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Systematisation of Systems Solving Physics
Boundary Value Problems

Tuomo Rossi, Jukka Räbinä, Sanna Mönkölä, Sampsa Kiiskinen, Jonni Lohi and
Lauri Kettunen

Abstract A general conservation law that defines a class of physics field theories
is constructed. First, the notion of a general field is introduced as a formal sum
differential forms on aMinkowski manifold. By the action principle the conservation
law is defined for such a general field. By construction, particular field notions of
physics, e.g., magnetic flux, electric field strength, stress, strain etc. become instances
of the general field. Hence, the differential equations that constitute physics field
theories become also instances of the general conservation law. The general field
and the general conservation law together correspond to a large class of relativistic
hyperbolic physics field models. The parabolic and elliptic models can thereafter be
derived by adding constraints. The approach creates solid foundations for developing
software systems for scientific computing; the unifying structure shared by the class
of field models makes it possible to implement software systems which are not
restricted to certain predefined problems. The versatility of the proposed approach
is demonstrated by numerical experiments with moving and deforming domains.

1 Introduction

In this paper we focus on second-order boundary value problems (BVP’s) related to
physical field theories. BVP’s and their numerical solution methods is an extensively
studied field of science. Still, many practical challenges remain, e.g.: i) Onemay have
a problem to which there is no software system available. ii) The software systems
are laborious if not hard to extend beyond their original purpose and such extensions
increase the complexity of the system. iii) In case of incorrect results, it is tedious to
distinguish between simple user errors and errors in reasoning. iv) Users often have
to learn many software specific details.
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While practical challenges will always remain, the aforesaid issues reflect the
traditional architectural view on mathematical software from the fifties and sixties.
Nowadays there exists more powerful mathematical and programming language-
theoretic knowledge that can be exploited in developing systems for boundary value
problems. Thus, there is a call for a systematic mathematical analysis to combine
the knowledge in BVP’s and modern programming and computing. The software
systems can be established more systematically on the mathematical structures on
which BVP’s are built.

We aim to present a class of BVP’s that covers classical physics, such asMaxwell’s
equations, Schrödinger equation etc. The specialized models are obtained by adding
constraints (e.g., omitting terms, linking terms together etc.) to the general model.
This resembles object oriented style in programming; a generic class is instantiated
and made more concrete by adding constraints. The finite dimensional models can
all be constructed with the so-called discrete exterior calculus (DEC) from the
models expressed with differential forms. The approach is not limited to ordinary
differential forms. Vector valued (E-valued) and matrix valued (End(E)-valued)
differential forms can also be utilised making it possible to conveniently construct,
for example, the equations of elasticity or the Yang-Mills equations with the same
approach.

This research is, therefore, directly linked to several fields: partial differential
equations, differential geometry, manifolds and cell complexes, algebraic topology
(homology and cohomology theories, fiber spaces and bundles), global analysis of
manifolds, numerical analysis, and computer science.

The state-of-the-art in field theories is gauge theory [3], [4], [25]. It is about
classical and quantum fields whose configurations are cocycles in differential coho-
mology. We focus on ordinary gauge theories whose field configurations are vector
bundles with connection. Their main principles [3] –Lagrangians, actions, the action
principle [4], [13] manifolds, vector bundles, sections of bundles, connections, etc.–
form a cornerstone of the work.

Our general presentation of various field-theoretic space-time models provides us
with significant advantages. In classical physics and in engineering different fields
use different concepts, notation and terminology. This results in scattered knowledge,
in waste of resources, and in redundancy in software. Classical and quantum field
theories appear quite distinct. In classical theories the effect of the fundamental
forces is averaged into the mesoscopic constitutive laws. The corresponding material
laws can be embedded into the Hodge operator [5], [6], [19], [20], and thus they
describe the metric properties of spatial space. For this reason, the metric structure
is essential in classical theories.

Powerful commercial and academic software for classical multi-physics exist,
such as COMSOL Multiphysics [10] or GetDP [12], but there is no encompassing
mathematical theory available to guide the software development. Our aim is to
employ the presented approach as the guiding theory in systemizing development of
software in scientific computing.
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2 Differential geometric models

In the late 1990’s and early 2000’s, Bossavit et al. developed and introduced the so
called "geometric approach" into electromagnetism [7]. In addition, in 1997 the idea
of a "discrete Hodge operator" [39] was introduced to reveal the key mathematical
structures behind finite difference and finite element kind of methods [9]. At the time
the finite difference method [37] was commonly explained in a rather elementary
manner in Cartesian coordinate systems following K. Yee’s original paper [43] from
1966. Bit later the scientific community in elasticity picked the idea and the geometric
approach became known also as "Discrete exterior calculus" (DEC) after Hirani [18].

