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ABSTRACT

Solving multiobjective optimization problems means finding the best balance among multiple conflicting
objectives. This needs preference information from a decision maker who is a domain expert. In interactive
methods, the decision maker takes part in an iterative process to learn about the interdependencies and can
adjust the preferences. We address the need to compare different interactive multiobjective optimization
methods, which is essential when selecting the most suited method for solving a particular problem. We
concentrate on a class of interactive methods where a decision maker expresses preference information as
reference points, i.e., desirable objective function values. Comparison of interactive methods with human
decision makers is not a straightforward process due to cost and reliability issues. The lack of suitable
behavioral models hampers creating artificial decision makers for automatic experiments. Few approaches
to automating testing have been proposed in the literature; however, none are widely used. As a result,
empirical performance studies are scarce for this class of methods despite its popularity among researchers
and practitioners. We have developed a new approach to replace a decision maker to automatically compare
interactive methods based on reference points or similar preference information. Keeping in mind the lack of
suitable human behavioral models, we concentrate on evaluating general performance characteristics. Such
an evaluation can partly address the absence of any tests and is appropriate for screening methods before
more rigorous testing. We have implemented our approach as a ready-to-use Python module and illustrated
it with computational examples.

INDEX TERMS Decision making, Interactive systems, Multiobjective optimization, Optimization, Opti-
mization methods, Testing

I. INTRODUCTION

Multiobjective optimization problems represent real-life sit-
uations where a decision maker (DM) needs to find the
most preferred solution in the presence of several conflicting
objective functions. Because of this conflict, a feasible solu-
tion optimizing all objective functions simultaneously does
not exist. Instead, one can identify so-called Pareto optimal
solutions, i.e., feasible solutions, where improving any of the
objectives is impossible without impairing at least one of the
others. We need additional information for comparing Pareto
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optimal solutions with each other and choosing the most
preferred one. This information, referred to as preference
information, can be obtained from the DM.

The class of interactive multiobjective optimization meth-
ods ( [Hwang and Masud, 1979], [Miettinen, 1999], [Miet-|
ftinen et al., 2008], [Steuer, 1986]]) has many applications in
business and industry (see, e.g., [Cui et al., 2017], [Greco|
let al., 2016], [Stewart et al., 2008]], [Vallerio et al., 2015]]).
Their main idea is to iterate between the DM and the method
until the most preferred solution has been found. The DM
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provides some preference information; the method utilizes
this information to generate one or few Pareto optimal so-
lutions and presents it/them to the DM. Iterations are re-
peated until a stopping criterion is met. This scheme has
two main advantages. First, generating only a small number
of solutions in each iteration limits the computational cost
compared to deriving a good representation of the whole
Pareto optimal set, which may be impossible in a reasonable
time (if the problem is computationally complex). Secondly,
the cognitive load set on the DM is low because only a limited
amount of information is considered at a time.

In interactive methods, the DM can gradually understand
the relation between their preference information and achiev-
able solutions. Observing the DMs’ behavior in real-life
situations has resulted in distinguishing two phases of in-
teractive solution processes (e.g., [Miettinen et al., 2008]]).
In the learning phase, the DM aims at understanding the
problem by exploring different parts of the Pareto optimal
set to identify a region of interest. In the decision phase, the
search concentrates on this region to find the final solution.

There are many interactive methods for multiobjective op-
timization (see, e.g., [Hwang and Masud, 1979], [Miettinen,
1999], [Miettinen et al., 2016], [Steuer, 1986]). Testing their
strengths and weaknesses and comparing the performance of
particular methods is essential for both theory development
and practical applications. By design, testing any interactive
method requires the involvement of a DM. Some papers
describe experiments with human DMs for evaluating dif-
ferent aspects of interactive methods or their components.
In those experiments, one or few test runs for each studied
method were performed with multiple (usually dozens of)
participants. Comprehensive reviews of such studies can be
found in [Afsar et al., 2021b], [Olson, 1992].

Experimental studies of interactive methods involving hu-
man DMs are rather fragmented due to several issues. The
first one is the high cost of involving human participants in
the experiment, limiting the amount of data obtained and
the variety of methods and research questions that can be
addressed. Secondly, it is even more costly and difficult to
hire participants who would be highly qualified experts in
the fields where the considered methods are applied. The
lack of such participants undermines the results’ applicabil-
ity to real-world cases since non-qualified participants may
behave differently during the solution process. In addition,
differences in motivation and responsibility of DMs between
experimental and real-life settings may affect the results in
unpredictable ways. Last but not least, the complexity of
human nature, and the variation of human behavior across
individuals, time spans, and test environments, make the uni-
formity of experimental settings hard to control. For example,
learning about the problem may significantly change a DM’s
behavior when using a second method, for which reason test
results with the same person when solving similar problems
may depend on the order of applying the methods.

A natural way of addressing some of these issues is to
simulate the DM’s responses to conduct experiments without
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humans. We refer to this as an artificial DM (ADM). This
ADM should provide preference information in a format that
is appropriate for the tested methods. Thus, different types
of methods may require constructing different ADMs. In this
regard, we can classify interactive methods into two types
( [Miettinen, 1999], [Steuer, 1986]): non-ad hoc methods,
where the DM can be easily replaced with a utility or value
function, and ad hoc methods, where such a replacement is
problematic. We can test non-ad hoc methods using utility
or value functions (see, e.g., references in [Aksoy et al.,
1996, [[Sun, 2005])), but a large class of ad hoc methods
has been left behind, among them the important class of
reference point-based methods (see, e.g., [Wierzbicki, 1980],
[Wierzbicki, 1999]]). Researchers and practitioners use such
methods widely (see, e.g., [Miettinen et al., 2016]], [Xin et al.,
2018])), and this imbalance is this paper’s motivation.

Reference point-based interactive methods utilize pref-
erence information provided as desirable aspiration levels
forming a reference point and possibly reservation levels
forming another reference point (or weights of objectives).
Expressing preference information in this way is in line with
the concept of “satisficing” ( [Simon, 1956]], [Wierzbicki,
1982]]), which is regarded as cognitively undemanding for the
DM. However, creating an ADM that expresses preference
information in terms of reference points is not a trivial task.
Furthermore, unlike utility functions or preference relations,
which have been studied from the behavioral perspective,
reference point-based preference models lack formal theories
connecting them with human psychology.

