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Abstract. Human thinking advances through questions and answers. Any field 
of human endeavor is permeated by the presence of questions, answers and pre-
suppositions. Questions have a kind of universality, whereby one can place the 
question marks on anything, including questions themselves. The process of ask-
ing the right questions about the right things and in the right way are key for the 
explication of an approach. Recently, we have begun thinking about an approach 
to the design of intelligent technology: Cognitive mimetics. In brief, the idea is 
to take inspiration of empirical human thinking in specific contexts to develop 
AI solutions. The purpose of this article is to question this approach from various 
angles to take steps towards specifying it as a methodology. Some of the ques-
tions are like the chips a sculptor would make on a rough unfinished piece of 
marble. They and their answers uncover a particular shape immanent in the broad 
idea we have presented. Other questions are like the tools the sculptor needs to 
turn an idea into reality, these are the questions which will have permanent ap-
plicability within the methodology itself. Finally, some questions are promissory 
notes, they concern issues that will need to be responded to as the method con-
struction proceeds further. The purpose is to establish a waypoint of where our 
thinking stands at the moment and an idea of where it may lead. The way we 
present and answer some of the questions may be of broader interest for research-
ers involved in fundamental and practical questions in AI design. 

Keywords: Artificial Intelligence, Design Methods, AI Design, Cognitive Mi-
metics. 

1 Introduction 

Poincare anticipated the frustration of an important group of would-be com-
puter users when he said, “The question is not, ‘What is the answer?’ The question is, 
‘What is the question?’” —J. C. R. Licklider in Man-Computer Symbiosis (1960) [1] 

The ability to ask questions is a basic feature of the human mind. The presence of 
questions permeates the sciences, as it is a necessary element in reasoning and argu-
mentation. Indeed, some have called the interrogative method the theory of reasoning 
[2]. Questions and assumptions can be thought of as orienting systems for cognitive 
resources. A question, and how it is understood, sets the stage for a quest for an answer. 
This may lead to activities such as research and experiment in empirical science, 



2 

thinking and discourse in philosophy, or the realization of a product in design. In all 
cases, it is the question plus assumptions that orient actors and communities in some 
way. Consequently, paradigms open up through questions and the refinement of as-
sumptions.  

Cognitive mimetics (CM) is about asking questions of expert performance in a se-
lected domain and seeking to formulate the questions and answers in a way that can be 
translated or mapped into a computational form for the design of artificial intelligence. 
What does this mean? Questions can be seen as a way of focusing our mental lenses. If 
we ask a question like: When did it rain last time? or Why did it rain yesterday? our 
mental resources are geared towards quite different sorts of answers. The question may 
entail a particular sort of answer that is admissible. In this article, we seek to state and 
answer some central methodological and practical questions that have emerged from 
the very idea of CM. Questions and assumptions orient the practice of mimetics: the 
kinds of questions we raise and the answers we expect influence activity in the field. 
Because CM straddles science, research, and design, we need to establish a harmony 
between the different orientations, in different phases of the mimetic process. CM can 
be understood in a “loose” and in a “tight” sense. A loose sense means simply taking 
inspiration from human thinking in solving AI problems or constructing solutions based 
on human thinking, without specifying further. A tight sense means explicating presup-
positions and methodological questions in a more detailed manner. Here our plan is to 
take steps toward the latter, although still on a relatively high level. The idea is to ask 
the questions important for going forward to a more systematic description of the 
method. 

1.1 Mapping Relations 

As a preliminary, it will clarify the discussion to introduce the mapping relation in CM. 
The mimetic process (in general, including biomimetics) can be structured as a mapping 
(g) relation between a source (S) and a target (T): S g T. One way to differentiate 
mimetic design types is to evaluate what (and how) they are using as a source [3]. The 
broader field of biomimetics has traditionally been more focused on the functions, 
structures, and substances of biological entities. For CM, the source is the information 
content and processing of humans, and the target is, generally speaking, the software 
of a computer system. In terms of questions, we are asking how does the source do what 
it does and then asking how this can be implemented in the artificial system that is the 
target (AI). The S g T schema is useful for guiding broad questions in terms of what 
(in our case, who) is being used as a source, what is our target system, or what kind of 
a mapping relation could be constructed between them, among other questions. How-
ever, on the practical level, as research and design begins, the relation between the two 
is iterative. We must consult both poles of the equation—for example, as implementa-
tion reveals blank spots in research and research outlines directions for design. We may 
delineate this difference by replacing the mapping symbol (g) with an iteration symbol 
(Q): S Q T. An important further point to note is that the iteration and mapping relation 
also involves a transformation, due to the differences between the source and the target. 
Perhaps most pressingly for us, these questions emerge with the construction of 
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machine semantics based on human semantics. We give mental content a strong role in 
CM. Thus, the limits, problems, and possibilities of machine semantics define perhaps 
the most interesting frontier for CM to explore.  

