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A B S T R A C T   

Biological organisms can vastly change their ecological functionality due to changes in body size and diet across 
their life. Consequently, it has been increasingly recognized that to attain sufficient biological realism, food webs 
may need to include life-history structures. The objective of the work is to study theoretically whether and how 
the inclusion of life-history structures affects the food web topology. Topological research was done by applying 
network theory metrics for three different food web types with two different sizes that were generated by using 
the niche-model. The dynamical modeling was performed by using an allometric trophic network modeling 
approach. The different types included food webs with and without the life-history structure for top predators 
(three fish species). Each of the generated random food webs analyzed reached dynamical equilibrium conditions 
with respect to the biomass densities of the species prior to the network analysis. Our results suggest that food 
web topologies are not largely affected by the inclusion of age- or stage-structure. In addition to the topological 
study, the relationship between the metrics used in this work was investigated by using Pearson correlation. 
Results suggested that only a few pairs of metrics had a strong positive correlation and most of the correlations 
did not change with food web size or type.   

1. Introduction 

Network theory plays an important role in many areas of science, 
including biology (Newman, 2010), where it has been applied to 
represent the patterns of interactions between different functional ele
ments. Biochemical and metabolic networks (e.g., protein-protein net
works) have been studied by molecular biologists whereas 
neuroscientists use network analysis to study the interactions between 
brain cells. Ecologists use network analysis tools to study the in
teractions between different functional groups, e.g. between predators 
and their prey species (Newman, 2010; Pavlopoulos et al., 2011; Hahn 
and Kern, 2005; Koschützki and Schreiber, 2008). In ecology, an 
increasing amount of attention have been focused on food webs during 
the past decade as network analysis has become a popular tool to 
examine the role of species in ecological communities (Allesina and 
Pascual, 2009; Jordán et al., 2006). 

Food web models offer insight into the dynamics of natural pop
ulations and species and, in particular, the processes driving the dy
namics (Pimm, 1991). Traditionally, food webs have been approached 
from two different points of view. Lindeman presented the energetic 

view that describes food webs as pathways for energy flow (Belgrano 
et al., 2005). The other approach, initiated by May (1973), emphasizes 
the dynamical factors that are formed from interactions between spe
cies. The latter study initialized a discussion on the effect of growing 
complexity on instability in food webs (reviewed e.g. by Dunne et al., 
2005). Together these points of view have led to topological research on 
the structure of food webs (Jordán et al., 2006; Montoya et al., 2006; 
Williams and Martinez, 2000). 

The studies on food web structures have usually focused on proper
ties that describe their internal structure, e.g. connectance, the size of 
the web and the number of trophic links between species. These vari
ables are of importance when trying to obtain a deeper understanding of 
the dynamic properties of the system in the presence of internal forcing, 
e.g. predation and energy transfer. Furthermore, recent advances in 
ecosystem network analysis have shown that a new synthesis coupling 
ecosystem dynamics and network analysis is needed to gain new insight 
about available theory and methodology transferrable to biological 
systems (Williams and Martinez, 2000; Endrédi et al., 2018). When 
network theory is combined with different, more traditional approaches, 
e.g., dynamic, and static bioenergetics models, a deeper understanding 
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of the community structure and functioning could be achieved. 
Traditionally, food webs have been structured by species or func

tional groups consisting of one or several species with the same or 
similar range of predators, prey, and metabolic properties (McCann, 
2012). However, since the discovery of the fundamental role of body 
size on the stability of food web dynamics (Brose et al., 2006), it has 
become questionable, whether species’ ecological functionality can be 
sufficiently approximated through the species average adult body size 
alone. Deviations from this assumption may be particularly large among 
indeterminately growing organisms, whose body size changes by several 
orders of magnitude across their lifetime, such as fishes (Wootton, 
1998). To this end, the general niche model for describing the structure 
of food webs originally presented by Williams and Martinez (2000) has 
been recently extended to include the life-history structure of fishes 
(Bland et al., 2019). In this extension, fish life-histories are split into 
discrete life-history stages among which biomass transfers from lower to 
higher stages through aging. While it is straightforward to calculate how 
the addition of the life-history structure affects simple network proper
ties, such as the number of nodes and links, the questions related to the 
broader impacts on the topology and structure of food webs require 
further study. 

In the present work, we delve into the structural and topological 
properties of life-history structured food webs by utilizing network 
theory tools combined with dynamical modeling. We utilize the newly 
extended niche model by Bland et al. (2019) to randomly generated food 
webs characteristic of northern hemisphere aquatic ecosystems and 
which include fish life-history structuring. Although network analysis 
has been utilized many times to study the topology of food webs (both 
theoretical and empirical) in previous studies (for example, see Rocchi 
et al., 2017), it has not been used to study the topology of food webs that 
include life-history structuring which is the aim of this work. The 
generated food webs will be simulated to allow them to reach biologi
cally meaningful equilibrium with respect to the community structure 
and species’ biomasses (hereafter called as stable food webs). 

The dynamic modeling is performed by using allometric trophic 
network model (ATN model; Brose et al., 2006). Detailed network 
analysis will then focus on the generated, stable food webs to investigate 
how the inclusion of the life-history structuring of fishes affects key 
network properties of the food webs. The network analysis tools as well 
as the statistical analysis performed for the networks include centrality 
metrics describing direct or indirect effects of the links of the nodes 
(degree, clustering coefficient, eigenvalue – based metrics and nested
ness (Unipartite Nestedness based on Overlap and Decreasing Fill, 
UNODF – algorithm)). 

2. Materials & methods 

In the following sections, we first review tools provided by network 
theory to analyze the topology of the stable food webs, followed by the 
investigation of our key study question of how addition of the fish life- 
history structures alters the structural properties of aquatic food webs. 