We have further developed the geometric approach and created a generic soft-
ware system based on it. The system can be employed to solve hyperbolic application
problems from classical and quantum physics [24], [29], [31], such as electromag-
netic, elastic, and acoustic wave problems, the Schrödinger equation [13], or Gross-
Pitayevskii equations [30], and so on. We explain the mathematical foundations of
the software system in [22]. The implementation of the simulation software and the
various mesh structures which we have employed are described in detail in [29].

To explain the methodology, we will first outline a theory of ordinary gauge
theories on form bundles. Thereafter we will briefly discuss the extension to Clifford
and tensor algebra. Exterior (or Grassmann) algebra [14], [23] is the Clifford algebra
[17], where the quadratic form is identified to zero, and Clifford algebra itself is a
quotient algebra of tensor algebra [26]. We assume a Minkowski manifold [3], [15],
and describe the proposed methodology in steps from the foundations.

2.1 Formal sums of field configurations

The field-notion in physics involves an idea of assigning numbers to geometrical
objects of space-time, such as to points, (virtually) small segments of oriented lines,
etc. These numbers represent observations made by measurements, and they can be
interpreted as the values differential forms yield on p-vectors [5].

Let us start from ordinary differential forms, which come with a degree from
zero to the dimension n of the manifold. Since we are not after any particular field
configuration, forms of a particular degree are not in our interest. We hide the
information of the degree by introducing a formal sum of differential forms of all
degrees:

F = α0 f 0 + α1 f 1 + . . . + αn f n ∈
n⊕

p=0

∧p
T∗Ω,

where αp ∈ {0, 1}. Please notice that with ordinary differential forms and in the
n-dimensional case the number of p-forms is

(
n
p

)
and the formal sum has the total

of 2n degrees of freedom.
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Byoperatingwith F the emphasis is shifted fromparticular degrees to the property
that all forms map some p-vector, 0 ≤ p ≤ n, to scalars.

2.2 Differentiation and the action principle

Next, we need to introduce differentiation for F. This is straightforward as smooth
p-forms are differentiated with the exterior derivative d, and so is also F. Ordinary
gauge theories are characterized by pairs of differential equations, such as electro-
magnetic theory [36] is described byMaxwell’s equations. The gauge-theoretic view
is that differential equations follow from the action principle [3]. An action is the
integral of a Lagrangian L over a manifold, and differential equations correspond to
the critical points of the action.

A large class ofmodels in ordinary gauge theories have to dowith the conservation
of some quadratic notion. We equip the Minkowski manifold with a metric tensor
providing us also with a Hodge operator ?. Then, we assume F is an exact field,
F = dH where H = h0 + . . . + hn is a potential. In addition, for the source terms we
introduce another formal sum G = g0 + . . . + gn. Now, an action of the desired type
can be given by

A =

n⊕
p=0

*..
,

1
2

∫
Ω

f p ∧? f p +
∫
Ω

hp−1 ∧?gp+1+//
-
.

The differential equations are then obtained as follows. The variation of actionA
is

δA =
d

dα
A(Hα)���α=0

,

where Hα = H + αδH and by insisting on the variation δA to vanish for all δH
yields the critical points of A and the corresponding differential equations. Hence,
the action principle implies that at all (ordinary) points on the Minkowski manifold
the following differential equations dF = 0 and ?d?F = ??G should hold. These
equations can be expressed as the diagram in Figure 1.

•••••

??G?FF0
d

?−1

? d

?−1

?

Fig. 1 Diagram of differential equations

Let us also express the action principle as a diagram. For brevity, to introduce
such a diagram we assume G to vanish. Then, the Lagrangian of the action becomes
L =

⊕n
p=0

1
2 f p ∧? f p , and the definition of the Hodge operator implies, that each

component Lp satisfies
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D∗fLD f

A

L

π∗fπ f

a f a∗f

l

a

l f l∗f

Fig. 2 Diagram of the action principle

Lp =
1
2

f p ∧? f p =
1
2
〈 f p, f p〉ω0 = qp ( f p)ω0,

whereω0 is the unit n-volume ofMinkowski space and qp is the quadratic refinement
of the Minkowski bilinear form 〈·, ·〉. The Lp’s form a product space L = D f × D∗f
equipped with projections π f : L → D f and π∗f : L → D∗f satisfying the following
universal property: For every action A and Lagrangian L there is a unique map
a : A → L and l : L → L such that the diagram of Figure 2 is commutative.