2 Fundamental Questions 

The importance of questions and answers for human thinking can hardly be overstated. 
Even basic cognitive processes, such as the retrieval, inference, or generation of infor-
mation, seem to loosely accommodate a question-answer structure. Whatever their 
types or other properties, all questions seem to relate to information. Information is, in 
different ways, in the background of the concept of questions and answers. However, 
the way information is generated or selected by questions is not completely straightfor-
ward. Answers provide information, and some question-answer processes create infor-
mation. For example, in classic group game, binary yes-no answers divide (often recur-
sively) the elements of the answer set until a single element is left or can be identified. 
This would be akin to the classic information-theoretic view of reduction in uncertainty 
[4]. A why-question, on the other hand, may involve the creation of new informational 
structures and contents, carving out aspects of reality before ill understood. This in turn 
is a very different notion of information: a far stronger one. This question type is often 
associated with science, broadly understood [5,6]. Indeed, questions may be of many 
kinds [5,7], and the same simple type of question can have quite different sorts of an-
swers, depending on the approach and context. There is quite a bit of ambiguity in the 
difference between a why and a how question, even in scientific discourse. Put simply, 
a scientific answer seems to be an answer to a why question. But simply stating a why, 
without specifying a how, seems to yield an uninformative answer, as the classic black-
ness of ravens illustrates [8]. What ties them together, however, is their nature as an 
interrogative information process. Basic questions refer to general question types rec-
ognizable by all: binary yes-no questions and the so-called wh-questions (who, what, 
when, where, why, and how). Because basic questions are like functional operators 
employed across different contexts, care must be taken to explicate the presuppositions 
that influence how the question is understood and, indeed, what is supposed to count as 
answer. These are often understood in an intuitive fashion, which would benefit from 
explication [9]. As noted by Saariluoma, Canas, and Leikas [10], questions have a kind 
of permanence—owing to their status as operators—that answers do not. Thus, ques-
tions are a kind of universal tool for thinking. They can even be turned on themselves—
or more precisely, on the presuppositions and contexts in which they are presented. In 
the following paper, we will address some of the fundamental questions of CM to bring 
to the surface and address some of our presuppositions. The motivation behind this 
broad discussion on fundamental issues is to show the specificities that get introduced 
to AI design when certain basic issues are combined with the S g T schema. 

Let us begin at the beginning. What are the originary questions for computer science 
(CS) and AI? The origin of Turing Machines [11] was in seeking an answer to (a foun-
dational mathematical) question proposed by Hilbert: the Entscheidungsproblem. The 
answer to the question was negative, but the by-product of the proof was something 
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else: the Turing Machine (TM), which was the result of (conceptual) design. In other 
words, the TM is an invention [12]. By Turing’s approach, thinking acquired a techno-
logical form. Later, Turing pioneered the emerging AI paradigm by presenting another 
question: “Can machines think?” [13]. His answer was that it was “too meaningless to 
deserve discussion.” Instead, he replaced it with a new question, which was operation-
alized as a question-game: the imitation game, now commonly called the Turing test. 
This question explicitly turned attention to functional equivalence and provided room 
for AI and computer science to develop on their own terms—a significant precursor to 
the idea of multiple realizability (of intelligence). As an aside, note how Turing knew 
that understanding and answering (natural language) questions is a powerful indicator 
of intelligence.  

Returning to the TM, what was Turing’s question there? It was to answer in unam-
biguous terms what the computer (back then a human) was doing as an information 
processor. Turing based his model on his perception of mathematical thinking [14]. 
What Turing established was a mapping relation between (his idea of) human compu-
tation and an abstract technical system (the TM), such that the operations coincided 
completely with the operations of the machine. The question was, can human compu-
tation be so precisely and unambiguously described so that a machine can be made to 
do it, and by what architecture? In our thinking, Turing’s work is an important and 
foundational example of what we have called CM [15,16]  

Turing’s thinking was extremely influential. One can hear the echoes of Turing in 
the 1956 Dartmouth proposal [17], which was founded on the conjecture that “every 
aspect of learning or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it.” Note that if Turing [11] estab-
lished that effective computation could be so precisely described, the question behind 
the 1956 proposal was whether all aspects of intelligence could be described as com-
putation (broadly, as orderly symbol manipulation, transformation, storage, etc.). This 
in turn has bifurcated into the pragmatic questions of how intelligence can be created 
from this (computational) basis in AI and the philosophical-cognitive questions of 
whether the human is performing computations at some deeper level, even when not 
engaged in computation per se. The AI design question has been fruitful irrespective of 
its contested philosophical foundations [18,19] because it is a design question rather 
than a purely theoretical one. The design question of AI is founded on the multiple 
realizability of (computational) information processes and the one-to-many qualities in 
design. This complex back-and-forth analogical mapping between computers and 
brains—or software and mind—has been a defining feature behind the spirit of past 
century [20,21]. In passing, one might even note here that the theoretical successes of 
the cognitivist paradigm exemplified in Newell and Simon [22] have been tied to the 
success of the implemented computer models that perform the information processing 
task under investigation [23]—thus, tacitly to design. 