2.1. Adjacency matrix 

The structure of the food web and the properties of the ecosystem are 
most likely connected via the flow of energy. Thus, the topological po
sition of the species (or nodes) in the network affects the functions of the 
other nodes (Rocchi et al., 2017; Jordán et al., 2006). In the present 
study food webs are directed graphs (digraphs) which means that the 
energy (biomass) flow has a direction, moving from the lower trophic 
levels to the upper ones. The direction of the energy flow can also occur 
in reverse direction e.g. in the case of fishes’ breeding (Bland et al., 
2019). The random food webs in the present study are directed networks 
and therefore, both incoming and outgoing connections for several 
metrics are considered. 

For the analyses of the food web topology, a central property of the 

food web is its adjacency matrix which has a size of N × N, N describing 
the number of species. In adjacency matrix, a generic element aij = 1 if 
there is a connecting link between nodes i and j (0 otherwise). i.e., 
species i is feeding on species j (see e.g. Pavlopoulos et al., 2011). The 
flow of energy within the ecosystem is represented by the links that 
point from prey to predator. If the links point from predator to prey, they 
present feeding links as in the present work. 

2.2. Node degree 

A key property of each node is its degree that gives the number of 
links it has to its neighboring nodes. Therefore, it is an index that in
dicates the topographical local importance of the node (Jordán et al., 
2006). For directed networks, we must separate incoming and outgoing 
links. In general, the total degree for the node i is (Newman, 2010): 

DEGi = inDEGi + outDEGi (1) 

The out-degree of a node i is therefore a row-wise sum of the ele
ments of the adjacency matrix and the in-degree is the column-wise sum 
of the elements. In this work, we neglect cannibalism, i.e., here we 
neglect the links i → i. However, this is not strictly true: if an age 
structure is added, the fish species can still eat younger individuals of the 
same species. In the present work, inDEGi of a node describes the number 
of predators of the species i whereas outDEGi the number of prey species 
of i. 

2.3. Clustering coefficient 

Many real-world networks display properties that are typical for 
networks that are known as small worlds (Watts and Strogatz, 1998). 
These networks can be recognized by two features: their diameters (i.e., 
the maximum of the shortest paths between all pair of nodes in the 
network) increase logarithmically with the number of nodes. In addi
tion, the nodes in the networks tend to form clusters, i.e., two randomly 
chosen neighbor nodes of a node are more probably also neighbors than 
in purely random network. This property has been studied by using the 
concept of clustering coefficient that gives a measure of how node’s 
neighbor nodes are connected: it measures the link density in the 
neighborhood of the chosen node. Generally, the default approach to 
quantify the clustering coefficient in terms of the elements of the adja
cency matrix is by studying the links between the neighborhood nodes of 
a chosen node i. 

The proportion of connected pairs to the number of all possible pairs 
can be expressed as. 

CLUi =

∑
j∕=i
∑

h∕=(i,j)aijaihajh

Di(Di − 1)
=

(
A3
)

ii

Di(Di − 1)
(2)  

where (A3)ii is the ith element of the main diagonal of the matrix product 
AAA which, in fact, is the total number of three-step paths from a node i 
to itself. 

As described by Fagiolo (2007), each product of aijaihajhis meant to 
count if there exists a triangle (a “triplet”) between nodes i, j and h. 
Therefore, Eq. (2) describes the relative number of “triplets” formed 
between the node i and two of its interconnected neighbors with respect 
to the total possible number of triplets. 

However, ecological networks show nonmutual relationships which 
leads to asymmetric adjacency matrices, and thus the definition for 
clustering coefficient is also different. Fagiolo (2007) presented a more 
specific formulation for other network types (weighted undirected/ 
directed networks and binary directed networks). The motivation for the 
work was the observation that the direction of the links between the 
nodes has a major effect on quantifying clustering coefficient as different 
network motifs are formed (Milo et al., 2002). Here we apply the 
approach of Fagiolo and the clustering coefficient for binary directed 
network is presented as the net sum of the clustering coefficients 
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calculated for different triangle patterns (cycle, middleman, in and out) 
in terms of adjacency matrix as 

CLUi =

(
A + AT

)3
ii

2Ti
(3)  

where the variable Ti in the denominator is the maximum number of 
“triangles” that can be formed for different patterns (for example: spe
cies i is eaten by species j which also eats species k but which it eaten by 
species i). The numerator corresponds to the ith element of the main 
diagonal of the matrix product, representing the number of connections 
that are realized. Above, Ti depends on the total degree of a node i but 
also the total number of false triplets for different triangle patterns is 
taken into account. The overall clustering coefficient is defined as the 
average of the clustering coefficients over the network. In general, a 
perturbation affecting one single species will propagate fast across the 
whole cluster of species in the food web (Gilarranz et al., 2012). How
ever, several studies disagree whether food webs show “small world” 
properties (Dunne et al., 2002). 

2.4. Closeness and betweenness 

In general, indicators of centrality contain information with respect 
to energy transfer in the network and therefore they offer information to 
identify the keystone species of the food web (Jordán et al., 2006). These 
indicators include closeness and betweenness centralities that are both 
associated with the concept of path length (Freeman, 1977, 1978). 
Closeness centrality describes the position of the node i with respect to 
other (reachable) nodes in the food web. It is defined as the inverse sum 
of the distance from a node to all the other nodes, so for node i it is (for 
incoming links) 

CLOi =
1

∑

s
d(i, j)

(4) 

In Eq. (4), d(i,j) describes the distance from node i to node j (geodesic 
path) and s denotes all nodes j ∕= i in the network. The index is calculated 
for outgoing connections correspondingly. If there is no path between 
two nodes i and j, the measure is not defined and therefore, it cannot be 
used for isolated nodes. However, as we are using Mathwork’s Matlab 
version of the metric, if no nodes are reachable from node i, then 
closeness score will be zero for i. Also, a scaling factor is used. 

