1.1, 1.5, 1.9, 1.5, 1.7, 2.5, 2.5, 2.4, 1.8, 1.4, 2.0, 1.2,

3.2, 2.5, 3.4, 1.7, 5.1, 5.9, 3.8, 5.2, 7.0, 7.2, 5.7, 9.3.

Calculating the brute-force approximation of the diameter we find in this case the
value

0.7556 ≈ Diam(S(D1)).



4.3. EXAMPLE MODELS 39

Figure 4.4. Example input D1.

Figure 4.5. Piece of the solution set S(D1).

For the training we used the default settings of the Levenberg-Marquardt algo-
rithm in the matlab nntool (see Figure)
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Figure 4.6. Training parameters of the Levenberg-Marquardt algorithm.

In Figure 4.7 on the x-axis are the target output values which are the brute-force
approximations and on the y-axis are the output values of the neural network. Each
circle ”Data” represents one example data point. We can see that the model produces
results which are very close to the correct output on the validation and test sets too,
so no overfitting is present. Figure 4.8 shows the training progression of our model.
In this case the model trains very quickly.

Figure 4.7. Model 1 Regression.
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Figure 4.8. Model 1 Performance Curve.

4.3.2. Model 2. Model 2 has the following structure:

(1) The number of looking-points is 10.
(2) Neural Network has an input layer with 60 neurons and one hidden layer

with N neurons using sigmoid activation (see Figure ).
(3) The possible training inputs have the constraints (4.4)-(4.6).
(4) We use training examples which are split into 70% training, 15% validation

and 15% testing.

Model 2 has slightly looser constraints on the possible inputs then model 1. The
central functions and indetermincy constants are still piecewise constant such that

α◦(x) = α◦i, when x ∈ [xi−1, xi],(4.4)

β◦(x) = β◦i, when x ∈ [xi−1, xi],

f◦(x) = f◦i, when x ∈ [xi−1, xi],

δj(x) = δji, when x ∈ [xi−1, xi].

where [x0, . . . , x10] = [0, . . . , 1]. The mean elements and indeterminacies have range
constraints

α◦(x) ∈ [1, 5], β◦(x) ∈ [1, 5], f◦(x) ∈ [1, 10](4.5)

δ1(x) ≤ 0.3α◦(x), δ2(x) ≤ 0.3β◦(x), δ3(x) ≤ 0.3f◦(x).(4.6)

For the training we used the same settings as for model 1 which are the default
settings of the training algorithm in matlab (see Figure 4.6).

In Figure on the x-axis are the target output values which are the brute-force
approximations and on the y-axis are the output values of the neural network. Each
circle ”Data” represents one example data point. We can see that the model produces
results which are very close to the correct output on the validation and test sets too,
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so no overfitting is present. Figure shows the training progression of our model. In
this case the model trains very quickly.

4.4. Comparing Analytical, Brute-force and ML-Model Methods

In this section we analyse how models 1 and 2 perform compared to the analytical
bounds derived in Chapter 2 and the brute force approximations. First we test on
the class of admissible datasets that was used for training and then we try other more
general types of inputs to see if our models are able to generalize to them.

We find that the models are quite competitive with the other methods. However
there are also problems. The most clear problem is that the training data made for
model 2 has not been sufficiently accurate. The numerical brute-force approximations
for this model were not sharp enough which causes a systematic error where the
network model 2 outputs approximations that are substantially smaller then we would
hope.

Adding some more general oscillations to the admissible dataset that is used as
input has a surprisingly small effect on how well the models perform. Even in the
final test where the admissible dataset can oscillate quite heavily, model 1 which was
trained only on piecewise datasets made from 4 pieces performs well.

4.4.1. Test 1: Data similar to training data. Here we present tests where model
1 is evaluated on a test set made the same way as the training data for model 1. In
the same way model 2 is tested on a test set similar to the training dataset of model
2.

First using the constraints (4.1)-(4.3) we create a test set of 500 examples. For this
test set we compute the lower bound from Theorem 2.6 and the upper bound from
Theorem 2.7. We compare the outputs of model 1, the bounds and the brute-force
approximations in Figure 4.9.

Model 1 performs very well in this test. In every example the network output is
between the analytical bounds and very close to the brute-force approximation. For
some datapoints it would be preferable to use model 1 since the analytical bounds
are very coarse.
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Figure 4.9. Comparison of the results obtained analytically and computed
by numerical methods and model 1 for 500 test examples similar to training
examples.

Similarily we test model 2 with a test set of 300 examples with the constraints
(4.4)-(4.6). The results are shown in Figure 4.10.