Today, at least based on the highly popular AI textbook of Russell and Norvig [24], 
AI seems to have somewhat removed itself from a mimetic approach. They organize 
AI into four categories based on approach. The first they call the “acting humanly” 
approach, which is to make AI systems behave in more or less exactly the same way as 
humans. The second is the “thinking humanly” approach, which is the classical 
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cognitive science method, to do with computational modeling of human information 
processing. The third they call the “thinking rationally” approach, which emphasizes 
pure logic and the making of correct inferences. The fourth (and the approach they 
advocate) is the “acting rationally” approach, which focuses more on achieving (by 
whatever pragmatic means) a rational outcome for the actions of the agent, taking into 
account the impossibility of perfect rationality in practice. While the borders are some-
what fuzzy between categories, let us attempt to see where CM might be placed on this 
map. To state the obvious, our approach is indeed rooted in the second, “thinking hu-
manly” approach, but we take a more nuanced position. As already indicated, the mi-
metic approach starts from this position, but by adding the mapping relation plus basic 
assumptions about the difference between minds and machines, we accept it as neces-
sary to approach machine intelligence on its own terms, be it the “rational approach” 
[24] or some other method. However, we believe that much of value to AI research and 
practice can be gleaned by starting from an analysis of an empirical source—the human 
expert. In all domains of sufficient complexity, intelligent behavior is a result of 
bounded rationality [25]. Thus, it seems that the rational approach [24], or limited ra-
tionality (a concept that came from Simon and the cognitive investigation of human 
limitations), is not possible to solve for all domains in the abstract. It is a useful concept 
and goal, but without understanding how experts in empirical settings actually make 
judgments and choices, it seems to require at least something like CM. Interestingly, 
Russell [26] may have noted this himself and expresses doubts as to whether the stand-
ard method of “building calculatively rational agents and then speeding them up” will 
“enable the AI community to discover all of the design features needed for general 
intelligence.” CM is not primarily about artificial general intelligence, but even if it 
was, it seems like the rational place to look for its features would be human cognition. 
The conceptual benefit (and a goal) of CM is to make some of these issues clearer. The 
practical benefit is that the necessary bounds to rationality are not introduced tacitly or 
ad hoc by AI designers or programmers but are based on empirical research.  

This leads to the important question of the goals of CM. Let us answer this by simply 
saying what it is not. CM is not about artificial general intelligence (AGI) [27] or the 
attempt to achieve strong AI. If it were, the route we have sketched would probably 
focus more on explaining general cognitive faculties in a different sense. Put simply, 
we would be more focused on theory and have followed the traditional terrain of cog-
nitive science. Craver [28] presented a critical discussion of explanatory depth and what 
he called phenomenal and explanatory models in science. Anticipating this perspective, 
one might question whether CM only focuses on the phenomenal properties of its 
source, making sketches of it akin to Ptolemy’s models. The answer however is no. On 
the level at which we focus our attention, we would say that it is precisely the mental 
contents that explain the actions (correct or incorrect). The explanatory ground for hu-
man action is in the mental contents, and the reasons and reasoning behind human ac-
tion is our source. Of course, this is not the sole explanatory ground, but one that we 
feel is the most relevant, pragmatic, and in a way most interesting for AI design pur-
poses. The difference is that we are not attempting to explain the contents, as such, in 
the source, in the abstract. We are seeking to explain action with respect to a context. 
It also tacitly opens up differences (between subjects), not on the level of general 
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cognitive faculties, but on the level of the mental representations that they have. In 
researching many contexts, the common representation among actors will likely be sat-
urated quite quickly, but the differences will be in the depth and variety of tacit 
knowledge, among other factors. The CM perspective is not about uncovering abstract 
mechanisms behind mental phenomena, but about empirically exploring the context-
specific mental contents, mental models, and other mental representations that, for us, 
are the most immediate explanatory ground for human intelligence in a domain. These 
are, of course, supported or based on a whole host of basic general abilities, but we start 
by abstracting these, rather than the contents. 

Let us circle back to an issue that emerged earlier. From the classical cognitivist 
perspective, the computation metaphor and method was mapped onto the deepest ex-
planatory levels of human cognition. CM does not, or does not need to, follow the idea 
that all facets of human mentality are somehow at base computational symbol manipu-
lation. In fact, it seems more natural to say that the mind computes only when it com-
putes and operates on symbolic structures only when it indeed does so [29]. However, 
that many mental processes can be described computationally is clear, as is the fact that 
significant parts of many mental processes seem to involve the creation and manipula-
tion of symbolic constructs. What seems more likely, and certainly more useful for 
design thinking, is that there is a gradient of face-value applicability of the computation 
metaphor (or mode). For example, the applicability of TM operational logic to human 
(or a particular kind of) computation approximates 1:1. Note here we are speaking not 
even of similarity, but of applicability in the design context. Wells [30] noted how Tu-
ring’s analysis was driven by the pursuit of the essential core in relation to the effective 
computation of a real number by the application of specified rules. In other words, there 
may be conative or affective mental states which are in effect in the real human in the 
process of calculation, but these are largely inessential in terms of the analysis Turing 
was seeking.  