•

•

•

•

• • •

l∗fl f

a f a∗f

a

?

?−1

d d ?

?−1

Fig. 3 Diagram DGOrd

The combination of the two diagrams of Figure 1 and Figure 2 results in a diagram
presenting how the action with the Lagrangian defines differential equations for a
pair of fields, which are in a Hodge relation to each other. We call this diagram by
the name DGOrd (designating that it involves ordinary differential forms), simplify
it a bit –object L is left out– and draw it in Figure 3. Ordinary gauge theories include
also other type of differential forms than ordinary ones, which are also essential
in mathematical physics. For instance, in elasticity [1] E-valued forms, vector and
covector-valued forms [3], [16], [23] are needed [21], [32], [33] [34], [35].

Let us next extend the idea of formal sums of differential forms to E-valued
forms. By construction, such formal sums of E-valued forms can be differentiated
with the exterior covariant derivative d∇, where ∇ is the connection. To introduce the
Lagrangian as a quadratic refinement of the Minkowski metric, the Hodge operator
should be extended to E-valued forms such that L =

⊕n
p=0

1
2 f p ∧? f p becomes a

formal sum of scalars. We denote such a Hodge operator by?E . In the same manner
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•

•

•

•

• • •

l∗l

action principle action principle∗

a

Hodge duality

Hodge duality−1

differentiation differentiation
Hodge duality

Hodge duality−1

Fig. 4 Diagram DGA

as in the case of ordinary forms, in case E-valued forms the action principle yields
differential equations d∇F = 0, ?E d∇?E F = ?E ?E G.

End(E)-valued [3] (i.e., matrix valued) forms are needed for example in Yang-
Mills theory [2], [38], [41], [42]. The Hodge operator ?End is now extended to
End(E)-valued forms so that the Lagrangian becomes a formal sum of scalars.

Formally, there exists an abstract diagram DGA shown in Figure 4, and mappings
M0 : DGA → DGOrd, ME : DGA → DGE and MEnd : DGA → DGEnd.
They map the abstract diagram DGA to more concrete diagrams DGOrd of ordinary
forms, DGE of vector valued forms and DGEnd of matrix valued forms. They also
map the hodge duality to operators ?, ?E , and ?End , respectively. MO maps the
differentiation to exterior derivative d. ME and MEnd map it to d∇.

This construction suggests that mappings MO, ME and MEnd represent various
models of the "theory of differential geometric models" represented by DGA. This
is a step towards a category theoretic representation of physics field theories.

Remark: Hyperbolic wave problems in physics are particular examples of our
models. DGA can also be concretized to elliptic and parabolic models. Later, as
an example, we show how to concretize the Schrödinger equation from the general
setting. As we use differential geometric formalism, the canonical way to discretize
all the considered models is to use DEC.

3 Concretization of particular models

Next, to verify the usefulness of the theory and its models in scientific computing,
let us exemplify how particular models are concretized from the theory. This also
highlights the pragmatic significance of a proper mathematical theory; resources
becomemore efficiently exploited, if software systems are designed to realize theories
instead of particular models.

Let us start by concretizing DGOrd to four dimensional differentiable manifold
Ω with Minkowski metric, signature (−,+,+,+), and a decomposition of space-time
into space and time-like components;Ω = Ωt ×Ωs . Symbols F and G denote formal
sums of p-forms, F = f 0 + . . . + f 4 and G = g0 + . . . + g4 and consequently,
differential equations dF = 0 and ?d? f = ??G can be written as:
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

−?d?
d ?d?

d −?d?
d ?d?

d





f 0

f 1

f 2

f 3

f 4



=



g0

g1

g2

g3

g4



.

By i) decomposing p-forms into time-like components and only space-like compo-
nents, ii) and exterior derivative to space and time-like components, and iii) applying
the Leibniz rule, we obtain an equivalent system of Equation (1) [22].



∂t ?d?
∂t −d ?d?

