
Sini Vänskä

CONTINUOUS DEVELOPMENT OF AI: ADOPTION
CHALLENGES

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2021

ABSTRACT

Vänskä, Sini
Continuous development of AI: Adoption challenges
Jyväskylä: University of Jyväskylä, 2021, 97 pp.
Information Systems, Master’s Thesis
Supervisor: Abrahamsson, Pekka

The topic of this master's thesis is the challenges related to the development of
artificial intelligence when development takes place using the method of contin-
uous software engineering. Technologies involving artificial intelligence are
widely used in various industries and are expected to grow in importance in the
future. However, the development of artificial intelligence differs considerably
from traditional software and system development, as the purpose of the current
program is to create an artificial intelligence system that predicts the future. The
development of artificial intelligence is a step-by-step process in which the con-
cept of an artificial intelligence system created is taught to make predictions
about test data, which is implemented in the existing system. The business envi-
ronment is rapidly changing, as innovations, technologies, and practices can rev-
olutionize industries and processes. The frameworks used to develop artificial
intelligence have not undergone the same evolution as traditional software and
systems development, which have evolved from so-called heavy development
models to agile development models. Continuous software engineering is the lat-
est agile method in software development that aims to make the product lifecycle
one continuous deployment cycle. The purpose of this dissertation is to specify
the challenges that the use of continuous software engineering in the develop-
ment of artificial intelligence may pose. The study was conducted as an empirical
qualitative interview in which participants worked on artificial intelligence ap-
plication development projects. The study results show that the introduction of
continuous improvement is associated with the challenges posed by the nature
of artificial intelligence and the communication of developers.

Keywords: artificial intelligence, continuous software engineering, agile, agile
development

TIIVISTELMÄ

Vänskä, Sini
Tekoälyn kehittäminen jatkuvalla tavalla: käyttöönoton haasteet
Jyväskylä: Jyväskylän yliopisto, 2021, 97 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Abrahamsson, Pekka

Tämän pro gradu tutkielman aiheena on tekoälyn kehittämiseen liittyvät haas-
teet, kun kehittäminen tapahtuu jatkuvan kehittämisen menetelmää käyttäen.
Tekoälyä sisältäviä teknologioita käytetään laajasti eri toimialojen prosesseissa,
ja tulevaisuudessa sen merkityksen oletetaan kasvavan. Tekoäly kehittäminen
eroaa kuitenkin huomattavasti perinteisestä ohjelmisto- ja järjestelmäkehityk-
sestä, sillä nykyhetkessä toimivan ohjelman sijaan tarkoituksena on luoda tule-
vaisuutta ennustava tekoälyjärjestelmä. Tekoälyn kehittäminen on vaiheittainen
prosessi, joissa luotu tekoälyjärjestelmän konsepti opetetaan tekemään ennus-
tuksia testidatasta, jonka jälkeen se implementoidaan varsinaiseen todelliseen
järjestelmään. Nykyinen liiketoimintaympäristö on nopeasti muuttuva, sillä uu-
den innovaation, teknologiat ja toimintatavat voivat mullistaa toimialoja ja pro-
sesseja. Tekoälyn kehittämiseen käytetyt viitekehykset eivät ole käyneet läpi sa-
manlaista evoluutiota kuin perinteisen ohjelmisto- ja järjestelmäkehityksen vas-
taavat, jotka ovat kehittyneet niin sanotuista raskaista kehittämismalleista kette-
riin kehittämismalleihin. Jatkuva kehittäminen on ohjelmistokehittämisen uu-
simpia ketteriä menetelmiä, joka pyrkii tekemään tuotteen elinkaaresta yhden
jatkuvan käyttöönoton syklin. Tämän tutkielman tarkoitus on eritellä haasteita,
joita jatkuvan kehittämisen käyttö tekoälyn kehittämisessä voi aiheuttaa. Tutki-
mus suoritettiin empiirisenä laadullisena haastatteluna, jonka osallistujat työs-
kentelivät tekoälysovellusten kehittämisprojekteissa. Tutkimuksen tulokset
osoittavat, että jatkuvan kehittämisen käyttöönottoon liittyy erityisesti tekoälyn
olemuksen ja kehittäjien kommunikoinnin aiheuttamia haasteita.

Asiasanat: tekoäly, jatkuva kehittäminen, agile, ketterä kehittäminen

FIGURES

FIGURE 1 System development life cycle (Valacich, George & Hoffer, 2004)12

FIGURE 2 Waterfall process model life cycle (Balaji & Murugaiyan, 2012)13

FIGURE 3 Simplifieid modeling of iteration cycles (Larman, 2004).16

FIGURE 4 Extreme Programming planning and feedback loop (Wells, 2001)18

FIGURE 5 Simplified SCRUM cycle (Schwaber, 1997) ..21

FIGURE 6 Continuous software engineering pipeline (Fitzgerald & Stol, 2017) 32

FIGURE 7 Essentializing process (Jacobsen et al., 2019) ...34

FIGURE 8 Simple Programming Practice Described Using Essence Language
(Jacobsen, et al., 2019) ...35

FIGURE 9 Agile Essentials - Overview of Practices (Ivar Jacobson International
SA, ver. 2018.09) (practice library) ...47

FIGURE 10 Simplifyed AI development process based on the description of the
interviewees ...81

FIGURE 11 Main categories and causal relationships in the Greenfield Startup
Model (Giardino, et al., 2015) ..88

TABLES

TABLE 1 Agile Essential elements (Jacobsen et al., 2019)48

TABLE 2 Interviewees and their work titles ...59

TABLE 3 Assigned codes and their occurrences within the data60

TABLE 4 Empirical conclusions formed from the data...77

TABLE 5 Primary empirical conclusions formed from the data............................78

TABLE 6 Context-enriched conclusions ..79

TABLE 7 Practical implications of primary conclusions...81

TABLE 8 Primary empirical conclusions and their relation to existing research82

https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446714
https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446716
https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446717
https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446718
https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446720
https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446722
https://d.docs.live.net/2ec76612283f8e00/Työpöytä/Pro%20gradu%202707.docx#_Toc80446722

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
FIGURES & TABLES

1 INTRODUCTION.. 7

1.1 Research questions... 8

1.2 Scope of the research ... 9

2 SYSTEM DEVELOPMENT PROCESS.. 11

2.1 System development phases .. 11

2.2 Heavyweight and lightweight methodologies 13

2.3 Extreme Programming .. 17

2.4 SCRUM .. 20

2.5 Scaled Agile Framework ... 23

2.6 DevOps .. 26

2.7 Continuous software engineering ... 30

2.8 The Essence of Software Engineering ... 33

3 ARTIFICIAL INTELLIGENCE .. 37

3.1 Definitions of artificial intelligence ... 38

3.2 Development of AI .. 40

3.3 Implications of artificial intelligence ... 41

3.4 Problems regarding AI development process and the developers 43

4 RESEARCH FRAMEWORK: CONTINOUS DEVELOPMENT OF AI 46

4.1 Current tools and usage of mindsets .. 49

4.2 Business strategy and planning ... 50

4.3 Development .. 50

4.4 Operations... 51

4.5 Innovation ... 52

5 RESEARCH DESIGN .. 54

5.1 Goals of the empirical research .. 54

5.2 Data collection .. 55

5.3 Data analysis ... 57

6 EMPIRICAL FINDINGS... 59

6.1 Overview ... 59

6.2 Oversight of used tools and mindsets .. 60

6.3 Business strategy and planning ... 63

6.4 Development .. 68

6.5 Operations... 71

6.6 Improvement and innovation .. 74

6.7 Summary ... 77

7 DISCUSSION ... 80

7.1 Practical implications .. 80

7.2 Theoretical implications .. 82

8 THANK YOU AND GOODBYE ... 86

8.1 Answers to the research questions .. 86

8.2 Limitations .. 87

8.3 Further research ... 87

REFERENCES.. 89

APPENDIX 1 ... 94

When a human child is born, they will slowly learn how to touch their toes, how
eating dinner eases the feeling of hunger, and how pressing a light switch turns
on the room’s lights. We do not always even always consider the smallest of our
daily tasks to be intelligent. Many of us “automatically” start making coffee after
waking up and do not need to think about our actions, while pouring water into
the coffee machine and measuring the ingredients. However, completing the
preparation of morning coffee or learning a new task is a complex process in the
human mind that might seem impossible to replicate with a lifeless object. Yet
this idea that inanimate objects doing human tasks have fascinated people for
many centuries. However, it has been only a few decades that we have been able
to create the first inventions that can complete our actions that required the in-
volvement of the conscious human mind before.

Computer systems have a significant role in our everyday life, both in work
and in leisure. For example, we use a smartphone for calling, checking email, as
a calendar, and for watching streaming services, to name a few. Before the prod-
uct can be used in our devices, each application and software has gone through
a complex, multi-phased development process, where an idea evolves and devel-
ops into a usable product. This is by no means an easy process to complete: The
software products are more and more complex and distributed globally. The us-
ers, both people, and organizations need customized products that fulfill their
individual needs, and the developers need to adapt to the rapidly changing
minds of their customers. On top of this, the competition between the software
producers is tough. One's development processes need to be effective and effi-
cient to keep up with the competitors, or else, they might lose the race. System
development has changed from a static development process with a clear goal to
a vaguer group of tasks that is open to changes.

Continuous software engineering is a recently evolved development prac-
tice, where the development happens in a stream of actions, that combines the
development with business strategy and planning, and operation (Fitzgerald &
Stol, 2017). This research aims to study if it is possible to combine continuous
practices with the development of artificial intelligence. Artificial intelligence is

1 INTRODUCTION

8

developed in three separate ways. The most common is supervised learning
where the training data and the “right answer” are accessible. In unsupervised
learning, the systems learn by trying to find the common structure in the data on
its own. The third, so-called reinforcement learning means that the system
evolves by learning in a sequence that leads it to a given goal. (Mikkonen, et al.,
& Männistö, 2021). Still, the process requires a lot of testing and data sets created
for the training, and still, the product can fail to fulfill its requirements, and the
resource estimation is difficult (Srinivasan & Fisher, 1995).

Artificial intelligence has become an integrated part of our daily lives, alt-
hough we are not always aware of it. It has a potential to free us from a variety
of routine tasks, and thus enable more automatic operation and change the in-
dustry processes. However, the modern business environment requires the abil-
ity to adapt quickly to changes, and this can be difficult with structured develop-
ment processes that are used to train systems. Some ideas of continuous software
engineering are adapted in the development of artificial intelligence, but there is
little research done on this area. This research studies the challenges occurring
when adopting continuous software engineering methodology in the develop-
ment of artificial intelligence.

The following chapters present the literature review that explains the con-
cepts of continuous software engineering and artificial intelligence. After the lit-
erature review, the conceptual framework is formed to provide the foundation
for analysis. Next, the chosen research method is presented. This is followed by
examining the empirical findings and a discussion that connects the empirical
findings to the theoretical background. In the final chapter, the study is con-
cluded with an answer to the research question, a discussion on the study's limi-
tations, and a proposition of future research opportunities.

1.1 Research questions

Continuous software engineering, and the agile models that influenced its emer-
gence, have been extensively studied, but the concept is evolving as changing
technology creates new-kind nuances and requirements for system development.
The research also looks at other Agile models. This provides an understanding of
the tasks different development models include, as well their opportunities and
weaknesses. The goal is to understand what continuous means. Later this is in-
corporated into the artificial intelligence context. The goal of this study is to un-
derstand the challenges of adopting continuous software engineering method in
the development of AI. This forms the research question:

• What are the challenges associated with the continuous software engineer-

ing of artificial intelligence?

9

The answer this question, an empirical research is conducted later in this study.
To provide the scientific background for the research, two additional questions
have been used. The first additional research question of the study is:

• What is agile and continuous system development?

The research question is answered by reviewing the scientific literature and
research articles on the topic, considering the generalizability of the studies ex-
amined. The answer to the research question seeks to emphasize the introduction
of selected design models and the related challenges.

As mentioned earlier, the purpose of the study is to investigate the applica-
bility of continuous improvement in the development of artificial intelligence.
The second additional research question is:

• What is artificial intelligence and how it is developed?

The research reviews concept of artificial intelligence, the development
methods, and some of its practical implications. Ethical issues, as well as theoret-
ical areas of artificial intelligence are excluded, due to the scope of the topic. Un-
derstanding the continuous engineering of artificial intelligence is especially im-
portant for those working with the development of artificial intelligence, machine
learning, automation, or other similar technologies. The importance of automa-
tion has been growing in recent years, and more and more people are working
with systems that utilize it. If the processes related to development are under-
stood, making changes is flexible if the business environment requires it.

Literature part of the research is carried out as a systematic literature review.
Literature sources are selected according to their relevance, expertise, reliability,
and freshness. To assess the reliability of the sources, the aim is to check through
the publication forum. Sources are searched for in the ACM Digital Library, AIS
Electronic Library, Google Scholar, IEE Explore, and JykDok electronic data col-
lections in data processing and information systems science. The search terms
used are: “continuous software engineering”, “Agile principles”, “Artificial In-
telligence”, and “continuous software engineering of artificial intelligence”.

1.2 Scope of the research

The literature review addresses various systems development methodolo-
gies, with a particular focus on continuous software engineering as well as agile
models. The information obtained from selected methodologies are linked to the
development of artificial intelligence. In addition, the literature review does not
take a perspective on what kind of artificial intelligence is developed or what
kind of industry it is applied to. Current approaches to the development of

10

artificial intelligence will be addressed at a basic level to understand the general
challenges of applying continuous and agile development models. Therefore, this
provides more opportunities for the application of the obtained information, as
well as for further research. Little research has been done on the topic now, so
there is a need for further research in the future.

The research examines applying continuous software engineering in the AI
development, and the challenges occurring with the adoption. The research
model created focuses on the application of the continuous practices, using es-
sentializing toolbox in addition for the integration of the practices into the devel-
opment of artificial intelligence. The research does not consider on ethical issues
related to the development of artificial intelligence. The effects of the implemen-
tation of artificial intelligence, on people's work motivation or through organiza-
tional structures is not examined. As noted, the topic of the study has received
little research. Continuous software engineering across organizational units is
relatively new, although ideas related to continuous activities, such as continu-
ous integration or continuous planning, have gained some attention. Due this,
the literature review also seeks to highlight the ideas presented in other agile
models, to create a holistic picture of the phenomenon.

11

First chapter of the literature review goes through the different system develop-
ment methodologies to better understand the development of digital products.
Information systems refer to "a mechanism used for storing and retrieving an
organized body of knowledge" (IEEE std 610 1991, 106). Information system devel-
opment is a process in which the goal is to produce a technology that fulfills the
user's needs. Furthermore, according to Welken (1983), information systems de-
velopment is a change process taken focused object systems in an environmental
setting by development to achieve or maintain objectives. The software is one
element of an information system. Multiple development phases occur to pro-
duce a usable software product, as the idea has evolved to software on our com-
puter or other devices. This chapter explores the information system develop-
ment process and different methodologies used to achieve different goals at-
tached to the development.

2.1 System development phases

Information systems development is not just coding software features or pro-
gramming with Java or Python. It is complex progress that starts from the idea
and usually ends with to finished product. Lyytinen (1987) describes information
systems development as an organized collection of concepts, beliefs, values, and
normative principles supported by material resources. System development and
software development are sometimes used as a synonym, and some develop-
ment practices do limit in which context its activities are used. Shortly, a system
is a group of objects that interact, and software is technology in which a computer
executes numeric patterns. Software engineering combines engineering tech-
niques with software development practices and moves from the overall con-
cepts to the more scientific approach. Software project means the development
process of a software product for the customer. Each project has its specific goals,
and the team carries them out. Even if each software project is unique, according

2 SYSTEM DEVELOPMENT PROCESS

12

to Cotterell and Hughes (1995), software projects usually consist of the following
phases:

• project evaluation

• planning

• requirements analysis
• specification

• design

• coding

• verification and validation
• implementation

• maintenance and support

The way the development process execution may vary, but most software

projects include the phases listed above. However, some methods highlight some
steps more, but others will have less attention. Pressman (1994) states that soft-
ware engineering methods enclose different tasks. These include project plan-
ning and estimation, system and software requirements analysis, data structure
design, program architecture and algorithm procedure, coding, testing, mainte-
nance. Even if the executed activities may vary, the purpose is to achieve the
unique objective within time, cost, and performance metrics.

 There are many different approaches when it comes to systems
development. Therefore, it can be challenging to define a unified journey for a
development process. The system development life cycle describes the
development, implementation, and retiring information systems through a
multistep process in several phases: planning & selection, systems analysis,
systems design, and systems implementation & operation (Valacich, George &
Hoffer, 2004). After product implementation, the life cycle may end but can also
be revisited several times. At some point, the life cycle end to product disposal.
Figure 1 presents the typical system development life cycle, described by
Valacich, George, and Hoffer (2004).

FIGURE 1 System development life cycle (Valacich, George & Hoffer, 2004)

13

2.2 Heavyweight and lightweight methodologies

The first information systems were created in the 1950s, and as the role of tech-
nology has grown over the years, so needs different information systems. Meth-
odologies help to find the right ways to develop products that are as functional
as possible. However, the business and customer needs and requirements of the
systems have changed over the years. Thus, development practices have also
changed and evolved, as they do nowadays as well. Therefore, the concept of
methodology is defined in the information systems context in a mixed way. The
word methodology means the science of method, a treatise, or dissertation
(Blokdijk & Blokdijik, 1987). Furthermore, this materializes in one or more meth-
ods. A method is a systemic process, technique, or mode of inquiry employed by
or proper to a particular discipline or a body of skills or techniques (Blokdijk &
Blokdijik, 1987). Two or more practices to form a method. A framework means
adapting a previous memory structure, a frame, to the new situation (Minksy,
2019).

So-called heavyweight methodologies are considered traditional for infor-
mation system development (Akbar et al., 2018). These methodologies date back
to the late 1960s. The models fulfilled the early development needs and require-
ments at the dawn of the development process. Furthermore, they served as a
base for the latest methodologies and models that have evolved over the years
(Petersen, Wohlin & Baca, 2009). Activities specified by the models include plan-
ning, analysis, design, and programming (implementation) (Fitzgerald & Stool,
2017). The heavyweight methodologies present a planned process in which se-
quential series of outlining requirements are deployed. The orderly process is
predictable and, in that sense, effective (Akbar et al., 2018). An example of heav-
yweight methodologies is a waterfall process model, developed in the 1970s. The
model is presented in Figure 2. below.

FIGURE 2 Waterfall process model life cycle (Balaji & Murugaiyan, 2012)

14

The heavyweight methodologies define a connected development sequence
that details the plan for the development process. In addition, their characteristics
are document orientation, process orientation, and tool orientation (Akbar et al.,
2018). The heavyweight methodologies rely on large teams with a command-
and-control culture that uniforms the organization. Due to the linear nature, the
heavyweight methodologies predict the process and have a goal set in advance.
As a result, the project becomes profitable when implemented at the end stages
of the project sequence (Akbar et al., 2018). Thus, profit forecasting helps to plan
project actions and predictability of return. Overall, heavyweight methodologies
are most successful when the project environment is unstable, or the develop-
ment project is large and complex (Akbar et al., 2018).

Even if heavy methodologies have many advantages, they do not exist with-
out challenges. For example, customers do not necessarily have a clear product
in mind when the development project starts, or there can be changes in the cus-
tomer business environment. Also, in the field of technologies, groundbreaking
innovations can emerge on short notice. Nevertheless, the changing requirements
of the development project require rework and re-testing (Petersen, Wohlin &
Baca, 2009). In this regard, heavyweight models are often slow and inflexible (Ak-
bar et al., 2018), therefore, not suitable for the change. Thus, this might affect the
quality and the budget of the work in process and cause delays. Furthermore,
because the number of development cycles is limited, the change of the require-
ments is discouraged with heavyweight models. Due to this, the product might
not correspond with the changed needs of the customer.

Due to the attributes such as rigidness, heavy documentation, and compre-
hensive upfront planning, heavyweight methodologies have become less attrac-
tive to software developers. New models, so-called lightweight methodologies,
approach development as an iterative and incremental process. These ideas are
also known as agile methodologies or iterative approaches. Agile software devel-
opment methodologies rose after the publication of The Agile Manifesto in 2001
(Beck et al., 2001). The Agile Manifesto presented a new, customer-oriented, and
effective way for development. Agile offers a dynamic approach and more adapt-
able ways, as building the system is done in small intervals. Those allow accom-
modating new business needs as they surface. The Agile Manifesto defines four
center values for agile development, and Beck et al. (2001) describe them as:

• Individuals and interactions over processes and tools

• Working product over comprehensive documentation
• Customer collaboration over contract negation

• Responding to change over following the plan.

Four center values create a base for many lightweight models, and they shift
the focus from planning, heavy documentation, and schedules to solution mak-
ing. Lightweight models adapt to changes with less struggle and customer needs
because they do not document the process or stiff protocols. Therefore, software
development becomes more people-oriented, has small planning phases, lessens

15

the need for documentation, and makes accepting changes easier (Akbar et al.,
2018). Akbar et al. (2018) have defined lightweight methodologies:

• People-orientation: Favor people or customer over process and tech-
nologies.

• Adaptive: Allow changes to requirements and the status of the pro-
ject.

• Conformance to actual: Treat conformance as the actual value.

• Balancing flexibility and planning: Plan steps all to way for reaching
the goal and therefore, planned period of the future may vary.

• Empirical process: Use empirical ways in the development.

• Decentralized approach: project-related decision-making takes place
in teams, and management is not actively overseeing the develop-
ment process.

• Simplicity: Simple tasks are easier to produce and change

• Collaboration: The developers are described as being agile, knowl-
edgeable, collocated, and collaborative, and work with a goodwill.

• Small self-organized teams: Project aspects are communicated to the
team and the team choses the best was to achieve their mutual goals.