Model 2 outputs approximations close to the brute-force approximation and mostly
between the analytical bounds. However, the result does not look exactly how we
would like. Numerical approximations seem lower then expected since they are very
close to the lower bounds. This issue is most likely caused by the set approximating
the solution cloud being too small.

We will see that this is indeed the case in later tests 2 and 3. Model 2 systemati-
cally outputs an approximation of the brute-force method which is lower then sharply
calculated brute-force approximations.
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Figure 4.10. Comparison of the results obtained analytically and com-
puted by numerical methods and model 2 for 300 test examples similar to
training examples.

4.4.2. Test 2: More general data. Next we create more complicated test sets.
These sets do not have the piecewise constant constraint (4.1) on the mean coefficients
and indeterminacies. In practice, we would like our network to be able to deal with
general admissible datasets that may have shapes like the one in Figure 4.2. We still
impose the range constraints (4.2) and (4.3).

The way this more general data is created is by picking some random points in
the allowed range and fitting a spline curve to these points. Details are explained
in Algorithm 3. In this particular test we made a dataset of 150 examples and the
important ’spline point amount’ parameter in Algorithm 3 was set to 3 (see Figure
4.11). The other input parameters are taken from the constraints of Model 1 which
are also inside the constraints of Model 2. The ’mean function range’ parameter is
taken from (4.2) and ’max indeterminacy’ from (4.3).
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Algorithm 3: Spline admissible data creation

Input:
mean function range (float array [a,b]),
max indeterminacy (float),
spline point amount (int),
domain (float array [a,b])

N = spline point amount
D = max indeterminacy
R = mean function range
/* Make the mean function spline first */

spline fit points = rand(1,N)*(R(2)-R(1)) + R(1)
/* the above variable is the y-axis fit points of the spline */

domain points = vector with N equidistant points in the domain
/* if domain = [0,1] and N = 3 then domain_points =

[0.25,0.5,0.75] */

mean spline = splinefit(domain points, spline fit points)
/* Next we make the indeterminacy spline function */

indeterminacy spline points = rand(1,N)*D
indeterminacy spline = splinefit(domain points, indeterminacy spline points)
/* Now we can define the lower and upper bound functions which

define the admissible strip */

upperbound function(x) = mean spline(x)*(1+indeterminacy spline(x))
lowerbound function(x) = mean spline(x)*(1-indeterminacy spline(x))
Result: upperbound function, lowerbound function

Figure 4.11. Example of an output by Algorithm 3 with input:
mean function range = [1,3], max indeterminacy = 0.3, spline point amount
= 3, domain = [0,1]. The area between the lower and upper bound functions
is colored.
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On this test set the results are for Model 1 are shown in Figure 4.12 and for Model
2 in Figure 4.15. Model 1 performs very well for every datapoint. It is clear that the
network outputs outperform the analytical bounds and would be preferable to use in
practice.

Model 2 gives a lower approximation of the brute-force method. This showcases
the fact that accurate and careful creation of the training data is important. The
model has learned to do what it is told to do very well but the training data has not
been sufficiently sharp. Regardless of this systematic error the model still outputs
fairly reasonable results.

Figure 4.12. Model 1 performance in test 2.

Figure 4.13. Model 2 performance in test 2.
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4.4.3. Test 3: More general and more oscillating data. Now we use even more
oscillating admissible datasets generated by using Algorithm 3 with the same inputs
as in test 2 except now ’spline point amount’ is set to 6. This allows the possible
admissible dataset to oscillate much more (see Figure 4.14). The total size of the test
set for test 3 is 250 datapoints.

Figure 4.14. Example of an output by Algorithm 3 with input:
mean function range = [1,3], max indeterminacy = 0.3, spline point amount
= 6, domain = [0,1]. The area between the lower and upper bound functions
is colored.

The results of test 3 are shown for Model 1 in Figure 4.15 and for Model 2 in
Figure 4.16. Model 1 still performs surprisingly well even though it was trained on
a much less oscillating dataset then the one used in this test. There is clearly more
variation from the brute-force approximation then in test 2 so the oscillation is having
an effect on performance. Every example still falls between the analytical bounds and
it would be quite reasonable to use Model 1 in practice.

Model 2 has the same issue as in the other tests of giving lower approximations.
Similarily to Model 1 the variation of distance from the brute-force approximation is
higher then in test 2.
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Figure 4.15. Model 1 performance in test 3.

Figure 4.16. Model 2 performance in test 3.