∂t −d ?d?
∂t −d

?d? −? ∂t?
d ?d? ?∂t?

d ?d? −? ∂t?
d ?∂t?





f 0

f 1

f 2

f 3

f 0
s

f 1
s

f 2
s

f 3
s



=



g0
s

g1
s

g2
s

g3
s

g0

g1

g2

g3



. (1)

Here d and? are now the exterior derivative and the Hodge operator, respectively,
in the space-like componentΩs ofmanifoldΩ. Subscript s in the f p and gp’s denotes
the space-like component f ps of (p + 1)-form f tdt ∧ f ps . This system of equations
and its natural transformations cover a wide class of physics field theories. By
construction, all the models covered by the theory are relativistic. Each particular
model corresponds to a choice of F andG as demonstrated next with some examples.

For Maxwell’s equations [36] in space and time, F is chosen to be the Faraday
field and G the source charges q and currents j [3]: F = b + e ∧ dt = b + dt ∧ (−e)
and G = ?j − dt ∧?q. This corresponds to setting f 1

s = −e, f 2 = b, g1 = ?j, and
g0
s = −?q, and by substituting these to the system of Equation (1), we obtain

d b = 0 , 8th row, de + ∂tb = 0, 3rd row,
−?∂t?ε e + ?d?µ b = ?j, 6th row, −?d?ε e = −?q, 1st row.

We have considered permittivity ε and permeability µ as properties of Ωs . Thus,
they are embedded into the Hodge operators ?ε and ?µ [6].

The non-relativistic Schrödinger equation [13] can also be concretized from
DGOrd by imposing some simplifying constraints on the general model. For this,
we first set −?ϕR = ϕI and choose

f 0
s = } ϕR, f 3 = } ϕI, f 1 =

}

2m
qR, f 2

s =
}

2m
qI,

g1
s = qR, g2 = qI, g0 = −Vϕr, g3

s = −VϕI,

where } is the reduced Planck constant and m is particle’s mass. By substitution to
the general system one obtains:
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}

2m
∂tqR − } dϕR = qR , 2nd row, }?d?ϕI −

}

2m
?∂t?qI = qI, 7th row,

}

2m
dqR = 0, 7th row,

}

2m
?d?qI = 0, 2nd row,

}

2m
?d?qr − }?∂t?ϕr = −VϕR, 5th row, } ∂tϕI −

}

2m
dqI = −VϕI, 4th row.

The relativistic property is next lost by a modelling decision. The term ∂tqR is
assumed to vanish. This implies that also −∂tqI = ?∂tqR = 0. Now the middle
equations become tautologies and the system is reduced to the pair

} ?∂tϕR +
}2

2m
?d?dϕI = VϕI , } ?∂tϕI −

}2

2m
d?d?ϕR = −VϕR .

By mapping differential forms to vector fields and mapping the exterior derivative
to the corresponding differential operators of vector analysis, the textbook version
} ∂tϕ − i }22m div grad ϕ = −iVϕ results. It is defined using complex arithmetic which
restricts it to flat Minkowski manifold only. The relativistic intermediate stage ob-
tained from the general model can also be implemented on curved space-time. This
is an interesting topic to be numerically tested.

Small-strain elasticity is naturally modelled using E-valued forms. Recall that in
this case the differential equations on the manifold Ωt × Ωs take the form d∇F = 0
and ?E d∇?E F = ?E ?E G. Analogously to previous, Leibniz rule and the space-
time split of forms and exterior covariant derivative d∇ results in structurally similar
general system as in the case of ordinary forms. The exterior derivative d is simply
replaced by d∇ and ? is replaced by ?E .

The model of elasticity now arises by the choice f 0
s = u, f 1 = ε, g0 = − ? fv ,

where the vector-valued 0-form u is the time-derivative of displacement ν, u = ∂tν,
the vector-valued 1-form ε is linearized strain, and g0 is the source force term.
Substituting this choice back to the system of equations yields

∂tε − d∇u = 0 2nd row d∇ε = 0 7th row, ?d∇?Cε −?∂t?
ρu = −? fv 5th row.

The Hodge operator ?C contains the parameters of the stress-strain relation, and
density ρ is embedded to ?ρ. Since u = ∂tν, the first equation states that ε = d∇ν
and the second equation is automatically satisfied. As a result, we get the elasticity
equations which are, for convenience, written out also in Euclidian space and using
vector analysis notation:

−∂tε + d∇u = 0 , σ = ?Cε , −∂tε + grad u = 0 , σ = Cε ,

?ρ∂tu − d∇σ = fv , u = ∂tν , ρ∂tu − divσ = f v , u = ∂tν .