Agile methodologies have an approach that favors people, and the success
depends on the agile team members, and one success factors are developers,
stakeholders, and end-users (Abrahamsson et al., 2001). The development pro-
cess is more empirical and welcomes new, rising ideas and changes. Allowing
changes on the requirements and status of the project helps to handle them effec-
tively and efficiently. Also, agile methodologies do not plan all the steps for
reaching the goal, and the approach is empirical. Therefore, the development can
quickly adapt to emerging risks or opportunities (Abrahamsson et al., 2001).
Compared to heavyweight ones with structured cycles and each phase has re-
sponsible teams, agile methodologies focus more on the collaborative approach
and highlight the importance of communication (Balaji & Murugaiyan, 2012).

Even if agile methodologies focus on developing a user-friendly, under-
standable system and rapidly provide requirements in a changing environment,
methodologies are evolving and changing. There is no clear definition for the
concept of “agile” (Abrahamsson, Salo, Ronkkainen & Warsta, 2001). Moreover,
it has been said that agile is not a process at all, but rather “a chaotic perspective,
collaborative values and principles, and barely sufficient methodology” (High-
smith & Cockburn, 2001). However, one of the most accepted definitions of Agile
is the so-called Agile Manifesto, which presents twelve supporting principles
that guide the nature of all agile methodologies (Beck et al., 2001):

1. Customer satisfaction through early and continuous software deliv-
ery

2. Changing requirements are welcome.
3. Frequent delivery of working software

16

4. Collaboration of business and development teams
5. Motivated and trusted team works better and more efficiently.
6. Information should be shared face-to-face.
7. Working software is the main measure of progress.
8. Agile processes support sustainable development.
9. Attention to technical excellence and design enhances agility.
10. Simplicity, developing just enough for this stage.
11. Self-organizing teams emerge best architectures and designs.
12. Regular reflections on how to be more effective and process im-

provements.

Agile development happens in an evolutionary delivery, where the pro-
ject planning is done during the process. Methodologies with this mindset apply
an iterative development approach. In practice, product development occurs in
a sequence in which the overall lifecycle is composed of several iterations. The
iterative process is presented in Figure 3. Each iteration is a self-contained, small-
scale project that includes requirements analysis, design, programming, and test-
ing (Larman, 2004). Agile development embraces change, but not chaos, so after
the requirements of the iteration on hand are chosen, they will not change before
the next iteration. Between the iterations, feedback is given, which leads to re-
finement and adaptation of the process. Thus, the developed system grows in-
creasingly. As mentioned before, agile lacks a precise definition, and agile meth-
odologies are evolving due to new challenges and requirements. It is impossible
to clearly define specific agile methods due to the number of variations. There-
fore, managing agile projects may feel vague and full of uncertainty. On the other
hand, this is an opportunity to adapt to the project needs.

 When reviewing literature about agile methodologies, the topic of
lean development is involved. Lean thinking was born in Japan after the second
world war when there was a need for more effective work methods (Ohno, 1988).
The basic idea of lean thinking is to produce as much as possible with the least
effort. The improvement in efficiency is achieved with five principles: defining

FIGURE 3 Simplifieid modeling of iteration cycles (Larman, 2004).

17

value, mapping the value stream, creating flow, using a pull system, and pursu-
ing perfection (Womack et al., 1990). Lean and agile development have many
similarities, such as tendencies to fast processes and customer prioritization.
Lean encourages continuous improvement and a people-centric approach and
creating a better workflow. Even if lean thinking has many similarities with agile
development, lean focuses on effective workflow, whereas agile aims to deliver
working software as fast as possible. However, even if the fundamental goals of
lean and agile development differ, some agile methodologies borrow some ideas
from lean thinking. The following chapters present selected agile development
methodologies their core principles, defines their lifecycles, and explores the op-
portunities and challenges they have.

2.3 Extreme Programming

When a new software development project starts, the first task is to evaluate what
the project is all about. The customer tries to communicate what they want from
the new system, and the development team will analyze the information, and
together, they set the requirements. However, the customer rarely has a clear un-
derstanding of their wants and needs at the start of the project. They can change
their minds, or there could be changes in their needs, which causes vital problems
in setting requirements and developing according to them in a long development
process. Extreme Programming (XP) was invented due to possible changes that
could cause issues or even a failure when using traditional development methods
in a project (Beck, 1999). XP was created by Kent Beck, Ron Jeffries, and Ward
Cunningham in the 1990s’ (Paulk, 2001). They noticed that planning, analyzing,
and designing for the far future caused the real-life development project to face
difficulties in adaptability. Thus, this leads to the use of added resources and high
costs of changes. XP is one of the earliest agile practices that gained a fair share
of popularity. Rather than planning, analyzing, and designing in a sequence, XP
uses the reduction in the cost of changing software to do activities in small por-
tions at a time, blending development cycle activities throughout software devel-
opment (Beck, 1999).

According to Beck (1999), XP approaches development from the iterative
perspective, and development cycles are short and blend activities. At the start,
the customer and programmers plan together the scope and time of the project
releases. Minor releases are often released before the release of the whole system.
The customer and the developers understand the process and functions on hand,
and the design is simple. Therefore, the activities are easy to communicate, not
only to the customer but also within the team. The customer’s role is active, and
they are engaged in the project. Furthermore, simplicity and communication
make collective ownership possible, meaning project improvement is not de-
pendent on place or time. The new release units get tested often, and further

18

development requirements are made based on the test result and the business
costs of the change. New code is implemented into the system in a short time and
tested. The customer is involved in the process the entire time and helps to write
functional tests for iteration.

XP is founded on four core values that create the mindset for the develop-
ment process: communication, simplicity, feedback, and courage. According to Fojtik
(2011), XP considers active communication fundamental for problem detection.
This happens between the team members and the customer, as they are full-time
team members. Open communications help to solve development problems and
ensures that all the participants are informed of future tasks. XP offers a practice
known as pair programming to help with collaboration and problem solving
(Muller and Tichy, 2001). Simplicity means that the program development is as
straightforward as possible, focusing on the iteration on hand and planning the
functionalities that are not currently imported into the future. Therefore, less time
and energy are required for changes as the unnecessary functions can be de-
tached. Feedback helps the decision-making and developing the correct software.
Feedback is encouraged in different stages of development, not only after the im-
plementation phase. Courage aims to remove the error and value the correct de-
cisions at all costs. Therefore, even if a significant function or a part of the code is
removed or re-done, this is not considered a failure but a necessary change. Re-
spect means that the project participants are interested in each other’s work.
Working without mutual interest makes the process unstable and communica-
tion less fluid. Furthermore, XP encourages an open work environment, where
people work closely together, both physically and mentally (Muller and Tichy,
2001).

XP presents many advantages especially comparing to traditional software de-
velopment methodologies considering the changing requirements or needs.

FIGURE 4 Extreme Programming planning and feedback loop (Wells, 2001)

19

However, XP does not come without problems that are caused by its character-
istics:

1. The small iterations that able the flexible XP process can cause problems.
Such a situation can happen if the development organization has some
internal issues: if the organizational processes are strictly structured and
well planned, teams distributed, and the organization has communica-
tion problems, collaborative and supportive environment and, flexible
and iterative development approach are impossible to achieve (Moham-
madi, Nikkhahan & Sohrabi, 2009).

2. XP requires constant testing; therefore, organizational resources, such as
tools and skilled workers, and collision with quality control systems
need to be well developed. In addition, lack of documentation or theory
guidance can lead to uneven product and lack of direction in develop-
ment. Therefore, the development organization needs well-developed
technologies and skills that can be collaborative and supportive of devel-
opment processes (Mohammadi, Nikkhahan & Sohrabi, 2009).

3. Clear communication between the customer and the organization is vital.
The participants might lack a common understanding of the business en-
vironment or the complexity of the project. For example, this might occur
if the customer lacks technical knowledge or does not share their busi-
ness insights openly with the developers. Furthermore, a lack of stand-
ards regarding coding enhanced metaphors and practices might cause an
unclear knowledge base, limit the experience, and cause issues (Moham-
madi, Nikkhahan & Sohrabi, 2009).

XP offers practices for an iterative software development approach that
pieces the large project into the more tangible pieces. Moreover, XP combines
project tasks and activities and develops them actively based on the testing and
received feedback. However, even if XP fits the changing business environment
more than stiff heavyweight models, XP is still not perfect. If the organizational
culture is not welcoming for the changes or processes are well defined and struc-
tured, XP practices are challenging to apply and utilize. Furthermore, XP requires
a supportive and collaborative environment, and without these, communication
between teams cannot be achieved, and the project loses flexibility. Moreover,
the development process is more challenging to manage with large and complex
projects and becomes stiffer and distributed. Also, the XP development process
is people-oriented, and the customer’s role is active. Without full-time availabil-
ity and motivation, the customer’s role becomes small. This might affect the prod-
uct outcome.

.

20

2.4 SCRUM

Systems development takes place in a complicated environment: Complex
and advanced, often unreliable technologies are produced to solve user's prob-
lems and achieve a competitive advantage for the companies. To create the com-
pound technological systems, the ensemble becomes multidimensional. The pre-
vious chapter presented XP methodology that aims to improve cost control, de-
livery of systems, and the flexibility of the overall process (Schwaber, 1997). Still,
XP expects that the iterations are well-defined and linear. However, the systems
development projects are becoming increasingly more complex, which makes
risk handling difficult. In response, the probability of success is more negligible.
However, other agile methodologies are constantly evolving to tackle the chal-
lenges that the previous models have faced.

 SCRUM is one of the most used agile methodologies that aims to maxim-
ize flexibility and appropriate control. SCRUM is an iterative, incremental, and
general-purpose project management framework (Kumar & Bhatia, 2012). The
first and the last phases of the Scrum project, called planning and closure, are
well defined, but the process between them is purposely vaguer. The develop-
ment happens in sprints, which are empirical processes. SCRUM offers a more
flexible iterative development approach that initially plans the context and the
broader deliverable and evolves deliverables during the project based on the en-
vironment. The difference between the defined (waterfall or XP) and empirical
(SCRUM) approach is that the empirical approach assumes that the analysis, de-
sign, and development processes in the sprint phase are unidentified and unpre-
dictable (Kumar & Bhatia, 2012). The controls are external and put on each sprint
phase to avoid chaos, providing flexibility.

As mentioned, the SCRUM process defines only the planning and the clo-
sure phase, leaving the development phase unclear. The final product is set dur-
ing the project, as are the project costs and the completion date. SCRUM meth-
odology differs from previously developed iterative models by being responsive
to the environment throughout the processes, unlimited team flexibility, and en-
couraged teamwork and knowledge transfer during the project. Releases are
planned by using the following variables that form the intimal plan for the project
(Schwaber, 1997):

• Customer requirements: what kind of enhancements the system
needs.

• Time pressure: what is the time frame required for competitive ad-
vantage.

• Competition: what the competitors are doing and how to gain ad-
vantage to them.

• Quality: what is the required quality.

• Vision: what changes are required to fulfill the system vision.

• Resources: what staff and funding are available.

21

A so-called skeleton of the SCRUM describes the iterative nature of devel-

opment activities that occur one after another. The output of each iteration is an
insertion of the product. The number of iterations may vary, and they usually
include inspection periods. During the inspection period, the individual team
members inspect each other's activities and adapt if needed. The figure below
presents a simplified SCRUM skeleton and iteration process, where input goes
through two iterations to become the product output. The heart of the SCRUM
process is iteration (Schwaber, 1997). During the iteration, the development team
checks the requirements, chooses the technology, and evaluates their capabilities.
Collective understanding of how to modify and build the functionalities helps
with the development process's complexities. In addition, the team understands
how to approach the change and required tasks. Thus, SCRUM's productivity lies
ineffectiveness of the creative development process.

The SCRUM team members are committed and have more interest than
other stakeholders. SCRUM teams usually contain three different types of roles:
a product owner, a SCRUM master, and a team. The product owner is responsible
for representing the interests in the project and the resulting system. They deliver
the vision in a manner that maximizes the ROI of the project and prioritizes the
requirements. The SCRUM master responds to the SCRUM process, teaching the
practices, implementing SCRUM, and following the practices. The SCRUM teams
are responsible for developing the functionalities. They are self-managing, self-
organizing, and cross-functional, and highly motivated. Compared to traditional
heavyweight development models, SCRUM projects follow a flow rather than a
stiff structured and planned process. The development process is monitored
throughout the sprints and redirects the development if there are new opportu-
nities to take advantage of (Schwaber, 1999). This gives the starting point for the
project, but the vision might change during the process. Changes in the process
reflect changing business requirements and how the team can transform this into
functionality (Schwaber, 1999).

SCRUM development processes are done in three phases: pregame phase,
development, and postgame phase (Abrahamsson et al., 2002). At the start, the
pregame phase consists of planning the project and the architecture. Then, the
game phase includes the development sprints of the project. At last, the postgame

FIGURE 5 Simplified SCRUM cycle (Schwaber, 1997)

22

covers the project closure (Schwaber, 1997).). As mentioned before, only the plan-
ning and closure are clearly defined; otherwise, the process evolves. The SCRUM
project starts with a vague vision of the product that becomes more precise dur-
ing the process. In the pregame phase, the requirements are defined in the prod-
uct backlog. The product backlog is an adaptable list of the requirements which
helps to navigate the project (Schawaber, 2004). If the project enchases an exist-
ing product, the new release definition is based on the project backlog, and the
critical analysis is limited. With a completely new system, the planning phase
consists of conceptualization and in-depth analysis. In the pregame phase, the
backlog item implementation is planned, and system architecture modification
and high-level design of the product (Schwaber, 1997).

The game phase is all about development and product evolution. As men-
tioned, the SCRUM project consists of iterative sprints that are the backbone of
the project. New release functionality is developed with constant respect to the
SCRUM variables. Each sprint is an iteration of 7 to 30 days and starts with a
sprint planning meeting. In this meeting, the product owner and the team collab-
orate about the plans on hand. They discuss content, purpose, meaning, inten-
tions of the product backlog, and potential functionality. The goal of the sprint is
shaped based on these thoughts. The daily meetings, called daily SCRUMs, help
the team to stay intact. At the end of each sprint, a sprint review meeting takes
place in which the team presents the development. Before the next sprint meeting,
the SCRUM master holds a sprint retrospective meeting planning the next sprint.
When the team feels that the variables of time, competition, requirements, cost,
and quality have been reached with the new product, they declare the release
“closed” (Schwaber, 1997). The last phase of the SCRUM project, the postgame
phase, includes integration, system testing, and documentation of the project,
and after these tasks, the product is released (Schwaber, 1995). This phase pre-
pares the developed product for general release.

SCRUM is not a set of precise development tasks but tools to be used in
development phases. It provides practices for controlled planning of a release
and for managing the project variables as it progresses. This allows organizations
to modify the project, therefore delivering the most appropriate release. Also,
SCRUM project team members are learning during the project, and they can fo-
cus on developing innovative solutions rather than struggling with a learning
curve. On the other hand, SCRUM does not become without weaknesses: one of
them being that SCRUM’s success of the project depends on customer involve-
ment (Ionel, 2008). The customer must be available to test releases and plan the
new functions. If the customer does not sense the product direction, it can affect
the entire team and cause a sense of uncertainty and delays. Also, the customer
cannot intervene in the project because the customer is not supposed to change
the direction of the sprint. This can cause communication issues between the cus-
tomer and the team, which can cause the customer to shift further from the pro-
ject. Furthermore, the overall length of the project cannot be correctly estimated
outside of the sprints. SCRUM requires an enterprise culture that embraces
change, uncertainty, and complexity as part of all product development.

23

(Schawaber, 2007). Therefore, a long-term and detailed, predictive project plan is
a waste of resources.

2.5 Scaled Agile Framework

While agile methods became more popular and gained wide acceptance in
practice after the late 1990s, the problems regarding scalability and integration in
large-scale development projects started to rise. The agile approach can be chal-
lenging to implement in larger development projects with many stakeholders,
different components, layers, and complexity. Attributes like customer satisfac-
tion, collaboration, commitment, decision time, organizational culture, team, so-
cial culture, and training have a significant relationship with the success of large-
scale projects (Saeeda, Arif, Minhas & Humayn, 2015). When the process scales
up and becomes more complicated, the success factors become harder to estab-
lish. In addition, the agile approaches are often criticized for applying primarily
to small teams rather than large companies with hundreds of development teams
(Stojanov, Turetken, & Trienekens, 2015). Abrahamsson et al. (2002) state that
scalability is one of the significant issues with agile. Large development projects
can benefit from a uniform model for assessing the progress and establishing a
roadmap for the enterprise (Turetken, Stojanov, & Trienekens, 2017).

Scaled Agile Framework (SAFe) is a model created to tackle considerable

agile projects experience (Turetken, Stojanov & Trienekens, 2017). SAFe imple-
ments agile practices at the enterprise level and aims to integrate existing agile
models. The scaling does not happen only in "some" of the agile practices but also
by introducing new practices and concepts that integrate with basic and scaled
agile practices (Laanti, 2014). The purpose of this is to improve the process man-
agement, productivity, and quality problems that might occur with big agile pro-
jects. Like SCRUM, SAFe is not a group of strict practices but knowledge tools
that guide the development process. SAFe is an open, free database and frame-
work for lean-agile development and can be scaled for different organizations.
The SAFe describes the best practices, roles, and artifacts of agile and lean prin-
ciples but does not define any implementation strategy or method.

The foundation of the SAFe framework lies on two mindsets: The SAFe
House of Lean and lean-agile principles. House of Lean is a tool created by
Toyota but adopted and further developed SAFe's Lean thinking. As mentioned
in chapter 2.2, lean thinking creates efficiency with the tasks: specify value by
product, identify the value stream for each product, make value flow, let the cus-
tomer pull value from the producer, and pursue perfection with the tasks (Wom-
ack & Jones, 2003). These ideas inspire the house of Lean in SAFe's thinking. The
goal is to deliver maximum customer value in the shortest sustainable lead time
possible. Thus, this single principle unifies the organization. The SAFe House of
Lean is perpetrated as a roof, four pillars, and the ground floor. The foundation,
as being described as a ground floor, is leadership. The top, or the roof, is the

24

customer value. There are four pillars between the top and the ground: respect
for people and culture, flow, innovation, and relentless improvement. The SAFe
House of Lean mindset aims to deliver maximum customer value in the shortest
sustainable lead-time with the highest possible quality to customers. It is also
said that high morale, safety, and customer delight are other goals and benefits
of the SAFe House of Lean. (Leffingwell, 2018)

SAFe aims to integrate existing bodies of methodologies such as SCRUM
and XP. As mentioned, SAFe not only scales up some of the agile practices but
also introduces new practices and concepts as tools. Such concepts release train,
business, and architecture epics, portfolio backlog, integrating primary and
scaled agile practices (Turetken, Stojanov & Trienekens, 2017). When adopting
agile practices on the large-scale organization, the process should start on lower
levels because the higher-level agile practices are dependent on the practices in-
troduced at the lower levels. SAFe framework's definition of three levels is intro-
duced next.

The SAFe framework includes three levels: teams, program, and portfolio
level for investments. The boundaries between these levels determine the scope
and the scale between levels (Turetken, Stojanov & Trienekens, 2017). At the low-
est level, the team level, the framework includes agile teams. They are responsi-
ble for defining, building, and testing a product in planned iterations and releases.
The framework blends agile project management practices and technical prac-
tices and uses user stories from XP development and sprints from SCRUM. Dif-
ferent development teams operate on the same rhythm and with identical itera-
tion lengths to provide integration among teams. (Turetken, Stojanov & Tri-
enekens, 2017).

Furthermore, it has been said that SAFe promotes alignment, collaboration,
and delivery (Knaster, Leffinggwell, 2018). The middle level or the program level
organizes the agile teams at scale to optimize the value delivery as the primary
goal. At this level, teams align with a strategic vision and roadmap for each in-
vestment concept. To plan the progress, business and architectural features are
defined and prioritized in the program backlog. The agile release train is a fun-
damental concept on this level, which provides synchronization and integrated
delivery. The agile release train produces releases or features at fixed periods.
Furthermore, a system team is formed to establish an initial infrastructure and
support continuous integration and end-to-end testing efforts (Turetken,
Stojanov & Trienekens, 2017). The highest level of SAFe is the portfolio level,
where the programs are aligned with the company's business strategy. This is
done according to the value streamlines. Value streamlines are long-term series
actions, including definition, development, and deployment phases used to build
and deploy systems that provide a continuous flow of value to a company or
customer. This level is needed for companies that require governance and man-
agement models.

SAFe is not the only agile framework used for large-scale projects. Frame-
works, such as SoS (Scrum of Scrums), LeSS (Large Scale Scrum), and DAD (Dis-
ciplined Agile Delivery), are created to help with large-scale development

25

projects and to provide more control with the development. SAFe is used in de-
velopment projects that include around 50-120 people in release trains. Also,
SAFe projects have high diffusion and maturity level and are considered high to
medium complexity (Vaidya, 2014). SAFe organizations are traditional enter-
prises that are not otherwise agile. These aspects provide required control for the
complex and extensive development processes, while in many cases, other frame-
works work better with low complexity or low diffusion projects.

However, companies experience several challenges when the goal is a
scaled agile adaption. Challenges include resistance to change, distributed envi-
ronment, quality assurance issues, integration non-agile, lack of commitment,
pressure, lack of knowledge, requirements hierarchy, and progress measuring
(Conboy & Carroll, 2019). Resistance the change is a common phenomenon that
may happen at any level of the organization. Several researchers (Conboy & Car-
roll, 2019; Turetken, Stojanov & Trienekens, 2017) found that the cause of change
resistance is how organizational processes become transparent. People feel ob-
served with a high level of transparency and will not share their problems. How-
ever, at the same time, this transparency is vital to success with agile. Another
problem related to the resistance to change is that people do not want to work
with self-managed agile teams. This might be caused by confusion for the roles,
lack of motivation, and lack of trust in the self-management by managers. In ad-
dition, the distributed environment makes the close relationship between team
members and collaboration hard to maintain (Conboy & Carroll, 2019). Addition-
ally, transparency between teams is difficult to achieve. Information sharing is
easy to neglect if the teams work in a multisided environment. Therefore, trans-
parency and ensuring that information reaches all the participants is essential
when the agile processes scale.

