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Abstract
This thesis studies gluon saturation in hadronic matter at high energy by calcu-
lating next-to-leading order (NLO) corrections to inclusive and diffractive deep
inelastic scattering cross sections in the Color Glass Condensate (CGC) effective
field theory.

We demonstrate that the large soft gluon logarithm is correctly factorized
into the Balitsky–Kovchegov (BK) renormalization group equation by accurately
connecting the NLO scattering kinematics to the rapidity scale of the dipole am-
plitude in the scattering. This brings the perturbative expansion under control
and enables us to do precision comparisons between theory and data. We fit the
initial condition of the BK evolution equation to HERA inclusive deep inelastic
scattering data by combining of the NLO accuracy inclusive cross sections with
beyond leading order BK evolution prescriptions. This results in the state-of-
the-art accuracy comparison between CGC theory and HERA data, and deter-
mination of the dipole amplitude initial shape which is a necessary input for all
NLO CGC phenomenology. In the introductory part of this thesis, the effect of
the NLO BK equation on the fits is assessed, and an alternative form for the
NLO loop correction to the inclusive cross sections is derived which enables the
consistent setting of the dipole amplitude rapidity scale in the NLO corrections.

The underlying mechanism of diffraction in particle scattering is still un-
known, with multiple competing pictures. Diffraction is studied in this thesis
in the CGC formalism, and we calculate the tree-level qq̄g NLO contribution to
the diffractive deep inelastic scattering structure functions where the qq̄g Fock
state scatters off the target and becomes the diffractively produced system. This
contribution has previously been known in the literature only in leading log(Q2)
accuracy valid at large Q2, and only for the structure function FD

T . The qq̄g
contribution to both structure functions FD

T and FD
L are presented in full NLO

accuracy.

i



ii



Tiivistelmä
Tässä väitöskirjassa tutkitaan hadronisen aineen gluonikyllästymistä korkealla
energialla laskemalla toisen kertaluvun häiriöteorian korjauksia kaikenkattavaan
ja diffraktiiviseen syvän epäelastisen sironnan vaikutusalaan efektiivisessä värila-
sikondensaatti-kenttäteoriassa.

Näytämme, että suuri matalan pitkittäisliikemäärän gluoneista johtuva lo-
gartmi faktorisoituu oikein Balitsky–Kovchegov (BK) -renormalisaatioryhmäyh-
tälöön, kun toisen kertaluvun sironnan kinematiikka yhdistetään tarkasti siron-
nan dipoliamplitudin rapiditeettiskaalaan. Tämä tuo häiriöteorian sarjakehitel-
män hallintaan ja mahdollistaa tarkkuusvertaamisen teorian ja kokeellisten tu-
losten välillä. Sovitamme BK-evoluutioyhtälön alkuehdon HERA-kokeen syvän
epäelastisen sironnan kokonaisvaikutusalan mittaustuloksiin yhdistämällä toisen
kertaluvun tarkkuuden vaikutusalalaskun yli johtavan kertaluvun tarkkuuden
BK-evoluutio yhtälöiden kanssa. Tämä tuottaa huipputarkkuuden yhteensopi-
vuustestin värilasikondensaatti-teorian ja mittaustulosten välillä, sekä määri-
tyksen dipoliamplitudin evoluution alkumuodolle, joka on välttämätön syöte
hiukkastörmäysten kuvaamiseen värilasikondensaatti-teoriassa. Tässä väitöskir-
jan johdanto-osassa arvioidaan toisen kertaluvun tarkkuuden BK-yhtälön vaiku-
tusta sovitustuloksiin, ja johdetaan vaihtoehtoinen muoto toisen kertaluvun sil-
mukkakorjaukselle syvän epäelastisen sironnan kokonaisvaikutusalaan, mikä mah-
dollistaa johdonmukaisen rapiditeettiskaalan asettamisen toisen kertaluvun kor-
jauksissa.

Hiukkassironnassa tapahtuvan diffraktion perustavaa mekanismia ei vielä
tunneta syvällisesti ja kilpailevia kuvia prosessille on useita. Diffraktiota tutki-
taan tässä väitöskirjassa värilasikondensaatti-teoriassa, jossa laskemme toisen
kertaluvun puutason qq̄g-korjauksen diffraktiivisen syvän epäelastisen sironnan
rakennefunktioihin, missä qq̄g Fock-tila siroaa kohtiosta ja muodostaa diffrak-
tiivisen systeemin. Kyseinen osuus vaikutusalasta on aiemmin tunnettu vain
johtavan log(Q2) tarkkuudessa ja vain FD

T -rakennefunktiolle. Tämä qq̄g-korjaus
esitetään sekä FD

T - että FD
L -rakennefunktioille täydessä toisen kertaluvun tark-

kuudessa.

iii



iv



Author Henri Hänninen
Department of Physics
University of Jyväskylä
Finland

Supervisors Prof. Tuomas Lappi
Department of Physics
University of Jyväskylä
Finland

Dr. Heikki Mäntysaari
Department of Physics
University of Jyväskylä
Finland

Reviewers Prof. Anna Staśto
Department of Physics
Penn State University
USA

Prof. Bo-Wen Xiao
School of Science and Engineering
The Chinese University of Hong Kong
China

Opponent Prof. Krzysztof Golec-Biernat
Division of Theoretical Physics
Institute of Nuclear Physics PAN
Poland

v



vi



Preface

The research reported in this thesis has been carried out at the University of
Jyväskylä from April 2017 to September 2021. This work was supported by
the European Union’s Horizon 2020 research and innovation programme by
the European Research Council (ERC, grant agreement No. ERC-2015-CoG-
681707), and in the very final stages by the Academy of Finland (project 321840).
The computing resources provided by CSC – IT Center for Science in Espoo,
Finland, and the Finnish Grid and Cloud Infrastructure (persistent identifier
urn:nbn:fi:research-infras-2016072533) were crucial for the completion of this
work.

I have been delighted and fortunate to have had the opportunity to work in
the excellent supervision of Prof. Tuomas Lappi and Dr. Heikki Mäntysaari,
both of whom I thank for their expert guidance and support. Secondly, I thank
Dr. Guillaume Beuf for all the enlightening discussions and correspondence
that helped making many aspects of this thesis possible. I also wish to thank
Dr. Bertrand Ducloué, Dr. Yair Mulian, Dr. Risto Paatelainen, and Dr. Yan Zhu
for fruitful collaboration. I am also thankful to Prof Kari J. Eskola, Prof. Tero
Heikkilä, and Prof. Kimmo Kainulainen for their lessons in theoretical physics
and for their guidance. I thank Prof. Anna Staśto and Prof. Bo-Wen Xiao for
reviewing this manuscript, and Prof. Krzysztof Golec-Biernat who has agreed
to act as my opponent.

Friends and colleagues have had an important, if less direct, part in the re-
alization of this thesis. Special thanks go to Kalle Kansanen and Mikko Kuha
for sharing this journey of becoming a young scientist and for their friendship.
I had the privilege to begin this journey, in the beforetimes, in the grad student
office YFL 353 known as Holvi. I thank the Holvi collaborators Lotta Jokiniemi,
Mikko Kivekäs, Mikko Kuha, Miha Luntinen, Topi Löytäinen, Petja Paakki-
nen, Jani Penttala, Pekka Pirinen, and Oskari Saarimäki for the engaging and
inspiring working environment group chat. I also thank Toni Ikonen, Joonas
Niinikoski, and Timo Schultz for the adventures into advanced mathematics and
the camaraderie during the tumultuous first years under the accelerated physics
study programme.

vii



I thank my mother and father for their support in all my endeavors. My
father’s book recommendations of Gamow’s and Feynman’s works are among
the earliest memories of interest in, and excitement about, theoretical physics. I
also thank my grandfather Osmo for always nurturing my interest in the natural
sciences. Finally, with the deepest appreciation, I thank Laura, Petrus, and
Aurora for their love and support.

Henri Hänninen, September 2021, Jyväskylä

viii



List of Publications

This thesis consists of an introductory part and of the following publications:

[I] Deep inelastic scattering in the dipole picture at next-to-leading
order
B. Ducloué, H. Hänninen, T. Lappi and Y. Zhu, Phys. Rev. D 96.9 (2017)
094017, arXiv: 1708.07328 [hep-ph].

[II] One-loop corrections to light cone wave functions: the dipole
picture DIS cross section
H. Hänninen, T. Lappi and R. Paatelainen, Annals Phys. 393 (2018)
358–412, arXiv: 1711.08207 [hep-ph].

[III] Color Glass Condensate at next-to-leading order meets HERA
data
G. Beuf, H. Hänninen, T. Lappi and H. Mäntysaari, Phys. Rev. D 102
(2020) 074028, arXiv: 2007.01645 [hep-ph].

The author performed the numerical calculations, drew the figures, and partic-
ipated in the writing and editing of the manuscript for the Article [I]. For the
Article [II], the author performed the numerical implementation and compari-
son of the cross sections calculated in [II] to the ones calculated in Refs. [1, 2].
For the Article [III], the author implemented and performed the fits, drew the
figures, and wrote the first draft. The implementation used was based on a soft-
ware component written by collaborator H. Mäntysaari. Chapter 5 of this thesis
is related to work done in collaboration with G. Beuf, T. Lappi, Y. Mulian, and
H. Mäntysaari, which is in preparation for publication.

ix

https://doi.org/10.1103/PhysRevD.96.094017
https://doi.org/10.1103/PhysRevD.96.094017
https://arxiv.org/abs/1708.07328
https://doi.org/10.1016/j.aop.2018.04.015
https://doi.org/10.1016/j.aop.2018.04.015
https://arxiv.org/abs/1711.08207
https://doi.org/10.1103/PhysRevD.102.074028
https://doi.org/10.1103/PhysRevD.102.074028
https://arxiv.org/abs/2007.01645


x



Contents

1 Introduction 1

2 The Color Glass Condensate effective field theory 5
2.1 Proton structure at high energy . . . . . . . . . . . . . . . . . . . 5
2.2 Light-front perturbation theory . . . . . . . . . . . . . . . . . . . 6
2.3 Dipole amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Perturbative energy evolution of the dipole amplitude . . . . . . . 12

3 Deep Inelastic Scattering 17
3.1 Probing the internal structure of the proton . . . . . . . . . . . . 17
3.2 DIS in dipole picture at leading order . . . . . . . . . . . . . . . . 19

3.2.1 Inclusive deep inelastic scattering cross section at leading
order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Comparisons of leading order DIS cross sections and mea-
surements . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 DIS in the dipole picture at next-to-leading order . . . . . . . . . 25
3.3.1 Inclusive deep inelastic scattering cross section at next-to-

leading order . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Summary of Article [I]: factorization of the soft gluon large

logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Undoing the loop integration of σdip

L,T . . . . . . . . . . . . 31
3.3.4 Summary of Article [II]: NLO DIS cross sections in the

four-dimensional helicity scheme . . . . . . . . . . . . . . . 36

4 Next-to-Leading Order DIS fits to HERA data 37
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Numerical evaluation of the NLO DIS cross sections . . . . 37
4.1.2 Extraction of the BK evolution initial amplitude shape

from data . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Summary of Article [III]: Fitting NLO DIS cross sections to

HERA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



4.3 Assessing the theory uncertainty . . . . . . . . . . . . . . . . . . . 44
4.3.1 Assessing the impact of the NLO BK equation . . . . . . . 45

4.4 An outlook for theory improvements to the fits . . . . . . . . . . . 48

5 Diffractive Deep Inelastic Scattering 53
5.1 Diffraction in particle collisions . . . . . . . . . . . . . . . . . . . 53
5.2 DDIS in the dipole picture at leading order . . . . . . . . . . . . . 57

5.2.1 Leading contributions to the diffractive structure functions
in the dipole picture . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Impact parameter dependence of the qq̄g-contribution in
the large-Q2 limit . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 DDIS in the dipole picture at next-to-leading order . . . . . . . . 66
5.3.1 The qq̄g-contribution to the DDIS structure functions at

NLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Definitions: the qq̄g diffractive cross section . . . . . . . . 69
5.3.3 Squaring the wavefunctions . . . . . . . . . . . . . . . . . 72
5.3.4 The qq̄g diffractive structure functions at next-to-leading

order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusions and outlook 81

References 85

xii



Chapter 1

Introduction

There are some things we know about the proton [3]. Since its discovery just over
100 years ago by Rutherford [4, 5], we have learned that it is not an elementary
particle which means it has an internal structure. Thus, the known properties
of the proton must arise from this internal structure. For example the charge,
mass, size, and spin of the proton somehow emerge from this structure and the
interactions of the constituents of the proton.

We have learned that the proton is composed of three elementary particles
called quarks: two up quarks and one down quark. These quarks interact with
each other via the strong nuclear force, which is mediated by a massless electric-
chargeless gauge boson called the gluon. Quarks, gluons, and their interactions
are described by the quantum field theory Quantum Chromodynamics (QCD).
QCD predicts that the gluons exchanged between the quarks can temporarily
split into new quark-antiquark pairs, which can produce further gluon emissions
and splittings. Thus the proton is expected to have a background presence of
quarks and gluons on top of the three valence quarks. The densities of these
sea quarks and gluons depend on the energy scale the proton is studied at, and
these densities have been determined experimentally as the parton distribution
functions. Since the gluons and sea quark-antiquark pairs do not have net electric
charge, the charge +1e of the proton is indeed the sum of the charges of the up
and down quarks.

How about the rest mass of the proton, does it compose straightforwardly
from the rest masses of the up and down quarks? Well, yes, to the extent that
around one percent of the proton mass is from the rest masses of the three
quarks. The remaining 99% of the mass arises from the dynamics — movement
and confinement — of the quarks and gluons [6]. A qualitative theory under-
standing of the decomposition of the missing mass has been known [6, 7], but
only recently quantitative theory calculations for these components of the mass
have been calculated with lattice QCD [8]. The proton mass arises from four
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contributions: the quark condensate (∼ 9%), the quark energy (∼ 32%), the glu-
onic field strength (∼ 37%), and the anomalous gluonic contribution (∼ 23%).
The first and smallest of the contributions arises from the masses of the valence
and sea quarks, and only this contribution would vanish if the quarks were mass-
less. The quark energy and gluonic field strength contributions arise from the
kinetic energies of the quarks and gluons, and the final anomalous component is
a quantum effect [6].

Well maybe the size of the proton as a charged composite particle is uncompli-
cated to measure and understand? Yes, in the sense that in the last decade there
has been more than a 7σ disagreement on the charge radius of the proton [9].
This so-called proton radius puzzle originates from a 4% difference between a
newer experiment using muonic hydrogen spectroscopy and older measurements
done with regular hydrogen spectroscopy and low-energy electron-proton scat-
tering, both of which were in agreement previously. New experiments are being
planned to understand the origin of the discrepancy and to settle the correct
charge radius [9].

Surely at least the spin of the proton is comprised as the sum of the spins of
the three valence quarks? Alas, no. With global QCD analyses of spin-dependent
data — such as longitudinally polarized proton-proton collision data [10, 11] —
it has been determined that the quark spin contribution is roughly 30% of the
proton spin [10, 11]. The remaining spin arises from gluons and the orbital
angular momentum of the quarks and gluons, the determination of which has
been more uncertain. Current estimates for the quark and gluon contributions
are ∼ 30% − 40%, and ∼ 26% − 52%, respectively, which fall short to produce
the proton spin of 1

2 [10–12]. Both new experimental data of polarized beams,
and improved theory understanding of the high-energy behavior of these spin
contributions [12–14] will be needed to find the remaining spin.

The work done for this thesis is concerned with the theoretical understanding
of the internal structure of the proton at high energy. In this energetic regime
QCD predicts that more and more gluons are emitted by the quarks and gluons
in the proton. However, as the gluon density rises dramatically with growing
energy, at some point the reabsorption of gluons becomes preferred over new
emissions, which halts the increase of the gluon density. This phenomenon is
known as saturation, and in this work it is studied in the Color Glass Condensate
(CGC) effective field theory, which describes QCD at very high energies. The
CGC formalism has been used to describe strong interactions in a large variety
of scattering processes in e+p, e+A, p+A, and A+A collisions [15–20]. Further,
it has the power to ab initio describe thermalization in heavy ion collisions,
and the initial conditions of thermalized quark gluon plasma. The collective
high-density behavior of gluons described in the CGC has been discovered to
have a surprising connection to gravity, which has recently been proposed as the
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CGC–Black Hole correspondence [21]. More specifically regarding this thesis,
state-of-the-art next-to-leading order (NLO) accuracy theory results for proton
structure functions are evaluated numerically and used for data comparison.
Furthermore, a new analytical calculation of diffractive proton structure func-
tions in NLO accuracy is presented. These accuracy improvements of the CGC
framework theory calculations are necessary to rise to the challenge brought on
by the upcoming Electron-Ion Collider (EIC), which will provide state-of-the-art
precision measurements of the structure of the proton and nuclei [22–24].

The internal structure of this thesis is as follows. Chapter 2 reviews the ba-
sics of Color Glass Condensate effective field theory needed to describe particle
scattering processes. The following chapters discuss the extension of CGC for-
malism calculations both analytically and numerically to next-to-leading order
in perturbative QCD. In Chapter 3 are discussed the recent NLO accuracy CGC
framework results for the inclusive deep inelastic scattering (DIS) structure func-
tions of the proton. Chapter 4 considers the application of these proton structure
functions to make comparisons between theory and experimental data. The cal-
culation of diffractive DIS structure functions at NLO in the CGC formalism
is explored in Chapter 5. Finally, in Chapter 6 we conclude on the work done
for this thesis, including previously unpublished results. The Articles [I], [II],
and [III] are joined as appendices to the thesis.
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Chapter 2

The Color Glass Condensate
effective field theory

2.1 Proton structure at high energy
The structure of the proton as seen by a probe particle in a scattering — and
more generally the physical picture of any scattering process — can vary dra-
matically in different reference frames and gauges [25]. In the introduction we
considered the proton in the parton model where it consisted of quarks and glu-
ons. The parton model picture is valid in the infinite momentum frame. In a
perturbation theory calculation of a probe scattering off the parton model pro-
ton, the perturbative expansion takes place on the target side of the scattering
which amounts to seeing more partonic detail1 at higher orders in perturbation
theory. In this picture saturation arose as a limit on the occupation number
of quarks and gluons in the proton. In the picture of CGC on the other hand,
it manifests as a unitarity limit on the scattering from the target. The CGC
effective field theory has been established as a well-suited theory tool to study
saturation phenomena in QCD [17, 18].

The CGC formalism considers scattering processes in a different picture built
on light-front quantization of the probe particle, and the target is seen as a
collective force field of its constituents [26, 27]. In this case the incoming probe
particle becomes perturbatively calculable which gives it a picture of internal
structure [26], for example a virtual photon consists of color-neutral states of
partons and leptons. Simultaneously, the target proton or nucleus is seen to
be composed of a strong color-field, which contains the non-perturbative QCD
physics of the scattering. These color-fields emerge from the large density of

1For example in deep inelastic scattering, quarks are seen at leading order whereas gluons
start to be seen at next-to-leading order.
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gluons present in the target at high energy. The gluon occupation number is
much larger than the commutators between the gluon creation and annihilation
operators, which permits the semiclassical description of the color-fields [18].
Thus the probe particle sees the target as an incredibly strong color-field, which
is Lorentz contracted into a thin pancake. At high energy where saturation
manifests, the target system enters a non-linear weakly-coupled regime of QCD
and the energy evolution of the color-field becomes calculable in perturbation
theory.

This chapter first discusses in Sec. 2.2 the description of the projectile particle
in light-front perturbation theory. Scattering off the target color-field and the
energy dependence of this scattering process are described in Secs. 2.3 and 2.4.

2.2 Light-front perturbation theory
To begin delving into the mathematics of the Color Glass Condensate, we must
first consider the coordinate system that is conventionally used. Instead of the fa-
miliar frame of Minkowskian flat spacetime with the metric g=diag(1,−1,−1,−1),
light-front perturbation theory (LFPT) calculations are done in coordinates
where the t- and z-axes are on the light-front; this is expressed by the light-
front metric [27]:

g̃ =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 . (2.1)

Together with the light-front metric, the components of a four-vector xµ are

x := (x+,x, x−),

x± := 1√
2

(x0 ± x3),

x := (x1, x2),

i.e. the time and x3-components of xµ are mixed, and the transverse components
are unchanged. With the above, the inner product under the light-front metric
is: x · y = xµyν g̃

µν = x+y− + x−y+ − x · y. In these light-front coordinates, the
x+ component is called light-front time, the x− component is light-front position
and in momentum space the k− component is light-front energy [27].

Next, we will collect the essential definitions and conventions of the LFPT
calculations done in Refs. [1, 2], which will be used throughout this thesis and es-
pecially in the calculations performed in Ch. 5. The required definitions are used
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in LFPT calculations that are performed in the mixed space of transverse posi-
tions x, as seen above, and of longitudinal momenta k+; this phase space comes
up in the Fourier transformation of transverse momenta: (k, k+) → (x, k+). For
a total and rigorous definition of the full light-front quantization and light-front
perturbation theory calculation rules and conventions, we refer the reader to the
Refs. [II, 1, 2].

We begin by considering the description of the physical state of a photon on
the light-front, which is the probe particle in the scattering processes considered
in this thesis. Specifically, in Chs. 3 and 5 we discuss calculations of virtual
photon-proton scattering cross sections using the formalism reviewed in this
chapter. In light-front perturbation theory the photon state is written as a Fock
state expansion using light-front wavefunctions (LFWF)2 Ψ̃γ∗

λ
→X as follows:

∣∣∣γ∗
λ(q+,q;Q2)H

〉
=
√
Zγ∗

λ

Non-QCD Fock states

+
∑̃

q0q̄1 F. states
Ψ̃γ∗

λ
→q0q̄1 b̃

†
0d̃

†
1 |0⟩

+
∑̃

q0q̄1g2 F. states
Ψ̃γ∗

λ
→q0q̄1g2 b̃

†
0d̃

†
1ã

†
2 |0⟩ + · · ·

, (2.2)

for a photon with four-momentum q and virtuality Q2 = −q2. The subscript H
denotes that the dressed state is in the Heisenberg picture [1]. The non-QCD
basis states are composed of colorless particles such as photons and leptons and
so can be neglected, since they will not scatter off the color-field of the tar-
get — this will be discussed in the next section. The remaining two expansion
contributions that are shown start at different orders in perturbation theory:
the quark-antiquark contributions denoted by qq̄ start at the order of the elec-
tromagnetic coupling e, and the quark-antiquark-gluon (qq̄g) contributions at
order eg, where g is the coupling of the strong interaction. Thus only the for-
mer contributes at leading order (LO) in the perturbative expansion, and the
latter starts at next-to-leading order (NLO). The remaining terms in the Fock
basis expansion that are shortened to dots (· · · ) start only at order eg2, i.e.
next-to-next-to-leading order (NNLO), and do not contribute to the calcula-
tions discussed in this thesis. The photon LFWF normalization is of the order
Zγ∗ = 1 + O(e2), and so can be dropped [2].

The LFWFs are calculated using conventional quantum mechanical pertur-
bation theory, the light-front rules for which can be found in Refs. [II, 1, 2], and
in a more pedagogical detail in Refs. [27, 28]. For example, the LFWF for the

2For conciseness, this is shortened to wavefunction many times in this thesis.
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virtual photon splitting into a quark-antiquark dipole is calculated as:

Ψ̃γ∗
λ

→q0q̄1 = ⟨q0q̄1| V̂I(0) |γ∗⟩
k−

γ∗ − k−
q0q̄1 + iε

+ · · · , (2.3)

where V̂I(0) is the interaction operator at the moment of the scattering x+ = 0,
k−

γ∗ and k−
q0q̄1 are the light-front energies of the incoming |γ∗⟩ and outgoing |qq̄⟩

states, and beyond leading order contributions are represented by the dots.
The |qq̄⟩ and |qq̄g⟩ contribution expressions of Eq. (2.2) are further composed

as follows. The creation operators of the quark, antiquark and gluon are b̃†, d̃†,
and ã†, respectively, using the shorthand b̃†

0 := b̃†(k+
0 ,x0, h0, α0). The notation∑̃ denotes the sum over the quantum numbers of each parton in the Fock state

and a phase-space integration [1]:

∑̃
q0q̄1 F. state

:=
∑

h0,α0,f0

∑
h1,α1,f1

1∏
i=0

[∫ ∞

−∞

dk+
i

2π
θ(k+

i )
2k+

i

∫
d2xi

]
, (2.4)

∑̃
q0q̄1g2 F. state

:=
∑

h0,α0,f0

∑
h1,α1,f1

∑
λ2,a2

2∏
i=0

[∫ ∞

−∞

dk+
i

2π
θ(k+

i )
2k+

i

∫
d2xi

]
, (2.5)

where hi are helicities of the quarks and antiquarks, αi their colors, and fi their
flavors. For the gluon we have its polarization λ2 and color a2. Any additional
internal partons present in the |qq̄⟩ and |qq̄g⟩ Fock states, such as a gluon loop
and corresponding internal quark propagators, will need sums and integrals of
their own.

Finally, the two light-front wavefunctions shown in Eq. (2.2) are defined as

Ψ̃γ∗
λ

→q0q̄1 = (2q+)2πδ(k+
0 + k+

1 − q+)ei q
q+ ·(k+

0 x0+k+
1 x1)1α0α1ψ̃γ∗

λ
→q0q̄1 (2.6)

Ψ̃γ∗
λ

→q0q̄1g2 = (2q+)2πδ(k+
0 + k+

1 + k+
2 − q+)ei q

q+ ·(k+
0 x0+k+

1 x1+k+
2 x2)

× ta2
α0α1ψ̃γ∗

λ
→q0q̄1g2 , (2.7)

where one defines the reduced wavefunctions ψ̃γ∗
λ

→q0q̄1 and ψ̃γ∗
λ

→q0q̄1g2 by factor-
izing out the color factors and the photon transverse momentum q dependence.
Here we note the only difference in convention to Refs. [1, 2]: the factorization
of (2q+) is new, and will allow for neater calculations in Ch. 5. The reduced
wavefunctions contain the perturbative physics of the virtual photon fluctuating
into a given Fock state, such as the qq̄ or qq̄g states.

The (anti-)commutation relations for the quark, antiquark and gluon creation
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and annihilation operators are in the mixed-space [1]:{
b(k+

0 ,x0, h0, α0), b†(k+
1 ,x1, h1, α1)

}
= (2k+

0 )(2π)δ(k+
0 − k+

1 )
× δ(2)(x0 − x1)δh0,h1δα0,α1 , (2.8){

d(k+
0 ,x0, h0, α0), d†(k+

1 ,x1, h1, α1)
}

= (2k+
0 )(2π)δ(k+

0 − k+
1 )

× δ(2)(x0 − x1)δh0,h1δα0,α1 , (2.9)[
a(k+

0 ,x0, λ0, a0), a†(k+
1 ,x1, λ1, a1)

]
= (2k+

0 )(2π)δ(k+
0 − k+

1 )
× δ(2)(x0 − x1)δλ0,λ1δa0,a1 . (2.10)

These will be needed in Ch. 5 to calculate an overlap of Fock states.
To apply the above Fock state decomposition of the virtual photon to cal-

culations of scattering processes in the CGC formalism, we need to understand
how the bare quark, antiquark, and gluon scatter off the color-field of the target.
The fact that only bare particles take part in the scattering off the color-field is
a fundamental feature of the CGC formalism, which was originally developed in
Ref. [26] in the context of an electromagnetic field. This is discussed in the next
section.

2.3 Dipole amplitude
In the high-energy limit where gluon densities in hadronic matter grow to be
enormous, QCD is described by the Color Glass Condensate effective field the-
ory (EFT). At this limit the density of the gluons is so substantial that other
structures of the proton or nucleus are overshadowed by their presence; so much
so that the strong interactions of the target are described in the CGC formalism
by strong semiclassical color-fields instead of individual gluons. For reviews of
the CGC EFT, see for example Refs. [15–19]. To compute the cross section of a
particle scattering off this strong color-field of the target, one must have an un-
derstanding of how the individual Fock basis states interact with the color-field.

Early calculations using light-front perturbation theory did not have precise
theory tools to describe the scattering of the qq̄ and qq̄g Fock states off the
target, and so phenomenologically motivated models were used. One of the
most well-known models is the GBW model of the dipole amplitude by Golec-
Biernat and Wusthoff, which describes the scattering of a quark-antiquark dipole
off the target color-field. It is [29, 30]

σGBW(xBj, r) = σ0
[
1 − e− 1

4 Q2
s (xBj)r2]

, Q2
s (xBj) := Q2

0

(
x0

xBj

)λ

, (2.11)
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where σ0 is related to the target size, r is the transverse size of the quark-
antiquark dipole, xBj is the Bjorken-x, and Qs is the saturation scale. These
quantities and the success of the GBW model are discussed in more detail in
Ch. 3.

The progress towards precision theory calculations of the dipole amplitude
needed two key advancements. One is the semiclassical approximation by He-
becker et al. [31–35] in which the dipole amplitude is described as the correlator
of color-fields. The other realization, that evolved through the works of McLerran
et al. [36–38], Jalilian-Marian et al. [39–42], Balitsky [43], Kovchegov [44, 45],
and Iancu et al. [46–49], is that the saturation of low-transverse-momentum
gluon density can be given a microscopic picture in terms of gluon fields. This
gluon saturation prevents the unrealistic growth of the gluon density at large
energy. These ideas would lead to the framework which became called the Color
Glass Condensate.

Now, the scattering of a quark or an antiquark off the color-field proceeds as
follows. As the quark propagates into the x+-direction through the color-field
it can interact with the field multiple times. In each of these interactions with
the field, the transverse displacement of the quark is suppressed at high energy:
the displacement is of the order ∆x⊥ ∼ Lk⊥/E, where L is the size of the target
along the quark path, k⊥ the change of transverse momentum in the interaction,
and E the energy of the quark in the target rest frame. The approximation that
the displacement in the transverse position of the quark can neglected, is known
as the eikonal approximation. The propagator that takes the quark through
the color-field including arbitrarily many interactions is known as the Wilson
line [43], which is in the eikonal approximation3 [2, 28]:

UR(x) = Pe−ig
∫∞

−∞ dx+T a
RA−

a (x+,x) . (2.12)

Here the path-ordering operator P enforces the path ordering in the integral over
the particle path, and T a

R are the color generators. The identifier R is either F
or A for the fundamental or adjoint representations of SU(Nc) which depends
on the particle: F for the quarks and A for the gluon. Lastly, A−

a (x+,x) is
the semiclassical color-field of the target. Thus, in the eikonal approximation,
the quark only picks up a rotation in color phase space in the scattering. The
propagation of a gluon through the target proceeds analogously, and only affects
the representation of the Wilson line (2.12) produced, as mentioned above.

With the Wilson line we can quantify the effect of the scattering on the bare
quark, antiquark or gluon state. This is formulated using the eikonal scattering

3The Wilson line has been derived without the eikonal approximation as well [16, 43], which
amounts to permitting non-trivial quark paths in the resulting path integral.
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operator ŜE: it acts on the creation operators of the quark, antiquark, and gluon
as:

ŜE b̃†(k+,x, h, α) = UF (x)βα b̃
†(k+,x, h, β) ŜE, (2.13)

ŜE d̃†(k+,x, h, α) =
[
U †

F (x)
]

αβ
d̃†(k+,x, h, β) ŜE, (2.14)

ŜE ã†(k+,x, λ, a) = UA(x)ba ã
†(k+,x, λ, b) ŜE. (2.15)

The Fock vacuum is invariant under the action of the eikonal scattering operator:
ŜE |0⟩ = |0⟩.

The above can be applied to describe the scattering of the Fock basis states
discussed in the previous section. This allows us to formulate the scattering
amplitude of the quark-antiquark dipole off the color-field in terms of Wilson
lines:

S01 := 1
Nc

Tr
(
UF (x0)U †

F (x1)
)
, (2.16)

where x0 and x1 are the transverse positions of the quark and antiquark, and Nc
is the number of colors. To be able to compute observables depending on S01,
one must average over the color charge density configurations of the target [2,
50]. In terms of scattering observables, this amounts to the replacement S01 →
⟨S01⟩, where the angle brackets denote the average over the classical gluon field
configurations. Often S01, which is technically a scattering matrix that includes
the case that nothing happens in the scattering, is substituted with an alternative
definition that subtracts the identity operator corresponding to no scattering:

N01 := 1 − S01. (2.17)

This is called the dipole amplitude, and it is the forward elastic scattering ampli-
tude of the dipole scattering off the color-field. It is a non-perturbative quantity
and as such cannot be calculated from the first principles using QCD pertur-
bation theory. However, it has an implicit dependence on the scattering energy
which is calculable perturbatively; this is discussed in more detail in the next
section. The scattering amplitude of the quark-antiquark dipole will be used in
the following chapters of this thesis to compute cross sections of electron-proton
scattering processes.

We have thus far discussed only the scattering of quarks, gluons, and Fock
basis states from the target color-field, which were described by the Wilson lines
and the dipole amplitude. However, this means that in the Color Glass Con-
densate formalism the dipole amplitude is a universal component of scattering
processes. Any scattering process where the projectile can be decomposed in
the QCD Fock state basis of quarks and gluons is then described by the dipole
amplitude and analogous higher order correlators related to larger Fock states.
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The process dependent questions then include but are not limited to the calcu-
lation of the coefficient functions in the Fock state decomposition, such as we
saw for the photon (2.2). Currently, the determination of the dipole amplitude
requires a comparison to data — which is the topic of Article [III] and is dis-
cussed in Ch. 4 — but once it is known it can be used to make predictions for
other scattering processes. For example, determining the dipole amplitude with
a fit to electron-proton total cross section data allows one to make theory predic-
tions of a number other observables, such as the longitudinal FL, diffractive FD

2 ,
charm F c

2 , and bottom F b
2 structure functions of the proton, exclusive production

of vector mesons, and deeply virtual Compton scattering [17]. This of course
requires theory calculations of the scattering processes in the CGC formalism,
which are plentiful — see Refs. [15–20] for reviews of phenomenological studies
of different observables.

2.4 Perturbative energy evolution of the dipole
amplitude

The derivation of the energy dependence of the dipole amplitude begins by con-
sidering an emission of a gluon from the quark-antiquark Fock state before the
scattering. At higher energy the viable phase space for a gluon emission from the
qq̄-dipole grows larger, i.e. the emission becomes more likely. The emitted gluon
can either be considered to be a part of the scattering qq̄g Fock state, or it can be
taken to be a part of the dense gluon population of the target. The requirement
that these two pictures of the same scattering lead to a single description of the
scattering process eventually yields the leading order Balitsky–Kovchegov (BK)
equation [43, 44], which in the large-Nc approximation is:

∂⟨S01⟩Y

∂Y
=
∫

d2x2KBK(x0,x1,x2)[⟨S02⟩Y ⟨S21⟩Y − ⟨S01⟩Y ]. (2.18)

The leading order kernel

KBK = Ncαs

2π2
x2

01
x2

12x2
02

(2.19)

is proportional to the probability to emit a gluon at x2 from the quark-antiquark
dipole of size x01, where the notation used is xij := xi −xj. The evolution of the
dipole scattering amplitude is parametrized in the evolution variable Y , which
will be discussed in a moment. The coupling αs is fixed in the LO BK equation.

Implementing running coupling into the BK equation corresponds to a partial
inclusion of NLO effects, which are taken as a part of the running coupling
prescription. With the addition of the running coupling corrections according
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to the widely used Balitsky prescription [51], the kernel becomes

KBK(x0,x1,x2) = Ncαs(x2
01)

2π2

[
x2

01
x2

12x2
02

+ 1
x2

02

(
αs(x2

02)
αs(x2

12)
− 1

)

+ 1
x2

12

(
αs(x2

12)
αs(x2

02)
− 1

)]
. (2.20)

In comparison to the LO BK equation with fixed coupling, with the Balitsky
running coupling the BK equation leads to a slower Y -evolution of the dipole
amplitude, which is more consistent with experimental data. The effect of the
Balitsky prescription in phenomenological applications is further discussed in
Sec. 3.2.2, and in Ch. 4 in regards to the work done in Article [III].

Once the BK equation is applied to phenomenology, i.e. used to drive the
energy evolution of the dipole amplitude which then is used to calculate ob-
servables, the relation of the evolution variable to the kinematics of the dipole
becomes important. Generally, the evolution variable must be proportional to
the logarithm of the squared center-of-mass energy, however at NLO the pre-
cise definition of the variable begins to matter. At leading order the evolution
variable Y is a rapidity-like quantity conventionally defined as

Y := ln
(
q+

P+

)
= ln W

2

Q2
0
, (2.21)

where q+ is the plus-momentum of the incoming qq̄-dipole, P+ is a plus-momen-
tum scale related with the target, Q2

0 is a non-perturbative momentum-scale
characteristic to the target, and W 2 = 2q+P−

0 is the center-of-mass energy of
the dipole-target system. Evolution in Y is known as the projectile momentum
fraction or rapidity picture, or alternatively the plus-momentum ordering picture
— the latter refers to the fact that in Y -evolution the successive gluon emissions
are strongly ordered by their plus-momenta. Many leading order phenomenolog-
ical studies have used also the definition Y = ln 1

xBj
, which becomes problematic

beyond leading order since the evolution is in this case parameterized in target
momentum fraction — this is discussed further in a moment. At NLO with the
additional gluon in the Fock state, the above definition (2.21) of Y becomes in-
accurate. Taking into account the plus-momentum of the gluon becomes crucial,
and the evolution rapidity is defined as

Y := ln
(
k+

2
P+

)
= ln z2 + ln q+

P+ , (2.22)

where k+
2 is the longitudinal momentum of the emitted gluon. The momentum

fraction of the gluon is defined as z2 := k+
2

q+ . This z2-dependence of Y has a key

13



role in NLO phenomenology, which is the main point in Article [I] and will be
discussed in Sec. 3.3.

Even though this projectile momentum fraction picture is a rather natural
way to parametrize the BK evolution — in the sense that the longitudinal mo-
menta of the quarks and gluons in the Fock state stay constant in the scattering
off the color-field — it is not quite problem free. In the derivation of the BK
equation successive gluon emissions from the projectile dipole are considered,
and their lifetimes should be strongly ordered: each daughter gluon should have
a shorter lifetime than its parent. However, without further work the Y evolu-
tion includes emissions which violate this lifetime hierarchy, which leads to an
instability of the evolution. For a more in-depth discussion of the challenges
with Y evolution, we refer the reader to Ref. [52].

To cure the time-ordering problem in Y -evolution, different techniques have
been used to include related higher-order corrections to the BK equation — this
has been done by resumming radiative corrections which are enhanced by dou-
ble transverse logarithms to all orders. In [53] this resummation produces a BK
equation non-local in Y with a kinematical constraint that enforces the ordering;
in later parts of this thesis this will be called the KCBK equation, following the
convention of [III]. Another approach [54] resums these same corrections in a
way that produces a local BK equation. This formulation has further been im-
proved [55], by including a resummation of terms enhanced by single transverse
logarithms, which arise from DGLAP physics and one-loop running coupling
corrections; this formulation will be called the ResumBK equation, as in [III].
These resummations are able to capture a substantial subset of the NLO con-
tributions to the BK equation [56], and in Ref. [57] it was shown that the two
approaches resumming the double-log contributions produce very comparable
evolutions of the dipole amplitude — the difference between the resummation
prescriptions should be of the order of O(α2

s ).
In Ref. [52] an alternative approach is proposed to resolve some of the issues

with the Y -formulation of the BK equation. Their approach recasts the BK
equation as a function of the target momentum fraction. This naturally enforces
proper time-ordering in the evolution, since the ordering of the emissions in
the minus-momentum is equivalent with their ordering in lifetime. The new
formulation of the BK evolution in the target rapidity η, which is defined by [52]

η := Y − ρ = Y − ln Q
2

Q2
0

= ln W
2

Q2 = ln 1
xBj

, (2.23)

is derived by performing this change of variables from Y to η, which is a non-
perturbative operation that mixes terms of all orders in the perturbative expan-
sion. The target rapidity formulation of the BK equation was found to have a
milder instability caused by large double logarithms of a different kind, which
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arise in the collinear emission limit of the gluon. An all-order resummation
of these contributions was performed, and this resummed formulation will be
discussed later in this thesis under the name TBK as in Article [III].

The derivation of the NLO corrections to the BK equation considers two
gluon emissions from the incoming dipole, which scatter off the target via mul-
tiple gluon exchange. The NLO BK equation has been derived both in Y [58,
59] and η [52] evolution pictures, and the former has been solved numerically
including resummations as discussed above [56, 60]. Calculations of scattering
processes in the CGC formalism at full NLO accuracy require the usage of an
NLO accuracy evolution equation — the usage of the NLO BK in such calcula-
tions is discussed in Ch. 4.

While the BK equation was derived first, it was later discovered that it cor-
responds to a large-Nc mean-field approximation of a more general evolution
equation: the JIMWLK (Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov
and Kovner) equation [39–42, 46–49]. The JIMWLK equation describes the
energy dependence of the probability distribution of the Wilson lines. Next-
to-leading order corrections have been derived to the JIMWLK equation [61,
62], and analogous resummations of higher order corrections to those of the BK
equation discussed above have been studied as well [63]. A recent analysis per-
forms detailed comparisons of numerical solutions of the JIMWLK equation,
studying the effects of the numerical implementation and running coupling pre-
scriptions [64]. The JIMWLK equation has been used in phenomenology to
describe scattering processes, some studies are discussed in Sec. 3.2.2.
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Chapter 3

Deep Inelastic Scattering

3.1 Probing the internal structure of the proton
We begin with an overview of deep inelastic scattering (DIS), which probes
the hadronic structure of a nucleon or an atomic nucleus with a high-energy
lepton. DIS had an important role in the early development of QCD, the first
experiments taking place at the Stanford Linear Accelerator Center (SLAC) [65,
66] contemporaneously with the development of the parton model in the late
1960s. More recently the high-energy precision measurements of electron-proton
DIS at DESY-HERA [67–79] have sparked a keen interest in the low-xBj physics
of proton structure.

As a specific example, Fig. 3.1 shows the deep inelastic scattering of an
electron off a proton, where the electron-proton interaction takes place as the
exchange of a highly virtual photon γ∗. In the parton model, the virtual photon
kicks out a parton from the proton as it scatters breaking up the target and
therefore probing its structure. The lepton is a particularly suitable probe parti-
cle since it does not have internal structure: the lepton current can be separated
from the hadronic part, providing a clear window into the hadronic structure.
From the theory point of view we are left to describe the virtual photon-proton
scattering. See Ref. [28] for an in-depth discussion of DIS and a derivation of
the parton model using light-front perturbation theory.

The kinematics of the virtual photon-proton deep inelastic scattering is com-
pletely described by two quantities1 — the virtuality of the photon Q2, and the
Bjorken-x — which are defined as:

Q2 := −q2 = −(k − k′)2, (3.1)

1Electron-proton DIS has a third parameter — the inelasticity y — which will be discussed
in Ch. 4.
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Figure 3.1: Deep inelastic scattering of an electron off a proton.

xBj := Q2

2P · q
= Q2

W 2 +Q2 −M2 ≃ Q2

W 2 +Q2 ≃ Q2

W 2 , (3.2)

where W 2 := (P + q)2 is the center-of-mass energy2, and the momenta are
illustrated in Fig. 3.1. The first of the approximative equalities is valid at large
enough energies where the proton mass M2 can be neglected, and the second in
the proper high-energy regime, W 2 ≫ Q2, also known as the Regge limit. From
Eq. (3.2) we see why the low-xBj regime corresponds to the high-energy limit. In
the laboratory frame one has Q2 = 2EE ′(1 − cos θ), where E,E ′ are the initial
and final energy of the electron, and θ the scattering angle. This tells us that
Q2 is a measurable quantity, and therefore xBj is as well.

These quantities can receive further interpretation. Since the virtual photon
can interact with partons inside the proton with transverse momentum at most
of the order k2 ∼ Q2, this means through the Heisenberg uncertainty principle
that the partons are localized on a scale r2 ∼ 1/Q2 [80]. Thus Q2 gives the
resolution at which the target structure is probed. On the other hand in the
infinite momentum frame, compared to the large virtuality Q2, the virtuality of
the parton inside the target can be taken to be negligible and so the parton is
on-shell. If we then assume the parton carries a fraction of the target momentum
kµ = xP µ, we have for the real outgoing parton after the interaction:

(xP µ + qµ)2 = k′2 = 0, (3.3)

which yields,
x = Q2

2P · q
≡ xBj, (3.4)

i.e. the kinematically defined Bjorken-x can be interpreted as the momentum
fraction of the hit parton in the frame where the proton longitudinal momentum
is very large.

2Not to be confused with the electron-proton c.o.m. energy s = (P + k)2.
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The total virtual photon-proton cross section can be written in the high-
energy limit as [28]:

σγ∗p
tot = (2π)2αem

Q2 F2(x,Q2), (3.5)

which is also called the (fully) inclusive cross section, as in inclusive of all pro-
cesses that produce any final state.3 The proton structure function F2 encodes
the unknown information about the internal structure of the proton. It is related
to the structure functions FT and FL:

F2(x,Q2) = FT (x,Q2) + FL(x,Q2), (3.6)

where the photon polarization specific structure functions are related to the
corresponding total γ∗

L,Tp cross sections as:

FT,L(x,Q2) = Q2

(2π)2αem
σγ∗p

L,T (x,Q2). (3.7)

Here L and T are referring to the longitudinal and transverse polarizations of
the virtual photon. The longitudinal structure function FL is sensitive to the
gluonic structure of the proton, since in the case that the proton only contained
spin-1/2 particles, the Callan-Gross relation would state that FL ≡ 0 [28].

3.2 DIS in dipole picture at leading order
In contrast to the description of deep inelastic scattering in the previous section,
in the high-energy regime a different picture of the scattering can be constructed.
At low-xBj the target is full of low momentum fraction gluons that form semi-
classical gluon fields, which flatten into a shockwave due to Lorentz contraction.
In this high-energy regime, DIS is described as the scattering of the virtual
photon from the color-field of the target. In the target rest frame this proceeds
by the incoming — color-chargeless — virtual photon fluctuating into a Fock
state which has color-charged constituents that then can scatter off the color-
field of the target. This is the dipole picture of DIS, which builds on the ideas
of Bjorken, Kogut, and Soper [26] who conceptualized scattering at high-energy
as the scattering from a force-field, originally the electromagnetic field.

The leading contributing state in the dipole picture of DIS is the quark-
antiquark pair that the photon can form in a QED pair production, depicted in
Fig. 3.2. Then, in the spirit of a leading order calculation in the high-energy

3This is in contrast with the exclusive cross sections that exclusively consider a single
process producing a specific final state, such as the production of a given particle, like a vector
meson.
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Figure 3.2: Deep inelastic scattering at leading order in the dipole picture. The
diagram depicts the calculation of the elastic scattering amplitude Mfwd

γ∗
λ

→γ∗
λ
, to

be used with the optical theorem (3.10) to get the total cross section.

limit, the transverse positions of the quark and antiquark can be taken to be fixed
in the scattering off the shockwave. This is justified since the relative transverse
momentum the quarks pick up in the scattering is suppressed in powers of the
scattering energy [28]. This assumption of transverse immobility is the so-called
eikonal approximation. Thus, in the eikonal approximation, the quark-dipole
only picks up a color rotation in the scattering off the color-field, as described in
Sec. 2.3. The optical theorem [2] then connects this elastic scattering amplitude
to the inclusive cross section for the virtual photon-proton scattering.

One of the first dipole model depictions of DIS was derived by Nikolaev
and Zakharov [81]. In their wake, the process has been calculated in light-front
perturbation theory [82]. Many of the Color Glass Condensate framework based
theory descriptions of saturation phenomenology in HERA DIS data are based
on the dipole picture of DIS, for reviews see Refs. [15–18].

One final thing to consider is when the dipole picture of DIS is valid. Specif-
ically, when is it a good depiction of photon-proton DIS — how small does xBj
need to be —, and is the dipole picture related to gluon saturation in the pro-
ton. In the target rest frame, the formation time of the quark-antiquark dipole is
τqq̄ ∼ 1

mpxBj
which much longer than the typical interaction time τint. ∼ Rp when

xBj is small [28, 84]; The quantities mp and Rp are the mass and radius of the
proton. Thus the dipole picture only requires the limit xBj ≪ 1. This ties into
the manifestation of saturation physics which takes place at high-energy, which is
equivalent with the very small xBj required by the dipole picture. Consequently,
the dipole picture is well suited to be combined with a theory description of
saturation, as is done in the Color Glass Condensate effective field theory. To
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Figure 3.3: Geometric scaling of the photon-proton inclusive HERA data as the
function of τ := Q2/Q2

s(x) [83]. Reprinted figure with permission from A. M.
Stasto, K. Golec-Biernat, and J. Kwiecinski, Phys. Rev. Lett., 86, 596, 2001.
Copyright (2001) by the American Physical Society.

get more insight into the correct regime in xBj, we look at the HERA γ∗p data
shown in Fig. 3.3. The plot shows that the inclusive photon-proton cross section
scales as the function of τ := Q2/Q2

s(x), where Q2
s(x) is an emergent semi-hard

scale, the saturation scale, in the scattering. This scaling phenomenon is called
geometric scaling, which can be indicative of non-linear saturation physics [85],
though there are other possible mechanisms [17]. Based on empirical observa-
tions such as the geometric scaling, xBj ≲ 0.01 is conventionally taken to be the
valid regime of the dipole picture. A further point supporting the applicability
of the dipole picture to γ∗p DIS is that it works phenomenally well: HERA
data is described very well at low xBj — important analyses will be discussed in
Sec. 3.2.2.