In some works, the interaction between the DM and the
method is simulated for testing purposes (see, e.g., [Chen
et al., 2017, [Lopez-Ibanez and Knowles, 2015], [Stew-
art, 1996]]). However, only in a small number of papers
simulation algorithms are proposed, which are suitable for
testing reference point-based methods. In [Stewart, 1999], a
reference point in each iteration is set relative to the Pareto
optimal objective vector obtained in the previous iteration.
The new reference point is obtained using the gradient of
a value function. In [Stewart, 2005], the reference point
is selected among modified objective vectors. The value
function is used for selecting one of them. In [Zujevs and
Eiduks, 2011], the reference point is obtained as a solution
to a computationally complex problem. In [Ojalehto et al.,
2016], reference points are generated by adjusting aspiration
levels in each iteration, considering priorities of objectives,
and involving randomness. [Barba-Gonzalez et al., 2018]
generate reference points based on particle swarm optimiza-
tion. In [Afsar et al., 2021a], an artificial DM was proposed
for simultaneous comparison of several interactive reference
point based evolutionary multiobjective optimization meth-
ods. Different mechanisms were proposed for the learning
and the decision phases to generate reference points. Further-
more in [Huber et al., 2015]], reference points are generated
to test a specific interactive method for solving a bi-objective
inventory routing problem.

So far, none of the mentioned approaches has been applied
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or further elaborated outside the scope of the article where
it was first presented. A possible reason may be the lack of
a formal model of the ADM per se. Without such a model,
it is hard to tell to what extent test results are related to the
actual performance of methods in real-life settings. Because
of the difficulties with testing reference point-based methods,
publications of new methods never include performance eval-
uations. All mentioned works on method comparisons were
conducted post-factum, in some cases years after the methods
had been first proposed.

In this paper, we develop a new ADM to test and compare
reference point-based interactive methods without human
involvement. We derive the ADM’s behavior from some
rational assumptions about utilizing information provided by
the method. The ADM cannot fully replace human DMs due
to the lack of comprehensive behavioral models and diffi-
culties in formalizing the desirable properties of interactive
methods [[Afsar et al., 2021b]. However, it allows evaluating
some performance characteristics which are relevant in the
decision-making context. Similar to using Pareto dominance
relation for removing inadequate solutions, our tool can be
used as a preliminary filter before the final comparison of
interactive methods involving humans.

As mentioned, e.g., in [Afsar et al., 2021b]], better means
for comparing and assessing interactive methods are needed.
We address this challenge and summarize our main novel
contributions as follows:

e We introduce a new ADM for comparing interactive
reference point-based methods. Except for the type of
preference information, it does not set any other limita-
tions to the nature of the methods compared. Thus, our
ADM enables comparing ad hoc methods and, in this
respect, fills a gap in the literature.

« We build the ADM on rational assumptions utilizing in-
formation that methods compared provide. This enables
evaluating how well methods support the exploration of
the objective space.

« We offer an open Python implementation of the ADM,
which makes it easily accessible. With it, a) people
publishing new interactive methods can compare the
new to old ones, and b) people looking for a suitable
method for a problem at hand can filter viable candidate
methods.

This paper is organized as follows. In the next section, we
summarize basic concepts used, including a general scheme
of interactive methods. In Section we present our ADM
together with concrete guidelines for connecting it with a
method and conducting tests. We present some exemplary
results of computational tests in Section [[V]and conclude in
Section [V] with a discussion.
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Il. MULTIOBJECTIVE PROBLEM AND REFERENCE
POINT-BASED METHODS

We consider multiobjective optimization problems formu-
lated as follows:

T
’fk();;) )

)

minimize

(f1(x),...

subjectto  x = (1,...,2Zy

with decision vectors x € S C R", where S is a nonempty
compact set of feasible solutions, k > 2 is the number
of objective functions, and f;: S — R, ¢« = 1,...,k
are the objective functions. For any x € S, the vector
f(x) = (fi(x),...,fr(x))T € RF consisting of objec-
tive (function) values is called an objective vector, RF is
referred to as the objective space, and R™ as the decision
space. The image of S in the objective space is defined by
£f(S)={f(x): xe S}.

Solving the problem means finding a feasible solution,
which is the most preferred for the DM — a person or a
stakeholder who knows the substance of the problem, can
provide preference information, and is responsible for the
final solution. The DM compares feasible solutions solely
based on their objective vectors, and from the DM’s point
of view, solving the problem is equivalent to finding the most
preferred objective vector in £(.9).

Since the DM prefers smaller objective values to larger
ones, the search of the most preferred solution is limited to
the set of Pareto optimal solutions

P={xeS: (f(x)+R")nf(S) =10},

where R¥ = {z € R¥: z#0, z; <Oforalli=1,...,k}.
The objective vector f(x) corresponding to a Pareto optimal
solution x is called a Pareto optimal objective vector, and the
set of all such objective vectors is referred to as the Pareto
front.

Let us also define an ideal objective vector and a nadir
objective vector, respectively, as z* = (z7,...,25)7
where 2 = mingep fi(x), i = 1,...,k, and 2" =
(zpad 20T where 2P = maxxep fi(x), @ =
1,...,k. Note that calculating the ideal objective vector is
reduced to separate minimization of each objective function
on .S. The nadir objective vector is more difficult to obtain,
so it is usually estimated (see, e.g., [Miettinen, 1999], [[Deb
et al., 2010] and references therein).

Most reference point-based interactive multiobjective opti-
mization method{] fit into the following core structure (e.g.,
GUESS method by [Buchanan, 1997], an interactive evolu-
tionary approach by [Deb et al., 2006]], the NIMBUS method
by [Miettinen and Mikeld, 2006], [Ojalehto et al., 2014]; see
also references in [Miettinen et al., 2008]], [Miettinen et al.,
2016]).