Quality assurance issues occur due to added responsibilities of people,
pressure on teams, and if the product end state is not defined (Conboy & Carroll,
2019). Also, it has been noted that the teams tend to rush with different develop-
ment phases or do not use continuous integration in large development projects,
thus causing technical issues. Quality problems also cause discouragement
among the participants, which can affect the process even more negatively. It
has been suggested that the waterfall parts of the organization should be in-
cluded in the planning process, and non-agile teams are involved early on. Im-
provement of continuous integration and test automation systems helps, as it al-
lows fluid integration. As mentioned, people might lack motivation due to diffi-
culties with information sharing, and lack of commitment and teamwork is one
of the problems regarding the adoption of scaled agile (Kalenda, Hyna, & Rossi,
2018). People in different teams have significant development projects and might
not commit to a shared team plan. Also, people tend to start competing against
each other, and teamwork hinders due to competitive atmosphere. With large
projects, the pressure to fail is high: a new way of working, new responsibilities,
and business pressure increase the tension within the team (Turetken, Stojanov
& Trienekens, 2017). Standard plans, goals, and understanding of the process are
vital that the teams work together in scaled agile projects.

26

With agile development methodologies, the development process is im-
proved constantly. This might not be focused if the pressure is otherwise too high.
The lack of knowledge due to the underestimated difficulty of the agile transfor-
mation, financial constraints, lack of management support, or rushed transition
might cause that process development to be overlooked, and agile practices are
challenging to implement. On the other hand, some agile practices will not work
as they are when scaling. Scaling of requirements management cannot be
avoided when scaling agile, or in other words, the Product Owner is not the sin-
gle responsible person for the management. The biggest problem with the man-
agement is that the organizations did not know what to measure to get valuable
data (Kalenda, Hyna, & Rossi, 2018).

2.6 DevOps

Even though the agile movement has changed the software industry, the meth-
odologies had silos for different development tasks, separating them. Nowadays,
automotive error detection and testing systems allow flexible development; the
work can be done almost anytime and anywhere. Thus, the problems are solved
quickly, and new development opportunities are considered. DevOps (a blend of
the words Development and Operations) methodology is defined as practices in-
tended to reduce the time between committing the change to a system and being
placed into average production while ensuring high quality (Zhu, Bass &
Champlin-Scharff, 2016). Therefore, when a new feature is added to the product,
and the test automation has been done for the dived parts, the product is tested
and released without delaying the project overall. Furthermore, DevOps includes
practices that reduce and join repeated tasks with automation, integration, and
deployment in development (Smeds, Nybom & Porres, 2015). Thus, the overall
quality of the product is managed simultaneously as the development cycle and
operation cycle go hand in hand.

DevOps is an evolution of Agile that combines development and operations
into one process, therefore building a living bridge between the tasks. Thus,
working and collaborating happen fluidity. DevOps extends collaboration of de-
velopment towards operations, which is responsible for deploying, managing,
and supporting systems’ performance at the customer’s site (Lwakatare, Kuvaja
& Oivo, 2015). Traditional organizations divide their teams by type of work: For
example, one team is responsible for the coding, and another tests the software
(Hüttermann, 2012). Each department defines its goals based on its division of
work in the overall project. The departments of operations succeed if the metrics
of success are stable and unchanging. On the other hand, the development suc-
cess metrics in agile projects strive to change. The conflict between development
and operations causes the isolation of the departments and opposing goals can
form between the teams. Moreover, the project development process tends to be
stressful, containing manual, challenging activities and last-minute changes
(Humble & Farley, 2010), and the crossing objectives might affect the overall goal

27

negatively. DevOps proposes a set of agile practices to the iterative delivery of
software in short cycles effectively.

DevOps integrates development, delivery, and operations, to create a fluid
connection of tasks that traditional development methods tend to separate (Ebert,
Gallardo, Hernantes & Serrano, 2016). Furthermore, DevOps practices streamline
the software delivery process, emphasizing the learning by direct feedback from
production to development and improving the time from inception to delivery.
The DevOps movement promotes collaboration between developers and opera-
tors: The operations department is responsible for managing modifications in
production and service level, and the development department develops new
features that meet the business requirements. In many development methodolo-
gies, development staff continuously push new product versions into production,
while operations staff attempt to block these changes to maintain software stabil-
ity. According to Leite, Rocha, Kon, Milojicic, and Meirelles (2019), conflicts be-
tween departments, long deployment times, and the need for frequent and relia-
ble releases made the execution of agile processes inefficient. To solve this prob-
lem, developers and operators began collaborating within enterprises to close
this gap. DevOps is based on agile methodologies and aims to improve the com-
ponent delivery throughout the project deployment by collaboration between the
departments.

There is no clear definition of the methodological background and nature
of DevOps. DevOps can be considered an extension of agile development, but
DevOps fulfills different needs of the stakeholders than the ones agile does (Lwa-
katare, Kuvaja, & Oivo, 2016). A distinctive diffracting aspect between DevOps
and Agile is that DevOps provides a bridge of collaboration between develop-
ment and operations, whereas agile does the same between business stakehold-
ers and development. To integrate development and operation tasks, DevOps
proposes the use of the deployment pipeline and increased automation. These
provide the autonomy of publishing the code into production for developers. On
the other hand, the operation department is responsible for the product and col-
laboration with developers to solve any problems. Therefore, the project process
does not happen in isolated, self-managed silos (Lwakatare, Kuvaja, & Oivo,
2016). Thus, the DevOps project life cycles a continuous loop streaming from de-
velopment to operations and back to development over again. The loop depicts
how the tasks of the development department, which include planning, coding,
building, and testing, lead to operating the software. First, new functionalities
are brainstormed through the operation department’s tasks, which are released,
deployment, operating, and monitoring. Then, the planning starts again in the
development department.

DevOps aims to achieve value through speed, agility, automation, and com-
munication when it comes to business value creation. The four basic principles
of DevOps are culture, automation, measurement, and sharing that establish the
core of the development process (Virmani, 2015). In DevOps, the goal is to inte-
grate development and operations to achieve a shared goal. As mentioned,
DevOps gets rid of the isolated structure of silos; thus, the project and the

28

possible upcoming issues are shared between development and operations. Tra-
ditionally with many other methodologies, the departments work in a sequence,
where the development process happens in one phase with the responsible teams.
When the phase ends, the project is moved on to the next team responsible for
the project tasks. DevOps shifts from this mindset as developers and operations
agree upon their responsibilities and their mutual goals.

DevOps differs from other development methodologies since it focuses
heavily on software release automation. The principle of automation is estab-
lished through release pipelines, in which the build, testing, and deployment are
automated and happen in a single path (Humble & Molesky 2011). Furthermore,
the deployment pipeline enables quick software releases that can be done rapidly
and used in daily releases. The pipeline practices also enable the previously men-
tioned culture principle: with automation, the developers have added independ-
ence and a sense of responsibility. Furthermore, with automation, the developers
produce fast, pushing it instantly and achieving instant feedback from automated
testing systems. This provides more freedom and makes it easier to adapt to
changes in the development process.

Measuring the DevOps development process is an essential part of the pro-
ject. Measuring and monitoring the process is easy with automated development
systems that test, release, and deploy systems automatically. When the develop-
ment processes are continuously measured, the participants can respond fast
with any issues in the process or new opportunities. This also enables learning
from the process and the opportunity to grow (Senapathi, Buchan, & Osman,
2018). First, however, the organization needs to decide on measured and moni-
tored metrics. The chosen measured metrics should align with the project objec-
tives and provide data about the current state of the DevOps adaption process.
Measuring the process is not enough since giving data should also be imple-
mented to the action. Moreover, using data in planning and decision-making en-
ables growth and improvements.

The principle of sharing allows information to flow smoothly within the
DevOps team. To improve the development and the process included, both suc-
cess and challenges are shared with the teams. Thus, the whole organization
shares the same knowledge and how to evolve. So, departments should work
together, not in isolation, and this can only be achieved if the departments social-
ize with each other. With automation and measuring principles, sharing infor-
mation improves, as does the response time for changing requirements. Moreo-
ver, sharing also affects the organizational culture: with the shared mindset, the
staff has a clear goal and purpose in the DevOps development process. Ideas and
concerns can be shared openly with other participants, which affects people’s
ability to collaborate and work together and the quality of the product (Senapathi,
Buchan, & Osman, 2018).

As DevOps is a set of strict practices and a mindset, DevOps practices are
used in the software or system development process. However, the ideas can be
implemented in other areas of development as well, as the DevOps practices im-
pact team processes, products, technologies, organizational structures , and

29

business practices and opportunities (Zhu, Bass & Champlin-Scharff, 2016).
Therefore, using the DevOps mindset of bringing different organizational de-
partments does not limit development and operations. As DevOps is to bridge
the gap between development efforts and operation management, and the link-
ing strategy and software development for constant assessing and improvement
is called BizDev. The phenomenon complements the DevOps one of integrating
more closely the software development and operations functions.

Even though DevOps tries to close the gaps that previous agile methodolo-
gies have not recognized, DevOps is not always successful. As mentioned, the
foundation of DevOps is built upon the agile mindset, but as a concept, DevOps
is vague and obscure. Thus, the uncertain nature of DevOps can cause challenges
(Leite, Rocha, Kon & Milojicic, 2019). Moreover, to successfully adopting DevOps
to the organization, the development, operational and cultural aspects need to
open for the change. Finally, due to its holistic nature, the challenges and limita-
tions of DevOps practices can happen in one or more organizational layers, and
setbacks can indirectly affect other teams in addition to those that are directly
affected.

DevOps can slow down the implementation or increase the risk of not ful-
filling the goals. In many cases, when adopting a new way of work into the or-
ganization, change resistance may occur, and DevOps is not an exception. One
of the key factors of the success of DevOps is communication (Riungu-Kalliosaari,
Mäkinen, Lwakatare, Tiihonen & Männistö, 2016). The resistance to change and
uncertainty can slow down the availability of skilled members and slow ac-
ceptance of the adoption of DevOps practices (Senapathi, Buchan & Osman, 2018).
As mentioned, measuring the development process and DevOps adaption is one
of the four principles of DevOps. If the performance metrics are not informed by
the operations management or the measured data is not made available to use,
which causes problems to developers. Another cause of communication prob-
lems is conflicting goals and metrics of different departments. The primary goal
is to bridge the gap between development efforts and operation management.
However, the differences in nature of these departments might cause frictions,
especially if there is a lack of communication involved (Riungu-Kalliosaari et al.,
2016).

Adopting DevOps practices requires the right cultural mindset that wel-
comes transparent communication and creative processes abled with automation.
Problems in adapting to the new culture occur if there is stiff company culture in
the organization, where merging roles, shifting responsibilities, and newly estab-
lished actions for the people are seen as a threat. (Riungu-Kalliosaari et al., 2016).
Senapathi, Buchan, and Osman (2018) say that one of the challenges of success-
fully adapting DevOps is putting the right people in the proper role, where their
technical skills are used. The problem may occur both when recruiting new staff
or when retraining current staff for the changing roles. Developers need to accept
new tasks and responsibilities, and at the same time, the operations staff might
feel threatened that developers take over their process. On the other hand, the
steep learning curve for adopting new practices in daily life can cause stress and,

30

thus, resistance to the new practices. Behavioral changes can be challenging to
manage, especially in a large, structured organization, without supportive man-
agement (Riungu-Kalliosaari et al., 2016).

There are circumstances and environments in which DevOps practices can-
not be adapted. For example, some organizations have legally or contractually
restricted production systems access, which means that the transparency of the
process can be even impossible to achieve. In such a case, systems can be so com-
plex that making replicants from the environment for verification and testing is
difficult. Also, changing the technologies to more DevOps friendly ones, like
cloud and micro-service architecture, can be incredibly difficult and slow down
the organizational processes (Senapathi, Buchan & Osman, 2018), as heterogene-
ous software development environments are challenging to adapt. Also, the lack
of standardized DevOps practices means that the organizations do not clearly
understand which parts of DevOps are necessary to adapt and which practices
are optional (Riungu-Kalliosaari, et al., 2016).

2.7 Continuous software engineering

Even if most lightweight methodologies can have a flexible and adaptive ap-
proach to software development, they construct silos between people with dif-
ferentiating responsibilities and tasks. Some methodologies, such as previously
introduced DevOps, try to break the structured nature of processes, character-
ized by disconnects between activities such as planning, analysis, design, and
programming (O'Connor, Elger, & Clarke, 2017). A tight connection between de-
velopment and execution has been the subject of improvement with the previous
lightweight methodologies. Thus, errors detection is ensured, and problems are
fixed as soon as possible. As a result, the quality and resilience of the system are
improved and the delivery more rapid. These manifest in the increasing adoption
of continuous integration practices. However, the improvement efforts have fo-
cused merely on the continuous integration of the software: The disconnected,
isolated teams are still responsible for different parts of the project. Thus, the
danger that the project can easily fall off track is still present. A more holistic
approach that considers the development process as a continuous flow rather
than a sequence of discrete activities has been suggested and introduced as the
concept of continuous software engineering.

Not a single software development process is suited for every undertaking,
and that all software development settings are changing nonstop (O'Connor,
Elger, & Clarke, 2017). Due to constant process adaption and the required tailor-
ing, a software process is a continuous phenomenon rather than a static process.
Continuous software engineering is a rising area of research and practice that
aims to bring different departments closer together, thus improving the agile pro-
cesses. In the software engineering context, continuous means that the entire
software life cycle is considered development (Fitzgerald & Stol, 2017). However,
continuity is required in all levels of an organization and between these levels

31

(Suomalainen, 2015). Even if other agile practices, such as XP and DevOps, fo-
cused on continuous practices, continuous software engineering views the entire
process of evolving experimentation and innovation as a continuous holistic jour-
ney. Continuous practices consist of three sub-phases: Business Strategy and
Planning; Development, and Operations. In addition, various other continuous
software engineering activities within these sub-phases are used in the develop-
ment process (Fitzgerald & Stol, 2017). To understand these activities' holistic
overlapping nature, they are next defined, and the various activities involved are
explained.

Historically, business strategy and IT development have been two separate
practices with competing goals (Fitzgerald & Stol, 2017). The often-occurring
problem is that the development department looks for new, simplistic technolog-
ical solutions without considering the complex reality of the business environ-
ment (Fitzgerald & Stol, 2017). As technological solutions have become a more
critical part of the organization, developers have expressed a desire to get in-
volved in the ongoing strategic business decision-making. The need to connect
business management and the software development function has been identi-
fied. The close and continuous linkage between business and software develop-
ment functions, also known as BizDev (blended from the words Business and
Development), is a phenomenon that complements the DevOps, as the more
business-oriented approach is needed. In continuous software engineering meth-
odology, Business Strategy and Planning sub-phase consists of two continuous
phases: continuous planning and continuous budgeting (Fitzgerald & Stol, 2017).
Continuous planning means that plans are dynamic and open-ended, and they
evolve in response to changes in the business environment. The process requires
tight integration between planning and execution. Continuous budgeting tackles
the problem that budgeting is traditionally an annual event. Due to traditional
budgeting, the organization's investments, revenue, and expenses are prepared
for the year to come. The Beyond Budgeting model proposes that budgeting be-
comes a continuous activity to facilitate changes during the year (Hope & Fraser,
2003). Therefore, budgeting is more flexible and does not rely on outdated figures,
and thus, resources allocate timely. Performance measures based on the rolling
forecasts will embrace the balanced scorecard linked to organizational strategy
(Fitzgerald & Stol, 2017). Greater involvement of business-related stakeholders
earlier in the development cycle and the setting of cooperative targets helps to
prepare business activities simultaneously as the software development activities.

32

FIGURE 6 Continuous software engineering pipeline (Fitzgerald & Stol, 2017)

The more traditional software development approaches consist of activities
such as analysis, design, coding, and testing. The continuous approach recog-
nizes activities known as continuous integration, continuous delivery; continu-
ous deployment; continuous verification; continuous testing; continuous compli-
ance; continuous security, and continuous evolution (Fitzgerald & Stol, 2017).
Continuous testing means executing automation as a part of the development
pipeline. Continuous integration is the best-known one of these activities. It
means a process that is automatically triggered and includes inner connected
steps such as compiling code, tests, acceptance tests, validation, checking com-
pliances, and building deployment packages. Continuous integration has several
benefits: improved release frequency and predictability, increased developer
productivity, and improved communication. Continuous integration requires a
link between development and operations; thus, the concept is closely related to
the DevOps phenomenon (Debois, 2009). Tasks such as continuous deployment,
which refers to releasing good software build to users automatically, and contin-
uous delivery that means deploying the software to some environment, making
the development process flexible, but ensuring that products are delivered. Visi-
bility of the development ensures that failures are prioritized for solutions as
quickly as possible by whoever is deemed responsible. Other continuous soft-
ware engineering tasks seek to improve product continuously, piece-by-piece,
enabling delivery to customers as soon as it is completed and tested. Finally, con-
tinuous security seeks to prioritize security throughout all phases of the devel-
opment lifecycle and even post-deployment. The system's maintainability de-
pends on its architecture, which is defined through a set of initial design deci-
sions during its creation. Some of the assumptions underpinning these decisions
may no longer hold due to changes in the context or environment in which the
system operates, or the architecture may not facilitate specific changes. When ar-
chitecture is unsuited to facilitating new requirements, the projects need to

33

change. Continuous evolution is created to prevent technological or architectural
decay due to a lack of changes (Fitzgerald & Stol, 2017).

Continuous operations mean processes that happen when the product is in
active use (Fitzgerald & Stol, 2017) and the product's future development. Now-
adays, most software products are made to be used in a long-term solution, so
economic payoff forms from usage rather than a one-time purchase. However,
so-called continuous use does not happen automatically: the intimal decision is
made by the customer. Technology adaption models, such as the Technology Ac-
ceptance Model (TAM) (Davis, Bagozzi & Warshaw, 1989) or Unified Theory of
Acceptance and Use of Technology (UTAUT) (Venkatesh, Morris, Davis & Davis,
2003) are not suitable for continuous software engineering. Since continuous de-
velopment includes variables such as automation or unconscious product usage
that does not exist in TAM or UTAUT, they cannot be implemented. Similarly,
the previous technology adaption models do not consider trust as an essential
aspect of development. Moreover, Fitzgerald and Stol (2017) define continuous
trust as trust developed over time because of interactions based on the belief that
an actor will act cooperatively to fulfill customer expectations. Continuous use is
strongly dependent on continuous trust (Fitzgerald & Stol, 2017). Continuous
trust evolves and is constantly being recalculated by users and can be deteriorat-
ing for the user experience. As mentioned earlier, modern software is rarely pur-
chased once and does not involve further improvements from the producer. Con-
tinuous improvement activities are essential aspects of software quality and are
based on the lean principles of using data in decision making and aiming to elim-
inate waste. Early activity in the continuous innovation space was beta testing,
which became a widespread practice in the software industry. To keep the pro-
cess flowing and growing, continuous experimenting and other operating tasks
are required.

Even if continuous software engineering as a methodology is a new re-
search agenda, the concept of continuous can be defined as an umbrella term.
Many of the previously introduced agile development practices have similarit ies
or the same practices with continuous software engineering. The evolution from
heavyweight models to more connected development practices has created the
necessary base for continuous development methods. In the agile world, the need
to address the technical debt that accrues from not addressing potentially prob-
lematic issues when first encountered, but instead postponing these to be dealt
with at a subsequent stage. Economic tradeoffs may prohibit the investments
needed to remove technical debt.

2.8 The Essence of Software Engineering

As the previous chapters highlight, systems development is in constant change.
The current way is an era of rapid technological change and new or evolving
practice models. With dozens of different technologies, coding languages, and
methods to guide the development and ever-changing business environments,

34

finding the most appropriate and efficient way to execute the project can be chal-
lenging. The development requirements differ with projects, as do the organiza-
tions and the teams with their people. Thus, the chosen elements should fit the
motivations and goals. The teams face a problem when they need to choose from
thousands of development practices. However, the research community has not
gone unnoticed, as the underlying languages and software engineering methods
are accepted as a standard to help develop and sustain high-quality products.
Kernel means the common ground of different methodologies (Jacobsen et al.,
2019). Using the common ground as a basis for practices will make teaching,
learning, using, modifying, and comparing practices easier. The usage of kernels
and chosen coding language combined create a standard structure named Es-
sence. According to Jacobsen et al. (2019), Essence is common for all software
engineering methods. This method relies on the following insight:

- methods are compositions of practices.
- some methods are more popular and have a large user base.
- only a few hundred practices out of thousands of methods are reusable.
- a common ground, or a kernel, is shared between all these methods and

practices.
- focus on the essentials when providing guidelines for a method or prac-

tice.
- provide an engaging user experience when teaching and learning meth-

ods and practices.

The Essence language is simple, intuitive, and practical in describing the
essence kernel with the elements that constitute a common ground. Essence
method architecture is structured by essentialized methods and practices, the
essence kernel, and language. Essentializing means that the method or practice
is described using Essence. It focuses the description on what is essential by not
changing the intent of the practice of the method. Thus, teams can combine
practices to obtain a wanted mix, and new ideas can be essentialized and added
to the practice library, where they can be selected later (Jacobsen et al., 2019).

Essentializing means that the practice of the method is described using Es-
sence, and the focus is on what is essential. Jacobsen et al. (2019) explain that
essentializing does not mean changing the intent: Teams can mix and match

FIGURE 7 Essentializing process (Jacobsen et al., 2019)

35

practices to obtain a method they want and save the new ideas for later use. This
liberates from uniform methods prison and lets developers freely select their de-
sired ways of development. The essentials are usually a fraction about a subject
that can participate without having all the details about the topic.