Betweenness centrality was originally introduced in the field of so
cial sciences (Freeman, 1978). The more commonly a node occurs on a 
randomly chosen shortest path between two arbitrary nodes j and h, the 
higher a score node i will obtain. Therefore, betweenness centrality 
quantifies how often each node acts as a connecting node along the 
shortest path between two other nodes in the digraph. Since there can be 
several shortest paths between two nodes, betweenness is usually 
normalized as 

BETi =
∑

j∕=i

∑

h∕=i

njh(i)
Njh

(5) 

Here, njh(i) is the total number of shortest paths between j and h that 
include i and Njh is the total number of shortest paths between j and h. 
Therefore, BET describes the probability that a randomly selected 
geodesic path includes node i. The built-in presumption here is that 
energy flows through geodesic paths (not necessarily the case). As food 
webs are directed networks, the shortest path from j to h might be 
different from the shortest path from h to j as the reverse path does not 
exist very likely. Eq. (5) still takes this into account (Newman, 2010). 

2.5. Assortativity 

A well-known measure for diversity is assortativity by degree, often 
referred to as assortativity (Foster et al., 2010). This measure describes 

the nodes’ tendency to link to other nodes with respect to a chosen 
measure (Newman, 2002, 2003). In general, the assortativity of the 
network is determined for the degree of the nodes, although other 
metrics could be applied as well. If the network shows assortative mix
ing, then the nodes with high degree (or nodes with low degree) have a 
tendency to connect to other nodes with high degree (or nodes with low 
degree). The networks of this type are called assortative. On the other 
hand, the network is disassortative if nodes with high degree are con
nected to nodes with low degree or vice versa. Ecological importance of 
assortative food webs is clear as they are resilient to network failure: a 
removal of a species does not fragment the food web too much. On the 
other hand, different toxins can spread efficiently in assortative food 
webs via different processes (bioconcentration, bioaccumulation and 
biomagnification, see e.g., Lavoie et al., 2013). 

The assortativity coefficient is defined as the Pearson correlation 
coefficient of degree between a pair of mutually linked nodes. By defi
nition, the assortativity coefficient can obtain values between [− 1,1]: if 
the network shows perfect assortative mixing, then a value of 1 is ob
tained. For the value of 0 the network is non-assortative, whereas the 
value of − 1 shows the network to be fully disassortative. For directed 
networks, we follow the presentation by Foster et al. (2010). In their 
work, four different combinations of in-degree and out-degree were 
presented: r(in, in), r(in,out), r(out, in) and r(out,out). They defined 
Pearson correlation coefficient as 

r(α, β) =
∑

s

[(
jα
i − jα

)(
kβ

i − kβ
) ]

Eσασβ (6)  

where E is the total number of links in the network, α and β describe the 
degree type (either in or out) and s denotes all links. The variables jiα and 
ki

β are the α-degree of the source node and the β-degree of the target 
node for link i, respectively. The terms jα and kβ are the averages across 
the nodes for both degree types, and σα and σβ are the standard de
viations for both degree types. As an example of the interpretation of the 
pairwise correlation: if a food web shows disassortative behavior in the r 
(out, in) measure, it means that species with many preys eat more 
frequently species that do not have many predators. 

2.6. Nestedness 

In ecological networks, species are typically densely linked to each 
other, and nested substructures can be formed. These structural patterns 
are known generally as nestedness and it has been found to emerge and 
be present both in bipartite and unipartite networks (Mariani et al., 
2019). In the review paper by Mariani et al. (2019), nestedness is 
described as “a hierarchical organization where the set of neighbors of a 
node is a subset (superset) of the neighbors of lower (larger) degree”. In 
other words, the nodes with fewer links tend to interact with subsets of 
the neighboring nodes of the nodes with higher degree. An ecological 
example could be a situation where the diet of the most specialized 
species is a subset of the diet of a less specialized species. Usually, 
nestedness is based on degree but as for many metrics, different prop
erties could be used. The fundamental interpretation of nestedness 
behavior patterns varies widely in the literature, however (Cantor et al., 
2017; Montoya et al., 2006). 

Different methods to calculate the metric and to quantify the pattern 
of nestedness has been categorized by Ulrich et al. (2009) and Mariani 
et al. (2019). These categories include gap-counting metrics, overlap 
metrics, distance metrics and eigenvalue-based metrics which all have 
been initially built on bipartite networks. However, new versions for 
unipartite and directed networks have been developed already and, for 
example, Almeida-Neto et al. (2008) proposed a new metric for quan
tifying nestedness. This approach was developed further by Lee et al. 
(2012) and Cantor et al. (2017), leading for a presentation for directed 
unipartite networks, as the nested overlap and decreasing fill – approach 
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(NODF) basically depends on studying the pairwise comparisons of the 
indices of the adjacency matrix (incidence matrix for bipartite net
works). In terms of the elements of the adjacency matrix, 

NES =
2

N(N − 1)
∑

i

∑

j,i<j

∑
l∕=i,j

(
1 − δki ,kj

)
ailajl

min
(
ki, kj

) (7)  

where δki, kj is the Kronecker delta (obtaining value of 1 if ki = kj and 0 in 
other case) and either rows or columns are investigated. Therefore, k is 
either outdegree (rows) or indegree (columns). NES will obtain values 
close to 1 only when the adjacency matrix is highly nested (neglecting 
self-interactions). If the network is completely non-nested, then NES will 
obtain value of 0. Due to directedness of the food webs, the metric will 
have two different values as nestedness among rows measures the diet 
overlap among the predators and nestedness among columns describes 
the level at which the prey are sharing predators. In general, the metric 
offers a different view on the network with respect to local, single-node 
analysis. One of the questions related to it in the food webs is to un
derstand how species share their energy resources and recently, UNODF 
– algorithm was developed to tackle this question quantitatively. Nest
edness has been studied especially in mutualistic networks but as Cantor 
et al. (2017) have shown, it can be found in multiple biological scales 
although the processes generating it in each system might be different. 
This acts as a motivation to study nestedness in this work. Aggregation is 
also of importance here: the strong modules are aggregated, producing 
high nestedness. These modules can be presented effectively as a single 
node in the food web (Jordán et al., 2018). The carrying idea is that 
positional similarity of the species provides information about their 
functional overlap: the species with similar traits (for example, by size 
values) can form an aggregate that can be presented as one single 
functional group (node). 