Step 0. Initialization of the method. Present some information

about the problem to the DM.

I'This core structure is also valid for many other interactive multiobjective
optimization methods.
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Step 1. Ask the DM to specify preference information as a

reference point.

Step 2. Generate one or several Pareto optimal solutions by

minimizing method-specific subproblems on S and

present the solution(s) to the DM.

Step 3. Ask the DM if one of the previously generated solu-
tions is satisfactory as a final solution to the problem.
If yes, stop; otherwise, go to Step 1.

Steps 1-3 represent one iteration. Step O is the initial-
ization step, and the requirement to present problem-related
information to the DM varies across methods. Some of them
approximate the ideal and the nadir objective vectors to give
the DM some idea of the ranges of objectives among Pareto
optimal solutions. Other methods derive an initial Pareto
optimal solution that the DM needs to express preferences in
the first iteration. Without loss of generality, we assume that
the information presented to the DM in Step O includes at
least approximations of the ideal and nadir objective vectors.

Reference point-based methods derive Pareto optimal so-
lution(s) in each iteration by solving scalarized problems.
A special class of such problems is based on achieve-
ment scalarizing functions (ASFs) ( [Wierzbicki, 1982,
[Wierzbicki, 1999]]). There are many variants of ASFs (see,
e.g., [Wierzbicki, 1980], [Wierzbicki, 1982]], [Wierzbicki,
1999]) and different ways of expressing preference infor-
mation in terms of ASF parameters (see, e.g., [Kaliszewski,
2015]], [Luque et al., 2007]). All ASFs proposed in the
literature can be divided into two types with respect to
their number of parameters: either one or two k-dimensional
vectors. Both types involve a reference point composed of
aspiration levels for k objectives: z*P = (21", ..., 2;°P).
The aspiration levels represent desirable objective function
values. ASFs of the second type incorporate another vec-
tor of k components: either positive weights of objectives

A1,..., A, or reservation levels forming a second reference
point z™* = (2]%,..., %), where z[* > 2P | =
1,..., k. Reservation levels represent objective function val-

ues the DM prefers to avoid.
We consider the following subproblem involving an ASF:
minimize  max \; (f;(x) — 2°7) + p(x)
i=1,....k (2)
subjectto x € S,

where p(x) is a linear augmentation term for ensuring Pareto
optimality of any derived solutimﬂ If vector z"* is pro-
vided, then according to ( [Kaliszewski, 2004], [Kaliszewski,
2015]]), weights can be calculated by

Ni=1/(Z% =2, i=1,... k. )

Another popular approach to specifying weights is by
using the formula
Ni=1/(z1 —5), i=1,...k, 4)

2A small augmentation term ensures that a solution to is properly
Pareto optimal ( [Wierzbicki, 1982]), a property stronger than Pareto op-
timality. For simplicity, we do not use it in this paper. It can be added to any
ASF without affecting the validity of the results.

4

where 2; = zF — p, ¢« = 1,...,k, are components of a so-
called utopian objective vector, and p is a negligibly small
positive number. Our approach to replace a DM can provide
preference information in any form suitable for either of ASF
types described above.

To summarize the interaction between the DM and any
reference point-based method focusing on the exchange of
information, from the method’s point of view, the DM is
involved at four different occasions:

o in Step 0, the method passes the initial information
about the problem, which includes the ideal and the
nadir objective vectors, to the DM;

« in Step 1, the method receives preference information
from the DM;

« in Step 2, the method passes to the DM the set of derived
Pareto optimal solutions;

« in Step 3, the method receives from the DM a signal to
stop the solution process.

It is natural to assume that the DM saves the information
about all previously derived Pareto optimal solutions in a
solution pool. This allows the DM to select the most preferred
solution from among those derived in the last iteration and
from among previously obtained solutions.E]

lll. THE DESIGN OF THE ADM

The ADM is characterized by a choice function, which se-
lects a set of most preferred objective vectors from any given
set of Pareto optimal objective vectors. It can be interpreted
as a steady, complete model of the ADM’s preferences. To
make this model operational, we represent it as a value
function at the expense of imposing some assumptions. Such
a representation is common among other approaches to auto-
mated testing of interactive methods ( [Aksoy et al., 1996],
[Sun, 2005]], [Stewart, 1999], [[Stewart, 2005]]).

It is realistic to assume that we cannot directly apply the
choice function of the ADM to locate the most preferred
objective vector (otherwise, there would be no need to use
an interactive method). However, the ADM can apply the
choice function for selecting the most preferred objective
vector among any finite, explicitly given set. Communication
with the interactive method is the only means of obtaining
information about the problem. The ADM constructs knowl-
edge about the Pareto optimal set to efficiently utilize this
information and uses it to guide the search.

We structure the ADM in three parts and describe them in
the following three subsections. The parts are the value func-
tion characterizing the ADM’s preferences (the steady part),
the representation of knowledge about the Pareto optimal
set (the current context), and the mechanism for generating
preference information based on these two (the preference
generator). This structure is borrowed from [Ojalehto et al.,
2016], which fact constitutes the only similarity with the
reference.

3Note that few methods include this option explicitly; among those are,
e.g., [Jaszkiewicz and Stowinski, 1999|, [Miettinen and Mikela, 2006].
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A. THE STEADY PART
The choice function characterizing an ADM is (see, e.g.,
[Sen, 1971]):

C: oR" _y oR" (5)

Since it is only applied to choosing from finite sets, we
redefine the function domain as the set of all finite subsets
of R without loss of generality:

C: R—R, (6)

where R = {Y C R*: |Y| < oo}, Y are sets of objective
vectors and |Y'| denotes the cardinality of Y.

Let us assume that the choice function satisfies the weak
axiom of revealed preferences (or any other equivalent ratio-
nality axiom in [Sen, 1971]):

(z,z € ANB&ze C(A) &z € C(B)) = ze C(B).