Conclusions

Estimation of errors generated by uncertain data is an important problem of
mathematical modeling. These errors generate limits of quantitative analysis and
must be accounted in real life computations. There are well developed analytical
methods based on a posteriori error estimates of the functional type. They provide
reliable and computable bounds of uncertainty errors. We have shown new methods
for analysis of uncertainty errors based on supervised machine learning methods.
Comparisons between ML-methods and analytical methods discussed in section 4.4
show that ML-methods can be quite competitive.

The models shown were not trained to perfection and there is certainly room for
improvement if this task were given to an experienced machine learning engineer.
Compared to a typical machine learning project this task has the advantage that the
data is fairly easy to generate. Various types of training examples with more and
more general forms could also be used as training data.

Our results concern only the simplest problems and there is no guarantee that
the same approach will work in more complicated scenarios. However, even models
working in simple problems may have a use. Checking uncertainty errors even in
simple simulations and other computational tasks may be rather difficult or expensive.
Error analysis is often ignored in such cases. Machine learning models like the ones
we presented are very cheap and easy to use and allow error quantification to be done
even with very limited mathematical knowledge and computational power.

In a similar fashion as we made models for quantifying Diam(S(D)) one could try
to make models for different tasks like quantifying local errors. Current methods for
such tasks have the same issues as the ones we have discussed. Analytical methods are
coarse and difficult to implement. Numerical methods are computationally expensive.

Efficient and accurate quantification of uncertainty errors will be more and more
important in the future when computer simulations become a larger part of performing
scientific experiments.
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APPENDIX A

Mathematical Background

In this chapter we briefly introduce theories of mathematical analysis that are
used in Chapter 2. We will give the definition of Sobolev Spaces in one dimension
and look at some fundamental results from calculus of variations. For a detailed look
at this theory we recommend [4], [5], [6] or for finnish readers [12].

1.1. Function Spaces

We recall basic function spaces and give the definition of one dimensional Sobolev
Spaces. Sobolev Spaces occur naturally when trying to choose a function space for
solutions of variational problems. The notation we use for the basic function spaces
is as follows:

Lp(a, b) := Space of measurable functions f : (a, b)→ R which are integrable with power p.

Ck(a, b) := Space of k times differentiable functions f : (a, b)→ R.

Ck
0 (a, b) := Subspace of Ck(a, b) that contains functions which are zero on the boundary.

For detailed exposition of the above spaces see e.g. [6].
The important space of functions for our analysis in chapter 2 is the one-dimensional

Sobolev Space H1(a, b). Sobolev spaces are motivated by the idea of weakening the
definition of derivatives. Classically, the solutions of differential equations of degree
k are differentiable up to the degree k. However, there are examples where solutions
found from Ck are clearly not satisfactory (see [4], Chapter 0). To define better spaces
in which solutions are found, the notion of weak or generalized derivative is required.

Definition A.1. Let u ∈ L1
loc(a, b). We say that v ∈ L1

loc(a, b) is the weak
derivative of u if∫ b

a

v(x)ϕ(x) dx = −
∫ b

a

u(x)ϕ′(x) dx, ∀ ϕ ∈ C∞0 (a, b).

We use the normal notation of derivatives for the weak derivative so v = u′. If such
a function v exists we call u a weakly differentiable function.

If a function is classically differentiable, the weak and classical derivatives coincide.
Sobolev spaces consist of Lp functions for which weak derivatives exist and are

also in Lp. In our case, we only need the case p = 2 but these spaces can be defined
for any p.

Definition A.2. Let W 1,2(a, b) be the set of functions u : (a, b)→ R, u ∈ L2(a, b)
which have weak derivatives such that u′ ∈ L2(a, b). We endow this space with the
norm

||u||1,2 = (||u||22 + ||u′||22)
1
2 .
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We denote W 1,2(a, b) also as H1(a, b) which is a Hilbert space.

The space H1 contains C1 but also more general functions such as piecewise dif-
ferentiable functions.

1.2. Calculus of variations

There are three main things we want to know about a variational problem:

• Does a unique solution exist?
• How regular is the solution if it exists?
• Does the solution satisfy the Euler-Lagrange equation?

An existence theorem is presented and we prove that problem P (1.1) solves the weak
Euler-Lagrange equation. The regularity question is disregarded.

Theorem A.3. Existence. Let F : [a, b]× R× R→ R be a function such that

• F is a Carathéodory function so:
x→ F (x, y, z) is measurable for all (y, z) ∈ R× R,
(y, z)→ F (x, y, z) is continuous for almost every x ∈ [a, b].
• z → F (x, y, z) is convex for almost every x ∈ [a, b] and every y ∈ R.
• F (x, y, z) ≥ k1|z|p + k2 for some k1 > 0, k2 ∈ R and some p > 1.