3.2.1 Inclusive deep inelastic scattering cross section at
leading order

Let us discuss the high-level steps to be taken in the calculation of the leading
order inclusive virtual photon-proton DIS cross sections. First we need to pick
out the relevant contributions to the dressed virtual photon Fock state — dis-
cussed in Sec. 2.2 — that contribute at leading order. Only the quark-antiquark
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state contributes and so at leading order:

∣∣∣γ∗
λ(q+,q;Q2)H

〉
=
√
Zγ∗

λ


∑̃
q0q̄1

F. states

Ψ̃γ∗
λ

→q0q̄1 b̃
†
0d̃

†
1 |0⟩ + negl. Fock states

 . (3.8)

One then calculates the forward elastic scattering amplitude for the virtual
photon-shockwave scattering, which is defined in light-front quantization as [2]:〈

γ∗
λ(q′)H

∣∣∣ (ŜE − 1
) ∣∣∣γ∗

λ(q)H

〉
= (2q+)2πδ(q′+ − q+)iMfwd

γ∗
λ

→γ∗
λ
, (3.9)

where ŜE is the scattering operator that acts on the creation operators of the
quark and antiquark. With the forward elastic scattering amplitude, one can
then use the optical theorem [2] to relate the amplitude to the total inclusive
cross section of the virtual photon-proton scattering:

σγ∗
λp→X = 2 Im Mfwd

γ∗
λ

→γ∗
λ

= 2 Re
(
−iMfwd

γ∗
λ

→γ∗
λ

)
. (3.10)

The last missing piece are the wavefunctions Ψ̃γ∗
λ

→q0q̄1 for the virtual photon
splitting into a quark-antiquark dipole, which have been computed in light-
front perturbation theory by many authors, see for example Refs. [82, 86]4.
The squares of these wavefunctions can be interpreted as the probability for
the virtual photon to fluctuate into the quark-antiquark dipole. Summed over
helicities and photon transverse polarizations, they are [87]

∣∣∣Ψγ∗
T →qq̄

∣∣∣2 = 2Nc

π
αeme

2
f

{[
z2 + (1 − z)2

]
ε2K2

1(εr) +m2
fK2

0(εr)
}
, (3.11)∣∣∣Ψγ∗

L→qq̄

∣∣∣2 = 8Nc

π
αeme

2
fQ

2z2(1 − z)2K2
0(εr) , (3.12)

where ε2 = z(1 − z)Q2 +m2
f , z := k+

q+ is the longitudinal momentum fraction of
the quark, r is the size of the qq̄ dipole as shown in Fig. 3.2, f and mf are the
flavor and mass of the quark, and K0, K1 are modified Bessel functions of the
second kind.

Following the outlined calculation one derives the total virtual photon-proton
deep inelastic scattering cross sections, which are [28, 87]:

σγ∗p
L,T (x,Q2) =

∑
f

∫
d2r

∫ 1

0

dz
4π

∣∣∣Ψγ∗
L,T →qq̄

∣∣∣2 σqq̄(x, r), (3.13)

4For a D-dimensional derivation, see Refs. [II, 1]. Dimensional regularization of the LO
result is necessary in the derivation of the complete NLO wavefunctions.
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where r := ∥r∥, and the quark-antiquark dipole scattering amplitude is defined
as

σqq̄(x, r) =
∫

d2b 2 [1 − ReS(x, r,b)] , (3.14)

and S(x, r,b) is the scattering matrix for the dipole-gluon shockwave scattering,
where b is the transverse separation of the qq̄ dipole from the target, as shown
in Fig. 3.2. Sec. 2.3 discusses how the scattering matrix arises in the calculation
of the scattering amplitude (3.9). In Eq. (3.13) we see the explicit factorization
between the virtual photon wavefunction and the dipole amplitude — the cross
section is composed of two independent pieces, a piece with the perturbative
QED physics, and a piece with the non-perturbative QCD physics. This feature
of the LO dipole picture cross sections is called dipole factorization.

3.2.2 Comparisons of leading order DIS cross sections
and measurements

Some of the most exhaustive searches for saturation effects have been done by
studying deep inelastic scattering. These analyses rely on the dipole picture of
DIS [81, 82] and introduce theory description of saturation effects through the
dipole amplitude, which the DIS cross sections depend on. The description of
these saturation effects can be roughly divided in two eras: pre-BK and BK era.
In this section we discuss some of the key saturation physics analyses and data
comparisons done using LO dipole picture DIS structure functions.

The first analysis of DIS data incorporating saturation physics was done using
the GBW model by Golec-Biernat and Wusthoff [29] — an analytic parametriza-
tion of the dipole amplitude, discussed in Sec. 2.3 — and it achieved a reasonably
good description of the old HERA data [67–70]. This model was modified to in-
clude DGLAP evolution [88], which improved the description of the total DIS
cross sections, especially at large Q2. Another analytic model was constructed
by Iancu, Itakura and Munier (IIM) [89] to improve upon on the success of GBW
by including features of BK evolution [43, 44]. The IIM model has been updated
to include impact parameter dependence, leading to the bCGC model [87, 90].
These updated models provide improved agreement with the then new and much
more accurate HERA data [71–73], in comparison to the simple GBW model.

One more important analytic parametrization to capture saturation effects
is the Impact Parameter Saturation (IP-Sat) model proposed by Kowalski and
Teaney [91]. In the IP-Sat model the dipole amplitude evolution is induced by
the LO DGLAP Q2-evolution of the gluon distribution, and the xBj-dependence
is parametrized. The original IP-sat implementation provided a good description
of HERA data in a much wider Q2-range than the GBW model was capable of.
Since then, the model has been updated [92] with more precise data [74], and
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another work [93] updates the model with the most recent HERA data [74–77],
and performs a comparison between Impact Parameter models with and without
saturation, finding that they are comparably capable of describing the available
data.

The BK era was brought about by the AAMS and AAMQS global fits [94,
95], which were the first fits to use the BK equation to drive the small-x de-
pendence of the dipole amplitude. This was an important upgrade in terms of
theory precision, since now the only non-perturbative input would be the dipole
amplitude at the initial scale of the BK evolution. Using the translationally
invariant running coupling BK [51, 96], the AAMQS fits found remarkably good
agreement with the inclusive structure functions. A similar analysis using the
running coupling BK was done with a slightly different parametrization [97], and
in [98] energy conservation corrections are implemented to the running coupling
BK, yielding excellent agreement with inclusive data.

Steps have been taken to improve the theoretical precision of the BK ap-
proach by including important beyond leading order contributions to the BK
equation. One approach [99] enhances the momentum space BK equation by
including contributions from DGLAP evolution, which together with a consis-
tency constraint on real gluon emissions produce a large part of higher order
corrections. A good description of HERA data was found by an analysis [100]
using this evolution equation incorporating aspects of both BK and DGLAP
evolutions.

Another approach to enhance the BK equation is the resummation of be-
yond leading order contributions to the evolution that are enhanced by large
logarithms of 1/xBj — see the discussion of different approaches in Sec. 2.4.
The first of such improved BK equations to be used in data analysis is the Re-
sumBK5 [55], where they find a good description of HERA data even at fairly
high-Q2. The resummation of the single transverse log -enhanced contributions
has a minor effect on the fit quality, yielding slightly higher values of χ2, but
nevertheless too small a change to be considered in the accuracy of the analy-
sis. A study [57] comparing the ResumBK and KCBK [53] formulations of the
double log resummed BK evolutions found both approaches equally capable of
describing HERA DIS data well, and that more theoretical work is needed to
distinguish a preferred prescription of resummation and running coupling in the
BK equation. A more recent data comparison [101] fits inclusive HERA data
using BK evolution which is formulated as a function of the target rapidity [52]
(TBK in [III]), as opposed to the projectile rapidity picture used in the above
prescriptions. The effects of the resummations of the single and double trans-

5ResumBK, KCBK and TBK are acronyms coined in [III] for the formulations of BK
evolution derived in Refs. [55], [53], and [52], respectively.
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verse log enhanced contributions are considered comprehensively, and they find
that the inclusion of the single log resummation has a substantial effect on the
fit quality in this scheme — an excellent description of the HERA data is found
when both resummations are included, even up to reasonably high Q2.

Another branch of BK evolution improvements implements some form of
impact parameter dependence. In [102] a comparison to HERA data is done
with a fairly good agreement, however a full fit was not performed due to the
computational cost involved with the impact parameter dependent BK. Similar
work has been done using the leading order JIMWLK evolution [103], where
a quite good description of the inclusive HERA data was found at small and
moderate Q2. Recent work incorporating the collinearly improved BK kernel
into the impact parameter dependent evolution [104] finds a good description of
HERA data.

In conclusion, saturation effects have been captured by varied approaches
which are able to describe inclusive deep inelastic scattering data at small-x.
Recent developments have explored two important areas: running coupling BK
evolution and its resummation corrections are central in precision theory calcu-
lations, whereas the impact parameter dependence in other approaches is oblig-
atory for the description of exclusive diffractive processes. Impact parameter
dependence is needed for exclusive processes since the total momentum transfer
with the target is measured, and it is the Fourier conjugate of the impact param-
eter. This makes the process sensitive to the transverse structure of the target.
The recent developments on the impact parameter dependent BK–JIMWLK
evolution have promise to bring precision calculations to exclusive processes,
and on the other hand target transverse profile sensitivity to inclusive precision
calculations.

3.3 DIS in the dipole picture at next-to-leading
order

At next-to-leading order (NLO) in the dipole picture, a gluon contributes to
the virtual photon wavefunction in addition to the quark-antiquark dipole. The
gluon is emitted by either the quark or the antiquark, and then can participate in
the scattering from the target shockwave with the dipole, or it can be reabsorbed
by one of the quarks. Contributions of the former type are tree-level at NLO,
and the latter are loop contributions — Fig. 3.4 shows an instance for either type
of contribution. In addition to this normal emission of the gluon, a transversely
polarized photon can instantaneously split into a quark-antiquark-gluon tripole,
which introduces additional tree-level and loop diagrams at NLO [1, 2, 86].
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γ∗ 2

0

1

(a) Example of a tree-level diagram: a
quark emits a gluon.

γ∗

0

1

(b) Example of a loop diagram: a gluon
is emitted and reabsorbed.

Figure 3.4: Two general types of diagrams contribute to the photon wavefunction
at next-to-leading order: tree-level and loop diagrams.

The first calculations of the photon impact factors, i.e. the photon splitting
wavefunctions squared and summed over relevant particle helicities, were per-
formed at NLO in momentum space and in a BFKL evolution context [105–108].
Another computation of the impact factors that includes saturation effects has
been done in full coordinate space [109], however the results were not presented in
the dipole factorized form which complicates their use in phenomenology. They
were rewritten in NLO photon impact factor form after a linearization [110],
making them compatible with BFKL evolution, but not the gluon saturation
regime.

In this section we will discuss the recent derivation of the NLO photon impact
factors done in mixed phase space [1, 2, 86], which incorporates gluon saturation
effects, and where the results are written in a more suitable form for phenomeno-
logical studies. These impact factors were independently derived and verified in
[II].

3.3.1 Inclusive deep inelastic scattering cross section at
next-to-leading order

The calculation of the next-to-leading order DIS cross sections proceeds analo-
gously to the LO derivation discussed in the previous section. One first derives
from light-front perturbation theory the NLO corrections to the virtual photon
Fock state — normal and instantaneous gluon emissions and loop contributions
to the quark-antiquark state. Together these give the virtual photon splitting
wavefunctions for the transverse and longitudinal polarizations to NLO accu-
racy. With these, the optical theorem is used to get the total inclusive DIS cross
section from the forward elastic scattering amplitude, like at leading order. Both
the tree-level and loop contributions are separately UV-divergent at NLO and
must be regulated: conventional dimensional regularization was used to derive
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the loop corrections to the photon Fock state in [1], which were combined with
the tree-level contributions in [2] for the final result, and the UV divergences
canceled in the end. The total NLO cross sections were found to be

σNLO
L,T = σIC

L,T + σdip
L,T + σqg

L,T . (3.15)

The first term is a lowest order contribution — in a strict perturbative expansion
sense — to the cross section, where the dipole amplitude is evaluated at the initial
scale of the evolution:

σIC
L,T (Y0, Q

2) = 4Ncαem
αsCF

π

∑
f

e2
f

∫ 1

0
dz1

∫
x0,x1

KLO
L,T (z1,x0,x1)

× (1 − ⟨S(x01)⟩Y0) , (3.16)

where the polarization specific kernels are

KLO
L (z1,x0,x1) = 4Q2z2

1(1 − z1)2K2
0(QX2), (3.17)

KLO
T (z1,x0,x1) = Q2z1(1−z1)

(
z2

1 +(1−z1)2
)

K2
1(QX2), (3.18)

withX2 := z1(1−z1)x2
01, xij := xi−xj, and S(xij) = S(xij,b), and the shorthand∫

xi
:=
∫ d2xi

2π
was defined. The variables x0,x1 are the transverse coordinates of

the quark and antiquark, and z1 the momentum fraction of the antiquark. Even
though (3.17) and (3.18) are the squared LO wavefunctions, i.e. the same as
the Eqs. (3.11) and (3.12) but with massless quarks, this is not the full leading
order cross section (3.13) since the dipole amplitudes are not evolved6. This ties
into a discussion about soft gluons that we will look at in a moment. As for the
NLO contributions, the ’dipole’ term is:

σdip
L,T = 4Ncαem

αsCF

π

∑
f

e2
f

∫ 1

0
dz1

∫
x0,x1

KLO
L,T (z1,x0,x1)

× (1 − ⟨S(x01)⟩Y )
[

1
2 ln2

(
z1

1−z1

)
−π2

6 + 5
2

]
, (3.19)

and the ’qg’ term is:

σqg
L,T = 8Ncαem

αsCF

π

∑
f

e2
f

∫ 1

0
dz1

∫ 1−z1

z2,min

dz2

z2

×
∫

x0,x1,x2

KNLO
L,T (z1, z2,x0,x1,x2, Y ). (3.20)

6In a strict perturbative expansion sense, σIC is the leading contribution in αs. However,
the BK evolution produces a contribution of the order αs ln 1

xBj
∼ 1, which is convention-

ally included in the leading order cross section, upgrading it technically to leading logarithm
precision.
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The expressions for σdip
L,T or σqg

L,T above are not unique, but their sum is. This is
due to the UV divergences that the respective contributions contain originally,
and which are canceled between the two contributions [1, 2]. The NLO kernels
present in the qg contribution are:

KNLO
L (z1, z2,x0,x1,x2, Y ) = 4Q2z2

1(1 − z1)2

×
{
P
(

z2

1 − z1

)x20

x2
20

·
(

x20

x2
20

− x21

x2
21

)[
K2

0(QX3) (1 − ⟨S012⟩Y ) − (x2 → x0)
]

+
(

z2

1 − z1

)2 x20 · x21

x2
20x2

21
K2

0(QX3) (1 − ⟨S012⟩Y )
}
, (3.21)

KNLO
T (z1, z2,x0,x1,x2, Y ) = Q2z1(1 − z1)

×
{
P
(

z2

1 − z1

) (
z2

1 + (1 − z1)2
) x20

x2
20

·
(

x20

x2
20

− x21

x2
21

)

×
[
K2

1(QX3) (1 − ⟨S012⟩Y ) − (x2 → x0)
]

+
(

z2

1 − z1

)2
[(
z2

1 + (1 − z1)2
) x20 · x21

x2
20x2

21
+ 2z0z1

x20 · x21

x2
20X

2
3

− z0(z1 + z2)
X2

3

]

× K2
1(QX3) (1 − ⟨S012⟩Y )

}
. (3.22)

Here x0,x1,x2, and z0, z1, z2 are the transverse positions and longitudinal mo-
mentum fractions of the quark, antiquark and gluon; the indexing is illus-
trated in Fig 3.4a. The fractions satisfy ∑

i zi = 1. The definitions X2
3 :=

z0z1x2
01 + z0z2x2

02 + z2z1x2
21 and P (z) := 1 + (1 − z)2 are made. The arrow

notation denotes that the corresponding limit is to be taken of the preceding
term: f(a, b, c → a) = f(a, b, a). The qq̄g state-target scattering Wilson line
operator is [II, 2]

S012 := 1
NcCF

tr
(
tbUF (x0)taU †

F (x1)
)
UA(x2)ba

= 1
2NcCF

[
tr
(
UF (x0)U †

F (x2)
)

tr
(
UF (x2)U †

F (x1)
)

− 1
Nc

tr
(
UF (x0)U †

F (x1)
)]

≡ Nc

2CF

(
S(x02)S(x21) − 1

Nc
2S(x01)

)
, (3.23)

where in the first step the identity [111] used is:

taijt
a
kl = 1

2

(
δilδjk − 1

Nc
δijδkl

)
. (3.24)
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Two details are yet to be determined: the rapidity scales Y related to the
dipole and qg contributions — since they are not provided by the perturbation
theory calculation — and the lower limit z2,min of the gluon momentum fraction
integration that regulates the logarithmically divergent integral. These turn out
to be connected, and are the topic of the work done for Article [I], which will be
discussed in the next section.

3.3.2 Summary of Article [I]: factorization of the soft
gluon large logarithm

The crux to be resolved by Article [I] was the negativity problem of NLO cross
sections calculated in the Color Glass Condensate formalism, which was expected
to afflict the NLO DIS cross sections as well. For context, in the case of single in-
clusive forward hadron production in p+A it had been found that the NLO cross
sections would become negative when the produced hadron would have a trans-
verse momentum of the order of a few GeV [112]. A resolution to this issue for
single inclusive hadron production was proposed [113], which was demonstrated
to be effective [114]. The topic of Article [I] was the first numerical computation
of the NLO DIS cross sections, whereby we demonstrated the presence of the
negativity problem, and the application of the aforementioned solution to cor-
rect it. Resolving the negativity problem for the NLO DIS cross sections would
bring the perturbative expansion under control, and make precision comparisons
between theory and data possible in the future.

The root cause of this problem is the handling of the large logarithm induced
by the z2-integration in the qg contribution (3.20) discussed in the previous
section. Qualitatively, it needs to be factorized and absorbed into the BK renor-
malization group evolution. In practice, this means that the large logarithm that
arises from the qg contribution provides the rapidity evolution for the unevolved
lowest order cross section (3.16), upgrading it from LO to the full LL (leading
log) cross section. If this factorization is done inaccurately, the negative qg con-
tribution has a leftover large logarithm, that can make the NLO cross sections
negative. The development of an accurate subtraction scheme for NLO DIS cross
sections was the principal goal of Article [I]. Once this was under control, we
were able to quantify the importance of the NLO corrections.

This issue would be corrected by accurately connecting the lower limit z2,min,
and the rapidity scale of the Wilson-line operators in the qg term, which were
discussed in the previous section. It was understood that at NLO the qg con-
tribution drives the exact amount of evolution through z2,min. In connection to
this, the qg term dipole amplitudes must be evaluated at a rapidity scale that
depends on the longitudinal momentum fraction of the gluon z2: the evolution
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rapidity in this context is defined as Y := ln z2. We derive in [I] that the qg term
rapidity scale should be

Yqg = ln z2

z2,min
= ln x0

X(z2)
= ln z2x0Q

2

xBjQ2
0

≈ ln z2x0

xBj
, (3.25)

where x0 is the initial scale of the evolution, and Q2
0 is some hadronic low

transverse momentum scale. The last approximation was done since the Q2-
dependence introduces some complexity, since it affects the subtraction of the
soft gluon large logarithm. The quantity X(z2) is a target momentum fraction
scale similarly to x0 and xBj. We showed that by using the relation (3.25) instead
of the simple Y = ln x0/xBj the negativity problem is resolved.

The above procedure also naturally regulates the soft gluon large logarithm
correctly, leading to the subtraction scheme dubbed ’unsub’ scheme:

σNLO
L,T = σIC

L,T + σdip
L,T + σqg,unsub.

L,T , (3.26)

where the first term is (3.16), the NLO dipole contribution σdip
L,T is (3.19) for

which the rapidity scale is chosen to be the same as in the LL cross sections
Y = ln x0/xBj, and the qg term is

σqg,unsub, approx.
L,T = 8Ncαem

αsCF

π

∑
f

e2
f

∫ 1

0
dz1

∫ 1−z1

xBj
x0

dz2

z2

×
∫

x0,x1,x2

KNLO
L,T (z1, z2,x0,x1,x2, ln

z2x0

xBj
). (3.27)

This formulation was found to yield physical cross sections. Without the ap-
proximation the qg contribution writes

σqg,unsub.
L,T = 8Ncαem

αsCF

π

∑
f

e2
f

∫ 1

0
dz1

∫ 1−z1

z2,min

dz2

z2

×
∫

x0,x1,x2

KNLO
L,T (z1, z2,x0,x1,x2, Yqg), (3.28)

which is the form that was used in Article [III], with the reparametrization x0 ≡
e−Y0,if . More details, and a discussion of how an explicit subtraction scheme for
the soft gluon large logarithm is derived are found in Article [I]. The factorization
of the large logarithm is done with an extra term that subtracts the large log
from the qg-term, and resums it into the BK evolution of the σIC term, upgrading
it to the LL accuracy cross section σLO. This subtraction was called the ’sub’
scheme, and it writes

σNLO
L,T = σLO

L,T + σdip
L,T + σqg,sub.

L,T , (3.29)
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where the LL rapidity scale is Y = ln x0/xBj, and

σqg,sub, approx.
L,T = 8Ncαem

αsCF

π

∑
f

e2
f

∫ 1

0
dz1

∫ 1
xBj
x0

dz2

z2

×
∫

x0,x1,x2

θ(1 − z1 − z2)KNLO
L,T

(
z1, z2,x0,x1,x2, ln

z2x0

xBj

)

− KNLO
L,T

(
z1, 0,x0,x1,x2, ln

z2x0

xBj

). (3.30)

One relevant detail about the ’unsub’ and ’sub’ schemes, that is not discussed
in [I], is that the equivalence of the two subtraction schemes is broken once a
beyond-LO BK evolution is introduced. This creates a finite difference between
the schemes of the order of NNLO. Relatedly, selecting between two different
beyond-LO BK equations with the same subtraction scheme also introduces a
finite difference of the order of NNLO. Sec. 4.3 discusses the estimation of the
significance of these effects, and a similar effect concerning the running coupling
is discussed in Sec. 4.4.

Analogous subtraction schemes for DIS are put forth in Ref. [2], with some
minor differences. In the unsubtracted scheme, the dipole amplitude in the NLO
dipole term σdip

L,T is left unevolved like the lowest order contribution. This is valid
at this precision of the calculation, since input for the correct scale should arise
only at NNLO precision of the cross sections. In Article [I] our preference would
have been to evaluate the NLO dipole term σdip

L,T at the same rapidity as the qg-
term, i.e. at Yqg in Eq. (3.25), but this was not possible since the integration over
the loop momentum fraction z2 has been performed analytically in Eq. (3.19).
The next section discusses the reversion of this integration.

3.3.3 Undoing the loop integration of σdip
L,T

As is discussed in [I], the most natural thing to do is to evaluate both σdip
L,T and

σqg
L,T at the same rapidity scale. However, this was not possible in [I] since the

loop momentum integration was performed analytically in [1], and the available
results were independent of the gluon longitudinal momentum fraction z2. In this
section we propose a form for σdip

L,T , where this integration has been undone, and
discuss its features. The derivation here uses the conventions and intermediate
results of Ref. [1].

To begin the undoing of the z2-integrations done in the derivation of (3.19),
let us first revert some manipulations:

1
2 log2

(
z1

1 − z1

)
− π2

6 + 5
2 = −Li2

(
− z1

1 − z1

)
− Li2

(
−1 − z1

z1

)
− π2

3 + 5
2 , (3.31)
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where the relation used is

Li2 (z) + Li2
(1
z

)
= −1

2 log2(z) − π2

6 . (3.32)

The result is the sum of contributions symmetric in the exchange of the quark
and antiquark, so in fact we are looking for one of these halves, which is

− Li2
(

−1 − z1

z1

)
− π2

6 + 5
4 + 1

2
1
2 , (3.33)

where the last 1
4 is a half of the UV scheme dependent finite leftover, that will

cancel in the full NLO cross section. This contribution arises in a different way
for T and L polarizations.

In the case of the longitudinal photon, using the notations and definitions of
Ref. [1], these terms are found in the following sum of contributions [1]:

VL
A + VL

1 + VL
3a = · · · − Li2

(
−k+

0
k+

1

)
− π2

6 + 3
2 + · · · , (3.34)

where the unrelated terms have been omitted. To discover the unintegrated
form, we need to look closely at the integral forms of these contributions. To
this end, it is useful to be aware of the following integral relations [1]:∫ 1

0

dξ
ξ

log(1 +Rξ) = −Li2 (−R) , (3.35)∫ 1

0

dξ
ξ

log(1 − ξ) = −π2

6 . (3.36)

The integral forms of VL
A and VL

1 + VL
3a are:
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and
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where the terms contributing to π2

6 and Li2 have been highlighted in gold and
orange, respectively, and the two-colored factor contributes to both. Now we
may collect from (3.37) and (3.38) the terms contributing to the polylogarithm
and π2

6 terms in (3.33):

−Li2
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−1 − z1
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= −Li2
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0
k+

1

)
=
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0
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dk+
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(
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, (3.39)

−π2

6 =
∫ k+

0

0

dk+
2

k+
2

log
(
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0 − k+
2

k+
0

)
, (3.40)

where the temporary variable ξ := k+
2

k+
0

is used in (3.35), (3.36). Then, adding
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this together with the quark-antiquark exchange terms, we can write:
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+ log
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, (3.41)

where the vertical bar notation refers to picking only the relevant terms, and
in the last equality the change of variables zi := k+

i

q+ was used together with the
identity7 z0 + z1 = 1.

The derivation of the respective result for a transverse photon proceeds in
an analogous way, however now the contributions come from the diagrams VT

A +
VT

1 +
(
k+

0 ↔ k+
1

)
. The integral form (3.41) found for the longitudinal photon is

found for the transverse polarization as well.
Now, we are left with the constant 5

2 that has been excluded in the previous
discussion, since its derivation is different in a few key ways. First, even though
the constant is the same for both transverse and longitudinal photons, it arises
from different contributions. While the polylogarithm and π2 terms were com-
pletely UV regularization scheme independent, the 3 = 5

2 + 1
2 constant seen in

the result of the loop contribution receives UV scheme dependent contributions
from the quark and antiquark self-energy and total vertex corrections. These
will cancel with the UV scheme dependent terms from the qq̄g-contribution [2].
In addition to these scheme dependent contributions, the constant receives con-
tributions from a large number of integrals, some of which are IR divergent, and
many of which have substantial cancellations at the integrated level. The IR
divergences are regulated with an IR cut-off, and the cut-off dependent terms
cancel out completely [1]. This means that some of the integrals that contribute
to the 5

2 we are interested in would need to be IR regulated, which could make
them precarious for numerical evaluation and the cancellation of the divergences.
Lastly, while a half of the constant arises from both of the quark-antiquark sym-
metric partitions independently for the longitudinal photon, this is not the case
for the transverse photon, and it would be necessary to have all the integrals
from VT

A + VT
1 +

(
k+

0 ↔ k+
1

)
separately in order to get the correct cancellations.

7The loop momentum fraction z2 is not constrained by the plus-momentum conservation,
unlike in the case of the tree-level qq̄g contributions discussed in Sec. 3.3.1.
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Due to these complications we chose to keep the final UV scheme independent
constant at the integral level as well, as an averaged effect for these contributions.

Now with (3.41) and including the 5
4 as discussed above, we may rewrite

(3.19) back into an integral form:
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, (3.42)

where in the second equality the two terms symmetric in the quark-antiquark
exchange are combined. When the lower limit z2,min is introduced for z2 in a
subtraction scheme, the phase space of the z1-integration must be consistently
limited as well. The upper limits z1 or 1 − z1 cannot become smaller than z2,min.
As we wish to give the dipole amplitude a z2 dependent rapidity scale, we move
the dipole amplitude inside the integral make the replacement of the evaluation
scale [

1 − ⟨S01⟩Y +
f

]
→
[
1 − ⟨S01⟩Y +

2

]
,

where Y +
f is the rapidity scale of the LO+LL DIS cross sections [2], and the new

rapidity scale is

Y +
2 := log

(
z2

z2,min

)
= log

(
z2
x0Q

2

xBjQ2
0

)
, (3.43)

which is the same as was used for the qg contribution in [III], and in the ap-
proximation Q2/Q2

0 ∼ 1 the same as was used in [I].
In conclusion, we have derived an alternative, and previously unpublished,

form (3.42) for the NLO dipole contribution Eq. (3.19). The new form has been
rewritten back into a loop-integral form, which permits the consistent usage of
the same z2-dependent rapidity scale (3.43) in both the qq̄g term (3.20) and the

35



new NLO dipole term (3.42). This would have been the preferred rapidity scale
for the NLO dipole term in the works [I, III].

3.3.4 Summary of Article [II]: NLO DIS cross sections
in the four-dimensional helicity scheme

The principal purpose of the Article [II] is to develop new methodology for
light-front perturbation theory loop calculations, where the key feature is that
the elementary vertices are written in a helicity basis. Specifically, in this article
the calculation rules originally introduced in [115] are reformulated in a better
way, and a correction to the scheme is made. A key point in the new scheme is
the proper handling of the Kronecker-deltas of different dimensionalities. As a
demonstration, this calculation scheme is then used to derive the virtual photon
splitting wavefunctions at next-to-leading order in the dipole picture. These
photon wavefunctions are then used to write the NLO DIS cross sections, which
are then compared with — and found equivalent to — the ones derived in Refs. [1,
2].

The usage of the explicit helicity basis for the quarks and gluons is naturally
combined with the regularization of the UV divergences in the four-dimensional
helicity (FDH) scheme. As opposed to the conventional dimensional regulariza-
tion (CDR) used in Refs. [1, 2] — where all vectors and momenta are continued
to d dimensions — the FDH scheme keeps all observed particles in four dimen-
sions and continues unobserved particle momenta to d > 4 dimensions, and
spins/polarizations of unobserved internal states are ds > d dimensional.

This new calculation of the NLO DIS cross sections provides a verification
of the UV regularization scheme independence of the results in Ref. [2], since
while the intermediate steps differ in FDH from CDR, the final results were
shown to agree both analytically and numerically. Specifically, the numerical test
verifies that the different functional form used for the UV subtraction produces
equivalent results with the one used in Ref. [2].
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Chapter 4

Next-to-Leading Order DIS fits
to HERA data

4.1 Fundamentals
This section briefly describes the steps needed to go from the NLO cross sections
Eqs. (3.19), (3.20) to their numerical evaluation and comparison to data. Section
4.1.1 discusses the solution of the BK equation to get the dipole amplitude
functional form over a range of rapidity, and the numerical evaluation of the
NLO DIS cross sections, including their dimensional reduction for numerical
evaluation, and Sec. 4.1.2 covers the basics of the fitting methodology, along with
few remaining pieces of the computation needed to be able to make comparisons
to data.

4.1.1 Numerical evaluation of the NLO DIS cross sections
Here we discuss the steps that are taken in order to evaluate the NLO DIS cross
sections (3.19), (3.28) numerically, and efficiently, leading to the results first
presented in Article [I]. The discussion uses the notations and conventions from
Sec. 3.3.

The first object we need to understand in our implementation is the scattering
amplitude of the dipole, ⟨S01⟩. After the BK evolution described in Sec. 2.4
that started from a given initial functional form, and assuming that it is not
dependent on the impact parameter or the orientation of the qq̄ dipole, it is
a scalar function of two parameters: ⟨S01⟩Y ≡ S(|x01| , Y ). Once we have a
numerical solution for S01 from the BK equation that is interpolatable both
in |x01| and Y , over both of which we will need to integrate, we may begin
calculating the cross sections.
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Looking at the expressions (3.19), (3.28), we see that the former has similar
structure to the LO cross section (3.16), and the same dimensionality of inte-
gration phase space. The latter, on the other hand, has a larger phase space to
integrate over. In order to improve the efficiency of the numerical implementa-
tion, we wish to reduce the dimension of the integration phase space as far as
possible, which uses the assumed symmetry properties of S01 discussed above.
Secondly it would be ideal to write the vector dot products in terms of scalar
quantities in order to have a scalar numerical implementation.

Let us first go through the dimensional reduction that takes place for the
leading order contribution, and therefore for the loop contribution as well. Orig-
inally the transverse structure of the impact factors comprises of the transverse
positions of the quark and antiquark, and after a change of variables, the dipole
size r := x0 − x1 and the impact parameter b := (x0 + x1)/2, which is a four-
dimensional phase space. Now, since the photon splitting wavefunctions (3.16),
and S01 are independent of the impact parameter it can be integrated over the
target shape profile yielding the target size, which we take to be a constant fac-
tor σ0/2. Furthermore, since the dipole amplitude was assumed to be agnostic
of the quark-antiquark dipole orientation, the cross sections are independent of
the angle of r, which can be also integrated analytically. This means that of
the transverse integrations, only the integral over |r| remains — the transverse
phase space has been reduced from four to one dimension.

Now we want to apply similar simplifications to the qg contribution (3.28),
to apply the same symmetry assumptions, and to achieve a similar reduction
in the dimensionality, since this term will absolutely need it in terms of the
integration efficiency. Out of the box the qg-term transverse phase space is six
dimensional: integrations take place over the quark-antiquark-gluon transverse
positions x0,x1,x2. A similar reparametrization to impact factor variables, with
the addition z = x2 −b, is one way to extract an independent transverse integral
that can be recognized as the target size. The scalar parametrization used in this
work uses the lengths x01, x02, and the angle ∠(x01,x02) =: ϕ — with these the
third dipole size is x2

21 = x2
01 + x2

02 − 2x01x02 cosϕ. With these scalar quantities
the qg impact factors are sufficiently parametrized. This leaves one free angular
and one transverse planar integral that can be done analytically, given the above
assumptions about the dipole amplitude. The latter yields again the target size
σ0/2. This leaves us with a scalar form of the qg contribution with a three-
dimensional transverse phase space.

With the above considerations we are at the stage to implement the remain-
ing integrations numerically. In the work for [I, II, III], this was done in C++
using the Cuba library for multidimensional numerical integration [116, 117].
Specifically Cuba provides powerful methods for Monte Carlo integration, which
becomes more efficient in higher phase space dimensions than deterministic in-
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tegration, as is the case with the qg contribution. The Monte Carlo methods
implemented by Cuba use importance sampling and globally adaptive subdi-
vision, which substantially improve the efficiency of the evaluation of complex
high-dimensional integrals. Even with all the possible simplifications done the qg
contribution is the hardest by far to compute, especially so for the transversely
polarized photon, which is possibly caused by the behavior of the integrands in
the aligned jet limit z0 → 0, 1.

4.1.2 Extraction of the BK evolution initial amplitude
shape from data

Based on the previous section we know how to numerically compute the NLO
DIS cross sections and structure functions. This can be used to extract the initial
condition for the BK evolution given an ansatz functional form for the amplitude.
This is done by fitting the initial condition for the BK evolution through the
comparison of the calculated cross sections to experimental data. DIS total cross
section measurements are typically reported either for the structure functions,
or for the reduced cross section, which is defined as

σr(xBj, Q
2, y) = F2(xBj, Q

2) − y2

1 + (1 − y)2FL(xBj, Q
2). (4.1)

Here y is the so-called inelasticity of the scattering, which is fraction of energy
in target rest frame the photon gains from the electron.

Now to fit the initial condition of the BK evolution to data, an ansatz for the
functional form is needed, and some initial guess for its parameters. A widely
used form is the McLerran-Venugopalan model for the dipole amplitude [36]:

S(xij, Y = Y0,BK) = exp
[
−

x2
ijQ

2
s,0

4 ln
(

1
|xij|ΛQCD

+ e

)]
, (4.2)

where there is only one free shape parameter, Qs,0, which is the saturation scale
at the earliest rapidity to be considered in the analysis. A modified version of
the McLerran-Venugopalan model is the MV-γ model, which writes

S(xij, Y = Y0,BK) = exp
−

(
x2

ijQ
2
s,0

)γ

4 ln
(

1
|xij|ΛQCD

+ e

)]
, (4.3)

where the new parameter γ controls the steepness of the amplitude tail at small
dipole sizes. The MV-γ model has been used in leading order DIS fits [94, 95,
97], and so was chosen as the initial shape for the fits done in [III].
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On top of the two free parameters discussed above, the running coupling
scheme used in [III] introduces a third parameter — the used strong coupling
constant in coordinate space is

αs(x2
ij) = 4π

β0 ln
[(

µ2
0

Λ2
QCD

)1/c

+
(

4C2

x2
ijΛ2

QCD

)1/c
]c , (4.4)

with β = (11Nc − 2NF)/3 and NF = 3, ΛQCD = 0.241 GeV. The parameter
C2 sets the scaling of the running coupling in coordinate space, i.e. it is the
scale in the connection αs(k2) ∼ αs(C2/r2). Theory calculations give it the
value C2 = e−2γE [96, 118], however it can be used as free parameter to absorb
theoretical uncertainty related to non-perturbative or higher-order contributions.
In [III] we use it as a fit parameter in this functionality, as has been done in
previous LO DIS analyses [95, 97]. The remaining fixed parameters c and µ0
control the infrared freezing of the coupling, see [III] for more details.

Two schemes of selecting the dipole size going into the running coupling (4.4)
were used in the analysis. First, the simple one, is the parent dipole running
coupling where the coupling strength is always set by the quark-antiquark dipole
size r = x01 = x0 − x1, i.e. αs = αs(r2). The second coupling uses the Balitsky
prescription [51] in the LO BK kernel, and the smallest dipole prescription in
the resummation kernels and DIS impact factors. In the smallest dipole scheme
the smallest daughter dipole sets the coupling strength

αs,sd
(
x2

01,x2
02,x2

21

)
= αs

(
min

{
x2

01,x2
02,x2

21

})
. (4.5)

This is motivated by the observation that the typical scale that sets the coupling
strength is the largest momentum scale, which in position space corresponds to
the smallest length scale. One important feature of the second scheme is that
the Balitsky coupling reduces to the smallest dipole coupling in the limit that
one of the daughter dipoles is much smaller than the others.

With the initial condition and running coupling schemes determined, we
may proceed to make comparisons between theory calculations and data. In the
process of fitting a quality function for the agreement of the theory calculation
and data is needed, for which then a global minimum or maximum is searched,
which ever is the extremum corresponding to the best fit. One such quality
function is the χ2, which is

χ2 =
∑

data points i

(
σth(i) − σexp(i)

ϵexp(i)

)2

, (4.6)

where the measured data set is indexed with i, σexp(i) is the measurement for
the datapoint, σth(i) the theoretical calculation at the datapoint, and ϵexp(i) the
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total error of the measurement for datapoint i. Perfect agreement between the
theory and data would give χ2 = 0, and the larger χ2 is the worse the fit quality
is. Due to the random nature of experimental errors, theory cannot account
for them point by point, and so χ2 = 0 is not actually a good fit. Typically
in a well predicted region the difference between the theory calculation and
the measurement should be of the order of the experimental error, which gives
χ2 ∼ N , or as is typically reported χ2/N ∼ 1, where N is the number of
datapoints considered in the analysis. Then in the fitting process inputs are
parametrizations of the initial condition and outputs are values of χ2/N , for
which a global minimum is found. This gives the initial condition preferred by
the data. One final note is that a more sophisticated analysis could take into
account the correlations of experimental errors. These are available [74] for the
combined HERA data, but they were not included in the analysis done in [III].

Now that we have gone through the procedure of computing cross sections
from the theory and comparing them to data, we can move on to summarize the
work and results of Article [III].

4.2 Summary of Article [III]: Fitting NLO DIS
cross sections to HERA data

The work done in Article [III] brings together the state-of-the-art dipole picture
calculation of the next-to-leading order DIS cross sections [1, 2], and the soft
gluon large logarithm resummation work done for NLO DIS in [I], covered in the
Sections 3.3.1 and 3.3.2, respectively. Together these works provide a scheme
for a stable perturbative expansion of the DIS cross section in the dipole picture
up to next-to-leading order, which makes NLO precision comparisons to data
possible for the first time. The work done in [III] uses these theory results to
determine the initial condition to the BK evolution using NLO accuracy fits to
the combined HERA data [74]. The theoretical uncertainty of the calculation is
gauged by running fits using alternative prescriptions for the initial condition,
BK evolution, and running coupling.

The fit setups are as follows. For the BK evolution we compare the en-
hanced BK equations: ResumBK, KCBK, and TBK, which are described in
Sec. 2.4. These were used instead of the full NLO BK since it is numerically
very demanding, though solvable in principle [56, 60]. For the running coupling
we use a combination of Balitsky and smallest dipole prescription as the ’re-
alistic’ coupling, and compare this to the simple parent dipole coupling. We
found that upgrading the simplistic lower limit z2,min = xBj/x0 used in [I], to
z2,min = (xBjQ

2
0)/(x0Q

2) was necessary in order to get a good agreement with
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Figure 4.1: HERA data compared to reduced cross section calculated based on
three fits, one with each of the enhanced BK evolutions. Balitsky + smallest
dipole running coupling and Y0,BK = ln 1

0.01 initial scale were used. From [III].

the data. This more accurate lower limit is discussed in [I, 2, 53]. Lastly, two
options for the shape of the BK evolution initial condition were considered. The
key difference between the two initial condition schemes is the starting rapidity
scale of the BK evolution. In the first setup we take as the initial scale a rapidity
corresponding to a reasonably small xBj to begin the evolution, and in the second
we take the rapidity scales of the BK evolution and the impact factors to be the
same. Both schemes have their merits, details are found in [III].

The datasets used in this analysis are the combined HERA data of the H1
and ZEUS experiments for the reduced cross section [74], and the charm and
bottom quark contributions to the inclusive cross sections [76, 77]. While a
newer combined dataset including the data from the HERA-II run would have
been available [75], the two datasets result in very comparable fits [93] at low
x and moderate Q2. We verified this with our fit setup as well, where with the
fit parametrization using the KCBK equation, Bal+SD coupling, and Y0,BK =
ln 1/0.01 we found that the fit quality receives a minor change from χ2/N = 1.89
to χ2/N = 1.60.

The heavy quark dataset is used to generate a light-quark-only dataset by
subtracting the charm and bottom contributions from the inclusive reduced cross
section, see Sec. 4.3 for details. The motivation for this is the fact that the the-
ory calculation was done for massless quarks, and the heavy quark contributions
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Figure 4.2: Inclusive and light-quark-only reduced cross sections calculated based
on KCBK fits to the corresponding dataset compared to their respective datasets.
Balitsky + smallest dipole running coupling and Y0,BK = ln 1

0.01 initial scale were
used. From [III].

in the inclusive data are non-negligible. The generated light-quark-only reduced
cross section data is then used in fits in order to gain insight into the compati-
bility of the massless quark cross sections and the available data.

As for the results, we find that the NLO cross sections are able to describe the
HERA data very well, one comparison is shown in Fig. 4.1. Even the combined
HERA data cannot properly differentiate between the enhanced BK equations or
running coupling schemes: all setups describe the data comparably. Though we
did see that the setups using Bal+SD running coupling on average performed
slightly worse in terms of χ2/N than those using the parent dipole coupling.
Description of the light-quark-only data is found to be good as well. The Figure
4.2 shows a fit to the light-quark-only data, and a fit with the same BK equation
and αs prescription to the HERA data. We see that the same setup can fit
both of the datasets separately, and that the fit parametrizations receive some
systematic changes — this allows us to infer some general features of the data
by comparing the initial amplitude shapes. Specifically, we find that the light
quark data needs a slower BK evolution and a larger target size. We interpret
this as the presence of a substantial non-perturbative hadronic contribution in
the light-quark-only data.

To summarize, we performed the first NLO accuracy DIS fits to HERA data
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to determine the initial condition for the BK evolution. We found a good agree-
ment with the theory and data for both the HERA and light-quark-only datasets.
To assess the theoretical uncertainty, we used alternative prescriptions of key
pieces of the computation and found the fit results to be quite robust. Thanks
to the universality of the dipole amplitude, discussed in Sec. 2.3, the dipole
amplitudes determined in these fits can be used in other phenomenological cal-
culations at NLO accuracy, as has already been done for exclusive heavy vector
meson production [119].

4.3 Assessing the theory uncertainty
Any theory calculation of an observable has an intrinsic theoretical uncertainty
— perfect information of the physical system cannot be had, and various as-
sumptions or approximations are made to make theory calculations possible. In
the case of the NLO DIS cross sections evaluated in this work, some of this un-
certainty arises due to choices in modeling that cause finite differences that are
of higher order in the perturbative expansion. Examples of effects like these are
the differences between the running coupling prescriptions and the differences
between the resummation techniques of the enhanced BK equations. There is
also uncertainty whether the BK evolution prescription should be done in the
probe or target rapidity. While the latter seems to be a more natural prescrip-
tion of the evolution one still has to perform a translation between the evolution
prescriptions when computing the DIS impact factors that are derived in the
probe rapidity prescription. Lastly, selecting the functional form and rapidity
scale for the initial condition of the BK evolution introduces uncertainty.

To gauge the magnitude of these effects we performed the data comparisons
with a number of prescription combinations. The fits done in [III] compare
BK resummation prescriptions, running coupling schemes, BK initial condition
rapidity scales, and HERA and light-quark-only datasets. As discussed above,
the BK equation and running coupling prescription effects should be somewhat
small, and in [III] we demonstrated that all the used BK equation and running
coupling choices were able to describe the data well.

We ran two series of fits to test the sensitivity of the cross sections to the
BK evolution initial rapidity scale. In the first set the initial scale was set to
Y0,BK = ln 1/0.01, which has traditionally been considered as reasonably small
x to begin the evolution. However, in the cross section computation one needs
to evaluate the dipole amplitude in the range [0, Y0,BK], which is before the
evolution begins. We chose to freeze the dipole amplitudes at the initial scale
in this region. In the second set the scale was taken to be Y0,BK = Y0,if = 0,
which forgoes the need for freezing, but now the initial scale of the evolution is
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at unnaturally large x. We interpret this as the usage a dipole amplitude initial
form which is that of an evolved dipole amplitude of ln 1/0.01 units of rapidity
evolution. More details and discussion about the results are found in [III].

Lastly, some uncertainty is introduced by the fact that we are making com-
parisons between inclusive cross sections for massless quarks and HERA data
that has notable contributions from charm and bottom quarks especially at
Q2 ≫ m2

c . To address this we generated a light-quark-only reduced cross section
dataset from HERA data by subtracting the charm and bottom contributions
manually. Since the original inclusive and heavy quark datasets are not binned
in the same way, we had to perform interpolation using a separate leading order
IPsat parametrized fit [93]. The experimental uncertainties of the original HERA
data were left unchanged, since the proper calculation of the uncertainties would
need to be done by the experimentalists. We expect that this mostly affects the
χ2/N values of the light-quark-only data fits, and not the fit parametrizations
that are found which are the key interest in this analysis. The NLO cross sec-
tions were found to describe both datasets well, which was briefly discussed in
the previous section, and at more detail in [III].

Effects that we could not look into extensively include the functional form
of the BK initial condition, the choice of rapidity scale in the NLO dipole con-
tribution, the mismatch between Balitsky and smallest dipole running couplings
to be discussed in Sec. 4.4, and the choice of the Y0,if scale in the impact factors
(3.28), which in principle could be taken as a fit parameter.

4.3.1 Assessing the impact of the NLO BK equation

Table 4.1: NLO cross section comparisons to HERA data using NLO BK evo-
lution starting from the initial conditions determined in [III]. The change in
χ2/N is a measure of the difference between the NLO BK and the enhanced BK
equations used in the fits. The notation (acc.↓) refers to the relaxed numerical
accuracy of the calculation done here, that matches the accuracy of the numeri-
cal NLO BK evolution. These lower accuracy values are provided as a reference
to gauge the magnitude of the numerical uncertainty of the NLO BK evolution.

Fit BK αs Y0,BK χ2/N([III]) χ2/N (acc.↓) χ2/N (NLO BK)
ResumBK parent ln 1

0.01 2.24 2.3 2.9
KCBK parent ln 1

0.01 1.85 1.9 4.0
TBK parent ln 1

0.01 2.76 2.8 2.9
ResumBK parent 0 1.12 1.2 1.4
KCBK parent 0 1.24 1.3 5.5
TBK parent 0 1.03 1.1 1.4
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Figure 4.3: The same initial amplitude shape evolved using the ResumBK and
NLO BK equations. The initial condition is from the ResumBK, parent dipole,
Y0,BK = ln 1

0.01 fit shown in Table 4.1, determined in [III].

Aside from the above discussion is the question of how big an impact will
the full next-to-leading order BK evolution [56, 58–60] have. Inclusion the full
NLO BK would push the accuracy of the calculation to NLO+NLL order. To
assess this, new comparisons between the used enhanced BK equations and the
NLO BK including resummations [56, 60] were done for this thesis. Some of the
initial shapes of the dipole amplitudes determined in [III] were evolved using the
full NLO BK equation [56] and then used for computation of the cross sections
for data comparison. Even though the different BK equations used in [III] are
quite different1 theoretically, they take the same functional shape as the initial
condition. Thus this comparison gauges the importance of α2

s contributions in
the NLO BK equation that are not enhanced by large transverse logarithms
based on how suitable the initial conditions determined in the fits are for the
NLO BK evolution. This suitability is quantified by the change in the goodness
of the fit χ2/N .

As is shown in Table 4.1, the full NLO BK equation causes a fairly small
changes in the χ2/N values of the fits. The smallest changes are seen with the

1ResumBK equation resums both single and double large transverse logs, KCBK equation
resums double logs, and TBK equation resums the double logs, and it is formulated in the target
momentum fraction picture instead of the projectile mom. fraction picture. See Article [III]
and references therein for more details.
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Figure 4.4: Reduced cross section computed using the NLO BK evolved dipole
amplitude compared to HERA data. The initial shape is from the fit using the
ResumBK equation, Y0,BK = ln 1

0.01 shown in Table 4.1, from [III].

initial conditions of the ResumBK and TBK equations, whereas the KCBK fit
initial conditions see slightly larger changes. The ResumBK evolution is ex-
pected to approximate the NLO BK evolution the closest since it resums single
transverse logs as well as the double logs resummed by the other two prescrip-
tions. In addition to this, the specific prescription of the ResumBK equation
used is numerically optimized to match the NLO BK equation with resumma-
tions as well as it can [56]. On the other hand, there is little reason to expect
that the TBK evolution initial conditions would be good for this formulation of
the NLO BK evolution. The TBK evolution is derived in the target momentum
fraction picture, whereas the NLO BK evolution is based on the projectile mo-
mentum fraction picture. Furthermore, the TBK equation used only resums the
large transverse double logs, whereas the NLO BK resums the single transverse
logs as well. Thus without further study, we can only conclude that the small
changes seen with the TBK equation initial conditions are unexpected.

In Fig. 4.3 is shown the same initial condition evolved using the ResumBK
and NLO BK equations, and the close approximation of the NLO BK result by
ResumBK is evident. We see that the NLO BK evolution is slightly faster than
the ResumBK evolution, as has been seen previously [56].