The final example is Yang-Mills equations [42] where the field configurations are
End(E)-valued forms. As Yang and Mills developed their theory as an extension to
Maxwell’s theory, Yang-Mills equations are concretized from the system of differen-
tial equations for End(E)-valued forms in the same manner as Maxwell’s equations
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are concretized from the system for ordinary forms. Such a process results in

d∇ b = 0, d∇e + ∇tb = 0,
−?End∇t?End e + ?End d∇?End b = ?End j, ?End d∇?End e = ?End ρ .

Clifford and tensor algebra. The "theory of differential geometric models"
presented is not complete for the needs of software design: First, tensor algebra is
the most general algebra for vector spaces over scalars, and all field configurations
share the structure of a vector space. Second, a Clifford algebra is unital associative
algebra generated by a vector space equipped with a quadratic form [17]. Third,
exterior algebra is the Clifford algebra when the quadratic form is zero. Clifford
algebra seems to provide us with a better starting point as certain Clifford algebras,
such as Pauli or Dirac algebra [15], are very important in mathematical physics.

We construct the universal Clifford algebra as a subalgebra of the algebra of linear
transformations [17]. Let F be a scalar field and denote Λ0(V ) = F, Λ1(V ) = V
and Λp (V ) contains the sums of products v1 ∧ · · · ∧ vp . The Grassmann algebra
over vector space V is then Λ(V ) = ⊕n

p=0Λ
p (V ). In the algebra L(Λ(V )) of linear

transformations ofΛ(V ) map Mv is defined as the linear extension of Mv (1) = v, and
Mv (v1∧· · ·∧vp) = v∧v1∧· · ·∧vp . Anothermap, δv , is defined as the linear extension
of δv (1) = v, and δv (v1 ∧ · · · ∧ vp) =

∑p
k=1(−1)k−1B(v, vk ) v1 ∧ · · · ∧ v

′
k
∧ · · · ∧ vp ,

where v′
k
denotes the term to be omitted from the product, and where B(·, ·) is

the Minkowski bilinear form. Thus, Mv is exterior multiplication by v and δv is
interior multiplication with respect to the inner product induced on V ×V by B(·, ·).
Define η : V → L(Λ(V )), v 7→ Mv + δv . The subalgebra of L(Λ(V )) defined by
{η(v) : v ∈ V } and {λ1 : λ ∈ F} is a universal Clifford algebra for (V,Q)where the
quadratic form Q is subject to the condition η(v)2 = (Mv + δv)2 = Q(v)I.

Let the (metric compatible) covariant derivative be mapped by functor C from
the tensor bundle to the Clifford bundle. The image of the covariant derivative in the
Clifford bundle is denoted by ∇. The codomain of map ∇ : L(Λ(V )) → L(Λ(V ))
can be decomposed into components corresponding to the exterior and interior
multiplication, and consequently we may write cod(∇) = cod(∇e) ⊕ cod(∇i). If
the covariant derivative is mapped to the exterior bundle with functor D, then the
image of the covariant derivative is d±?d?, where the sign depends on grade p and
dimension n.

Tensor bundles and tensor algebra provide us with a starting point general enough
for the theory needed in software design for ordinary gauge theories. The theory
should not, however, be tied to the category of sets. We seek for a category which
just condenses the essentials of differentiation, of the metric properties of space-
time, and of the action principle. Software based on such a theory is not bound to
any specific algebra. This enables the end users to employ algebras that fit best with
their needs.
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4 Some numerical experiments with space-time models

In our earlier papers, we have demonstrated the proposed approach with several
numerical experiments. Such experiments include simulations with acoustic, elas-
todymanic, electromagnetic and quantum mechanic waves [28], [29], [30], [31]. For
the extended accuracy, the mesh structures play an essential role [29]. The numerical
scheme can also be optimized by locally adaptive time-stepping and by tuning the
dicerete Hodge operator, e.g., for time-harmonic waves. In certain cases such opti-
mizations can improve the efficiency of the simulation even by orders of magnitude
as reported in [28].