Essence approaches the development process from a user-friendly point of
view that supports hands-on and tangible work. With the software that includes
many different components, standards help to deliver the software representa-
tion. Kernel and the essentials can be touched and used using cards for visuali-
zation: The cards provide practical checklists and prompts, as opposed to con-
ceptual processes, and therefore, the kernel becomes something the team uses
daily. These actions are the primary difference from traditional approaches,
which tend to over-emphasize method description and only consult people new
to the team.

The Essence process starts with identifying the critical elements of software
engineering. From a customer point of view, opportunities and stakeholder
needs are considered. These impact the requirements and the product itself, as
well as the workload and the team on the endeavor level. Some stakeholders ben-
efit from the solution produced, and some will fund the endeavor. The solutions
need to be delivered, and as the previous chapters explain, teams consist of mo-
tivated people. Like agile methodologies, Essence also highlights the importance
of delivering value to the customer. The solution is the key to this.

FIGURE 8 Simple Programming Practice Described Using Essence Language (Jacobsen, et
al., 2019)

The Essence kernel and language provide an understanding and describing
commonality and diversity of practices. Moreover, the Essence Language models
things that software developers use as alphas, representing different dimensions
of software engineering challenges. The essence kernel identifies a core set of al-
phas separated into different areas of concern. These alphas are Opportunity,
Stakeholders, Requirements, Software System, Team, and Work and Way of
Working (Jacobsen, et al., 2019). Thus, as the basics of the essence are like many
other methodologies, current project practices can be used to essentialize the

36

process. In the next chapter, the concept of artificial intelligence is defined, and
its development is explored.

37

Learning a foreign language, calculating mathematical problems, or using com-
monsense are a few examples of actions that we understand as something that
demands intelligence. Applying brainpower comes easily for humans and as
something we consider natural to us. For instance, a child understands the con-
cept of a light switch and turning the light on or off. However, creating the plan
for completing such a task and making inanimate machine conduct is complex.
Even if the child understands the concept of using a light switch easily, creating
a machine that mimics the process includes many steps and complex combina-
tions of small actions. Also, there is a question, can completing such a small task
be considered truly intelligent.

This chapter covers topics relating to artificial intelligence (AI), the devel-
opment of AI, and its areas of implementation. Intelligence itself is a multisided
concept that has various definitions, depending on the perspective. When defin-
ing intelligence, AllWords Dictionary (2006) says it is “an ability to use memory,
knowledge, experience, understanding, reasoning, imagination, and judgment to
solve problems and adapt.” Creating this has been a topic of human curiosity for
centuries and has become an essential part of our everyday lives in the last few
decades. Nowadays, intelligent machines have a significant role in many busi-
ness environments. Dirican (2015) explains that the new trends like artificial in-
telligence, semantic studies, robotics and mechatronics developments, big data
and mining, cloud computing, neural networks mean that business environ-
ments will look for new opportunities to lower costs and increase revenues. AI
can transform industries, but the development and deployment of such technol-
ogies are not simple. The next chapter defines the history of AI further and briefly
explains the critical concepts related to the topic, such as machine learning.

3 ARTIFICIAL INTELLIGENCE

38

3.1 Definitions of artificial intelligence

As mentioned, people have tried to understand the concept of creating intelli-
gence for centuries, ever since the ancient philosophers tried to explain and
mimic the human mind. First attempts to build inanimate, humanlike objects
trace back to ancient Chinese and Egyptian engineers a few thousand years back.
However, modern artificial intelligence as we know it was not defined before the
1950s (Haenlein & Kaplan, 2019). Throughout the 1940s, the first ideas of intelli-
gent robotics began to rise, and as the second world war raged through the world,
there was a new need to automatize codebreaking. The processes allowed getting
ahead of the enemy countries by breaking their coded messages and figuring out
their strategies. After the revolutionary codebreaking machine Enigma invention,
the first steps of modern AI were taken (Haenlein & Kaplan, 2019). The machine
had significant importance when allied powers won the war. Writings of English
mathematician Alan Turing defined AI by testing it rather than explaining it as a
concept. Later, the ideas evolved to the so-called Turing Test, which described
how humanity could not distinguish the machine from the human.

Even if the concept of AI is not a new one, and the modern concept was
created in the 1950s, AI still lacks a clear definition. AI is complex with many
different dimensions, and some may say that there is no definition altogether.
Cambridge Dictionary defines artificial intelligence as follows:

“The study of how to produce machines that have some of the qualities that the human
mind has, such as the ability to understand language, recognize pictures, solve prob-
lems, and learn.”

“Computer technology that allows something to be done in a way that is similar to the
way a human would do it: To understand "natural language," computers must
be equipped with artificial intelligence.”

As can be seen in these descriptions above, Cambridge university describes

AI as the development of machines with human qualities. It is widely accepted
that the term means comprising machines that imitate human-like intelligent
functions (O’Leary, 2013). However, Mackworth and Poole (2010) have a broader
definition for AI:

“Artificial intelligence, or AI, is the field that studies the synthesis and analysis of com-
putational agent that act intelligently.”

Mackworth and Poole (2010) mean something that acts in an environment
and does something intentional by an agent. An agent can be, for example, a ro-
bot or a human. Mackworth and Poole are interested in the agent's actions and if
those acts can be considered intelligent. By this, they mean that the acts are ap-
propriate for the circumstances and have a goal. They are flexible for changing
environments and goals. They learn from experience, and intelligent acts are

https://dictionary.cambridge.org/dictionary/english/computer
https://dictionary.cambridge.org/dictionary/english/technology
https://dictionary.cambridge.org/dictionary/english/allow
https://dictionary.cambridge.org/dictionary/english/similar
https://dictionary.cambridge.org/dictionary/english/human
https://dictionary.cambridge.org/dictionary/english/understand
https://dictionary.cambridge.org/dictionary/english/natural
https://dictionary.cambridge.org/dictionary/english/language
https://dictionary.cambridge.org/dictionary/english/computer
https://dictionary.cambridge.org/dictionary/english/equipped
https://dictionary.cambridge.org/dictionary/english/artificial
https://dictionary.cambridge.org/dictionary/english/intelligence

39

appropriate for choices given the perceptual and computational limitations.
Mackworth and Poole (2010) also explain that a computational agent is an agent
whose decisions can be explained in terms of computation. Their description
gives a broader explanation for the AI, as the agent they describe can act on its
own. As explained, Mackworth and Poole's explanation combines intelligence
with technicality.

Mackworth and Poole (2010) describe AI as presented above and recognize
its ability to act independently. Still, AI cannot be the same as the human mind,
as it lacks certain qualities that people do (Kaplan, 2016.) AI is yet to the cable of
being creative or having emotions, something that living things can. Therefore,
some complex attributes of human Intelligence are yet to be reached with ma-
chines (Kaplan, 2016). On the other hand, AI has already surpassed humans in
some actions. As described before, something is considered intelligent by creat-
ing memories and understanding, recognizing patterns, making choices, and
learning. Also, Intelligence adapts from experience. As the computational power
of machines has grown, AI can make machines act like humans, but they can also
be faster and more even more humane. (Lehto, 2015.) However, AI as a humanly
acting machine is not the way to use computational power to predict future out-
comes.

Machine learning (ML), an attribute of AI where algorithms improve auto-
matically through experience based on neural networks. Machine learning is
commonly divided into three separate classes. First-class has supervised learning
where we have access to the data and the "right answer," often called a label. In
the seconds class, unsupervised learning has the set of data, and the ML systems
try to find some standard structure in the data, for example, through categorizing.
Finally, in the third class, reinforcement learning, the system learns a sequence
of steps leading to a given goal (Saravanan & Sujatha, 2018).

The goal for AI systems is to learn independently, but this cannot be
achieved without proper development. In the context of AI, development takes
place over a longer time than learning and involves more changes in cognitive
operations (Helm et al., 2020). Mikkonen, Nurminen, Raatikainen, Fronza,
Mäkitalo and Männistö (2020) have explained the ML development process. As
they start, used data must be available for training in the form of straight data
sets. Data can be divided into various ways to training, testing, and cross-valida-
tion sets. Then, an ML model (data model) must be selected, together with the
model's hyperparameters. The hyperparameters define how many and what
kind of layers a neural network has and how many neurons there are in each
layer. Next, the model is trained with the training data. During the training phase,
the weights of the neurons in the network are iteratively adjusted so that the out-
put of the neural network matches the "right answers" in the training material.
The trained model can then be validated with different data.

40

3.2 Development of AI

AI deals with is about using computing power for learning from experience and
predicting future outcomes. The fundamental differences between traditional
programming and AI development are the goal of the product itself: traditional
programs automate the task process of the user, whereas AI solves problems that
are difficult to formulate, and the system needs to be adaptable. AI applications
are beneficial for poorly understood problem domains, domains that contain val-
uable regularities in their databases to be discovered, and domains in changing
environments (Zhang & Tsai, 2003). Still, traditional software engineering and AI
development have similarities: Both try to solve problems, and processes start
from understanding the task on hand. Both development processes start with
discussions with the stakeholders and exploring ideas. However, AI developers,
that are usually data scientists do not try to automate any tasks. AI development
has historically been seen as a mathematical process: different algorithms are
used to teach the system and create a learning software. Also, the process differ-
ences from the other software development, as the AI developers usually have
personal definitions about AI, and no unified view has not been adopted
(Sweeney, 2003). These habits can create silos between AI developers and other
project members, as they cannot understandably explain their actions.

As explained in Chapter 3.1, AI has many different variations and implica-
tions that can fulfill different user needs. One of the main differences between
software and AI development is that AI development takes longer due to the
learning process. It also involves more changes in cognitive operations (Helm et
al., 2020). Therefore, the project actions depend on the project on hand. Mikkonen
et al. (2020) have explained the ML development process. As they start, used data
must be available for training in the form of straight data sets. Data can be di-
vided into various ways to training, testing, and cross-validation sets. Then, an
ML model (data model) must be selected, together with the model's hyperparam-
eters. The hyperparameters define how many layers a neural network has and
how many neurons there are in each layer. Next, the model is trained with the
training data. During the training phase, the weights of the neurons in the net-
work are iteratively adjusted so that the output of the neural network matches
the "right answers" in the training material. The trained model can then be vali-
dated with different data; thus, the product starts to learn and work "inde-
pendently." However, integrating the developed function into the more extensive
system is challenging, as is the maintenance of the whole product.

The development of artificial intelligence is not a simple process, mainly
since AI does not have established, widely used frameworks or practices. The
development of artificial intelligence requires specific knowledge of the area:
System learning often requires attempts, mistakes, learning, and innovation.
Even if AI is not a new concept, the process has many areas yet to be improved
due to the technologies' challenges. The problem with AI development is its in-
compatibility with varying information environments. The development of AI is

41

driven both by research and the environment, with social goals in mind. As AI is
opening a new field of business, practices, and opportunities, the technology it-
self is not always flexible enough for the nuances of its implementation environ-
ment. The goals of developers, users, and other parties do not necessarily align,
as developers have pressured the work efficiently and still produce high-quality
products (Mittelstadt, 2019). Because AI development processes are not formal-
ized, there is a change for competing values, as the participants do not under-
stand or care about their stakeholder's needs. AI development does not have a
shared history, homogenous culture, identity, or ethics frameworks (Mittelstadt,
2019). In addition, AI systems are usually created by large, distributed teams that
do not interact with the client and the users.

There is a lack of a particular model in the development of AI that would
be significantly better than others. This makes choosing a model challenging, as
organizations cannot directly deduce which model would suit them and whether
another model is causing problems with processes, resources, or teams. Even if
the AI development differs from the normal software development, both have a
similar mindset that can be used. For example, modularity can be used both in
software and in AI, in which separate parts, or modules, create together the prod-
uct. Modules can be changed, but this does not affect the overall product (Mik-
konen, 2020). However, practices such as agile models, are not used similarly
than in software development.

3.3 Implications of artificial intelligence

AI-based technologies have become more and more common in recent years,
and their importance is only growing. In some cases, people might know or rec-
ognize that they are in contact with an artificial being. For example, chatbots used
in eCommerce websites start the conversation by introducing themselves as a ro-
bot, and their languages are usually inflexible and stiff compared to humans.
However, there are products and processes in which AI is necessary, but not al-
ways a visible part of the product. For example, when using a calculator, the ma-
chine counts the user's operations, which is one way of using AI in our everyday
lives. The implications can be a lot more complex than this and used together
with versatile technological products.

Natural language processing means a computer system that can generate
and "understand" natural language, such as English (Nilsson, 2014). This is a
complex task from a development viewpoint: When communicating with each
other, humans effortlessly use complex language and understand the user's pro-
cess. People can understand even the most minor nuances of a sentence and pro-
duce answers in a blink of an eye. To generate the same action artificially with a
machine is much more difficult. Languages evolve between intelligent beings to
transmit personal "mental structure" to one other. Naturally occurring text means
wrote or oral transmission of the mental structure (Liddy, 2001). This process

42

requires a similar, contextual structure for each participant to know that they also
understand them. In addition, the other participants have the necessary skills that
they can and will perform specific processes during communication efforts. To
achieve a natural language process, the computer system should understand a
message in natural language. Several frameworks and practices are used to
achieve this, but the goal is to accomplish human-like language processing with
the machine (Liddy, 2001). This process requires contextual knowledge and the
processes for making the inferences assumed by the message generator. The
foundation of developing such a system is about structures for representing con-
textual knowledge and specific techniques for making inferences from that
knowledge (Nilsson, 2014). Liddy (2001) listed that the system should be able to
paraphrase an input text, translate the text into another language, answer the
questions about the content of the text and draw inferences from the text. Johnson
and Valente (2009) worked with AI-based language and culture training systems
and found that a critical issue with natural language processing is representing
rich communicative acts. Hand-coded solutions have been found flexible
changes but challenging to budget and develop fast, and so, the need for auto-
motive processes is present. As mentioned, statistical and machine learning in-
cludes algorithms that allow a program to infer training data patterns and make
predictions about new data. However, the challenge with this approach is that
the machine makes poor predictions with new data, even if the training data is
completed perfectly (Nadkarni, Ohno-Machado, & Chapman, 2011). The pipeline
approach is being suggested, but the process might lack feedback on higher levels
of development. In addition, the process lacks accuracy as one development error
earlier in the process can affect the accuracy of language processing later (Nad-
karni, Ohno-Machado, & Chapman, 2011).

Large bodies of information are stored in databases and can be used to ful-
fill user's needs. The design of adequate representation, storage, and retrieval is
one of the implementations of AI. Automated, intelligent searching methods use
the physical meaning as search criteria instead of the manual signal that has been
used before. This can make information retrieval more effective and efficient
(Vega et al., 2009) and is beneficial, especially within the fusion systems (Sku-
limowski, 2011). The classification system is used to retrieve information from
the database of the signals that contain the most similar patterns. The process
contains two steps: At first, the input pattern is classified by signals showing sim-
ilar structural shapes. Secondly, the system computes the similarity measure be-
tween the input pattern and the signals of the corresponding group instead of
navigating the whole database to calculate all similarities. This process reduces
the number of needed computations drastically (Skulimowski, 2011). However,
an intelligent information retrieval system requires a system that understands
quires stated in a natural language and the problem with how to deduce answers
from stored data (Nilsson, 2014). Also, understanding the quires and deducing
an answer requires knowledge beyond that explicitly represented in the subject
domain database (Nilsson, 2014).

43

Automatic consulting systems are used to help users to make conclusions
about specialized subject areas or topics. For example, systems that help to detect
and diagnose medical conditions and suggest treatment (Vaishya, Javaid, Khan,
& Haleem, 2020) or how to build complex structures are some ways that can help
to advise users with the problems on hand. However, representing and using the
human expert's knowledge is difficult to produce with a technology. Human
knowledge is often imprecise, uncertain, or anecdotal (Nilsson, 2014). Therefore,
many consulting systems use rule-based deduction to implement AI into the sys-
tem, meaning specific rules guide the dialogue between the user and the system,
which deduces the conclusion.

When it comes to mathematics and other intellectual tasks, AI can prove or
disprove a conjectured theorem. The theorem proving or disproving requires the
ability to make deductions from hypotheses. To do this, intuitive tasks such as
guessing and judging the problem and reflecting thoughts to previously proven
theorems in an area can be helpful in the present case and help break the main
problem into subproblems tasks (Nilsson, 2014). Automated theorem proving
aims to solve more complex problems within the same resource limit than before.
Many tasks can be formalized to theorem-proving problems, which helps de-
velop AI that solves such tasks (Nilsson, 2014). Current automated theorem prov-
ing systems can solve non-trivial problems, and the technology can be used in
many different implementations. For example, language, automation soundness,
completeness, and solutions systems can be based on automated theorem sys-
tems (Sutcliffe, & Suttner, 2001).

AI systems use one of the implementations described above, but most tech-
nologies combine various practices for the most valuable product. Generally, AI
products support three business needs: automating business processes, gaining
insight through data analysis, and engaging people. Different systems can
change industry processes and create entirely new products or services. For ex-
ample, analyzing data, assisting uses, automating processes, and enhancing cus-
tomer experience are a few currently available ways of using AI. In the future,
the transformation of industries with AI can be even more drastic. However, AI
development still faces challenges considering the lack of reality, societal chal-
lenges, and technological challenges.

3.4 Problems regarding AI development process and the
developers

As Lee, Suh, Roy, and Baucus (2019) mention, AI development lacks commons
aims and fiduciary duties, professional history and norms, proven methods to
translate principles into practice, and legal and professional accountability mech-
anisms. Furthermore, as being mentioned, even if AI development has many sim-
ilarities to software development, AI development lacks a variety of develop-
ment methods compared to dozens of software engineering methodologies.

44

However, the challenges for both developers are not so different: both software
and AI developers work in a high-pressure environment, with a constant need
for cost reduction, increase profit, and deliver high-quality products Lee, Suh,
Roy, & Baucus, 2019). Even more complicatedly, AI development can be done
by various people with different backgrounds, such as data scientists, software
engineers, and people with AI knowledge (Piorkowski et al., 2021). So, both the
AI development processes and the demeanor of the developers are somewhat
ambiguous. Due to this, understanding AI development can be complex, and
communication issues may occur.

The development of AI functionalities is a complex process that involves
people with different expertise collaborating. As mentioned in the previous chap-
ter, AI development requires training the system by using data sets that are ana-
lyzed using algorithms. The Multidisciplinary AI development team includes
data scientists and other AI-adjacent roles that do not have a knowledge mis-
match (Piorkowski et al., 2021). However, the project teams consist of other stake-
holders who do not share the same skillset as the AI experts, as they are not nec-
essarily as skilled data scientists as the professionals. Communication gaps in
code reading, code reuse, and code documentation are common, as well as com-
munication problems due to diffracting motivation and communication behavior
(Piorkowski et al., 2021). Translating complex business problems into a data sci-
ence problem may also be difficult for data scientists. Therefore, the process
needs a third party to bridge the broken communication between AI developers
and other stakeholders. This can cause problems regarding project management
and the openness of AI development.

Bostrom (2017) has studied the problems regarding the openness of AI de-
velopment, such as openness about source code, science, data, safety techniques,
capabilities, and goals. According to him, increased openness has both short- and
long-term advantages, such as social benefits, openness around different product
measures, and competitiveness. According to Bostrom (2014), the creation of AI
faces two types of problems regarding the openness of the development: The
control problem and the political problem. The control problem means that the
designed AI works as developers intended and, the political problem means that
the AI is recognized as something creating common good. As Bostrom (2017)
suggests, one of the AI development problems is the product's openness. How-
ever, the control and the political problem are not the only problems regarding
the missing bridge between AI developers and other stakeholders: lack of open-
ness means slowing down the AI development and being less competitive.

As described previously, AI development lacks methodologies and prac-
tices regarding the development, and the role of AI developers can be challeng-
ing to understand by other project participants. Lack of understanding and com-
munication can create silos between AI developers and the other project partici-
pants, and developing a fulfilling and successful product is difficult. Furthermore,
as AI development does not necessarily fit the traditional software development
process, it can be challenging to plan and predict. In the next chapter, the

45

suggested model for adapting continuous software engineering for AI develop-
ment is presented, using the essence tools.

46

New technologies, business areas, rising opportunities, and occurring challenges
require a flexible response from project participants. The development process of
technologies and systems is rapid, and new needs might arise surprisingly
quickly. AI development is considered similar to any other software (Mikkonen
et al., 2019), thus benefiting from flexibility. However, when it comes to develop-
ment methods used today, the literature points out that the development of AI
has limitations regarding agility. Moreover, the current AI methods are simple,
and the process is unpredictable due to a lack of standards or strict models. In
addition, the current AI models are only practical for solving minor occurring
problems (Bresina et al., 2012). These aspects of AI development can cause issues
with the overall product if they cause issues to otherwise flexible project man-
agement. As mentioned in the chapters regarding agile, the development that
welcomes change is uncertain but praises the unpredictable nature. This is not a
common approach with AI development that depends much more on planning
and a structured approach. Continuous software engineering methodology ap-
proaches the development process as a continuous lifecycle that bridges project
lifecycle phases together, eliminating silos between project actions. This research
aims to understand the challenges that may occur when adopting a continuous
software engineering approach in the development of AI.
 As told in Chapter 2.8, essentializing means taking the best and essential
practices, tools, and actions and combining them for the best project development
practices. For example, agile Essentials suggests the best development practice
for agile is a continuous product cycle. Also, the ownership of the product is
shared. Figure 7 presents the critical elements of the Essential Agile practices that

4 RESEARCH FRAMEWORK: CONTINOUS
DEVELOPMENT OF AI

47

together create the basic toolbox that presents the starting point for team-based
development.