This NLO BK evolved dipole amplitude is used to compute reduced cross
sections for data comparison, which is shown in Fig. 4.4, together with the Re-
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sumBK evolved dipole amplitude that was fitted to the data. We see that the
difference between the evolution equations is larger both at larger Q2 and at
smaller x, both of which correspond to a later stage in the evolution. This
difference seen between the NLO BK and ResumBK results is of the same mag-
nitude as between the enhanced BK equations found in [III]. It is unclear if
the available data would discern between the NLO BK and the enhanced BK
equations.

The interpretation of this simple comparison is unfortunately muddled by
the fact that the unsub scheme used in the computation cannot be consistently
upgraded to NLL accuracy with a simple replacement of the evolution equa-
tion [2]. The issue is that when one replaces a LL evolved scattering amplitude
with an NLL evolved amplitude in the unsub form of the cross section, one is
introducing next-to-next-to-leading order (NNLO) corrections together with the
NLL contribution from the NLO BK. In the sub scheme these NNLO corrections
are canceled between the qg contribution and the subtraction term, producing
a strict NLO result. Whereas in unsub scheme the NNLO contribution persists
without further work. We note however that while this use of unsub scheme
with NLO BK goes beyond strict next-to-leading order, it is the natural result
of applying perturbative QCD. To elaborate, calculating all the relevant Feyn-
man diagrams at this order produces this subset of NNLO corrections due to
the nested nature of the problem [113] — both the BK evolution and the DIS
impact factors get separate O(αs) contributions which compound naturally, and
this higher order contribution would need to be removed manually. In principle
it is possible to amend unsub scheme to strict NLO+NLL order by extracting
the NNLO contribution with an additional term accounting for the mismatch
between the LL evolution contribution contained in the unsub qg term, and the
NLL contribution arising from the NLO BK evolution. All this means that the
calculations shown in Table 4.1 cannot claim strict NLO+NLL accuracy.

4.4 An outlook for theory improvements to the
fits

During the work on Article [III] some theory improvement opportunities for the
fits were recognized, however they were out of scope for the project. This section
discusses these improvements.

• Quark and anti-quark momentum fraction constraint.
In the expressions (3.19), (3.28) the quark and antiquark momentum frac-
tions z0 and z1 can attain all values in their defined regime [0, 1]. This
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implies that the invariant masses of the included qq̄ and qq̄g states can
become arbitrarily large:

M2
qq̄ = (k0 + k1)2 = k2

0
z0

+ k2
1
z1

= k2
1

z1(1 − z1)
,

M2
qq̄g = (k0 + k1 + k2)2 = k2

0
z0

+ k2
1
z1

+ k2
2
z2
,

where k0, k1, k2 are the four-momenta of the quark, antiquark and gluon,
and zi are their respective longitudinal momentum fractions. This means
that the limits zi → 0 are problematic. The production of qq̄ and qq̄g states
with an invariant mass larger than the c.m.s. energy of the scattering is
forbidden, so a limit of the type:

k2
1

z1(1 − z1)
< W 2

is needed in the case of qq̄ production. However, the consistent implemen-
tation of a limit of this type in mixed space of transverse positions and
longitudinal momentum fractions is non-trivial and left for further work.
Similar analysis needs to be done for the qq̄g contribution as well. Some
suggestions for how to do this are outlined in [2]. Traditionally cut-offs
like this are not done for regular non-divergent integrals. Such a cut-off
for the longitudinal momenta k+ > k+

min creates effects that are power
suppressed in k+

min

W
[2]. These effects are in principle beyond the precision

of the calculation.

• NLO dipole term rapidity scale.
As is discussed in [I] and Sec. 3.3.3, at NLO the calculation of the pho-
ton splitting wavefunctions do not give guidance on what should be the
rapidity scale of the dipole amplitude in the loop corrections to the qq̄-
amplitude. The most natural thing to do would be to take both the loop
and the tree-level NLO corrections at the same rapidity scale, which needs
to depend on the momentum fraction of the gluon, as discussed in Sec. 3.3.
However, this was not possible in [I, III], since the NLO dipole contribu-
tion (3.19) had been integrated over the gluon momentum fraction [1]. In
Sec. 3.3.3 a form is derived for the NLO dipole contribution, Eq. (3.42),
where the momentum fraction integration has been undone and the usage
of a consistent rapidity scale with the qg-contribution is possible.

• Exact running coupling matching in the BK and impact factors.
With the Balitsky + smallest dipole running coupling prescription used in
[III], there is a subtle mismatch between the evolution equation and the
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NLO impact factor. Since this prescription uses the Balitsky coupling in
the leading order BK kernel, and the smallest dipole in the BK resumma-
tion kernel and DIS impact factors, a sub-optimal finite leftover of order
NNLO is produced in the factorization of the soft gluon large logarithm.
Note, however, that the Balitsky prescription reduces to the smallest dipole
coupling in the limit that one of the dipoles is much smaller than others,
which suggests that the finite leftover is not quite as large as one would
get without this limit-agreement of the couplings.

As an NNLO effect beyond our precision, the importance of this mismatch
is largely unknown. Some light could be shone on this by a comparison to
fits using only the smallest dipole coupling. The proposed improvement
here is to perform fits using some other realistic running coupling prescrip-
tions that can be implemented consistently in both the BK equation and
the impact factors, such as the one proposed in [2]. See also Ref. [120],
where an improved running coupling is developed for NLO calculations
of forward hadron production in pA-collisions. However, this prescription
might only be optimal for observables computed in momentum space.

• Quark masses.

A substantial improvement to the theory would be the inclusion of the
quark masses in the calculation of the impact factors. Recently the NLO
DIS impact factor with massive quarks for the longitudinal photon has
been made available [121].

The inclusion of the quark masses has the largest effect on the impact
factors at small Q2. A comparison between LO cross sections with massive
and massless quarks has been done where the effect was largest at Q2 ≲
1 GeV2 [29]. In this region we are not fitting extensively; the lower limit
in our fits was Q2 ≥ 0.75 GeV2 [III]. Based on this, it would seem feasible
that the fit qualities of the inclusive data fits are mostly affected at small
Q2. However, the fit regime in Q contains the mass scales of the charm
and bottom quarks, and especially the contribution of the charm quark to
the total cross sections is considerable [76] up to the upper limit of the
fit regime in Q. This suggests that there is notable uncertainty regarding
the magnitude of the change to the inclusive data fits brought on by the
inclusion of the quark masses in the calculation.

In contrast, a novel possibility with the massive quark impact factors is
the ability to fit heavy quark cross sections separately. In [III] we found
evidence that the inclusive DIS cross sections contain a substantial non-
perturbative contribution from the light quarks. This suggests that the
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charm and bottom quark cross sections should be better perturbative quan-
tities. The inclusion of heavy quarks in the theory calculations is an im-
portant improvement, and will hopefully shed light on the tension between
the inclusive and heavy quark data fits seen at leading order [101].

• Next-to-Leading Order BK evolution.
The remaining improvement for the cross section calculation to reach full
NLO+NLL accuracy is to use the NLO BK equation [56, 58–60]. This,
however, is a non-trivial undertaking due to the computational cost of the
NLO BK equation. Even with relaxed numerical precision, the evaluation
of the NLO BK evolution is slower by more than two orders of magnitude
in comparison to the implementation of the ResumBK equation, which is
caused by the larger phase space of the NLO BK equation. This means
that a fit is mostly feasible in a small region. It might be possible to use
the resummed BK equations as guidance in the determination of the fitting
region, as they approximate the NLO BK fairly well [56], which was also
verified with some of the fits in Sec. 4.3.
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Chapter 5

Diffractive Deep Inelastic
Scattering

5.1 Diffraction in particle collisions
In the 1990s, a striking discovery was made when the high-energy electron-proton
collisions began at DESY-HERA. As the electrons struck the target protons with
immense energy, in roughly 1 in 10 collisions the proton remained intact [18],
and instead the virtual photon emitted by the electron would create a shower
of hadrons. These hadron showers were seen to be separated by a substantial
angle from the beam axis. Diffractive events had been seen in the deep inelastic
scattering (DIS) experiment.

The observations of the diffractive DIS (DDIS) events at HERA are nigh
on tantalizing for two features. First, it was surprising to see such a large
proportion of large angular separation — or large rapidity1 gap — events. The
simple expectation from QCD is that such large rapidity gap events would be
exponentially suppressed [122]. The second interesting feature of the HERA data
is that the ratio of the diffractive to all events (σdiff/σtot) is almost constant with
varying center-of-mass energy of the virtual photon-proton system, W 2 [17].
Here the expectation was that the ratio would grow rapidly with increasing
energy, which was not seen in the experiment [17].

For theoretical calculations of high-energy diffractive scattering, it is useful to
state an equivalent definition of diffraction [84, 122]: a scattering at high-energy
in which no quantum numbers are exchanged between the colliding particles is
a diffractive scattering. The requirement on high-energy is due to the existence
of the exponentially suppressed non-diffractive reactions, which asymptotically

1Pseudorapidity is used to parameterize the angle away from the beam axis: η :=
− ln

[
tan

(
θ
2
)]

. A gap in pseudorapidity is equivalent with a gap in the angular distribution.
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become negligible at high-energy. In practice this means that after the virtual
photon scatters off the proton, both the target and the parton shower produced
by the photon must be in color-singlet states. If they had net color-charge after
the scattering, the rapidity gap would be filled by the gluon-bremsstrahlung as
the target and produced system would color neutralize during hadronization.

A number of theoretical mechanisms have been constructed for the color-
neutral formation of the target and produced system. They can roughly be
grouped in three categories: pomeron exchange models, soft color interaction
models, and dipole models. For reviews on the topic see Refs. [35, 123], and for
a more pedagogical discussion Ref. [84] — note however that these do not cover
some of the important saturation framework prescriptions of DDIS, which are
covered in some detail in Refs. [17, 18].

The first theoretical description of diffractive DIS was postulated by Ingelman
and Schlein (IS) [124] already before it was observed in experiment. In the IS
model the target wavefunction contains a hadronic color-singlet component, a
so-called pomeron, whose parton structure the virtual photon would probe. This
picture would imply that the pomeron structure functions would be universal,
which however was falsified by pp̄ collision experiments, where hard-diffractive
jet pair events were found to only constitute 1 − 2% of all jet events, in contrast
with the 10% of the events in DDIS [125]. Later pomeron exchange models
consider the pomeron as a dynamically emergent object in DDIS, which carries
the quantum numbers of the vacuum, and has an internal structure of quarks
and gluons [84, 126].

In the soft color interaction (SCI) framework [127–129], the view is that the
hard part of the process — the virtual photon scattering off a parton — is the
same between DIS and DDIS. The color-neutralization then takes place via soft
gluon interactions between the target remnants and the scattered off system.
While SCI is considered phenomenologically successful, it has also been seen to
be limited due to the ad hoc nature of the color exchange and not accounting
for perturbative effects like color transparency [84]. Later work has connected
the SCI model with a similar soft interaction framework, providing it with a
theoretical basis that includes rescattering effects [125].

The dipole model family of DDIS descriptions has two principal branches
that have connections to present day CGC framework saturation phenomenology.
One is the semiclassical approach to DIS and DDIS by Hebecker et al. [33, 35],
which can be considered an early precursor of the CGC framework. As such,
the physical picture of the scattering from the semiclassical color-fields of the
target is the same as in the case of dipole picture DIS, discussed in Sec. 2.3.
Diffraction is introduced by projecting the scattered state into a color-singlet
state. In the dipole picture a Fock state with a soft gluon becomes important
when the final state has large invariant mass, and a leading twist approximation
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Figure 5.1: Diffractive electron-proton deep inelastic scattering. The proton can
either stay intact and Y = p or it can dissociate into the forward direction.

for this — power counting-wise NLO — contribution is derived in Ref. [33].
A missing piece from the framework in comparison to present day CGC is the
unitarization of the dipole model, which introduces the non-linear effects that
lead to saturation.

The second branch is the two-gluon exchange approximation of DDIS by
Wusthoff et al. [130–133]. In this model the diffractive scattering proceeds by
the virtual photon fluctuating into a qq̄ or qq̄g dipole, which then scatters off the
target by the exchange of two soft gluons. The qq̄g-contribution to the cross sec-
tions is derived in a leading twist, i.e. high-Q2, approximation. This model was
combined with a phenomenological description of saturation, which described
the HERA data well [30]. Another early approximative saturation approach was
calculated by Munier and Shoshi [134] in the limit that the invariant mass of the
diffractive system is large. The Wusthoff and Munier–Shoshi approaches were
later connected by Marquet [135] in a work that gave the first CGC framework
description of diffraction that builds on the virtual photon wavefunction derived
by Wusthoff et al [30, 131, 132]. A good description of HERA data was found
using the CGC prescription [136]. In Sec. 5.3 the qq̄g-contribution to the diffrac-
tive structure functions is calculated in full NLO accuracy without kinematic
approximations in the CGC framework for the first time for both longitudinal
and transverse virtual photons.

To discuss the general kinematics of diffractive DIS, let us consider diffraction
to take place as a pomeron exchange without reference to any specific mechanism
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discussed above. In Fig. 5.1 is depicted a general diffractive scattering mediated
by the virtual photon scattering off the pomeron, which produces the diffractive
color-singlet system X, and the target evolves into the color-singlet system Y .
In elastic diffraction the target proton remains intact, or in the inelastic case it
dissociates into a hadron shower into the forward direction, either vanishing into
the beam pipe or showing up in a forward detector. Analogously to the inclusive
DIS discussed in Sec. 3.1, diffractive DIS of a virtual photon off a proton is
parametrized by four quantities. We need Q2 and xBj like with inclusive DIS,
the invariant momentum transfer t, and the invariant mass of the diffractive
system MX :

t := −(P − P ′)2 (5.1)
M2

X := P 2
X (5.2)

xP := (P − P ′) · q
P · q

= M2
X +Q2 − t

W 2 +Q2 −M2 ≈ M2
X +Q2

W 2 +Q2 (5.3)

β := Q2

2q · (P − P ′) ≡ xBj

xP
= Q2

Q2 +M2
X − t

≈ Q2

Q2 +M2
X

, (5.4)

where xP and β are alternative ways to parameterize the MX dependence, and
the momenta are as shown in Fig. 5.1. They can be given interpretation in the IS
model: xP is the fraction of proton longitudinal momentum the pomeron carries,
and β is the fraction of the pomeron momentum the parton struck by the photon
carries. The mass of the proton is M and W 2 = (P + q)2 is the energy of the
γ∗p system.

Due to the distinct physics in the diffractive scattering, specific structure
functions are defined for DDIS by writing the total diffractive cross section
as [84]:

σ
D(4)
tot = (2π)2αem

Q2 F
D(4)
2 (xBj, Q

2,MX , t) (5.5)

= (2π)2αem

Q2

(
F

D(4)
T (xBj, Q

2,MX , t) + F
D(4)
L (xBj, Q

2,MX , t)
)
, (5.6)

where the superscript (4) refers to the dependence of the diffractive structure
functions on four kinematic parameters. As experimental quantities the diffrac-
tive structure functions are t-integrated in HERA data2, and in this case the
t-independent structure functions are defined as FD(3)

2,L,T := F
D(3)
2,L,T (xBj, Q

2,MX),
or using equivalent parameter choices such as FD(3)

2,L,T (xP, Q2, β).
2The Electron-Ion Collider experiment [22–24] is considering measuring |t|-differential cross

sections, which could be made possible thanks to the higher luminosity of the experiment, in
comparison to HERA.

56



The study of diffraction in high-energy collisions gives us invaluable infor-
mation on the hadronic structure of the proton or nucleus. As discussed above,
there is still much to learn about the mechanism that is taking place, and about
the relation between the pomeron exchange and the saturation pictures. Under-
standing of these details gives insight into the appropriate high-energy degrees-
of-freedom of QCD. Diffraction is more sensitive to the non-linear effects of
saturation than fully inclusive DIS [30, 135], which is seen explicitly at the cross
section level as the dependence on the dipole amplitude squared σdiff ∼ (1 −S)2

in comparison to the inclusive case σtot ∼ Re(1 − S). This makes diffraction an
invaluable tool in the study of the Color Glass Condensate framework.

5.2 DDIS in the dipole picture at leading order

At leading order in the dipole picture the process of diffractive scattering is
remarkably similar to the one of the fully inclusive deep inelastic scattering
discussed in Sec. 3.2. The incoming virtual photon fluctuates into the qq̄ dipole
that then scatters eikonally from the target. Diffraction is introduced into the
process by requiring that in the dipole-target scattering outgoing qq̄-state is a
color-singlet. Early LO calculations of DDIS in the dipole picture were done by
Ryskin [137], and Nikolaev and Zakharov [138, 139]. It however turns out, that
the LO qq̄ contribution alone was utterly incapable of describing the diffraction
observations seen at HERA — the contribution vanishes when the invariant mass
of the produced system MX is large, or equivalently when β ≪ 1. This is seen
in Fig. 5.2 where the qq̄ contributions substantially fall short of the data.

The question then is, how are large invariant mass systems created in the
dipole picture. To see this, we write the invariant masses of the leading q0q̄1,
and the next-to-leading q0q̄1g2 Fock states:

M2
qq̄ = (k0 + k1)2 = k2

0
z0

+ k2
1
z1
,

M2
qq̄g = (k0 + k1 + k2)2 = k2

0
z0

+ k2
1
z1

+ k2
2
z2
,

where the indices 0, 1, 2 refer to the quark, antiquark and gluon, and the frame is
set so that the transverse momentum of the photon is zero: q = 0. We see that
large MX arises either if some of the partons have large transverse momentum,
or if they have a low longitudinal momentum fraction zi := k+/q+. In fact, the
production of soft gluons is enhanced over the production of soft quarks. This is
seen by looking at the schematic k+

i -dependence of the dipole formation vertex

57



ZEUS 1994

F
2
D

(2
)

Q
2
=8 GeV

2
Q

2
=14 GeV

2

Q
2
=27 GeV

2

β

Q
2
=60 GeV

2

0.01

0.02

0.03

0.04

0.05

0.06

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 5.2: The leading contributions to the diffractive structure function FD
2

compared to HERA data [30]. Dashed line: qq̄ contribution to FD
T dot-dashed

line: qq̄ contribution to FD
L dotted line: qq̄g contribution to FD

T . Here it is ex-
plicitly seen that the power counting-wise strictly LO qq̄-contribution completely
fails to describe the data at small-β, or equivalently large-MX . In this regime
the formally NLO qq̄g-contribution is enhanced by a large logarithm log(Q2) or
log(1/β), and so becomes of order αs log(Q2) ∼ 1 and the main contribution
to the structure function at small-β. Reprinted figure with permission from K.
Golec-Biernat, and M. Wusthoff, Phys. Rev. D, 60, 114023, 1999. Copyright
(1999) by the American Physical Society.
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for a transversely polarized photon [86]:

Vγ∗
T (q+,q)→q(k+

0 ,k0)q̄(k+
1 ,k1) ∼

√
k+

0k
+
1 ελ ·

[
k0+k1

k+
0 +k+

1
− 1−2h0λ

2
k0

k+
0

− 1+2h0λ

2
k1

k+
1

]
and the gluon emission from a quark vertex [86]:

Vq(k+
0 +k+

2 )→q(k+
0 ,k0)g(k+

2 ,k2) ∼
√

(k+
0 +k+

2 )k+
0 ε

∗
λ·
[

k2

k+
2

− 1+2h0λ

2
k0

k+
0

− 1−2h0λ

2
k0+k2

k+
0 +k+

2

]
,

where h0 is the helicity of the quark, and λ that of the photon or gluon. Out
of the two vertices above, we see that the gluon emission grows the fastest
as k+

i → 0. This suggests that the leading process that produces large-MX

diffractive systems is the emission of a gluon from the qq̄ Fock state, a formally
NLO contribution.

Early attempts to calculate the qq̄g contribution to DDIS were done by
Mueller, Ryskin, and Nikolaev&Zakharov [137–140]. A breakthrough was the
calculation of the qq̄g contribution at large-Q2 by Wusthoff et al. [130–133, 141].
In the large-Q2 regime the contribution is enhanced by a large logarithm log(Q2),
making the contribution formally of the order αs log(Q2) ∼ 1, i.e. perturbatively
leading order. Specifically, the calculation exclusively considers the contributions
where the transverse virtual photon fluctuates into a quark-antiquark pair, af-
ter which a gluon is emitted. The qq̄g-state then scatters from the proton as
an effective gg-dipole by the exchange of two gluons, allowing the diffractive
system and proton remnant remain color-neutral. The contribution from the
longitudinal photon is not included since it is higher-twist, i.e. suppressed by
one power in the Q2-expansion [132]. This result together with a phenomenolog-
ical model — the GBW model — was used with tremendous success to describe
HERA data [30]. The analysis used the dipole amplitude as determined from
inclusive DIS fit [29] to HERA data, which is seen as the success of saturation
phenomenology.

A full NLO accuracy calculation without approximations of the qq̄g-contribu-
tion has not been performed before, let alone the implied loop contributions.
These will be discussed in more detail in Sec. 5.3. Due to this, the large-Q2

qq̄g-contribution derived by Wusthoff has remained among the most accurate de-
scriptions3 of the qq̄g-contribution, one other being the small-β leading log(1/β)
contribution [134]. The latter being less general, since the structure function
result is to be taken at the limit β ≡ 0. In the following section we will discuss
the analysis of Marquet and Kowalski et al. [135, 136], who combined the large-
Q2 and small-β results to have the most accurate dipole picture prescription of
DDIS and HERA data to date.

3Other studies of the qq̄g contribution include the calculation by Hebecker et al. [33, 34],
and in the small-β approximation the analyses [142–146].
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Figure 5.3: Diffractive γ∗p → Xp deep inelastic scattering at leading order in the
dipole picture. The diffractive system with invariant mass MX is formed by the
qq̄ dipole in the color-singlet state. The figure depicts the scattering amplitude
for the process.

5.2.1 Leading contributions to the diffractive structure
functions in the dipole picture

The leading order contributions of the qq̄ dipole, depicted in Fig. 5.3, to the
diffractive structure functions are [135, 136]:

xPF
D
T,qq̄(xP, β,Q2) = NcQ

4

16π3β

∑
f

e2
f

∫ 1
2

zmin
dz z(1 − z)

×
[
ε2
(
z2 + (1 − z)2

)
J1 +m2

fJ0
]
, (5.7)

xPF
D
L,qq̄(xP, β,Q2) = NcQ

6

4π3β

∑
f

e2
f

∫ 1
2

zmin
dz z3(1 − z)3J0, (5.8)

where the auxiliary function is defined as

Jn :=
∫

d2b
[∫ ∞

0
drrKn(εr)Jn(κr) (2N(b, r, xP))

]2
, (5.9)

and ε2 := z(1−z)Q2 +m2
f , κ2 := z(1−z)M2

X −m2
f , zmin :=

(
1−

√
1−4m2

f/M
2
X

)
/2.

The notation was altered from the one in [135, 136] intentionally to clarify two
details. First, the name of κ was changed to distinguish it from the variable
k present in the qq̄g contribution to be discussed next, since they are not the
same. Second, the substitution dσdip

d2b (b, r, xP) ≡ 2N(b, r, xP) was made to make
explicit the normalization used for the dipole amplitude.
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Figure 5.4: Schematic depiction of the leading logarithm large-Q2 contribution of
the transverse virtual photon splitting function to the diffractive qq̄g production.
This becomes dominant over the LO qq̄ production at small but finite β, or
equivalently at large MX .

Some assumptions or approximations have been made in the expressions (5.7)
and (5.8). First, it has been assumed that the dipole amplitude N(b, r, xP)
does not depend on the angle ∠(b, r), which frees one to perform the angular
integration of r in the direct and complex conjugate amplitudes. This leads to
the polarization dependent forms with Bessel functions J0 and J1. Secondly,
the t-integration has been performed under the assumption that a term in the
final state transverse momentum integration can be neglected. Specifically, if
one assumes that exp(i∆ · (r − r)) ∼ 1, one gets the identity:

∫ 0

−∞
dt
∫ d2∆

(2π)2 δ(∆
2 − |t|)ei∆·(b−b) = δ(2)

(
b − b

)
, (5.10)

where ∆ := p0 + p1 − q is the momentum transfer in the scattering. This as-
sumption has been justified by stating |r| ≈ 1/Q, which is taken to be small.
This leads to the elimination of one of the two impact parameter integrals over
b and b that are associated with the calculation of the squared scattering am-
plitude, which explains how the diffractive structure functions (5.7) and (5.8)
have two dipole size r integrations, but only one impact parameter integral.

Moving onto the leading log(Q2) description of the qq̄g-contribution, illus-
trated schematically in Fig. 5.4. It is at leading order only relevant for the
transverse structure function, as discussed in the previous section. The origi-
nal qq̄g-contribution in question [30, 132] was written in the following form in
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Refs. [135, 136]:

xPF
D (GBW)
T,qq̄g (xP, β,Q2)

= αsβ

8π4

∑
f

e2
f

∫
d2b

∫ Q2

0
dk2

∫ 1

β
dz
k4 ln Q

2

k2

(1 − β

z

)2

+
(
β

z

)2


×
[∫ ∞

0
drrK2

(√
zkr

)
J2
(√

1 − zkr
) (

2Ñ(b, r, xP)
)]2

 (5.11)

where r is the size of the effective gg-dipole, k2 is the virtuality of the final state
gluon, and z is the minus-momentum fraction of the t-channel gluon with respect
to the incoming gluon. The t-channel gluon is present in the two-gluon exchange
and it is exchanged between the qq̄ dipole and gluon coming from the target,
which is not shown in Fig. 5.4. In this large-Q2 leading logarithm approximation
the scattering qq̄g state is an adjoint representation gg dipole, and so the dipole
amplitude Ñ(b, r, xP) in the adjoint representation is to be used, which in the
large-Nc limit can be written as:

Ñ(b, r, xP) = 1 − (1 − N(b, r, xP))2 . (5.12)

The leading log(1/β) qq̄g-contribution to the structure function [134] is writ-
ten as [135, 136]:

xPF
D (MS)
T,qq̄g (xP, β ≡ 0, Q2)

= CFαsQ
2

4π4αem

∫
d2r

∫ 1

0
dz 1

4π
∣∣∣Ψγ∗

T →qq̄

∣∣∣2 ∫ d2bA(r, xP,b), (5.13)

where the wavefunction is the same as for the inclusive LO DIS (3.11), with
the normalization 1/4π added to account for the different normalization used in
Eq. (3.11) and Refs. [135, 136]. In this limit the dipole amplitude of the qq̄g
tripole N (2) factorizes into the dipole amplitudes of two dipoles of sizes r′ and
r − r′ and so the amplitude used is in the auxiliary function:

A(r, xP,b) =
∫

d2r′ r2

r′2(r − r′)2

[
N(r′) + N(r − r′)

− N(r) − N(r′)N(r − r′)
]2
. (5.14)

It was shown in Ref. [135] that the large-Q2 result (5.11) does not correctly
coincide with the small-β result (5.13) in the limit β → 0 at moderate Q2, where
the small-β result is correct by definition. However, the results were shown to
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agree in the validity regime Q2 ≫ Q2
s of the leading log(Q2) result Eq. (5.11). To

remedy this incompatibility, an interpolation model for FD
T,qq̄g was constructed:

xPF
D (interp)
T,qq̄g (xP, β,Q2) =

xPF
D (GBW)
T,qq̄ (xP, β,Q2) × xPF

D (MS)
T,qq̄ (xP, Q2)

xPF
D (GBW)
T,qq̄ (xP, β = 0, Q2)

, (5.15)

which leverages both results to get a better description of FD
T,qq̄g at moderate Q2

and small β. With this the complete model for FD
2 is

xPF
D
2, LO+LL(Q2)+LL(1/β)(xP, β,Q2) = xPF

D
L,qq̄(xP, β,Q2) + xPF

D
T,qq̄(xP, β,Q2)

+ xPF
D (interp)
T,qq̄g (xP, β,Q2). (5.16)

This formulation has been the most precise description of DDIS in the dipole
picture, and was used to describe HERA data very well [136]. After a brief aside
in the next section, in Sec. 5.3 we will discuss how this is superseded by NLO
calculations.

5.2.2 Impact parameter dependence of the qq̄g-contribu-
tion in the large-Q2 limit

Some work is needed to get the form of the GBW structure function (5.11)
starting from the original result in Ref. [30]. The intermediate steps of this cal-
culation are not shown in the literature, which is amended here with a calculation
connecting the two results.

Our starting point is the qq̄g contribution to FD
T from Ref. [30]4:

xPF
D (GBW)
T,qq̄g = 81β

512π5BD

∑
f

e2
f

αs

2π

∫ 1

β

dz
z

(1 − β

z

)2

+
(
β

z

)2
 z

(1 − z)3

×
∫ d2kt

(2π)2 k4
t ln

(
(1 − z)Q2

k2
t

)
Θ((1 − z)Q2 − k2

t )

×
∫

d2r
∫

d2r′eikt·(r−r′)σ̂(r, xP)σ̂(r′, xP)
(
δmn − 2rmrn

r2

)
×
(
δmn − 2r′mr′n

r′2

)
K2

(√
z

1 − z
k2

t r2

)
K2

(√
z

1 − z
k2

t r′2

)
. (5.17)

The angular integrals in the coordinate space can be performed, so we separate

4Italicized variables r, r′, kt are the lengths of corresponding vector quantities.
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the terms with angular dependence:

I :=
∫

d2r
∫

d2r′eikt·(r−r′)
(
δmn − 2rmrn

r2

)(
δmn − 2r′mr′n

r′2

)

=
∫

d2r
∫

d2r′eikt·(r−r′)
[
4(r · r′)2

r2r′2 − 2
]

=: 2I1 − 2I2. (5.18)

We will need the identity

Jn(z) = 1
2πin

∫ 2π

0
dθ cos(nθ)eiz cos θ. (5.19)

The second integral simply yields

I2 = (2π)2
∫
r drJ0(ktr)

∫
r′ dr′J0(ktr

′). (5.20)

For I1 we write, parameterizing the angles as ∠(r,kt) =: θ, ∠(r′,kt) =: ϕ:

r · r′ = rr′ cos(ϕ− θ) = rr′(cosϕ cos θ + sinϕ sin θ). (5.21)

This can be simplified with some trigonometric algebra:

(cosϕ cos θ + sinϕ sin θ)2 = cos2 ϕ cos2 θ + sin2 ϕ sin2 θ

+ 2 cosϕ cos θ������:0
sinϕ sin θ

= 1
2(cos 2θ cos 2ϕ+ 1),

where the cross-term linear in sinϕ vanishes in the integration. Finally comput-
ing the first integral, we find

I1 =
∫
r dr dθ

∫
r′ dr′ dϕ eiktr cos θe−iktr′ cos ϕ 2(r · r′)2

r2r′2

=
∫
r dr dθ

∫
r′ dr′ dϕ eiktr cos θe−iktr′ cos ϕ(cos 2θ cos 2ϕ+ 1)

= (2π)2
∫
r drJ2(ktr)

∫
r′ dr′J2(ktr

′) + I2. (5.22)

Thus we have found

I = 2(2π)2
∫
r drJ2(ktr)

∫
r′ dr′J2(ktr

′). (5.23)
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Integrating over the angle of kt and imposing5 k2
t ≡ (1 − z)k2, we can write

the GBW result (5.17) in the form:

xPF
D (GBW)
T,qq̄g = 81αsβ

512π5BD

∑
f

e2
f

∫ 1

β
dz

(1 − β

z

)2

+
(
β

z

)2


×
∫ ∞

0
dk2k4 ln

(
Q2

k2

)
Θ(Q2 − k2)

×
[∫

r drσ̂(r, xP)K2
(√

zkr
)

J2
(√

1 − zkr
)]2

. (5.24)

It remains to upgrade the model for the adjoint dipole amplitude to be impact
parameter dependent. This begins by recognizing that in [30] the model used
is [135]:

σ̃(r, xP) ≈ Nc

CF
σ̂(r, xP) = 9

4 σ̂(r, xP), (5.25)

where σ̃ is the adjoint amplitude of the gg dipole. In the large-Q2 limit the qq̄
dipole size is much smaller than the quark-gluon distance, and so the qq̄g-tripole
scattering is represented as an effective gg-dipole scattering [30]. Secondly, based
on the correct replacement of the diffractive slope model introduced in [135], a
factor of 1/(4πBD) must be absorbed into the normalization of the dipole ampli-
tudes. This is seen explicitly by assuming that the impact parameter dependence
factorizes from the dipole amplitude and taking the normalized Gaussian proton
impact parameter profile used in [136] Tp(b) := 1

2πBD
exp

(
− b2

2BD

)
and integrat-

ing: ∫
db2 (Tp(b))2 =

∫
db2 1

(2πBD)2 exp
(

− b2

BD

)
= 1

4πBD

, (5.26)

where the fact is used that the t-integration done in [136] over the full range
[−∞, 0] has forced the impact parameters in the direct and conjugate amplitude
to be the same b′ ≡ b. Thus we essentially undo the impact parameter inte-
gration to incorporate the impact parameter dependence back into the dipole
amplitude, and make the replacement

81
16
σ̂(r, xP)σ̂(r′, xP)

4πBD

= σ̃(r, xP)σ̃(r′, xP)
4πBD

=
∫

d2b
dσ̃
d2b

(b, r, xP) dσ̃
d2b

(b, r′, xP). (5.27)

5The variable k2 is the mean virtuality of the exchanged t-channel gluon [30, 132], defined
as k2 := k2

t

1−z .
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Figure 5.5: An example of a tree-level NLO diagram that contributes to the
qq̄g-contribution to FD

T and FD
L . A gluon is emitted before the scattering by one

of the quarks, and all three partons scatter from the color-field of the target into
the diffractive color-singlet final state.

With this we finally have

xPF
D (GBW)
T,qq̄g = αsβ

8π4

∑
f

e2
f

∫ 1

β
dz

(1 − β

z

)2

+
(
β

z

)2
 ∫ Q2

0
dk2k4 ln

(
Q2

k2

)

×
∫

d2b
[∫

r dr dσ̃
d2b

(b, r′, xxP)K2
(√

zkr
)

J2
(√

1 − zkr
)]2

, (5.28)

which is the result derived in [136] and shown in Eq. (5.11).

5.3 DDIS in the dipole picture at next-to-lead-
ing order

The next-to-leading order diffractive cross sections receive numerous contribu-
tions from both tree-level and loop diagrams, some of which are novel in compar-
ison to NLO DIS [2]. The large-Q2 limit qq̄g-contribution discussed in Sec. 5.2
includes a subset of the NLO tree-level qq̄g-contributions under the assumption
of strongly ordered kinematics illustrated in Fig. 5.4. In contrast to this, in
Fig. 5.5 is shown the corresponding qq̄g-contribution in general kinematics at
NLO, where there is no strong ordering of the dipole sizes. At full NLO ac-
curacy both the transverse and longitudinal virtual photon contribute to the
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(a) Propagator loop, gluon scatters (b) Vertex loop, gluon scatters

(c) Final state emission (d) Final state interaction

(e) Final state propagator loop

Figure 5.6: Five types of NLO corrections to DDIS that are novel in comparison to
NLO DIS [1, 2]. This is not an exhaustive presentation of relevant diagrams, only one
out of multiple diagrams is shown for each type.
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qq̄g-production, and additionally the transversely polarized photon can instan-
taneously fluctuate into the qq̄g Fock state, introducing new diagrams shown in
Fig. 5.7. Then in the CGC framework the formed qq̄g-state scatters eikonally
from the color-field of the target so that the scattered state is a color-singlet. At
NLO the emission of a gluon in the final state is possible, shown in Fig. 5.6c,
but these contributions are not included in the large-Q2 calculation [131, 132].
The full NLO dipole picture result corresponding to the large-Q2 diffractive qq̄g-
structure function Eq. (5.11) is discussed in more detail and calculated in the
next section.

On top of these tree-level contributions, the diffractive cross sections receive
contributions from a variety of loop diagrams. Completely analogously to NLO
DIS [1], gluon loop corrections to the quark and antiquark propagators before
the scattering contribute, as well as gluon loop corrections to the γ∗

T,Lqq̄- and
γ∗

T qq̄g-vertices. These contributions to the virtual photon LFWFs have been cal-
culated in Ref. [1] and should be usable as-is for the calculation of the respective
corrections to the diffractive cross sections.

NLO DDIS however receives new types of loop contributions as well, shown
in Fig. 5.6. These include propagator and vertex loops where the emission hap-
pens before and the absorption after the scattering from the target, shown in
Figs. 5.6a and 5.6b respectively. Completely new type of contributions come
from the final state, where the quark and antiquark can: emit a gluon, interact
by a gluon exchange, or either can receive a propagator loop correction, shown in
Figs. 5.6c, 5.6d and 5.6e. These types of diagrams, and their interferences with
the above tree-level and loop diagrams familiar from NLO DIS, are novel and
will need to be calculated from scratch. These contributions will also include
UV divergences which must be regularized and canceled out between the dia-
grams. The standard method is to use dimensional regularization, which means
all tree-level and loop contributions will need to be consistently calculated in
D-dimensions, analogously to NLO DIS [1, 2].

5.3.1 The qq̄g-contribution to the DDIS structure func-
tions at NLO

As discussed above, the final state emissions are not included in the original
large-Q2 limit calculation of the qq̄g-contribution [131, 132]. This means that
the derivation of the corresponding full NLO accuracy result without approxi-
mations is fairly straightforward: only the tree-level NLO diagrams where the
emitted gluon crosses both the shockwaves — in the direct and complex con-
jugate amplitude — and the cut contribute. An example diagram is shown in
Fig. 5.5, and all at the stage of the transverse photon splitting are shown in
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Fig. 5.7. For a longitudinal photon only the diagrams (a) and (b) are relevant.
A further simplification is that since the final state has a definite invariant mass
MX , all of the relevant contributions — which are tree-level, and as such have
no loops — become UV finite and the calculation may simply be done in D = 4.

In this section this calculation is done for both the longitudinally and trans-
versely polarized virtual photon, taking advantage of the NLO virtual photon
splitting functions calculated in Ref. [2]. The calculation is structured as fol-
lows. First we write down the relevant definitions to calculate the diffractive
cross section for the γ∗p scattering, after which the photon splitting wavefunc-
tion contributions are calculated in the case of DDIS. Finally we write the results
for FD

L and FD
T in NLO accuracy, in somewhat preliminary form.

5.3.2 Definitions: the qq̄g diffractive cross section
The differential cross section for the virtual photon-proton scattering via the qq̄g
Fock state is defined as:

dσNLO
γ∗

λ
→qq̄g singlet := (2q+)2πδ(p+

0 + p+
1 + p+

2 − q+)

×
d3p0

(2π)3
θ(p+

0 )
2p+

0

d3p1

(2π)3
θ(p+

1 )
2p+

1

d3p2

(2π)3
θ(p+

2 )
2p+

2

∑
q0q̄1g2 F. states

∣∣∣MNLO
γ∗→qq̄g singlet

∣∣∣2 , (5.29)

where the scattering amplitude is defined with the relation:〈
(g2q̄1q0)H

∣∣∣ (ŜE − 1
) ∣∣∣γ∗

λ(q+,q;Q2)H

〉
= (2q+)2πδ(p+

0 + p+
1 + p+

2 − q+)iMNLO
γ∗→qq̄g, (5.30)

where H subscript refers to the Heisenberg picture dressed states [1]. The out-
going state is

⟨(g2q̄1q0)H | =
√
Zg

√
Zq

2 {
⟨0| a(p+

2 ,p2)d(p+
1 ,p1)b(p+

0 ,p0) + . . .
}

=
√
Zg

√
Zq

2
{∫

d2x0 d2x1 d2x2e
−ip0·x0e−ip1·x1e−ip2·x2

× ⟨0| ã(p+
2 ,x2)d̃(p+

1 ,x1)b̃(p+
0 ,x0) + . . .

}
, (5.31)

where the normalization is of the order ZgZ
2
q = 1 + O(αs), and the correction

is related to the self-energy loop corrections of the qq̄ final state, which do not
contribute to the tree-level qq̄g-contribution and thus can be dropped in what
follows. Using this, the expression (2.2) for the dressed photon wavefunction
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and the commutation (2.8)–(2.10) and eikonal scattering operator (2.15)–(2.14)
relations from Sec. 2.2 we find for the overlap

⟨0| a(p+
2 , ·)d(p+

1 , ·)b(p+
0 , ·)(ŜE − 1)b†(k′+

0 , ·)d†(k′+
1 , ·)a†(k′+

2 , ·) |0⟩
= (2p+

0 )(2π)(2p+
1 )(2π)(2p+

2 )(2π)δ(k′+
0 − p+

0 )δ(k′+
1 − p+

1 )δ(k′+
2 − p+

2 )
× δ(2)(x′

0 − x0)δ(2)(x′
1 − x1)δ(2)(x′

2 − x2)δh′
0,h0δh′

1,h1δλ′
2,λ2

×
[
UF (x′

0)β′
0α′

0
U †

F (x′
1)α′

1β′
1
UA(x′

2)b′a′δα0,β′
0
δα1,β′

1
δa,b′ − δα0,α′

0
δα1,α′

1
δa,a′

]
, (5.32)

where the shorthand is defined as b†(k′+
0 , ·) := b†(k′+

0 ,x′
0, h

′
0, α

′
0) in the ket-state

and b(p+
0 , ·) := b(p+

0 ,x0, h0, α0) in the bra-state. Analogously for the antiquark
operators with subscript 1. For the gluon they are a†(k′+

2 , ·) := a†(k′+
2 ,x′

2, λ
′
2, a

′
0)

and a(p+
2 , ·) := a(p+

2 ,x2, λ2, a0). With this we find for the scattering amplitude
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2

(2π)2k′+
2
e−i(p0·x0+p1·x1+p2·x2)

× (2q+)2πδ(k′+
0 + k′+

1 + k′+
2 − q+)ei q

q+ ·(k′+
0 x′

0+k′+
1 x′

1+k′+
2 x′

2)
ta2
α0α1ψ̃γ∗

λ
→q0q̄1g2

× ⟨0| a(p+
2 , ·)d(p+

1 , ·)b(p+
0 , ·)(ŜE − 1)b†(k′+

0 , ·)d†(k′+
1 , ·)a†(k′+

2 , ·) |0⟩

=(2q+)2πδ(p+
0 + p+

1 + p+
2 − q+)

∫
d2x0

∫
d2x1

∫
d2x2

e−i(p0·x0+p1·x1+p2·x2)e
i q

q+ ·(p+
0 x0+p+

1 x1+p+
2 x2)

× ψ̃γ∗
λ

→q0q̄1g2

[
UF (x0)α0α′

0
ta

′

α′
0α′

1
U †

F (x1)α′
1α1UA(x2)aa′ − taα0α1

]
, (5.33)

The diffractive system must be in a color-singlet state, which is enforced with
a color projection operator:

P singlet
qq̄g :=

(
ta

′
)

α′
1α′

0

(
ta
)

α0α1

d(F )CF

, (5.34)

where d(F ) ≡ Nc. The singlet projection acts on the color factor seen above as

(ta)α1α0

(
tb
)

β0β1

d(F )CF

[
UF (x0)α0α′

0
ta

′

α′
0α′

1
U †

F (x1)α′
1α1UA(x2)aa′ − taα0α1

]
=
(
tb
)

β0β1

[ 1
NcCF

tr
[
UF (x0)ta

′
U †

F (x1)ta
]
UA(x2)aa′ − 1

]
=
(
tb
)

β0β1

[
S

(3)
012 − 1

]
, (5.35)
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where the tripole scattering amplitude is defined

S
(3)
012 := 1

NcCF

tr
(
taUF (x0)ta

′
U †

F (x1)
)
UA(x2)aa′ . (5.36)

Thus the squared amplitude of the qq̄g singlet production is∑
q0q̄1g2 F. states

∣∣∣Mtree
γ∗→qq̄g singlet

∣∣∣2
= NcCF

∫
d2x0

∫
d2x1

∫
d2x2

∫
d2x0

∫
d2x1

∫
d2x2

× e
ix0 0(p0−

p+
0

q+ q)
e

ix1 1(p1−
p+

1
q+ q)

e
ix2 2(p2−

p+
2

q+ q)

×
∑

h0,h1,λ2

(
ψ̃γ∗

λ
→q0q̄1g2

)† (
ψ̃γ∗

λ
→q0q̄1g2

) [
1 − S

(3)†
0 1 2

] [
1 − S

(3)
012

]
, (5.37)

where we used
((
tb
)

β0β1

)† (
tb
)

β0β1
= tr

(
tbtb

)
= NcCF, and the imaginary part of

M was chosen to have a positive sign, i.e. −(S − 1) = (1 − S).
In order to specify the invariant mass MX of the diffractive system and the

invariant momentum transfer t in the scattering, it will be convenient to define
a change of variables to the final state transverse momenta:

Pi := pi − ziq. (5.38)

Defining M2
X := (p0 + p1 + p2)2 and ∆ := p0 + p1 + p2 − q, the shifted momenta

satisfy the relations

∆ = P0 + P1 + P2, (5.39)

M2
X = P2

0
z0

+ P2
1
z1

+ P2
2
z2

− ∆2. (5.40)

Now we are able to write the cross sections for the qq̄g contribution to the
diffractive γ∗p scattering, where the gluon is emitted before the interaction:

dσdiff qq̄g
λ

dM2
X d|t|

=NcCF

(4π)2

∫ d2P0

(2π)2

∫ d2P1

(2π)2

∫ d2P2

(2π)2

∫ 1

0

dz0

z0

∫ 1

0

dz1

z1

∫ 1

0

dz2

z2

× δ(z0+z1+z2−1)δ(∆2−|t|)δ
(

P2
0
z0

+ P2
1
z1

+ P2
2
z2

−∆2−M2
X

)

×
∫

x0

∫
x1

∫
x2

∫
x0

∫
x1

∫
x2

(2π)6eix0 0P0eix1 1P1eix2 2P2

×
∑

h0,h1,λ2

(
ψ̃γ∗

λ
→q0q̄1g2

)† (
ψ̃γ∗

λ
→q0q̄1g2

) [
1 − S

(3)†
0 1 2

] [
1 − S

(3)
012

]
, (5.41)

where the shorthand
∫

x :=
∫ d2x

2π
was introduced. The last big missing pieces are

the squared wavefunctions.
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Diagram (a) Diagram (b)

Diagram (a′) Diagram (b′)

Figure 5.7: The tree-level gluon emission diagrams that contribute at NLO to the
γ∗ → qq̄g wavefunction (5.43). Diagram labels follow the convention of Ref. [2].

5.3.3 Squaring the wavefunctions

The qq̄g-contribution to the NLO DDIS cross sections we are after only gets a
contribution from the qq̄g Fock state of the virtual photon. This means that it
is relatively straightforward to derive this contribution from the virtual photon
light-front wavefunctions for the qq̄g splitting derived in Ref. [2]. In this section
the calculation of the DDIS impact factor that goes into the cross sections is
shown.

We begin by writing the D = 4 wavefunctions for the γ∗ → qq̄g splitting [2]
in the normalization scheme for the reduced wavefunctions (2.7) introduced in
Sec. 2.2. For the longitudinal photon the LFWF becomes

ψ̃Tree
γ∗

L→q0q̄1g2 = e ef g
i

(2π)2 ε
j∗
λ2 2Q K0(QX012)

√
z0

√
z1 δh1,−h0

×

z1

[
(2z0+z2)δjm − i(2h0) z2 ϵ

jm
] (xm

20
x2

20

)

− z0

[
(2z1+z2)δjm + i(2h0) z2 ϵ

jm
] (xm

21
x2

21

) , (5.42)
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and for the transverse photon:

ψ̃Tree
γ∗

λ
→q0q̄1g2 = e ef g

(2π)2 ε
i
λ ε

j∗
λ2

√
z0

√
z1 δh1,−h0

Q

X012
K1(QX012)

×

z1

[
(2z0+z2)δjm − i (2h0) z2 ϵ

jm
][

(2z1−1)δil − i (2h0) ϵil
]

xl
0+2;1

(
xm

20
x2

20

)

+ z0

[
(2z1+z2)δjm + i(2h0) z2 ϵ

jm
][

(2z0−1)δil + i (2h0) ϵil
]

xl
0;1+2

(
xm

21
x2

21

)

− z0z1z2

z0+z2

[
δij − i (2h0) ϵij

]
+ z0z1z2

z1+z2

[
δij + i (2h0) ϵij

] , (5.43)

where X012, x0+2;1 and x0;1+2 are defined

X2
012 := z0z1x2

01 + z0z2x2
02 + z1z2x2

12 (5.44)

x0+2;1 := − z0

z0 + z2
x20 + x21 = x01 + z2

z0 + z2
x20 (5.45)

x0;1+2 := −x20 + z1

z1 + z2
x21 = x01 − z2

z1 + z2
x21 . (5.46)

Following the convention of Ref. [2], in the discussion that follows the contribu-
tions of the four terms in the curly braces of Eq. (5.43) are denoted by (a), (b),
(a′) and (b′) — visualized in Fig. 5.7.