Then there exists a minimizer of the functional J : X → R

J(u) =

∫ b

a

F (x, u, u′) dx,

where

X := {u ∈ H1(a, b) : u(a) = A, u(b) = B}

For a proof of Theorem A.3 see [12] section 3.4.1.

Remark A.4. Problem P satisfies the assumptions of Theorem A.3. The function
inside the integral in this case is

F (x, y, z) =
1

2
α(x)|z|2 +

1

2
β(x)|y|2 + f(x)y,

where α(x) and β(x) are positive and bounded from above and f ∈ L2(a, b). F is
measurable function and continuous with respect to y and z so the Carathéodory
condition holds.

For the convexity condition we must prove that for any z1, z2 ∈ R and t ∈ [0, 1]

F (x, y, tz1 + (1− t)z2) ≤ tF (x, y, z1) + (1− t)F (x, y, z2).

It is sufficient to prove that

|tz1 + (1− t)z2|2 ≤ t|z1|2 + (1− t)|z2|2.(A.1)
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Since t ∈ [0, 1] we have

(t2 − t)(z1 − z2)2 ≤ 0

⇔ (t2 − t)z21 − 2(t2 − t)z1z2 + (t2 − t)z22 ≤ 0

⇔ (t2 − t)z21 + 2(1− t)tz1z2 + (t2 − t)z22 ≤ 0

⇔ t2z21 + z22 − 2tz22 + t2z22 + 2(1− t)tz1z2 ≤ tz21 + z22 − tz22
⇔ t2z21 + (1− t)2z22 + 2(1− t)tz1z2 ≤ tz21 + (1− t)z22
⇔ (tz1 + (1− t)z2)2 ≤ tz21 + (1− t)z22 .

Finally for the growth condition we can compute

F (x, y, z) =
1

2
α(x)|z|2 +

1

2
β(x)|y|2 + f(x)y

≥ 1

2
inf

x∈[a,b]
{α(x)}|z|2 +

1

2
β(x)|y|2 + f(x)y.

We can now choose k1 := 1
2

infx∈[a,b]{α(x)}. The terms not dependent on z form a
second degree polynomial with a positive constant for the second degree term. This
is bounded from below and we can compute the minimum over y ∈ R by finding the
zero of the derivative

d

dy
(
1

2
β(x)|y|2 + f(x)y) = β(x)y + f(x).

The above derivative has a zero at the point y = −f(x)
β(x)

. Now we can choose the

constant k2 as the infimum over x ∈ [a, b] so

k2 := inf
x∈[a,b]

{
−f(x)

β(x)

}
.

Now we find

F (x, y, z) ≥ k1|z|2 + k2,

so the growth condition holds (with p = 2).

Theorem A.5. Euler-Lagrange Equation. A solution of problem P (1.1) solves
the Euler-Lagrange equation in the weak sense.∫ b

a

αu′ϕ′ + βuϕ+ fϕ dx = 0 ∀ϕ ∈ H1
0(a, b).

Proof. Assume that u solves problem P so infv∈H1
0(a,b)

J(v) = J(u). Let t 6= 0

and ϕ ∈ H1
0(a, b). Now define

G(t) := J(u+ tϕ)− J(u)

=

∫ b

a

1

2
α|u′ + tϕ′|2 +

1

2
β|u+ tϕ|2 + f(x)(u+ tϕ) dx−

∫ b

a

1

2
α|u′|2 +

1

2
|u|2 + fu dx

=

∫ b

a

1

2
α(2tϕ′u′ + t2ϕ′2) +

1

2
β(2tϕu+ t2ϕ2) + ftϕ dx.
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u is the minimizer of J so 0 ≤ G(t) for any t. Assume now that t > 0. Then

0 ≤ G(t)

t

=

∫ b

a

1

2
α(2ϕ′u′ + tϕ′2) +

1

2
β(2ϕu+ tϕ) + fϕ dx

=

∫ b

a

αϕ′u′ + βϕu+ fϕ+
t

2
(ϕ′2 + ϕ2) dx.

Letting t→ 0 since ϕ ∈ H1
0 dominated convergence gives us

0 ≤ lim
t→0

∫ b

a

αϕ′u′ + βϕu+ fϕ+
t

2
(ϕ′2 + ϕ2) dx

=

∫ b

a

αϕ′u′ + βϕu+ fϕ+ lim
t→0

t

2
(ϕ′2 + ϕ2) dx

=

∫ b

a

αϕ′u′ + βϕu+ fϕ dx.(A.2)

Similarily setting t < 0 we have

0 ≥ G(t)

t

=

∫ b

a

αϕ′u′ + βϕu+ fϕ+
t

2
(ϕ′2 + ϕ2) dx.