This question cannot be decided a priori, however, in the broader contexts where 
CM operates—and for CM the question is open until decided based on the task and the 
context of analysis. Obviously, the applicability of computation to emotion seems far 
more distant than for computation. Squaring this requires the forced mapping of a phe-
nomenal event to something like a correspondence between inputs and outputs, or some 
other transformation into a symbolic abstract form. This is, of course, the classic func-
tionalist move in cognitive science philosophy [31-33]. Now, discarding the identity of 
emotions as emotions in favor of a functional representation is a forced move owing to 
the computational cognition paradigm, which we do no need to make, philosophically. 
What we do need to accept from it, however, is that if and when an emotional state is 
important for the chosen action of a research subject, the mapping relation awaiting us 
in the mimetic part of the design will demand some kind of symbolic transformation. 
Practically, the emotion as such will need to be investigated in terms of its causes and 
effects. These will often reside in the tacit domain: subconscious intuitions and hunches 
or “bad feelings about that” are cases in point. Thus, whatever the ontological kind of 
the source mental phenomenon may be—tacit, emotional, intuitive, etc.—we know that 
to implement it on a machine, it needs to be explicated and mapped or converted to a 
symbolic form. Boldly put, for CM, the achievements of computational cognitive 
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science become mimetic design methods for us—but not necessarily anything more. In 
fact, they become important precedents for how the mapping operation between the 
source and the target could proceed [34]. The end result of a CM design process would 
of course retain many features of the source and be a kind of model for it as an infor-
mation-processing artifact. For us, however, it makes less difference whether it is plau-
sible as a deep explanation of the behavior of the source as long as the artifact works. 
The criteria are simply different and come from the domain of design, rather than from 
(cognitive) science. It also distinguishes our work from work on cognitive modeling. 
These are not irrelevant and do inform our work, but to make the point crudely, it would 
seem senseless to imitate the limitations or fallibilities of human cognition in AI, as 
must be done in cognitive modeling.  

Djikstra’s [35] critique of mimetics illustrates this well. He stated that mimetic cop-
ying has the unfortunate connotation that one could not thereby improve limited and 
fallible human information processes. This is decisively not our intention. However, 
the danger here is that CM causes designers to fixate on sub-optimal strategies and 
solutions. This is something that we must guard against to see how it plays out empiri-
cally as the method construction proceeds further. Nevertheless, it is clear that AI is 
fundamentally about imitating—or at the very least replacing—human information pro-
cessing. The problem is that this may proceed even more fallibly and in an ad hoc man-
ner in specific contexts, if the source is not an actual expert but the imagination of a 
designer or programmer. Making this link explicit while managing presuppositions and 
allowing for freedom on the implementation level remains a valid path for AI. 

Let us stress again, however, that our approach is not about foregoing explanatory 
depth. Indeed, to explain an action by referring to mental contents in any domain of 
expertise is at first glance an enormously complicated task, especially as common-sense 
knowledge begins to seep in from outside the specific domain. Which branches can be 
pruned and abstracted out is a question that can only be settled on a case-by-case basis. 
It is here that pragmatic design questions, the context of investigation, and the role of 
the designer using mimetics become important.  

3 Design Questions 

The importance of questions in design processes is obvious. Dym and Brown [36] il-
lustrate this by the task of designing a “safe ladder.” From the task immediate questions 
emerge. What is safety? For whom? What should the inclination of the ladder be? How 
much weight should the steps be able to bear? How can slipping be prevented? How 
can movability and stability be reconciled? What is the context of use? Each question 
may inspire further questions and, over the product design and development process, 
many more will be asked and answered [37]—either explicitly or tacitly. Each question 
is a step toward converging the many possible paths in design to some set of design 
problems to be solved, which of course inspires new questions. The goal is really to 
discover the right questions, as well as the right answers. The practical fact is that CM 
operates in the realm of (science-based) design, and the interdisciplinary nature of the 
work demands a kind of harmonization among perspectives. As noted in the 
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introduction, CM can be understood in both a loose and a tight way. Following the 
loosest interpretation, CM offers an approach or perspective for AI design. A tighter 
formulation (which we are attempting here) begins to sharpen the idea towards a 
method or a collection of methods within an approach. CM is not there yet, but parts of 
it are taking shape. The importance of methodological work is clear [38,39] and likely 
to be needed to gain the cognitive information in a form suitable for AI development. 
Along the way, there are many methodological, practical, and empirical questions to 
settle, some of which we will outline below. 