When it comes to fitting the continuous practises to the AI development

environment, certain agile factors are essential for the successful implementation
of agile practices in the new development environment. In this research, the Agile
Essentials tools are a supportive factor for adopting continuous software engi-
neering practices into the AI development environment. The following table pre-
sents the Agile Essential elements that the starter toolkit includes and their clari-
fications:

FIGURE 9 Agile Essentials - Overview of Practices (Ivar Jacobson International SA, ver.
2018.09) (practice library)

48

TABLE 1 Agile Essential elements (Jacobsen et al., 2019)

Agile Devel-
opment Essen-
tials

Clarification

Cross-Func-
tional Team

The team contains the skills needed to get the whole job done.
The team includes at least following competencies: stakeholder
representation, analysis, development, and testing.

Product Back-
log Item

Product backlog item consists of the following states: identified,
ready for development and done

Test Case Defines test inputs and expected results. Test ideas are captured,
scripted and if possible, automated

Evolve a Re-
leasable Prod-
uct

Add value to a product and ensure it is usable and of production
quality.

Software
Change

A single change to the codebase that is made for a known pur-
pose and is tested before it is integrated.

Manage Tech-
nical Debt

If value is built into a product one small value increment at a
time, and just enough is done to make the product releasable
each time, some desired changes to the codebase may be de-
ferred, such as the fixing of non-critical defects. Each such item
of technical debt should be logged, and its subsequent removal
prioritized against the adding of more user-requested value into
the product.

Shared Own-
ership

The team takes shared responsibility for the product, and no
parts of the software system can be considered “no go areas” for
any team members. This reduces the risks and delays associated
with bottlenecks and single points-of-failure.

Minimal De-
sign

Agile teams think hard about design but focus on adopting the
simplest approach to achieving the known things that must be
achieved next. This acts to minimize complexity, risk, and time-
to-value, and maximize return-on-investment. The design strat-
egy is then evolved continuously as more is learned.

Build Quality
In

Quality is planned, designed, and built in the tests, and the item
is not finished until the adequate quality has been achieved and
enough design is done to ensure the right approach is taken

Automate as
Much as Possi-
ble

If a software system is evolved one increment at a time, while
ensuring its quality, many actions are repeated frequently. If
these are not automated, they will be too slow and error prone.

Fast Feedback
Loops

Key to agile development is getting as much feedback as possi-
ble, as early as possible, to converge on an accurate solution.

49

Thus, agile essentializing tools provide a base for reviewing the current en-
vironment readiness for adapting agile and continuous software engineering
practices in the development of AI. The lack of agile development essentials il-
lustrates the issues that may cause challenges in adopting continuous software
engineering practices and what needs to change to make the adoption successful.

The following chapters explain the five parts of the research model. First
part of the model aims to gather background information about current project
development tools and mindsets. Four other parts (Business strategy and plan-
ning; Development; Operations; and Improvement and innovations) are based
on the Fitzgerald and Stol’s (2017) article about continuous actions in software
engineering.

4.1 Current tools and usage of mindsets

Previously, agile practices have been successfully implemented into the
software development process, thus making the heavyweight models less rele-
vant in the current business environment. In many cases, agile is becoming a pri-
mary way for successful development. Agile practices ensure flexible and re-
sponsive project management that values interaction, working product, cus-
tomer collaboration, and flowing planning over stiff and contact-oriented prac-
tices (Beck et al., 2001). However, different organizations prioritize various things
when selecting project management practices. The first theme of the research
model is to understand both physical and mental tools used in AI development
and the current project development environments in which the interviewees
work.

Even if AI functionalities are part of software and systems, their develop-
ment differs from more traditional software products. Chapter 2 explained how
the lightweight software and system development practices have changed over
time and, thus, how agile practices were born. Continuous software engineering
is one of the newest practices in the group of agile development methods. As the
DevOps practices bring development and operations closer to each other, contin-
uous product lifecycle involves other organizational activities to the process as
well (Fitzgerald & Stol, 2017).

However, even if software development methodologies have evolved over
the years, the same cannot be said about AI development. Just as the computing
power and data available have increased and brought new possibilities for AI,
there has been no significant evolution in development practices. As mentioned,
AI development relies on static data sets and reviewing previous records and
data. McMillan (2020) states that the ML development process starts from re-
viewed and verified data for training purposes. After that, the used ML model is
tested with different training data. Therefore, data science has a vital role in AI
development which involves less program development and more analyzing and
getting insights from the data.

50

As mentioned, this part of the research model aims to gather information
about current development tools and practices, especially continuous or agile
frameworks used in AI development. Also, information about the project organ-
izations is gathered to understand the interviewee's background and if similar
backgrounds also have similarities in the practices used in the development.

4.2 Business strategy and planning

Continuous software engineering is a development methodology that bridges
different organizational units that have traditionally been considered separate in
the project life cycle. Business strategy and planning are a continuous software
engineering phase consisting of business-related actions connected. These are
connected to the development phase, and this linkage is known as BizDev. Con-
tinuous planning and budgeting are subphases of the business strategy and plan-
ning phase (Fitzgerald & Stol, 2017). This section of the interview aims to discover
how AI experts describe their organization's business and strategic elements.
Moreover, the goal is to find and highlight the challenges of adopting continuous
planning and budgeting.

AI development differs from normal software development by planning the
development process, as it requires creating an AI concept and testing it with
data. However, the changing customer needs and evolving requirements are
problematic when it comes to development. Moreover, the lack of adaptability
can cause problems as the initially planned product need to be changed. Thus,
the more flexible way of AI development has begun more relevant in recent years,
as practices such as MLOps have emerged to tackle these problems (Karamitsos,
Albarhami, and Apostolopoulus, 2020).

The research model aims to gather information about the current planning
and budgeting actions in AI projects. Also, the goal is to understand the environ-
ment and possibilities for adapting agile and eventually continuous software en-
gineering methodology. The Agile Essential is a basic toolbox covering all the
standard and critical aspects of development in an agile team. Agile essentializ-
ing tools are also used to understand the possibilities of adapting the best meth-
ods to the development of AI. This part of the research also aims to highlight the
decision-making process in the AI development team and if the AI experts took
part in the business-related activities.

activities.

4.3 Development

AI and ML development aim to train the system to predict the future. Com-
pared to more “normal” software that works in the present, AI needs to make
predictions by using previously gathered data as a base for this. Data can be

51

divided into various ways to training, testing, and cross-validation sets from
where the system learns to work “independently” by using algorithms to analyze
data (Mikkonen et al., 2020). Combining this training-based development style
with fluid and less plan-oriented agile development can be challenging. This part
of the research model aims to understand the current development actions if they
are an integrated part of the overall project development or more of an independ-
ent process.

Fitzgerald and Stol (2017) say that the continuous development phase con-
sists of continuous integration, continuous delivery, continuous deployment,
continuous verification, continuous testing, continuous compliance, continuous
security, and continuous evolution. As mentioned, changing software develop-
ment project requirements require rework and re-testing (Petersen, Wohlin &
Baca, 2009). However, AI development is different from normal software devel-
opment. The AI functionalities are tested by checking how an AI model works
with test data sets; thus, the testing differs from the traditional software testing
process. AI development is a mathematical process in which an algorithm is fed
data, and the goal is that the model learns and can make predictions in future
data. As explained in chapter 3.3, the trained model can then be validated with
different data; thus, the product starts to learn and work independently (Mikko-
nen et al., 2020). Thus, the research model highlights the actions needed to pro-
duce a functioning product that works as intended.

Using essentializing in the development phase of AI could bring new pos-
sibilities by bringing a more agile and fluid approach to development. The goal
is to get different participants involved and talk the common language when it
comes to the project on hand. As the name suggests, the Agile Essentials de-
scribes how an agile process is used essentialized way. With essentializing, it is
possible to combine continuous software engineering methods with different de-
velopment needs, such as framework practices, coding languages, and other ac-
tions that can be used. Moreover, as only the best and most needed practices are
considered, the development process can be used in various situations. The nec-
essary changes can be easily made, and the participants can learn from past pro-
jects.

4.4 Operations

The operational actions of continuous software engineering bridge devel-
opment and operational actions together, as in DevOps. The goal is to bring these
traditionally separate actions together and ensure the usage of the software.
Therefore, the operational phase of continuous software engineering is like
DevOps methodology. According to Fitzgerald and Stol (2017), continuous oper-
ations include three actions in this phase: continuous use, continuous trust, and
continuous run-time monitoring. These tasks require recognizing the difference
between intimal adoption and continuous software usage and trust-building

52

between developers and users. Moreover, the project participants need to feel
that their mutual goal is to fulfill user expectations (Fitzgerald & Stol, 2017).

Karamitsos, Albarhami, and Apostolopoulus (2020) have conducted a study
about DevOps practices for the ML application. However, the current develop-
ment practices are complex and time-consuming. Furthermore, the regular ML
models require significant and costly maintenance, improvement, and monitor-
ing efforts in large-scale projects. Karamitsos, Albarhami, and Apostolopoulus
(2020) suggest applying continuous integration and delivery principles, practices,
and tools to minimize waste, support rapid feedback, explore the hidden tech-
nical debt, improve value delivery and maintenance, and improve operational
functions. Due to similarities with the development of AI and ML, some of the
ML practices would use with AI as well. However, continuous AI development
has not been widely researched, so the conclusion cannot be made directly. Fur-
thermore, the implementation of other continuous practices in AI development
is yet to be explored in research. Karamitos, Albarhami, and Apostolopoulus
(2020) concluded that especially continuous improvement is problematic due to
the tedious data collection, data extraction, and data cleansing that AI develop-
ment requires. These steps are time-consuming and challenging to apply to con-
tinuous, agile development. Thus, the AI development.

It has been discovered that agile transformation is essential to improve the
efficiency of the companies to optimize the lifecycle delivery, break the gaps, and
create a continuous feedback loop between the business users and development
teams (Karamitsos, Albarhami & Apostolopoulos, 2020). The so-called MLOps
approach aims to combine machine learning with DevOps principles. Practicing
MLOps means using automation and monitoring ML system construction. These
steps include integration, testing, releasing, deployment, and infrastructure man-
agement (Karamitsos, Albarhami & Apostolopoulos, 2020). In addition, the
model aims to understand what practices are used after the project goes into pro-
duction and how the product is monitored.

4.5 Innovation

According to Fitzgerald and Stol (2017), improvement and innovations are
the basis of the continuous software engineering life cycle. Agile methodologies
embrace unexpected and experimental development and are a fundamental as-
pect of agile methodologies (Petersen, Wohlin & Baca, 2009). Moreover, the prod-
uct life cycle is continuous, and a new planning phase starts when new opportu-
nities are recognized. This part of the research model aimed to gather how the AI
experts feel about new opportunities, innovation, and technologies. Also, the
ending of a project was discussed, so in other words, when does the AI expert
move on to the next project.

As mentioned, purchasing a software product is rarely a one-time buying
but rather a flexible tool that needs to evolve to the customer's changing needs

53

and business environment. An innovative mindset means transforming new
ideas to create business value (Fitzgerald & Stol, 2017). The model aims to explain
the mindset that the AI experts have towards the innovations: if they are moti-
vated to suggest a new way to create AI, both the technologies and the mindsets
used for project management. Also, the relationship with the customer is a topic
of interest, as the customer is part of the decision-making process.

54

5 RESEARCH DESIGN

This chapter explains the collection of empirical material for the research analysis.
Furthermore, the chapter explains how the empirical material is collected using
interviews and its different approaches to finding the research questions. Finally,
the data gathered is analyzed and used to find out the answers to the research
questions. The interviews were conducted as a semi-structured research method,
and the chapter highlights the reasons leading to this method. The research is
done by interviewing people working with AI-related projects to produce
information about current development practices used in the development. The
goal is to produce information about current continuous methods used in AI
development and the challenges that adopting them wider might face.

5.1 Goals of the empirical research

As the literature review suggests, agile practices are desirable in a changing
environment, yet unpredictable to adapt. When new technologies rapidly evolve
and become more meaningful for the people and the organizations, the develop-
ment methods have changed to make the process more fluid. Furthermore, the
ability to harness technology can provide an advantage to competitors makes
successful development practices essential to achieve. Still, it is crucial to ensure
that the flexibility does not affect the delivery or the quality of the product pro-
duced.

Continuous software engineering actions are Business & Strategy, Develop-
ment, Operations, and Improvement and innovation. The subphases contain
smaller tasks that need to be considered depending on the organization and its
products. Historically, business and development departments have had a sepa-
ration between them and had competing goals (Fitzgerald & Stol, 2017). The of-
ten-occurring problem is that the development department looks for new, sim-
plistic technological solutions without considering the complex reality of the
business environment.

Continuous software engineering is a relatively new practice and is not
widely researched. The topic lacks studies, especially when applying the prac-
tices into complex technology development, such as AI or ML development. The
capabilities of continuous software engineering practices seem exciting to adapt
to the development of AI: AI technologies are about predicting and learning.
Therefore, developing AI systems continuously to new fit requirements would
be practical action. DevOps principles have sparked curiosity in AI implication
developers, as methods such as MLOps (combination of machine learning and
operations) has been adopted in recent years (Fursin, Guillou, & Essayan, 2020;
Mäkinen, Skogström, Laaksonen & Mikkonen, 2021). Primarily continuous

55

integration has been used in ML and AI development, but wider usage of
DevOps and continuous software engineering methods have yet to be adapted.

This research aims to understand the challenging aspects of adapting con-
tinuous software engineering into the development of AI. If these elements are
well known, this might help the participants prepare themselves for any negative
outtakes that the development might face. Darke, Shanks, and Broadbent (1998)
say that empirical research aims to provide a deeper understanding of phenom-
ena with some aspects that are not understood. Also, the goals are to create a
description or theory and test a theory about the phenomena on hand. Thus, the
approach fits this research due to little understanding of the challenges that
adopting continuous practices for the development of AI may bring. A qualita-
tive research method was selected and used to analyze the development phe-
nomenon and give a more defined description of the topic.

5.2 Data collection

Data were collected using semi-structured and thematic interviews using a pre-
created question structure. The other two interview styles that could have had
been used are structured and unstructured interviews. A complete interview
structure is pre-done with the structured interview, and any parts cannot be im-
provised. The unstructured interview is closer to the everyday conversation that
flows naturally but might easily get sidetracked. The semi-structured interview
was selected since the answers can form freely, but the interview topic remains
the same. Thematic, semi-structured interviews able the rich data obtention from
the interviewers and leaves room for individual opinions and thought processes.
Also, the interview style allows asking additional questions and if the inter-
viewed person has anything to add. Still, this method does not come without any
possible problems: As in any interview situation, the thematic interview is also
an artificial situation, not a flowing conversation between two people with
shared factors. Thus, this can cause a lack of trust between the participants and
therefore change the answers, negatively affecting the quality of the data gath-
ered (Myers & Newman, 2007).

As the study aims to explain phenomena regarding AI development pro-
cesses, the people being interviewed were working with AI development, or they
worked closely with AI-related projects. The goal was that people interviewed
worked in different organizations and a wide range of AI projects. Thus, the peo-
ple were able to explain the development practices used in everyday work and
their experiences. The people interviewed were intentionally chosen using two
ways: firstly, a snowball effect, in which the first participants were asked to pro-
pose any. Secondly, asking directly from people known to be working closely
with AI development projects was used to branch out the people interviewed.
Eventually, the interviewees' backgrounds varied from research assistant to a ser-
vice manager, and the experience from months to decades work with AI technol-
ogies.

56

The interviews were conducted individually using remote meeting plat-
forms Zoom and Skype. Due to the ongoing COVID-19 pandemic in spring 2021
and the fact that interviews were done nationally internationally, the remote
meeting platforms provided safe choices for conducting interviews. Interviews
were conducted in English and Finnish, but the basic structure and questions for
the interviews were the same. The planned time scope for the interviews was 30
to 45 minutes, and the average time that the interviews took was 35 minutes,
which did not include an introduction, instructions, or the end world. Every in-
terview was recorded and transcribed (and translated in English if needed) for
the analysis.

As mentioned, the interviews included the introduction, the recorded inter-
view part, and the ending segment. Only the interview part was recorded and
included several discussion topics. Moreover, the interview had five parts: cur-
rent job and challenges; Business Strategy; Development; Operations, and Im-
provement and innovation. The first part aimed to introduce the interviewed per-
son, and they were able to explain their background with AI. The other interview
topics are constructed based on the continuous software engineering subphases,
and the questions were based on the phases that these subphases include. Due to
the topic of the thesis and the intention to gather relevant information, the ques-
tions about product life cycle phases were selected to be conversational nature
for the interview and yet gather data for the study. Fitzgerald (2017) has defined
more minor phases for each continuous software engineering subphases, and the
questions are created in mind. The goal was to gain insight into the practices used
in organizations today and compare them to practices that continuous software
engineering development methodology proposes.

The first theme contained questions about the interviewees' current work
role, how the work is dived in their private project groups, the tools they use in
their work, and if they use any framework mindset, method, or theory to guide
their work. As mentioned in the previous paragraph, the first theme was con-
structed to understand the background of the interviewed people and what as-
pects of their everyday work life include. The intention was to gather information
on how different AI developers work and how their projects are conducted.

The second theme was about Business strategy. As mentioned in chapter
2.7, business strategy and IT, development has been seen as competing depart-
ments (Fitzgerald & Stol, 2017). They are especially prominent in the develop-
ment of AI, which could be seen as new, innovative technology. However, fitting
the newest technological solutions to the complex business environment, some-
times without any previous experience with results, can be seen as risky from the
business side of the process. The purpose of this theme was to understand what
kind of challenges there is in AI development from the business side of the pro-
cess. Thus, the questions were about interactions with other project participants,
requirements, and resources. Moreover, the theme highlights the gap between
business and development and how the clash can be seen in current projects us-
ing AI.

57

The third theme is Development. Some research has highlighted that AI de-
velopment has some aspects of continuous development activities already in use:
for example, integration and delivery are used when developing AI products
(MLOps lähde). Furthermore, as mentioned in chapter 2.7, continuous integra-
tion can enhance release frequency and predictability, increase developer
productivity, and improve communication (Fitzgerald & Stol, 2017). However,
continuous development requires a bridge between development and operations,
and the questions in this theme are created to craft information about continuous
practices used in AI development. Moreover, one of the things that previous re-
search highlights are that AI developers usually work separately from the other
project participants. Thus, the theme aimed to determine if there are silos be-
tween developers and operational workers that make continuous development
actions challenging or even impossible to adapt.

The fourth theme is about Operations. The interview questions touch on
maintenance and if the AI producers interact with the users after the product
release. As said above, the bridge between development and operations makes
continuous development possible, and is these two phases are fundamental parts
of the DevOps practice. DevOps practices have been studied before and used
primarily in the ML development context. MLOps means using automation and
monitoring on ML systems (Karamitsos, Albarhami & Apostolopoulos, 2020).
The steps to do this include integration, testing, releasing, deployment and infra-
structure. As the thesis topic is continuously development, the questions are
formed to get information about active usage. Continuous software engineering
considers that software is not just a one-time purchase. However, the customer
decides to if they keep using the product. Therefore, the questions were more
aimed at the continuous usage and the user-developer interaction.

The last theme of this interview includes improvement and innovation. The
question is about improving the product, even after the release and adding inno-
vations. The questions include product improvements and the relationship be-
tween the customer and the developers, the end of the relationship, and when
the project participants move on to other work. Moreover, the theme aims to
highlight continuity or lack thereof in the customer-product developer relation-
ship. As mentioned before, nowadays, the software is not a one-time purchase,
but moreover, a product is in continuous use. Therefore, the need for improve-
ment is constant, as the products need to adapt to the changing business envi-
ronment and customer needs.

5.3 Data analysis

To create structured information, the data is analyzed further. The analysis pro-
cess means structuring and transforming data so that results could be understood
and conclusions to be drawn. As the thesis aims to understand the challenges of
adopting continuous development to the development of AI as a phenomenon,
the data was collected through interviews. Thus, the collected data was

58

qualitative, and the analysis method was selected depending on this. The data
were analyzed with qualitative thematic analysis to identify key concepts from
interview data. The purpose of the thematic analysis is to understand current
development practices and if continuous development can be used in this context
due to the nature of AI development.

There are three different approaches to coding the data. These are deductive,
inductive, and integrated approaches (Cruzes and Dybå, 2011). The deductive
approach means that the coding has some previous themes expected to be found
or reflected from the data. The inductive approach means that data determines
the themes. The integrated approach combines both above, as the codes are cre-
ated from emerging themes and data and the pre-constructed codes (Cruzes &
Dybå, 2011.). However, coding data does not come without problems that may
occur during the analysis process. For example, it has been said that coding is too
general. Identifying the desired themes from the data can blind the information
because coding does not have a clear definition. Also, if the codes are vague and
do not have a clear definition, they lack their unique semantic, and the results do
not present truthful information about the phenomenon.

The data of this master’s thesis is coded using an integrated approach. As
continuous software engineering practices are the framework that is used, there
is a need for some previously defined concepts. Continuous software engineering
phases (Fitzgerald & Stol, 2017) create a basic starting listing for the coding. On
the other hand, the combination of AI development and continuous development
lacks research. Therefore, the inductive approach is also considered, so possible
new emerging themes can be analyzed.

59

6 EMPIRICAL FINDINGS

This chapter goes through the empirical findings gathered through semi-struc-
tured thematic interviews. Altogether, eight people were interviewed with the
same interview pattern, but the discussion could flow on the topic. The data from
these were analyzed. The goal was to understand rising themes and concepts that
could challenge adapting continuous software engineering methods to AI devel-
opment. All the interviewed people work or have recently (in under three months)
worked with the projects, including AI development. As the background and
work titles of the interviewee varied, the umbrella term “AI expert” refers to the
interviewee, as all the work consists of a form of AI function. The term “AI de-
veloper” refers to people working primarily in the development part of the pro-
ject. However, roles varied from project management to research to coding.