And letting t→ 0 we have

0 ≥
∫ b

a

αϕ′u′ + βϕu+ fϕ dx.(A.3)

Combining (A.2) and (A.3) the proof is completed. �

1.3. Inequalities

Theorem A.6. Let L(x, y) be a functional defined on two nonempty sets of ele-
ments X and Y . Then

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y).

Proof. Clearly

L(x, y) ≥ inf
k∈X

L(k, y), ∀x ∈ X.

Taking the supremum of y ∈ Y we have

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
k∈X

L(k, y), ∀x ∈ X.

Since this holds for any x we take the infimum over x ∈ X and arrive at

inf
x∈X

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
k∈X

L(k, y).

�
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Theorem A.7. Let v ∈ H1
0 (0, 1). Then

||v||2 ≤ C||v′||2,

where C ≥ 1
π

.

Proof. Rearranging the inequality we are looking for a constant C, such that

1

C2
= inf

v∈H1
0 (0,1)

{
||v′||22
||v||22

}
.

Assume that u ∈ H1
0 (0, 1) minimizes the functional R : H1

0 (0, 1)→ R,

m := R(u) = inf
v∈H1

0 (0,1)
R(v), R(v) :=

||v′||22
||v||22

.

The functional R is known as the Rayleigh quotient. Now for any ε > 0 and h ∈
H1

0 (0, 1)

R(u) ≤ R(u+ εh) =: G(ε).

Since u is the minimizer of R we must have G′(0) = 0 (since it is a critical point), so

lim
ε→0

R(u+ εh)−R(u)

ε

= lim
ε→0

(
∫ 1

0
|u′ + εh′|2)/(

∫ 1

0
|u+ εh|2)− (

∫ 1

0
|u′|2)/(

∫ 1

0
|u|2)

ε

= lim
ε→0

1

ε

(∫ 1

0
(u′)2 + 2u′h′ε+ (εh′)2∫ 1

0
u2 + 2εuh+ (εh)2

−
∫ 1

0
|u′|2∫ 1

0
|u|2

)

= lim
ε→0

1

ε


(∫ 1

0
(u′)2 + 2u′h′ε+ (εh′)2

)(∫ 1

0
|u|2
)
−
(∫ 1

0
u2 + 2εuh+ (εh)2

)(∫ 1

0
|u′|2

)
(∫ 1

0
u2 + 2εuh+ (εh)2

)(∫ 1

0
|u|2
)


= lim

ε→0


(∫ 1

0
2u′h′ + ε(h′)2

)(∫ 1

0
|u|2
)
−
(∫ 1

0
2uh+ ε(h)2

)(∫ 1

0
|u′|2

)
(∫ 1

0
u2 + 2εuh+ (εh)2

)(∫ 1

0
|u|2
)


=

(∫ 1

0
2u′h′

)(∫ 1

0
|u|2
)
−
(∫ 1

0
2uh

)(∫ 1

0
|u′|2

)
(∫ 1

0
|u|2
)2 = 0.

This holds if, and only if(∫ 1

0

u′h′
)(∫ 1

0

|u|2
)
−
(∫ 1

0

uh

)(∫ 1

0

|u′|2
)

= 0.

Rearranging this we have ∫ 1

0
|u′|2∫ 1

0
|u|2

=

∫ 1

0
u′h′∫ 1

0
uh

.
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The left hand side is equal to the minimum m. This gives us

m

∫ 1

0

uh =

∫ 1

0

u′h′.

Rearranging we find ∫ 1

0

u′h′ = −
∫ 1

0

−muh.

The above equality defines the weak derivative u′′ = −mu. Since −mu is in fact
continuous (since it is in H1) u′′ can be considered as a classical derivative. This
means that the minimum m can only be the minimizer if it is an eigenvalue of the
boundary value problem

u′′ = −mu,(A.4)

u(0) = 0,

u(1) = 0.

The solution of (A.4) has the form

u = sin(
√
mx).

In order for the boundary conditions to hold we must have m = (kπ)2, k ∈ N \ {0}.
Since we want the minimizer we can choose k = 1 and we find

π2 ≥ 1

C2
⇒ C ≥ 1

π
.

�

From Theorem A.7 by a simple change of variables we obtain the next result.

Theorem A.8. Let v ∈ H1
0 (a, b). Then

||v||2 ≤ CF ||v||α,β,
where || · ||α,β is the energy norm from (1.5) and

CF :=
b− a
π

(ess sup{α(x)−1})
1
2 .

This inequality is called the Friedrich’s inequality.
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