2.7. Eigenvector-based metrics 

Several metrics used in this work are based on the properties of ei
genvectors of matrices constructed from the adjacency matrix of the 
network. As for many measures, they have been first introduced in the 
analysis of social networks and used elsewhere than in the field of 
biology (Bonacich, 1987). The technique is based on the idea that the 
more important neighboring nodes a node has, the more important the 
node itself is. The Eigenvector centrality (ECE) is calculated for each 
node by solving 

ECEi =
1
λ

∑

S
ECEs (8) 

Above S means all nodes that have a directed link to node i and λ 
denotes the largest eigenvalue of the adjacency matrix A. Eq. (8) can be 
therefore written as 

Ax = λx (9)  

where x is the Eigenvector centrality of all the nodes. 
Both LeaderRank (Lü et al., 2011) and Pagerank (Brin and Page, 

1998) centralities are variants of the eigenvector centrality measure that 
aim at overcoming the problems reported for it (Newman, 2010). They 
consider only incoming connections and the score for each node is 
proportional to the sum of the scores of its neighbors. In mathematical 
terms PageRank, which is used by Google to rank web pages, is defined 
as 

PGRi = α
∑

j
aij

PGRj

outDEGj
+ β (10)  

where j marks the nodes that point to node i and both α and β are positive 
constants of which α is called a damping factor and β is a constant extra 
term (a small amount of “centrality”) that is added to each node to avoid 
problems associated with Eigenvector centrality: the problem arises if a 

node that does not have incoming links (top predator in our simulated 
food webs) points to a node that have only this incoming link: such a 
node will have a score of zero as it is pointed by a node with a score of 
zero. This can continue as long there are more nodes with only incoming 
link originated from a node with score of zero. In addition, to avoid 
division by zero, an outdegree score of 1 is given for the nodes that 
initially have outdegree of score zero. 

Kleinberg (1999) contributed to the discussion by presenting another 
centrality algorithm called “hubs and authorities”, also known as HITS, 
which was developed originally for finding authorities in a hyperlinked 
environment on the WWW. It also applies eigenvectors but instead of 
using inward links only (as PageRank and LeaderRank), it uses node’s 
outward connections: a node has a high “hubs” centrality if it points to 
other nodes with high “authority” centrality. This opens a possibility for 
quantifying “hubs” and “authorities”: a hub is a node that (most prob
ably) points to a node that contains more information than the hub itself 
i.e. hubs are the nodes that point to the authorities (they may also refer 
to the same node). For this reason, HITS is used only for directed net
works as there is no distinction in the direction of the interaction in 
undirected networks. In ecological terms, the nodes that are eaten by 
many species (are pointed to by many) are authorities and the species 
that prey on “authority” species are hubs. 

The straightforward application of eigenvector-based measures to 
food webs is not possible as the food webs are reducible: a path (a finite 
sequence of directed links that form a route between two distinct nodes) 
between every possible node does not exist. Therefore, additional 
changes to the adjacency matrix must be performed. We follow here the 
approach by Allesina and Pascual (2009) and connect the primary 
producers of the food webs to every other species at the upper trophic 
levels (consumers and predators). Their motivation was that “species 
that are central mediate the interaction among those that are more pe
ripheral and therefore should be considered the most important spe
cies”. This acts as the motivation in this work, as well. Furthermore, the 
Leaderrank algorithm has a similar built-in property than in Allesina and 
Pascual’s modification: a ground node with a bidirectional link between 
it and every other node is added and the network becomes strongly 
connected. In general, eigenvector-based measures can be used to 
identify keystone species i.e. species that have either a large number of 
predators (important energy source for many species) or that are eaten 
by a species with a large number of links in the food web. The difference 
between degree centrality is that the score of prey species is proportional 
to the sum of the scores of its predators, not just the number of the 
predators. 

2.8. Leverage 

The last measure presented here is known as leverage centrality 
(LEV). It is similar to the concept of eigenvector centrality as it ranks 
higher the nodes that have neighbor nodes with higher degree. The more 
important the node is for its neighboring nodes, the higher leverage 
centrality it has, i.e., the node is in central position if its immediate 
neighbors rely on the node in some respect. Contrary to eigenvector 
centralities, leverage can bring information that cannot be reached by 
using e.g., degree or betweenness. It also captures the local assortative or 
disassortative behavior of the network as it is quantified by the degree of 
the node with respect to its immediate neighbors. By definition, a node 
with a high degree has a low leverage centrality if all its closest nodes 
also have a high degree and therefore leverage centrality might be used 
for identifying group of nodes that have a high degree centrality (acting 
as generalists in the food webs) with respect to the other local nodes. For 
a node i with total degree DEGi it is defined as 

LEV(i) =
1

DEGi

∑

j∈Si

DEGi − DEGj

DEGi + DEGj
(11)  

where each node j belongs to the neighborhood Si of the node i. By 
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definition, a node with negative value of LEV is influenced by its 
neighborhood nodes, as they have larger number of connections. In 
addition, a node with positive leverage affects the neighborhood nodes 
because they tend to have fewer links. In general, leverage could be 
applied to locate modules i.e., communities inside food webs. These 
substructures are also known as motifs (Milo et al., 2002; McCann, 
2012) and they have been studied to understand the dynamics of higher- 
order sets of interactions instead of pairwise interactions (consumer- 
resource). 