Let us start by addressing a very basic question: what is CM’s relation to theory or, 
more broadly, science? Gregor [40] provides a discussion of some of the background 
issues—although from a different perspective and in a different context. Gregor focuses 
on theory (in information systems, IS), which makes the details of the conceptualization 
ill-suited for our purposes. Nevertheless, with a different interpretation and context, the 
core concepts are quite useful. Gregor outlines a taxonomy of five types of theories:  

1. analysis (says what is) 
2. explanation (says what is, how, why, when, and where)  
3. prediction (says what is and what will be) 
4. explanation and prediction (says what is, how, why, when, where, and what will be) 
5. design and action (says how to do something) 

Is CM a theory? It is clearly not a theory but a design approach. Still, we can identify 
which of the above are most important for this approach. CM is about analysis (of the 
source). It is about explanation (of the source). Finally, it is about design and action 
(how to investigate and analyze the source and how to map it onto a target).  

Naturally, our perspective is theory-laden [41] as we maintain certain presupposi-
tions such as the very existence of information processing as an explanatory level of 
analysis, the centrality of mental contents in explanation of action, and the importance 
of explicating tacit knowledge. Here, they are in the first instance exploratory view-
points or tools, whose value is measured in the extent to which the method or activity 
of CM leads to successful design outcomes. The key question is how this viewpoint is 
communicated across the mimetic process. 

We have prioritized context-specific thinking over general cognitive faculties. First, 
this is due to the presupposition that the contents of particular minds explain their suc-
cess in particular domains. General faculties are of course necessary, but we choose to 
keep this aspect secondary, because it allows for more freedom on the implementation 
level in computers. Thus, generic results (methodological or concrete) of CM may re-
late mostly to the possibility of machine semantics based on human semantics. The core 
question is really how to analyze the source in action and, in a faithful way, abstract the 
mental contents, and further, re-introduce those contents in a computational setting. 
This is where CM has the potential to place the question marks deeper for AI: what are 
the computational equivalents of mental contents? Such questions must be answered in 
practice, somehow. If among those answers emerge new ways of thinking about or 
solving this problem, CM will have in fact made a theoretical contribution to AI dis-
course. However, we choose to proceed via practice (i.e., the design approach way). In 
summary, CM is as a design method normative rather than theoretic. Technical 
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artifacts—including the results of CM—are judged on normative grounds [42]. How-
ever currently, it is too early to specify the criteria by which the method or its’ results 
should be evaluated. Simple performance may lead to guiding the method on the wrong 
path, and it is not yet clear where and how exactly the perspective will deliver most 
value. Two distinct starting points in computing history may illustrate this point. 

One question, which relates to design goals, could be called the starting point of CM. 
The history of computing shows two related but subtly different starting points for the 
relationship between natural and artificial intelligence, which we can call the AI and 
symbiotic augmentation approaches. The history of computing and computer design 
has several mimetic or analogical mapping examples. Turing [11] is of course one on 
them, while Shannon’s mapping of logic to circuitry provides another. It is not exactly 
CM, but on the other hand, logic is, despite whatever platonic qualities it may have, in 
the end a mental phenomenon. We have previously [15] called the McCulloch and Pitts 
[43] paper on neural nets an example of biomimetics, which seems plausible on the one 
hand, given that it is focused on idealized versions of biological, physical neurons. 
However, the example is more complex, given that McCulloch and Pitts were mapping 
logic to these idealized neurons and in fact looking for and proving their equivalence 
(equipotentiality) with TMs. What we may call the AI-approach to computing seeks to 
match or surpass human information processing in some chosen domain. When consid-
ered carefully, one can see that even the most powerful or quasi-autonomous AI sys-
tems today are, in the final analysis, mappings from human thought to computational 
systems. It simply that the mapping here is from the thinking of the designer to the 
computer, rather than from the thinking of a domain-expert via a designer to the com-
puter. Be it hard-coded or learning algorithms, it seems clear that all AI systems are in 
the final analysis actually displacements of human intelligence.  

A related but noticeably different strand in the history of computers is what we might 
call symbiotic augmentation [1,44,45]. This is related more to the human-computer in-
teraction side of AI design. The spirit of this branch is that, rather than replace, we 
should seek to expand and increase the power of human thinking by complementing it 
with the strengths of computers. Of course, sometimes to increase the power of human 
thought, parts of it should be replaced, so the difference between the AI and symbiotic 
augmentation approaches is not hard and fast.  