In other words, if two elements are both most preferred in
some set, then there are no circumstances where one element
is preferred over another. As a direct consequence, we have
the following statement ( [Sen, 1971]):

Statement 1. There exists a linear order (a complete,
transitive and antisymmetric binary relation) >~ on R*, which
represents ([6):

C(Y)={z€Y:zx7 foranyz €Y\ {z}},

where Y C RF, |V < 0.

Furthermore, let us assume that the ADM can be applied
to solve only a countable set of problems, which implies that
the binary relation is defined on a countable set of objective
vectors. This technical assumption is required for applying
another theoretical result of the rational choice theory (
[Birkhotf, 1948]]), stating that any complete and transitive
binary relation on a countable set has a value representation.
Thus, we have the following statement:

Statement 2. There exists a value functiofflv : R¥ — R
such that for any 3,5/ € R¥ we havey = v/ < ov(y) >
o(y).

Summing up, from reasonable assumptions we obtain
Statements 1 and 2, saying that the model of steady pref-
erences initially defined as the choice function C' can be
represented as a value functionv : R¥ — R:

C(Z) = argmax {v(z) : z € Z} forany Z C RF.

B. THE CURRENT CONTEXT

By the current context, we mean the knowledge about the
Pareto front, which the ADM constructs from information
accumulated during the solution process. As said before, the
ADM receives the following information from the interactive
method: the ideal and nadir objective vectors at the beginning
of the solution process and a set of Pareto optimal objective
vectors derived at each iteration. This information is included

4Note that the term utility function is often used in the rational choice
theory instead of value function.
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in the current context and used by the ADM for deriving in-
formation about the potential location of new Pareto optimal
objective vectors that have not been generated yet. We shall
now describe this in detail.

Given two objective vectors z and z’ such that z; < z; for

any ¢ = 1,..., k, we define a box as the Cartesian product of
closed intervals:
B [Za Z/] = H [Zi7 Z;]
i=1,...k

and call z and 2’ its minimal and maximal points, respec-
tively. Using this notation, we define the initial region as
follows:

B=p [z*, Znad] )

It is the box in the objective space containing the whole
Pareto front. The role of the initial region in constructing the
current context is to limit the area of potential location of new
Pareto optimal objective vectors.

Let j be an iteration number. After completing the itera-
tion, the solution pool Y7 is defined by

Vi = U Y, @)
I=1,....5
where Y! is the set of Pareto optimal objective vectors
derived in iteration /. In addition, we set Y0 = 0.

Now we introduce a set of objective vectors called the
potential region R7:

R =B\ |J (z+REUz-RY),
zcYi

where RE = {z € R¥: 2, <0, i=1,...,k}. Itis easy to
see that if a Pareto optimal objective vector derived in the
initial region during the iteration j + 1 is new (i.e. it does not
belong to Y'7), then it belongs to R’ : otherwise it would either
dominate or be dominated by one of the previously derived
Pareto optimal solutions. Therefore, information about the
potential region is relevant when searching for new Pareto
optimal solutions.

We represent the potential region in each iteration as a
collection of boxes in the objective space. Once the ideal
and nadir objective vectors have been obtained in Step O,
the ADM initializes the potential region as one box, namely
the initial region: R® = {B}. After having received the set
of Pareto optimal objective vectors Y7/ derived in Step 2 of
the j-th iteration, the ADM updates the potential region. It
subtracts the set of vectors which dominate or are dominated
by the elements of Y7 from the area comprised of all the
boxes.

Let us define a set of 2F orthants of the objective space:

Q={A(D): b=(by,...,b) € {-1,1}}},
AD)={(y1,...,ys)" €R": by; <0,i=1,...,k}.

Algorithm [1| can be used for updating the potential region,
where we denote any box included in the potential region by
B and the current iteration number by j.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3123432, IEEE Access

Podkopaev et al.: Automatic Comparison of Multiobjective Methods

Algorithm 1: Updating the potential region

Initialize R7 := R/~

For each Pareto optimal objective vector

yeYi\vyit

For each box 5 € R7:

Check the relation between 3 and the set
y+ R’i Uy — R’i.

If g C (y + R’i Uy — R’;), then /3 cannot
contain any new Pareto optimal objective
vectors. In this case,
| remove 3 from R/.

If3N(y+REUy —RE) =0, then 3 can
still contain new Pareto optimal objective
vectors. In this case,
| keep Bin R7.

Ifgn (y +RE Uy — R’g) is neither empty
nor coinciding with 3, then a part of /5 can
still contain new Pareto optimal objective
vectors, and the rest of 3 cannot. In this case,
modify R’ in order to get rid of vectors
belonging to S N (y + Rli Uy — R’i) as

follows:

Split /3 into a set of boxes, where each box
is the intersection of 3 with one of the 2*
orthants from €2 anchored at y.

Include in R’ all newly obtained boxes
except the following two: 3N (y + RY)
and BN (y —RE), where RE =
{ZERk: 2 <0, i:l,..:kz}

Remove the initial box 3 from R7.

It is important to note that if Y7 C Y7~ (no new Pareto
optimal objective vectors have been derived in iteration
j,7 > 1), the current context does not change according to
Algorithm [1} On the other hand, the information about the
absence of new solutions should be taken into account by the
ADM. To address that, we introduce a small modification to
the potential region. It is described at the end of Subsection
[IT-C] since its justification refers to an element of the prefer-
ence generator.

C. THE PREFERENCE GENERATOR

In each iteration j, the search for the most preferred solution
is naturally narrowed down to the potential region. We deter-
mine a box in RJ, where such a solution can most likely be
located, and to explore this box, we ask the method to derive
Pareto optimal solution(s) in it.

Without complete knowledge about the Pareto optimal set,
determining which box is most promising in the above sense
is not possible. We propose considering the objective vector
in the center of a box (called the midpoint) as a neutral guess
about its content and applying the ADM’s steady preference
model for selecting one among the midpoints of all boxes

6

in R7. Then the ADM instructs the method to derive Pareto
optimal solution(s) in the box by setting the reference point
at the midpoint of the selected box. We set the vector of
reservation levels at the maximal point of the box, reflecting
the fact that it represents the upper bounds on components of
Pareto optimal objective vectors, which can be possibly de-
rived in this box. We formalize this procedure of generating
preference information as follows.