The DDIS cross sections (5.41) depend on the squares of the above wave-
functions summed over the quantum numbers of the quark, antiquark and gluon.
Specifically, the momentum fractions of the partons are conserved and therefore
the same in the direct and complex conjugate amplitude, but the transverse co-
ordinates of the particles are different: x0,x1,x2 in the direct amplitude, and
x0,x1,x2 in the c.c. amplitude, respectively for the quark, antiquark and gluon.
Squaring the longitudinal splitting wavefunction is a straightforward affair:

∑
h0,h1,λ2

(
ψ̃Tree

γ∗
L→q0q̄1g2

)∗
ψ̃Tree

γ∗
L→q0q̄1g2 =

e2e2
fg

2

(2π)4

∑
λ2

εj′

λ2ε
j∗
λ2

 4z0z1Q
2K0 (QX012) K0 (QX0 1 2)

∑
h0,h1

δh1,−h0

×

z1

[
(2z0+z2)δj′m′+ i(2h0)z2ϵ

j′m′
](xm′

2 0
x2

2 0

)
−z0

[
(2z1+z2)δj′m′− i(2h0)z2ϵ

j′m′
](xm′

2 1
x2

2 1

)
×

z1

[
(2z0+z2)δjm− i(2h0)z2ϵ

jm
](xm

20
x2

20

)
− z0

[
(2z1+z2)δjm + i(2h0)z2ϵ

jm
](xm

21
x2

21

)
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= 2
αemαse

2
f

π2 4z0z1Q
2K0 (QX012) K0 (QX0 1 2)

2z2
1

(
2z0(z0 + z2) + z2

2

) x2 0 · x20

x2
2 0x

2
20

− z0z1 (2z0(z1 + z2) + 2z1(z0 + z2))
(

x2 0 · x21

x2
2 0x

2
21

+ x20 · x2 1
x2

20x2
2 1

)

+ 2z2
0

(
2z1(z1 + z2) + z2

2

) x2 1 · x21

x2
2 1x

2
21


= 4

αemαse
2
f

π2 4z0z1Q
2K0 (QX012) K0 (QX0 1 2)


z2

1

 (2z0(z0 + z2) + z2
2

)(x20

x2
20

·
(

x2 0
x2

2 0
− 1

2
x2 1
x2

2 1

)
− 1

2
x2 0 · x21

x2
2 0x

2
21

)

+ z2
2
2

(
x2 0 · x21

x2
2 0x

2
21

+ x20 · x2 1
x2

20x2
2 1

)
+ z2

0

 (2z1(z1 + z2) + z2
2

)(x21

x2
21

·
(

x2 1
x2

2 1
− 1

2
x2 0
x2

2 0

)
− 1

2
x20 · x2 1
x2

20x2
2 1

)

+ z2
2
2

(
x2 0 · x21

x2
2 0x

2
21

+ x20 · x2 1
x2

20x2
2 1

). (5.47)

In the second equality — analogously to Ref. [2] — the result is rearranged to
be symmetric in the exchanges of the quark and antiquark: (z0,x0) ↔ (z1,x1)
and (z0,x0) ↔ (z1,x1). In the limit xi → xi, the first and second term match
the corresponding results in Eqs. (84) and (85) of the NLO DIS calculation [2].
However, the same simplifications as in Ref. [2] are not seen since the particle
coordinates are not the same in the direct and c.c. amplitude.

The calculation is more involved for the transversely polarized virtual photon.
To begin the discussion, let us write down the different terms to be considered
by referring to them by their respective diagrams (a), (b), (a′) and (b′) and
coordinates. Specifically, let (a) denote the contribution of the first term in the
complex conjugate of the wavefunction (5.43), which implies the usage of the
transverse coordinates xi of the complex conjugate. Thus the square consists of
the terms:(

ψ̃Tree
γ∗

λ
→q0q̄1g2

)∗
ψ̃Tree

γ∗
λ

→q0q̄1g2 = (a)(a) + (b)(b) + (a)(b) + (b)(a)
+ (a′)(a′) + (a′)(a) + (a)(a′) + (a′)(b) + (b)(a′)
+ (b′)(b′) + (b′)(a) + (a)(b′) + (b′)(b) + (b)(b′)
+ (a′)(b′) + (b′)(a′).
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The interference terms of the instantaneous contributions (a′)(b′) and (b′)(a′)
vanish exactly since both are proportional to δijδij − ϵijϵij ≡ 0, similarly as
happens in the case of NLO DIS [2]. Terms containing either instantaneous con-
tribution could have feasibly been read from the intermediate results of Ref. [2]
and then replacing xi → xi as would be appropriate. However this could not have
been done for the contributions of the regular emissions (a) and (b), where the
transverse structures interact non-trivially. Furthermore the squared contribu-
tions (a)(a), (b)(b) are not computed in D = 4 at all due to the UV regularization
that is required [2]. As stated previously, UV regularization is not necessary for
the real 3-parton contribution to DDIS in question here, since the invariant mass
constraint does it for us.

Beginning with the contributions of the regular emissions, we have for (a)2:

∑
T pol. λ,λ2

∑
h0,h1

(
ψ̃

(a)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a)
γ∗

λ
→q0q̄1g2 =

e2g2e2
f

(2π)4
z0z1Q

2

X012X0 1 2
K1(QX012)K1(QX0 1 2)

× z2
1

(4z0(z0 + z2) + 2z2
2)(2 − 4z1(1 − z1))

(
x0 + 2;1 · x0+2;1

) (x2 0 · x20)
x2

2 0x
2
20

− 4z2(2z0 + z2)(2z1 − 1)
(
x0 + 2;1 ∧ x0+2;1

) (x2 0 ∧ x20)
x2

2 0x
2
20

, (5.48)

and for (b)2:

∑
T pol. λ,λ2

∑
h0,h1

(
ψ̃

(b)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b)
γ∗

λ
→q0q̄1g2 =

e2g2e2
f

(2π)4
z0z1Q

2

X012X0 1 2
K1(QX012)K1(QX0 1 2)

× z2
0

(4z1(z1 + z2) + 2z2
2)(2 − 4z0(1 − z0))

(
x0;1 + 2 · x0;1+2

) (x2 1 · x21)
x2

2 1x
2
21

− 4z2(2z1 + z2)(2z0 − 1)
(
x0;1 + 2 ∧ x0;1+2

) (x2 1 ∧ x21)
x2

2 1x
2
21

, (5.49)

and for the interference of (a) and (b):

∑
T pol. λ,λ2

∑
h0,h1

{(
ψ̃

(a)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(b)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a)
γ∗

λ
→q0q̄1g2

}

=
e2g2e2

f

(2π)4
z0z1Q

2

X012X0 1 2
K1(QX012)K1(QX0 1 2)

×

− z0z1 [2z1(z0 + z2) + 2z0(z1 + z2)] [2z0(z0 + z2) + 2z1(z1 + z2)]
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×
[(

x0 + 2;1 · x0;1+2
) (x2 0 · x21)

x2
2 0x

2
21

+
(
x0;1 + 2 · x0+2;1

) (x2 1 · x20)
x2

2 1x
2
20

]
+4z0z1z2(z0 −z1)2

×
[(

x0 + 2;1∧x0;1+2
)(x2 0∧x21)

x2
2 0x

2
21

+
(
x0;1 + 2∧x0+2;1

)(x2 1∧x20)
x2

2 1x
2
20

]. (5.50)

Next, the contributions involving instantaneous diagram (a′) are

∑
T pol. λ,λ2

∑
h0,h1

{(
ψ̃

(a′)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a′)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(a′)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a)
γ∗

λ
→q0q̄1g2

+
(
ψ̃

(a)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a′)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(a′)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(b)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a′)
γ∗

λ
→q0q̄1g2

}

=
e2g2e2

f

(2π)4
z0z1Q

2

X012X0 1 2
K1(QX012)K1(QX0 1 2)

4 z2
0z

2
1z

2
2

(z0 + z2)2

− 4 z
2
0z

3
1z2

z0 + z2

(
x0+2;1 · x20

x2
20

+
x0 + 2;1 · x2 0

x2
2 0

)

+ 4z
2
0z1(z1 + z2)2z2

z0 + z2

(
x0;1+2 · x21

x2
21

+
x0;1 + 2 · x2 1

x2
2 1

). (5.51)

The contributions involving (b′) are

∑
T pol. λ,λ2

∑
h0,h1

{(
ψ̃

(b′)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b′)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(b′)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(a)
γ∗

λ
→q0q̄1g2

+
(
ψ̃

(a)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b′)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(b′)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b)
γ∗

λ
→q0q̄1g2 +

(
ψ̃

(b)
γ∗

λ
→q0q̄1g2

)∗
ψ̃

(b′)
γ∗

λ
→q0q̄1g2

}

=
e2g2e2

f

(2π)4
z0z1Q

2

X012X0 1 2
K1(QX012)K1(QX0 1 2)

4 z2
0z

2
1z

2
2

(z1 + z2)2

− 4z0z
2
1(z0 + z2)2z2

z1 + z2

(
x0+2;1 · x20

x2
20

+
x0 + 2;1 · x2 0

x2
2 0

)

+ 4 z
3
0z

2
1z2

z1 + z2

(
x0;1+2 · x21

x2
21

+
x0;1 + 2 · x2 1

x2
2 1

). (5.52)

In the above expressions, the exterior products are defined as

x ∧ y := ϵijxiyj. (5.53)

The products of two exterior products can be simplified with the identity6 for
6The determinant form can be used as a mnemonic since in that case the indices have a

row-column pattern. The identity generalizes to higher dimensions.
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the product of two Levi-Civita symbols:

ϵijϵmn =
∣∣∣∣∣δim δin

δjm δjn

∣∣∣∣∣ = δimδjn − δinδjm. (5.54)

Collecting the results, the squared splitting function for the transverse photon
becomes

1
2

∑
T pol. λ,λ2

∑
h0,h1

(
ψ̃Tree

γ∗
λ

→q0q̄1g2

)∗
ψ̃Tree

γ∗
λ

→q0q̄1g2

= 1
2
αemαse

2
f

π2 z0z1
Q2

X012X0 1 2
K1 (QX012) K1 (QX0 1 2)

× 4
{
Υ(|a|2)

reg. + Υ(|b|2)
reg. + Υ(a′)

inst. + Υ(b′)
inst. + Υ(ab)

interf.

}
, (5.55)

where

Υ(|a|2)
reg. =z2

1

(2z0(z0 + z2) + z2
2)(1 − 2z1(1 − z1))

(
x0 + 2;1 · x0+2;1

) (x2 0 · x20)
x2

2 0x
2
20

− z2(2z0 + z2)(2z1 − 1)
(
x0 + 2;1 ∧ x0+2;1

) (x2 0 ∧ x20)
x2

2 0x
2
20

 (5.56)

Υ(|b|2)
reg. =z2

0

(2z1(z1 + z2) + z2
2)(1 − 2z0(1 − z0))

(
x0;1 + 2 · x0;1+2

) (x2 1 · x21)
x2

2 1x
2
21

− z2(2z1 + z2)(2z0 − 1)
(
x0;1 + 2 ∧ x0;1+2

) (x2 1 ∧ x21)
x2

2 1x
2
21

 (5.57)

Υ(a′)
inst. = z2

0z
2
1z

2
2

(z0 + z2)2 − z2
0z

3
1z2

z0 + z2

(
x0+2;1 · x20

x2
20

+
x0 + 2;1 · x2 0

x2
2 0

)

+ z2
0z1(z1 + z2)2z2

z0 + z2

(
x0;1+2 · x21

x2
21

+
x0;1 + 2 · x2 1

x2
2 1

)
(5.58)

Υ(b′)
inst. = z2

0z
2
1z

2
2

(z1 + z2)2 − z0z
2
1(z0 + z2)2z2

z1 + z2

(
x0+2;1 · x20

x2
20

+
x0 + 2;1 · x2 0

x2
2 0

)

+ z3
0z

2
1z2

z1 + z2

(
x0;1+2 · x21

x2
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x0;1 + 2 · x2 1
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2 1

)
(5.59)

Υ(ab)
interf. = − z0z1 [z1(z0 + z2) + z0(z1 + z2)] [z0(z0 + z2) + z1(z1 + z2)]

×
[(

x0 + 2;1 · x0;1+2
) (x2 0 · x21)

x2
2 0x

2
21

+
(
x0;1 + 2 · x0+2;1

) (x2 1 · x20)
x2

2 1x
2
20

]
+ z0z1z2(z0 − z1)2
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×
[(

x0 + 2;1∧x0;1+2
) (x2 0∧x21)

x2
2 0x

2
21

+
(
x0;1 + 2∧x0+2;1
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2 1x
2
20

]
. (5.60)

The wedge products in the interference contribution can be expanded as
(
x0 + 2;1 ∧ x0;1+2)

(x2 0∧x21)
x2

2 0x
2
21

+
(
x0;1 + 2∧x0+2;1

) (x2 1∧x20)
x2

2 1x
2
20

=
(

z0

z0 + z2
x2 0∧x20 + z1

z1 + z2
x2 1∧x21

)((x2 0∧x21)
x2

2 0x
2
21
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x2

2 1x
2
20

)

−
(

z0z1
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x2
2 0x

2
21

−
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z0z1
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x2
2 1x

2
20

(5.61)

0,1,2→0,1,2−−−−−−→ 2z2

(z0 + z2)(z1 + z2)
(x20∧x21)2

x2
20x2

21
, (5.62)

where the correct correspondence to Ref. [2] is seen in the DIS limit x0 →
x0,x1 → x1,x2 → x2.

5.3.4 The qq̄g diffractive structure functions at next-to-
leading order

Now we have the key pieces to write the qq̄g structure functions at NLO accuracy.
Let us first define an auxiliary integral to encapsulate the integrations over the
final state momenta:

IF.S.(MX , t) :=
∫ d2P0

(2π)2

∫ d2P1

(2π)2

∫ d2P2

(2π)2 e
ix0 0P0eix1 1P1eix2 2P2

× δ(∆2−|t|)δ
(

P2
0
z0

+ P2
1
z1

+ P2
2
z2

−∆2−M2
X

)
. (5.63)

With this and the squared wavefunctions (5.47), (5.55) we may write the NLO
cross section (5.41) into diffractive structure functions FD

L and FD
T (5.6):

F
D(4) NLO
L, qq̄g (xBj, Q
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∫
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∫
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∫
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∫
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
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for the longitudinal, and

F
D(4) NLO
T, qq̄g (xBj, Q

2,MX , t) = 2NcQ
2αsCF

∑
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dz0
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0
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∫
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X012X0 1 2
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×
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} [
1 − S

(3)†
0 1 2

] [
1 − S

(3)
012

]
(5.65)

for the transverse polarization, where the Υ terms are defined in Eqs. (5.56)–
(5.60). The dipole scattering amplitudes are understood to be evaluated at the
rapidity:

S
(3)
012 ≡

〈
S

(3)
012

〉
Y +

2
, (5.66)

Y +
2 = log

(
z2
x0Q

2

xBjQ2
0

)
(5.67)

analogously to NLO DIS [III, 2]. Both NLO accuracy qq̄g contributions (5.64),
(5.65) to the structure functions in the form presented here are new and previ-
ously unpublished. Contrasting to the previous results known in the literature,
FD

L, qq̄g has not been known in any approximation, and the FD
T, qq̄g calculated above

supersedes the large-Q2 limit approximation Eq. (5.11). Some analytical work
is left to be done in future work however: the final state integrals (5.63) need
to be performed, and ideally the transverse squared wavefunction (5.55) would
be symmetrized in the quark-antiquark exchange, as was done for NLO DIS in
Ref. [2]. Though we do note that the symmetrization of (5.64) is done and the
two terms in the curly braces could be combined using the symmetry of the
phase space, which would combine the terms into one and produce an overall
factor of two. Further work is also to see how the result Eq. (5.65) reduces to the
large-Q2 limit result Eq. (5.11), and how the adjoint dipole structure emerges.
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Chapter 6

Conclusions and outlook

The work presented in this thesis builds on a decade of next-to-leading order
Color Glass Condensate theory progress. It culminates in the state-of-the-art
accuracy theory calculation and data comparison of the deep inelastic scattering
cross sections from the CGC effective field theory. This paves the way towards
accurate understanding of gluon saturation in QCD, and high accuracy theory
calculations will be needed in the forthcoming precision small-x era to be kicked
off by the Electron-Ion Collider in early 2030s.

In Article [II], new light-front perturbation theory tools are developed to
facilitate the calculations of loop contributions which are present at next-to-
leading order and beyond in the perturbation theory. The developed formalism is
built on the four-dimensional helicity scheme of dimensional regularization, and
the resulting calculation rules should be automatable for computational analytic
calculation of observables at NLO accuracy and beyond. These tools are used
to calculate the next-to-leading order DIS cross sections in the CGC formalism,
which were verified to agree with the known results from the literature [1, 2].

The Articles [I] and [III] work towards the first numerical evaluation and
data comparison of the next-to-leading order DIS cross sections to HERA data.
First in Article [I] we show that at NLO the kinematics of the scattering are
intimately related to the factorization of the large soft gluon logarithm into
the Balitsky-Kovchegov renormalization group evolution. This brought the per-
turbative calculation of the cross sections under control and reasonable NLO
corrections were seen, which would make comparisons between theory and data
possible in the future.

Article [III] proceeds to combine the NLO DIS impact factors evaluated in
the first article with enhanced BK equations known in the literature, which
include in their prescriptions some of the most important beyond leading order
corrections to the BK equation. Together these yield the state-of-the-art theory
accuracy evaluation of the DIS cross sections calculated in the CGC formalism.
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We fit the initial shape of the dipole amplitudes using these NLO cross sections to
the combined HERA data and found excellent description of the data. We found
that the three different resummation approaches to the BK evolution described
the available data comparably, and that new data from future experiments might
be able to discern between the prescriptions. The determined dipole amplitudes
can be used to calculate predictions of other observables, the data are available
at [147]. As the first application, the dipole amplitudes have been used as
an ingredient to calculate exclusive production of longitudinally polarized heavy
vector mesons in next-to-leading order accuracy [119]. The results of Article [III]
are discussed in more detail in Sec. 4.2, and the theoretical uncertainties of the
results are discussed in Sec. 4.3.

Some new and unpublished results are presented in this thesis as well. We
derive a new form for the NLO DIS loop contribution in Sec. 3.3.3, which makes
it possible to evaluate the dipole amplitudes of the NLO contributions at the
same consistent rapidity scale, which was not possible previously as discussed
in [I, III]. While this distinction is a beyond NLO effect, it could be numerically
important for phenomenology.

In Sec. 4.3.1 we estimate the impact of the NLO BK evolution on the fits of
Article [III] by computing NLO BK evolved dipole amplitudes using the initial
conditions determined in [III]. These NLO BK evolved dipole amplitudes are
used to compute reduced cross sections which are compared to HERA data. The
enhanced BK equations are found to approximate the NLO BK equation rea-
sonably well in this simple data comparison, which is promising for the prospect
of a full NLO+NLL accuracy fit.

Lastly, we calculate analytically for the first time the tree-level NLO con-
tribution to the diffractive DIS structure functions for both longitudinally and
transversely polarized virtual photon in Sec. 5.3. However, final state emissions
of gluons were not included and some finalization work is left to be done, as
discussed in Sec. 5.3.1. This qq̄g contribution has previously been known only
for the transversely polarized photon and in leading log(Q2) accuracy valid at
large Q2 — this is discussed in Ch. 5. Once the full NLO accuracy diffractive
DIS cross sections become available, they will provide a key opportunity to study
saturation and test the universality of the dipole amplitude.

The CGC theory field is progressing with strides towards next-to-leading
order accuracy in multiple fronts. NLO accuracy calculations of scattering pro-
cesses are becoming available, with the longitudinal NLO DIS cross section for
massive quarks being available [121], and the calculation of the transverse case
is ongoing. Other processes are advancing to NLO as well: the single inclusive
hadron production [113, 114, 120, 148–156], exclusive light [157] and heavy vec-
tor meson production [119], dijets in pA collisions [158] and dijets in DIS [159,
160]. Improvements to the description of the scattering process off the color-field
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are being studied as well. The NLO BK equation has been derived in the target
momentum fraction prescription [52], the behavior of which will be important to
compare to the projectile momentum fraction picture equation [58]. Finite-Nc
corrections to the NLO BK equation have been calculated [59], and corrections
to the eikonal approximation are being calculated for the gluon and quark prop-
agators in next-to-eikonal accuracy [161–164]. The NLO DIS cross sections for
massive quarks will be of great interest from the perspective of this thesis, since
they will make possible to account for the contribution of the charm quark in
the HERA data, which will improve the accuracy of the analysis. Overall, the
general progress of the field towards NLO calculations of observables is bringing
about the era of precision saturation phenomenology.
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We study quantitatively the importance of the recently derived next-to-leading-order corrections to the
deep inelastic scattering structure functions at small x in the dipole formalism. We show that these
corrections can be significant and depend on the factorization scheme used to resum large logarithms of
energy into renormalization group evolution with the Balitsky-Kovchegov equation. This feature is similar
to what has recently been observed for single inclusive forward hadron production. Using a factorization
scheme consistent with the one recently proposed for the single inclusive cross section, we show that it is
possible to obtain meaningful results for the deep inelastic scattering cross sections.

DOI: 10.1103/PhysRevD.96.094017

I. INTRODUCTION

At high energy (or equivalently small values of the
longitudinal momentum fraction x), the gluon density in
hadrons can become nonperturbatively large; this is the
regime of gluon saturation. However, the evolution of this
gluon density as a function of the momentum fraction x can
still be computed using weak coupling techniques, leading
to the Balitsky-Kovchegov (BK) evolution equation [1,2].
Knowing the initial gluon density at a given x ¼ x0, one
can thus evolve it perturbatively to any x < x0. This initial
condition involves nonperturbative dynamics and needs to
be extracted from data, but the evolution equation then
gives a first principles prediction for smaller x.
The cleanest process to study the partonic structure of

hadrons is provided by deep inelastic scattering (DIS). At
small x, this process is most conveniently understood in the
dipole picture, where the scattering is factorized into a QED
splitting of the virtual photon into a quark-antiquark dipole
and the subsequent QCD interaction of this dipole with the
target. Here, the BK equation describes the dependence of
the dipole-target scattering amplitude on the collision
energy. Several groups have been able to obtain satisfactory
fits to HERA DIS data in the leading-order dipole picture,
using the BK equation with running coupling corrections
(see for example Refs. [3,4]). To advance the saturation
formalism to next-to-leading order (NLO), two key ingre-
dients are needed: the NLO BK equation and the process-
dependent NLO impact factors. In addition to many recent
methodological developments for these higher-order cal-
culations (see e.g. Refs. [5,6]), progress has been made in
both of these directions. The NLO corrections to the BK
equation have been computed in Ref. [7] and evaluated
numerically in Ref. [8], where it was shown that they can
lead to unphysical results. This problem has been sub-
sequently solved by resumming classes of large logarithms
[9–11], indeed leading to reasonable results [12].
Concerning impact factors, most of the recent work has

concentrated on the NLO corrections to single inclusive

forward hadron production. The impact factor for this
process has been known for some time [13,14], but the first
numerical implementation of these expressions showed that
they can make the cross section negative when the trans-
verse momentum of the produced hadron is of the order of a
few GeV [15]. Several works have been devoted to solving
this issue [16–20], and recently a new proposed formu-
lation of the NLO cross section [21] was shown to lead to
physical results [22], albeit with a remaining issue con-
cerning the best way to implement a running QCD coupling
constant.
Also, the impact factor for DIS in the dipole picture has

been studied in several papers [23–26]. However, the full
expressions in the mixed space representation (longitudinal
momentum, but transverse coordinate) that are most nat-
urally combined with BK evolution have only become
available more recently [27,28]. For a practical implemen-
tation of these results, it is essential to match the impact
factor calculation with the evolution equation in the correct
way, i.e. to factorize the leading high energy logarithms
into the high energy evolution. As we shall discuss below,
the situation here is very analogous to that of single
inclusive particle production.
The main purpose of this paper is twofold. We first want

to study the importance of the NLO corrections to have a
first estimate of the stability of the perturbative expansion
for this quantity. Second, we want to develop a good
factorization procedure for matching the renormalization
group evolution with the previous calculation of the impact
factor. Both of these are prerequisites for a description of
experimental data, which will be pursued in a continuation
of this work. Our focus in this paper is to demonstrate the
feasibility of the factorization scheme and study the general
characteristics of the NLO corrections to the cross sections.
A full NLO calculation will additionally require including
an NLO evolution equation. In this paper, we shall first, in
Sec. II, briefly present the NLO impact factor as calculated
in Refs. [27,28]. We shall then, in Sec. III, quantify the
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effects of the NLO corrections for the Q2- and xBj-
dependence of the transverse and longitudinal DIS cross
sections.

II. IMPACT FACTOR

In the dipole framework, the interaction of a virtual
photon with the proton in DIS is factorized as the scattering
of a quark-antiquark dipole with the proton. At leading
order, the expressions for the cross sections of transversally
or longitudinally polarized virtual photons σL;T read

σLOL;TðxBj; Q2Þ ¼ 4Ncαem
X
f

e2f

Z
1

0

dz1

×
Z
x0;x1

KLO
L;Tðz1;x0;x1; xBjÞ; ð1Þ

with the shorthand
R
x0

¼ R d2x0
2π . The integrands are given

by the squares of the light cone wave functions for the
γ� → qq̄ splitting and the scattering amplitudes for the qq̄
dipole to scatter off the target

KLO
L ðz1;x0;x1; XÞ ¼ 4Q2z21ð1 − z1Þ2

× K2
0ðQX2Þð1 − S01ðXÞÞ; ð2Þ

KLO
T ðz1;x0;x1; XÞ ¼ Q2z1ð1 − z1Þðz21 þ ð1 − z1Þ2Þ

× K2
1ðQX2Þð1 − S01ðXÞÞ; ð3Þ

for the longitudinal (L) and transverse (T) polarized virtual
photons respectively. Here, the argument of the Bessel
functions, related to the lifetime of the qq̄-fluctuation, is
X2
2 ¼ z1ð1 − z1Þx2

01. The scattering amplitude of the dipole
is given, in the Color Glass Condensate picture, by the two
point function of a correlator of Wilson lines, namely

S01ðXÞ≡ Sðx01 ¼ x0 − x1; XÞ

¼
�

1

Nc
TrUðx0ÞU†ðx1Þ

�
X
; ð4Þ

where we denote by X the momentum fraction (corre-
sponding to the evolution variable in the BK equation
y ¼ ln 1=X) at which the Wilson line correlator is to be
evaluated.
The NLO corrections to these expressions have been

computed in Refs. [27,28]. They involve two kinds of
terms: the one loop corrections to the qq̄-state and a
new qq̄g-component in the γ� Fock state. Following the
general idea exposed in Ref. [21] for single inclusive
hadron production, we write the (unsubtracted) NLO cross
sections as

σNLOL;T ¼ σð0ÞL;T þ σqgL;T þ σdipL;T: ð5Þ

In this expression, the first term corresponds to the lowest-
order contribution with an unevolved target (i.e. evaluated
at the rapidity X ¼ x0). The terms proportional to αs have
been organized into two parts. First, the gluon contribution
σqgL;T includes all the real contributions (with a gluon
emitted into the final state) and a subset of the virtual
corrections that need to be combined with the real correc-
tions to cancel any ultraviolet or collinear divergences. The
dipole contribution σdipL;T contains the rest of the virtual
corrections. The separation between these two terms is not
unique, but the sum of the two is fully determined by the
NLO calculation. The expressions for these terms can be
written as

σqgL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1−z1 dz2

z2

×
Z
x0;x1;x2

KNLO
L;T ðz1; z2;x0;x1;x2; Xðz2ÞÞ; ð6Þ

σdipL;T ¼ 4Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

×
Z
x0;x1

KLO
L;Tðz1;x0;x1; XdipÞ

×

�
1

2
ln2

�
z1

1 − z1

�
−
π2

6
þ 5

2

�
; ð7Þ

with

KNLO
L ðz1; z2;x0;x1;x2; XÞ ¼ 4Q2z21ð1 − z1Þ2

×

�
P

�
z2

1 − z1

�
x20

x2
20

·

�
x20

x2
20

−
x21

x2
21

�

× ½K2
0ðQX3Þð1 − S012ðXÞÞ − ðx2 → x0Þ�

þ
�

z2
1 − z1

�
2 x20 · x21

x2
20x

2
21

K2
0ðQX3Þð1 − S012ðXÞÞ

	
; ð8Þ

KNLO
T ðz1;z2;x0;x1;x2;XÞ¼Q2z1ð1− z1Þ

×

�
P

�
z2

1− z1

�
ðz21þð1−z1Þ2Þ

x20

x2
20

·

�
x20

x2
20

−
x21

x2
21

�
½K2

1ðQX3Þð1−S012ðXÞÞ− ðx2 →x0Þ�

þ
�

z2
1−z1

�
2
�
ðz21þð1− z1Þ2Þ

x20 ·x21

x2
20x

2
21

þ2z0z1
x20 ·x21

x2
20X

2
3

−
z0ðz1þ z2Þ

X2
3

�
K2

1ðQX3Þð1−S012ðXÞÞ
	
:

ð9Þ
Here, the longitudinal momentum fractions of the quark,

antiquark, and gluon are denoted as z0, z1, z2 with
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z0 þ z1 þ z2 ¼ 1. The argument of the Bessel functions,
related to the lifetime of the qq̄g-fluctuation, is X2

3 ¼
z0z1x2

01 þ z0z2x2
20 þ z2z1x2

21, PðzÞ ¼ 1þ ð1 − zÞ2, and
the Wilson line operator corresponding to the scattering
of the qq̄g-state is

S012ðXÞ ¼
Nc

2CF

�
S02ðXÞS21ðXÞ −

1

Nc
2
S01ðXÞ

�
: ð10Þ

It is important to note that, because the functions
KNLO

L;T ðz1; z2;x0;x1;x2; XÞ approach a nonzero value when
z2 → 0 at fixed X, the integral over z2 in σqgL;T produces a
large logarithm which should be resummed in the BK
evolution of the target. We will do this using the same
procedure introduced in Refs. [9,21] and demonstrated in
Ref. [22] for the case of single inclusive particle production
in forward proton-nucleus collisions. Note that, similarly to
the “CF-term” in the case of the single inclusive cross
section, the “dipole” term does not generate such a large
logarithmic contribution and therefore does not contribute
to the BK evolution.
The starting point of the BK-factorization procedure is to

identify the first term in Eq. (5) as the initial condition for
the BK evolution with the longitudinal momentum fraction
x0 ∼ 0.01, i.e.

σICL;T ¼ 4Ncαem
X
f

e2f

Z
1

0

dz1

Z
x0;x1

KLO
L;Tðz1;x0;x1; x0Þ:

ð11Þ

As discussed in great detail in Refs. [9,21], the essential
feature required for a stable perturbative expansion is that
the dipole correlators in σqgL;T must be evaluated at a rapidity
scale that depends on the longitudinal momentum of the
emitted gluon, i.e. z2. Here, there are several different
possibilities, which are all equivalent at the leading
logarithmic level. At NLO accuracy, the different schemes
lead to different expressions which are in principle equiv-
alent, but more naturally lend themselves to different
approximations.
The choice advocated in Ref. [9] is to consistently use the

probe longitudinal momentum kþ as the evolution variable,
sometimes referred to as “probe evolution.” In this case, the
evolution rapidity is by definition y ¼ ln 1=z2 þ y0 with
some constanty0 used tomake y ¼ 0 correspond to the initial
condition for the evolution. To determine the lower integra-
tion limit for z2 in this scheme, we have to compare the
longitudinal momentum of the emitted soft gluon z2qþ to
momentum scales in the target. The typical target hadronic
momentum scale is given by Pþ ¼ Q2

0=ð2P−Þ, where Q0 is
some hadronic low transverse momentum scale and the total
target light cone energy P− is obtained from the total center-
of-mass energy of the γ�-target system by W2 ¼ 2qþP−.
For the eikonal approximation to be valid, we require that the

probe gluon momentum is larger than the target momentum
scale by a large factor 1=x0, i.e. z2qþ > ð1=x0ÞPþ. This
translates, using xBj ≈Q2=W2, into an integration limit,
z2 > ðxBj=x0ÞðQ2

0=Q
2Þ. If now the soft gluon has a trans-

verse momentum k⊥, the light cone energy required from the
target to put the qq̄g-state on shell is Δk− ≳ k2⊥=ð2z2qþÞ.
The limit on z2 means that we allow the γ� system to take a
fraction Δk−=P− ≲ x0ðk2⊥=Q2

0Þ of the target light cone
energy. If the typical gluon k⊥ is at the hadronic scale Q0,
this is indeed the limitΔk−=P− < x0 that wewould want for
the fraction of the target light cone energy. However, the
contribution from k2⊥ ∼Q2 ≫ Q2

0 goes to larger values of the
target momentum fraction Δk−=P− than we would want.
This can generally be expected to be a problem that must be
corrected by imposing an additional “kinematical constraint”
on the evolution equation [9,29] and on the impact factor
[17,19,20].
The other option to probe evolution is to take the view

that the evolution variable should always be the target
momentum fraction, i.e. the fraction of the target light cone
energy X ¼ Δk−=P−. Keeping this momentum fraction
small, X < x0, removes the need for an additional kin-
ematical constraint, significantly simplifying the evolution
equation. On the other hand, using Δk−=P− as the
evolution variable adds the significant complication that
this momentum fraction depends on the transverse momen-
tum of the gluon, Xðz2Þ ≈ k2⊥=ðz2W2Þ, and when z2 is not
very small also on the momenta of the quark and antiquark.
This makes it difficult to implement a light cone energy
factorization scale or evolution variable exactly.
Parametrically, the transverse momentum k⊥ can range
from a hadronic scale Q0 to the hard scale Q. If one
estimates the typical target momentum fraction Δk−
assuming that the typical gluon transverse momentum is
at the hadronic scale k2⊥ ∼Q2

0, one recovers the same limit
z2 > ðxBj=x0ÞðQ2

0=Q
2Þ as argued from using kþ as the

factorization variable. In contrast, the argument used in the
recent work on single inclusive particle production in
proton-nucleus collisions [21,22] was that, at least in that
case, the typical transverse momentum of the gluon in the
impact factor is in fact the hard scale of the process k⊥ ∼Q.
Assuming that this is the case also for DIS means that one
should restrict the integrals to a smaller phase space
z2 > ðxBj=x0Þ. The latter is the limit that we will use in
this work. In terms of the kþ-momentum, this limit
corresponds to the emitted gluon having longitudinal
momentum z2qþ ≳ ðQ2=Q2

0Þð1=x0ÞPþ instead of the
z2qþ > ð1=x0ÞPþ that one would use in the factorization
scheme with kþ. This approximation leads to a rather
simple formulation for the cross section. Improving the
accuracy would require including the additional phase
space ðxBj=x0ÞðQ2

0=Q
2Þ < z2 < ðxBj=x0Þ in the cross sec-

tion on one hand but cutting out the large logarithmic
increase from this region by using a kinematical constraint
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in the evolution equation, as advocated e.g. in
Refs. [9,27,28]. Due to the considerably increased com-
plication of this formulation, we will defer studying this
alternative to future work.
To summarize, in this paper, we will follow the choice

made for single inclusive particle production in proton-
nucleus collisions in Refs. [21,22] and choose the target
momentum fraction as the evolution variable, supple-
mented with the assumption that all transverse momenta
are of the order Q. Thus, we take Xðz2Þ ¼ xBj=z2 and set
the kinematical limit by requiring Xðz2Þ < x0, i.e.
z2 > xBj=x0. Implementing this limit, we can now com-
plete the “unsubtracted” form of the cross section (5) with
the lower integration limit in z2 as

σNLOL;T ¼ σICL;T þ σqg;unsubL;T þ σdipL;T; ð12Þ
with

σqg;unsubL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1−z1

xBj=x0

dz2
z2

×
Z
x0;x1;x2

KNLO
L;T ðz1; z2;x0;x1;x2; Xðz2ÞÞ: ð13Þ

We then note that taking z2 ¼ 0 as the explicit z2-argument
in KNLO

L;T [but not in the implicit dependence through Xðz2Þ]
leads to an integral version of the BK equation. Using this,
we can also rewrite Eq. (12) in a form that involves the
leading-order cross sections with BK-evolved dipole oper-
ators evaluated at the scale xBj instead of x0. The result is a
strictly equivalent “subtracted” form of the cross section

σNLOL;T ¼ σLOL;T þ σqg;subL;T þ σdipL;T; ð14Þ

where σLOL;T is the well-known leading-order expression (1)
and

σqg;subL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1

xBj=x0

dz2
z2

×
Z
x0;x1;x2

½θð1 − z1 − z2Þ

×KNLO
L;T ðz1; z2;x0;x1;x2; Xðz2ÞÞ

−KNLO
L;T ðz1; 0;x0;x1;x2; Xðz2ÞÞ�: ð15Þ

Contrary to σqgL;T , the dipole term σdipL;T is not associated
with the rapidity evolution of the target, and thus the
rapidity scale of the dipole operators in this term is left
unspecified. As presented in Refs. [27,28], this term is
already integrated over z2. Therefore, it is not possible to
evaluate the dipole operators in this term at the same scale
Xðz2Þ ¼ xBj=z2 as in σqgL;T , which would arguably be the
most natural thing to do. Here, we will evaluate this term at
Xdip ¼ xBj since the integrand vanishes when z2 → 0, and

therefore one can expect the integral to be dominated by the
region where z2 is close to 1. Note, however, that the
difference between X ¼ xBj=z2 and X ¼ xBj, while for-
mally subleading for the dipole term, could be numerically
important, as is the case for the analogous CF-terms in
single inclusive particle production [22].
To obtain the previous expressions, we followed closely

the original idea of Ref. [21], which was shown in Ref. [22]
to lead to reasonable numerical results for single inclusive
particle production at all transverse momenta. Bear in
mind that the two expressions in Eqs. (12) and (14) are
completely equivalent and are related through the BK
evolution equation. In the following, it will also be
interesting to compare the results obtained in this formu-
lation with what we denote here as the “xBj-subtraction”
scheme, which is expressed as

σ
NLO;xBj−sub
L;T ¼ σLOL;T þ σqg;sub

�
L;T þ σdipL;T; ð16Þ

where σqg;sub
�

L;T is an approximation of Eq. (15) by using
Xðz2Þ ¼ xBj and taking the limit xBj=x0 → 0 in the lower
limit of the integral over z2. This is the analog of what was
denoted in Refs. [20,22] as the “CXY” subtraction scheme
after the authors of [13,14] for the case of single inclusive
particle production, which is formally equivalent at this
order of perturbation theory, but leads to problematic
results for high momentum scales.

III. NUMERICAL RESULTS

Since we do not consider a possible impact parameter
dependence of the dipole correlators, one of the coordinate
integrals in the expressions shown in the previous section is
trivial and leads to a factor corresponding to the target
transverse area, denoted as σ0=2. This quantity is usually
determined by a fit to data, such as in Refs. [3,4].
Performing such a fit goes well beyond the scope of the
present work; therefore, for simplicity, we leave out this
overall normalization factor and present results for FL;T=

σ0
2
,

where the structure functions FL;T are defined as

FL;TðxBj; Q2Þ ¼ Q2

4π2αem
σL;TðxBj; Q2Þ: ð17Þ

We first focus on the fixed coupling case, using αs ¼ 0.2
both when evaluating the NLO cross section and when
solving the leading-order Balitsky-Kovchegov equation.
Note that for the factorization scheme to be consistent both
the cross section calculation and the BK equation need to
have the same coupling constant. For the BK equation, we
use a McLerran-Venugopalan initial condition [30]

Sðr; x0Þ ¼ exp

�
−
r2Q2

s;0

4
ln

�
1

jrjΛQCD
þ e

��
; ð18Þ

where we take Q2
s;0 ¼ 0.2 GeV2 and ΛQCD ¼ 0.241 GeV.
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In Fig. 1, we show the importance of the NLO correc-
tions σdip and σqg to FL and FT as a function of Q2 at
xBj ¼ 10−3. In both the longitudinal and transverse cases,
the sign of these corrections is the same: the dipole
contribution is positive, which can be understood from
Eq. (7), while the qg contribution is negative. Because the
second correction is larger in magnitude than the first one,
the total NLO cross section is smaller than the leading-
order (LO) one.
In Fig. 2, we show how these results change if we use the

approximate xBj-subtraction in Eq. (16) for the qg-term.
This term is still negative and has a larger magnitude,
especially at large Q, which makes the whole NLO cross
section negative for Q2 ≳ 10 GeV2, both in the longi-
tudinal and transverse cases. Therefore, approximating
Eq. (14) by Eq. (16), while in principle justified in a weak
coupling sense, has in fact a large effect in this region and
can lead to unphysical results. A similar behavior was

observed in single inclusive particle production at large
transverse momenta [22]. This shows that to get meaningful
results one should really use the factorization procedure in
Eq. (12) or equivalently Eq. (14), which we will do for the
rest of this paper.
We also show in Figs. 3 and 4 the xBj-dependence of the

different NLO contributions to FL and FT for fixedQ2 ¼ 1

and 50 GeV2. These plots show a change of behavior: at
small xBj, the NLO cross section is smaller than the LO
one, while it becomes larger when xBj approaches x0. The
reason is the following: as explained previously, the dipole
NLO correction is always positive. In addition, as can be
seen from Eq. (13), the qg-part is 0 at xBj ¼ x0 since the
z2-integration range vanishes. Therefore, the NLO cross
section is the sum of the leading-order one and a positive
correction, i.e. always larger than the leading-order one.
This is related to the reason why, as explained in the
previous section, we would prefer to use an expression of

FIG. 2. LO and NLO contributions to FL (left) and FT (right) as a function of Q2 at xBj ¼ 10−3 with αs ¼ 0.2 and using the xBj-
subtraction procedure.

FIG. 1. LO and NLO contributions to FL (left) and FT (right) as a function of Q2 at xBj ¼ 10−3 with αs ¼ 0.2.
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the dipole part which has an explicit integration over z2.
This would allow one to use, also in the dipole term, Wilson
line operators at a rapidity scale which depends on the
gluon momentum fraction, i.e. the invariant mass of the
qq̄g-state, in a way that is more consistent with the qg-part.
The expressions we currently use restrict the kinematics to
the regime of validity of the dipole picture X < x0 for the
qg-part but not for the dipole part. This leads to a sign
change of the total NLO contribution as a function of xBj
near x0.
While the running of the strong coupling αs is in

principle a subleading effect in a leading-order calculation,
this effect has to be taken into account at next-to-leading
order. To evaluate its importance here, we use the simple
parent dipole prescription in which the coupling is given by

αsðx2
01Þ ¼

4π

β0 ln



4C2

x2
01
Λ2
QCD

� ; ð19Þ

with β0 ¼ ð11Nc − 2nfÞ=3. The scaling parameter C2 is
taken to be C2 ¼ e−2γe , as suggested in Refs. [31,32], and
the coupling is frozen at the value 0.7 at large dipole sizes.
When fitting the initial condition of the BK equation to data
at leading order (see e.g. Refs. [3,4]), one usually uses
instead the Balitsky prescription [33] for the running
coupling and additionally takes C2 as a fit parameter in
order to obtain a slow enough evolution. However, in
principle, the choice of the running coupling prescription is
a higher-order effect, and thus the parent dipole prescrip-
tion is equally well justified in a weak coupling sense. Also,
on the phenomenological level, it has been shown [8,10–
12] that the NLO corrections to the BK kernel slow down
the evolution, and thus it is not a priori obvious which
prescription will yield a good description of experimental
data at the NLO level.
As stated before, our purpose here is not to achieve a fit

to DIS data but to quantify the effect of the NLO
corrections to the impact factor compared to previous

FIG. 4. LO and NLO contributions to FT as a function of xBj at Q2 ¼ 1 GeV2 (left) and Q2 ¼ 50 GeV2 (right) with αs ¼ 0.2.

FIG. 3. LO and NLO contributions to FL as a function of xBj at Q2 ¼ 1 GeV2 (left) and Q2 ¼ 50 GeV2 (right) with αs ¼ 0.2.
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LO calculations. Therefore, we show, in the left panel of
Fig. 5, the NLO/LO ratio for FL and FT as a function ofQ2

at xBj ¼ 10−3 with fixed and running coupling. In the right
panel, we show the same ratio as a function of xBj at
Q2 ¼ 1 and 50 GeV2 with running coupling. We see that
for fixed coupling the net effect of the NLO corrections is to
decrease the cross section. However, especially for a
running coupling, this feature is reversed close to the
initial rapidity scale xBj ≈ x0. As discussed above, this is
related to the fact that the negative NLO corrections related
to BK evolution vanish in this limit while the positive ones
in the dipole term do not, indicating a strong dependence on
the details of the factorization scheme. While this is a
transient effect that does not alter the asymptotic high
energy behavior, treating it carefully will be important for
an attempt to describe experimental data.

IV. OUTLOOK

In conclusion, we have in this paper evaluated, for the first
time, the total DIS cross section in the dipole picture with an
impact factor derived at NLO accuracy. We developed a
factorization procedure to resum the leading high energy
logarithms into a BK renormalization group evolution of the
target, in line with recent developments for single inclusive

cross sections. We showed that this procedure leads to
physical, well-behaved expressions for the cross sections
with, however, large transient effects in the region close to the
limit of validity of the eikonal approximation. With the
caveat of understanding these transient effects, there is a good
perspective for a comparisonwith experimental data. In order
to achieve this at consistentNLOaccuracy, the impact factors
studied here must be combined with a solution of the NLO
BK equation [12] or at least a collinearly resummed version
of the LO equation [10,11]. A major missing theoretical
ingredient that is needed for amore detailed comparisonwith
data is to work out the corresponding impact factor for
massive quarks. This should in principle be a straightfor-
ward, if laborious, extension of the existing calculation for
massless quarks.
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We develop methods to perform loop calculations in light cone

perturbation theory using a helicity basis, refining the method

introduced in our earlier work. In particular this includes imple-

menting a consistent way to contract the four-dimensional tensor

structures from the helicity vectors with d-dimensional tensors

arising from loop integrals, in a way that can be fully automa-

tized. We demonstrate this explicitly by calculating the one-loop

correction to the virtual photon to quark–antiquark dipole light

cone wave function. This allows us to calculate the deep inelastic

scattering cross section in the dipole formalism to next-to-leading

order accuracy. Our results, obtained using the four dimensional

helicity scheme, agree with the recent calculation by Beuf using

conventional dimensional regularization, confirming the regular-

ization scheme independence of this cross section.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Light cone perturbation theory (LCPT), the Hamiltonian formulation of field theory on the light

front [1–4] is a widely used calculational tool in particle and hadronic physics. Its added calculational

complexity compared to covariant perturbation theory is balanced by several advantages in the

description of bound states or other multiparton systems. The light cone wave functions (LCWF’s)

and operators have a simpler behavior under transverse Lorentz boosts than covariant ones. The

perturbative expansion is organized in terms of a Fock state expansions involving only physical
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degrees of freedom with definite helicities. This gives a natural physical interpretation for the
factorization of scattering processes into the properties of the incoming and outgoing hadronic states
on one hand, and the short distance partonic scatterings between elementary constituents on the
other.

Modern hadronic and nuclear scattering experiments probe QCD with increasing accuracy in the
high energy or small-x regime. Here the large available phase space for gluon radiation enables the
generation of a dense system of gluons with nonperturbatively large gluon fields. One the other hand,
balancing the complication arising from the nonlinear dynamics of the gluons, the high collision
energy simplifies the treatment of the scattering by allowing an eikonal approximation for the
interactions of individual partons with the color field. Typically this situation is described using the
effective theory of QCD known as the Color Glass Condensate (CGC) [5]. In this picture, the scattering
of a dilute probe off the dense color field is factorized into the partonic structure of the ‘‘simple’’ probe
(virtual photon, or an individual quark or gluon in the case of forward rapidities in proton–nucleus
collisions), and the eikonal scattering of the partons of the probewith the target color field. This allows
for a treatment that includes nonlinear interactions in the dense target color field to all orders, while
the simple probe can be treated exactly. This picture is advantageous in particular for understanding
exclusive processes. Light cone perturbation theory is the method of choice for understanding the
structure of the probe.

In order to develop a more quantitative description of several scattering processes in the high
energy limit, CGC calculations have recently been advancing to next-to-leading order (NLO) accuracy
for several different processes. The NLO corrections to the small-x evolution equations (in particular
the Balitsky–Kovchegov (BK) equation [6–8]) have been derived and the required resummations
of collinear logarithms studied in several papers [9–19]. There have been several calculations of
single [20–25] and double [26] inclusive parton production at forward rapidity in high energy proton–
nucleus collisions. In the context of deep inelastic scattering, both inclusive [27–31] and exclusive
[32–34] processes have been studied at the NLO order.

Our present paper is a follow-up of our recent work [35], where we introduced the idea of
performing loop calculations in LCPT using a helicity basis for the elementary vertices. In this paperwe
will present a better formulation of the calculational scheme introduced in [35], correcting a partially
incorrect formulationused in that paper. As a demonstration,wewill calculate the one-loop correction
to the virtual photon to quark–antiquark dipole light cone wave function. We will then use this to
derive the NLO cross section for inclusive DIS in the dipole factorization picture. We perform the
calculation using the four-dimensional helicity (FDH) scheme, where polarization sums are calculated
in four dimensions, and ultraviolet divergences are regularized by performing momentum integrals
in d dimensions. Our results recover the ones obtained in [29,30] after a lengthy manual calculation,
in what we would argue to be a more systematical and economical way. Also, although intermediate
results are different in the FDH scheme used here and the conventional dimensional regularization
(CDR) used in [29,30], we see that these scheme dependent terms cancel in the final result. As a
separate small difference to the calculation in [29,30], we implement the cancellation between UV
divergences in the real and virtual corrections to the cross section by adding and subtracting a slightly
different subtraction term, leading to a numerically smoother expression for the cross section. We
verify both analytically and numerically that our results are equivalent to those in [29,30].

The rest of the paper is structured as follows. We will first discuss the technical aspects of the
calculation in Section 2, concentrating on the differences compared to our earlier work [35]. We then
recall how one calculates cross sections by combining eikonal interactions with a color field target
with light cone wave functions in Section 3. After briefly rederiving the leading order virtual photon
wave functions in Section 4 we calculate the corresponding one-loop corrections in Section 5. After
calculating also the real corrections, i.e. the wave functions for gluon emission from the dipole, in
Section 6 we combine our results into the NLO DIS cross section in Section 7, before concluding in
Section 8. Technical details of the calculation have been spelled out in the Appendices.

2. Higher order LCPT computations

Thepurpose of this paper is to develop anddemonstrate techniques for the perturbative calculation
of light cone wave functions. These are formed from interaction vertices, where spatial momentum
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(�p = (p+, p)) is conserved but light cone energy p− is not, and energy denominators which depend
on the energy differences between intermediate states. In loop diagrams, the spatial momentum
circulating in the loop must be integrated over. In these momentum integrals we encounter p+ → 0
divergences, p → 0 divergences and ultraviolet (UV) divergences (p → ∞). Combinations of the
first two divergences encode soft, collinear and spurious gauge divergences. All of these divergences
have very different physical interpretations, and it makes therefore sense to regularize them all by
different means. In particular we will regularize, if needed, the soft divergence with a cutoff, and
regulate the UV divergences by integrating over the transverse momenta in 2 − 2ε dimensions. The
basic normalizations, notations etc. are explained in much more detail in Ref. [35], and we will here
concentrate only on the differences with respect to the formulation used there. We first discuss the
different flavors of dimensional regularization in Section 2.1, and the required modifications to the
formulation of the elementary vertices compared to the explicitly 2-dimensional one used in [35]
in Section 2.2. We will then, as an explicit demonstration, calculate two helicity sums appearing in
the calculation of the NLO DIS impact factor in Section 2.3, and briefly write down the instantaneous
vertices needed in our calculation in Section 2.4.