2.9. The computational tools 

The metrics and the software/toolboxes/libraries used in this work 
are listed in Table 1. The abbreviations are used throughout the work. 
For each metric presented above and for each food web size and type, we 
plot the kernel density estimates (KDE) that are calculated by using 
Mathwork’s Matlab function ‘ksdensity’ (statistics and machine learning 
toolbox). For each KDE, the bandwidth of the KDE was set by trial-and- 
error to obtain the plotted curve. From the “pool” of simulated food 
webs, we chose randomly 1000 webs for each size and type for further 
investigation. 

2.10. The random web generation, filtering and the statistical analysis 

This work applies the food web generating Niche model (Williams 
and Martinez, 2000) expanded to include fish life-history structures in 
the context of aquatic food webs (Bland et al., 2019). The original niche 
model itself is based on the cascade model by Cohen et al. (1985): in the 
cascade model, each species is assigned a random value between the 
interval [0,1] and it has a specific probability of consuming species that 
have lesser value. Similarly, in niche model a random niche value is 
drawn for each species but the prey species of each consumer are con
strained to have a lower value (or a range of values which has a center 
value less than the consumer’s niche value) than the consumer itself. On 
the other hand, the niche range of each consumer can also exceed niche 
value of themselves, enabling niche overlapping. The species with the 
smallest niche value has a range of 0 so there is also at least one basal 
species. 

In the study by Bland et al. (2019), the original niche model (Wil
liams and Martinez, 2000) was extended by incorporating life-history 
structure for fishes. The type of the species was determined by using 
the trophic level that was estimated by using the average of the shortest 
paths to basals and the prey-averaged trophic position. The three species 
with the highest trophic levels were fish species (for simplicity) but the 
generation of the life-history stages added fish species to lower trophic 
levels as well. If an age-structure was created, the adjacency matrix was 

updated and Leslie matrix created to describe the biomass transfer be
tween age classes. The weights for the three youngest life-history stages 
were generated using von Bertalanffy isometric growth curve and the 
metabolic rates of different species were estimated using the body 
weight as a proxy. The differential equation describing the biomass- 
transfer from the lowest trophic levels to the top of the food web are 
described in Online Resource 6 (Eqs. A1‑A4). 

The generation, modeling and the statistical analysis of the stable 
food webs is presented schematically in Fig. 1. The generation is 
described in Bland et al. (2019) and the dynamical modeling is per
formed by using ATN model (Brose et al., 2006). During Niche-web 
generation, a food web is discarded if certain conditions are not met. 
These conditions include: a) no isolated species or disconnected groups, 
b) connectance value high enough, c) all species are connected to basal 
species and d) no cyclic eating patterns (e.g., A eats B that eats A). For 
the food webs that fulfill the requirements, other parameters (metabolic 
rates, trophic levels, etc.) are determined before age-structure 
determination. 

In ATN model, the simulation time span is set to 100 years and the 
interactions between different species were simulated for 90 days each 
year. In this work, random food webs have two different sizes (30 and 35 
species) and for each size, three different types of webs are generated. 
Type A food web includes three functional groups (nodes) for fishes, i.e. 
no age classes within species. Therefore, there are 27 and 32 producers 
and consumers in total for sizes 30 and 35, correspondingly. Age- 
structure approach is applied for food web types B and C, and the dif
ference between types B and C is in the adjacency matrix presentation: 
for type B, the biomass transfer between age groups is included in the 
adjacency matrix and extra directed links are genererated between 
consequent age classes whereas for type C, extra directed links are 
genererated also due to breeding of the fishes in addition to type B links. 
Age classes are 0, 1, 2 and 3+ years in the work. The mark “+” denotes 
the accumulation of the biomass in the final age class. For types B and C, 
as each fish species node is split into three additional nodes, the total 

Table 1 
The list of the metrics used in the work. The column “Classification” is used to 
classify the measure: distance refers to the paths between nodes (typically the 
shortest paths), connection refers to the links between the nodes and eigenvector 
refers to the eigenvalues of the adjacency matrix. The abbreviation for each 
measure as well as the used software/library/toolbox are marked. In the fourth 
column, BCT stands for “Brain connectivity toolbox”, developed by Rubinov and 
Sporns (2010) for Matlab environment. UNODF is a package developed by 
Cantor et al. (2017).  

Classification Measure Abbreviation Software or library 

Distance Betweenness BET Matlab 
Closeness inCLO, outCLO Matlab 

Connection Clustering coefficient CLU BCT (Matlab) 
Assortativity r BCT (Matlab) 
Nestedness NES UNODF (R) 
Leverage LEV iGraph (R) 
Degree inDEG, outDEG Matlab 

Eigenvector Hubs and authorities HUBS, AUTH Matlab 
Leaderrank LDR iGraph 
Pagerank PGR Matlab  

Fig. 1. A schematic presentation of the web generation and the modeling work. 
The work consists of three separate phases of which the first phase consists of 
random foodweb generation following Niche-model and age-structure deter
mination. The second phase includes the dynamical modeling by using ATN 
model and the last phase filtering of the networks and their network theory – 
based analysis. 
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number of consumers and producers equals 18 and 23 for food web sizes 
30 and 35, correspondingly. 

A generated food web is chosen for network analysis if the biomass 
density of each species has reached its dynamic equilibrium state. This is 
checked by using the coefficient of variation (CV) which was used in two 
ways to filter the (suitable) stable food webs from all the generated ones. 
Firstly, the CV was calculated for each species with respect to their 
simulated biomass densities for the last 20 years of the simulation. 
Secondly, the slopes of each biomass density time series were calculated 
for the last 20 years of the simulation by using a linear fit and the CV of 
the slopes was calculated. If the mean values for the both CVs were 0.1 or 
less, the generated random food web was saved for further study. The 
CVs were used to study the fluctuation (the biomasses should not fluc
tuate or the fluctuation should be constrained with respect to time at the 
end of the simulation) or the trends of the biomasses during the simu
lations. If the food web met these two conditions, it was accepted for 
further analysis. This trial-and-error procedure was continued for each 
size and type until the desired number of stable food webs for each type 
was achieved (1000 in this study). These food webs for each class are 
picked for a more detailed analysis (Fig. 1). In general, successful food 
webs consisted of ca. 2–20% of the total number of randomly generated 
webs after the filtering process. 