« For all boxes in the potential region, the ADM deter-
mines their midpoints forming the set

&7 = {Mid(8): B:=B[z,2]€ R}, (®)

where
2142 29+ 2 zk—i-z,’C)

Mid(ﬁ):( 2 ) 2 PARE 2

o Using the choice function (3), the ADM selects the
subset of the most preferred midpoints:

2= C(d)). )

o The ADM chooses any box 8* whose midpoint belongs
to =, and generates preference information in terms
of aspiration and reservation levels: z*P = Mid(8*),
z'* = 7’ where z’ is the maximal point of 5*.
After generating the preference information, the ADM
expresses it depending on the requirements of the interactive
method:

o if the method requires one reference point, then the
ADM returns z2°P;

o if the method requires two reference points, then the
ADM returns z*P and z"°;

« if the method requires a reference point and weights,
then the ADM returns z*P and the vector of weights
(A1, Ag) calculated according to (3).

Since the derivation of Pareto optimal solutions is confined
to the most interesting box selected by the ADM, we can
address the case where Y7 C Y71 for some j,j > 1,
i.e., no new Pareto optimal objective vectors have been
derived in iteration j. We slightly amend Algorithm |1| for
updating the current context described in Subsection [[II-B]
based on the following reasoning. The lack of new Pareto
optimal objective vectors implies that the interior of the most
interesting box selected by the ADM contains no solutions.
Since this box has been explored, we should not repeat an
attempt to derive solutions in it. Therefore, after completing
each iteration, the box [* that was selected by the ADM is
removed from the potential region.

We illustrate the process of generating preference infor-
mation described above in Figure|[I]in the case of k = 2. Let
us assume that in some iteration, the solution pool consists
of three Pareto optimal objective vectors z!, z? and z3. We
show the boxes comprising the potential region in gray color.
The dashed curves depict isoquants of the value function
representing steady preferences. Small crossed circles in the
centers of the boxes mark their midpoints. It is easy to notice
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that the midpoint of the box between solutions z? and z> has
the highest value of the value function. After the ADM selects
this box and generates a reference point in it, the method
derives a new Pareto optimal objective vector z*. The ADM
adds this vector to the solution pool and updates the potential
region by removing from it the areas z* + R2 and z* — R2.
It divides the box under consideration into four boxes and
deletes two of them as described in Subsection

Af2

nad

FIGURE 1. The operation of the ADM in the case k = 2.

D. THE SCHEME OF IMPLEMENTING TESTS USING THE
ADM

Let us first describe the aspects of interactive methods which
can be evaluated using the ADM. The central question is how
well the method finds the most preferred solution, referred
to as the performance aspect. We can measure it by the
following two means, which are dual to each other.

o "Accuracy": given the maximum number of iterations,
how close to the most preferred solution can a solution
be found.

« "Convergence speed": given desirable accuracy in the
above sense, how many iterations are needed to reach
this accuracy.

To evaluate these means for a given problem and an
ADM’s steady preference model, we must first derive the
most preferred solution regarding the ADM’s steady prefer-
ences. We should introduce a measure of closeness of any
Pareto optimal solution and the most preferred solution. We
must perform a predefined number of iterations to calculate
the accuracy and the minimum proximity between the de-
rived solutions and the most preferred solution. To calculate
the convergence speed, we must perform iterations until the
proximity of one of the derived solutions falls below the
desirable accuracy. The number of iterations serves as the
result of calculations. It is practical to set the threshold as
the maximal number of iterations to limit the time needed
for conducting experiments in the latter case. If the desired
accuracy has not been achieved, the convergence speed can
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be described as “failed to converge in the allotted number of
iterations.”

Another critical aspect is how well the method explores the
objective space regarding the accuracy of overall information
about the Pareto front. We can quantify this so-called explo-
ration aspect as the hypervolume of the potential region. The
smaller is the hypervolume of R’, the less uncertainty the
ADM has about the shape of the Pareto front after the ¢-th
iteration.

We propose the following scenario of conducting exper-
iments. We formulate the main research question by the
two means describing the performance. After each run, we
accompany the performance analysis with the exploration
analysis and consider the hypervolume of the potential region
after each iteration. The stopping criterion is formulated
based on the experiment design. Depending on the perfor-
mance analysis, the stopping criterion can be, for instance, a
certain number of iterations or a certain closeness to the most
preferred solution.

Let us now present the scheme of implementing exper-
iments. In testing, the ADM is a black box replacing the
DM in the interaction introduced in Section [[Il During ex-
periments, the ADM and the method are called in turns,
exchanging information: the output from the ADM serves
as the input for the method and vice versa until a stopping
criterion is met.

Figure 2] summarizes how one can use an ADM consisting
of the three described parts to test an interactive reference
point-based method. Below, we specify the details of the
interaction.

o In Step 0, the method passes initial information about
the problem (z* and z"*!) to the ADM. As described
in Subsection [lII-B| current context is initialized: the
potential region R° as {3 [z*,2"*]} and the solution
pool Y as 0.

o In Step 1, the method asks for preference information
as parameters of the ASF. The preference generator
creates such information based on the steady part and
the current context as described in Section [[II-C| and
passes this information to the method.

o In Step 2, the method passes to the ADM the set of
Pareto optimal solutions Y/ derived in iteration j. The
ADM uses it to update the current context: it is included
in the solution pool and used for updating the potential
region as described in Section [[I1I-B

o In Step 3, the method asks for information related to
stopping the solution process.

IV. TEST EXPERIMENTS

We have implemented the ADM in Python 3 and published

the code under Mozilla Public License 2.0 on GitHub: https:

//github.com/industrial-optimization-group/desdeo-adm.
Our purpose is to demonstrate what meaningful informa-

tion and valuable insights we can gain about interactive meth-

ods. We define basic experimental settings and, during the
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FIGURE 2. The scheme of interaction between a generic ADM and an
interactive method.

runs, collect information on the performance and exploration
aspects introduced in Subsection

We solve one problem using two popular methods:
the reference point method (RPM) ( [Wierzbicki, 1980],
[Wierzbicki, 1982]) and the synchronous NIMBUS method
( [Miettinen and Mikela, 2006[, [Ojalehto et al., 2014]).
The latter uses the classification of objectives as preference
information indicating how a Pareto optimal solution (called
a current solution) should be improved. We can obtain this
information from a reference point if the latter does not
dominate or is not dominated by the current solution. We
show that the ADM can test a broader class of interactive
methods by considering a classification-based method.