2.1. Dimensional regularization schemes in gauge field theories

In the evaluation of loop and phase space momentum integrals one encounters divergences which
have to be properly regularized. In gauge field theories a satisfactory regulator has to respect gauge
invariance and unitarity which requires that one treats the momenta and helicities equally. For
practical computations, the only choice is a form of dimensional regularization.

For the discussion of different versions of dimensional regularization schemes it is useful to define
unobserved and observed particles. Unobserved particles are either virtual ones which circulate in
internal loops or particles which are external but soft or collinear with other external particles. All
the rest are observed particles. The common feature in all dimensional regularization schemes is the
continuation of the momenta of the unobserved particles into d �= 4. Once this is done, there is still
some freedom regarding the dimensionality of the momenta of the observed particles as well as the
treatment of polarization vectors (or helicities) of the unobserved and observed particles. Thus, one
can define a set of different versions of dimensional regularization schemes:

• The conventional dimensional regularization (CDR) scheme [36], in which both observed and
unobserved polarization vectors and momenta are continued to d dimension (i.e. all gluons
have d − 2 helicity states).

• The ’t Hooft–Veltman (HV) scheme [37], in which the unobserved particle momenta and
polarization vectors are continued to d dimensions (i.e. unobserved gluons have d − 2 helicity
states), but the momenta and polarization vectors of observed particles are kept in four
dimensions (i.e. observed gluons have 2 helicity states)

• Thedimensional reduction (DR) scheme [38], inwhich themomenta of unobservedparticles are
continued to d < 4 dimensions, but polarization vectors of unobserved and observed particles
are kept in four dimensions (i.e. all gluons have 2 helicity states).

• The four dimensional helicity (FDH) scheme [39,40], in which the momenta of unobserved
particles is continued to d > 4 dimensions, and all observed particles are kept in four
dimensions (i.e. observed gluons have 2 helicity states). All unobserved internal states are
treated as ds-dimensional, where ds > d in all intermediate steps. Any factor of dimension
arising from the numerator Lorentz and Dirac algebra should be labeled as ds, and should
be distinct from the dimension d. Once the spin and tensor algebra is done one analytically
continues the result to d < 4 and takes the limit ds → 4 for the spins of the internal particles.

Typically the dimensionality is parametrized as d = 4 − 2ε. We will also use the notation d⊥ ≡
d− 2 = 2− 2ε for the number of transverse dimensions in light cone coordinates. Within the DR and
FDH schemes one can still choose the momentum of observed particles to be either d-dimensional or
4-dimensional. At one-loop order, however, these choices lead to difference ofO(ε) and thus one can
set the observed particles momenta to be 4-dimensional.
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Fig. 1. Left: Gluon emission vertex from a quark V
α;β,a

h;h′,λ(q, z) Eq. (6), where α, β are quark colors, h, h′ the quark helicities before

and after the emission, a the gluon color and λ the gluon helicity. Right: Gluon absorption vertex into quark V
β,a;α
h′,λ;h(q, z) Eq. (8).

The question of which regularization scheme is most efficient for a given calculation is of course
very subjective. We would like to argue in this paper that for one-loop LCPT calculations the helicity
basis supplemented with the FDH regularization scheme is in fact the most efficient one. However,
as we will show below, the helicity basis approach can also be combined with other dimensional
regularization scheme choices, and in particular with the CDR scheme. Our overall motivation for
using the FDH scheme is the following. The one-loop results for physical observables arise from a
product of a one-loop tensorial loop integral and another tensor from the spin/helicity structure of the
vertices. The resulting contributions can be classified into three kinds of terms. The most divergent
part is obtained by taking the divergent 1/ε-term from the integral, and evaluating the helicity
structure in 4 spacetime dimensions. This part has no scheme dependence. The scheme dependent
finite part comes from taking a ∼ ε term from the helicity structure and multiplying it by the 1/ε-
term from the loop integral. The scheme independent finite part, on the other hand, involves the finite
part of the integral and a helicity structure which can, at one-loop accuracy, be evaluated in ds = 4
dimensions. Out of these three, the scheme independent finite part is by far the most complicated
one, because in many cases the tensorial structure in the finite part of the loop integral is much more
complicated than in the pole part. Thus being able to calculate the finite scheme independent part as
efficiently as possible is a priority.

Our strategy is to write the elementary vertices of the theory in a way which, in 4 dimensions,
has a very practical structure in terms of the helicities of the particles. These structures are, when
the helicities are evaluated in 4 dimensions, written in terms of Levi-Civita tensors in 2 transverse
dimensions. This leads to a very easy way to calculate the most complicated scheme independent
finite part. The price to pay, however, is that calculating the scheme dependent ε/ε-part becomes
more complicated, because to evaluate the helicity sums accurately up to order ε the Levi-Civita
structure cannot be used any more. In stead, one must carefully evaluate contractions involving both
ds-dimensional structures from the spin sums and d-dimensional ones from the loop integrals. Here,
however, one is dealing with the simpler tensorial structure of the 1/ε-part of the loop integral, and
this represents a relatively small part of the calculation.

2.2. Decomposition of quark vertices

Let us first consider the simplest light cone vertex shown in Fig. 1 (left), where a gluon with

momentum �k and helicity h is emitted from a quark with momentum �p and helicity h. For simplicity
of notation we denote the two quark spin states with spin ±1/2 by h = ±1, i.e. the actual helicity of
the quark is h/2. As discussed in [35], we denote this vertex1 as

V
α;β,a

h;h′,λ = −gtaβα

[
ūh′ (p′)ε/∗

λ(k)uh(p)

]
. (1)

Using the Dirac equation satisfied by the spinors, 3-momentum conservation �p = �p ′ + �k and some
Dirac algebra (see Appendix A for the details), the tensorial structure of matrix element in Eq. (1) can

1 Our sign convention for the covariant derivative is Dμ = ∂μ − igAμ , which is the opposite to that of Refs. [29,30].
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be decomposed to the symmetric and antisymmetric parts as

V
α;β,a

h;h′,λ(q, z) = −gtaβα

z(1 − z)p+

[(
1 − z

2

)
δijūh′ (p′)γ +uh(p) − z

4
ūh′ (p′)γ +[γ i, γ j]uh(p)

]
qiε

∗j
λ . (2)

Here we have expressed the vertex in terms of the momentum fraction z = k+/p+, 0 ≤ z ≤ 1 and
the center-of-mass transverse momentum q = k − zp. The first matrix element is simple

ūh′ (p′)γ +uh(p) = 2p+√
1 − zδh,h′ . (3)

The antisymmetric matrix element ūh′ (p′)γ +[γ i, γ j]uh(p), on the other hand, can only be calculated
simply in exactly four dimensions by relating it to the helicity operator. For the loop computations we
also encounter it in situations where the indices i, j have to be contracted with d⊥-dimensional Kro-
necker deltas arising from d⊥-dimensional tensorial transverse momentum integrals. For performing
the numerator algebra in these cases we introduce for it a more general notation

V ij

h′,h ≡ ūh′ (p′)γ +[γ i, γ j]uh(p)

2p+√
1 − z

. (4)

In exactly d⊥ = 2 transverse dimensions this simplifies (see Appendix A) to

V ij

h′,h →
d⊥→2

−2ihδh,h′ε ij. (5)

However, when the helicity sums (numerators of loop diagrams) are needed to order ε we need to
remember the full definition (4). A similar procedure can be carried out for the gluon absorption
vertex, for antiquarks and for quark–antiquark pair creation and annihilation vertices. Let us simply
collect the results here, in every case parametrizing the longitudinal momentum with a splitting
momentum fraction 0 ≤ z ≤ 1:

• Gluon emission from quark Fig. 1 (left), with momentum conservation �p = �p ′ + �k, z = k+/p+
and q = k − zp:

V
α;β,a

h;h′,λ(q, z) = −gtaβα

[
ūh′ (p′)ε/∗

λ(k)uh(p)

]
= −2gtaβα

z
√
1 − z

[(
1 − z

2

)
δijδh′,h − z

4
V ij

h′,h

]
qiε

∗j
λ , (6)

with

V ij

h′,h ≡ ūh′ (p′)γ +[γ i, γ j]uh(p)

2p+√
1 − z

→
d⊥→2

−2ihδh′,hε
ij. (7)

• Gluon absorption by quark Fig. 1 (right), with momentum conservation �p = �p ′ + �k, z = k+/p+
and q = k − zp:

V
β,a;α
h′,λ;h(q, z) = −gtaαβ

[
ūh(p)ε/λ(k)uh′ (p′)

]
= −2gtaαβ

z
√
1 − z

[(
1 − z

2

)
δijδh,h′ + z

4
V ij

h,h′

]
qiε

j
λ, (8)

with

V ij

h,h′ ≡ ūh(p)γ
+[γ i, γ j]uh′ (p′)

2p+√
1 − z

→
d⊥→2

−2ihδh,h′ε ij. (9)

• Gluon emission from antiquark with momentum �p, with momentum conservation �p = �p ′ + �k,
z = k+/p+ and q = k − zp:

V
α;β,a

h;h′,λ(q, z) = −gtaαβ

[
−v̄h(p)ε/

∗
λ(k)vh′ (p′)

]
= 2gtaαβ

z
√
1 − z

[(
1 − z

2

)
δijδh,h′ + z

4
V ij

h,h′

]
qiε

∗j
λ ,

(10)
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Fig. 2. Left: Gluon splitting vertex into quark–antiquark pair, A
a;β,α

λ;h,h′ (q, z) Eq. (14). Right: Quark–antiquark annihilation vertex

into gluon A
β,α;a
h′,h;λ(q, z) Eq. (16).

with

V ij

h,h′ ≡ v̄h(p)γ
+[γ i, γ j]vh′ (p′)

2p+√
1 − z

→
d⊥→2

2ihδh,h′ε ij. (11)

• Gluon absorption into antiquark, with momentum conservation �p = �p ′ + �k, z = k+/p+ and
q = k − zp:

V
β,a;α
h′,λ;h(q, z) = −gtaβα

[
−v̄h′ (p′)ε/λ(k)vh(p)

]
= 2gtaβα

z
√
1 − z

[(
1 − z

2

)
δijδh′,h − z

4
V ij

h′,h

]
qiε

j
λ,

(12)

with

V ij

h′,h ≡ v̄h′ (p′)γ +[γ i, γ j]vh(p)

2p+√
1 − z

→
d⊥→2

2ihδh′,hε
ij. (13)

• Gluon with momentum �p splitting into quark with momentum �k and antiquark, Fig. 2, with

momentum conservation �p = �p ′ + �k, z = k+/p+ and q = k − zp:

A
a;α,β

λ;h,h′ (q, z) = −gtaαβ

[
ūh(k)ε/λ(p)vh′ (p′)

]
= −2gtaαβ√

z(1 − z)

[(
z − 1

2

)
δijδh,−h′ + 1

4
Aij

h,h′

]
qiε

j
λ,

(14)

with

Aij

h,h′ ≡ ūh(k)γ
+[γ i, γ j]vh′ (p′)

2p+√
z(1 − z)

→
d⊥→2

−2ihδh,−h′ε ij. (15)

• Quark with momentum �k and antiquark annihilating to gluon with momentum �p, Fig. 2, with

momentum conservation �p = �p ′ + �k, z = k+/p+ and q = k − zp:

A
α,β;a
h′,h;λ(q, z) = −gtaβα

[
−v̄h′ (p′)ε/∗

λ(p)uh(k)

]
= 2gtaβα√

z(1 − z)

[(
z − 1

2

)
δijδh,−h′ − 1

4
Aij

h′,h

]
qiε

∗j
λ ,

(16)

with

Aij

h′,h ≡ v̄h′ (p′)γ +[γ i, γ j]uh(k)

2p+√
z(1 − z)

→
d⊥→2

−2ihδh′,−hε
ij. (17)
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2.3. Evaluating helicity sums

The value of a diagram in the perturbative expansion of light cone wave functions is obtained by

multiplying the factors for the vertices, integrating over internalmomenta in loops and summing over

the helicities of internal particles. Let us demonstrate how this procedure works in terms of the quark

vertices introduced above with two concrete examples that will be needed in the calculation of the

virtual photon wave function.

First, let us look at a quark propagator correction diagram such as the one shown in Fig. 8. The loop

part involves the product of the gluon emission vertex (6) and the absorption of the same gluon (8),

summed over the helicities of the quark and gluon inside the loop∑
λ,h′

V
α;β,a

h;h′,λ(q, z)V
β,a;α
h′,λ;h(q, z). (18)

The integrand in the transverse momentum integral is proportional to qiqj, thus the value of the

dimensionally regulated integral is proportional to a (d − 2)-dimensional Kronecker delta δ
ij

(d). The

vertices are proportional to (ds − 2)-dimensional gluon polarization vectors, and summing over the

helicity states of the gluon yields∑
λ

ε∗k
λ εl

λ = δkl(ds). (19)

We are then tasked with evaluating the expression

num1 =
∑
h′

[(
1 − z

2

)
δikδh′,h − z

4
V ik
h′,h

] [(
1 − z

2

)
δjlδh,h′ + z

4
V jl

h,h′
]
δ
ij

(d)δ
kl
(ds)

. (20)

Now in principle, to correctly evaluate this for arbitrary ds > d > 4, we need to use the definitions (7)

and (9) and carefully perform the Dirac matrix algebra. This we will do in detail for the more

complicated case of Eq. (26). However, let us here evaluate the sum (20)with a simple, but less general

trick that yields the same result.

In this case themost complicated structure appearing is the product of two antisymmetric tensors,

not more. In fact, in such a case we can formally express the antisymmetric vertex structure in terms

of a ‘‘(ds −2)-dimensional’’ two-index Levi-Civita tensor ε
ij

(ds)
. In general such an object does of course

not exist, but here it can be given an explicit meaning in terms of perfectly well-defined (ds − 2)-

dimensional Kronecker deltas using the Fierz identity

ε
ij

(ds)
εkl
(ds)

= δik(ds)δ
jl

(ds)
− δil(ds)δ

jk

(ds)
. (21)

When there are more than two Levi-Civita tensors, there would be several inequivalent ways to get

rid of themusing the Fierz identity. Thus the trickwe are nowdescribing cannot be used in thesemore

complicated cases.

To now evaluate the helicity sum (20) we first use the fact that for massless quarks helicity is

conserved at the emission vertex and thus the sum over the intermediate quark helicity h′ is trivial.
This gives, promoting the 4-dimensional expressions for the antisymmetric tensors in Eqs. (7) and (9)

into ds-dimensional ones,

num1 =
[(

1 − z

2

)
δik + ih

z

2
ε ik
(ds)

] [(
1 − z

2

)
δjl − ih

z

2
ε
jl

(ds)

]
δ
ij

(d)δ
kl
(ds)

. (22)

We then get rid of the Levi-Civita-tensors using the Fierz identity (21) to get

num1 =
(
1 − z

2

)2

(d − 2) +
( z

2

)2

(d − 2)(ds − 3), (23)

where one must remember that ds > d, i.e.

δ
ij

(ds)
δ
ij

(ds)
= ds − 2, δ

ij

(d)δ
ij

(d) = d − 2, δ
ij

(ds)
δ
ij

(d) = d − 2 (24)
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and that h2 = 1 in our convention. This yields the correct result for both the FDH (taking ds = 4, d =
4 − 2ε) and for the CDR schemes (taking ds = d = 4 − 2ε). The result (23) appears in perfectly
conventional QCD calculations of the q → qg splitting function in dimensional regularization. One
could speculate about a physical interpretation for the two terms, independent of ds and proportional
to ds −3. The first one results from the part of the vertex that is independent of helicity, and therefore
does not depend on the number of helicity states. The second term comes from the antisymmetric
part of the vertex where the gluon and quark are constrained to have a different helicity, thus it
is proportional not to the total number of gluon helicities ds − 2, but to the number of helicities
orthogonal to that of the quark, namely ds − 3.

A more complicated example is provided by vertex correction diagrams, such as the one in Fig. 10.
Here (with a trivial simplification of the color structure of the gluon splitting vertex (14) to a virtual
photon splitting), one has a structure like∑

h′,h′′,σ
V

ᾱ,a;α
h′,σ ;h(q, z1)Aλ;h′,h′′ (k, z2)V

ᾱ;β,a

h′′;h′′′,σ (p, z3). (25)

Writing this out in terms of the decompositions (8), (14) and (10) of the vertices into symmetric and
antisymmetric parts, one encounters a product of three antisymmetric vertex factors. This structure
is then multiplied with a (ds − 2)-dimensional Kronecker delta from the sum over the internal gluon
helicity σ , but also (d − 2)-dimensional ones from the loop integrals. Now there would be three
inequivalentways to use the Fierz identity (21) to remove twoof the three Levi-Civita tensors, and thus
we cannot get an unambiguous result in the same way as above. Thus we need to use the definitions
of the antisymmetric vertex factors, (9), (15) and (11).

In stead of working out the full expression here, let us concentrate on the most difficult part
involving a product of three antisymmetric structures in the vertices. We take as an example one
of the kind of terms that arise when evaluating the structure (25), and calculate

numlm
2 =

∑
h′,h′′

V ij

h,h′Akl
h′,h′′Vmn

h′′,h′′′δik(d)δ
jn

(ds)
, (26)

where we have already performed the sum over the helicity σ , yielding a (ds − 2)-dimensional δ
jn

(ds)
,

and taken one particular term of the (d − 2)-dimensional tensor integral with indices ikm. Writing
this out in terms of the full definitions of the antisymmetric vertex factors (9), (15) and (11) we have

numlm
2 =

∑
h′,h′′

ūh(p1)γ
+[γ i, γ j]uh′ (p2)

2

√
p+
1 p

+
2

ūh′ (p2)γ +[γ k, γ l]vh′′ (p3)

2

√
p+
2 p

+
3

× v̄h′′ (p3)γ +[γm, γ n]vh′′′ (p4)

2

√
p+
3 p

+
4

δik(d)δ
jn

(ds)
.

(27)

In amassless theory helicity is conserved at the vertex, thereforewe know that h = h′ = −h′′ = −h′′′.
However, in order to evaluate this expression we do not use this, but revert to the usual procedure
from covariant perturbation theory calculations and transform the sums over intermediate fermion
helicities to Dirac matrices. Thus we substitute∑

h

uh(p)ūh(p) = p/ (28)

to write

numlm
2 = ūh(p1)γ

+[γ i, γ j]p/2γ +[γ k, γ l]p/3γ +[γm, γ n]vh′′′ (p4)

2

√
p+
1 p

+
2 2

√
p+
2 p

+
3 2

√
p+
3 p

+
4

δik(d)δ
jn

(ds)
. (29)

Now we note that γ +γ + = 0 and γ + and γ − commute with [γ i, γ j]. Thus the only nonzero
contribution to the matrix element comes from the terms where one takes from every p/i the term
p+
i γ − in order to kill the corresponding γ +. Using γ +γ −γ + = 2γ + it is easy to see that effectively
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every factor p/iγ
+ is just replaced by 2p+

i , canceling the corresponding factor in the denominator. We
are then left with

numlm
2 = ūh(p1)γ

+[γ i, γ j][γ k, γ l][γm, γ n]vh′′′ (p4)

2

√
p+
1 p

+
4

δik(d)δ
jn

(ds)
. (30)

Now remembering that the external momenta and polarization vectors are 2-dimensional, and ds >
d > 4 at this stage, it is a straightforward task to evaluate either manually or, most importantly, using
a symbolic calculation program:

[γ i, γ j][γ k, γ l][γm, γ n]δik(d)δjn(ds) = 8(d − 3)(ds − 4)δlm − 4(19 − 3ds − 6d + dds)[γ l, γm]. (31)

Here we have identified terms of the type δmm′
(d) [γ l, γm′ ] with [γ l, γm] and written both δlm(ds) and

δmm′
(d) δlm

′
(ds)

simply as δlm knowing that both indices l and m are to be contracted with external vectors.
Using this result we can write the result in terms of the symmetric and antisymmetric parts of the
leading order vertex structure as

numlm
2 = 4(d − 3)(ds − 4)δlm − 4(19 − 3ds − 6d + dds)Alm

hh′′′ . (32)

Setting d = ds here one would obtain the CDR result. It is interesting to note that in the FDH scheme
ds = 4 the symmetric δlm-term vanishes; this is an additional simplification that one gains at the
expense of evaluating the algebra in d, ds dimensions. As a consistency check we can go to the limit
d = ds = 4:

numlm
2 →

d=ds→4
−8ihδh,−h′′′ε lm = 4Alm

h,h′′′ . (33)

The same result can be obtained directly by taking the terms in (26) in d = ds = 4 dimensions

numlm
2 =

d=ds=4

[−2ihδh,h′ε ij
] [−2ih′δh′,−h′′εkl

] [
2ih′′δh′′,h′′′εmn

]
δikδjn

= −8ihδh,−h′′′ε lm = 4Alm
h,h′′′ .

(34)

Note that as a calculational operation, the introduction and subsequent removal of the p/ happens
in the same way in all combinations of emission vertices from fermions. In practice one can keep
track of the terms of the calculation by writing out the vertices in terms of the d = 4 notation
involving 2-dimensional Levi-Civita tensors. Then, whenever an ambiguity arises as to the meaning
of products of the Levi-Civita-tensors, one replaces ε ij by [γ i, γ j], orders the vertices following the
fermion line, performs contractions of the γ -matrices with d- and ds-dimensional external tensors,
expresses the result in terms of [γ i, γ j] and δij and identifies these in terms of the vertex structure of
the leading order diagram. This procedure greatly simplifies the appearance of a factorized form for
the loop corrections, which appear as multiplicative corrections to the corresponding leading order
wave functions.

Note on [35]
Let us briefly note the difference between the formulation introduced here and the one used in

our earlier work [35]. There we first calculated the (d − 2)-dimensional loop tensorial integrals,
which result in a structure that contains (d − 2)-dimensional Kronecker deltas. These were then

contracted with the (ds − 2 = 2)-dimensional gluon polarization vectors as δ
ij

(d)ε
j
λ → εi

λ. The
error in this calculation comes when the resulting polarization vectors were then treated again as
(ds − 2)-dimensional ones in order to perform the polarization sums. In fact, contracting with a lower
dimensional Kronecker delta projects the polarization vector into a lower dimensional subspace; this
was not taken into account in the calculation of [35].We have checked thatwith the correct treatment
presented in this paper, the power divergences in the longitudinal cutoff α, present in the final result
of [35], cancel.

Let us finally point out an essential technical aspect that enables the correct way to calculate the
polarization sums. One has to write all 3-particle vertices in a form where the only dependence
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Fig. 3. Left: Gluon splitting vertex Γ
a;bc
λ1;λ2,λ3

(q, z) Eq. (35), where a, b, c are the gluon colors and λ1, λ2, λ3 gluon helicities.

Right: Gluon merging vertex Γ
bc;a
λ2,λ3;λ1 (q, z) Eq. (36).

Fig. 4. Time ordered (momenta flows from left to right) instantaneous vertex contributing to the qq̄-component of the

longitudinal virtual photon wave function at NLO.

on the gluon polarization is in the linear dependence on the polarization vector of each gluon,

see e.g. Eq. (6) or Eq. (35). Then the expression for a given diagram becomes quadratic in the

internal gluon polarization vectors, and the polarization sum can be evaluated using Eq. (19). The

resulting (ds − 2)-dimensional Kronecker delta can then be correctly contracted with both (ds − 2)-

and (d − 2)-dimensional objects. In contrast, writing the elementary vertex (1) in a form like

δh,h′
(
δλ,h + (1 − z)δλ,−h

)
ελ · q as in Ref. [35], while correct, has an additional dependence on the

polarization λ. This results in expressions where summing over the internal polarizations correctly is

difficult.

2.4. Other vertices

In addition, we also have two different type of LC elementary verticeswith 3-gluon self interaction:

The elementary vertex for 1 → 2 gluon splitting shown in Fig. 3 is given by

Γ
a;b,c
λ1;λ2,λ3

(q, z) = −2igf abc
[

ε
∗j
λ2

ε∗k
λ3

εl
λ1

1 − z
+ ε

∗j
λ3

ε∗k
λ2

εl
λ1

z
− ε

j
λ1

ε∗k
λ3

ε∗l
λ2

]
δijδklqi. (35)

Similarly, the 2 → 1 gluon merging vertex is given by

Γ
b,c;a
λ2,λ3;λ1 (q, z) = +2igf abc

[
ε
j
λ2

εk
λ3

ε∗l
λ1

1 − z
+ ε

j
λ3

εk
λ2

ε∗l
λ1

z
− ε

∗j
λ1

εk
λ3

εl
λ2

]
δijδklqi. (36)

As we will discuss in more detail below, the instantaneous interaction diagrams contribute to the

one-loop wave functions and to the 3-particle final states. We will not present here the full set of

instantaneous vertices (see [4]) butmerely the ones neededhere, and for the combinations of helicities

needed for our calculation. Similarly as above, one can easily derive more general expressions as

discussed above, here we present only the ones in ds = 4 dimensions that are needed for our present

calculation.

The instantaneous gluon exchange diagram Fig. 4 is given by the following matrix element

I(4) = −g2taαᾱt
a

ββ̄

[
ūh(p)γ

+uh(k
′)
]

1

(k′+ − p+)2

[
v̄−h(k

′′)γ +v−h(p
′)
]

(37)
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Fig. 5. Time ordered (momenta flows from left to right) instantaneous diagram contributing to the qq̄g-component of the

transverse virtual photon wave function at NLO.

Fig. 6. Time ordered (momenta flows from left to right) instantaneous diagram contributing to the qq̄g-component of the

transverse virtual photon wave function at NLO.

which simplifies in ds = 4 to

I(4) = −4g2taαᾱt
a

ββ̄

√
p+p′+k′+k′′+

(k′+ − p+)2
, (38)

where the momenta are labeled as in Fig. 4.
The matrix element for γ → qq̄g via the exchange of an instantaneous quark, diagram Fig. 5, is

given by

I(5) = −eef gt
a
αβ

2
ūh(p)ε/λ(q)

γ +

(p′+ + k+)
ε/∗
σ (k)v−h(p

′) (39)

which, in ds = 4, can be expressed in the helicity basis as

I(5) = −eef gt
a
αβ

√
p+p′+

(p′+ + k+)

[
δij − ihε ij

]
ε∗i

σ ε
j
λ. (40)

Similarly, the matrix element for the other instantaneous quark γ → qq̄g diagram Fig. 6 is given
by

I(6) = +eef gt
a
αβ

2
ūh(p)ε/

∗
σ (k)

γ +

(p+ + k+)
ε/λ(q)v−h(p

′), (41)

which in the helicity basis and ds = 4 reduces to

I(6) = +eef gt
a
αβ

√
p+p′+

(p+ + k+)

[
δij + ihε ij

]
ε∗i

σ ε
j
λ. (42)

3. Calculating the DIS cross section from light cone wave functions

We consider a setup where a relativistic projectile moving in the light-cone x+ direction scatters
on a very dense and highly boosted target moving in the light-cone x− direction. At high energy the
target consists of a gluon field, and the scattering can be evaluated using the eikonal approximation
in terms of Wilson lines in this field [2,41]. The total cross section for a virtual photon scattering from
a classical gluon field can be obtained by the optical theorem as twice the forward inelastic scattering
amplitude. With the appropriate normalization [2] this results in:

σγ ∗ [A] = 2

2q+(2π )δ(q′+ − q+)
Re

[
i〈γ ∗(�q ′,Q 2, λ′)|1 − ŜE |γ ∗(�q,Q 2, λ)〉i

]
. (43)
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The full perturbative Fock state decomposition for the virtual photon in the momentum space with
momentum �q, virtuality Q , and helicity λ is given by

|γ ∗(�q,Q 2, λ)〉i =√
Zγ ∗ (q+)

[
|γ (�q, λ)〉b +

∫
d̃pd̃p

′
(2π )3δ(3)(�q − �p − �p ′)ψγ ∗→qq̄

× |q(�p, h, α)q̄(�p ′, h′, β)〉 +
∫

d̃pd̃p
′
d̃k(2π )3δ(3)(�q − �p − �p ′ − �k)ψγ ∗→qq̄g

× |q(�p, h, α)q̄(�p ′, h′, β)g(�k, σ , a)〉 + · · ·
]
,

(44)

where |γ ∗(�q,Q 2, λ)〉i is the physical one particle state in the interaction picture and |γ (�q, λ)〉b the
corresponding free bare state. Note that the free bare states are defined by creation operators,
depending only on the spatial momentum �q, operating on the vacuum. Thus the bare state |γ (�q, λ)〉b
is independent of Q 2 and on shell, as are all LCPT free states. The full interacting theory state
|γ ∗(�q,Q 2, λ)〉i, on the other hand, ‘‘knows’’ that it has a virtuality −Q 2. This is reflected in the wave

functions ψγ ∗→qq̄ etc. via the energy denominators that depend on the light cone energy of the initial
state.2 We have ignored electromagnetic contributions (i.e. γ ∗ → ��̄ and γ ∗ → ��̄γ , etc.) since we
are only interested in the order O(αe.m.αs) NLO correction to the order O(αe.m.) leading order cross
section. The Fock states are defined as

|q(�p, h, α)q̄(�p ′, h′, β)〉 = b†(�p, h, α)d†(�p ′, h′, β)|0〉
|q(�p, h, α)q̄(�p ′, h′, β)g(�k, σ , a)〉 = b†(�p, h, α)d†(�p ′, h′, β)a†(�k, σ , a)|0〉

· · ·
(45)

where the operators b† (d†) create quark q (anti-quark q̄) withmomentum �p (�p ′) and helicity h (h′) and
the fundamental color index α (β), and similarly a† create gluon g with momentum �k, helicity σ and
adjoint color index a. The normalization of the operators b, d and a is chosen such that commutation
and anti-commutation rules in momentum space satisfy

{b(�p, h, α), b†(�q, s, β)} = {d(�p, h, α), d†(�q, s, β)} = 2p+(2π )3δ(3)(�p − �q)δh,sδα,β

[a(�k, σ , a), a†(�q, s, b)] = 2k+(2π )3δ(3)(�k − �q)δσ,sδa,b.
(46)

The renormalization constant
√
Zγ ∗ can be determined from the normalization requirement

int〈γ ∗(�q ′,Q 2, λ′)|γ ∗(�q,Q 2, λ)〉int = 2q+(2π )3δ(3)(�q ′ − �q)δλ′,λ. (47)

However, since all the corrections to thephotonwave function are proportional to the electromagnetic
coupling, Z = 1+O(αe.m.). Thusworking at lowest order inαe.m. we can drop the photonwave function
renormalization.

The Fock state representation in momentum space (k+, k) is switched to the mixed space repre-
sentation (k+, x) by the transverse Fourier transform of all the creation operators present in the state,
with

a†(�k, σ , a) =
∫
x
eik·xa†(k+, x, σ , a)

b†(�p, h, α) =
∫
x
eip·xb†(p+, x, h, α)

d†(�p, h, α) =
∫
x
eip·xd†(p+, x, h, α),

(48)

where∫
x

=
∫

d2x. (49)

2 We thank G. Beuf for pointing this out to us.
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The mixed space operators satisfy

{b(p+, x, h, α), b†(q+, y, s, β)} = {d(p+, x, h, α), d†(q+, y, s, β)}
= 2p+(2π )δ(p+ − q+)δ(2)(x − y)δh,sδα,β

[a(k+, x, σ , a), a†(q+, y, s, b)] = 2k+(2π )δ(k+ − q+)δ(2)(x − y)δσ,sδa,b.

(50)

Since the high energy scattering of the projectile partons off the gluon target is eikonal, the scattering

operator ŜE acts on Fock states by only color rotating each partons by a Wilson line defined along the

partons trajectory through the target:

ŜEb
†(p+, x, h, α)d†(p′+, y, h′, β)|0〉 =

∑
ᾱ,β̄

[U[A](x)]ᾱα[U†[A](y)]ββ̄b
†(p+, x, h, ᾱ)d†

× (p′+, y, h′, β̄)|0〉
(51)

and

ŜEb
†(p+, x, h, α)d†(p′+, y, h′, β)a†(k+, z, σ , a)|0〉 =

∑
ᾱ,β̄,b

[U[A](x)]ᾱα[U†[A](y)]ββ̄ [V [A](z)]ba

× b†(p+, x, h, ᾱ)d†(p′+, y, h′, β̄)

× a†(k+, z, σ , b)|0〉,

(52)

where the fundamental and adjoint Wilson line are respectively defined as the path ordered expo-

nential for a classical gluon target A:

U[A](x) = P exp

[
ig

∫
dx+taA−

a (x
+, 0, x)

]
V [A](x) = P exp

[
ig

∫
dx+TaA−

a (x
+, 0, x)

]
.

(53)

Applying Eq. (48), we can define the amplitudes corresponding to the qq̄-component and qq̄g-

component of the Fock state decomposition in the mixed space:

|γ ∗(q+,Q 2, λ)〉qq̄ = PS+
(2)

∫
xy

ψ̃γ ∗→qq̄|q(p+, x, h, α)q̄(p′+, y, h′, β)〉 (54)

|γ ∗(q+,Q 2, λ)〉qq̄g = PS+
(3)

∫
xyz

ψ̃γ ∗→qq̄g |q(p+, x, h, α)q̄(p′+, y, h′, β)g(k+, z, σ , a)〉, (55)

where the two and three particle longitudinal phase space factors PS+
(2) and PS+

(3), respectively, are

defined as

PS+
(2) =

∫ ∞

0

dp+

2p+(2π )

∫ ∞

0

dp′+

2p′+(2π )
(2π )δ(q+ − p+ − p′+)

PS+
(3) =

∫ ∞

0

dp+

2p+(2π )

∫ ∞

0

dp′+

2p′+(2π )

∫ ∞

0

dk+

2k+(2π )
(2π )δ(q+ − p+ − p′+ − k+).

(56)

The mixed space wave functions ψ̃ are transverse Fourier transforms of the LCWF’s:

ψ̃γ ∗→qq̄
(
x, p+, y, p′+) =

∫
d2p

(2π )2

∫
d2p′

(2π )2
(2π )2δ(2)(q − p − p′)

ψγ ∗→qq̄
(
p, p+, p′, p′+)

eip·xeip
′·y

(57)
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Fig. 7. Time ordered (momenta flows from left to right) diagram contributing to the qq̄-component of the transverse

and longitudinal virtual photon wave function at leading order with energy denominators and kinematics. Momentum

conservation: �q = �p + �p ′ . The longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = zq+
and p′+ = (1 − z)q+ .

and

ψ̃γ ∗→qq̄g
(
x, p+, y, p′+, z, k+) =

∫
d2p

(2π )2

∫
d2p′

(2π )2

∫
d2k

(2π )2
(2π )2δ(2)(q − p − p′ − k)

ψγ ∗→qq̄g
(
p, p+, p′, p′+, k, k+)

eip·xeip
′·yeik·z. (58)

Using the shorthand notation for the different Fock state components the virtual photon state (44)

is

|γ ∗(q+,Q 2, λ)〉i = |γ (q+, λ)〉b + |γ ∗(q+,Q 2, λ)〉qq̄ + |γ ∗(q+,Q 2, λ)〉qq̄g + · · · , (59)

with the two last terms on the right-hand side given in mixed space by Eqs. (54) and (55). In this

decomposition the photon cross section at NLO accuracy can be written as

σγ ∗ [A] = 2

2q+(2π )δ(q′+ − q+)

{
qq̄〈γ ∗ (q′+,Q 2, λ′)|1 − ŜE |γ ∗(q+,Q 2, λ)〉qq̄

+ qq̄g〈γ ∗(q′+,Q 2, λ′)|1 − ŜE |γ ∗(q+,Q 2, λ)〉qq̄g
}
.

(60)

Here the qq̄-component contains the leading order (LO) contribution and theNLO contribution coming

from the one-loop virtual diagrams, and the qq̄g-component contains the NLO contribution coming

from the radiative correction diagrams.

We shall now set out to calculate the wave function ψ̃γ ∗→qq̄ to one-loop accuracy and ψ̃γ ∗→qq̄g at

tree level, and using these results return to the cross section (60) in Section 7.

4. Leading order wave function

The leading order γ ∗ → qq̄ wave functions shown in Fig. 7 are well known, but we will briefly

write them down here to set the normalization in our conventions. Following the diagrammatic rules

listed in [35] the light conewave function contributing to the transverse or longitudinal virtual photon

splitting into a quark anti-quark dipole is given by

ψ
γ ∗
T/L

→qq̄

LO = −eef δαβ

Δ−
01

[
ūh(p)ε/λ,T/L(q)vh′ (p′)

]
, (61)

where the LC energy denominator can be cast in the following form

Δ−
01 = q− − (p− + p′−) = − Q 2

2q+ −
(

p2

2p+ + p2

2p′+

)
= 1

(−2q+)z(1 − z)

[
p2 + Q

2
] (62)



372 H. Hänninen et al. / Annals of Physics 393 (2018) 358–412

with Q
2 = z(1 − z)Q 2. Note that we are working in a frame where the transverse momentum of the

photon is zero and thusp = −p′; otherwise the transversemomentumargumentpwould be replaced
by the center of mass momentum p − zq.

4.1. Transversely polarized virtual photon

In the q = 0 frame the polarization vector for a transversely polarized virtual photon in the LC
gauge is given by

ε
μ

λ,T(q) = (0,
q · ελ

q+ , ελ) = (0, 0, ελ). (63)

Using Eq. (63) the light cone wave function for the transversely polarized virtual photon in Eq. (61)
can be expressed in the explicit helicity basis as

ψ
γ ∗
T

→qq̄

LO (p, z) = δαβ

Δ−
01

A
γ ∗
T

λ;h,h′ (p, z) (64)

with A
γ ∗
T

λ;h,h′ defined as for the gluon vertex in (14):

A
γ ∗
T

λ;h,h′ (p, z) = −2eef√
z(1 − z)

[(
z − 1

2

)
δijδh,−h′ + 1

4
Aij

h,h′

]
piε

j
λ. (65)

Here we have kept the helicity notation as general as possible. However, for a massless quarks the
helicity is conserved in the light cone vertices. This implies that for the γ qq̄-vertex h = −h′.

4.2. Longitudinally polarized virtual photon

Strictly speaking there is no such thing as a longitudinal photon in the spectrum of physical states
in the theory. In stead, a longitudinal photon in DIS is a part of an instantaneous interaction vertex
with the lepton. However, for calculational purposes we will here leave out the lepton and simply
define a longitudinal virtual photon polarization vector, treating the longitudinal photon analogously
to the transverse one. The polarization vector for a longitudinally polarized virtual photon in the LC
gauge can be expressed as

ε
μ

λ,L(q) = (0,

√
Q 2 − q2

q+ ,
q√

Q 2 − q2
) = (0,

Q

q+ , 0). (66)

Thus the light cone wave function for the longitudinally polarized virtual photon in Eq. (61) can be
cast in the following form

ψ
γ ∗
L

→qq̄

LO (Q , z) = δαβ

Δ−
01

A
γ ∗
L

λ;h,h′ (Q , z), (67)

where

A
γ ∗
L

λ;h,h′ (Q , z) = −eef
Q

q+

[
ūh(p)γ

+vh′ (p′)
]

= −2eef
Q

q+
√
p+p′+δh,−h′

= −2eef Q
√
z(1 − z)δh,−h′ .

(68)

5. Virtual photon LCWF’S

5.1. Quark self-energy diagrams

The quark self energy diagrams are explicitly proportional to the leading order γ ∗ → qq̄ vertex, so
one does not need to calculate them separately for the different virtual photon polarizations. There
are two diagrams that contribute, the ones shown in Figs. 8 and 9.
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Fig. 8. Quark self-energy diagram (a) contributing to the qq̄-component of the transverse virtual photon wave function at NLO

with energy denominators and kinematics. Momentum conservation: �q = �p+�p ′ , �p ′′ = �k ′ + �k and �k ′ + �k = �p. The longitudinal
momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p′+ = (1 − z)q+ . The momentum fraction

of the virtual photon splitting into a qq̄ dipole is p+/q+ = z and the natural momentum is p − zq = p (note q = 0). The
momentum fraction of the gluon emission and absorption is k+/p+ = z ′/z, and the natural momentum in the gluon loop is

m = k − (z ′/z)p.

Fig. 9. Antiquark self-energy diagram (b) contributing to the qq̄-component of the transverse virtual photon wave function

at NLO with energy denominators and kinematics. Momentum conservation: �q = �p + �p ′ , �p ′′ = �k ′ + �k and �k ′ + �k = �p ′ .
The longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p′+ = (1 − z)q+ . The

momentum fraction of the virtual photon splitting vertex is p+/q+ = z and the natural momentum p − zq = p (note q = 0).
The momentum fraction of the gluon emission and absorption is k+/p′+ = z ′/(1− z), and the natural momentum in the gluon

loop ism = k − (z ′/(1 − z))p.

The LCWF for quark self-energy diagram (a) shown in Fig. 8 is given by

ψ
γ ∗
T/L

→qq̄

(a) =
∫

d̃kd̃k
′
d̃p

′′
(2π )d−1δ(d−1)(�p ′′ − �k ′ − �k)(2π )d−1δ(d−1)(�k ′ + �k − �p)

× 1

Δ−
01Δ

−
02Δ

−
03

num

∣∣∣∣
(a)

,

(69)

where the Lorentz invariantmeasure in d dimensions is defined as d̃k ≡ dk+ dd−2k
2k+(2π )d−1 , and the numerator

for the transversally polarized virtual photon becomes

num

∣∣∣∣
(a)

= V
ᾱ,a;α
h,σ ;h (m, z ′/z)V β;ᾱ,a

h;h,σ (m, z ′/z)A
γ ∗
T

λ,h,−h(p, z). (70)

Correspondingly, the numerator for longitudinally polarized virtual photon in Eq. (69) is obtained by
the trivial replacement

A
γ ∗
T

λ,h,−h(p, z) → A
γ ∗
L

λ,h,−h(Q , z). (71)

In Eq. (70) the vertex for the virtual photon splitting into a qq̄ dipole is given in Eq. (65) or Eq. (68)

depending on the polarization and the gluon emission and absorption vertices V
β;ᾱ,a

h;hσ (m, z ′/z) and
V

ᾱ,a;α
hσ ;h (m, z ′/z) are given by Eqs. (6) and (8). The LC energy denominators in Eq. (69) are

Δ−
01 = Δ−

03 = 1

(−2q+)z(1 − z)

[
p2 + Q

2
]

(72)
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and

Δ−
02 = z

(−2q+)z ′(z − z ′)

[
m2 + M (a)

]
with M (a) = z ′(z − z ′)

z2(1 − z)

(
p2 + Q

2
)

. (73)

The phase space measure simplifies to∫
d̃kd̃k

′
d̃p(2π )d−1δ(d−1)(�k ′ − �p + �k)(2π )d−1δ(d−1)(�p − �k ′ − �k)

= 1

16π (q+)2

∫
dz ′

zz ′(z − z ′)

∫
dd−2m
(2π )d−2

,

(74)

where k+ > 0 and k′+ > 0, so that 0 < z ′ < z.

Performing the helicity sums as described in Section 2.3, and integrating over the loop transverse

momentum (with dimensionally regularized integrals given in Appendix B) and the longitudinal

momentum, regulating the soft divergence with α < z ′ < z, we obtain

ψ
γ ∗
T

→qq̄

(a) = ψ
γ ∗
T

→qq̄

LO (p, z)

(
g2
r CF

8π2

){[
3

2
+ 2 log

(α

z

)]
C(a) − log2

(α

z

)
− π2

3
+ 3

}
+ O(ε), (75)

where

C(a) = 1

εMS

+ log

(
μ2

Q
2

)
− log

(
p2 + Q

2

Q
2

)
+ log(1 − z), (76)

with εMS = 1/ε − γE + ln(4π ). Similarly for the longitudinally polarized virtual photon,

ψ
γ ∗
L

→qq̄

(a) = ψ
γ ∗
L

→qq̄

LO (Q , z)

(
g2
r CF

8π2

){[
3

2
+ 2 log

(α

z

)]
C(a) − log2

(α

z

)
− π2

3
+ 3

}
+ O(ε). (77)

The LCWF for diagram (b) shown in Fig. 9 can be now easily obtained by using the symmetry between

the diagrams (a) and (b) (i.e. by making the substitution z ↔ 1 − z and p → −p simultaneously) as

ψ
γ ∗
T

→qq̄

(b) = ψ
γ ∗
T

→qq̄

LO (p, z)

(
g2
r CF

8π2

){[
3

2
+ 2 log

(
α

1 − z

)]
C(b) − log2

(
α

1 − z

)
− π2

3
+ 3

}
(78)

and

ψ
γ ∗
L

→qq̄

(b) = ψ
γ ∗
L

→qq̄

LO (Q , z)

(
g2
r CF

8π2

){[
3

2
+ 2 log

(
α

1 − z

)]
C(b) − log2

(
α

1 − z

)
− π2

3
+ 3

}
(79)

with

C(b) = 1

εMS

+ log

(
μ2

Q
2

)
− log

(
p2 + Q

2

Q
2

)
+ log(z). (80)

5.2. Transverse photons

Next we calculate the LCWFs for diagrams (c) and (d) shown in Figs. 10 and 11. Since there is a lot

of symmetry between these it makes sense to present the result for the sum of the two.

For diagram (c), with kinematical variables as in Fig. 10, the LCWF can be cast in the following form

ψ
γ ∗
T

→qq̄

(c) =
∫

d̃kd̃k
′
d̃k

′′
(2π )d−1δ(d−1)(�k ′ − �p + �k)(2π )d−1δ(d−1)(�k ′′ − �k − �p ′)

× V
ᾱ,a;α
σ,h′;h(m, z′

z
)A

γ ∗
T

λ;h′,h′′ (k′, z − z ′)V ᾱ;β,a

h′′;−h,σ (h, z′
(1−z+z′) )

Δ−
01Δ

−
02Δ

−
03

,

(81)
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Fig. 10. Vertex diagram (c) contributing to the qq̄-component of the transverse virtual photon wave function at NLO with

energy denominators and kinematics. Momentum conservation: �q = �k ′ + �k ′′ = �p + �p ′ , �k ′ = �p − �k and �k ′′ = �k + �p ′ . The
longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p′+ = (1 − z)q+ , and for the

gluon in the loop k+ = z ′q+ with k′+ = (z − z ′)q+ and k′′+ = (1 − z + z ′)q+ . The longitudinal momentum fraction of the

virtual photon splitting into a qq̄ dipole is k′+/q+ = z − z ′ and the natural momentum is k′ . The momentum fraction of the

gluon emission is k+/k′′+ = z ′/(1− z+ z ′) and gluon absorption k+/p+ = z ′/z. The natural momentum for the gluon emission

is h = k − (z ′/(1 − z + z ′))k′′ and for the gluon absorption m = k − (z ′/z)p. In order to use m as the integration variable we

need to know that k′ = −m + ((z − z ′)/z)p and h = ((1 − z)/(1 − z + z ′))(m + (z ′/(z(1 − z))p)).

Fig. 11. Diagram (d) contributing to the qq̄-component of the transverse virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �k ′ + �k ′′ = �p + �p ′ , �k ′ = �k + �p and �k ′′ = �p ′ − �k. The longitudinal

momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p′+ = (1 − z)q+ , and for the gluon in

the loop k+ = z ′q+ with k′+ = (z + z ′)q+ and k′′+ = (1 − z − z ′)q+ . The longitudinal momentum fraction of the virtual

photon splitting into a qq̄ dipole is k′+/q+ = z + z ′ and the natural momentum is k′ . The momentum fraction of the gluon

emission is k+/k′+ = z ′/(z + z ′) and gluon absorption k+/p′+ = z ′/(1 − z). The natural momentum for the gluon emission is

h = k − (z ′/(z + z ′))k′ and for the gluon absorption m = k + (z ′/(1 − z))p. In order to use m as the integration variable we

need to know that k′ = m + ((1 − z − z ′)/(1 − z))p and h = (z/(z + z ′))(m − (z ′/(z(1 − z))p)).

where the gluon emission and absorption vertices are given by Eqs. (8) and (10) and the photon vertex

by Eq. (65). The phase space measure simplifies to∫
d̃kd̃k

′
d̃k

′′
(2π )d−1δ(d−1)(�k ′ − �p + �k)(2π )d−1δ(d−1)(�k ′′ − �k − �p ′)

= 1

16π (q+)2

∫ z

0

dz ′

z ′(z − z ′)(1 − z + z ′)

∫
dd−2m
(2π )d−2

(82)

The LC energy denominators are given by

Δ−
01 = 1

(−2q+)(z − z ′)(1 − z + z ′)

[(
m − (z − z ′)

z
p
)2

+ M
(c)

2

]
Δ−

02 = z

(−2q+)z ′(z − z ′)

[
m2 + M

(c)

1

] (83)

and

Δ−
03 = 1

(−2q+)z(1 − z)

[
p2 + Q

2
]
, (84)
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where the coefficients M
(c)

1 andM
(c)

2 are given by

M
(c)

1 = z ′(z − z ′)
z2(1 − z)

(
p2 + Q

2
)

and M
(c)

2 = (z − z ′)(1 − z + z ′)
z(1 − z)

Q
2
. (85)

For diagram (d), with kinematical variables as in Fig. 11, the LCWF is

ψ
γ ∗
T

→qq̄

(d) =
∫

d̃kd̃k
′
d̃k

′′
(2π )d−1δ(d−1)(�k ′ − �p − �k)(2π )d−1δ(d−1)(�k ′′ − �p ′ + �k)

× V
ᾱ;α,a

h′;σ ,h
(h, z′

z+z′ )A
γ ∗
T

λ;h′,h′′ (k′, z + z ′)V ᾱ,a;β
h′′,σ ;−h(m, z′

(1−z)
)

Δ−
01Δ

−
02Δ

−
03

.