TABLE 2 Interviewees and their work titles

Interviewee Work title

Interviewee 1 Research assistant
Interviewee 2 Data scientist

Interviewee 3 Research assistant
Interviewee 4 Service Manager

Interviewee 5 Professor in department of software engineering

Interviewee 6 Senior lecture in software engineering and applied AI
Interviewee 7 Regulation specialist

Interviewee 8 Software developer

6.1 Overview

The analysis phase aimed to identify the factors that may cause challenges when
adopting continuous software engineering practices into the development of AI.
As mentioned in chapter 4, the research model aims to adapt the methodology
elements and find the essential themes regarding continuous practices in the AI
context. The data previously gathered was assigned both deductive and induc-
tive code. The deductive codes were assigned using the continuous software en-
gineering phases and actions as codes. Inductive codes are under the deductive
codes, and the data that did not fit into either group were gathered and assigned
as the code "Observation." As the topic of the research was to understand the
challenges regarding adoption of continuous software engineering, the further
analysis concentrates the lack of certain codes.

60

TABLE 3 Assigned codes and their occurrences within the data

Deductive code Inductive code Occur-
rence

Continuous planning Shared ownership 4
Continuous budgeting Shared ownership 2

Continuous integration Software change 1
Continuous delivery Evolve a releasable product 2

Continuous deployment Build quality in 3

Continuous verification Test case 2
Continuous testing Automate as much as possible 2

Continuous compliance Observation 0
Continuous security Observation 0

Continuous evolution Product backlog item 5
Continuous use Fast feedback loops 1

Continuous trust Fast feedback loops 1

Continuous run-time monitoring Manage technical debt 2
Continuous improvement Minimal design 1

Continuous innovation Shared ownership 2
Continuous experimentation Shared ownership 3

The thematic analysis revealed that some continuous software engineering
concepts did not appear. Fitzgerald and Stol (2017) says that continuous trust is
one of the continuous project development's operations activities. Continuous
trust is the trust developed over time based on the belief that customer expecta-
tions are fulfilled without exploiting their vulnerabilities. However, the trusting
relationship defined as such was not mentioned. Instead, a good relationship
with the client was discussed. This finding forms the first said to be valuable.
However, none of the interviewees defined this relationship as a continuous ele-
ment. These findings form the first empirical conclusion.

EC1: Continuous compliance and continuous security were not present within the data.

Also, continuous trust and continuous security were not operationalized in
the interview outline, thus forming the first primary empirical conclusion PEC1.

PEC1: Continuous compliance and continuous security were not present within the
data.

6.2 Oversight of used tools and mindsets

The first theme of the interview included questions about the current work role
of the interviewee and the tools and mindsets used in AI development projects.
The goal was to oversee the coding languages, programs, and systems used in AI

61

development. In the data, seven people mentioned using Python as a primary
coding language in AI development, and two people mentioned Java. However,
when it came to software used in the development, the answers were more dis-
tributed. Especially information regarding database systems and possible cloud
infrastructure varied greatly as all the interviewees gave different answers. For
example, Interviewee 2 mentioned that almost all the coding was done with Py-
thon and the data preparation with Dataprix. However, Dataprix was not men-
tioned by any other interviewee.

[Development was] 99% or like fully Python based, but then some of the data prepa-
ration was done in a Dataprix, you know the kinda spark service, so that was used. …
I would not say that I followed any framework with intend but rather trying to have
like the mindset within many of the frameworks. – Interviewee 2

Altogether, interviewees mentioned five coding languages, eight systems,
and four database systems. As explained, other than the primary coding lan-
guage (Python), the tools varied greatly. In some cases, the customer offered the
data used in the training of AI. However, the AI developers used internal training
data in training, as the product in development would later be implemented into
customer's systems and using customer's data. Interviewees mentioned a few
reasons why they used specific tools in the development: For instance, some peo-
ple had a background in developing AI as a hobby or during their studies. Thus,
the developers' current tools were the same that they were most familiar with in
the past. Usually, the AI developers worked either alone or in a small group with
other AI experts, so they were the only ones that needed to understand the code.

The data scientist experiments have been done with whatever tools that they that data
scientists have been conveniently. – Interviewee 5

Also, some interviewees worked in a project organization that offered prac-
tical tools for the developers; in these cases, the organization usually had pre-
thought processes that the developers used and given tools. They used practical
tools that depended on what the developers were most used to and what the
organization offered. These findings form the second empirical conclusion:

EC2: Other than using Python as a main coding language, the practical tools of devel-
opment varied greatly.

Frameworks help pinpoint the essential points of the process and define the
common ground for the project participants (Greenfield & Short, 2003). However,
there were only a few points in data in which any framework or mindset was
well defined. The only frameworks mentioned were SCIKTLearn (machine learn-
ing in Python), SAFe, DevOps, and MLOps. More important than knowing and
strictly using any framework was to use the most reasonable practices in devel-
opment. For example, Interviewee 4 explained that their organization had
adopted an Agile mindset, but no specific lightweight model was used in AI de-
velopment.

62

[Organization name] is adopting and has adopted agile. – Interviewee 4

Other interviewees explained that they did not use any methodologies in
the development but rather a mindset built upon many different methods. This
seemed to be the general approach using the frameworks, as most of the inter-
viewees seemed familiar with several of them but did not use any of them strictly.
Scrum was present in the data, but only briefly. Rather than using the entire
framework, and they used some practices such as sprints. The lack of generality
in data was expected when asking about tools and methodologies, as AI devel-
opment lacks clear definition and variety (Sweeney, 2003). This may cause un-
predictable processes, primarily as the developers worked individually or in a
small group. In three cases of eight, the interviewee said that the teamwork
mainly happened after the development at the point in which the participants
had presented the development efforts.

The frameworks provided more of a mindset than a practical toolbox for
the development, but some elements were used. Two people out of eight inter-
viewed mentioned that their project groups used agile practices in the AI devel-
opment projects. Interviewee 2 mentioned agile frameworks by name, which
were Scrum and SAFe. However, they explained that those were not used in the
AI context but software development projects in general. Interviewee 4 described
agile work practices, such as sprints and iterations, used in the development but
said that there was no framework they used.

We go into general development cycle used in whatever all other aspects of the devel-
opment of the product meaning there are two-week sprints and before the sprint starts
there are a prioritization and we decided what we want to accomplish. – Interviewee
2

All people are caught in all cases, work needs to be prioritized. The work is planned
in sprints. We have 4 planning periods per year. If we speak about doing AI then you
can think that sprints always produce something that can be put into production, with
the next sprint it will be improved and expanded. – Interviewee 4

These findings form the third empirical conclusion and moreover, the
second empirical conclusion:

EC3: Frameworks are known but mostly used partly or as a unidentified mental guide-
line.

PEC2: Frameworks offer support for AI project development, but they are not used
systematically or accurately in the process.

The tools and mindsets used by interviewees varied when it comes to AI
development. Essentializing aims to take the best practices and combines them
with languages to create the essence kernel, a combination of best practices.
Jacobsen et al. (2019) offer Agile essentializing processes where the most
reasonable project development practices can be selected and used. Moreover,

63

when aiming to use continuous software engineering methodology in the
development of AI, essentializing can be used to take only the most applicable
continuous practices for AI projects. There seemed to be a good starting point for
using agile essentializing, as some interviewees already had picked the best
practices from various projects. However, the lack of named frameworks could
indicate that the AI developers do not have deep knowledge about the variety of
development frameworks available or the practices.

6.3 Business strategy and planning

In the interviews, people were asked questions about teamwork, requirements,
and resources. When asked about teamwork, collaboration with others was men-
tioned by six interviewees out of eight. Collaboration of business and develop-
ment teams is one of the principles mentioned in the Agile manifesto (Beck et al.,
2001) and certainly an essential element when essentializing agile. Furthermore,
continuous planning approaches the future with a dynamic and holistic planning
style. Thus, a collaboration between stakeholders is vital to ensure planning and
execution happen accordingly. However, in the interview data, collaboration,
and the importance of communication between the interviewees were mentioned.

I think collaboration is very important when developing software. I think independent
work can be sometimes it is dangerous because it leaves like human made errors to
product. So, there can be lots of participants you have to collaborate with. Depending
on the project. At least you must collaborate with the customer site from the project. –
Interviewee 8

There is an exchange of news every day, so if there are anyone throws ideas then, that
is mainly the interaction. – Interviewee 3

Four interviewees said that AI experts mainly worked independently, as
there is no significant development group for AI functions in their organization.
However, the work was not wholly independent as these interviewees said that
research, iterations, and review of the results were done in teams. Two of the
eight interviewees worked in big organizations, in which the projects were highly
regulated. They said that collaboration and communication were necessary to
produce AI functions that worked accordingly and were helpful. One of these
two worked in a government-led company, in which the developed AI projects
were internal. Therefore, the project team and stakeholders worked in the same
organization, and the communication between the participants was active
throughout the project.

We work closely with other units: our job is to take care that everything that is made,
works. – Interviewee 4

64

However, other interviewees said that in their organizations the independ-
ent work was more prevalent. Even if collaboration and communication occurred,
they were not considered vital or necessarily encouraged. Interviewee 3 said that
daily, informal discussions with the teammates were critical when new ideas and
possible problems were examined. However, the collaboration was otherwise
minimal. Two interviewees of eight mentioned that due to the COVID-19 pan-
demic and the remote work requirement, the work environment had recently
changed: The work was primarily individual, and collaboration was more chal-
lenging to establish with remote work tools such as Microsoft Teams. Moreover,
there were also cases in which individual work had caused challenges in the pro-
ject development: three out of eight say that they did not clearly understand com-
munication or other people’s work efforts. These people worked with small, un-
regulated projects and two of them had just recently started working on the or-
ganization. One interviewee even said that they did not understand the project
that they worked with:

Personally, the point of the project is unclear to me. – Interviewee 3

It seems that the collaboration level varies significantly in AI projects. Two
interviewees worked with the projects that were regulated, and the customer was
involved with the project. They also mentioned the importance of the inner rela-
tionships of the team. These things were mentioned to be success factors and
make error detection and fulfill the project needs easy. On the other hand, the
other interviewees worked on a smaller project, and the project environment was
informal. Even if outer customers ordered the AI projects and provided the re-
sources, customer involvement was not constant. Sometimes, the customer was
seen as a necessary evil controlling the project and sometimes made the develop-
ment work more difficult. These findings form the following empirical conclu-
sions:

EC4: The communication between AI developers and project participants is mostly
unformal.

EC5: Lack of clear communication between AI developers and project participants
causes problems with understanding the work efforts or the project as whole.

Jacobsen et al. (2019) say that one of the critical elements essentializing Agile
is a cross-functional team and shared ownership. The cross-functional agile team
includes competencies such as stakeholder representation, analysis, develop-
ment, and testing. Also, the team shares ownership of the product, and there is
no area considered a “no-go” for the team member. Cross-functional teams are
critical elements of lightweight models, and team members are highly motivated
about the project (Schawaber, 1996). This reduces risks for failure and helps to
detect errors. Continuous development consists of many acts simultaneously, as
the development process is a continuous flow of events. However, AI develop-
ment differs from normal software development, as data scientists and

65

mathematicians traditionally do it. The development consists of creating AI con-
cepts by using algorithms to train the system. The process is usually done by data
scientists (Schawaber, 2003), that might face difficulties when explaining their
development efforts to other team members. When analyzing the interview data,
people gave different answers regarding collaboration and interaction with other
team members. Six interviewees out of eight said that collaboration is an essential
part of the project consisting of AI because it was part of the more prominent
software or system. However, collaboration might have had been merely inte-
grating one person’s work efforts into a more extensive system .

So, for example, it could be that in some projects, you decide,” I’m going to develop
this feature or this subcomponent”. And then you can do and then you can integrate
if the works from others. – Interviewee 6

Combining a cross-functional team shared ownership and AI development
seemed to be that AI development requires different expertise than “regular”
software development. Interviewee 4 explained that the AI development unit
was small in their organization and that people with competencies regarding AI
were challenging to find. Also, this meant that allocating the human resources
was challenging as the AI developers worked thoroughly with projects.

Practically everyone is doing multiple projects. All people are caught in all cases, work
needs to be prioritized. The work is planned in sprints. Resourcing is challenging.
Nowadays, there are more roles, the number of staff has increased. .. Plus, there is less
and less expertise. AI needs to have analysts and people who know algorithms, it is
not that simple to have them on every branch. – Interviewee 4

Interviewee 5 explained that the human resources depend on the project:

Some of them have a very closely related ways of working and the researchers work
ideally, in the same projects, although this year [due to COVID-19] has been not the
ideal. And then in some other projects, people work independently of each other. –
Interviewee 5

As Fitzgerald and Stol (2017) explain, budgeting has traditionally been an
annual event, but continuous budgeting facilities change during the year. Four
out of eight said that the project and the resource were usually planned with the
customer. Three people of these mentioned that a person in a role such as product
owner, senior developer, or project manager was the one that had more respon-
sibility when it comes to resource planning and decision making. Thus, planning
was done mainly by trying to fulfil the customer needs as accordingly as possible.
A project team member had a bit more responsibility in this regard. However,
two people out of eight said they did not know how the project was planned or
planned before getting involved with the project. These two people had been in-
cluded in an ongoing project and felt that they needed to do the actions to under-
stand the project and the requirements. One of these two was frustrated about
the situation and had difficulties managing their workload and tasks.

66

I do not know how they [resources] are decided. It feels like my time is being spent on
everything else that is not related to my work. – Interviewee 3

EC6: AI developers did not usually take a part in the allocating the resources.

In addition to human resources, the budgeting of the project was usually
determined by the customer. For example, only one interviewee worked with
internal AI projects, in which the AI development unit and the business unit of
the organization decided the budget together. Other interviewees worked with
the projects regulated by a contract that also determined the budget. Therefore,
continuous and fluid budgeting was rare, as the customer had control of how
much money was used in the development.

If we get green light from a company, the project price already includes a lump sum
of money either from the company or in the form of some collaboration. And we try
to do our best with that or go as far we can go with that sum of money. – Interviewee
5

Even if the developers usually were able to make suggestions when adding
new aspects to the project, the customer made the ultimate decision. Some pro-
jects had additional resources planned and used if there were changes in the
scope of the project or any added functionalities.

EC7: AI developers can make suggestions if there is a need for budget changes, but
with the contract-based projects, the customer makes the ultimate decision.

As mentioned, shared ownership is one of Jacobsen et al.’s (2019) agile de-
velopment essentials. However, a close relationship with the customer was diffi-
cult to achieve, as in many cases, the teams had a person in a customer relation-
ship role. Therefore, the other team members did not usually stay in touch with
the customer daily but rather when a new product or process was presented.
Data shows that the developers felt unsatisfied since the customer was the ulti-
mate decision-maker and gave the blessing for the product. Three interviews of
eight said that the customers changing their minds cause unpredictability and
difficulties in the development.

For example, the clients might change their mind in every two weeks as it has hap-
pened in some projects or the approach to gain some insight to something has changed.
– Interviewee 1

It seemed that AI expertise found the uncertain mindset of customers frus-
trating, mainly because the customer had the last word about the product. One
interviewee said that the customer did not always understand AI functions and
even less of the development of AI.

EC8: Customers did not have a clear understanding of AI functionalities.

67

EC9: AI developers and customers did not have a clear dialogue when it came to prod-
uct development.

The biggest problem regarding essentializing agile development and con-
tinuous practices in Business & Strategy seemed to be the role of the developers.
As mentioned, six interviewees out of eight found collaboration necessary. Still,
in many cases, the AI development process was done independently. Under-
standing the role of AI development can be different, as the development differs
so much about software development. For example, AI developers and data sci-
entists have different development actions compared to system developers.
However, the lack of proper understanding in both ways seems to go another
way around: Three people out of eight said they were uncertain about other peo-
ple's work and the team members' work effort had on one another.

I think this is a rather difficult question. At least knowing or having any kind of idea
how much my work influences other … I do not really know but I do think that my
work is influenced by others. – Interviewee 1

EC10: Developers did not have a clear understanding of their role as a project team
member.

As mentioned, one of the agile development essentials (Jacobsen et al., 2019)
is a cross-functional team and shared ownership. Even if a project team has cross-
functional members, not knowing their exact work roles and competencies can
cause uncertainty. AI development lacks shared aims, fiduciary duties, profes-
sional history, and norms (Sweeney, 2003). Thus, understanding the professional
roles can be complicated as the roles and practices are so dependent on the par-
ticipants and the projects. Not understanding the project participants may cause
uncertainty and frustration in both the developers and stakeholders who try to
define the common ground.

I would say it's difficult. Every team member knows the kind of impact they can have
on the larger project. But it's difficult to gauge how much impact there would be. -
Interviewee 6

The most significant challenges regarding AI experts and business and
strategy actions of continuous software engineering are the lack of common
ground caused by the nature of the AI. Thus, the relationship with the customer
and other project participants was vague, and the AI experts did not take an ac-
tive role in the project management. These attributes may cause challenges when
adopting continuous software and essentializing any agile methodology to the
project management process. These findings for the third primary empirical con-
clusion.

PEC3: Due to lack of active communication between AI experts and other project par-
ticipants, the AI experts often work in a silo. Thus, they do not participate business
and strategy related activities as actively as other project participants.

68

6.4 Development

The interview questions about the development of AI projects included how
functionalities are added, how the product is tested, and when the product is
ready for production. As mentioned before, AI development lacks various frame-
works as software development (Sweeney, 2003). Therefore, when asked about
the development practices, there were differences between the interviewees' an-
swers as the project tools and development methods vary greatly. Moreover, any
framework did not guide the development processes, and the AI experts seemed
to be uninterested in them. The development actions with iterations seemed to
resemble lightweight agile practices, however, only partly.

I guess I only remember the name of a one, which is the crisp, but I wouldn’t say that
I followed any one with intend but rather trying to have like the mindset within many
of the frameworks that you expect each part of the whole development process to be
iterative. – Interviewee 2

Moreover, as Interviewee 3 explained, the lack of project management mod-
els and the lack of teamwork caused uncertainty with developers and the project
overall. The challenges occurred in the development phase and other project life
cycle phases:

I feel that it is up to you to decide [when to implement your work] because there is no
teamwork, therefore others have nothing to say. I don’t know if it’s because of my own
experience, but it’s hard to trust that that product will work. - Interviewee 3

EC11: AI experts seemed to have no understanding of the frameworks and the lack of
them caused uncertainty for the development.

Frameworks were not wholly abandoned in every development case. Three
interviewees out of eight worked in the university environment, two as a profes-
sor and one as a research assistant. They had a more experimental approach, as
there was research done simultaneously with the development process. Moreo-
ver, the development was an opportunity to experiment both with the product
and with the development practices.

We have tested different auto ML systems or systems where you don't have to do an-
ything yourself, you just feed your data to a system and decides itself what kind of
things should be done, then we use various different deployment approaches. .. The
data scientists experiment with whatever tools that the data scientists have been find-
ing convenient. – Interviewee 6

It seemed that due to the lack of a guiding framework, many of the devel-
opment actions were separated from each other. The fluidity between

69

development actions seemed to be challenging to achieve. This became more and
more prevalent when asked about the testing process. Jacobsen et al. (2019) ex-
plain that part of the Agile development process is test cases that define the test
inputs and expected results. Test ideas are captured and scripted to give an ac-
curate description, what is tested. Furthermore, this process able the testing pro-
cess to be automated after the test cases are defined. Test cases were necessary to
practice in AI development, as the system was trained with test data. All of the
interviewees mentioned some training phase in which test cases were used.

You work with simple test cases at first and apply it into bigger junk of data then
there’s some pair review done by the other data scientist. – Interviewee 2

Continuous software engineering aims to make testing more effective by
using automation and test cases (Fitzgerald, 2017). However, the automated test-
ing process for AI is a less studied subject and not widely used. Only one inter-
viewee said that they used the MLOps pipeline to automate the process.

We use agile wherever possible, artificial intelligence and machine learning
MLOps. ..The aim is to keep the level of test automation high, as it accelerates devel-
opment. – Interviewee 7

Other interviewees said that they tested AI functions manually. The reasons
for this varied. For instance, one interviewee said that their organization did not
use automated testing tools, such as robotics, since tools like those were not avail-
able for AI development.

It was not automated for sure. It was all manual. There was unit testing, then there
was regression testing, also integration testing and all the things that you see. – Inter-
viewee 5

Testing is not done with testing robotics; those cannot be used in AI. The product is
taught to manually work with the material in desired way. – Interviewee 4

EC12: In most of the AI projects, testing is done manually.

Another interviewee said that since the developed concepts were so exotic,
only those responsible for the development could understand them. In those
cases, the person responsible for creating the AI concept was also responsible for
testing.

You work with simple test cases at first and apply it into bigger junk of data then
there’s some pair review done by the other data scientist in the product team but kinda
depends how well that can work because if you are working with something that is
pretty exotic then not even other data scientist don’t know that much about it. – Inter-
viewee 2

EC13: Testing was often made by the same person that developed the functionality.

70

As the testing was mostly done manually and usually conducted by the
same people responsible for the development, fourth primary empirical conclu-
sion is:

PEC4: Automated testing is rarely used in the development of AI, due to lack of auto-
matic testing tools for AI and exotic nature of the products.

Fitzgerald and Stol (2017) explain that continuous verification means formal
methods and inspections when verifying the AI function throughout the devel-
opment process. Three people out of eight being interviewed said they worked
in projects or organizations in which projects were regulated. Interviewee 4
worked in a public organization that developed systems for the internal use of
their organization. As the projects had many inner stakeholders and users, the
group presented their process to others. Also, the interviewee explained that as
the AI functionalities were used in tasks dealing with secure information, having
formalities were necessary to secure quality and make the process presentable .

We have described the process of how it goes, checkpoints and testing. Production
testing and production use that are more closely monitored before can be accepted for
actual use. The customer gives the ultimate blessing that now it works as desired. –
Interviewee 4

EC14: When developing an AI product for inner use, the development process is usu-
ally more seamless.

According to Jacobsen et al., (2019), one of the goals of Essentializing Agile
is building a releasable product, and this seemed to be the goal of Interviewee 4’s
projects. However, some other interviewees mentioned that they did not con-
stantly develop a complete AI product but rather an AI concept that the customer
company would adapt to their systems and data. Therefore, the implementation
into practice was not as important as aiming to produce a suitable concept. For
example, Interviewee 5 worked with the projects that were mainly used for test-
ing new AI-related ideas.