Below, we briefly summarize the two methods and de-
scribe how one can convert a reference point into preference
information for NIMBUS. After that, we define the value
function representing the steady part of the ADM, formulate
an example problem and present the results of experiments.

A. REFERENCE POINT AND NIMBUS METHODS

Both methods fit into the core structure described in Section
In Step 1 of the RPM, the DM specifies a reference point
z?*P_In Step 2, the method derives k£ + 1 Pareto optimal so-
lutions as follows. First, the method solves (12]) with the given
reference point and fixed weights defined by (4), obtaining a
Pareto optimal objective vector z (the current solution). Then,
k more reference points are created by perturbing z*°P, where
the i-th perturbation, ¢ = 1,...,k, consists of adding the
value ||z®P — Z|| to the i-th component of z**P. For each of
these reference points, the method solves problem (2)). In this
way, the DM gets a better idea of the surroundings of the
current solution in the objective space. Thus, it is enough to
pass the first reference point to the RPM as the preference
information.

In Step O of the synchronous NIMBUS method, in addition
to the ideal and nadir objective vectors, a Pareto optimal
solution is generated as the first current solution. It is needed
for expressing preference information in the first step. Since

8

this Pareto optimal objective vector belongs to the solution
pool, in terms of the core structure of interactive methods
(Section , it should be treated as a result of an iteration
rather than a part of the initialization step. Thus, in our
experiments we assume that in the first iteration, the ADM
provided the reference point z*P := Mid(B) with the com-

nad *
ponents “——==, i = 1,...,k, to get a neutral compromise
solution ( [Miettinen and Mikeld, 2006]) by solving problem
2.

In Step 1 of NIMBUS, the DM expresses preference infor-
mation for the current solution z by classifying the objective
functions into up to five classes. This classification shows the
desirable way of changing the objective vector component-
wise to get a more preferred solution. The classes are subsets
of functions f;, ¢« = 1,...,k, whose values should be
decreased (2 € I<), should be decreased till a desirable level
v < % (i € IS), are satisfactory at the moment (i € I7),
are allowed to increase till an upper bound &; > %; (i € 12),
and are allowed to change freely (i € I°).

Some of the classes may be empty; however, the follow-
ing conditions should be satisfied for a classification to be
feasible: 1< U IS # () and 1= U I° # (). In Step 2, the
method derives up to four Pareto optimal solutions by solving
four different scalarized subproblems, reflecting the diversity
of interpretations of the preference information. We give a
simple way of converting reference points into classification
following ( [Miettinen and Mékeld, 2006[) in Appendix L.

B. THE STEADY PART OF THE CONSIDERED ADM

As a value function, we use the Cobb-Douglas function (see,
e.g., [Varian, 1992]], [Guerraggio and Molho, 2004]). It is
defined for non-negative objective values to be maximized:

i=1,...k

where @ = (a1,...,a;) and «;, © = 1,...,k, are non-
negative parameters. To use this function, we map the ob-
jective space of problem to the objective space of a
maximization problem with non-negative objective values:

72—z ,
gi(zi) == T +0.01,i=1,... k.
7 (2
In other words, we normalize each component of the ob-
jective vector to the interval from O (the worst value) to 1
(the best value), and add a small term to avoid the marginal
rates of substitution diminishing to zero. The value function
representing the steady ADM’s preferences is

v¥(2z) = w*(g(2)) (10)

where g(z) = (g1(21), ..., 9x(2k)).

C. EXAMPLE PROBLEM
We tested the two interactive methods on a three-objective

optimization problem. This number of objectives ensures
that both the RPM and NIMBUS solve the same number of
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subproblems in each iteration. We considered the following

modification of the problem formulated in [Eskelinen and

Miettinen, 2012]:
minimize  (f1(x), f2(x), fi(x))"

subjectto  x = (z1,x2)7 € [0,1]?, (11D

L1,
fi(z) <1,

where f1(x) = ¢(z1,22), fa(x)
P(z1 —1,22),

o(z1, 3?2) = (a1, 22) — e W@ and W (wy, w2) =
2?2 + x2. For this problem, we have z* = (—1,—1,—1)
and z"®d = (1,2,2). We have chosen this particular problem
because it has a non-convex Pareto front of a complex shape,
making the solution process more challenging.

Itis a nonlinear problem. The scalarized subproblems were
solved using the simplicial homology global optimization
(SHGO) algorithm ( [Endres et al., 2018]]) published in
Github https://github.com/Stefan- Endres/shgo and available
as a part of the SciPy library. It is well suited for problems of
this type and has an easy-to-use interface.

= (w1, 22 — 1), f3(x) =

D. EXPERIMENT DESIGN

We characterize an instance of the ADM by a vector & =
(a1, a9, a3) of parameters of the value function v defined
by (I0), which represents the steady part. We used each
instance for solving the example problem independently by
both considered methods. We performed 100 experiments
with randomly generated &. We ran the solution process with
each instance for up to 25 iterations, as this number exceeds
the typical duration of real-life solution processes reported in
the literature.

At the end of each iteration ¢, ¢ > 0, after the ADM
updated the current context taking the derived solutions into
account, we collected the following indicators characterizing
the solution process.

1) The iteration value defined as % - 100%, where v® is
the maximum value of the Value functlon v among the
solutions derived in iteration 4, and v* is the optimum
value of the value function for problem (II)). This
indicator reflects the quality of obtained solutions and
can be interpreted in terms of the proximity of the best
solution among the obtained ones to the most preferred
solution.

2) The volume of the potential region, which character-
izes the exploration aspect.