(86)

The phase space measure simplifies to∫
d̃kd̃k

′
d̃k

′′
(2π )d−1δ(d−1)(�k ′ − �p − �k)(2π )d−1δ(d−1)(�k ′′ − �p ′ + �k)

= 1

16π (q+)2

∫ 1−z

0

dz ′

z ′(z + z ′)(1 − z − z ′)

∫
dd−2m
(2π )d−2

(87)

and the LC energy denominators are given by

Δ−
01 = 1

(−2q+)(z + z ′)(1 − z − z ′)

[(
m + (1 − z − z ′)

1 − z
p
)2

+ M
(d)

2

]
Δ−

02 = 1 − z

(−2q+)z ′(1 − z − z ′)

[
m2 + M

(d)

1

] (88)

and

Δ−
03 = 1

(−2q+)z(1 − z)

[
p2 + Q

2
]
, (89)

where the coefficients M
(d)

1 andM
(d)

2 are given by

M
(d)

1 = z ′(1 − z − z ′)
z(1 − z)2

(
p2 + Q

2
)

and M
(d)

2 = (z + z ′)(1 − z − z ′)
z(1 − z)

Q
2
. (90)

Now one first performs the transverse momentum integrals using the results in Appendix B, then

performs the numerator helicity sums as described in Section 2.3 and finally integrates over the

longitudinal momentum fraction regulating the soft divergences by a cutoff α. The result for the sum

of the diagrams (c) and (d) simplifies to

ψ
γ ∗
T

→qq̄

(c)+(d) = ψ
γ ∗
T

→qq̄

LO (p, z)

(
g2
r CF

8π2

){[
−3

2
− log

(α

z

)
− log

(
α

1 − z

)]
CT
(c)+(d) + Γ T

}
+ O(ε),

(91)

where the coefficients C and Γ are given by

CT
(c)+(d) = 1

εMS

+ log

(
μ2

Q
2

)
+

(
p2 + Q

2

p2

)
log

(
p2 + Q

2

Q
2

)
(92)

and

Γ T = −21

6
+ 2π2

6
− 3

2
log(1 − z) − 3

2
log(z) + 4 log(1 − z) log(z) + log2

(α

z

)
+ log2

(
α

1 − z

)
− 2 log(1 − z) log(α) − 2 log(z) log(α)

− Li2

(
− z

1 − z

)
− Li2

(
−1 − z

z

)
.

(93)
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Fig. 12. Instantaneous diagrams for the qq̄-component of the virtual photonwave function at NLO, yielding zero in dimensional

regularization.

The sum of two dilogarithm functions above can be simplified by applying the identity

Li2 (−x) + Li2

(
−1

x

)
= −π2

6
− 1

2
log2(x), x > 0. (94)

In principle one also has to compute the instantaneous vertex correction diagrams shown in Fig. 12.

These however vanish in dimensional regularization. This is easiest to see by taking as the integration

variable the natural momentum of the only non-instantaneous vertex in the diagram, in which case

this vertex and consequently the whole transverse momentum integrand are linear in the integration

variable [35].

Adding the one-loop quark self-energy corrections in Eqs. (75) and (78) together with Eq. (91), we

get the expression for the full one-loop corrected LCWF for γ ∗
T → qq̄ computed in the FDH scheme

ψ
γ ∗
T

→qq̄

NLO

∣∣∣∣
FDH

= ψ
γ ∗
T

→qq̄

LO (p, z)

(
g2
r CF

8π2

){[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]
C
(T)

full

+ 1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2

}
+ O(ε),

(95)

where

C
(T)

full = 1

εMS

+ log

(
μ2

Q
2

)
+

(
Q

2 − p2

p2

)
log

(
p2 + Q

2

Q
2

)
. (96)

For comparison the full result computed in the CDR scheme [29] and [34] is

ψ
γ ∗
T

→qq̄

NLO

∣∣∣∣
CDR

= ψ
γ ∗
T

→qq̄

LO (p, z)

(
g2
r CF

8π2

){[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]
C
(T)

full

+ 1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2
+ 1

2

}
+ O(ε),

(97)

where the additional factor 1/2 is the scheme dependent part of the CDR scheme calculation.

5.3. Longitudinal photons

For diagram (e), with kinematical variables as in Fig. 13, the LCWF can be cast in the following form

ψ
γ ∗
L

→qq̄

(e) =
∫

d̃kd̃k
′
d̃k

′′
(2π )d−1δ(d−1)(�k ′ − �p + �k)(2π )d−1δ(d−1)(�k ′′ − �k − �p ′)

× V
ᾱ,a;α
σ,h′;h(m, z′

z
)A

γ ∗
L

λ,h′,h′′ (Q , z − z ′)V ᾱ;β,a

h′′;−h,σ (h, z′
1−z+z′ )

Δ−
01Δ

−
02Δ

−
03

,

(98)

where the gluon emission and absorption vertices are given by Eqs. (8), (10) and the longitudinal

photon splitting vertex by (68). The LC energy denominators are the same as in Eq. (83) for diagram

(c), as is the phase space measure (82). Adding everything together and summing over the colors we
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Fig. 13. Vertex diagram (e) contributing to the qq̄-component of the longitudinal virtual photon wave function. Momentum

conservation: �q = �k ′ + �k ′′ = �p + �p ′ , �k ′ = �p − �k and �k ′′ = �k + �p ′ . The longitudinal momentum fractions for quark and

anti-quark are parametrized as p+ = zq+ and p′+ = (1 − z)q+ , and for the gluon in the loop k+ = z ′q+ with k′+ = (z − z ′)q+
and k′′+ = (1−z+z ′)q+ . The longitudinalmomentum fraction of the virtual photon splitting into a qq̄ dipole is k′+/q+ = z−z ′ .
The momentum fraction of the gluon emission is k+/k′′+ = z ′/(1 − z + z ′) and gluon absorption k+/p+ = z ′/z. The natural

momentum for the gluon emission is h = k − (z ′/(1 − z + z ′))k′′ and for the gluon absorption m = k − (z ′/z)p. In order to

usem as the integration variable we need to know that h = ((1 − z)/(1 − z + z ′))(m + (z ′/(z(1 − z))p)).

get

ψ
γ ∗
T

→qq̄

(e) = ψ
γ ∗
L

→qq̄

LO (Q , z)

(−g2CF

π

)∫ z

0

dz ′(z − z ′)(1 − z + z ′)
(z ′)2

×
∫

dd−2m
(2π )d−2

mi
(
m + z′

z(1−z)
p
)n

[
m2 + M

(c)

1

][(
m − (z−z′)

z
p
)2 + M

(c)

2

] × num(z, z ′)
∣∣∣∣
(e)

,
(99)

with the mass scales M
(c)

1 and M
(c)

2 from Eq. (85). Because of the simple structure of the longitudinal

photon splitting vertex, we can directly evaluate the numerator of (99) in ds dimensions in terms of

Levi-Civita tensors:

num(z, z ′)
∣∣∣∣
(e)

=
[(

1 − z ′

2z

)
δ
ij

(ds)
− ih

(
z ′

2z

)
ε
ij

(ds)

]
×

[(
1 − 1

2

(
z ′

1 − z + z ′

))
δnm(ds) − ih

1

2

(
z ′

1 − z + z ′

)
εnm
(ds)

]
δ
jm

(ds)
.

(100)

For diagram (f), with kinematical variables as in Fig. 14, the LCWF is

ψ
γ ∗
L

→qq̄

(f) =
∫

d̃kd̃k
′
d̃k

′′
(2π )d−1δ(d−1)(�k ′ − �p − �k)(2π )d−1δ(d−1)(�k ′′ − �p ′ + �k)

× V
ᾱ;α,a

h′;σ ,h
(h, z′

z+z′ )A
γ ∗
L

λ;h′,h′′ (Q , z + z ′)V ᾱ,a;β
h′′,σ ,−h(m, z′

1−z
)

Δ−
01Δ

−
02Δ

−
03

,

(101)

where the phase space measure is the same as in Eq. (87) for diagram (d), as are the energy

denominators in Eq. (88). Putting everything together and summing over the colors gives

ψ
γ ∗
L

→qq̄

(f) = ψ
γ ∗
L

→qq̄

LO (Q , z)

(−g2CF

π

)∫ 1−z

0

dz ′(z + z ′)(1 − z − z ′)
(z ′)2

×
∫

dd−2m
(2π )d−2

mi
(
m − z′

z(1−z)
p
)n

[
m2 + M

(d)

1

][(
m + (1−z−z′)

1−z
p
)2 + M

(d)

2

] × num(z, z ′)
∣∣∣∣
(f)

. (102)
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Fig. 14. Vertex correction diagram (f) contributing to the qq̄-component of the longitudinal virtual photon wave function at

NLO with energy denominators and kinematics. Momentum conservation: �q = �k ′ + �k ′′ = �p+ �p ′ , �k ′ = �k+ �p and �k ′′ = �p ′ − �k.
The longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p′+ = (1− z)q+ , and for the

gluon in the loop k+ = z ′q+ with k′+ = (z+z ′)q+ and k′′+ = (1−z−z ′)q+ . The longitudinal momentum fraction of the virtual

photon splitting into a qq̄ dipole is k′+/q+ = z + z ′ . The momentum fraction of the gluon emission is k+/k′+ = z ′/(z + z ′)
and gluon absorption k+/p′+ = z ′/(1 − z). The natural momentum for the gluon emission is h = k − (z ′/(z + z ′))k′
and for the gluon absorption m = k + (z ′/(1 − z))p. In order to use m as the integration variable we need to know that

k′ = m + ((1 − z − z ′)/(1 − z))p and h = (z/(z + z ′))(m − (z ′/(z(1 − z))p)).

Fig. 15. Instantaneous gluon diagram (g) contributing to the qq̄-component of the longitudinal virtual photon wave function

at NLO with energy denominators and kinematics. Momentum conservation: �q = �k ′ + �k ′′ and �q = �p + �p ′ . The longitudinal

momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p′+ = (1 − z)q+ , and k′+ = z ′q+ and

k′′+ = (1 − z ′)q+ . The longitudinal momentum fraction of the virtual photon splitting into a qq̄ dipole is k′+/q+ = z ′ .

with M
(d)

1 and M
(d)

2 from Eq. (90). Again we can directly use the ds-dimensional expression for the

numerator

num(z, z ′)
∣∣∣∣
(f)

=
[(

1 − z ′

2(1 − z)

)
δ
ij

(ds)
+ ih

1

2

(
z ′

1 − z

)
ε
ij

(ds)

]
×

[(
1 − 1

2

(
z ′

z + z ′

))
δnm(ds) + ih

1

2

(
z ′

z + z ′

)
εnm
(ds)

]
δ
jm

(ds)

. (103)

For the longitudinal photon there is only one instantaneous diagram, (g) shown in Fig. 15,

contributing to the γ ∗
L → qq̄ LCWF at one-loop level. It is given by

ψ
γ ∗
L

→qq̄

(g) =
∫

d̃k
′
d̃k

′′
(2π )d−1δ(d−1)(�q − �k ′ − �k ′′)

A
γ ∗
L

λ;h,−h(Q , z ′)I(4)

Δ−
01Δ

−
02

, (104)

where the instantaneous vertex I(4) is given by Eq. (37). The phase space measure simplifies to∫
d̃k

′
d̃k

′′
(2π )d−1δ(d−1)(�q − �k ′ − �k ′′) =

∫
dk′+

2k′+(2π )

∫
dd−2k′

(2π )d−2

1

2k′′+

= 1

8πq+

∫ 1

0

dz ′

z ′(1 − z ′)

∫
dd−2k′

(2π )d−2

(105)
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and the LC energy denominators are

Δ−
01 = 1

(−2q+)z ′(1 − z ′)

[
k′2 + M

]
with M = z ′(1 − z ′)

z(1 − z)
Q

2

Δ−
02 = 1

(−2q+)z(1 − z)

[
p2 + Q

2
]
.

(106)

The instantaneous vertex I(4) simplifies to

I(4) = −4g2taαᾱt
a
ᾱβ

√
z(1 − z)z ′(1 − z ′)

(z ′ − z)2
. (107)

Now adding the results from diagrams (e), (f) and (g) together, we get for the full vertex correction

ψ
γ ∗
L

→qq̄

(e)+(f)+(g) = ψ
γ ∗
L

→qq̄

LO (Q , z)

(
g2
r CF

8π2

){[
1

εMS

+ log

(
μ2

Q
2

)]
×

(
−3

2
− log

(α

z

)
− log

(
α

1 − z

))
+ Γ L

}
+ O(ε),

(108)

where the coefficient Γ L has the same expression as in Eq. (93). Finally, adding the one-loop quark
self energy corrections Eqs. (77) and (79) to (108) we get the full expression for one-loop corrected
LCWF for γ ∗

L → qq̄ in the FDH scheme

ψ
γ ∗
L

→qq̄

NLO

∣∣∣∣
FDH

= ψ
γ ∗
L

→qq̄

LO (Q , z)

(
g2
r CF

8π2

){[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]
C
(L)

full

+ 1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2

}
+ O(ε),

(109)

where

C
(L)

full = 1

εMS

+ log

(
μ2

Q
2

)
− 2 log

(
p2 + Q

2

Q
2

)
. (110)

Again for comparison the full result computed in CDR scheme [29] and [34] is

ψ
γ ∗
L

→qq̄

NLO

∣∣∣∣
CDR

= ψ
γ ∗
L

→qq̄

LO (Q , z)

(
g2
r CF

8π2

){[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]
C
(L)

full

+ 1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2
+ 1

2

}
+ O(ε),

(111)

where the only difference is the term 1/2, which was identified as a scheme dependent part in the
CDR calculation.

6. Wave functions for gluon emission

We then move to the wave functions for quark–antiquark–gluon contributions, needed for real
emission contributions to the cross section. Here all the vertices can be, in the FDH scheme, evaluated
directly in ds = 4 dimensions.

6.1. Transverse photon

For transverse photons, we need to calculate the diagrams (h)–(k) shown in Figs. 16–19. The LCWF
for diagram (h) in Fig. 16 can be written as

ψ
γ ∗
T

→qq̄g

(h) =
∫

d̃k
′
(2π )d−1δ(d−1)(�k ′ − �p − �k)A

γ ∗
T

λ;h,−h(k
′, z1 + z2)V

β;α,a

h;σ ,h (m, z2/(z1 + z2))

Δ−
01Δ

−
02

(112)
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Fig. 16. Diagram (h) contributing to the qq̄g-component of the longitudinal virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �k ′ + �p ′ , �k ′ = �p + �k and �q = �p + �p ′ + �k. Momentum fractions

are defined by p+ = z1q
+ , k+ = z2q

+ , p′+ = z3q
+ and k′+ = (z1 + z2)q

+ . The momentum fraction of the transverse

virtual photon splitting into a quark anti-quark dipole is k′+/q+ = z1 + z2, and the natural momentum is k′ = −p′ . The
momentum fraction of the gluon emission is k+/k′+ = z2/(z1 + z2), and the natural momenta for the gluon emission vertex

is m ≡ k − (z2/(z1 + z2))k′ = k + (z2/(z1 + z2))p′ . Note that the momentum fractions are related to each other via relation

z1 + z2 + z3 = 1.

Fig. 17. Diagram (i) contributing to the qq̄g-component of the longitudinal virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �p + �k ′ , �k ′ = �k + �p ′ and �q = �p + �p ′ + �k. Momentum

fractions are defined by p+ = z1q
+ , k+ = z2q

+ , p′+ = z3q
+ and k′+ = (z2 + z3)q

+ . The natural momentum fraction of

the transverse virtual photon splitting into a quark anti-quark dipole is p+/q+ = z1, and the momentum fraction is p. The
momentum fraction of the gluon emission is k+/k′+ = z2/(z2 + z3), and the natural momenta for the gluon emission vertex

is l ≡ k − (z2/(z2 + z3))k′ = k + (z2/(z2 + z3))p. Note that the momentum fractions are related to each other via relation

z1 + z2 + z3 = 1.

Fig. 18. Diagram (j) contributing to the qq̄g-component of the transverse virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �p + �k + �p ′ . Momentum fractions are defined by p+ = z1q
+ ,

k+ = z2q
+ and p′+ = z3q

+ .

where the vertex A
γ ∗
T

λ;h,−h(k
′, z1 + z2) for a transverse photon splitting into a quark–antiquark dipole

is defined in Eq. (65) and the gluon emission vertex V
β;α,a

h;σ ,h (m, z2/(z1 + z2)) from a quark is given by

Eq. (6). The phase space measure simplifies to∫
d̃k

′
(2π )d−1δ(d−1)(�k ′ − �p − �k) = 1

2(z1 + z2)q+ (113)
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Fig. 19. Diagram (k) contributing to the qq̄g-component of the transverse virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �p + �k + �p ′ . Momentum fractions are defined by p+ = z1q
+ ,

k+ = z2q
+ and p′+ = z3q

+ .

and the LC energy denominators are given by

Δ−
01 = 1

(−2q+)z3(z1 + z2)

[
p′2 + Q

2

(h)

]
Δ−

02 = z1 + z2

(−2q+)z1z2

[
m2 + ω(h)

(
p′2 + Q

2

(h)

)]
,

(114)

where

Q
2

(h) = z3(z1 + z2)Q
2, ω(h) = z1z2

z3(z1 + z2)2
. (115)

Using Eqs. (113) and (114) as well as the expression for the vertices, we find

ψ
γ ∗
T

→qq̄g

(h) = +8q+eef (gtaαβ )(z1z3)
1/2

[(
z1 + z2 − 1

2

)
δ
ij

(ds)
− ih

1

2
ε
ij

(ds)

]
×

[(
1 − 1

2

(
z2

z1 + z2

))
δkl(ds) + ih

1

2

(
z2

z1 + z2

)
εkl
(ds)

]
× (−p′)imkε

j
λε

∗l
σ[

p′2 + Q
2

(h)

][
m2 + ω(h)

(
p′2 + Q

2

(h)

)] .

(116)

Similarly, the LCWF for diagram (i) is given by

ψ
γ ∗
T

→qq̄g

(i) =
∫

d̃k
′
(2π )d−1δ(d−1)(�k ′ − �k − �p ′)

A
γ ∗
T

λ;h,−h(p, z1)V
α;β,a

−h;,σ ,−h(l, z2/(z2 + z3))

Δ−
01Δ

−
02

(117)

where the gluon emission vertex V
α;β,a

−h;σ ,−h(l, z2/(z2 + z3)) from an anti-quark is given by Eq. (10). The

phase space measure simplifies to∫
d̃k

′
(2π )d−1δ(d−1)(�k ′ − �k − �p ′) = 1

2(z2 + z3)q+ (118)

and the LC energy denominators are given by

Δ−
01 = 1

(−2q+)z1(z2 + z3)

[
p2 + Q

2

(i)

]
Δ−

02 = z2 + z3

(−2q+)z2z3

[
l2 + ω(i)

(
p2 + Q

2

(i)

)] (119)

with

Q
2

(i) = z1(z2 + z3)Q
2, ω(i) = z2z3

z1(z2 + z3)2
. (120)
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Putting everything together we obtain

ψ
γ ∗
T

→qq̄g

(i) = −8q+eef (gtaαβ )(z1z3)
1/2

[(
z1 − 1

2

)
δ
ij

(ds)
− ih

1

2
ε
ij

(ds)

]
×

[(
1 − 1

2

(
z2

z2 + z3

))
δkl(ds) − ih

1

2

(
z2

z2 + z3

)
εkl
(ds)

]
× pilkεj

λε
∗l
σ[

p2 + Q
2

(i)

][
l2 + ω(i)

(
p2 + Q

2

(i)

)] .

(121)

The LCWF for the instantaneous diagram (j) shown in Fig. 18 is given by

ψ
γ ∗
T

→qq̄g

(j) = −2q+eef (gtaαβ )
z1z2

(z1 + z2)2
(z1z3)

1/2

[
δ
ij

(ds)
+ ihε

ij

(ds)

]
ε∗i

σ ε
j
λ[

m2 + ω(j)

(
p′2 + Q

2

(j)

)] (122)

where the matrix element for the instantaneous interaction is defined in Eq. (41), and the LC energy

denominator is given by Eq. (114) withm = k + (z2/(z1 + z2))p′ and

Q
2

(j) = z3(z1 + z2)Q
2, ω(j) = z1z2

z3(z1 + z2)2
. (123)

Similarly, the LCWF for (k) shown in Fig. 19 is given by

ψ
γ ∗
T

→qq̄g

(k) = +2q+eef (gtaαβ )
z3z2

(z2 + z3)2
(z1z3)

1/2

[
δ
ij

(ds)
− ihε

ij

(ds)

]
ε∗i

σ ε
j
λ[

l2 + ω(k)

(
p2 + Q 2

(k)

)] (124)

where the matrix element for the instantaneous interaction is defined in Eq. (39), and the LC energy

denominator is given by Eq. (119) with l = k + (z2/(z2 + z3))p and

Q 2
(k) = z1(z2 + z3)Q

2, ω(k) = z2z3

z1(z2 + z3)2
. (125)

Finally, adding the results in Eqs. (116), (121), (122) and (124) together, we obtain the full tree

level contribution to qq̄g-component of the transverse virtual photon wave function

ψγ ∗
T

→qq̄g

∣∣∣∣
FDH

= 8q+eef (gtaαβ )(z1z3)
1/2

{
−Σ

ijkl

(h)

p′ imkε
j
λε

∗l
σ[

p′2 + Q
2

(h)

][
m2 + ω(h)

(
p′2 + Q

2

(h)

)]
− Σ

ijkl

(i)

pilkεj
λε

∗l
σ[

p2 + Q
2

(i)

][
l2 + ω(i)

(
p2 + Q

2

(i)

)]
− Σ

ij

(j)

ε∗i
σ ε

j
λ[

m2 + ω(j)

(
p′2 + Q

2

(j)

)] + Σ
ij

(k)

ε∗i
σ ε

j
λ[

l2 + ω(k)

(
p2 + Q 2

(k)

)]
}
,

(126)

where we have introduced the following notation:

Σ
ijkl

(h) =
[(

z1 + z2 − 1

2

)
δ
ij

(ds)
− ih

1

2
ε
ij

(ds)

][(
1 − 1

2

(
z2

z1 + z2

))
δkl(ds)

+ ih
1

2

(
z2

z1 + z2

)
εkl
(ds)

] (127)
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Fig. 20. Diagram (l) contributing to the qq̄g-component of the longitudinal virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �k ′ + �p ′ , �k ′ = �p+ �k and �q = �p+ �p ′ + �k. Momentum fractions are

defined by p+ = z1q
+ , k+ = z2q

+ , p′+ = z3q
+ and k′+ = (z1 + z2)q

+ . The momentum fraction of the virtual photon splitting

into a quark anti-quark dipole is k′+/q+ = z1 + z2 and the momentum fraction of the gluon emission is k+/k′+ = z2/(z1 + z2).

The natural momenta for the gluon emission vertex ism ≡ k−(z2/(z1 +z2))k′ = k+(z2/(z1 +z2))p′ . Note that themomentum

fractions are related to each other via relation z1 + z2 + z3 = 1.

Fig. 21. Diagram (m) contributing to the qq̄g-component of the longitudinal virtual photon wave function at NLO with energy

denominators and kinematics. Momentum conservation: �q = �p+ �k ′ , �k ′ = �k+ �p ′ and �q = �p+ �p ′ + �k. Momentum fractions are

defined by p+ = z1q
+ , k+ = z2q

+ , p′+ = z3q
+ and k′+ = (z2 + z3)q

+ . The momentum fraction of the virtual photon splitting

into a quark anti-quark dipole is p+/q+ = z1 and the momentum fraction of the gluon emission is k+/k′+ = z2/(z2 + z3). The

natural momenta for the gluon emission vertex is l ≡ k − (z2/(z2 + z3))k′ = k + (z2/(z2 + z3))p. Note that the momentum

fractions are related to each other via relation z1 + z2 + z3 = 1.

Σ
ijkl

(i) =
[(

z1 − 1

2

)
δ
ij

(ds)
− ih

1

2
ε
ij

(ds)

][(
1 − 1

2

(
z2

z2 + z3

))
δkl(ds) − ih

1

2

(
z2

z2 + z3

)
εkl
(ds)

]
(128)

Σ
ij

(j) = 1

4

z1z2

(z1 + z2)2

[
δ
ij

(ds)
+ ihε

ij

(ds)

]
(129)

Σ
ij

(k) = 1

4

z3z2

(z2 + z3)2

[
δ
ij

(ds)
− ihε

ij

(ds)

]
. (130)

6.2. Longitudinal photon

For gluon emission from a longitudinal photon state, we calculate the diagrams (l) and (m) shown

in Figs. 20 and 21 contributing to the qq̄g-component of the longitudinal virtual photonwave function

at NLO. There are no instantaneous diagrams to consider, because strictly speaking the longitudinal

photon itself is a part of an instantaneous interaction with the emitting electron.

The LCWF for diagram (l) is given by

ψ
γ ∗
L

→qq̄g

(l) =
∫

d̃k
′
(2π )d−1δ(d−1)(�k ′ − �p − �k)A

γ ∗
L

λ;h,−h(Q , z1 + z2)V
β;α,a

h;σ ,h (m, z2/(z1 + z2))

Δ−
01Δ

−
02

(131)
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where the vertex A
γ ∗
L

λ;h,−h(Q , z) for a longitudinal photon splitting into an quark anti-quark dipole is

defined in Eq. (68) and the gluon emission vertex V
β;α,a

h;σ ,h in Eq. (6). The phase space measure and LC
energy denominators are the same as in Eqs. (113) and (114), and thus we get

ψ
γ ∗
L

→qq̄g

(l) = +8q+eef Q (gtaαβ )z1z3(z1 + z2)

(
z3

z1

)1/2[(
1 − 1

2

(
z2

z1 + z2

))
δ
ij

(ds)

+ ih
1

2

(
z2

z1 + z2

)
ε
ij

(ds)

]
× miε∗j

σ[
p′2 + Q

2

(l)

][
m2 + ω(l)

(
p′2 + Q

2

(l)

)] ,

(132)

where

Q
2

(l) = z3(z1 + z2)Q
2, ω(l) = z1z2

(z1 + z2)2z3
. (133)

Similarly, the LCWF for diagram (m) can be written as

ψ
γ ∗
L

→qq̄g

(m) =
∫

d̃k
′
(2π )d−1δ(d−1)(�k ′ − �k − �p ′)

A
γ ∗
L

λ;h,−h(Q , z1)V
α;β,a

−h;σ ,−h(l, z2/(z2 + z3))

Δ−
01Δ

−
02

, (134)

where the phase spacemeasure and LC energy denominators are given in Eqs. (118) and (119). Putting
everything together we obtain

ψ
γ ∗
L

→qq̄g

(m) = −8q+eef Q (gtaαβ )z1z3(z2 + z3)

(
z1

z3

)1/2

×
[(

1 − 1

2

(
z2

z2 + z3

))
δ
ij

(ds)
− ih

1

2

(
z2

z2 + z3

)
ε
ij

(ds)

]

× liε∗j
σ[

p2 + Q
2

(m)

][
l2 + ω(m)

(
p2 + Q

2

(m)

)] ,

(135)

where

Q
2

(m) = z1(z2 + z3)Q
2, ω(m) = z2z3

(z2 + z3)2z1
. (136)

Finally, summing the contributions in Eqs. (132) and (135) together we get

ψγ ∗
L

→qq̄g

∣∣∣∣
FDH

= 8q+eef Q (gtaαβ )z1z3

[
Σ

ij

(l)

mi[
p′2 + Q

2

(l)

][
m2 + ω(l)

(
p′2 + Q

2

(l)

)]

− Σ
ij

(m)

li[
p2 + Q

2

(m)

][
l2 + ω(m)

(
p2 + Q

2

(m)

)]]
ε∗j

σ ,

(137)

where we have defined

Σ
ij

(l) = (z1 + z2)

(
z3

z1

)1/2[(
1 − 1

2

(
z2

z1 + z2

))
δ
ij

(ds)
+ ih

1

2

(
z2

z1 + z2

)
ε
ij

(ds)

]
(138)

Σ
ij

(m) = (z2 + z3)

(
z1

z3

)1/2[(
1 − 1

2

(
z2

z2 + z3

))
δ
ij

(ds)
− ih

1

2

(
z2

z2 + z3

)
ε
ij

(ds)

]
. (139)
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7. NLO DIS cross section

As explained in Section 3, in order to calculate the DIS cross section we first need to Fourier

transform the final momentum space expressions of the transverse and longitudinal virtual photon

LCWFs tomixed space. Because of the simple algebraic structure,wewill first consider the longitudinal

virtual photon case.

7.1. Longitudinal photon

According to Eq. (54), the mixed space expression for the qq̄-component of the longitudinal virtual

photon amplitude computed in the FDH scheme at NLO accuracy can be written as

|γ ∗
L (q

+,Q 2, λ)〉qq̄ =
∑
h

∑
color

PS+
(2)

∫
xy

(
ψ̃

γ ∗
L

→qq̄

LO

∣∣∣∣
FDH

+ ψ̃
γ ∗
L

→qq̄

NLO

∣∣∣∣
FDH

)

× |q(p+, x, h, α)q̄(p′+, y, −h, β)〉,
(140)

where the two particle plus momentum phase space factor, PS+
(2), defined in Eq. (56) is given by

PS+
(2) = 1

8πq+

∫ 1

0

dz

z(1 − z)
. (141)

The transverse Fourier transformed LO and NLO light cone wave functions for longitudinal virtual

photon in the mixed space are given by

ψ̃
γ ∗
L

→qq̄

LO/NLO

∣∣∣∣
FDH

=
∫

d2p
(2π )2

(
ψ

γ ∗
L

→qq̄

LO/NLO

∣∣∣∣
FDH

)
eip·rxy (142)

with rxy ≡ x − y. Using Eq. (68) together with Eq. (C4) we get

ψ̃
γ ∗
L

→qq̄

LO

∣∣∣∣
FDH

= 4q+eef Q δαβ [z(1 − z)]3/2
∫

d2p
(2π )2

eip·rxy[
p2 + Q

2
]

= 4eef Q δαβ

(2π )
[z(1 − z)]3/2K0

(
Q |rxy|

)
.

(143)

Correspondingly, using Eqs. (109), (C4) and (C5) gives

ψ̃
γ ∗
L

→qq̄

NLO

∣∣∣∣
FDH

= 4q+eef Q δαβ

(2π )

(
g2
r CF

8π2

)
[z(1 − z)]3/2K0

(
Q |rxy|

)
Kγ ∗

L

∣∣∣∣
FDH

, (144)

where the NLO kernel for longitudinal virtual photon written in the mixed space reads

Kγ ∗
L

∣∣∣∣
FDH

=
[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]{
1

εMS

+ log

(
r2xyμ2

4

)
− 2Ψ0(1)

}

+ 1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2
+ O(ε).

(145)

Note again that in the CDR scheme (see [30]) there is an extra factor of 1/2 in the expression of

NLO kernel defined in Eq. (145), which is the scheme dependent part of the one-loop computation

of longitudinal virtual photon LCWF.
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Next, operating on the amplitude in Eq. (140) with the eikonal scattering operator (1 − ŜE) and

finally squaring the expression and simplifying the color algebra as in Eq. (D4) we find

qq̄〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄ = 2q+(2π )δ(q′+ − q+)
8Ncαeme

2
f Q

2

(2π )2

×
∫
xy

∫ 1

0

dzz2(1 − z)2[K0

(|rxy|Q )]2[1 +
(

αsCF

π

)
Kγ ∗

L

∣∣∣∣
FDH

] (
1 − Sxy

) + O(αemα2
s ),

(146)

where we have summed over the helicity and color, introduced the fine structure constants αs =
g2
r /4π and αem = e2/4π and the notation

Sxy = 1

Nc

Tr
(
U[A](x)U†[A](y)) . (147)

Similarly, using Eqs. (55), (56), and (137) themixed space expression for the qq̄g-component of the

longitudinal virtual photon amplitude computed in the FDH scheme at NLO accuracy simplifies to

|γ ∗
L (q

+,Q 2, λ)〉qq̄g =
∑
h,σ

∑
color

PS+
(3)

∫
xy[z]

(
ψ̃γ ∗

L
→qq̄g

∣∣∣∣
FDH

)

× |q(p+, x, h, α)q̄(p′+, y, −h, β)g(k+, z, σ , a)〉,
(148)

where we have denoted by∫
[z]

=
∫

dd−2z (149)

the integral over the gluon phase space, which must be done in d dimensional spacetime. The quark

and antiquark are ‘‘observed’’ particles in the FDH scheme, and thus the integrals over x, y can be

kept in 2 dimensions, simplifying the final state phase space integrations. The three particle plus

momentum phase space factor, PS+
(3), is given by

PS+
(3) = 1

8q+(2π )2

∫ ∞

0

dz1

∫ ∞

0

dz2

∫ ∞

0

dz3
1

z1z2z3
δ(z1 + z2 + z3 − 1), (150)

and

ψ̃γ ∗
L

→qq̄g

∣∣∣∣
FDH

= 8q+eef Qgr taαβz1z3

{
Σ

ij

(l)I i(ryxz, rzx,Q
2

(l), ω(l))

−Σ
ij

(m)I i(rxyz, rzy,Q
2

(m), ω(m))

}
ε∗j

σ .

(151)

Here we have defined the function I i(b, r,Q
2
, ω) as

I i(b, r,Q
2
, ω) = μ2− d

2

∫
d2P

(2π )2

∫
dd−2K
(2π )d−2

KieiP·beiK·r[
P2 + Q

2
][

K2 + ω

(
P2 + Q

2
)] (152)

and introduced the notation

ryxz = ryx −
(

z2

z1 + z2

)
rzx, rxyz = rxy −

(
z2

z2 + z3

)
rzy. (153)

The evaluation of the integral defined in Eq. (152) is outlined in Appendix C, leading to

I i(b, r,Q
2
, ω) = μ2− d

2
i

8
π−d/2ri(r2)1−d/2

∫ ∞

0

du

u
e−uQ

2

e− b2
4u Γ

(
d

2
− 1,

ωr2

4u

)
. (154)
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Unfortunately, the remaining u-integral in Eq. (154) cannot be done analytically for arbitrary dimen-

sion d. In order to proceed further, we first square the amplitude in Eq. (148)with the operator (1−ŜE),

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g

=
∑

h,h′,σ ,σ ′

∑
color

PS+
(3)PS ′+

(3)

∫
xy[z]x′y′[z′]

(
ψ̃γ ∗

L
→qq̄g

∣∣∣∣
FDH

)(
ψ̃γ ∗

L
→qq̄g

∣∣∣∣
FDH

)
∗

× 〈g(k′+, z′, σ ′, b)q̄(�′+, y′, −h′, β ′)q(p′+, x′, h′, α′)|1

− ŜE |q(p+, x, h, α)q̄(�+, y, −h, β)g(k+, z, σ , a)〉.

(155)

The color algebra is written out in detail in Appendix D. Using the result Eq. (D6) from the appendix

we obtain

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (�q,Q 2, λ)〉qq̄g

= 2q+(2π )δ(q′+ − q+)
16(2π )3Ncαeme

2
f Q

2

(2π )2

(
αsCF

π

)∫
xy[z]

×
∫ ∞

0

dz1

∫ ∞

0

dz3

∫ ∞

0

dz2δ(z1 + z2 + z3 − 1)
z1z3

z2
Θ(z1, z2, z3)

(
1 − Sxyz

)
,

(156)

where the function Θ is given by

Θ =
[
Σ

ij

(l)I i(ryxz, rzx,Q
2

(l), ω(l)) − Σ
ij

(m)I i(rxyz, rzy,Q
2

(m), ω(m))

]

×
[
Σkl

(l)Ik(ryxz, rzx,Q
2

(l), ω(l)) − Σkl
(m)Ik(rxyz, rzy,Q

2

(m), ω(m))

]∗ ∑
σ

ε∗j
σ εl

σ

(157)

and Sxyz is defined as

Sxyz = Nc
2

2CFNc

[
SxzSzy − 1

Nc
2
Sxy

]
. (158)

It is important that Sxyz must satisfy the condition Sxyz → Sxy, when z → x or z → y. This guarantees
that the UV divergence in the real and virtual corrections has the same color structure from the target

side, and can thus cancel between the contributions. Performing the sum over the ds-dimensional

gluon transverse polarization vectors and making some algebra Eq. (157) simplifies to

Θ = (μ2)2−d/2

82πd

{(
z3

z1

)(
z1(z1 + z2) + z22

2

)
(r2zx)

3−dJ 2(r2yxz, r
2
zx,Q

2

(l), ω(l))

+
(
z1

z3

)(
z3(z2 + z3) + z22

2

)
(r2zy)

3−dJ 2(r2xyz, r
2
zy,Q

2

(m), ω(m))

− ((z1 + z2)z3 + (z2 + z3)z1)
(rzx · rzy)

(r2zx)
d
2
−1(r2zy)

d
2
−1

J (r2yxz, r
2
zx,Q

2

(l), ω(l))

× J (r2xyz, r
2
zy,Q

2

(m), ω(m))

}
,

(159)
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where we have taken the limit ds → 4 and defined the function J as

J (b2, r2,Q
2
, ω) =

∫ ∞

0

du

u
e−uQ

2

e− b2
4u Γ

(
d

2
− 1,

ωr2

4u

)
. (160)

Now equation (156) can be expressed in a more compact form by introducing the notation

Θ = Θ (l) + Θ (m) + Θ (l)(m), (161)

where

Θ (l) = (μ2)2−d/2

82πd

(
z3

z1

)(
z1(z1 + z2) + z22

2

)∫
[z]
(r2zx)

3−dJ 2(r2yxz, r
2
zx,Q

2

(l), ω(l))
(
1 − Sxyz

)
Θ (m) = (μ2)2−d/2

82πd

(
z1

z3

)(
z3(z2 + z3) + z22

2

)

×
∫

[z]
(r2zy)

3−dJ 2(r2xyz, r
2
zy,Q

2

(m), ω(m))
(
1 − Sxyz

)
(162)

and

Θ (l)(m) = − (μ2)2−d/2

82πd
((z1 + z2)z3 + (z2 + z3)z1)

∫
[z]

(rzx · rzy)
(r2zx)

d
2
−1(r2zy)

d
2
−1

× J (r2yxz, r
2
zx,Q

2

(l)ω(l))J (r2xyz, r
2
zy,Q

2

(m), ω(m))
(
1 − Sxyz

)
.

(163)

Thus we obtain the following expression

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g = 2q+(2π )δ(q′+ − q+)
16(2π )3Ncαeme

2
f Q

2

(2π )2

(
αsCF

π

)

×
∫
xy

∫ ∞

0

dz1

∫ ∞

0

dz2

∫ ∞

0

dz3δ(z1 + z2 + z3 − 1)
z1z3

z2

×
[
Θ (l) + Θ (m) + Θ (l)(m)

]
.

(164)

In Eq. (164), the first and second term are UV-divergent when z → x and z → y, respectively. The
third (cross) term is UV-finite and thus one can immediately take the limit d → 4. In order to make
the UV subtraction between the real qq̄g-component and the virtual qq̄-term (which has an explicit
1/ε) we must add and subtract a term to make this cancellation manifest. Ideally we would subtract
from Eq. (164) the same expression with theWilson line structure

(
1 − Sxyz

)
replaced by its UV limit(

1 − Sxy

)
. This is, however not possible analytically since we have not been able to find an analytical

expression for the required integral (160). However, there is no unique choice for the subtraction term.
Indeed, since the only requirement for the subtraction is that the UV divergence needs to cancel, it is

sufficient for the subtraction to approximate J (b2, r2,Q
2
, ω) by any function that has the same value

in the UV limit r2 → 0 (for any d). Here we find it convenient to use the UV approximation

J (b2, r2,Q
2
, ω)

∣∣∣∣
UV

=
∫ ∞

0

du

u
e−uQ

2

e− b2
4u Γ

(
d

2
− 1

)
e
− r2

2b2ξ

= 2K0

(
Q |b|)Γ

(
d

2
− 1

)
e
− r2

2b2ξ , ξ ∈ �,

(165)

for which

J (b2, r2,Q
2
, ω)

∣∣∣∣
UV,r→0

= J (b2, r2,Q
2
, ω)

∣∣∣∣
r→0

. (166)
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Anaturalway to think of this expression is that in the u-integral (160) the exponential sets u ∼ b2. Our

approximation replaces Γ

(
d
2

− 1, ωr2
4u

)
by Γ

(
d
2

− 1
)
e
− r2

2b2ξ which (a) is independent of u, allowing

for an analytical calculation of the u-integral, (b) has the same value in the UV limit r → 0 and
(c) is also good and smooth approximation for large r2. The choice of the constant ξ is somewhat
arbitrary, here we adopt the value ξ = eγE that leads to simpler expressions in the following. Our
choice is slightly different than that of [30] concerning point (c) above; this difference is discussed in
Appendix E.

Using our choice of J |UV we now define the UV-subtraction terms as

Θ (l)

∣∣∣∣
UV;z→x

= (μ2)2−d/2

82πd

(
z3

z1

)(
z1(z1 + z2) + z22

2

)

×
∫

[z]
(r2zx)

3−dJ 2(r2xy, r
2
zx,Q

2

(l), ω(l))

∣∣∣∣
UV

(
1 − Sxy

)

Θ (m)

∣∣∣∣
UV;z→y

= (μ2)2−d/2

82πd

(
z1

z3

)(
z3(z2 + z3) + z22

2

)

×
∫

[z]
(r2zy)

3−dJ 2(r2xy, r
2
zy,Q

2

(m), ω(m))

∣∣∣∣
UV

(
1 − Sxy

)
.

(167)

Performing the subtraction

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g

= 2q+(2π )δ(q′+ − q+)
16(2π )3Ncαeme

2
f Q

2

(2π )2

(
αsCF

π

)

×
∫
xy

∫ ∞

0

dz1

∫ ∞

0

dz2

∫ ∞

0

dz3δ(z1 + z2 + z3 − 1)
z1z3

z2

×
[(

Θ (l) − Θ (l)

∣∣∣∣
UV;z→x

)
+

(
Θ (m) − Θ (m)

∣∣∣∣
UV;z→y

)

+ Θ (l)(m) + Θ (l)

∣∣∣∣
UV;z→x

+ Θ (m)

∣∣∣∣
UV;z→y

]
,

(168)

we can split the result into UV-finite terms and a divergent one as

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g

= qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-fin

+ qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-div

.

(169)
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The UV-finite part simplifies to

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-fin

= 2q+(2π )δ(q′+ − q+)
8Ncαeme

2
f Q

2

(2π )3

(
αsCF

π

)∫
xyz

×
∫ 1

0

dz1

∫ 1−z1

0

dz2

z2

{

+ z23
(
2z1(z1 + z2) + z22

) 1

r2zx

([K0(Q (l)|R(l)|)]2(1 − Sxyz)

− [K0(Q (l)|rxy|)]2e−r2zx/(r2xye
γE )(1 − Sxy)

)
+ z21

(
2z3(z2 + z3) + z22

) 1

r2zy

([K0(Q (m)|R(m)|)]2(1 − Sxyz)

− [K0(Q (m)|rxy|)]2e−r2zy/(r2xye
γE )(1 − Sxy)

)

− 2
(
(z1 + z2)z1z

2
3 + (z2 + z3)z3z

2
1

) rzx · rzy
(r2zx)(r2zy)

K0(Q (l)|R(l)|)K0(Q (m)|R(m)|)(1 − Sxyz)

}

(170)

with z3 = 1 − z1 − z2 and

R2
(l) = r2yxz + ω(l)r2zx, R2

(m) = r2xyz + ω(m)r2zy. (171)

Here the coefficients for the Q ’s andω’s are given by Eqs. (133) and (136). The arguments of the Bessel

functions in Eq. (170) can be expressed in a more compact form by noting that

Q
2

(l)R
2
(l) = Q

2

(m)R
2
(m) = Q 2R2, (172)

where R2 = z1z3r2xy + z1z2r2zx + z2z3r2zy, leading to

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (�q,Q 2, λ)〉qq̄g

∣∣∣∣
UV-fin

= 2q+(2π )δ(q′+ − q+)
8Ncαeme

2
f Q

2

(2π )3

×
(

αsCF

π

)∫
xyz

∫ 1

0

dz1

∫ 1−z1

0

dz2

z2

{
+z23

(
2z1(z1 + z2) + z22

)

× 1

r2zx

(
[K0(Q |R|)]2(1 − Sxyz) − [K0(Q (l)|rxy|)]2e−r2zx/(r2xye

γE )(1 − Sxy)

)

+ z21
(
2z3(z2 + z3) + z22

) 1

r2zy

(
[K0(Q |R|)]2(1 − Sxyz) − [K0(Q (m)|rxy|)]2e−r2zy/(r2xye

γE )(1 − Sxy)

)

− 2
(
(z1 + z2)z1z

2
3 + (z2 + z3)z3z

2
1

) rzx · rzy
(r2zx)(r2zy)

[K0(Q |R|)]2(1 − Sxyz)

}
.

(173)
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In the UV-divergent term one can now analytically perform the z-integral and the z2-integral, which
results in

qq̄g〈γ ∗
L (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
L (�q,Q 2, λ)〉qq̄g

∣∣∣∣
UV-div

= −2q+(2π )δ(q′+ − q+)
8Ncαeme

2
f Q

2

(2π )2

×
(

αsCF

π

)∫
xy

∫ 1

0

dzz2(1 − z)2[K0(Q |rxy|)]2
[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]

×
{

1

εMS

+ log

(
r2xyμ2

4

)
− 2Ψ0(1)

}
(1 − Sxy).

(174)

This expression precisely cancels the term in square brackets in Eq. (145). After this cancellation we
can write the total cross section for longitudinal virtual photon at NLO accuracy as a sum of two finite
terms

σγ ∗
L [A] = σγ ∗

L

∣∣∣∣
qq̄

+ σγ ∗
L

∣∣∣∣
qq̄g

, (175)

where the finite contribution to the cross section coming from the qq̄-component is

σγ ∗
L

∣∣∣∣
qq̄

= 4Nc

4αeme
2
f Q

2

(2π )2

∫
xy

∫ 1

0

dzz2(1 − z)2[K0

(
Q |rxy|

)]2
×

{
1 +

(
αsCF

π

)[
1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2

]} (
1 − Sxy

) (176)

and the subtracted qq̄g-component

σγ ∗
L

∣∣∣∣
qq̄g

= 4Nc

4αeme
2
f Q

2

(2π )3

(
αsCF

π

)∫
xyz

∫ 1

0

dz1

∫ 1−z1

0

dz2

z2

×
{
+z23

(
2z1(z1 + z2) + z22

) 1

r2zx

(
[K0(Q |R|)]2(1−Sxyz) −[K0(Q (l)|rxy|)]2e−r2zx/(r2xye

γE )

× (1 − Sxy)
) + z21

(
2z3(z2 + z3) + z22

) 1

r2zy

([K0(Q |R|)]2(1 − Sxyz)

− [K0(Q (m)|rxy|)]2e−r2zy/(r2xye
γE )(1 − Sxy)

)
− 2

(
(z1 + z2)z1z

2
3 + (z2 + z3)z3z

2
1

)
× rzx · rzy

(r2zx)(r2zy)
[K0(Q |R|)]2(1 − Sxyz)

}
.

(177)

Now that these expressions are UV finite, all the coordinate integrals can be performed in 2 transverse
dimensions.

Here we should emphasize that the scheme dependent UV contribution in Eq. (174) precisely
cancels the scheme dependent UV part obtained in Eq. (146), and the remaining finite contribution in
Eq. (146) leads to the scheme independent final result for qq̄-part in Eq. (176).Wehave confirmed both
analytically and also numerically that our final results for the cross section in Eq. (176) and Eq. (177)
agree with those of G. Beuf [30].
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In addition, we should note that in the z2 → 0 limit the part inside the curly brackets in Eq. (177)
reduces to

2z21z
2
3 [K0(Q |rxy|)]2

[
r2xy

r2zxr2zy
(1 − Sxyz) − 1

r2zx
e−r2zx/(r2xye

γE )(1 − Sxy)

− 1

r2zy
e−r2zy/(r2xye

γE )(1 − Sxy)

]
.

(178)

Noting that (1 − Sxy) does not depend on z and using the integral (this is the same integral that is
studied in Appendix E)∫

z

[
r2xy

r2zxr2zy
− 1

r2zx
e−r2zx/(r2xye

γE ) − 1

r2zy
e−r2zy/(r2xye

γE )

]
= 0 (179)

the form Eq. (178) can, under the integral over z in Eq. (177), be replaced by

2z21z
2
3 [K0(Q |rxy|)]2

r2xy
r2zxr2zy

[
(1 − Sxyz) − (1 − Sxy)

]
, (180)

which is recognized as the leading order wave function times the r.h.s. of the BK equation (or the
first equation in the Balitsky hierarchy). Note that it is precisely to achieve the cancellation Eq. (179)
and thus to obtain the conventional BK equation that we chose the constant ξ (see Eq. (165)) to have
the value eγE . Thus we see that the z2-integral exhibits a small-x divergence that must be absorbed
into a renormalization group evolution of the target, and that this can be done using the BK equation
e.g. similarly as is done in [31].

7.2. Transverse photon

Let us then consider the case of transverse virtual photon. Similarly as in the longitudinal photon
case, the mixed space expression for the qq̄-component of the transverse virtual photon amplitude
computed in the FHD scheme at NLO accuracy is given by

|γ ∗
T (q

+,Q 2, λ)〉qq̄ =
∑
h,λ

∑
color

PS+
(2)

∫
d2x

∫
d2y

(
ψ̃

γ ∗
T

→qq̄

LO

∣∣∣∣
FDH

+ ψ̃
γ ∗
T

→qq̄

NLO

∣∣∣∣
FDH

)
× |q(p+, x, h, α)q̄(p′+, y, −h, β)〉.