I guess that the requirements mainly come from the companies themselves … projects
have been much more complex because or complicated, because they have also had to
try to figure out what the interesting problems are to solve. Whereas we kind of have
the real-life problem that where we are going to where we are trying to help the best
we can. – Interviewee 5

EC15: When the AI experts were not responsible for the implementation, the develop-
ment process was incomplete.

Whenever the AI experts were not responsible for the whole project lifecy-
cle, there was less continuity in the process. For example, some interviewees ex-
plained that they only developed functionality or a concept, and the responsibil-
ity of implementation and monitoring was on a customer. Moreover, the inter-
viewees seemed careless about what happened to the project after the

71

development role ended. Also, the continuous quality of the product seemed ir-
relevant to them after the customer took over. Thus, actions such as continuous
verification and continuous compliance seemed irrelevant.

We could say that there are separate projects: one with coming up with the good model
or the AI thingy and then a separate one with bringing it to the production. - Inter-
viewee 3

PEC5: In AI development projects, project participants did not have fluid roles, but
they their own are of responsibility from which they rarely deviated.

6.5 Operations

The operations part of the interview discussed topis about what happens
after the product deployment. Also, the usage and monitoring of the product are
discussed and the relationship with the customer. The theme consisted of ques-
tions about user interaction, user expectations, monitoring, and eventual depar-
ture from the project.

Continuous use differs from an initial adoption versus, and the already
gathered customers can be seen as more effective than trying to attract ones (Fitz-
gerald, 2017). To have continuously used software products, the one producing
the software need to understand if the user expectations are fulfilled. However,
it seemed that the understanding of the users was not well established. Four in-
terviewees out of eight said their relationship with the users was usually indirect:
The development projects were done for the customer company that imple-
mented the AI concept or the product to their systems. Therefore, the users were
stakeholders of the customer company. Thus, the customer company represent-
atives were the ones with the AI experts and interacting with the users .

We get the feedback from the company. But since the AI model is usually trained with
the company own data, we don't know to what extent our dataset was biased or faulty
or something else. – Interviewee 6

In most cases, the completed product was delivered to the customer organ-
ization, which implemented it to their processes without help from the develop-
ment organization. However, receiving feedback from the users is possible. Most
interviewees explained that the customer organization gathered feedback from
the users and redirected it to the AI developers. In other words, the developers
did not have direct channels for achieving feedback. Also, one interviewee ex-
plained that such feedback was only directed to them if there was something
“great” or “terribly wrong” with the product. Also, the relationship was de-
pended on the fact that specific customers had a contract with the developers that
ensured direct and active feedback channels and closer monitoring.

72

So first of all, it depends on who is who's your actual end user. Second of all, it depends
upon what was your contract about. If your contract just said that you have to deliver
it, and maintain it only sometime, then you probably don't get to hear too much. –
Interviewee 6

To say that [interaction with the users] it is rare, a privilege. I have made a specific use
for the product; it has been really great to get to see it in context. In general, we are
dealing with that in a product owner role.

As Fitzgerald & Stol (2017) said, understanding user expectations and cus-
tomer awareness is essential in creating fulfilling products. As mentioned previ-
ously, four interviewees said that the relationship was indirect, and they received
indirect feedback on the product. However, people out of the 8 said that there is
no such interactive relationship. Significantly, the people responsible solely for
developing the AI functions and concepts did not have management work tasks
and did not have much interaction with the customer or the users:

These goes beyond what I do [that is] the concept and model systems, so no. And when
it [the product] is integrated in the customer’s system, they are the ones that may or
may not interact with their customers. – Interviewee 1

EC16: AI developers have rarely a direct relationship with the product users.

EC17: AI developers’ role rarely included interaction with the customer or with the
users.

Some people even said that having a relationship with the users was some-
thing they did not want to have. This seemed to be especially prevalent with the
hands-on AI developers.

I guess some people like it and it can give some valuable feedback for the developers,
but I did not appreciate it in the past. - Interviewee 2

EC18: AI experts found receiving feedback bothersome.

There was only one interviewee who worked with in-house AI projects, in
which the product would be used in the same organization as the developers
worked in. The product was used both by inner users that worked in the same
organization and outer users that were outer stakeholders. Inner users were in
regular interaction with the users, and feedback was regularly gathered from the
outer users to ensure the quality of the AI product. Also, in this organization, the
roles of the development team were more divided, as there were certain people
in management roles, developers, testers, and own unit for innovations. Thus,
the feedback was directed for the right people quickly, and the changes accord-
ingly were easy to make.

Production testing and production use that are more closely monitored before can be
accepted for actual use. The customer give the ultimate blessing that now it works as

73

desired. All the required elements are implemented, and the business makes the deci-
sion. The decision is made together with the client, that is usually the business unit,
and they have the biggest word. IT unit is also responsible for making its own decision.
We work closely together, the product is monitored together and also further devel-
oped together. – Interviewee 4

As Fitzgerald and Stol (2017) explain, the separations between software de-
sign time and the run-time have blurred. Thus, continuous run-time monitoring
means detecting problems early by using technologies such as the cloud. Most of
the interviewees said that monitoring of the released product varied. Interviewee
1 said there was usually a short crisis fixing period after the AI product imple-
mentation when the developers were responsible for problem detection. After
the period, the customer took care of the monitoring.

Well, there is a short price/crisis period during which I can still provide help if still
needed but it is the customers job to deal with the rest. – Interviewee 1

EC19: Monitoring was not automatically done by the AI developers, and was usually
responsible of the customer.

As mentioned, the relationship between AI developers and customers was
primarily contract-based, and the active communication would end after the
product was delivered. In addition, none of the interviewees mentioned trust as
something that they tried actively to establish. However, the developers seemed
to understand the advantages that a good relationship with the customer would
bring. For example, interviewee 7 said that even if the relationship were not nec-
essarily active between projects, a well-established relationship during the pro-
ject development meant that future projects could have had been suggested
openly.

So, I there are less opportunities to do something completely innovative once you've
released the project or the product. But if new opportunities arise in the sense, if it is a
long-term relationship with the client, and the new if you're continuously working on
something bigger, then of course you have the possibility of improving or actually
innovating or completely replacing something that you've all delivered a couple of
years ago. – Interviewee 7

The biggest challenges regarding operations seemed to be the lack of inter-
action between AI experts and the product users. Moreover, it seemed that many
AI experts that worked in the development did not interact with the customer as
well, as the was usually a person in the team responsible for customer relation-
ships. In addition, the contracts determined what kind of operational activities
the AI experts had. In many cases, the AI experts seemed inactive and happy if
they did not need to interact with the outer stakeholders after project deployment.
This forms the sixth primary empirical conclusion of the study:

PEC6: The lack of user and customer interaction causes the difficulty for AI experts to
ensure that the product can be continuously used.

74

6.6 Improvement and innovation

One of the interviewees worked in an organization where the AI projects were
developed for internal usage. Therefore, the stakeholders and product users
worked in the same organization as developers, and the participants could easily
communicate. Moreover, getting direct feedback was an essential and valued
part of the development. As a result, the AI development unit worked closely
with other units in the organization, and the product was created together:

We work closely together; the product is monitored together and further developed
together. – Interviewee 4

Interviewee 4 explained that the products had two types of users: inner and
outer users. Inner users worked in the same organization, and the outer users
were customers. The relationship with inner stakeholders and users was close, as
their feedback was necessary for the development and error detection. Further-
more, Interviewee 4 explained that feedback was also gathered and prioritized
through ticketing systems and other error monitoring systems. Outer users were
also able to give feedback by giving customer feedback directed to AI developers.
Interviewee 4 was the only person out of the eight interviewed that had a close
and continuous relationship with the stakeholders and inner product users. In
interviewee 4, feedback was the catalyst for improving the product, and the pro-
ject participants recognized its value for the overall quality.

Through ticketing, the process starts: CM card, where the message comes to the devel-
opers. An additional feature or change can be easily added, we also have an innovation
department. .. Today, it is a must to be on the crest of the wave. – Interviewee 4

According to Jacobsen et al. (2015), fast feedback loops are an essential part
of essentializing agile processes. Feedback is used to guide the development pro-
cess towards the most fitting solution and is gathered as early as possible, as
much as possible. However, in other interview cases, AI products, functionalities,
and concepts were produced in a customer relationship, which would eventually
end. The customer was not part of the development organization but came from
the outside. Thus, the relationship started when the product life cycle started.
Four people out of the eight said that after the ordered AI product or concept was
delivered, the relationship with the customer would end, and thus, the product
was in the customer’s hands. Therefore, further improvement of the AI was not
made, as the product would learn from the customer’s data. However, sugges-
tions for improvement were not wholly unwelcome. Four interviewees out of
eight said that the contract determined the possibility for improvement: If the

75

customer was willing to provide more funding and recognized the need, im-
provements were made.

I would say that if they are ready to provide the funding for the next project then of

course I would be continuing if that happens. – Interviewee 1

Two interviewees out of eight said that the contract might have had in-
cluded a fixed monitoring period, in which bug fixes and some minor improve-
ments were made. However, this fixed period did not include implementing new
functionalities or crafting new ideas. If the resources were provided and the cus-
tomer wanted to develop the product further, the improvements started as a new
project.

I would say that if they are ready to provide the funding for the next project then of
course I would be continuing if that happens. – Interviewee 1

There are no plans for future improvements unless someone offers money to develop.
– Interviewee 3

Three interviewees out of eight said that the improvements were not auto-
matically thought of or welcomed to the project. Interviewee 7 said that due to
the contract-based nature of the project, there was no chance to start to innovate
or improve spontaneously. As the contracts usually determined the project's
scope, the changes were something that needed to be discussed with the cus-
tomer.

In the project house where every working hour must be recorded somewhere. In your
own product development projects, the thing is quite different – Interviewee 7

Emerging AI-based technologies and their business strategies are not well-
studied subject matter. The uncertainty might be why the innovations are not
always welcomed, as the value they bring can be unpredictable. Furthermore, as
noted in previous data, the communication between customers and AI develop-
ers can be difficult and sometimes cause misunderstandings. AI innovations also
include many inner risks since AI developers work independently, and many in-
terviewees said that communication with other project participants was not ac-
tive. Furthermore, as some parts of the AI development were made by the same
person, there is a high risk for problems or failure.

It is up to the customers to decide whether they want to keep using the product. –
Interviewee 1

EC20: In contract based projects, the possible ideas of improvement needed to be ne-
gotiated with the client, who made the decision.

76

Three other interviewees explained that the improvements were suggested,
but the customer ultimately decided to develop them further. Interviewee 8 said
that if the AI experts noticed minor changes, they were proposed quickly. How-
ever, if innovations required more changes to the project scope, the changes re-
quired more planning and were riskier. As explained earlier, adding more con-
siderable innovations can be seen as riskier, and therefore, they were not as ac-
tively suggested.

If it is like, smaller thing that brings lots of value, then probably yes. So, there is also
that, like, amount of work needed to bring that innovation into the product. Yeah. But
of course, if it does not affect the project scope much anyway, then it is possible to do.
– Interviewee 8

EC21: Smaller improvements were more easily added than bigger ones.

Even if there seemed to be some prejudice regarding implementing new
ideas, the four interviewees out of eight said that an innovative mindset was an
essential part of their work. As the changes in the technological environment
happen constantly, the openness for learning new and bringing new ideas to
the production was thought to be necessary. It seemed that the interviewees
were interested in new ideas and innovation in the field of AI and were willing
to learn something new, even if the innovation were not straight up used in cus-
tomer projects.

An additional feature or change can be easily added. Today, it is a must to be on the
crest of the wave. – Interviewee 4

Yes, of course this [innovation] is the bread and butter because we are a research facil-
ity. In the end, we are supposed to deliver new kinds of solutions and try out the new
technologies. – Interviewee 5

Especially the interviewees that worked in the research-focused environ-
ment or as AI consultants were the ones that thought that an innovative mindset
was vital for understanding the business environment and staying ahead of the
competitors. Also, they were the ones that suggested innovations for their clients,
as the experimental approach was part of the problem-solving. However, exper-
imenting with something new was still the customer’s decision, and a more tra-
ditional innovative approach was taken when needed.

There are less opportunities to do something completely innovative once you have
released the project or the product. But if new opportunities arise in that sense, but I
already told you if it is a long-term relationship with the client, and the new if you are
continuously working on something bigger, then of course you have the possibility of
improving or innovating or completely replacing something that you have all deliv-
ered a couple of years ago. Yep, you always do you always try to suggest something
new. You always propose new things. Now, if it is accepted or not, that is a completely
different story. So that depends upon the budget and the relationships. – Interviewee
6

77

It seems that an innovative attitude was welcomed if the development or-
ganization had a mindset to be at the wave's crest. However, some interviewees
explained that most of the time, the contracts were such that they were no room
for further evolution. In some cases, the customer was solely responsible for the
product after the implementation, and thus, the producer-client relationship
ended for the moment. The biggest challenge for adapting a continuous innova-
tion mindset seemed to be the lack of communication between AI developers and
their customers. As mentioned earlier, Interviewee 4 said that their organization
valued feedback and used it in development. However, as mentioned in previous
Chapter 6.5, some interviewees did not appreciate feedback from the customer.
In addition, it was stated that there was usually a person in charge of the com-
munication with the customer. If this person lacked the understanding of AI pos-
sibilities and what could be improved, there could have had been some changes
for the unused development. This forms the last primary empirical conclusion:

PEC7: New ideas or innovations were not automatically added to the AI project, as
this depended on the customer’s wishes and the contract.

6.7 Summary

Chapter 6 included the analysis of empirical data and the seven primary empiri-
cal conclusions formed from it. Altogether, 21 empirical conclusions and seven
primary empirical conclusions were drawn from the data. The challenging ele-
ments of the adoption of continuous software engineering were identified within
the data as the empirical conclusion. To fit continuous software engineering prac-
tices into the development of AI, the research used the agile essentializing
toolbox to understand the basic requirements for using the agile framework in
the development context. These are the remarks that form the primary empirical
conclusions.

TABLE 4 Empirical conclusions formed from the data

Identifier Empirical conclusion

EC1 Continuous compliance and continuous security were not pre-
sent within the data

EC2 Other than using Python as a main coding language, the practi-
cal tools of development varied greatly

EC3 Frameworks are known but mostly used partly or as an uni-
dentified mental guideline.

EC4 The communication between AI developers and project partici-
pants is mostly unformal.

EC5 Lack of clear communication between AI developers and pro-
ject participants causes problems with understanding the work
efforts or the project as whole

78

EC6 AI developers did not usually take a part in the allocating the
resources.

EC7 AI developers can make suggestions if there is a need for budget
changes, but with the contract-based projects, the customer
makes the ultimate decision

EC8 Customers did not have a clear understanding of AI functional-
ities.

EC9 AI developers and customers did not have a clear dialogue when
it came to product development.

EC10 Developers did not have a clear understanding of their role as a
project team member.

EC11 AI experts seemed to have no understanding of the frameworks
and the lack of them caused uncertainty for the development.

EC12 In most of the AI projects, testing is done manually.
EC13 Testing was often made by the same person that developed the

functionality

EC14 When developing an AI product for inner use, the development
process is usually more seamless.

EC15 When the AI experts were not responsible for the implementa-
tion, the development process was incomplete.

EC16 AI developers have rarely a direct relationship with the product
users.

EC17 AI developers’ role rarely included interaction with the cus-
tomer or with users.

EC18 AI experts found receiving feedback bothersome.

EC19 Monitoring was not automatically done by the AI developers
and was usually responsible of the customer.

EC20 In contract-based projects, the possible ideas of improvement
needed to be negotiated with the client, who made the decision.

EC21 Smaller improvements were more easily added than bigger
ones.

The seven primary empirical conclusions are based on the empirical evi-

dence presented above. They form the foundation for discussion in the following
chapters.

TABLE 5 Primary empirical conclusions formed from the data

Identifier Primary empirical conclusion

PEC1 Continuous compliance and continuous security were not pre-
sent within the data.

PEC2 Frameworks offer support for AI project development, but they
are not used systematically or accurately in the process.

79

PEC3 Due to lack of active communication between AI experts and
other project participants, the AI experts often work in a silo.
Thus, they do not participate business and strategy related ac-
tivities as actively as other project participants.

PEC4 Automated testing is rarely used in the development of AI, due
to lack of automatic testing tools for AI and exotic nature of the
products.

PEC5 In AI development projects, project participants did not have
fluid roles, but they their own are of responsibility from which
they rarely divided.

PEC6 The lack of user and customer interaction causes the difficulty
for AI experts to ensure that the product can be continuously
used.

PEC7 New ideas or innovations were not automatically added to the
AI project, as this depended on the customer’s wishes and the
contract.

For clarification, context enriched PECs are presented in Table 6.

TABLE 6 Context-enriched conclusions

Identifier Context-enriched conclusion

PEC1 Regulatory compliance standards or security regulations were
not brought up by the interviewees developing AI.

PEC2 AI experts have a basic understanding of different software en-
gineering frameworks, but the usage of frameworks is not com-
mon.

PEC3 AI experts do not participate business and strategy related ac-
tivities as they usually work independently with the AI func-
tion and are not keenly seeking a collaboration.

PEC4 AI is mostly tested manually by its developer, due to nature
and the lack of automated testing technologies available.

PEC5 AI experts rarely divide from their work role or actively seek
new responsibilities.

PEC6 AI experts rarely interact with the product users directly, and
do not get information about if the product fulfils the user ex-
pectations.

PEC7 The customer provided the resources for the improvements
and thus determined if new ideas or innovations were wel-
comed in the AI project.

80

7 DISCUSSION

In this chapter, the concepts analyzed in the previous chapter are connected to
the theoretical background of this study, and the practical and theoretical impli-
cations are discussed.

7.1 Practical implications

The study aimed to highlight the challenges that AI development may face
if they adopt continuous software engineering methodology. Empirical evidence
suggests that each continuous phase of the project life cycle includes aspects that
make their adoption challenging in the AI development environment. Therefore,
continuous software engineering provides a set of practices for the continuous
delivery pipeline (Fitzgerald & Stol, 2017).

As stated in PEC1, continuous compliance and continuous security were
not identified in the research data. The lack of security mentions could be since
many of the AI experts interviewed were responsible for developing the AI prod-
uct and the concept. As AI function was usually part of the more extensive soft-
ware product, the development organization may have a dedicated department
for the security actions. Also, some interviewees explained that they usually de-
veloped only the basic idea of the AI function, and the customer was responsible
for the implementation and thus security. Both cases make continuous security
challenging to achieve. Continuous compliance was also not identified in the re-
search data, and this might be because compliances differ in each project, and the
discussion was about AI project development overall.

As PEC2 suggests, frameworks were rarely used in AI projects, even if AI
experts understood knew their content. As mentioned, AI development lacks
various frameworks as software development (Sweeney, 2003). Moreover, fitting
a software engineering framework to an AI environment does not come without
challenges, as the development processes and the requirements differ signifi-
cantly. It seemed that lack of guiding frameworks caused communication prob-
lems, as it created gaps between project life-cycle phases and people responsible
for different actions. This also caused problems with understanding the role of
the AI expert. The following figure presents the AI development process ex-
plained by several interviewees. The processes resemble a waterfall model, as it
lacks iterations and progresses systematically.

81

FIGURE 10 Simplifyed AI development process based on the description of the interviewees

PEC3 implied that the AI experts rarely participated in business and strat-
egy-related actions. Interviewees explained that there was usually a senior team
member responsible for the management and customer relationship actions. Also,
interviewees lacked interest in such actions, especially communication with the
customers. PEC2 seemed to be closely connected to PEC5 and PEC6, as the AI
experts’ roles, communication issues, and lack of interaction with other project
participants were typical. As the AI experts did not have a good understanding
of the overall project, were not able to successfully communicate with stakehold-
ers, and did not interact with the users, the project outcome was unpredictable,
at least for them. Also, the fulfillment of user expectations was unknown for them,
as they received feedback only in exceptional cases.

From a practical standpoint, the challenging factors for adopting continu-
ous development were caused by the exotic nature of AI, which further caused
communication and collaboration issues and problems with the continuity and
flexibility with the development. Also, it seemed that as only a few AI experts
were working in development teams, they were usually responsible for several
development actions, making the product prone to human errors.

TABLE 7 Practical implications of primary conclusions

Identifier Implication for practice

PEC1 Regulatory compliance standards or security regula-
tions were not brought up by the interviewees devel-
oping AI.

PEC2 & PEC3 AI experts have a basic understanding of different
software engineering frameworks, but the usage of
frameworks is not common.

PEC3 AI experts do not participate business and strategy
related activities as they usually work independently
with the AI function and are not keenly seeking a
collaboration.

PEC4 AI is mostly tested manually by its developer, due to
nature and the lack of automated testing technolo-
gies available.

PEC5 AI experts rarely dived from their work role or ac-
tively seek new responsibilities.

82

PEC6 AI experts rarely interact with the product users di-
rectly, and do not get information about if the prod-
uct fulfils the user expectations.

PEC7 The budget, and the relationship with the customer
were the main aspects that determined if new ideas
or innovations are welcomed in AI projects.

7.2 Theoretical implications

The study aimed to locate and understand the challenges associated with the de-
velopment of artificial intelligence using continuous methods. Empirical evi-
dence strongly suggests that little research has been done on the challenges of
developing artificial intelligence and coordinating continuous methods, and
some empirical evidence is strongly interlinked. The following table presents a
primary empirical conclusion and its relation to existing research.

TABLE 8 Primary empirical conclusions and their relation to existing research

Identifier Primary empirical conclusion Relation to existing re-
search

PEC1 Continuous compliance and con-
tinuous security were not present
within the data.