The formulation of the general model in Minkowski space provides additional
benefits. It is namely possible to simulate the wave propagation in moving (and even
deforming) spatial domains. In the papers [28], [29], [30] and [31], the spatial mesh
generation together with the associated spatial finite difference approximation and
time-stepping were considered as separate entities, without emphasizing the fact that
the usual leap-frog time integration scheme for first order systems could also be
derived from geometrical principles analogous to the spatial mesh generation which
is based on the Delaunay-Voronoi duality.

4.1 Transforming computational cavity

mesh result

x

t

Fig. 5 A space-time approach to solve of a time-dependent wave problem in a moving cavity:
The mesh with simplicial cells (purple edges) and corresponding Minkowski dual mesh (blue
edges) are illustrated on the left. The solution of a wave problem is shown on the right. The color
components red and green correspond to dx and dt components of the resulting 1-form. The colors
are normalized such that grey indicates the zero field.
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This chapter contains numerical experiments that demonstrate how the general
model of the Minkowski space can be discretized. The construction of the space-
time model begins by creating a mesh that fills the entire space-time domain of the
computation. When generating a mesh, one should ensure that a valid dual mesh is
available. The dual mesh is made up of cells each having an orthogonal counterpart
in the (primal) mesh. Orthogonality is defined such that any vector from a primal
cell has zero inner product (in the sense of Minkowski metric) with any vector from
the corresponding dual cell.

Figure 5 illustrates the solution of the one-dimensional time-dependent wave
problem in a moving cavity. We build a simplicial mesh in a two-dimensional space
with one spatial axis and a time-axis. Then we attach a floating point number to each
primal 1-cell (edge) to construct a discrete version of F including only 1-form term.
The initial values are set at time t = 0 (at the bottom of the figure) to trigger a wave
pulse. Elsewhere in the computing domain, the values of F are explicitly solved by
following the equation dF = 0. Since the dual mesh and the discrete Hodge operators
are constructed using Minkowskian metric, the solution is a traveling wave with a
propagation speed of 1 in both directions (see the right-hand-side of the Figure 5).

y
t

x

Fig. 6 Simulation of wave propagation in rotating 2-dimensional cavity: The (2+1)-dimensional
space-time mesh is illustrated on the left. The red color (dark) at the bottom indicates the past time
and the cross section of the mesh at the current time is shown on the right. The color components
red, green, and blue represent the components dx ∧ dy, dx ∧ dt, and dy ∧ dt of the resulting
2-form, respectively. The figure is normalized such that the grey color indicates the zero field.

Figure 6 shows a numerical experiment where the same approach has been applied
to solve a two-dimensional time-dependent wave problem in a rotating cavity. In this
case, the mesh is three-dimensional and the shape of the two-dimensional base
mesh (spatial cross-section of the space-time mesh) resembles a boomerang. The
space-time mesh is twisted around the time axis, causing the cross-section to rotate
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as time progresses. The field F to be solved is a 2-form which is discretized by
attaching one floating-point number to each 2-cell (face) of the mesh. By initializing
F as an impulse at the initial time and solving dF = 0 inside the computational
domain, we detect a wavefront propagating at speed 1 and reflecting from the moving
walls. A video of this numerical experiment can be found at the following url:
https://urly.fi/1oxH.

field component dt-1 1

t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

Fig. 7 Wave propagation in a shrinking 3-dimensional cavity: Cross-section of the space-timemesh
and dt-component of the resulting field are presented at five instances of time.

To prove the generalizability of the method, we present yet another experiment
where we solve a three-dimensional acoustic-like wave problem in a shrinking com-
putational domain.We create a (3+1)-dimensional simplicial mesh that, at time t = 0,
fills a three-dimensional spatial volume as illustrated on the left of Figure 7. The
element lengths of the mesh are proportional to the term 1 − 0.3t. This means that
the element sizes decrease exponentially in terms of the number of time steps. The
point (0, 0, 0, 1

3 )T of convergence is never reached in the simulation.
In order to reduce the amount of memory required, the mesh duration over time

is chosen as short as possible. We integrate 1-form F over mesh by explicitly solving
dF = 0. When integration over mesh is completed, the last calculated terms are
copied as the initial values of the next iteration and the integration is repeated.
In this way, the task can be integrated as long as desired, without having to store
the entire mesh in memory. The resulting field of time-integration is illustrated
in Figure 7. A video of this numerical experiment can be found online at url:
https://urly.fi/1oWx.