3) The total number of Pareto optimal solutions accu-
mulated in the solution pool. As explained later, we
consider this indicator for controlling the fairness of
method comparisons.

Figure [3] illustrates the results of running the solution
process for 25 iterations using both methods with the ADM
characterized by @ = (1,1,1). It includes the plots of the
iteration value (black lines, the left-hand axis) and volume
of the potential region (gray lines, the right-hand axis) along
with iterations. The indicators of the RPM and NIMBUS are
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depicted by solid and dashed lines, respectively. The small
rhombuses mark the maximum iteration values among 25
iterations for both methods.

Iteration values 16
100% 4 - iy
a 12
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FIGURE 3. lteration value and potential region volume during the solution
process with & = (1,1, 1)

For the RPM, 99.2% of the optimum was achieved in
the 21st iteration, and in the case of NIMBUS, 99.7% of
the optimum was achieved in the 18th iteration. The ADM
demonstrated the same pattern for both methods: the iteration
value gradually stabilized near the highest value while the po-
tential region volume decreased. This observation indicates
that an improvement in the quality of the derived solutions
goes hand in hand with the accumulation of knowledge about
the Pareto front.

E. RESULTS OF EXPERIMENTS

In each of the 100 experiments, we generated the coefficients
a1, a9, and ag as independent random variables uniformly
distributed in the interval [1, 2]. During the test of each of the
methods with the same ADM, we calculated the following
indicators.

1) The maximum among iteration values achieved during
the first ten iterations. This characterized accuracy,
where we interpreted the obtained value in terms of
the proximity to the most preferred solution. We chose
ten iterations as a specific number of iterations to be
completed, taking into account our experience with
real-life interactive solution processes.

2) The smallest iteration number where the iteration value
of 95% was reached, referred to as the iteration number
of 95% level. This indicator characterized the conver-
gence speed. Not getting a 95% level in 25 iterations
was considered a failure.

3) The volume of the potential region after ten iterations
characterizing the exploration power of the method.

4) The size of the solution pool after ten iterations used
for controlling the fairness of experiments.

Table [T] summarizes the results of 100 experiments. The
table contains the average value and the standard deviation
in parentheses for each of the mentioned indicators. The last
column summarizes the differences in the indicators values
between the RPM and NIMBUS in each experiment. On
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RPM NIMBUS Difference
Maximum iteration | 95.4% (2.9%) | 94.7% (3.6%) | 0.7% (4.1%)
value in 10 iterations
Iteration number of 95% 8.8(5.4) 11.7 (5.3) -2.5(6.4)
level
Number of failures to 5 7
achieve 95%
Potential region volume 7.12 (0.57) 7.92 (1.22) -0.8 (1.2)
after 10 iterations
Size of the solution pool 37.0(2.4) 34.1 (1.4) 2927
after 10 iterations

TABLE 1. Comparison of the reference point and NIMBUS methods in 100
experiments

average, the RPM performed similarly to NIMBUS in terms
of accuracyE] and 21.6% faster in terms of convergence speed.
The RPM also reduced the average potential region volume
after the 10th iteration to 7.12. It is 10.1% less than what was
done by NIMBUS (note that the volume of the initial region
is equal to 18). We can view this as a better exploration of the
objective space.

On the other hand, the RPM provided the ADM with, on
average, 2.9 (8.6%) more solutions in 10 iterations, which
can be partially explained by the special treatment of the first
iteration in NIMBUS (where only one solution was derived,
see Subsection [[V-A). This advantage partially explains the
better performance of the RPM.

Another important observation from the experiments was
that the differences between the methods’ performance var-
ied significantly across ADM instances. For the maximum
iteration value and the iteration number of 95% level (see the
first two cells of the third column), the standard deviation of
the difference was 5.7 and 2.5 times higher than the absolute
average difference, respectively. In addition, in all the exper-
iments where the RPM failed to achieve 95% iteration value,
the NIMBUS method succeeded, and vice versa. In other
words, the differences in those methods’ performance are
sensitive to the parameters of the ADM’s steady preference
model.

The above observation sheds light on the issue of selecting
an interactive method. It appears that even if a problem
instance and a class of steady preference models are given,
there is not enough information to conclude which method is
better. The recommendation on method selection may depend
on the parameters of the preference model. This dependence
undermines the possibility of universal recommendations,
suggesting that it may be necessary to select an interactive
method for each DM.

5Since the maximum iteration value in ten iterations was, on average,
similar for both methods, we needed to test if this difference was significant.
We have tested the hypothesis that this indicator has the same statistical
distribution for both methods using the nonparametric test by [[Wilcoxon,
1945]). This hypothesis was rejected with the confidence level of 98.9%. For
the remaining indicators, the confidence of rejecting analogous hypotheses
was much higher (the values of p-statistics for this test were lower by orders
of magnitude).
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One can look for patterns in the dependence between the
preference model parameters and methods’ performance by
conducting experiments, where parameters change system-
atically. As an example, we setE] the value of as to 1, and
varied o1 and a9 independently from 1.5 to 2.5 with step
size 0.2. For each of the 36 resulting parameter vectors, we
ran the solution process with both the RPM and NIMBUS
in the same way as in the former series of experiments.
The tables in Appendix II present the main performance
indicators depending on the parameter values: the maximum
iteration value achieved in the first ten iterations (accuracy)
and the iteration number, where a 95% iteration value has
been achieved (convergence speed). We can notice that better
performance of both methods in terms of both indicators
was achieved for the lowest value of «; as well as low
ratios between «; and «y. However, the combinations of
parameter values where each method demonstrated good per-
formance did not completely coincide. In terms of accuracy,
good performance of the RPM was also achieved for some
combinations where o € {0.7,0.9}, and good performance
of the NIMBUS method was also achieved for a; = 1.5
and 0.7 < as < 1.3. Interestingly, for the combinations
ap € {1.3,1.5} and ay = 0.5, despite the RPM had better
performance in terms of accuracy, it had a bad performance
in terms of convergence speed as the iteration value of 95%
was not reached in 25 iterations. Summing up, the influence
of parameters of the value function on methods’ performance
does not look arbitrary but demonstrates some patterns. The
analysis of such patterns could be utilized for predicting
methods’ performance based on parameter values.