Contradicting, continuous
compliance and continu-
ous security are part of the
operation actions of contin-
uous software engineering
(Fitzgerald & Stol, 2017).
Continuous software engi-
neering pipeline is not
completed without these
practises.

PEC2 Frameworks offer support for AI
project development, but they are
not used systematically or accu-
rately in the process.

Corresponding with the
previous research, as AI
development lacks com-
mon aims and duties (Lee,
et. al., 2019)

PEC3 Due to lack of active communica-
tion between AI experts and other
project participants, the AI experts
often work in a silo. Thus, they do
not participate business and strat-
egy related activities as actively as
other project participants.

Corresponding with the
previous research (Pior-
kowski, et al. 2021)

83

PEC4 Automated testing is rarely used in
the development of AI, due to lack
of automatic testing tools for AI
and exotic nature of the products.

Contradicting, as the AI-
Ops and MLOps pipeline
has recently emerged to
tackle problems regarding
ML test pipeline (Fursin,
Guillou, & Essayan, 2020;
Karamitsos, Albarhami, &
Apostolopoulus, 2020;
Mäkinen, Skogström,
Laaksonen & Mikkonen,
2021).

PEC5 In AI development projects, project
participants did not have fluid
roles, but they their own are of re-
sponsibility from which they rarely
divided.

Novel, previous research
about flexibility of the role
of AI experts was not iden-
tified.

PEC6 The lack of user and customer in-
teraction causes the difficulty for
AI experts to ensure that the prod-
uct can be continuously used.

Novel, previous research
about lack of user and cus-
tomer interaction with AI
projects was not identified.

PEC7 New ideas or innovations were not
automatically added to the AI pro-
ject, as this depended on the cus-
tomer relationship and the contract.

Novel, previous research
about the impact of the cus-
tomer relationship in AI
project was not identified.

With continuous software engineering practice, the product's entire life cy-

cle is a continuous process, considered a simultaneous event between different
development levels (Suomalainen, 2015). However, continuous software engi-
neering methodology is a new development practice used primarily to develop
traditional software and information systems. The adoption of continuous soft-
ware engineering practices in the development of AI is not a well-studied topic.
AI development differs from normal software development, as the goal is to
build a learning system that predicts outcomes from the input data (Saravanan
& Sujatha, 2018) since AI development has not previously been studied as a
whole pipeline, the lack of research regarding continuous security and compli-
ance in understandable.

AI development lacks similar evolved development methodologies and
practices as normal software development (Sweeney, 2003). Even if continuous
software engineering does not necessarily define any specific tools to be used in
the development process, the continuous development loop can be challenging
to achieve if the developers are free to select any tool they prefer. As PEC2 states,
AI developers did not rely on pre-set development practices and had various
tools for practical development; their development process can be difficult to
translate for the stakeholders (Piorkowski et al., 2021). Also, the AI experts were
often uncertain about the project management itself, making the silo between

84

them and the other project participants significant. This also linked PEC2 to PEC3,
as the lack of frameworks and selected practices was one of the causes of com-
munication issues that prevented the usage of agile and continuous methods in
the development. Especially the interviewees, that worked in the development
of AI concepts or coding did not feel connected to the business and planning side
of the project. Thus, using a business-oriented attitude to development, in which
the business actions are close to development ones, is impossible (Fitzgerald &
Stol, 2017).

Continuous software engineering also suggests that the testing be highly
automated to ensure a continuous development life cycle (Fitzgerald & Stol,
2017). However, the test automation tools were not widely available with AI de-
velopment, thus forcing the testing to be done manually. Even if there is research
done with the MLOps and AIOps (Fursin, Guillou, & Essayan, 2020; Karamitsos,
Albarhami, & Apostolopoulus, 2020; Mäkinen, Skogström, Laaksonen & Mikko-
nen, 2021), most of the AI experts did not mention them in the interviewees. The
interviewees seemed to have two opinions about why continuous testing was not
a possibility in AI development: Firstly, there was no such automated system to
do the testing. Secondly, the concepts were so complex that they were only tested
by the same person that developed them. Fitzgerald (2017) says that continuous
testing is possible in two ways: automating testing with automated technologies
or prioritizing test cases. However, according to interviewees, neither of these is
available with current technologies. Only one interviewee explained that they
used automated systems in testing; they were not in everyday use. The develop-
ers were solely responsible for testing the AI functionalities and rarely did dis-
cuss the testing with other project participants. This may cause a human error in
the product and make the product unnecessarily complicated. It seemed that the
interviewees did not have a complete understanding of how testing pipelines
work, and thus, the testing was primarily manual. Therefore, PEC4 contradicts
the current research about ML and AI testing pipelines.

Continuous software engineering aims to build a life cycle-long continuous
pipeline for product development. PEC5 states that AI experts usually do not
divide their roles. For example, an interviewee stated that customer relationship
actions went beyond their work description. Thus, they did not participate in
such. However, the continuity of the project life cycle could be challenging to
achieve, as the AI experts were not interested in other project development
phases than the one that they were responsible for. Piorkowski et al. (2021) have
studied the communication issues between AI developers and other project par-
ticipants. They explain that the gaps are caused due to not sharing the same sta-
tus in knowledge, no trust, stakeholder expectations are not managed, and the
communication participants do not share the mental model lens. In the inter-
views, some explained that they found customers annoying and discovering
common ground with others difficult, so they did not feel motivated to partici-
pate in other development actions. In addition, the customers did not always un-
derstand the product or what they wanted. Three interviewees explained that
their teams consisted of people responsible for customer relationships and

85

understanding their mindset. Therefore, the AI developers did not contact the
customer or the end users, as the team's contact person gave the feedback. How-
ever, the agile mindset states that there should be no area in the project that is a
"no-go" zone, as teams should be cross-functional. (Schawaber, 1996). The exist-
ence of such areas and the communication issues meant that the AI experts were
not motivated to switch their responsibilities in the project fluidly.

The most prevalent problems seemed to occur with the customer relation-
ship and the user-customer and the customer-developer interaction. Some inter-
viewees explained that the product responsibility of the developers ended during
implementation to the customer's system. Thus, the customer was the one that
interacted with the product users. However, the customer was not necessarily
the actual user. As AI was implemented to the customer's systems, they were in
contact with the end-users. Also, as the PEC6 informs, AI experts' role did not
usually include customer relationship actions, which was the responsibility of
the project manager or product owner. The distant relationship between the AI
developers, the customers, and the users meant that AI experts received feedback
only on special occasions. There was no research identified about the user and
the customer relationship problems with the AI experts. However, the lack of
outcome feedback has been studied in general software development as part of
agile development. It may cause a rise in costs, a longer decision-making process,
and seeing development results (Highsmith & Cockburn, 2001).

Software products are rarely a one-time purchase, as the products need to
work in the rapidly changing business environment (O'Connor, Elger, & Clarke,
2017). Therefore, agile methods suggest that the product lifecycle does not end
with the implementation, but the product evolution continues after the initial
project ends. In the research data, many of the interviewees explained that the
contract determined improvements and evolution. It seemed that the most ex-
perimental mindsets were with the AI experts, that worked in an organization
that did active research. As part of their work was to try new technologies and
innovations, their attitude towards new things was welcoming. On the other
hand, AI developers working with contract-based projects in which the improve-
ment and evolution of the development were customer decisions. PEC7 states
that improvement, innovations, and new ideas depended on customer relation-
ships. Previous research did not identify this phenomenon in the AI context.
However, agile methodologies aim to bring the project development team and
the customer closer together (Muller & Tichy, 2001). As previously stated, there
was usually a person responsible for the project management with other contin-
uous software engineering actions. Also, they were the ones with a close relation-
ship with the customer. As the AI expert's role did not usually include contact
with the customer, they did not suggest improvements easily. Thus, suggesting
new ideas was not expected.

86

8 THANK YOU AND GOODBYE

This chapter goes through the final conclusions for the study. These include the
answer to research questions, limitations of the study and future research oppor-
tunities.

8.1 Answers to the research questions

The study's goal was to understand the challenges associated with the adoption
of the continuous software engineering methodology in the development of arti-
ficial intelligence. Therefore, two additional research questions were introduced
to clarify the topic to answer the main research question. The additional first re-
search question of the study was:

• What is agile and continuous system development?

The research question was answered by reviewing the scientific literature

and research articles on the topic. The answer to the research question aimed to
emphasize the introduction of selected design models and the challenges they
may cause. Fitzgerald and Stol (2017) had researched continuous software engi-
neering, which was used to map out the continuous software engineering phases.

The second research question aimed to explain the nature of AI and its im-
portant development:

• What is artificial intelligence and how it is developed?

The research question was answered by reviewing the scientific literature

and research articles on the topic. The answer to the research question aimed to
give a general understanding of AI and its development. Also, the challenges that
AI development may face are also included in the literature review.

As the goal of the study was to understand the challenges of continuous
software engineering in AI context, The main research question of the study was:

• What are the challenges associated with the continuous development of arti-

ficial intelligence?

To combine continuous software engineering with AI development, the re-
search model using agile essentializing tools was created. This formed the re-
search model for the empirical research of the study. The empirical findings sug-
gest that the adoption of continuous software engineering in the development of
AI has many challenges caused by the nature of AI development. AI develop-
ment is done more stiffly compared to agile software engineering, and AI experts

87

mainly worked independently. Communication issues caused by lack of shared
knowledge, lack of guiding frameworks, and issues in the role of AI experts
meant that the project life cycle did not resemble a continuous cycle but a step-
by-step heavyweight development model. Furthermore, the AI experts rarely in-
teracted with the customer or the product users, as they felt that their work role
did not include such actions. Also, the customer was usually responsible for the
AI product after it was implemented in their systems, thus interacting with the
system users.

8.2 Limitations

The thematic interview method was used to gather research data. This gave room
for improvising and talking about topics that they found the most important.
However, as the interviewee's background varied greatly, the interviewees con-
centrated on those questions the most that they were the most familiar with. On
the opposite, their unfamiliar topics were skipped mainly by them, as the inter-
viewees' work roles did not include all the product life cycle actions. For example,
only one person worked in a management role and thus had the most insight into
the business actions but did not have deep knowledge about the development
tasks. This made the answers diverse, and some variables were more emphasized.
However, the deep knowledge of understanding one phase of the life cycle, but
not the others, was seen as a piece of evidence for the silos in which the AI team
members worked.

Artificial intelligence as a topic was studied on high-level. The AI technol-
ogies were not strictly divided into smaller groups, and all the projects were
viewed through the same lens. The more precise separation of technologies
would have required a more precise selection of the interviewees and the scope
of the study to be different. This high-level approach was adequate for the study.

While the study gave suggestions of the possible challenges in adopting
continuous software engineering in the development of AI, the methodology is
yet to be tested. Furthermore, the lack of real-life scenarios using continuous soft-
ware engineering in AI means that the continuous process may include other
challenges not discussed in this study.

8.3 Further research

As mentioned, the research did not divide the interviewees into groups based on
the AI technologies they were working with. In addition, the size of the develop-
ment organization or the projects was not considered. However, as not all AI
functionalities are not produced similarly, separating different projects from each
other is suggested. Also, scaling continuous software engineering practices up or

88

down can cause additional challenges that should be considered with further re-
search.

Even if the study provides information about some challenges re-
garding the continuous engineering of AI, the possible links between the chal-
lenges and the disadvantages they cause to different project lifecycle phases are
yet to be studied. Giardino et al. (2015) have presented the Greenfield Startup
Model, which explains the priority of start-ups to release the product as quickly
as possible. However, the need to shorten time-to-market by speeding up the de-
velopment through low-precision activities is counterbalanced by the need to re-
structure the product before targeting further growth.

FIGURE 11 Main categories and causal relationships in the Greenfield Startup Model
(Giardino, et al., 2015)

A similar phenomenon was noticed in this study, as the AI experts seemed

to speed up the development to push the product forward. As they rarely collab-
orated with other project participants or received feedback, the end quality of the
product and the customer fulfilment did not seem to be a high priority. In further
research, the challenging factors and continuous software development and the
linkages could be studied using a model based on the Greenfield Startup Model
to ensure the quality of AI products.

89

REFERENCES

Akbar, M. A., Sang, J., Khan, A. A., Amin, F. E., Hussain, S., Sohail, M. K., ... &
Cai, B. (2018). Statistical analysis of the effects of heavyweight and
lightweight methodologies on the six-pointed star model. IEEE Access, 6,
8066-8079.

Beck, K. (1999). Embracing change with extreme
programming. Computer, 32(10), 70-77.

Blokdijk A, Blokdijk R (1987) Planning and Design of Information Systems.
London: Academic Press.

Bresina, J., Dearden, R., Meuleau, N., Ramkrishnan, S., Smith, D., &
Washington, R. (2012). Planning under continuous time and resource
uncertainty: A challenge for AI. arXiv preprint arXiv:1301.0559.

Bostrom, N. (2017). Strategic implications of openness in AI
development. Global policy, 8(2), 135-148.

Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford
University Press.

Cotterell M., & Hughes, B., (1995) Software Project Management, An
international Thomson Publishing Company, London

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of
computer technology: A comparison of two theoretical
models. Management science, 35(8), 982-1003.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee
Software, 33(3), 94-100.

Fitzgerald, B., & Stol, K. J. (2017). Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123, 176-189.

Fojtik, R. (2011). Extreme Programming in development of specific
software. Procedia Computer Science, 3, 1464-1468.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software
Development, 9(8), 28-35.

ft n il Ionel, N. (2008). Critical analysys of the Scrum project management
methodology.

Fursin, G., Guillou, H., & Essayan, N. (2020). CodeReef: an open platform for
portable MLOps, reusable automation actions and reproducible
benchmarking. arXiv preprint arXiv:2001.07935.

Greenfield, J., & Short, K. (2003, October). Software factories: assembling
applications with patterns, models, frameworks and tools. In Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (pp. 16-27).

90

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., &
Abrahamsson, P. (2015). Software development in startup companies: the
greenfield startup model. IEEE Transactions on Software
Engineering, 42(6), 585-604.

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On
the past, present, and future of artificial intelligence. California
management review, 61(4), 5-14.

Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L.,
Krebs, V. E., ... & Ramkumar, P. N. (2020). Machine learning and artificial
intelligence: Definitions, applications, and future directions. Current
reviews in musculoskeletal medicine, 13(1), 69-76.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The
business of innovation. Computer, 34(9), 120-127.

Hope, J., & Fraser, R. (2003). Beyond budgeting: how managers can break free
from the annual performance trap. Harvard Business Press.

Hüttermann, M. (2012). DevOps for developers. Apress.

Jacobson, I., Ng, P. W., McMahon, P. E., & Goedicke, M. (2019). The essentials of
modern software engineering: free the practices from the method prisons!.
Morgan & Claypool.

Laanti, M. (2014, May). Characteristics and principles of scaled agile.
In International Conference on Agile Software Development (pp. 9-20).
Springer, Cham.

Larman, C. (2004). Agile and iterative development: a manager's guide.
Addison-Wesley Professional.

Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business
model innovation: the case of artificial intelligence. Journal of Open
Innovation: Technology, Market, and Complexity, 5(3), 44.

Leffingwell, D. (2018). SAFe 4.5 Reference Guide: Scaled Agile Framework for
Lean Enterprises. Addison-Wesley Professional.

Legg, S., & Hutter, M. (2007). A collection of definitions of
intelligence. Frontiers in Artificial Intelligence and applications, 157, 17.

Liddy, E. D. (2001). Natural language processing.

Lyytinen, K. (1987). Different perspectives on information systems: problems
and solutions. ACM Computing Surveys (CSUR), 19(1), 5-46.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015, May). Dimensions of devops.
In International conference on agile software development (pp. 212-217).
Springer, Cham.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2016, November). Relationship of
DevOps to agile, lean and continuous deployment. In International

91

conference on product-focused software process improvement (pp. 399-
415). Springer, Cham

McMillan, A. B. (2020). Making Your AI Smarter: Continuous Learning
Artificial Intelligence for Radiology.

Minsky, M. (2019). A framework for representing knowledge (pp. 1-25). de
Gruyter.

Mohammadi, S., Nikkhahan, B., & Sohrabi, S. (2009). Challenges of user
Involvement in Extreme Programming projects. International Journal of
Software Engineering and Its Applications, 3(1), 19-32.

Mäkinen, S., Skogström, H., Laaksonen, E., & Mikkonen, T. (2021). Who Needs
MLOps: What Data Scientists Seek to Accomplish and How Can MLOps
Help?. arXiv preprint arXiv:2103.08942.

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural
language processing: an introduction. Journal of the American Medical
Informatics Association, 18(5), 544-551.

O'Connor, R. V., Elger, P., & Clarke, P. M. (2017). Continuous software
engineering—A microservices architecture perspective. Journal of
Software: Evolution and Process, 29(11), e1866.

Ohno, T. (1988). Toyota production system beyond large-scale production.
Diamond Inc

Petersen, K., Wohlin, C., & Baca, D. (2009, June). The waterfall model in large-
scale development. In International Conference on Product-Focused
Software Process Improvement (pp. 386-400). Springer, Berlin, Heidelberg.

Radack, S. (2009). The system development life cycle (sdlc) (No. ITL Bulletin
April 2009 (Withdrawn)). National Institute of Standards and Technology.

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö,
T. (2016, November). DevOps adoption benefits and challenges in practice:
a case study. In International conference on product-focused software
process improvement (pp. 590-597). Springer, Cham.

Piorkowski, D., Park, S., Wang, A. Y., Wang, D., Muller, M., & Portnoy, F.
(2021). How ai developers overcome communication challenges in a
multidisciplinary team: A case study. Proceedings of the ACM on Human-
Computer Interaction, 5(CSCW1), 1-25.

Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: foundations of
computational agents. Cambridge University Press.

Pressman R.S. (1994). Software Engineering A practitionerís Approach,
McGraw-Hill International, UK

Sánchez-Gordón, M., & Colomo-Palacios, R. (2018, October). Characterizing
DevOps culture: a systematic literature review. In International

92

Conference on Software Process Improvement and Capability
Determination (pp. 3-15). Springer, Cham.

Senapathi, M., Buchan, J., & Osman, H. (2018, June). DevOps capabilities,
practices, and challenges: insights from a case study. In Proceedings of the
22nd International Conference on Evaluation and Assessment in Software
Engineering 2018 (pp. 57-67).

Schwaber K. 1995. SCRUM Development Process. OOPSLA’95 Workshop on
Business Object Design and Implementation.

Schwaber K. 2004. Agile Project Management With Scrum. Washington:
Microsoft Press.

Schwaber K. & Beedle M. 2002. Agile Software Development with Scrum. New
Jersey: Prentice-Hall.

Suomalainen, T. (2015, December). Defining continuous planning through a
multiple-case study. In International Conference on Product-Focused
Software Process Improvement (pp. 288-294). Springer, Cham.

Smeds, J., Nybom, K., & Porres, I. (2015, May). DevOps: a definition and
perceived adoption impediments. In International conference on agile
software development (pp. 166-177). Springer, Cham.

Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to estimating
software development effort. IEEE Transactions on Software
Engineering, 21(2), 126-137.

Sweeney, L. (2003). That's AI?: a history and critique of the field.

Turetken, O., Stojanov, I., & Trienekens, J. J. (2017). Assessing the adoption level
of scaled agile development: a maturity model for Scaled Agile
Framework. Journal of Software: Evolution and process, 29(6), e1796.

Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence
(AI) applications for COVID-19 pandemic. Diabetes & Metabolic
Syndrome: Clinical Research & Reviews, 14(4), 337-339.

Valacich, J. S., George, J. F., & Hoffer, J. A. (2004). Essentials of systems analysis
and design. Prentice Hall.

Vega, J., Murari, A., Pereira, A., Portas, A., Rattá, G. A., Castro, R., & JET-EFDA
Contributors. (2009). Overview of intelligent data retrieval methods for
waveforms and images in massive fusion databases. Fusion Engineering
and Design, 84(7-11), 1916-1919.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User
acceptance of information technology: Toward a unified view. MIS
quarterly, 425-478.

Welke, R. J. (1983). IS/DSS: DBMS support for information systems
development. In Data Base Management: Theory and Applications (pp.
195-250). Springer, Dordrecht.

93

Williams, L., & Cockburn, A. (2003). Agile software development: it’s about
feedback and change. IEEE computer, 36(6), 39-43.

Womack, J.P. & Jones, D.T., (1996). Lean Thinking: Banish waste and create
weath in your corporation. New York: Free Press..

Womack, J. P., & Jones, D. T. (1997). Lean thinking—banish waste and create
wealth in your corporation. Journal of the Operational Research
Society, 48(11), 1148-1148.

Zhang, D., & Tsai, J. J. (2003). Machine learning and software
engineering. Software Quality Journal, 11(2), 87-119.

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). DevOps and its practices. IEEE
Software, 33(3), 32-34.

94

APPENDIX 1

Themes and interview questions:

1. Theme: Current job and challenges
a. What is your current work role and what does it includes?
b. How is the work divided in your project group? How much col-

laborate with others?
c. What kind of tools did you use when developing AI?
d. Can you name any framework, model, or mindset, that you use

as a development guideline?
2. Theme: Business Strategy

a. Can you work independently in the project, or does your work
require collaboration with other project participants?

b. How are the requirements of the project decided? You can use a
previous or current project as an example.

c. How are the resources planned at the beginning of the project?
3. Theme: Development

a. When is a new functionality or part of the code applied to larger
project on hand?

b. Can you describe the testing process in some of your projects?
c. How you decide that the project is ready to be released?
d. Do you know how does your part of the work affect the overall

quality of the bigger project? For example, the quality of a soft-
ware project.

4. Theme: Operations
a. Do you interact with the product users after the release?
b. After the product release, do you know if the user expectations

are fulfilled?
c. Is the product monitored after the release? If it is, how?

5. Theme: Improvement and innovation
a. Is the product quality improved after the release by you?
b. Are new innovations added to the product if new opportunities

rise?
c. When does your involvement with the project end?

Do you have anything that you like to add?