4.2 Local time-stepping and stability

Traditionally, the Courant-Friedrichs-Lewy (CFL) condition sets an upper limit for
the length of maximal time step. The smaller the spatial element size is, the shorter
the time step must be in order to achieve numerical stability. When the spatial
element length is not constant, local time-stepping can speed up the integration of
time-dependent wave problems. This section shows how to create local time-stepping
methods using the space-time integration.

Let’s start with a (1+1)-dimensional example and consider a one-dimensional
spatial mesh consisting of unevenly distributed nodes and line-segments (edges)
between them. Nodes of the spatial mesh are copied at regular intervals in the time

https://urly.fi/1oxH
https://urly.fi/1oWx
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direction using individual step sizes ∆t for the nodes. The length of the time step
is set to the maximum length that obeys the inequality ∆t < c∆x, where ∆x is the
length of the shortest neighboring edge and c is a constant. The space-time structure
is completed as the Delaunay mesh. The mesh is 2 units wide in spatial direction and
1 unit high in time-direction. The mesh and its dual mesh are illustrated in Figure 8.

Fig. 8 A (1+1)-dimensional mesh with variable spa-
tial edge lengths ∆x. The condition for time step size
is ∆t < 1.0∆x. Primal and dual edges are illustrated
with purple and blue colors, respectively.
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...
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0
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1

t=
1

0
..

.1
1

t=
0

..
.1

t=
2

0
0

..
.2

0
1

  t<1.0  x   t<0.9  x

Fig. 9 The resulting fields during the
various stages of integration. The color
components red and green correspond
to dx and dt components of the field
and grey color indicates the zero field.

The field under consideration is a 1-form and it is formatted and integrated
in the same way as in the previous section. When the integration over the mesh is
completed, the last calculated terms are copied as the initial values and the integration
is repeated. In this way, we are able to reuse the mesh again and integrate over time
as long as necessary.

We consider stability of the time-integration in long term simulations with two
different constants c = 1.0 and c = 0.9. The results are illustrated in Figure 9. The
conclusion is that the time integration is not stable with the constant of c = 1.0. The
noise in the resulting field is visible already after 50 iterations. However, with the
constant of c = 0.9, the system is stable because no dispersion is detectable even
after 200 iterations. The condition used for the time step length seems to be a good
first guess to replace the CFL condition in the asynchronous space-time integration.

We also investigate local time-stepping in a (2+1)-dimensional wave problem. The
mesh is constructed by creating a two-dimensional circular base mesh with varying
element sizes. We limit the individual time step ∆t of each node by the relation
∆t < c∆x, where ∆x is length of the shortest spatial edge next to the node. The
structure of the space-time mesh is determined as a Delaunay mesh and a truncated
mesh is visualized in Figure 10.

We integrate 1-form over time and consider the numerical stability of long-term
simulations. From Figure 11, we find that by limiting the time step length with the
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0.5

t

r=1.0

Fig. 10 A (2+1)-dimensional meshwith variable spa-
tial edge lengths ∆x and with condition ∆t < 0.6∆x
for the time step size.

t=
5

.5
t=

0
.5

t=
1

0
0

.5

  t<0.7  x   t<0.6  x

x

y

Fig. 11 Cross-sections of fields at dif-
ferent time instances and under different
conditions for a time step length. The
color components red, green, and blue
correspond to dx, dy, and dt compo-
nents of the resulting field, respectively.
The grey color indicates the zero field.

constant of c = 0.7, numerical stability is not achieved. We observe noice in the
resulting field already after 5 units of time. Instead, using the constant c = 0.6, we
keep the integration stable and do not observe any dispersion in the resulting field
even after 100 units of time.

5 Conclusions

In this paper we have considered the common structure of boundary value problems.
The structure is based on ordinary gauge theories on formbundles.We have presented
models from classical and modern physics as particular examples of the system. The
finite dimensional models are constructed with discrete exterior calculus (DEC)
method from the models expressed with differential forms. The computational mesh
is based on Delaunay-Voronoi duality with Minkowskian metric. With the corre-
sponding construction of discrete Hodge operators, it enables numerical simulations
in moving and deforming spatial domains. Adaptive time stepping can also be im-
plemented by utilizing the geometry of space-time mesh. Numerical results show
that the software system based on the systematic structure is applicable in boundary
value problems in one, two, and three spatial dimensions.
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