(181)

Here the factor PS+
(2) is given in Eq. (141), and the transverse Fourier transformed LO and NLO LCWF’s

for transverse virtual photon in the mixed space can be written as

ψ̃
γ ∗
T

→qq̄

LO/NLO

∣∣∣∣
FDH

=
∫

d2p
(2π )2

(
ψ

γ ∗
T

→qq̄

LO/NLO

∣∣∣∣
FDH

)
eip·rxy . (182)

The momentum space expressions for the LO and NLO wave functions are given in Eqs. (65) and (95),
respectively. Using the result given in Eqs. (C4), (C6) and (C7) we obtain for the LO part

ψ̃
γ ∗
T

→qq̄

LO

∣∣∣∣
FDH

= 4iq+eef Q δαβ

(2π )
z(1 − z)

[(
z − 1

2

)
δij − ih

1

2
ε ij

]
(rxy)iε

j
λ

|rxy| K1

(
Q |rxy|

)
(183)

and similarly for the NLO part

ψ̃
γ ∗
T

→qq̄

NLO

∣∣∣∣
FDH

= 4iq+eef Q δαβ

(2π )

(
αsCF

2π

){
z(1 − z)

[(
z − 1

2

)
δij − ih

1

2
ε ij

]
Kγ ∗

T

∣∣∣∣
FDH

}

× (rxy)iε
j
λ

|rxy| K1

(
Q |rxy|

)
,

(184)
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where the NLO kernel in the FDH scheme simplifies to

Kγ ∗
T

∣∣∣∣
FDH

=
[
3

2
+ log

(α

z

)
+ log

(
α

1 − z

)]{
1

εMS

+ log

(
r2xyμ2

4

)
− 2Ψ0(1)

}

+ 1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2
+ O(ε).

(185)

Note that after the Fourier transform to mixed space (but not before), the NLO correction Kγ ∗
T for

transverse photons is the same one as for the longitudinal ones in Eq. (145). Squaring the LCWF in

Eq. (181) (summed over the helicity) together with the eikonal scattering operator (1 − ŜE) we find
the final (unsubtracted) result for the qq̄ part of the cross section as

qq̄〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄ = 2q+(2π )δ(q′+ − q+)
4Ncαeme

2
f Q

2

(2π )2

×
∫
xy

∫ 1

0

dz[K1

(
Q |rxy|

)]2z(1 − z)

{
1 − 2z(1 − z)

}[
1 +

(
αsCF

π

)
Kγ ∗

T

∣∣∣∣
FDH

]

× (
1 − Sxy

) + O(αemα2
s ).

(186)

The mixed space expression for the qq̄g-component of the transverse virtual photon amplitude
computed in the FDH scheme at NLO accuracy is given by

|γ ∗
T (q

+,Q 2, λ)〉qq̄g =
∑
h,σ ,λ

∑
color

PS+
(3)

∫
xy[z]

(
ψ̃γ ∗

T
→qq̄g

∣∣∣∣
FDH

)
× |q(p+, x, h, α)q̄(p′+, y, −h, β)g(k+, z, σ , a)〉,

(187)

where PS+
(3) is given in Eq. (150), and from Eq. (126) the NLO expression of transverse virtual photon

LCWF in the mixed space simplifies to

ψ̃γ ∗
T

→qq̄g

∣∣∣∣
FDH

= −8eef gr t
a
αβ (z1z3)

1/2

{
Σ

ijkl

(h) I ik(ryxz, rzx,Q
2

(h), ω(h))ε
∗l
σ

+ Σ
ijkl

(i) I ik(rxyz, rzy,Q
2

(i), ω(i))ε
∗l
σ

+ Σ
ij

(j)I(ryxz, rzx,Q
2

(j), ω(j))ε
∗i
σ

−Σ
ij

(k)I(rxyz, rzy,Q
2

(k), ω(k))ε
∗i
σ

}
ε
j
λ.

(188)

Similarly as in the case of longitudinal photon, we have introduced the notation

I ik(b, r,Q
2
, ω) = μ2− d

2

∫
d2P

(2π )2

∫
dd−2K
(2π )d−2

PiKkeiP·beiK·r[
P2 + Q

2
][

K2 + ω

(
P2 + Q

2
)] (189)

and

I(b, r,Q
2
, ω) = μ2− d

2

∫
d2P

(2π )2

∫
dd−2K
(2π )d−2

eiP·beiK·r[
K2 + ω

(
P2 + Q

2
)] . (190)
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Squaring the amplitude in Eq. (187) with the eikonal operator (1 − ŜE), and using the result Eq. (D6)
we get

qq̄g 〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g = 2q+(2π )δ(q′+ − q+)
16(2π )3Ncαeme

2
f

(2π )2

(
αsCF

π

)
∫
xy[z]

∫ ∞

0

dz1

∫ ∞

0

dz3

∫ ∞

0

dz2

z2
δ(z1 + z2 + z3 − 1)Θ(z1, z2, z3)

(
1 − Sxyz

)
.

(191)

Here, following the same notation as in Section 7.1, we have defined the function Θ as

Θ =
∑
σ ,λ

[
Σ

ijkl

(h) I ik(ryxz, rzx,Q
2

(h), ω(h))ε
∗l
σ + Σ

ijkl

(i) I ik(rxyz, rzy,Q
2

(i), ω(i))ε
∗l
σ

+Σ
ij

(j)I(ryxz, rzx,Q
2

(j), ω(j))ε
∗i
σ − Σ

ij

(k)I(rxyz, rzy,Q
2

(k), ω(k))ε
∗i
σ

]

×
[
Σmnrs

(h) Imr (ryxz, rzx,Q
2

(h), ω(h))ε
∗s
σ + Σmnrs

(i) Imr (rxyz, rzy,Q
2

(i), ω(i))ε
∗s
σ

+Σmn
(j) I(ryxz, rzx,Q

2

(j), ω(j))ε
∗m
σ − Σmn

(k) I(rxyz, rzy,Q
2

(k), ω(k))ε
∗m
σ

]
∗εj

λε
∗n
λ

(192)

which corresponds to the full qq̄g-sector wave function (see Eq. (188)) squared and summed over
the gluon and photon polarization vectors. The expression in (192) can be simplified further by
introducing the notation

Θ = Θ (h) + Θ (i) + Θ (j) + Θ (k) + Θ (h)(i)(j)(k) (193)

with

qq̄g 〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g = 2q+(2π )δ(q′+ − q+)
16(2π )3Ncαeme

2
f

(2π )2

(
αsCF

π

)
∫
xy

∫ ∞

0

dz1

∫ ∞

0

dz3

∫ ∞

0

dz2

z2
δ(z1 + z2 + z3 − 1)Θ(z1, z2, z3),

(194)

where the individual terms coming from the wave function squared are given by

Θ (h) =
∫

[z]

{
Σ

ijkl

(h) I ik(ryxz, rzx,Q
2

(h), ω(h))

(
Σ

mjrl

(h) Imr (ryxz, rzx,Q
2

(h), ω(h))

)∗} (
1 − Sxyz

)
(195)

Θ (i) =
∫

[z]

{
Σ

ijkl

(i) I ik(rxyz, rzy,Q
2

(i), ω(i))

(
Σ

mjrl

(i) Imr (rxyz, rzy,Q
2

(i), ω(i))

)∗} (
1 − Sxyz

)
(196)

Θ (j) =
∫

[z]

{
Σ

ij

(j)I(ryxz, rzx,Q
2

(j), ω(j))

(
Σ

ij

(j)I(ryxz, rzx,Q
2

(j), ω(j))

)∗} (
1 − Sxyz

)
(197)

Θ (k) =
∫

[z]

{
Σ

ij

(k)I(rxyz, rzy,Q
2

(k), ω(k))

(
Σ

ij

(k)I(rxyz, rzy,Q
2

(k), ω(k))

)∗} (
1 − Sxyz

)
(198)
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and the possible cross terms:

Θ (h)(i)(j)(k) =2

∫
[z]

�e

[
Σ

ijkl

(h) I ik(ryxz, rzx,Q
2

(h), ω(h))

(
Σ

mjrl

(i) Imr (rxyz, rzy,Q
2

(i), ω(i))

)∗

+
(
Σ

ijkl

(h) I ik(ryxz, rzx,Q
2

(h), ω(h)) + Σ
ijkl

(i) I ik(rxyz, rzy,Q
2

(i), ω(i))

)
×

(
Σ

lj

(j)I(ryxz, rzx,Q
2

(j), ω(j)) − Σ
lj

(k)I(rxyz, rzy,Q
2

(k), ω(k))

)∗

−Σ
ij

(j)I(ryxz, rzx,Q
2

(j), ω(j))

(
Σ

ij

(k)I(rxyz, rzy,Q
2

(k), ω(k))

)∗] (
1 − Sxyz

)
.

(199)

The contributions in Eqs. (195), (196), (197) and (198) correspond to the squared amplitudes from
diagrams (h), (i), (j) and (k) respectively, and the contribution in Eq. (199) contains the cross terms of
these diagrams.

In order to simplify the individual contributions above we note that

Q
2

(h) = Q
2

(j) = Q
2

(l), Q
2

(i) = Q
2

(k) = Q
2

(m), (200)

and

ω(h) = ω(j) = ω(l), ω(i) = ω(k) = ω(m). (201)

This implies that

Q
2

(h)R
2
(h) = Q

2

(i)R
2
(i) = Q 2R2, Q

2

(j)R
2
(j) = Q

2

(k)R
2
(k) = Q 2R2, (202)

where R2 is defined in Eq. (172). Using the definitions in Eq. (126) and result derived in Eq. (C17) we
obtain

Θ(h) = F (z1, z2, z3)(μ
2)2−d/2

162πd

∫
[z]
(ryxz · ryxz)(r2zx)3−dL2(r2yxz, r

2
zx,Q

2

(h), ω(h))
(
1 − Sxyz

)
(203)

and

Θ(i) = G(z1, z2, z3)(μ
2)2−d/2

162πd

∫
[z]
(rxyz · rxyz)(r2zy)3−dL2(r2xyz, r

2
zy,Q

2

(i), ω(i))
(
1 − Sxyz

)
, (204)

where

(ryxz · ryxz) = R2

z3(z1 + z2)
− z1z2

z3(z1 + z2)2
r2zx

(rxyz · rxyz) = R2

z1(z2 + z3)
− z3z2

z1(z2 + z3)2
r2zy.

(205)

The two functions F and G above are given by

F (z2, z3) =
[(

z1 + z2 − 1

2

)2

+ 1

4

][(
1 − 1

2

(
z2

z1 + z2

))2

+ 1

4

(
z2

z1 + z2

)2]

= 1

4(z1 + z2)2

[
1 − 2z3(1 − z3)

][
2z1(z1 + z2) + z22

] (206)
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and

G(z2, z1) =
[(

z1 − 1

2

)2

+ 1

4

][(
1 − 1

2

(
z2

z2 + z3

))2

+ 1

4

(
z2

z2 + z3

)2]

= 1

4(z2 + z3)2

[
1 − 2z1(1 − z1)

][
2z3(z2 + z3) + z22

]
,

(207)

and, similarly as in the longitudinal case, we have defined the function

L(b2, r2,Q
2
, ω) =

∫ ∞

0

du

u2
e−uQ

2

e− b2
4u Γ

(
d

2
− 1,

ωr2

4u

)
. (208)

Now the UV divergences in the Θ(h) and Θ(i) terms can be subtracted in the same way as in the
longitudinal photon case. Introducing the subtraction terms

Θ (h)

∣∣∣∣
UV;z→x

= F (z1, z2, z3)(μ
2)2−d/2

162πd

∫
[z]

[
r2xy(r

2
zx)

3−d

]
L2(r2xy, r

2
zx,Q

2

(h), ω(h))

∣∣∣∣
UV

(
1 − Sxy

)
(209)

and

Θ (i)

∣∣∣∣
UV;z→y

= G(z1, z2, z3)(μ
2)2−d/2

162πd

∫
[z]

[
r2xy(r

2
zy)

3−d

]
L2(r2xy, r

2
zy,Q

2

(i), ω(i))

∣∣∣∣
UV

(
1 − Sxy

)
, (210)

where

L(b2, r2,Q
2
, ω)

∣∣∣∣
UV

=
∫ ∞

0

du

u2
e−uQ

2

e− b2
4u Γ

(
d

2
− 1

)
e
− r2

2b2ξ

= 4Q

|b| K1

(
Q |b|)Γ

(
d

2
− 1

)
e
− r2

2b2ξ , ξ ∈ �
(211)

we can write down the UV subtracted contributions for (203) and (204)

Θ (h) − Θ (h)

∣∣∣∣
UV;z→x

= Q 2

4(2π )4
f (z1, z2, z3)

∫
z

[(
1

r2zx
− z1z2

(z1 + z2)

1

R2

)
[K1(Q |R|)]2 (1 − Sxyz

)

− 1

r2zx
[K1(Q (h)|rxy|)]2e−r2zx/(r2xyξ )

(
1 − Sxy

)] (212)

and

Θ (i) − Θ (i)

∣∣∣∣
UV;z→y

= Q 2

4(2π )4
g(z1, z2, z3)

∫
z

[(
1

r2zy
− z3z2

(z2 + z3)

1

R2

)
[K1(Q |R|)]2 (1 − Sxyz

)

− 1

r2zy
[K1(Q (i)|rxy|)]2e−r2zy/(r2xyξ )

(
1 − Sxy

)] (213)

with

f (z1, z2) = z3

(z1 + z2)

[
1 − 2z3(1 − z3)

][
2z1(z1 + z2) + z22

]

g(z1, z2) = z1

(z2 + z3)

[
1 − 2z1(1 − z1)

][
2z3(z2 + z3) + z22

]
.

(214)

The contributions in Eqs. (197), (198) and (199) are all UV-finite and hence one can perform the
computation in four dimension. The calculation of these terms is lengthy but straightforward. Thus in
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here we only show the final result and include the detailed derivation in Appendix F:

Θ

∣∣∣∣
UV-finite

= Q 2

4(2π )4

∫
z

[K1(Q |R|)]2
R2

[
−2z1z3

{[
(1 − z1)

2 + z21

]
+

[
(1 − z3)

2 + z23

]}

× R2(rzx · rzy)
r2zxr2zy

+ 2z1(z2z3)
2

(z1 + z2)

(rzx · rzy)
r2zx

+ 2z3(z2z1)
2

(z2 + z3)

(rzx · rzy)
r2zy

+ z1z2z3

{
(z1 + z2)

2 + (z2 + z3)
2 + 2z21 + 2z23 + (z1z3)

2

(z1 + z2)2

+ (z1z3)
2

(z2 + z3)2
− z2

[
(z1 + z2)

(z2 + z3)
+ (z2 + z3)

(z1 + z2)

]}] (
1 − Sxyz

)
.

(215)

Adding all the pieces together gives the result

qq̄g〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g = 2q+(2π )δ(q′+ − q+)
16(2π )3Ncαeme

2
f

(2π )2

×
(

αsCF

π

)∫
xy

∫ ∞

0

dz1

∫ ∞

0

dz3

∫ ∞

0

dz2

z2
δ(z1 + z2 + z3 − 1)

×
{[

Θ (h) − Θ (h)

∣∣∣∣
UV;z→x

]
+

[
Θ (i) − Θ (i)

∣∣∣∣
UV;z→y

]

+ Θ

∣∣∣∣
UV-finite

+ Θ (h)

∣∣∣∣
UV;z→x

+ Θ (i)

∣∣∣∣
UV;z→y

}
.

(216)

Dividing this expression into finite and UV-divergent parts as

qq̄g 〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g

= qq̄g〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-fin

+ qq̄g〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-div

(217)

and carrying out some algebra we obtain

qq̄g 〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-fin

= 2q+(2π )δ(q′+ − q+)
4NcαemQ

2e2f

(2π )3

(
αsCF

π

)

×
∫
xyz

∫ 1

0

dz1

∫ 1−z1

0

dz2

z2

{
f

r2zx

[
[K1(Q |R|)]2 (1 − Sxyz

) − [K1(Q (h)|rxy|)]2e−r2zx/(r2xyξ )
(
1 − Sxy

)]

+ g

r2zy

[
[K1(Q |R|)]2 (1 − Sxyz

) − [K1(Q (i)|rxy|)]2e−r2zy/(r2xyξ )
(
1 − Sxy

)] + [K1(Q |R|)]2
R2

Π
(
1 − Sxyz

)}
,

(218)
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where

Π = − 2z1z3

{[
(1 − z1)

2 + z21

]
+

[
(1 − z3)

2 + z23

]}
R2(rzx · rzy)

r2zxr2zy
+ 2z1(z2z3)

2

(z1 + z2)

(rzx · rzy)
r2zx

+ 2z3(z2z1)
2

(z2 + z3)

(rzx · rzy)
r2zy

+ z1z2z3

{
(z1 + z2)

2 + (z2 + z3)
2 + 2z21 + 2z23 + (z1z3)

2

(z1 + z2)2

+ (z1z3)
2

(z2 + z3)2
− z2

[
(z1 + z2)

(z2 + z3)
+ (z2 + z3)

(z1 + z2)

]
−

[
1 − 2z3(1 − z3)

][
2z1(z1 + z2) + z22

]
(z1 + z2)2

−

[
1 − 2z1(1 − z1)

][
2z3(z2 + z3) + z22

]
(z2 + z3)2

}

(219)

and

qq̄g〈γ ∗
T (q

′+,Q 2, λ′)|1 − ŜE |γ ∗
T (q

+,Q 2, λ)〉qq̄g
∣∣∣∣
UV-div

= −2q+(2π )δ(q′+ − q+)
4Ncαeme

2
f Q

2

(2π )2

×
(

αsCF

π

)∫
xy

∫ 1

0

dz[K1(Q |rxy|)]2z(1 − z)

{
1 − 2z(1 − z)

}[
3

2
+ log

(α

z

)

+ log

(
α

1 − z

)]{
1

εMS

+ log

(
r2xyμ2

4

)
− 2Ψ0(1)

} (
1 − Sxy

)
.

(220)

Like in the longitudinal photon case, the last expression above cancels theUV-divergent term in square
brackets in Eq. (186). Finally thanks to Eq. (60), the total cross section for transverse virtual photon
(averaged over the two incoming transverse virtual photon polarization states) at NLO accuracy is
given by

σγ ∗
T [A] = σγ ∗

T

∣∣∣∣
qq̄

+ σγ ∗
T

∣∣∣∣
qq̄g

, (221)

where the qq̄-term is

σγ ∗
T

∣∣∣∣
qq̄

= 4Nc

αeme
2
f Q

2

(2π )2

∫
xy

∫ 1

0

dz[K1

(
Q |rxy|

)]2z(1 − z)

{
1 − 2z(1 − z)

}

×
{
1 +

(
αsCF

π

)[
1

2
log2

(
z

1 − z

)
− π2

6
+ 5

2

]} (
1 − Sxy

) (222)

and for the qq̄g-component we find
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σγ ∗
T

∣∣∣∣
qq̄g

= 4Nc

αeme
2
f Q

2

(2π )3

(
αsCF

π

)∫
xyz

∫ 1

0

dz1

∫ 1−z1

0

dz2

z2

×
{

f

r2zx

[
[K1(Q |R|)]2 (1 − Sxyz

) − [K1(Q (h)|rxy|)]2e−r2zx/(r2xyξ )
(
1 − Sxy

)]

+ g

r2zy

[
[K1(Q |R|)]2 (1 − Sxyz

) − [K1(Q (i)|rxy|)]2e−r2zy/(r2xyξ )
(
1 − Sxy

)]

+ [K1(Q |R|)]2
R2

Π
(
1 − Sxyz

)}
.

(223)

Again, as for the longitudinal case the scheme dependent UV contribution in Eq. (220) cancels
the scheme dependent UV part obtained in Eq. (186), and the remaining finite contribution in
Eq. (186) leads to the scheme independent final result for qq̄-part in Eq. (222). In addition, like in
the longitudinal case, we have confirmed both analytically and also numerically that our final results
for the cross section in Eq. (222) and Eq. (223) agree with [30], and we have checked that the part
inside the curly brackets in Eq. (223) reduces to the r.h.s. of the BK equation.

8. Conclusions and outlook

As a concrete result, we have in this paper derived the NLO cross section for deep inelastic scatter-
ing in the dipole picture, with the final results given in Eq. (175) (with Eqs. (176) and (177)) for the
longitudinal and in Eq. (221) (with Eqs. (222) and (223)) for the transverse virtual photon polarization.
We have confirmed both analytically and numerically that our results agree with those of G. Beuf
in [30]. Being derived in a different regularization scheme, they are an indication of the scheme-
independence of this result. As a small difference, we believe that our choice of the subtraction term
to cancel the UV divergence is, while equivalent, somewhat more benign numerically.

Nevertheless, the most important purpose of this paper has been to develop calculational tech-
niques that should enable further NLO calculations to be more efficiently performed in LCPT. We
have demonstrated how to express the elementary vertices of the theory systematically in terms of
their natural variables, the center-of-mass splittingmomentum, splittingmomentum fraction and the
helicities of the particles involved. Using our expressions the evaluation of the scheme-independent
parts of the cross section reduces to multiplications of 2-dimensional vectors and tensors, and simple
scalar integrations over longitudinal momentum fractions. They can be easily automated by symbolic
manipulation programs such as form [42] or FeynCalc [43]. The scheme dependent parts require
some more work, where at one point one must reduce expressions of Dirac matrices contracted with
(ds−2)- and (d−2)-dimensional Kronecker deltas. However, this procedure also is readily automated.
We hope that the method developed here can be useful in future work. As an immediate future
application with clear phenomenological relevance, the next step is to include quark masses in the
DIS cross section calculation.
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Appendix A. Decomposition of LC vertices

In this section we show how to decompose the general LC vertex to the symmetric and antisym-
metric parts as discussed in Section 2.2. Themost general form for the LC vertex (without the coupling
and color structure) in the LC gauge is given by

χ̄h(p
′)ε/λ(q)ωs(p) = qiε

j
λ

q+ δijχ̄h(p
′)γ +ωs(p) − εi

λχ̄h(p
′)γ iωs(p), (A1)

where χ and ω can be either positive or negative energy massless spinors, i.e. u or v. For massless
quarks the spinors χ and ω satisfy the Dirac equations:

p/ωs(p) = (
γ +p− + γ −p+ − γ jpj

)
ωs(p) = 0,

χ̄h(p
′)p/′ = χ̄h(p

′)
(
γ +p′− + γ −p′+ − γ jp′j

)
= 0.

(A2)

Applying the Clifford algebra one can write

χ̄h(p
′)γ +γ iγ −ωs(p) = −χ̄h(p

′)γ +γ −γ iωs(p) = −2χ̄h(p
′)γ iωs(p) + χ̄h(p

′)γ −γ +γ iωs(p) (A3)

which gives

− 2χ̄h(p
′)γ iωs(p) = χ̄h(p

′)γ +γ iγ −ωs(p) − χ̄h(p
′)γ −γ +γ iωs(p). (A4)

Furthermore, using the Dirac equation (A2) we find

χ̄h(p
′)γ +γ iγ −ωs(p) = 1

p+ χ̄h(p
′)γ +γ iγ −p+ωs(p)

= − 1

p+ χ̄h(p
′)γ +γ i

(
γ +p− − γ jpj

)
ωs(p)

(A5)

and

χ̄h(p
′)γ −γ +γ iωs(p) = 1

p′+ χ̄h(p
′)γ −p′+γ +γ iωs(p)

= − 1

p′+ χ̄h(p
′)
(
γ +p′− − γ jp′j

)
γ +γ iωs(p).

(A6)

Since γ +γ + = 0, these simplify to

χ̄h(p
′)γ +γ iγ −ωs(p) = pj

p+ χ̄h(p
′)γ +γ iγ jωs(p)

χ̄h(p
′)γ −γ +γ iωs(p) = − p′j

p′+ χ̄h(p
′)γ +γ jγ iωs(p).

(A7)

Combining Eqs. (A4) and (A7) we obtain

− 2χ̄h(p
′)γ iωs(p) = pj

p+ χ̄h(p
′)γ +γ iγ jωs(p) + p′j

p′+ χ̄h(p
′)γ +γ jγ iωs(p). (A8)

In order to separate the symmetric and anti-symmetric parts in Eq. (A8) we use the identity

γ iγ j = −δij + 1

2
[γ i, γ j], (A9)
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which gives

χ̄h(p
′)γ iωs(p) =

[
pj

2p+ + p′j

2p′+

]
δijχ̄h(p

′)γ +ωs(p) −
[

pj

4p+ − p′j

4p′+

]

× χ̄h(p
′)γ +[γ i, γ j]ωs(p).

(A10)

Inserting the above expression into Eq. (A1) gives

χ̄h(p
′)ε/λ(q)ωs(p) =

[
qi

q+ − pi

2p+ − p′ i

2p′+

]
ε
j
λδ

ijχ̄h(p
′)γ +ωs(p) −

[
pi

4p+ − p′ i

4p′+

]

× ε
j
λχ̄h(p

′)γ +[γ i, γ j]ωs(p).

(A11)

This equation is valid in arbitrary spacetime dimensions and automatically includes the plus and
transverse momentum conservation.

In the particular case d = 4, this expression can be very compactly expressed in the helicity basis
by first nothing that the commutator of Dirac transverse gamma matrices can be expressed as

[γ i, γ j] = −4iε ijS3, (A12)

where ε ij is the anti-symmetric rank-two Levi-Civita tensor, and S3 is the light cone helicity operator
acting on the good component of the spinors3

S3u
(G)

h (p+) = h

2
u
(G)

h (p+)

S3v
(G)

h (p+) = −h

2
v
(G)

h (p+),

(A13)

where we denote the two fermion spin states ±1/2 by h = ± for notational simplicity. In addition, it
is easy to show that the following relation between the complete spinors and good component of the
spinors is satisfied

χ̄h(p
′)γ +ωs(p) = χ̄

(G)

h (p′+)γ +ω(G)
s (p+). (A14)

Therefore, in four dimensions we find a very useful simplification of the Dirac algebra in Eq. (6)

ūh′ (p′)γ +[γ i, γ j]uh(p) = −4iε ijūh′ (p′)γ +S3uh(p) = −2ihε ijūh′ (p′)γ +uh(p). (A15)

Appendix B. Transverse integrals

B.1. Transversely polarized photon

In order to compute the vertex corrections for the transversely polarized virtual photon one must
evaluate the following rank-3 (r3) tensor integral

I (r3)(r, p̂, q̂;M1,M2) = (4π )

∫
m

mi(m − p̂)j(m − q̂)k

D0D1

, (B1)

3 The projections to the good (G) and bad (B) components of a complete spinor field Ψ are defined as PG/BΨ = ΨG/B , where

PG = γ −γ +/2 and PB = γ +γ −/2 (see e.g. [4]).
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where the denominators D0 and D1 are defined as

D0 = m2 + M1, D1 = (m − r)2 + M2 (B2)

and the integral measure in d⊥ = 2 − 2ε dimensions is∫
m

= (μ2)1−d⊥/2

∫
dd⊥m
(2π )d⊥

= μ2ε

∫
d2−2εm
(2π )2−2ε

. (B3)

Using the standard Feynman parametrization with

(1 − x)D0 + xD1 = (m − xr)2 + x(1 − x)r2 + (1 − x)M1 + xM2, (B4)

and performing the change of variables n = m − xr gives

I (r3)(r, p̂, q̂;M1,M2) = (4π )

∫ 1

0

dx

∫
n

(n + xr)i(n + xr − p̂)i(n + xr − q̂)k

(n2 + M)2
, (B5)

where

M = x(1 − x)r2 + (1 − x)M1 + xM2. (B6)

Upon the integration over transverse momentum n the numerator simplifies to

(n + xr)i(n + xr − p̂)j(n + xr − q̂)k = n2

d⊥

{
xriδjk +(xr − p̃)jδik + (xr − q̃)kδij

}

+ xri(xr − p̂)j(xr − q̂)k + O(n and n3),

(B7)

where the linear and cubic terms in n goes to zero in dimensional regularization framework.
Performing the transverse integrals over n with standard momentum integrals that we have listed
in [35], and expanding in power of ε we obtain

I (r3)(r, p̂;M1,M2) = I (r3)
∣∣∣∣
UV

+ I (r3)
∣∣∣∣
f

+ I (r3)
∣∣∣∣
F

+ O(ε), (B8)

where the UV-divergent part of the integrals becomes

I (r3)
∣∣∣∣
UV

= 1

2

[
1

εMS

+ log

(
μ2

Q
2

)]∫ 1

0

dx
(
xriδjk + (xr − p̃)jδik + (xr − q̃)kδij

)

= 1

4

[
1

εMS

+ log

(
μ2

Q
2

)] (
r iδjk + (r − 2p̃)jδik + (r − 2q̃)kδij

) (B9)

and the UV-finite parts

I (r3)
∣∣∣∣
f

= 1

2

∫ 1

0

dx
(
xΔ

(r3)

f1 + Δ
(r3)

f2

)
log

(
Q

2

M

)
, (B10)

I (r3)
∣∣∣∣
F

=
∫ 1

0

dx
x3Δ

(r3)

F1 + x2Δ
(r3)

F2 + xΔ
(r3)

F3

M
. (B11)
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Here the coefficients Δ
(r3)

Fi and Δ
(r3)

fj are given by

Δ
(r3)

F1 = r ir jrk

Δ
(r3)

F2 = −r i(r jq̂k + rkp̂j)

Δ
(r3)

F3 = r ip̂jq̂k

Δ
(r3)

f1 = r iδjk + r jδik + rkδij

Δ
(r3)

f2 = −p̂jδik − q̂kδij.

(B12)

B.2. Longitudinally polarized photon

In order to compute the vertex corrections for the longitudinally polarized virtual photon onemust
evaluate the following rank-2 (r2) tensor integral

I (r2)(r, p̂;M1,M2) = (4π )

∫
m

mi(m − p̂)j

D0D1

(B13)

where the denominators D0 and D1 are given by Eq. (B2). Performing the Feynman parametrization
and the transverse integrals as in the transverse photon case we obtain

I (r2)(r, p̂;M1,M2) = I (r2)
∣∣∣∣
UV

+ I (r2)
∣∣∣∣
f

+ I (r2)
∣∣∣∣
F

+ O(ε) (B14)

where the UV and finite parts simplify to

I (r2)
∣∣∣∣
UV

= δ
ij

(d⊥)

2

[
1

εMS

+ log

(
μ2

Q
2

)]
(B15)

I (r2)
∣∣∣∣
f

= δ
ij

(d⊥)

2

∫ 1

0

dx log

(
Q

2

M

)
(B16)

and

I (r2)
∣∣∣∣
F

=
∫ 1

0

dx
x2Δ

(r2)

F1 + xΔ
(r2)

F2

M
(B17)

with the coefficientsΔ
(r2)

F1 = r ir j andΔ
(r2)

F2 = −r ip̂j. The remaining integrals over x are straightforward
to perform, but yield complicated expressions that we will not write out here.

Appendix C. Transverse Fourier integrals

In this appendix, we present the integrals that are needed to calculate the Fourier transformed
LCWF’s for transverse and longitudinal virtual photon in the mixed space up to NLO. The Fourier
transform momentum integrals obtained in this paper can be computed by applying the Schwinger
parametrization

1

Aβ
= 1

Γ (β)

∫ ∞

0

dttβ−1e−tA, A, β > 0. (C1)
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For the qq̄-component of the longitudinal and transverse virtual photon, the two basic momentum
integrals expressed in the mixed space (see Section 7) can be written as∫

dd−2P
(2π )d−2

eiP·x[
P2 + Q

2
] = (4π )1−d/2

∫ ∞

0

dtt1−d/2e−tQ
2

e− x2
4t

∫
dd−2P

(2π )d−2

eiP·x[
P2 + Q

2
]Pi = i

2
xi(4π )1−d/2

∫ ∞

0

dtt−d/2e−tQ
2

e− x2
4t ,

(C2)

where the (d − 2)-dimensional Gaussian integrals are performed over P. Using the formula∫ ∞

0

dttβ−1e−tAe− B
t = 2

(
B

A

)β/2

K−β

(
2
√
AB

)
, A, B > 0 (C3)

where Kα(z) is the modified Bessel function of the second kind, the integrals in Eq. (C2) simplify to∫
dd−2P

(2π )d−2

eiP·x[
P2 + Q

2
] = 1

2π

(
Q

2π |x|

)d/2−2

K d
2
−2

(|x|Q )

∫
dd−2P

(2π )d−2

eiP·x[
P2 + Q

2
]Pi = ixi

(
Q

2π |x|

)d/2−1

K d
2
−1

(|x|Q )
.

(C4)

In addition, we also need the integrals (see derivation in [29])∫
dd−2P

(2π )d−2

eiP·x[
P2 + Q

2
] log

(
P2 + Q

2

Q
2

)
= 1

2π

(
Q

2π |x|

)d/2−2

K d
2
−2

(|x|Q )

×
{[

−1

2
log

(
x2Q

2

4

)
+ Ψ0(1)

]
+ O(d − 4)

}
(C5)

∫
dd−2P

(2π )d−2

eiP·x[
P2 + Q

2
]Pi log

(
P2 + Q

2

Q
2

)

= ixi
(

Q

2π |x|

)d/2−1{[
−1

2
log

(
x2Q

2

4

)
+ Ψ0(1)

]

× K d
2
−1

(|x|Q ) + 1

|x|Q K0

(|x|Q ) + O(d − 4)

}
,

(C6)
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where Ψ0(x) is the digamma function with Ψ0(1) = −γE , and∫
dd−2P

(2π )d−2

eiP·x[
P2 + Q

2
]Pi

(
P2 + Q

2
)

P2
log

(
P2 + Q

2

Q
2

)

= 2ixi
(

Q

2π |x|

)d/2−1{
1

|x|Q K0

(|x|Q ) + O(d − 4)

}
.

(C7)

For the qq̄g-component of the longitudinal virtual photon we need the following integral

I i(x, y,Q
2
, ω) = μ2− d

2

∫
d2P

(2π )2

∫
dd−2K
(2π )d−2

KieiP·xeiK·y[
P2 + Q

2
][

K2 + ω

(
P2 + Q

2
)] . (C8)

Using Eqs. (C2) and (C1) we get

I i(x, y,Q
2
, ω) = μ2− d

2
i

2
(4π )1−d/2yi

∫ ∞

0

dtt−d/2e− −y2
4t

∫ ∞

0

dse−(s+tω)Q
2

×
∫

d2P
(2π )2

e−(s+tω)P2eiP·x,

(C9)

where the Gaussian integral over the transverse momentum P is∫
d2P

(2π )2
e−(s+tω)P2eiP·x = (4π )−1(s + tω)−1e

− x2
4(s+tω) . (C10)

By making the change of variables u = s + tω,

I i(x, y,Q
2
, ω) = μ2− d

2
i

2
(4π )−d/2yi

∫ ∞

0

dtt−d/2e− −y2
4t

∫ ∞

tω

du

u
e−uQ

2

e− x2
4u (C11)

and changing the order of integration we obtain

I i(x, y,Q
2
, ω) = μ2− d

2
i

2
(4π )−d/2yi

∫ ∞

0

du

u
e−uQ

2

e− x2
4u

∫ u/ω

0

dtt−d/2e− −y2
4t . (C12)

Finally, performing the outer integral with respect to t we obtain the result

I i(x, y,Q
2
, ω) = μ2− d

2
i

8
π−d/2yi(y2)1−d/2

∫ ∞

0

du

u
e−uQ

2

e− x2
4u Γ

(
d

2
− 1,

ωy2

4u

)
, (C13)

where Γ (s, x) is the upper incomplete gamma function. For the case d = 4,

I i(x, y,Q
2
, ω) = i

(2π )2

yi

y2
K0

(
Q
√
x2 + ωy2

)
. (C14)

Similarly, for the qq̄g-component of the transverse virtual photon we need the integrals

I ik(x, y,Q
2
, ω) = μ2− d

2

∫
d2P

(2π )2

∫
dd−2K
(2π )d−2

PiKkeiP·xeiK·y[
P2 + Q

2
][

K2 + ω

(
P2 + Q

2
)] (C15)

and

I(x, y,Q 2
, ω) = μ2− d

2

∫
d2P

(2π )2

∫
dd−2K
(2π )d−2

eiP·xeiK·y[
K2 + ω

(
P2 + Q

2
)] . (C16)
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Following the same steps described previously we find

I ik(x, y,Q
2
, ω) = −μ2−d/2 π−d/2

16
xiyk(y2)1−d/2

∫ ∞

0

du

u2
e−uQ

2

e− x2
4u Γ

(
d

2
− 1,

ωy2

4u

)
(C17)

and

I(x, y,Q 2
, ω) = (2π )−d/2

(μ

ω

)2−d/2

(
Q√

x2 + ωy2

)d/2−1

K d
2
−1

(
Q
√
x2 + ωy2

)
. (C18)

For the case d = 4

I ik(x, y,Q
2
, ω) = − 1

(2π )2

xiyk

y2

(
Q√

x2 + ωy2

)
K1

(
Q
√
x2 + ωy2

)

I(x, y,Q 2
, ω) = 1

(2π )2

(
Q√

x2 + ωy2

)
K1

(
Q
√
x2 + ωy2

)
.

(C19)

Appendix D. Wilson line color algebra

For the cross section we need the following qq̄ and qq̄g matrix elements with eikonal operator ŜE :

δαβδα′β ′ 〈q̄(�+, x′, h, α′)q(�′+, y′, −h, β ′)|1 − ŜE |q(p+, x, h, α)q̄(p′+, y, −h, β)〉 (D1)

and

taαβ t
b
β ′α′ 〈q̄(�+, x′, h, α′)q(�′+, y′, −h, β ′)g(w+, z′, σ ′, b)|1

− ŜE |q(p+, x, h, α)q̄(p′+, y, −h, β)g(k+, z, σ , a)〉.
(D2)

Using the definition of eikonal scattering operator Eq. (51) togetherwith the normalization conditions
in Eq. (50) one obtain

〈q̄(�+, x′, h, α′)q(�′+, y′, −h, β ′)|1 − ŜE |q(p+, x, h, α)q̄(p′+, y, −h, β)〉

=
[
δα′αδβ ′β −

∑
ᾱ,β̄

[U[A](x)]ᾱα[U†[A](y)]ββ̄δα′ᾱδβ ′β̄

]
4p+p′+(2π )2δ(p+ − �+)

× δ(p′+ − �′+)δ(2)(x − x′)δ(2)(y − y′).

(D3)

On the cross section level this expression is multiplied with δαβδα′β ′ , and thus

δαβδα′β ′ 〈q̄(�+, x′, h, α′)q(�′+, y′, −h, β ′)|1 − ŜE |q(p+, x, h, α)q̄(p′+, y, −h, β)〉

=
[
Nc − Tr

(
U[A](x)U†[A](y))]4p+p′+(2π )2δ(p+ − �+)δ(p′+ − �′+)δ(2)(x − x′)δ(2)(y − y′).

(D4)
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Similarly, for the qq̄g-term one obtain

〈q̄(�+, x′, h, α′)q(�′+, y′, −h, β ′)g(w+, z′, σ ′, b)|1 − ŜE |q(p+, x, h, α)q̄(p′+, y, −h, β)g(k+, z, σ , a)〉

=
[
δα′α δβ′βδba −

∑
ᾱ,β̄,c,a

[U[A](x)]ᾱα[U†[A](y)]ββ̄ [V [A](z)]ca(δα′ᾱδβ′ β̄ δbc )

]

× 8p+p′+k+(2π )3δ(p+ − �+)δ(p′+ − �′+)δ(k+ − w+)δ(2)(x − x′)δ(2)(y − y′)δ(2)(z − z′)δσ,σ ′ .

(D5)

On the cross section level this expression is multiplied with taαβ t
b
β ′α′ , and thus

taαβ t
b
β ′α′ 〈q̄(�+, x′, h, α′)q(�′+, y′, −h, β ′)g(w+, z′, σ ′, b)|ŜE |q(p+, x, h, α)q̄(p′+, y, −h, β)g(k+, z, σ , a)〉

=
[
NcCF−

∑
b,a

Tr
(
U[A](x)taU†[A](y)tb) [V [A](z)]ba

]

× 8p+p′+k+(2π )3δ(p+ − �+)δ(p′+ − �′+)δ(k+ − w+)δ(2)(x − x′)δ(2)(y − y′)δ(2)(z − z′)δσ,σ ′ .

(D6)

Rewriting the adjoint Wilson line as

[V [A](z)]ba = 2Tr
(
U[A](z)taU†[A](z)tb) (D7)

and applying the Fierz identity

taαβ t
a

ᾱβ̄
= 1

2

(
δαβ̄δβᾱ − 1

Nc

δαβδᾱβ̄

)
(D8)

together with the unitarity condition, U[A](z)U†[A](z) = 1Nc , one finds the expression∑
b,a

Tr
(
U[A](x)taU†[A](y)tb) [V [A](z)]ba =1

2

[
Tr

(
U[A](x)U†[A](z)) Tr (U[A](z)U†[A](y))

− 1

Nc

Tr
(
U[A](x)U†[A](y))].

(D9)

Appendix E. Subtraction procedures

The polynomial subtraction term in [30] is taken as proportional to

Spol = Γ (d/2 − 1)2

πd/2−1

∫
dd−2x2(x20)m(x220)

1−d/2

{
xm20(x

2
20)

1−d/2 − xm21(x
2
21)

1−d/2

}
, (E1)

where the first term corresponds to the desired UV divergence in the limit x20 → 0 and the second
term is added in order to cancel the IR divergence introduced by the first term. We use here the
notations of [30], which are related to ours by x0 → x, x1 → y, x2 → z and x02 → rxz etc. Using
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x21 = x20 + x01 and x221 = x220 + x201 + 2x20 · x01 we have

Spol = Γ (d/2 − 1)2

πd/2−1

∫
dd−2x2

{
x220(x

2
20)

2−d − x220(x
2
20)

1−d/2(x221)
1−d/2

− xm20x
m
01(x

2
20)

1−d/2(x221)
1−d/2

} (E2)

and performing the Feynman parametrization one finds the result

Spol = −(x201)
2−d/2Γ (d/2 − 2). (E3)

Note that this result is valid when ε < 0. Thus one has to analytically continue this to ε > 0 and the
result is

Spol = +
(
1

ε
+ γE + log(x201)

)
. (E4)

Our subtraction term uses the integral

Sexp = Γ (d/2 − 1)2

πd/2−1

∫
dd−2rzx(r2zx)

3−de−r2zx/(r2xyξ ), (E5)

which has the samedivergent behavior in the limit rzx → 0, butmoderated by an exponential function
so that there is no IR divergence. The constant ξ is taken as ξ = eγE . This gives

Sexp = (r2xyξ )
2−d/2Γ (d/2 − 1)Γ (2 − d/2). (E6)

This result is valid when ε > 0 and we get

Sexp = +
(
1

ε
+ γE + log(x201)

)
. (E7)

It can be illustrative to go to d = 4 dimensions and perform the angular integral. Doing this one
gets

Spol = 2

∫
d|x20|
|x20| θ (|x10| − |x20|) (E8)

Sexp = 2

∫
d|rzx|
|rzx| e−r2zx/(r2xyξ ). (E9)

This shows that indeed both functions subtract the same UV divergence in the small daughter dipole
limit, but at larger values of |x20| = |rzx| the behavior is different. Although both choices lead to a
perfectly finite final result, we believe that the discontinuous theta function in (E8) can be somewhat
inconvenient from a numerical point of view in the multidimensional numerical integration required
to evaluate the cross section in practice.

Appendix F. Derivation of UV-finite terms for σγ∗
T

Here we present the detailed computation of individual UV-finite contributions to the transverse
virtual photon cross section appearing in Eq. (215).

The full cross term given in Eq. (199) is divided into three parts: The contribution coming from the
instantaneous diagrams simply gives

2�e

[
(j)(k)∗

]
= 0. (F1)
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The interference terms between the radiative diagrams (h), (i) and instantaneous diagrams (j), (k)
simplifies to

2�e

[
((h) + (i)) ((j) − −(k))∗

]
= 2

4(2π )4

Q 2

R2
[K1(Q |R|)]2

[
z21z2z

3
3

z1 + z2

ryxz · rzx
r2zx

+ z1z2z
2
3 (z1 + z2)

2

z2 + z3

ryxz · rzx
r2zx

+ z2z3z
2
1 (z2 + z3)

2

z1 + z2

rxyz · rzy
r2zy

+ z2z
2
3z

3
1

z2 + z3

rxyz · rzy
r2zy

]
,

(F2)

where

ryxz · rzx = r2zx

(
z1

z1 + z2

)
− rzx · rzy

rxyz · rzy = r2zy

(
z3

z2 + z3

)
− rzx · rzy.

(F3)

Thanks to the above identities, Eq. (F2) can be further simplified to

2�e

[
((h) + (i)) ((j) − −(k))∗

]
= 2

4(2π )4

Q 2

R2
[K1(Q |R|)]2 z1z2z3

(z1 + z2)(z2 + z3)

[(
z1

z1 + z2

)
A

+
(

z3

z2 + z3

)
B − A

(rzx · rzy)
r2zx

− B
(rzx · rzy)

r2zy

] (F4)

with the coefficients

A = z3

{
(z1 + z2)

3 + z1z3(z2 + z3)

}

B = z1

{
(z2 + z3)

3 + z1z3(z1 + z2)

}
.

(F5)

Finally, the interference term between radiative diagrams (h) and (i) can be cast in the following form

2�e

[
(h)(i)∗

]
= 2

4(2π )4

Q 2

R2
[K1(Q |R|)]2 z1z3

(z1 + z2)(z2 + z3)

[
z22 (z1 − z3)

2

−
[
z1(z1 + z2) + z3(z2 + z3)

][
z1(z2 + z3) + z3(z1 + z2)

]

× R2(rzx · rzy)
r2zxr2zy

+ 2z1z2z3

[
(z1 + z2)

2 + (z2 + z3)
2

]
(rzx · rzy)2

r2zxr2zy

]
,

(F6)

where we have used the identity

rxyz · ryxz = − R2

(z1 + z2)(z2 + z3)
+ z2

(z1 + z2)(z2 + z3)
(rzx · rzy). (F7)

The term proportional to (rzx · rzy)2 can be further simplified by noticing that

rzx · rzy = 1

2

[(
z2 + z3

z3

)
r2zx +

(
z1 + z2

z2

)
r2zy − R2

z1z3

]
. (F8)
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Straightforward algebra leads to

2�e

[
(h)(i)∗

]
= 2

4(2π )4

Q 2

R2
[K1(Q |R|)]2 z1z2z3

(z1 + z2)(z2 + z3)

[
−C

R2(rzx · rzy)
r2zxr2zy

+ D

[(
z1 + z2

z1

)
(rzx · rzy)

r2zx
+

(
z2 + z3

z3

)
(rzx · rzy)

r2zy

]
+ E

]
,

(F9)

where we have defined the coefficients

C = (z1 + z2)(z2 + z3)

z2

{[
(1 − z1)

2 + z21

]
+

[
(1 − z3)

2 + z23

]}

D = z1z3

{
(z1 + z2)

2 + (z2 + z3)
2

}

E = z2(z1 − z3)
2.

(F10)

Summing the contributions in (F4) and (F9) together we find for equation

(199) = 2Q 2

4(2π )4

z1z2z3

(z1 + z2)(z2 + z3)

∫
z

[K1(Q |R|)]2
R2

[
−C

R2(rzx · rzy)
r2zxr2zy

+ (rzx · rzy)
r2zx

{
D

(
z1 + z2

z1

)
− A

}

+ (rzx · rzy)
r2zy

{
D

(
z2 + z3

z3

)
− B

}
+

(
z1

z1 + z2

)
A +

(
z3

z2 + z3

)
B + E

] (
1 − Sxyz

)
.

(F11)

The sum of contributions coming from the two instantaneous diagrams squared Eqs. (197) and
Eqs. (198) can be simplified to the following form

Θ (j) + Θ (k) = 2Q 2

4(2π )4

z1z2z3

(z1 + z2)(z2 + z3)
H

∫
z

[K1(Q |R|)]2
R2

(
1 − Sxyz

)
, (F12)

where

H = z1z2z3

2

{
(z2 + z3)

(z1 + z2)
+ (z1 + z2)

(z2 + z3)

}
. (F13)

Finally, combining the contributions in Eqs. (F11) and (F12) give the result shown in Eq. (215).
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We perform the first dipole picture fit to HERA inclusive cross section data using the full next-to-leading
order (NLO) impact factor combined with an improved Balitsky-Kovchegov evolution including the
dominant effects beyond leading logarithmic accuracy at low x. We find that three different formulations of
the evolution equation that have been proposed in the recent literature result in a very similar description of
HERA data and robust predictions for future deep inelastic scattering experiments. We find evidence
pointing toward a significant nonperturbative contribution to the structure function for light quarks, which
stresses the need to extend the NLO impact factor calculation to massive quarks.
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I. INTRODUCTION

The inner structure of protons and nuclei can be
accurately determined in deep inelastic scattering (DIS)
experiments, where the target structure is probed by a
simple pointlike electron via the exchange of a virtual
photon. For proton targets, the combined structure function
data from the H1 and ZEUS experiments at HERA [1–4]
have made it possible to extract the parton densities with an
excellent precision.
At small momentum fraction x the gluon densities rise

rapidly, and one eventually expects nonlinear high-occu-
pancy effects to be important and become visible in the
weak coupling regime. At high gluon densities, these
nonlinear effects tame the growth of the gluon density,
and a dynamical scale known as the saturation scale Q2

s is
generated. This scale characterizes the region of phase
space where the nonlinear saturation effects dominate. To
describe QCD in this high-energy regime an effective
theory known as the color glass condensate (CGC) has
been developed; see Refs. [5,6] for a review.
The precise DIS data can provide a crucial test for the

saturation picture. Theoretically the inclusive DIS cross
section is a relatively simple observable, as the probe has no

internal structure and one does not need to consider e.g.,
fragmentation effects. As the proton structure is not
perturbatively calculable, some input from experimental
data is needed. In the CGC framework, one can calculate
the energy dependence of various observables, e.g., the
total photon-proton cross section, perturbatively by resum-
ming contributions enhanced by a large logarithms of
energy or ln 1=x. The nonperturbative input in this case
is the proton structure at an initial (and smallish) Bjorken x,
which is a parametrized input fitted to the data. The
leading-order CGC calculations have been able to obtain
a good description of the precise HERA data by fitting the
initial condition with only a few free parameters [7–9].
However, in all these fits one needs to introduce an
additional fit parameter to slow down the x evolution to
be compatible with the HERA measurements.
To precisely test the saturation picture of CGC, it is

crucial to move beyond leading-order accuracy. In recent
years the theory has been rapidly developing toward full
next-to-leading-order (NLO) accuracy. The impact factors,
describing the photon-proton interaction, have been calcu-
lated at this order in case of massless quarks [10–15], and
the first numerical results were reported in Ref. [16]. The
impact factors need to be combined with evolution equa-
tions that describe the Bjorken-x dependence and resum
contributions enhanced by large logarithms of energy,
ðαs ln 1=xÞn at leading order and αsðαs ln 1=xÞn at next-to-
leading order. The Balitsky-Kovchegov (BK) equation
describing the evolution of the dipole-target interaction
[17,18] is available at NLO accuracy [19] with the higher-
order contributions enhanced by large transverse logarithms

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 074028 (2020)

2470-0010=2020=102(7)=074028(21) 074028-1 Published by the American Physical Society



resummed in Refs. [20–23] and numerical solutions reported
in Refs. [24,25].
An additional complication in the small-x evolution is

that the Coulomb tails obtained from a perturbative
calculation result in the proton size growing much faster
than seen in the data and faster than suggested by the
Froissart bound [26] for hadronic collisions. It has been
argued [27,28] on the theoretical level that including some
nonperturbative damping of the gluon emission at large
transverse distance is necessary and sufficient to recover a
Froissart behavior for the virtual photon-proton cross
section. This idea has been studied [29,30] in fits to the
HERA data using the impact-parameter-dependent BK
equation supplemented by either a nonperturbative cutoff
or collinear resummations. In addition to the BK equation,
one can solve the more general Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolu-
tion equation [31–37] (available at NLO accuracy [38,39],
but no numerical solution exists for the NLO equation). The
JIMWLK evolved proton structure was compared with the
HERA data in Ref. [40] (see also Refs. [41,42]), where
again large nonperturbative contributions were needed to
describe the system with a finite proton geometry. Due to
these additional complications, we only study an impact-
parameter-independent evolution here and assume that the
transverse area of the proton can be factorized in the cross
section calculations.
In addition to testing the saturation conjecture, an

accurate description of the DIS data is important for other
phenomenological applications. As we will discuss later,
the DIS cross section is written in terms of the quark dipole-
target scattering amplitude. The exactly same degrees of
freedom are needed to describe other scattering processes,
such as particle production in proton-nucleus collisions
(see e.g., [9,43–53]) or diffractive DIS (e.g., [54–62]).
Although most of the current phenomenological applica-
tions are performed at leading-order accuracy, the NLO
calculations are developing rapidly [63–74]. A necessary
input for the phenomenological applications at NLO
accuracy is the initial condition for the NLO evolution,
which can be obtained by fitting the DIS data as presented
in this paper.
This paper is structured as follows. First, in Sec. II, we

will briefly introduce the dipole picture of DIS at leading
and next-to-leading order. Then, in Sec. III, we will review
the necessary details of the different variants of the BK
equation used in this work. Section IV reviews the datasets
used in the fits, and Sec. V discusses the results of the fits.