The centrality measures for each food web are calculated separately, 
as well as the average of the measures. Table 1 lists the network mea
sures used in the present study and their abbreviations as well as the 
computational tools used to quantify the metrics. Finally, the Pearson 
correlation coefficient between different variables is calculated if 
possible. 

2.11. Pearson correlation coefficient matrix 

The correlation coefficients between the chosen pairs of measures are 
calculated for all network types and both sizes, and the results are pre
sented in Fig. 6 (see next section). The upper part of the Fig. 6 provides 
correlation coefficients for pairs of variables that were calculated for the 
whole network: assortativity (four measures) and nestedness. The bot
tom part of the Fig. 6 includes the correlations for measures that were 
calculated nodewise (inDEG, outDEG, inCLO, outCLO, BET, LEV, CLU) 
and the correlation coefficients were calculated for the whole simulated 
data. The eigenvector-based metrics were not presented here to main
tain the readability of Fig. 6 but their correlations and the correlations 
between the measures shown at the bottom part of Fig. 6 were never
theless studied. 

3. Results 

Since nodes in directed networks have both incoming and outgoing 
links, the analysis for assortativity produces four different combinations. 
These combinations are plotted for each food web type A-C and both 
sizes in Fig. 2. In each subplot, KDEs are presented for the corresponding 
data set. Additional statistical data is presented in Online Resource 1, 
including mean values for the data set. 

As observed in Online Resource 1, all combinations have a mean 
value in negative range, thus showing disassortative behavior patterns. 
However, r(in, in) has the largest means (closest to zero) and ca. 20–30% 
of the simulated food webs show assortative behavior. Only one other 
case showed similar behavior (r(in, out)/30 species food web/TYPE C). 
For r(in, out) and r(out, in) metrics, the modes of type A curve differ the 
most when compared to the modes of the other types (Fig. 2) which is 
the case for mean values as well. Over 70% of data show disassortative 
behavior, in general. 

By using data offered by Online Resource 1, one could estimate the 
frequentist probability that a randomly picked stable food web produced 
by the Niche model shows disassortative behavior with respect to all 
measures: for example, for food web type A / 30 species it is ca. 67%. 
This estimate varies between 56 and 67% across all types and sizes. If 

presuming that disassortativity describes the food web properties 
correctly, the results of Fig. 2 can be interpreted as follows (from the 
leftmost pair to the rightmost pair): a) species with many predators 
prefer not to eat generalists (or they feed more likely on specialists), b) 
generalists prefer not to eat species with many predators, c) species that 
have many predators do not prefer to eat other species with similar 
number of predators and d) generalists do not prefer to eat other gen
eralists. As mentioned by Foster et al. (2010), the general “spindle” 
shape of food webs might explain some of the patterns: there are fewer 
species at the higher and lower trophic levels of the food webs and on the 
other hand, the ones at the same or similar trophic level tend to have 
similar out- and indegrees. 

The KDE plots for indegree (inDEG), outdegree (outDEG), inclose
ness (inCLO) and outcloseness (outCLO) are presented in Fig. 3 and 
additional statistical data is presented in Online Resource 2. Approxi
mately 20% of the species are eaten only by one predator, whereas ca. 
30% of the species prey only on one species. The portion of species that 
have 10 or more predators is negligible, whereas the portion of species 
that has a diet of 10 or more other species is between 5 and 16%, type A 
food webs having the largest values. Type A food webs have a higher 
mean for both indegree and outdegree and both sizes: the distributions 
peak at lower values than distributions of B and C, but a type A food 
webs have more nodes with higher number of incoming or outgoing 
links. This can be explained at least partially by the connectance (the 

Fig. 2. The assortativity of the simulated data set. A kernel density estimates 
(KDE) is presented for each network size and type. For further details, see 
methods section 2.10. 

Fig. 3. The in- and outdegree as well as in- and outcloseness of the simulated 
data set. A kernel density estimates (KDE) is presented for each network size 
and type. For further details, see methods section 2.10. 
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number of realized links with respect to all possible links in the food 
web) that has a lower value after age-structure addition: for type A is has 
a value of ca. 15% whereas for types B and C, it is ca. 12%. This means 
that newly added fish species has fewer links compared to the removes 
species. 

The simulated data for clonesess shows almost identical mean values 
between different stable food webs. KDEs for outCLO shows also slight 
bimodality, the distributions peaking at 0 (or close to it) as there are 
many nodes with zero or few outgoing links on the edge of the food 
webs. The modes of type C for inCLO show also shifting to right. Ac
cording to Table 1 in Online Resource 2, for a major portion of nodes, 
incloseness is between 0 and 0.015 and outcloseness between 0 and 
0.020. 

The means for clustering coefficient (CLU), leverage (LEV), 
betweenness (BET) and nestedness (NEST) are presented in Online 
Resource 3 Table 1 and KDEs in Fig. 4. CLU means change between types 
A-C 10–20%, whereas means of LEV show similar results across all stable 
food webs. The mean of BET shows an increase of ca. 157–158% from 
type A to type C (opposite to the mean values of NEST that decrease ca. 
25% from type A to type C). The mean values for CLU are close to the 
empirical values reported by Dunne et al. (2002). 