The mimetic approach is, in principle, naturally suited to both AI and symbiotic aug-
mentation perspectives. However, our answer to the question of which approach to ex-
plicate for the rest of this paper is the AI-approach. We start from the premise that in 
(cognitive) mimetics, there exists a source that can, by way of information processing, 
exhibit success in a task that we wish to implement on a computer. Our design goal is 
to construct a computational system that is equally successful in the task by the mimetic 
method of taking inspiration from human information processing. The scope of mimet-
ics here is to develop autonomy for the digital artifact within the bounds of the task. In 
practice, however, the limitations of digital intelligence mean a co-habitation or co-
working between artificial and natural information processing. One here notices the 
value of holding the symbiotic perspective in mind as well. It may be best to consider 
the symbiotic perspective in a way parallel to the AI-approach, but in terms of 
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methodology, they are likely to be different, so for the sake of scope we will focus on 
the AI approach here.  

3.1 Research 

Let us next present the way we have approached the development of the method in 
terms of questions. Let us assume that we have already been presented with a task con-
text: operators of a paper machine. The company is seeking to find AI and/or automa-
tion potentials in the range of tasks that they perform in addition to ordinary work. This 
is on-going research, so we will discuss the findings on a rather broad level. On a gen-
eral level, our first task is to identify a system of regular actions [10]. This is to be 
understood as a joint cognitive system [46], consisting of multiple actors interacting 
with technologies to complete overall tasks and goals. The natural question that follows 
is “who?” followed by “what?” and informed by a “where?” The who-question here 
refers to identification of those individuals who are involved and skilled in the tasks, 
giving us research subjects. The what-question refers to a description of the task: what 
they are doing, why, and how? The where-question is an approximation of contextual 
issues: where is the task to be done, by what means, and so on. Practically, it will be 
necessary to have someone with in-depth domain knowledge to facilitate translation 
and understanding between research subjects and researchers.  

Next, we must ask the question of how and combine it with a distinct sense of the 
why. Essentially, having identified a system of regular actions and having sketched out 
some of its features, CM needs to penetrate deeper into the actions themselves. On a 
high level, action can be described by five structural elements: goal, agent, artifact 
(tool), target, and context [10]. Note that, in a particular sense, we have already an-
swered these questions in our preliminary sketch of the research context, but the same 
elements can be used to probe more detailed questions with respect to very particular 
actions. For example, we could now begin to ask why did the operator increase the 
RPM of the pump at time T? We can see that the agent used a tool (a DCS in this case) 
to alter the state of a target (the pump RPM). To understand this action, we need to 
know what goal this action served to accomplish, what elements of the state of the 
system it affects, how those states relate to the operator’s goals, and what the contextual 
issues that make this action reasonable at this stage are. These questions inspire further 
questions and begin to uncover the mental operations and contents that CM is seeking.  

How can we gain information about mental contents for specific tasks and contexts? 
The answer must be empirical, so we have made use of observation and think-aloud 
protocols to gain research data. Here, and especially in follow-up interviews, question-
ing becomes a practical necessity. The idea is to probe and bring to the surface tacit 
knowledge concerning chosen actions. This is where depth of analysis is gained. This 
means that often the operators cannot provide an explanation for all of their behavior, 
although the behavior is correct and highly efficient. Thus, in research, we must trian-
gulate between overt explanations from subjects, their behavior, verbal protocols, and 
contextual facts. The explanatory depth from CM emerges from discovering parsimo-
nious content-level explanations for action. It is a content-based answer to a why-ques-
tion.  
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3.2 Research Example  

An example will illustrate this better. Let us observe that a human operator in a factory 
responds to an event by some series of actions. For convenience, let us say that the 
event is mapped to a meter reading, and the actions map to a set of remotely controlled 
pumps and valves. Cognitively, the meter reading is interpreted (mapped) as an event 
of some type by the operator. In fact, the operator is answering a tacit series of ques-
tions: what I am seeing, what does this mean, do I need to intervene, and by what op-
erations can I do so—among others. The whole process is so efficient in an experienced 
operator that mere observation would likely only give us event-action pairs. The prob-
lem with expertise is that it seems to increase as a function of the degree to which to 
knowledge and skills become transparent (tacit) for the expert. Here is where iteration 
becomes important. Assuming we have observations of events and corresponding ac-
tions plus fragmented thoughts expressed in the protocols, to grasp the structure and the 
mental contents corresponding to action we need first to identify regularities and then 
to follow up with qualitative interviews. The purpose is to tune in to specific actions to 
discover their meaning. As stated, the operator’s thinking seems to fit a kind of tacit 
self-questioning process, and thus questions like “why did you choose this action” or 
“why was this event significant” trigger outpourings of tacit knowledge. The operators 
can often answer these questions if asked. 

The problem with researching actions in complex and dynamic settings is that it is 
difficult to establish a stable point of reference, such as is possible in many games like 
chess. Thus, discovering the “rules” and goals of the “game” is not definitively given 
beforehand, but must be discovered, and indeed is a major part of the results of the 
research. In practice, to establish a stable foundation we have searched for the follow-
ing: goals, the space of possible measurements, and the space of possible actions. This 
triangulation provides one method of attack for the problems of relevance and action.  