Let us note that we must judge the fairness of comparing
methods individually for various experimental settings. For
example, one must decide whether it is fair to conduct the
same number of iterations (knowing that different methods
may need different amounts of computations per iteration).
Alternatively, one can apply the same number of function
evaluations or require a similar amount of information from
the ADM. For example, due to the special treatment of
the initialization phase, the NIMBUS method derived fewer
solutions in the first iteration than the RPM. We can consider
the amount of cognitive load set on the DM as a “common
denominator” for establishing the equality of experimental
settings for human DMs. In the case of ADMs, we can es-
timate corresponding information by the size of the solution
pool.

V. CONCLUSIONS
The concept of reference points is widely used for repre-
senting preference information in interactive multiobjective
optimization methods. The class of reference point-based
methods is important from theoretical and practical points
of view but lacks comparative studies. We have proposed
an approach called an ADM to enable comparing interactive
6We do not need to vary the parameter o3 since the value function
with parameters (a1, a2, e3) is equivalent to the function with parameters

(a1 + 9,2 + 6,1) where § = 1 — as.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3123432, IEEE Access

Podkopaev et al.: Automatic Comparison of Multiobjective Methods

IEEE Access

reference point-based methods. One can apply it for prelim-
inary comparison of methods of this class before involving
a human DM. The transparent description of the principles
underlying ADM’s operation and a ready-to-use implemen-
tation in a widely used language (Python) should make our
development easy and attractive to apply.

We demonstrated how one can apply the ADM with some
preliminary experiments and that it can exhibit complex oper-
ations and help draw nontrivial conclusions. For example, we
were able to quantify how sensitive differences are between
methods’ performance to parameters of the ADM. It appears
that the recommendations on method selection may require
adjustment in each case. We can establish the fairness of
method comparison in terms of the number of solutions
provided to the ADM in the same number of iterations.

The current implementation of our approach is not suitable
for comparing interactive methods where Pareto optimal so-
lutions are approximated. If different elements of the solution
pool can dominate each other, then the premise that any
newly derived objective vector belongs to the potential region
is violated. Algorithm [I] of updating the potential region
should be revised to adapt our approach for comparing ap-
proximate methods. In the long run, it is desirable to compare
methods from different classes (using different preference
types), employing other ADM approaches calibrated to en-
sure fairness of comparing methods.

As said in the introduction, we have not intended the ADM
to replace human DMs in tests of interactive methods fully.
Due to the broad spectrum of human behaviors, evaluating
the accuracy of the ADM should be done in the framework
of a multidisciplinary study involving many experiments with
real DMs in various settings. That would pave the way for
further improvement of the proposed approach.
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APPENDIX I. GENERATING NIMBUS-RELATED
PREFERENCE INFORMATION FROM A GIVEN
REFERENCE POINT z**?

First, it is natural to select the current solution in iteration j
from among those members of the solution pool which are
the most preferred (according to the steady part):

zeCY?).

Secondly, each objective function is assigned to one of the
five classes by consecutively applying the following rules
(once an assignment is done, the remaining rules do not
apply):
.o asp . Lo <
e if z;7" is close to 27, then assign 7 to I,
o if 2{°P is close to 219, then assign i to I°,

i
o if 2{°P = Z;, then assign i to =,

12

o if 2{°P < Z;, then assign i to I= and set y; = 2{°P,
o if 2{°P > Z;, then assign i to /= and set g; = 2"

The proximity of 2{°" to z7 or z'*! mentioned in the first
two rules means that the absolute difference between z;°"
and the corresponding value is less than 1% of the difference
zpad _ o

Observe that due to the method of defining preference
information (see Subsection [[II-C), a reference point z*P
generated by the ADM always belongs to the interior of the
potential region. It follows that z**P never dominates nor is
dominated by any Pareto optimal objective vector. In this
case, it is easy to see that the classification obtained as above

is always feasible.

APPENDIX II. INDICATORS OF METHODS
PERFORMANCE DEPENDING ON ADM PARAMETERS

In both Tables[2]and[3] the row and column headers represent
the values of a;; and a, respectively. Each cell contains two
values of the performance indicator obtained in the exper-
iment with the corresponding parameter vector (aq, as,1):
the value for the RPM above the value for the NIMBUS
method.

0.5 0.7 0.9 1.1 1.3 1.5
0.5 99.1% | 100.0% | 99.7% | 99.8% | 99.3% | 98.4%
97.8% 98.3% 98.1% | 98.4% | 99.1% | 99.6%
0.7 97.6% 98.2% 97.5% | 99.5% | 99.9% | 99.9%
94.9% 94.7% 942% | 96.3% | 98.5% | 99.3%
0.9 97.6% 99.5% 96.2% | 96.5% | 97.5% | 99.3%
97.0% 95.9% 93.7% | 93.9% | 88.0% | 95.2%
N, 95.9% 98.9 % 99.0% | 95.7% | 96.3% | 97.1%
91.8% 99.7% 93.5% | 955% | 949% | 95.5%
13 93.9% 98.0% 98.1% | 94.6% | 90.8% | 96.8%
89.1% 98.6 % 96.7% | 96.5% | 913% | 94.4%
15 92.1% 96.8% 97.1% | 94.0% | 95.3% | 90.2%
86.4% 98.7 % 98.7% | 991% | 99.4% | 94.2%

TABLE 2. Maximum iteration value in 10 iterations (values that are greater
than 98% are highlighted in bold)

05107 |09 | 11| 13|15

0.5 1 1 1 1 1 1
3 1 3 3 3 3

3 1 1 1

0.7 11 16 13 1 3 3
3 4 5 5 5 2

09 10 7 12 15 18 4
11 3 5 6 9 4 4
' 12 8 12 9 15 8
13 - 5 5 16 11 8
12 8 8 8 12 12

- 5 5 12 10 11

L5 12 9 7 7 9 13

TABLE 3. Iteration number of 95% level (the dash indicates that 95% level
has not been reached in 25 iterations)
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