The location of the modes for NEST (rows) KDEs show also similar 
behavior (30/35 species): type A (0.24/0.24) differs clearly with types B 
(0.15/0.18) and C (0.18/0.18). Similarly, the modes for NEST (columns) 
differ between type A (0.30/0.30) and types B (0.20/0.21) and C (0.22/ 
0.20). The CLU for 90–94% of nodes has a score between 0 and 0.4, 
whereas LEV has both negative (two thirds) and positive (one third) 
values across all food webs. In fact, the mean of LEV has a value of ca. 
-0.12, indicating that, on the average nearly half of the nodes (ca. 48%) 
are connected to nodes with higher (total) degree. A large portion of 
nodes has a BET score between 0 and 0.1 and the increase in BET values 
with type B and C food webs indicate that the total number of different 
shortest paths between two (arbitrary) distinct nodes in types B and C is 
lower than with type A: node i appear more frequently on that path. The 
eigenvector-based measures reveal very similar shapes for all KDEs for 
each data set (Fig. 5) (additional statistical data is presented in Table 1 in 
Online Resource 4). Bimodality can be observed with HUBS and AUTH 
data but in general, there is no clear difference between data set of 
different sizes for HUBS whereas the number of nodes obtaining AUTH 
score of 0.04 (or larger) drops noticeable for larger size as expected. The 
percentage of nodes obtaining a score smaller than the mean for types A, 
B and C (30/35 species) showed similar results for PGR between sizes 

but decreased with type: 65/67, 63/63 and 59/60, and 62/63, 60/60, 
56/57 for LDR. The corresponding values for HUBS also showed a slight 
increase with type: 64/64, 71/71 and 70/71 whereas for AUTH, an 
opposite trend was observed: 34/36, 27/30, 28/29. 

The portion of nodes obtaining a PGR score of 0.01 or larger shows a 
slight decreasing trend with size which can be seen more clearly with 
corresponding LDR results. However, there is no observable difference 
with different types for PGR and LDR. These results can be explained by 
the definition of the metrics: the sum over the network equals 1 and as 
network size increases, the average score per node decreases together 
with the probability of a node to obtain a high score. 

The calculated Pearson correlation coefficients between the chosen 
pair of measures for types A, B and C are presented in Fig. 6. The 
matrices located at the upper part of Fig. 6 contain correlations between 
measures that are calculated network-wise whereas the lower part of 
table includes correlations for measures calculated node-wise. The 

Fig. 4. The clustering coefficient, leverage, betweenness and nestedness of the 
simulated data set. A kernel density estimates (KDE) is presented for each 
network size and type. For further details, see methods section 2.10. 

Fig. 5. The hubs, authorities, PageRank and LeaderRank of the simulated data 
set. A kernel density estimates (KDE) is presented for each network size and 
type. For further details, see methods section 2.10. 

Fig. 6. The Pearson correlation coefficient matrices presented for network 
types A, B and C (both network sizes. The color scale of the elements is between 
white (− 1) and black (+1). The numerical values of the correlations are also 
marked inside each cell. In each plot, lower triangular matrix describes a 
network with 35 species and the upper triangular matrix a network with 30 
species, correspondingly. The diagonal elements are left blank as they have no 
interpretation (for example, the correlation between inDEG metrics of two 
different network sizes). 
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correlations for node-wise measures are obtained by using the whole 
data set (1000 × 30 or 1000 × 35 data points for each metric). In each 
matrix plot, the cells located at the lower triangular matrix are the 
correlations calculated for the food web of size 35 species, whereas the 
cells located at the upper triangular matrix are the corresponding values 
for the network of size 30 species. 

A weak positive correlation was found only between r(out, out) – r 
(in, in) which was not found after age-structure activation in food web 
types B and C (Fig. 6 upper row). A weak negative correlation was found 
between several measures (light color) for all types (not necessarily for 
the same pairs), but on the average, the correlations decrease from type 
A to C. 

The node-wise correlations coefficients show noticeable higher ab
solute values (Fig. 6 lower row) that stay as moderate or strong positive 
correlations across all types. A strong positive correlation was found for 
several pairs of measures: inDEG–inCLO, outDEG-outCLO and outDEG- 
LEV. A moderate positive (or near) correlation was found for pairs: 
outCLO-LEV and BET-LEV. A moderate or a weak negative correlation 
for all types and sizes was found for pairs: outDEG-inCLO and inCLO- 
outCLO. In general, several pairs of measures showed very similar 
behavior patterns irrespective of the food web type or size. 

The correlations between Eigenvector-based metrics and nodewise 
metrics (inDEG, outDEG, inCLO, outCLO, BET, LEV, CLU) were not 
presented in Fig. 6 but there were no clear differences across all types 
and sizes. PGR was in a moderate or strong positive correlation between 
inDEG and inCLO, otherwise the correlation remained weak or had a 
(weak) negative correlation for outDEG and outCLO. LDR showed 
identical correlation compared to PGR. Otherwise, no correlation with 
the other metrics was observed. In addition to HUBS, AUTH showed 
weak or moderate correlation between several metrics (outDEG, out
CLO, BET, LEV). 

The correlation between different Eigenvector-based measured 
showed a strong negative correlation between HUBS and AUTH across 
all sizes and types, as expected. A weak positive (negative) correlation 
was observed between HUBS (AUTH) and PGR and LDR. The correlation 
was studied in detail by plotting the data points (Fig. 1–3 in Online 
Resource 5) which reveals non-linear dependency between HUBS and 
the other metrics, AUTH and the other metrics, PGR-HUBS and PGR- 
AUTH, LDR-HUBS, LDR-AUTH, and a strong linear correlation be
tween LDR and PGR. The behavior did not depend on food web type or 
size. Except for LDR-PGR pair, a linear correlation could therefore most 
probably fail to capture the essential relationship between these metrics 
if the whole data is applied: for example, a correlation between PGR and 
HUBS would show negative dependency with HUBS < ca. 0.06 but 
positive dependency after the limit (Fig. 1‑3 in Online Resource 5) 
although there is a weak positive correlation when studied across the 
whole data. The limit values are equal to local minima for KDEs of HUBS 
and AUTH, indicating that HITS divides the nodes of the food webs in 
two separate groups. In general, HUBS showed a strong negative cor
relation with AUTH and vice versa if the correlation was studied across 
whole data which is expected as the metrics are exclusive properties. 