We have approached operator behavior in terms of goal seeking. This means that 
action and behavior can be explained in terms of reducing the distance between the 
current state of the system and a goal state. Events and observations are evaluated 
against deviations from this state or the path toward that state. This gives the behaviors 
of the operators an episodic structure: events occur and are dealt with if they violate the 
goals of the operator, which can be identified with a system state.  

The state of the system maps onto measurements. For the measurements to make 
sense, the operator must have a mental model of the system, in which measurements 
map onto certain aspects of the system. On the face of it, the objective set of measure-
ments is large and internally related. The cognitive answer to the question we are seek-
ing is which measurements are relevant, which not, and when. The measurements 
simply map to facts about the system state, but how they relate to each other and to the 
state the operator is seeking is an open question before research. The goal is to discover 
relevance-based subsets of the measurements that can be explained by goals, mental 
models, and tacit knowledge.  

It is often possible to compute the space of possible actions at least on the level of 
the interaction points between operator and machine. This could be thought of as the 
list of “moves” available to the operator. What we must seek to explain as a third part 
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of the explanatory structure are the principles of the action selection. A goal or a goal-
state maps onto the measurements. The moves, on the other hand, map onto system 
states and measurements. Thus, only subsets of moves (and their values) are either rel-
evant for influencing the system state at some particular time, or appropriate. Again, 
we can foresee the problem of tacit knowledge here. The fact is that certain actions may 
have consequences beyond some small part of the system. Thus, the path towards the 
goal state chosen by the operator is likely constrained, or guided, by tacit knowledge of 
the interrelationships within the system and instantiated in a mental model of the sys-
tem.  

Triangulating and iterating between these perspectives is one method of uncovering 
the structure, properties, and contents of the cognitive system that currently keeps paper 
machines operational in our research context. Here we presented some viewpoints on 
how the method might be specified and some of the ways in which information can be 
gathered and classified. For us, this would still be a kind of initial sketch in terms of the 
explanation of actions. It provides a core framework in which to ask further questions. 
Some of those questions should come from design. The next stage is to establish a map-
ping relationship and step into the world of possible design solutions.  

3.3 Implementation and Design 

Next, we must ask the question of how—this time in a different sense, because we are 
now concerned with the mapping or implementation relation. So far, this part of the 
equation is speculative, as we have not engaged with AI designers or programmers. Let 
us assume that we have now established at least a direction for the idea of the tasks we 
wish to realize in AI. Our task going into the design phase would be to establish a 
principal solution, the key problems, and a set of conceptual design variations that an-
swer those problems [39]. This is where the problem and solution spaces [38] should 
become informed by research. One may notice that we have already tried on, as it were, 
the designers’ shoes by tacitly imagining a halfway abstraction between the source and 
the target. It seems almost impossible to think about these things without simultane-
ously imagining possible solution patterns [38]. This is not necessarily a problem, but 
something to be aware of, given Djikstra’s [35] critique (for example) and the danger 
of fixating on sub-optimal solutions.  

Our content-specific presupposition carries over to our presuppositions on design. 
Visser [47] summarized the problems with an oversystematic and formal approach to 
design. Design problems of creating paper machine AI are no less domain-specific than 
the paper machine operators’ skills and knowledge themselves. Indeed, part of the 
whole point of cognitive mimetics is to understand the specificities that get introduced 
by the design context, the constraints of computational systems, and human thinking. 
Thus, the design process should not be too rigidly defined normatively, since actual 
design (or research, or any creative thinking) processes will not follow those patterns 
anyway. Too little specification on the other hand, and it becomes impossible to build 
the mimetic bridge and common understanding between different actors.  
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3.4 Design Problems and Representations 

For Cross [38] a successful design process involves the skillful management of the 
problem space and the solution space. CM is intended to make contributions to both. 
We follow Visser [47] in noting that while design involves problem-solving, it not only 
problem-solving. Equally important are problem-finding, problem-specification, prob-
lem-structuring and re-structuring.  Furthermore, some problems can be solved by rou-
tine methods, and this applies especially to AI and to software development more 
broadly. For instance, software patterns are a subfield of software development on solv-
ing recurring issues by applying known patterns [48]. Here is where intentional man-
agement of the problem space and the solution space becomes important. If a problem 
found in research has a known solution pattern in AI, there may be no need to invent 
something new by mimetic means. This is a likely scenario in many real-world settings. 
Nevertheless, it is fully possible that we may want to attempt to solve it by a new way 
for the sake of discovering a new pattern for solutions.  

From another perspective, identifying and analyzing the system of regular actions 
[10] that is the source (and in a way the eventual target) of the mimetic process can 
uncover the structure of the problem space in many ways. First, we will by necessity 
uncover an expert-based understanding of the problem domain. It uncovers the real 
problems. This already scopes and ties the intended design to actual human action and 
a naturalistic picture of the domain. Second, by in-depth analysis, the empirical problem 
spaces (as they complete their tasks) of the operators become a direction towards pos-
sible technical solutions in AI. Just as there are patterns of software solutions [48], so 
there are (context-specific) patterns of solutions in human action. Typically, intelli-
gence demanding tasks are such that they can be achieved in many different ways and 
the intelligent way is dictated partly by contextual issues. The variety of strategies for 
succeeding in tasks give direct inputs for possible technical solutions to the problems, 
which can be evaluated on normative or pragmatic grounds. One can even imagine 
collecting the patterns in human action to libraries for a kind of context-specific ontol-
ogy of action which when abstracted (and connected to software solutions) could be 
employed across contexts. 

Design processes, including problem and solution spaces, can be understood in terms 
of representations [47]. Namely, the design process is cognitively speaking a series of 
evolving representations (mental and concrete) that iteratively seek to specify the re-
quirements, functions, objectives, and constraints for the artefact in an increasingly spe-
cific manner. This “arc” from abstract to concrete is, in mimetics, an arc from concrete 
to abstract and back to concrete, following a gradient from research subjects to design 
to embodiment in a computer system – and iterating over this arc as necessary. This 
“arc” presents some issues in terms of establishing shared and meaningful representa-
tions across the mimetic design process, which is in the end by necessity a joint venture 
among various fields of expertise, from human cognitive research to design and to pro-
gramming.  

Perhaps most clearly this danger will manifest if there is only a superficial under-
standing of what research is uncovering. There may be no silver bullet for this problem, 
as we do bring forth concepts from cognitive science that provide a framework for our 
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thinking. But the thinking and the background of, for example, programmers, is differ-
ent. Thus, it will be an interesting question to see how the mapping relation succeeds 
and what factors may cause or hinder success. The assumption is that the more deeply 
the programmer understands the source, more deep and interesting the solutions will 
be. For the broader development of AI, we can hope that the questions marks can be 
put deeper by this method. Put more pragmatically, there will be a “user” of the method, 
and in the very least, a user of the results of the research who is likely to come from a 
different field than cognitive science. Floridi [7,49] has illustrated this by his idea of 
Level of Abstraction (LoA). It can be interpreted simply by saying that individuals with 
different backgrounds “see” different things when looking at the same object or phe-
nomenon. In our case, it means that one LoA (of a LoA) is to be iteratively mapped 
onto another LoA. Put another way, there is the LoA that the source has (the operator 
in the paper mill), there is LoA which the mimetic research takes on the operators’ LoA, 
which needs to be translated to the LoA of a programmer-designer who, in addition, 
creates a machine-LoA that structures the program. Establishing these translations and 
mappings is a key part of finding success with CM. Essentially, the method will fail if 
the mapping relation fails. Thus, it is important to consider, as a methodological design 
question, the kinds of mental activities that mimetics invokes (or should invoke) in 
practitioners, and the foremost is thinking by analogy [50,51]. Indeed, CM can be 
thought of as a relative of design by analogy [52-54]. Moreno and colleagues’ [54] 
study is promising, in terms of the benefits of analogical thinking on design results may 
have, but much more thinking will have to go into if and how this benefit can be realized 
in cognitive mimetics.  

Finally, the question of multiple realizability and the possible ways in which cogni-
tive processes can be implemented on machines remains an important theoretical issue 
for CM. Research, design, and practice have a common ground in this respect. 
 

4 Conclusion and future directions 

The impetus for this article was the need to specify and answer methodological ques-
tions in cognitive mimetics. One may read this as a report on a work in progress. The 
idea of the mapping relation seems to be an apt tool for surfacing major issues in the 
methodology. First, we discussed some historical antecedents and attempted to fence 
our idea with respect to some major ideas in cognitive research and AI. As noted, on 
the loosest interpretation, cognitive mimetics is simply about giving a name to an ex-
isting phenomenon, the fact that taking inspiration from human thinking has played a 
major role in AI and computer science history. From this simple premise, however, 
many questions emerge, and the purpose of this paper was to first state some of the 
questions and where possible answer them from our perspective. The point is that to 
that to make progress, these questions must be answered in some way. They provide 
compass points on an issue that involves enormous complexity if approached without 
the right questions. The way we have answered the questions shows the outline of a 
particular path towards AI solutions based on human cognition. This is not the only 
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path – but it is a path we feel makes sense and gives a fresh perspective on the issues. 
It is also not necessarily the easiest path, indeed the specificities that are introduced by 
the mapping of human thinking to computational systems introduce a host of issues, the 
least of which is not the ability for different experts to achieve mutual understanding. 
Many of the questions are such that they can’t be decided a priori by speculating on 
them in a reflective manner. Much work remains to tackle these issues and they can 
only be done by iteration in practice by combining research and design. 
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