4. Discussion 

Results suggests that few pairs of measures have a strong positive 
correlation between them (and only for a specific node-wise metrics). 
Most of the correlation coefficients do not change with the food web size 
or type, i.e. age-structure does not affect the results. The Pagerank (as 
well as Leaderrank) metrics showed a moderate or strong positive cor
relation between indegree and incloseness. The correlation between 
eigenvector-based metrics revealed non-linear dependencies that were 
not analyzed by using linear correlation, the LeaderRank and PageRank 
being the exceptions (a strong positive correlation). In addition, none of 
the pairs showed strong negative correlations except the correlation 
between HUBS and AUTH which is due to their exclusive definitions. In 
general, weak correlations between different pairs indicate that the 

chosen metrics capture different aspects of the stable food webs. The 
number of sampled food webs is 1000 and consequently, the observed 
correlations might be at least partly due to natural statistical variation. 
However, the results were checked for a group of 300 random food webs 
and the differences were marginal. In addition, Cantor et al. (2017) did 
not find correlation between different centrality metrics and nestedness, 
whereas in the study by Capocefalo et al. (2018) both distance-related 
metrics and average degree showed significant correlations between 
nestedness in empirical networks. 

According to the previous studies (Foster et al., 2010 and references 
therein), food webs show disassortative patterns for r(out, in) and r(in, 
out) measures, similarly to our simulations. They also noted that the 
behavior patterns changed to assortative for other pairs (r(out, out) and 
r(in, in)) in empirical food webs which holds true only partly in this 
study: ca 20–30% of the stable food webs showed assortativity for r(in, 
in). According to Newman (2003), the correlation was found to be 
negative (disassortative) for many biological network types (neural 
networks, marine food webs and freshwater food webs) and according to 
the author, in a case of different node types a random mixing will pair 
unlike nodes and the correlation should be closer to perfectly dis
assortative network (r = − 1). The random networks in the present work 
were generated by using Niche model which could explain the differ
ences at least partly. 

In nature, disassortative properties of the food webs can be beneficial 
against network failures and there is a connection between nestedness, 
assortativity and clustering coefficient: exceedingly disassortative 
empirical networks tend to show nested behavior and vice versa 
(Jonhson et al., 2013). They also concluded that nested food webs in
crease the number of coexisting species and make the network more 
resistant to fragmentation i.e. random extinctions. The research by 
Cantor et al. (2017) showed that the estimates for nestedness produced 
by UNODF algorithm for a set of diverse empirical biological networks 
has a positive linear relationship with connectance (proportion of real
ized links in relation to possible links) of the network and nestedness 
does not increase with the network size. Our food webs have con
nectance of ca. 0.15 and nestedness of between 0.15 and 0.3: when 
comparing these values to the values in the work by Cantor, it can be 
seen that the results here parallel well with the empirical data presented 
and the values obtained from the linear regression fit in their work. 

Another tested metrics (HITS) gives two separate ratings for a node 
(hub and authority scores). The plotted data in Online Resource 5 
showed also that a single node could not have a high score for both 
measures simultaneously (even though some nodes could reach relative 
high scores for both metrics, acting as a generalist and a species eaten by 
many) We did not we investigate the multinode centrality i.e. the effect 
of sets of nodes to the topology (Capocefalo et al., 2018) nor the concept 
of keystone species. Quantitative approach for the set-subset relation
ships would offer another and very interesting view on the simulations 
performed here as well. 

In conclusion, the extended model by Bland et al. (2019) produces 
food webs that are not largely affected by the inclusion of life-history of 
the fishes with respect to the chosen network theory measures studied in 
the present work. This gives at least partly an indication that the mea
sures describe the properties of the stable food webs. On the average, our 
network-wise topological properties indicated that the stable random 
food webs generated are both dissassortative and nested. In addition, 
nestedness decreased as new life-history stages were introduced. The 
topological (distance- and connection-based) node-wise properties 
showed two-fold results: a few metrics showed changes in results as new 
life-history stages were introduced (in-and outdegree, in- and out- 
betweenness), whereas no noticeable differences were observed for 
clustering coefficient, leverage and closeness which was also the case for 
the eigenvector-based measures. Interestingly, degree-measures did not 
correlate with betweenness although they showed changes after life- 
stage addition. A network-wise correlation study showed only weak 
negative or positive correlation which indicates that the chosen 
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measures capture different properties of the stable food webs. Instead, 
the distance- and connection-based measures that correlate strongly 
probably monitor similar changes in topology. This information could be 
used to find measures that capture versatile properties for the similar 
studies in the future. The sizes of the food webs can also play a role in the 
effect of topology to the dynamics and larger size could improve the 
resolution of the results. Furthermore, a recent study has shown a very 
interesting connection between the mobility and the species importance 
at different network scale (Olmo Gilabert et al., 2019). A variety of 
network metrics was modelled as a function of different traits and it was 
found that the size and mobility are the best predictors for species 
importance at local, meso- and global scale. 

We did not consider weighted links as we lack precise empirical data 
on the weights, especially concerning life-history pathways, but it is 
recognized that the results can differ if weighted links are applied. 
Similarly, added life-history structures could be used for other species 
and traits as well but their inclusion for fishes is particularly important 
as fish body sizes and diets change radically with aging, changing their 
ecological positioning. Ontogenic diet shifts as well as several evolu
tionary applications, such as fishing-induced evolution, typically war
rant for the inclusion of fish life-histories into the food web. Finally, the 
results of the present work do not rule out the possibility that the dy
namics of the generated food webs might still differ (Bland et al., 2019), 
for example, with respect to their oscillatory properties before and after 
the life-history inclusion. This, however, is beyond the scope of the 
present work. 
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