II. DEEP INELASTIC SCATTERING IN THE
DIPOLE PICTURE AT NLO

The photon-proton cross section is parametrized in terms
of the structure functions F2 and FL, that are related to the
virtual photon-proton cross sections σγ

�p as

F2ðxBj; Q2Þ ¼ Q2

4π2αem
ðσγ�pL þ σγ

�p
T Þ ð1Þ

and

FLðxBj; Q2Þ ¼ Q2

4π2αem
σγ

�p
L : ð2Þ

Here the subscripts T and L refer to the transverse and
longitudinal polarizations, respectively, of the virtual pho-
ton. The experimental data are often reported as a reduced
cross section:

σrðxBj; y; Q2Þ ¼ F2ðxBj; Q2Þ − y2

1þ ð1 − yÞ2 FLðxBj; Q2Þ:

ð3Þ

Here −Q2 is the photon virtuality, xBj is the Bjorken
variable and y is the inelasticity.
The focus in this paper is on the next-to-leading-order

corrections to the total DIS cross section in the dipole
picture. As an introduction, let us first briefly describe the
process in the leading-order dipole picture.
At leading order, the virtual photon-proton scattering in

the dipole picture is understood in the following way (see
e.g., [75]). First, the incoming photon fluctuates into a
quark-antiquark pair. This splitting is described by the
photon light-cone wave function ψγ�→qq̄. Subsequently, the
produced dipole interacts with the target. At high energy,
the quark-target interaction is eikonal, and the transverse
position of the quark does not change during the scattering.
Instead, the quark goes through a color rotation in the target
color field and picks up a Wilson line Vðx0Þ in the
fundamental representation, where x0 is the transverse
coordinate of the quark. Similarly, the antiquark at point
x1 picks up a conjugate Wilson line V†ðx1Þ.
To calculate the total cross section, one applies the

optical theorem and calculates the imaginary part of the
forward elastic scattering amplitude for the process
γ�p → γ�p. The resulting cross section reads

σγ
�p
T;L ¼ 2

Z
d2bd2rdzjψγ�→qq̄ðr; Q2; zÞj2

× ð1 − Sðr;b; xÞÞ: ð4Þ

Here, z is the light-cone momentum fraction of the photon
carried by the quark. The dipole size is r ¼ x0 − x1 and its
impact parameter is b ¼ ðx0 þ x1Þ=2. In the following,
Sðr;b; xÞ is assumed to depend only slowly on b. Thus we
will drop this dependence on b and replace the integration
over b by a constant

R
d2b → σ0=2. The dipole scattering

matrix S is defined as a two-point function of the Wilson
lines that the quarks pick up in the scattering process:
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Sðr;b; xÞ≡
�

1

Nc
TrVðx0ÞV†ðx1Þ

�
x
: ð5Þ

The brackets hi refer to the average over the target color
charge configurations. Here the momentum fraction x in the
subscript stands for the fact that the Wilson lines are
evaluated at some energy or rapidity scale corresponding to
the kinematics of the process. This dependence is given by
the Balitsky-Kovchegov equation which, at leading order,
is usually used to evolve the Wilson lines up to an evolution
rapidity Y ¼ log 1=xBj. At NLO the question of the
evolution rapidity becomes more complicated, as discussed
in more detail in Sec. III.
At NLO the virtual photon-proton scattering involves

Fock states of the photon that contain a gluon in addition to
the quark and antiquark, which all scatter off the target.
There are also other NLO contributions with only a quark-
antiquark Fock state scattering off the target, which include
a gluon loop correction to the photon splitting. These NLO
qq̄g and qq̄ contributions have been calculated independ-
ently using the conventional dimensional regularization
[13,14] and four-dimensional helicity schemes [15]. The
individual diagrams contain UV divergences that cancel
each other in the sum. On top of these, there remains a
divergence related to low-x gluons, which must be
resummed into the evolution of the target. Subtraction
schemes for this low-x gluon divergence in DIS were

devised and tested in Refs. [14,16], and in our present paper
we continue to refine the “unsub” scheme to enable a
comparison between the theory and experimental data.
In Refs. [14,16] the low-x gluon divergence factorization

from the NLO DIS cross sections (for a more detailed
discussion in the context of single inclusive particle
production see Refs. [67,76,77]) were written in two
distinct but equivalent forms: a form where the factoriza-
tion is implicit, and another where it was made explicit,
named “unsubtracted” and “subtracted” schemes, respec-
tively. In this work we use the unsubtracted form for the
cross sections, which can be expressed as

σNLOL;T ¼ σICL;T þ σdipL;T þ σqg;unsubL;T : ð6Þ

Here the first term is the leading-order cross section (4)
where the dipole scattering amplitude is evaluated at the
chosen fixed initial rapidity scale of the target, correspond-
ing to the initial condition of BK evolution. The other terms
can be interpreted as arising from the NLO qq̄ diagrams
(σdipL;T) and from the NLO qq̄g diagrams (σqg;unsubL;T ), up to
subtraction terms used to make the cancellation of UV
divergences between these diagrams explicit. In our
scheme, the unsubtracted qg term is

σqg;unsubL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1−z1

z2;min

dz2
z2

Z
x0;x1;x2

KNLO
L;T ðz1; z2;x0;x1;x2Þ; ð7Þ

and the dipole term is

σdipL;T ¼ 4Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
x0;x1

KLO
L;Tðz1;x0;x1Þ

�
1

2
ln2

�
z1

1− z1

�
−
π2

6
þ5

2

�
; ð8Þ

with the shorthand
R
xi
≔

R d2xi
2π . The integrand kernels and dipole operators for the leading-order and dipole terms are

KLO
L ðz1;x0;x1Þ ¼ 4Q2z21ð1 − z1Þ2K2

0ðQX2Þð1 − Sðx01ÞÞ; ð9Þ

KLO
T ðz1;x0;x1Þ ¼ Q2z1ð1 − z1Þðz21 þ ð1 − z1Þ2ÞK2

1ðQX2Þð1 − Sðx01ÞÞ; ð10Þ

where X2
2 ≡ z1ð1 − z1Þx2

01, xij ≡ xi − xj and SðxijÞ≡Sðxij;bÞ. Here, the rapidity scale which the dipole operator (5) is
evaluated at is left implicit. It will be discussed together with the associated small-x evolution in Sec. III. However, we note
already now that in the qg term this rapidity scale must be taken to depend on the gluon momentum fraction z2, not just the
external kinematical scales xBj and Q2. This is essential for the stability of the factorization scheme, as discussed in great
detail e.g., in Refs. [16,20,67,76,77].
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For the qg terms that only appear at NLO, the kernels and Wilson line operators are

KNLO
L ðz1; z2;x0;x1;x2Þ ¼ 4Q2z21ð1 − z1Þ2

�
P

�
z2

1 − z1

�
x20

x2
20

·

�
x20

x2
20

−
x21

x2
21

�
½K2

0ðQX3Þð1 − S012Þ − ðx2 → x0Þ�

þ
�

z2
1 − z1

�
2 x20 · x21

x2
20x

2
21

K2
0ðQX3Þð1 − S012Þ

	
; ð11Þ

KNLO
T ðz1;z2;x0;x1;x2Þ¼Q2z1ð1− z1Þ

�
P

�
z2

1− z1

�
ðz21þð1− z1Þ2Þ

x20

x2
20

·

�
x20

x2
20

−
x21

x2
21

�
½K2

1ðQX3Þð1−S012Þ− ðx2→x0Þ�

þ
�

z2
1− z1

�
2
�
ðz21þð1− z1Þ2Þ

x20 ·x21

x2
20x

2
21

þ2z0z1
x20 ·x21

x2
20X

2
3

−
z0ðz1þ z2Þ

X2
3

�
K2

1ðQX3Þð1−S012Þ
	
: ð12Þ

Here z0, z1, and z2 are the longitudinal momentum
fractions of the quark, antiquark, and gluon, respectively,
which satisfy

P
i zi ¼ 1. The parton configuration factor

QX3 is interpreted as the ratio of the qq̄g state formation
time to the γ� lifetime [12]. It is defined as X2

3 ≔
z0z1x2

01 þ z0z2x2
02 þ z2z1x2

21. We have also defined a short-
hand PðzÞ ≔ 1þ ð1 − zÞ2. The qq̄g state-target scattering
Wilson line operator is

S012 ≡ Nc

2CF

�
Sðx02ÞSðx21Þ −

1

Nc
2
Sðx01Þ

�
: ð13Þ

In Eq. (7) the lower limit z2;min in the gluon longitudinal
momentum fraction integral is yet undefined, and its proper
value will be discussed in the next section.

III. HIGH-ENERGY EVOLUTION

A. Balitsky-Kovchegov equation

In the calculation of the photon-proton cross section at
NLO, as discussed above, the dipole-target scattering
amplitude depends on the energy or, equivalently, on
Bjorken x. In the large Nc limit, the evolution is given
by the BK equation [17,18]. At leading order, the BK
equation reads

∂Sðx01Þ
∂Y ¼

Z
d2x2KBKðx0;x1;x2Þ

× ½Sðx02ÞSðx21Þ − Sðx01Þ�: ð14Þ

The kernel KBK is proportional to the probability density to
emit a gluon with transverse coordinate x2 from the dipole
of size x01 ¼ x0 − x1. The evolution rapidity Y is discussed
in detail later. When running coupling corrections follow-
ing the Balitsky prescription [78] are included, it reads

KBKðx0;x1;x2Þ ¼
Ncαsðx2

01Þ
2π2

�
x2
01

x2
12x

2
02

þ 1

x2
02

�
αsðx2

02Þ
αsðx2

12Þ
− 1

�
þ 1

x2
12

�
αsðx2

12Þ
αsðx2

02Þ
− 1

��
: ð15Þ

In principle we should use the next-to-leading-order BK
equation when using the impact factors calculated to the
order αs. The required numerical solution of the NLO BK
equation exists [24,25,79]. However, the equation is
numerically burdensome due to the high-dimensional
transverse integration (in the NLO BK equation one
integrates over the transverse coordinates of the two
emitted gluons, instead of just one gluon in the leading-
order equation). Instead of the full equation, in this work
we use prescriptions of BK evolution that capture an
important subset of beyond leading-order effects. The
difference between the studied evolutions reflects some
of the uncertainty due to the missing full NLO evolution.
In practice we have chosen three related formulations of

the BKequation that resum some or all of the large transverse

momentum logarithms in the NLO equation. Firstly we
consider the nonlocal evolution equation in terms of the
projectile momentum fraction introduced in Ref. [20], where
collinear double logarithms are resummed via the inclusion
of a kinematical constraint: we denote this the KCBK
equation. Secondly, we consider the local equation in the
projectile momentum fraction of Ref. [21], where the same
double logarithms, together with Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP)-like single logarithms,
are explicitly resummed into a kernel that is a nontrivial
function of αs: we call this the ResumBK equation. Thirdly
we study a nonlocal equation in the target momentum
fraction, recently formulated in Ref. [23] and denoted here
as the TBKequation. The first two are formulated in terms of
the projectile momentum fraction, so that the rapiditylike
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evolution variable in the BK equation is defined by the
momentum fraction of the probe or, equivalently, by the plus
component of the 4-momentum.1 Since the projectile
momentum fraction is the variable appearing explicitly in
the NLODIS impact factors, using these evolution equations
is fairly straightforward. However the fact that the TBK
equation is written in terms of the target momentum fraction,
i.e., the minus component of 4-momentum, means that the
evolution and the perturbative impact factors can only be
matched approximatively, and the procedure requires
more care.
As wewill discuss in detail in the following, we solve the

BK equation by taking a parametrized dipole amplitude as
an initial condition at an initial rapidity scale. Starting from
this initial condition the evolution predicts the behavior of
the dipole at higher rapidities, i.e., energies, or correspond-
ingly at smaller Bjorken x. The phase space available for
the emission of the gluon grows with energy and deter-
mines the amount of BK evolution. Thus the evolution
range is controlled by the lower limit of the gluon
momentum fraction z2;min in Eq. (7), with a smaller lower
limit corresponding to longer evolution.

B. Evolution in projectile momentum fraction

Let us first consider the evolution written in projectile
momentum fraction, which is the case for the KCBK and
ResumBK equations. In this case the high-energy evolution
is parametrized by the rapidity variable Y, which is defined
using the plus components of the gluon momentum kþ and
a plus momentum scale Pþ associated with the target as

Y ≡ ln
�
kþ

Pþ

�
: ð16Þ

Since the incoming photon energy qþ (which is the
maximal kþ) in the target rest frame is proportional to
the photon-target c.m.s. energy W2, one should think of
evolution in the rapidity variable Y as evolution in lnW2, as
we will see more explicitly below.
In the impact factor, Eq. (7), the gluon momentum is

parametrized by the momentum fraction z2 as kþ ¼ z2qþ.
Both the probe momentum fraction evolution equations and
the NLO impact factor are derived in terms of the same z2.
Thus it is straightforward to see that the dipole operators in
the evaluation of the qg term in the cross section (7) are
always evaluated at the projectile rapidity

Y ¼ ln z2 þ ln

�
qþ

Pþ

�
; ð17Þ

depending on the integration variable z2. We will specify
the value of Pþ below.
First, we have to determine the lower limit z2;min for the

z2 integral in the NLO impact factor, Eq. (7), which
controls the amount of evolution. This limit is set by the
overall kinematics of the process. One way to understand
the existence of this limit is to note that in the limit z2 → 0
the invariant mass of the qq̄g system interacting with the
target grows as M2

qq̄g ∼ 1=z2. The fact that this invariant
mass cannot be larger than the c.m.s. collision energy
results in a lower limit for kinematically allowed values of
z2. Since the validity of the eikonal approximation used to
derive the dipole picture cross section requires in principle
M2

qq̄g ≪ W2, one could require a more strict limit on z2 than
resulting from purely kinematics. Thus there is a choice in
how close to the kinematical limit one allows the integral to
go, which we quantify by the parameter eY0; if ≳ 1. In terms
of this parameter we have the limit

z2qþ > eY0; if Pþ ¼ eY0; if
Q2

0

2P− ¼ eY0; if xBj
Q2

0

Q2
qþ;

z2 > eY0; if xBj
Q2

0

Q2
≈ eY0; if

Q2
0

W2
≡ z2;min: ð18Þ

Here we have introduced a nonperturbative target trans-
verse momentum scale Q2

0, for which in this work we use
the value2 Q2

0 ¼ 1 GeV2. This allows us to write Pþ ¼
Q2

0=ð2P−Þ, and we used the fact that xBj ¼ Q2=
ð2P · qÞ ¼ Q2=ð2P−qþÞ. This limit is already derived
e.g., in Refs. [14,16,20]. In Ref. [16] the authors for
simplicity set Q2

0=Q
2 ¼ 1 in practical evaluations of the

NLO impact factors.
In principle also the limits z1 → 0, z1 → 1 in Eqs. (7) and

(8) correspond to the invariant mass of the scattering state
becoming infinite, similarly to the limit z2 → 0. Thus, as
discussed in Ref. [14], one could also take the energy or
rapidity scale at which the dipoles are evaluated to depend
on the (anti)quark momentum fractions z0, z1 (see also
Ref. [80]). This part of phase space does not, however,
generate a contribution enhanced by a large logarithm of x
to the cross section. Instead, this “aligned jet” configuration
produces a large collinear logarithm which in principle
should be included in the DGLAP evolution not included in
the dipole picture applied in this work. Properly including
this collinear logarithm is an important issue but separate
from the factorization to the BK equation and is left for
future work.

1We work in a frame where the target has a large minus
momentum P−, and the incoming photon has a large plus
momentum qþ.

2Note that the two parameters Y0; if and Q0 only appear in one
combination eY0; ifQ2

0 here; thus there is really only one indepen-
dent parameter characterizing the limit z2;min. However, for the
discussion that follows it is better to think in terms of a separate
nonperturbative transverse momentum scale Q0.
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When the Bjorken x of the process is such that the
smallest momentum fraction z2;min is close to 1, i.e., when
xBj ∼ e−Y0; if (with Q2 ∼Q2

0), the possible phase space for
real gluon emission allowed in the expression for the cross
section vanishes. Thus the qg contribution to the NLO cross
section goes to zero at xBj ∼ e−Y0; if by construction. The
NLO calculation does not fix any exact value for Y0; if.
A possible choice to consider for Y0; if would be to take
Y0; if ≈ ln 1=0.01, corresponding to the limit where the
dipole picture is usually considered applicable. This was
the choice used in Ref. [16]. However, this choice leads to a
transient effect in the NLO cross sections at the upper end
of the xBj range xBj ∼ e−Y0; if since the positive virtual
correction remains large, while the negative qg contribution
vanishes, as demonstrated in Ref. [16].
To avoid this unphysical transient effect, we adopt here

instead the maximal (or minimal depending on the point of
view) choice Y0; if ¼ 0. This means that the integral over z2
in the cross section extends all the way to the kinematical
limit, outside of the validity of the eikonal approximation.
The contribution from this region is, however, only a
parametrically small part of the cross section for small
xBj, which is where we are comparing the cross section to
experimental data. Also, since there is a cancellation
between the real and virtual contributions to the cross
section, and the latter includes a z2 integral over the full
range 0 < z2 < 1, one could in fact argue that this choice
minimizes the net effect of very large invariant mass states
in the photon on the cross section.
The above discussion only applies to the qg term (7)

in the cross section. The virtual correction in Eq. (8) is
already integrated over z2 and cannot be evaluated at a
z2-dependent rapidity. Thus for this term dipole operators
are taken to be independent of z2 and evaluated at rapidity
Y ¼ ln 1=xBj. Using a z2-independent dipole is justified, as
the region z2 ≪ 1 gives only a negligible contribution to the
virtual correction. Including these formally subleading
effects, namely the z2-dependent dipole operator, in the
virtual term and improving the approximation Y ≈ ln 1=xBj
is left for future work.
The choice Y0; if ¼ 0 removes the unphysical transient

effect, but it forces us to confront another problem that the
earlier formulation of Ref. [16] wanted to avoid by
choosing a larger Y0; if. Namely, at the lower end of the
z2 range we are forced to evaluate also the (BK-evolved)
dipoles at a rapidity scale that is lower (or xBj scale that is
higher) than where the BK equation is normally used. Now
we again have different options regarding the rapidity
where we start the BK evolution. We parametrize this
choice by another constant Y0;BK, whose value can also be
chosen in different ways.
One way is to take Y0;BK ¼ Y0; if ¼ 0, in which case we

simply start the BK evolution much earlier (much higher
xBj) than where we are actually calculating the cross

section. Here the contribution of the unphysical small
rapidity or large x phase space to the cross section (7) is
suppressed, because target gets more and more dilute
following the evolution backward to smaller rapidities.
This procedure changes the way the parametrization of the
initial condition for the BK evolution should be interpreted.
In this approach, the quantity that can meaningfully be
compared to the initial dipole amplitude at x ¼ x0 ∼ 0.01 in
LO fits is not the actual initial condition at Y ¼ Y0;BK ¼ 0,
but the result obtained after Y ¼ ln 1=0.01 units of rapidity
evolution.
Another option is to take a more typical initial energy

scale for the BK equation, which we here take as
Y0;BK ¼ ln 1=0.01. In this latter case one has to model
the dipole amplitude in the region Y0; if < Y < Y0;BK. In
this case, we simply assume that the dipole operator is
independent of Y in this region, which is “before the initial
condition” in Y. Assuming an energy-independent dipole
amplitude in this region is consistent within the accuracy of
the framework.
To summarize, we have two parameters that we must

choose, Y0; if and Y0;BK. In this work we always take
Y0; if ¼ 0 to avoid the large transient effect at xBj ∼ e−Y0; if in
the data region. We then apply two approaches for the
parameter Y0;BK. The first option is to start the BK
evolution at rapidity Y0;BK ¼ ln 1=0.01 and freeze the
dipole amplitude at Y < Y0;BK. The second option is to
also start the BK evolution at rapidity Y0;BK ¼ Y0; if ¼ 0.
We recall that the dipole amplitudes in the cross section

Eq. (7) are evaluated at a rapidity

Y ≡ ln
kþ

Pþ ¼ ln
W2z2
Q2

0

: ð19Þ

Note that the maximum rapidity Ymax encountered is
obtained at the z2 → 1 limit

Ymax ¼ ln
W2

Q2
0

¼ ln
1

z2;min
þ Y0; if; ð20Þ

corresponding to values of Y probed by the z2 integral in
the cross section ranging from Y0; if to Ymax, i.e., over a
rapidity interval ΔY ¼ ln 1=z2;min. When Y0;BK > Y0; if , the
actual range of BK evolution is smaller by Y0;BK, and for
Y0; if < Y < Y0;BK the dipole does not change. We empha-
size that the evolution rapidity depends only on the total
center-of-mass energy W2 and not explicitly on xBj or Q2.
This is natural, as the scattering amplitude for a dipole with
a fixed transverse size can only be sensitive to the total
center-of-mass energy, and strictly speaking the dipole does
not exactly know about the photon virtuality or the
Bjorken x.
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C. Kinematically constrained BK

As discussed previously, in order to keep the computa-
tional cost of the fit procedure manageable, we do not use
the full NLO BK equation to obtain the rapidity depend-
ence of the dipole scattering matrix S. Instead, we use
modified versions of the leading-order evolution equation
that resums the most important higher-order corrections, in
particular the collinear double logarithms.
First, we use the KCBK equation [20] that is nonlocal in

the projectile momentum fraction (i.e., the evolution
variable Y):

∂YSðx01;YÞ

¼
Z

d2x2KBKðx0;x1;x2ÞθðY−Δ012−Y0;if Þ

× ½Sðx02;Y−Δ012ÞSðx21;Y−Δ012Þ−Sðx01;YÞ� ð21Þ

with

Δ012 ¼ max

�
0; ln

minfx2
02;x

2
21g

x2
01

	
: ð22Þ

This equation explicitly forces time ordering between
subsequent gluon emissions. The theta function ensures
that only dipoles in the range Y > Y0; if are included.

D. Rapidity local resummed BK

The most important higher-order corrections to the BK
equation that are enhanced by double large transverse
logarithms can be resummed alternatively into a kernel
that is local in the evolution rapidity Y by a method
introduced in Ref. [21].3 This procedure resums exactly the
same contributions that are included in Ref. [20] to derive
the kinematically constrained BK equation shown above in
Eq. (21). A practical advantage of the approach taken in
Ref. [21] is that the resulting equation is local in evolution
(projectile) rapidity, and as such numerically easier to solve
using standard Runge-Kutta methods. In addition to the
double transverse logarithms resummation, the contribu-
tion of some of the single transverse logarithms present in
the NLO BK equation can be included following Ref. [22],
keeping the equation local in rapidity. In Ref. [81] it was
shown that this resummed BK equation is in practice close
to the kinematically constrained BK equation discussed
previously. As the resulting resummed evolution equation
is written in terms of the projectile rapidity Y, it can be used
with the impact factors exactly as the kinematically con-
strained BK equation.
The resummed equation is obtained by multiplying the

BK kernel (15) by KDLAKSTL, where KDLA is a

resummation of double and KSTL single transverse loga-
rithms. The kernel resumming the double transverse
logarithms reads

KDLA ¼ J1ð2
ffiffiffiffiffiffiffiffiffi
ᾱsx2

p
Þffiffiffiffiffiffiffiffiffi

ᾱsx2
p ; ð23Þ

with x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnx2

02=x
2
01 lnx

2
12=x

2
01

p
and ᾱs ¼ αsNc=π. If

lnx2
02=x

2
01 lnx

2
12=x

2
01 < 0, an absolute value of the argument

is used and the Bessel function is changed to J1 → I1; see
Ref. [21]. The single transverse logarithms∼αs ln 1=ðx2

ijQ
2
sÞ

are included multiplying the kernel multiplied by

KSTL ¼ exp

�
−
αsNcA1

π

���� ln Csubx2
01

minfx2
02;x

2
12g

����
	
: ð24Þ

In Ref. [25] it was shown that the resummation of single
transverse logarithms can be done such that the resummed
equation is a good approximation to the full NLO BK
evolution by adjusting the constant Csub whose numerical
value is not fixed by the resummation procedure. This
renders the Oðα2s Þ contributions in the NLO BK equation
that are not enhanced by large (single) transverse logarithms
minimal. With this procedure, one obtains a rapidity local
projectilemomentum fraction resummedBKequationwhich
we use as an approximation to the full NLO BK equation
(with a resummation of large transverse logarithmic correc-
tions), with Csub ¼ 0.65 determined in Ref. [25].
The resummation of the single transverse logarithms is

completely independent of the resummation of the double
transverse logarithms and thus could be included in the
same way also in the other studied evolution equations. In
this work, however, we only include this contribution in the
ResumBK evolution, as we prefer to work with the
established versions of the BK evolution. We will discuss
the effect of the single transverse logarithm resummation
on our fits in Sec. V.

E. Target momentum fraction evolution

As discussed in detail in Ref. [23], it is possible to
formulate the evolution in terms of the target rapidity η
defined as a logarithm of the minus component of the
momentum. This corresponds to a fraction of the total
longitudinal momentum of the target, which is the variable
used in its DGLAP evolution, and also the usual physical
interpretation of xBj in the parton model. In order to
translate a plus momentum to a minus, one needs to have
access to the correct transverse momentum scale. In the
case of the whole DIS process this would naturally be Q2.
Thus we would want to define things in such a way that the
largest evolution rapidity reached in the process is

3The double log resummation was further developed in
Ref. [23]; in this work we however use the result from Ref. [21]
numerically implemented in Ref. [25].
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ηmax ∼ Ymax − ln
Q2

Q2
0

¼ ln
1

xBj
; ð25Þ

with Ymax from Eq. (20). Here we see that the target rapidity
η is directly related to the Bjorken x in DIS, as expected.
Thus, similarly as one can think of evolution in Y as
evolution in lnW2, evolution in η corresponds to evolution
in ln 1=xBj.
The complication in using the target momentum fraction

is that both the evolution equation and the impact factors
are written in transverse coordinate space, which is natural
for the eikonal interaction with the target. Thus the gluon
transverse momentum is not very explicit in either. The
usual procedure is to use an uncertainty principle argument
and estimate the transverse momentum as the inverse of the
corresponding transverse distance. In both the BK equation
and the impact factor one integrates over transverse dis-
tances up to infinity, which would correspond to zero
transverse momentum and infinite η (for a fixed Y).
Distances longer than some nonperturbative scale should,
however, not have a significant effect on the physics. Thus
we do not want large dipoles with sizes above a (soft) target
transverse momentum scale 1=Q2

0 (the same Q2
0 that we

have already used) to appear in the relation between the
rapidities Y and η. In practice we are thus led to consider a
dipole of size r at a projectile momentum fraction corre-
sponding to Y, to have a target evolution rapidity η given by

η≡ Y − ln
1

minf1; r2Q2
0g

¼ ln
W2z2minf1; r2Q2

0g
Q2

0

: ð26Þ

We see that with this definition we always have η < Y,
which corresponds to the fact that for perturbative size
dipoles r2 < 1=Q2

0 we always have less evolution in η than
in Y [see Eq. (25)].
The evolution equation for the dipole amplitude in terms

of the target rapidity η was derived in Ref. [23] as4

∂ηS̄ðx01;ηÞ¼
Z

d2zKBKðx0;x1;x2Þθðη−η0;BK−δÞ

× ½S̄ðx02;η−δ02ÞS̄ðx21;η−δ21Þ− S̄ðx01;ηÞ�;
ð27Þ

where S̄ refers to the dipole scattering matrix depending on
the target rapidity η, instead of projectile rapidity Y. This
evolution equation then needs to be provided with an initial
condition at the initial rapidity η0;BK. We include running
coupling corrections and use the kernel KBKðx0;x1;x2Þ
from Eq. (15). The rapidity shift reads

δkl ¼ max

�
0; ln

x2
01

x2
kl

	
: ð28Þ

The step function with δ≡maxfδ02; δ21g ensures that the
equation is a well-defined initial value problem and no
information about the dipole amplitude for η < η0;BK
affects the evolution. When calculating the cross section,
we use S̄ðr; ηÞ ¼ S̄ðr; η0;BKÞ for η < η0;BK.
Equation (27) is the “canonical” BK equation from [23],

which contains an all-order resummation of the double
collinear logarithm enhanced corrections, and thus is
perturbatively correct up to an error of Oðᾱ2s Þ. The full
NLO BK evolution in target rapidity has not been solved
numerically so it is not known in practice how well this
resummation captures the NLO effects. In Ref. [23] a
comparison is made between two formulations of the
equation with double logarithm resummations, and the
differences are minor and mostly in the early evolution. The
resummed evolution is also compared to the LO BK
evolution formulated in target rapidity, and the resummed
evolution is found to be notably slower.
To use the target rapidity dependent dipole amplitudes in

the NLO impact factors, we simply need to replace the
dipoles in the impact factor with the η-dependent dipoles.
The rapidity argument is determined by using z2 to obtain Y
with Eq. (19), which is then transformed into η using
Eq. (26), i.e.,

Sðxij; YÞ → S̄
�
xij; η ¼ Y − ln

1

minf1;x2
ijQ

2
0g
�

ð29Þ

with Y defined in Eq. (19). The regulator ensures that the
rapidity shift is always negative, consistent with the
definition (26) and with the rapidity shift in the TBK
evolution equation (28).
Let us finally discuss the kinematical limits in the z2

integral and their connection to the target momentum
fraction probed by the process. The lower limit z2 >
z2;min of the z2 integral (18) corresponds to the lower limit
of the η values probed by the impact factor

η > Y0;if þ ln minf1; r2Q2
0g: ð30Þ

With our choice Y0; if ¼ 0 the values of η needed in the cross
section always extend down to evolution rapidities before the
initial condition that is imposed at η0;BK. In this region
η < η0;BK the dipole operators are, as in Ref. [82], just frozen
to the initial value: S̄ðr; η < η0;BKÞ≡ S̄ðr; η0;BKÞ. At the
upper limit z2 ¼ 1, on the other hand, the largest values of η
are reached for r > 1=Q0, with the range in η extending up to

η < ln
W2

Q2
0

; ð31Þ
4Compared to the recent analysis in Ref. [82], we include the

step function θðη − η0;BK − δÞ and leave the resummation of the
single transverse logarithms for future work.
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which is the same as the maximum Y reached in projectile
momentum fraction evolution. Here let us note two things.
Firstly, the min function used in defining the target momen-
tum fraction rapidity (26) prohibits η from getting infinitely
large (which would require an infinite amount of evolution)
for very large dipoles r > 1=Q0 that are not expected to
contribute significantly to the cross section. Secondly, the
amount of evolution, or largest rapidity reached, in target
momentum fraction given by xBj, as in Eq. (25), strictly
speaking applies only to typical dipole sizes r ∼ 1=Q. For
larger dipoles 1=Q≲ r≲ 1=Q0 one actually evolves further
in the target momentum fraction.

F. Running coupling

For the strong coupling constant in coordinate space we
use the expression

αsðx2
ijÞ ¼

4π

β0 ln ½ð μ2
0

Λ2
QCD

Þ1=c þ ð 4C2

x2
ijΛ

2
QCD

Þ1=c�c
; ð32Þ

with β¼ð11Nc−2NFÞ=3 and NF ¼ 3, ΛQCD¼ 0.241GeV.
The parameter C2 controls the running coupling scale in the
transverse coordinate space, i.e., αsðk2 ∼ C2=r2Þ. From
Fourier analysis it has the expected value of C2 ¼ e−2γE

[83,84]. In this work, however, we take C2 to be a fit
parameter to absorb missing nonperturbative or higher-
order contributions in the modified evolution speed, sim-
ilarly to previous LO fit studies [8,9]. The parameters μ0
and c control how the coupling is frozen in the infrared, and
we choose μ0=ΛQCD ¼ 2.5 and c ¼ 0.2. With this choice,
the coupling freezes to αs ¼ 0.762 in the infrared.
We have performed fits with two different running

coupling prescriptions. The first one is denoted Balitsky
þ smallest dipole (Balþ SD) scheme below. In this
scheme, we use the Balitsky prescription from Ref. [78]
in the BK evolution as in Eq. (15). In the NLO impact
factor, Eq. (7), and in the terms resumming large transverse
logarithms, Eqs. (23) and (24) in the ResumBK evolution
equation, the scale is set by the smallest dipole

αs;sdðx2
01;x

2
02;x

2
21Þ ¼ αsðmin fx2

01;x
2
02;x

2
21gÞ: ð33Þ

Note that the Balitsky prescription reduces to the smallest
dipole one when one of the dipoles is much smaller than the
others. For comparison we also use another scheme
denoted as parent dipole. Here, the scale is always set
by the size of the parent dipole, both in the evolution
equation and in the impact factor.
In the LO-like σdipL;T term of the impact factor, Eq. (8),

there are no daughter dipoles in the scattering state. For this
term the smallest dipole scheme is equivalent with the
parent dipole scheme.

G. Initial conditions

The initial condition for the (projectile momentum
fraction) BK evolution is parametrized at rapidity
Y ¼ Y0;BK. We use the MVγ parametrization used previ-
ously in similar fits [7,8] and write the initial condition as

Sðxij; Y ¼ Y0;BKÞ

¼ exp

�
1 −

ðx2
ijQ

2
s;0Þγ

4
ln

�
1

jxijjΛQCD
þ e

��
: ð34Þ

The fit parameters in the initial condition are Q2
s0, which

controls the saturation scale at the initial x, and the
anomalous dimension γ, which determines the shape of
the dipole amplitude at small jxijj. We note that this
parametrization results in both a negative unintegrated
gluon distribution and negative particle production cross
sections in proton-nucleus collisions at high transverse
momenta if γ > 1. As the inclusive DIS measurements are
not sensitive to asymptotically small dipoles, we do not
consider our dipole amplitude to be valid in that region and
as such, having an anomalous dimension γ > 1 is accept-
able. The practical interpretation of γ in our fit is that it
controls the shape of the dipole amplitude in the transient
region r ∼ 1=Qs. The leading-order BK fits to HERA data
generally prefer γ ∼ 1.1 [8,9], and similar results were
found in recent fits where the BK equation with some
higher-order corrections resummed [82] was used. For a
detailed discussion related to the Fourier positivity of the
dipole amplitude, the reader is referred to Ref. [85].
For the local resummed projectile momentum fraction

(ResumBK) evolution, the resummation should also in
principle affect the initial condition [21]. However, as the
initial condition is in any case a nonperturbative input, we
will use the same parametrization of Eq. (34) also for
solving the ResumBK equation.
For target momentum fraction evolution, the initial

condition for the evolution (27) corresponds to the scatter-
ing amplitude S̃ðr; η ¼ η0;BKÞ at some rapidity η0;BK. We
use the same parametrization, Eq. (34), as in the case of
projectile rapidity evolution.

IV. AVAILABLE DIS DATA

The HERA experiments H1 and ZEUS have published
their combined measurements for the reduced cross section
σr in Refs. [1,2]. Additionally, the charm and bottom quark
contributions to the fully inclusive data are available [3,4].
As the impact factors at next-to-leading-order accuracy in
the massive quark case are not available, we only calculate
the light-quark contribution to the photon-proton cross
section. In the leading-order fits [8,9] it has been possible to
obtain a good description of the fully inclusive data with
only light quarks, even though the charm contribution is
significant (parametrically up to ∼40% at Q2 ≫ m2

c). On

COLOR GLASS CONDENSATE AT NEXT-TO-LEADING ORDER … PHYS. REV. D 102, 074028 (2020)

074028-9



the other hand, the leading-order fits aiming to simulta-
neously describe the total and charm structure function data
require separate parameters (e.g., different transverse areas)
for the light and charm quarks [8] or an additional effective
soft and nonperturbative contribution [29,40].
In this work we consider two different setups. First, we

follow the strategy that has been successfully used at
leading order, calculate the light-quark contribution to
the structure functions, and compare with the inclusive
HERA data from Ref. [1]. We note that the newer combined
dataset containing data from the HERA-II run is also
available [2], but at low x and moderate Q2 the two
datasets result in very similar fits (see e.g., Ref. [86]).
As a second approach, we construct an interpolated

dataset that only contains the light-quark contribution.
Since the charm and bottom data are not measured in
the same kinematical x;Q2 bins as the inclusive data, it is
not possible to just subtract the heavy quark contribution
from the fully inclusive cross section. Instead, we use a
leading-order dipole model fit from Ref. [86], where the
Bjorken-x and dipole size r dependence is described using
the so-called IPsat parametrization [87]. This parametriza-
tion includes a smooth matching to the DGLAP evolution
[88–91] in the dilute region, and at large dipoles or
densities the scattering amplitude saturates to unity. The
advantage of this parametrization is that it results in an
excellent description of both inclusive and heavy quark
datasets. Consequently, it can be used to interpolate the
charm and bottom contributions to the structure functions.
We use this parametrization to subtract the heavy quark
contributions from the measured reduced cross section. We
then use this interpolated light-quark-only data in the NLO
fits. In our procedure we do not modify the uncertainties of
the inclusive data in the subtraction (another possible
approach would be to reduce the uncertainties proportion-
ally). This is not really a consistent treatment for the errors;
ultimately only the experimental collaborations would be in
a position to correctly take into account the correlation
between errors in the total and heavy quark data. Thus the
errors and consequently χ2 values in the light-quark fits are
not correct statistically. However, we expect the magnitude
of the uncertainties to only affect the final fit qualities and
to have only a limited effect on the extracted best fit
parameter values and the interpretation in terms of physics.
This detail must be kept in mind for the interpretation of the
χ2 values from the light-quark fits.
The total reduced cross section for some Q2 bins from

HERA [1] is shown in Fig. 1 and compared with the result
obtained by the IPsat fit mentioned above. The description
of the data is excellent. The interpolated light-quark data in
the same kinematics are also shown and compared to the
light-quark reduced cross section computed using the same
IPsat fit.
When fitting the initial condition for the BK

evolution, we consider data points in the region

0.75 < Q2 < 50 GeV2 at x < 0.01. This results in N ¼
187 data points to be included in the fit. Although the
correlation matrix for the experimental uncertainties is
available [1], we do not take these correlations into account
as we expect it to have only a negligible effect in our fits.

V. FIT RESULTS

In this section we will look at our fit results. The
discussion is divided first by the data that are being fitted,
followed by a comparison of the evolution prescriptions in
the kinematical domain accessible in future DIS experi-
ments, which lies outside the HERA region included in
the fits.
Let us first recall the essential details of our fit schemes.

The choice of a fit scheme consists of the version of the BK
evolution equation (discussed in Secs. III C–III E), the
running coupling scheme (see Sec. III F), and the starting
point of the BK evolution, parametrized in terms of Y0;BK or
η0;BK. The fit results in values for the free parameters
characterizing the initial condition as discussed in Sec. III
G: Q2

s0, σ0 and γ, and in a value for the parameter C2 in the
scale of the running coupling; see Sec. III F.
Our main fit results are presented in Tables I–III

classified by the BK equation used, with secondary and
tertiary grouping keys being the running coupling scheme
and Y0;BK (or η0;BK) controlling the rapidity scale of the BK
initial condition used in the fits. The saturation scale Q2

s

defined as Nðr2 ¼ 2=Q2
sÞ ¼ 1 − e−1=2 is also shown at

fixed projectile rapidity Y ¼ ln 1
0.01. We will first discuss in

the next subsection the fits to the full HERA reduced cross
section data, and in the following subsection the fits to the
interpolated light-quark pseudodata presented in Sec. IV
and labeled as light-q in the tables where the fit results are

FIG. 1. Total reduced cross section (black triangles) from
Ref. [1] and interpolated light quark pseudodata (red circles)
in a few Q2 bins. The solid and dashed lines show the calculated
cross sections from the IPsat fit that are used to generate the
pseudodata.
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shown. The two datasets differ enough to warrant their own
discussion.

A. Fitting the HERA reduced cross section

Before we discuss the results and their systematic
features in more detail we show in Fig. 2 that all three
BK evolutions combined with next-to-leading-order impact
factors are capable of describing the HERA data equally
well. The results shown are obtained using the Balþ SD
running coupling, and Y0;BK ¼ η0;BK ¼ ln 1=0.01, but
excellent fit results are obtained with other scheme choices,

too. Even though the resulting parametrizations for the
dipole at initial rapidity can differ significantly, the result-
ing reduced cross sections are mostly indistinguishable.
We first present in Table I the fit results obtained using

the kinematically constrained BK equation as discussed in
Sec. III C. We find a very good description (χ2=N ¼ 1.49)
of the HERA data using our main setup with the Balþ SD
prescription and Y0;BK ¼ 0. We consider this as our
preferred HERA data fit, with a BK equation derived in
the same framework as the impact factor, a theoretically
preferred running coupling scheme, and only one starting
scale Y0; if ¼ Y0;BK ¼ 0. We note that starting the BK

TABLE I. Fits to HERA and light-quark data with the KCBK evolution.

Data αs Y0;BK χ2=N Q2
s;0 ½GeV2� C2 γ σ0=2 [mb] Q2

sðY ¼ ln 1
0.01Þ ½GeV2�

HERA Parent ln 1
0.01

1.85 0.0833 3.49 0.98 9.74 0.11
Light-q Parent ln 1

0.01
1.58 0.0753 37.7 1.25 18.41 0.11

HERA Parent 0 1.24 0.0680 79.9 1.21 18.39 0.20
Light-q Parent 0 1.18 0.0664 1340 1.47 27.12 0.14
HERA Balþ SD ln 1

0.01
1.89 0.0905 0.846 1.21 8.68 0.13

Light-q Balþ SD ln 1
0.01

2.63 0.0720 1.91 1.55 12.44 0.11
HERA Balþ SD 0 1.49 0.1114 0.846 1.94 8.53 0.26
Light-q Balþ SD 0 1.69 0.1040 2.87 7.70 12.09 0.14

TABLE II. Fits to HERA and light-quark data with local projectile momentum fraction evolution (ResumBK).

Data αs Y0;BK χ2=N Q2
s;0 ½GeV2� C2 γ σ0=2 [mb] Q2

sðY ¼ ln 1
0.01Þ ½GeV2�

HERA Parent ln 1
0.01

2.24 0.0964 1.21 0.98 7.66 0.13
Light-q Parent ln 1

0.01
1.62 0.0755 11.7 1.24 16.53 0.11

HERA Parent 0 1.12 0.0721 89.5 1.37 19.68 0.21
Light-q Parent 0 1.18 0.0794 1480 1.92 26.69 0.18
HERA Balþ SD ln 1

0.01
2.37 0.0950 0.313 1.24 7.85 0.14

Light-q Balþ SD ln 1
0.01

2.21 0.0796 0.684 1.81 11.34 0.13
HERA Balþ SD 0 2.35 0.0530 0.486 1.56 10.10 0.23
Light-q Balþ SD 0 3.19 0.0566 1.27 9.35 14.27 0.13

TABLE III. Fits to HERA and light-quark data with TBK evolution. Note that the saturation scale Q2
s is extracted at fixed projectile

rapidity Y to allow comparisons with the projectile momentum fraction evolutions.

Data αs η0;BK χ2=N Q2
s;0 ½GeV2� C2 γ σ0=2 [mb] Q2

sðY ¼ ln 1
0.01Þ ½GeV2�

HERA Parent ln 1
0.01

2.76 0.0917 0.641 0.90 6.19 0.11
Light-q Parent ln 1

0.01
1.61 0.0729 14.4 1.19 16.45 0.10

HERA Parent 0 1.03 0.0820 209 1.44 19.78 0.23
Light-q Parent 0 1.26 0.0731 8050 1.86 29.84 0.16
HERA Balþ SD ln 1

0.01
2.48 0.0678 1.23 1.13 10.43 0.09

Light-q Balþ SD ln 1
0.01

1.90 0.0537 3.55 1.59 16.85 0.08
HERA Balþ SD 0 2.77 0.0645 3.67 6.37 14.14 0.15
Light-q Balþ SD 0 1.82 0.0690 822 8.35 29.26 0.14
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evolution at Y0;BK ¼ ln 1
0.01 (and freezing the dipole at

smaller rapidities) results in an equally good fit. This
suggests that we are only weakly sensitive to the details
of extrapolation scheme used to describe the dipole
amplitude in the region Y0; if < Y < Y0;BK. The parameter
C2 controlling the evolution speed is not required to be
large as it is in the case of leading-order fits, where one
generally finds C2 ∼ 10 [8,9]. Instead, we find C2 ≈ 0.85,
which is of the same ballpark as the general estimate C2 ¼
e−2γE ≈ 0.3 [83,84].
As seen in Table I, larger values of C2 are required in the

parent dipole scheme fits. This is expected, as C2 maps the
coordinate space scale x2

ij to momentum space C2=x2
ij, and

in the parent dipole scheme the coordinate space scale is
generically larger. Consequently a larger C2 is needed to
render the strong coupling values and the resulting evolu-
tion speeds, comparable between the coupling constant
scheme choices.
We generically find γ > 1 at the initial condition, with

the exception γ ≈ 1 found in the case where the evolution
starts at Y0;BK ¼ ln 1

0.01 and the parent dipole prescription
for the running coupling is used. We note that γ > 1 is also
required in the leading-order fits to obtain aQ2 dependence
at the initial condition compatible with the HERA data
[8,9]. The disadvantage of an initial condition with γ > 1 is
that, as discussed in Sec. III G, it results in the unintegrated
gluon distribution not being positive definite at large
transverse momenta.
To understand why different running coupling prescrip-

tions result in different initial anomalous dimensions, we
study the slope of the dipole defined as

γðrÞ ¼ d lnNðrÞ
d ln r2

: ð35Þ

For the KCBK fits this is shown in Fig. 3 as a function of
dimensionless dipole size rQs. The kinematically con-
strained BK equation is found to keep the anomalous
dimension (slope at small r) approximatively constant at
very small r, unlike the leading-order BK equation. A
similar effect was found in case of the ResumBK equation
in Ref. [25].
At intermediate r ∼ 1=Qs which dominates the cross

section, there is clear evolution toward an asymptotic
shape. Let us first focus on results where the smallest
dipole Balþ SD coupling is used. Here, the anomalous
dimension is large at the initial condition and the evolution
decreases the slope at intermediate rQs, which results in the
cross section growing more rapidly with Q2. If the BK
evolution is started at the rapidity scale from which there is
a long evolution before entering the data region (i.e.,
Y0;BK ¼ 0), a larger initial anomalous dimension is
required in order to obtain the shape dictated by the Q2

dependence of the HERA structure function data
around r ∼ 1=Qs.
Let us then consider the evolution with the parent dipole

prescription. In this case, we start from a relatively small
γ ¼ 0.98, and the evolution increases the slope at small (but
not asymptotically small) r. This can be seen to stem from
the fact that in the parent dipole prescription the coupling,
and consequently the evolution speed of the dipole ampli-
tude NðrÞ, grows more as a function of parent dipole size r
in comparison to other running coupling prescriptions. At
larger r, the slope evolves only slightly. After a few units of
rapidity evolution, the dipole amplitudes have the same
shape in the r ∼ 1=Qs region independently of the running
coupling prescription. This is expected, as r ∼ 1=Qs size
dipoles dominate when calculating the structure functions
in HERA kinematics.
Next we move to the local projectile momentum fraction

(ResumBK) fits, the results of which are shown in Table II.
In general, the results are close to the ones previously

FIG. 3. Anomalous dimension evolution with KCBK,
Y0;BK ¼ ln 1=0.01. Computed from fits to HERA data.

FIG. 2. Reduced cross section obtained using the fits with
different BK evolutions compared with the HERA data [1].
Balitsky þ smallest dipole running coupling is used, with
Y0;BK ¼ ln 1=0.01.
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discussed in case of the kinematically constrained BK
equation. This is not surprising, as both equations are
designed to include the same subset of higher-order
corrections enhanced by large double transverse loga-
rithms. Similarly to the preferred fit with KCBK, in the
ResumBK fit to HERA data with Balþ SD and Y0;BK ¼ 0

the obtained C2 is quite small at C2 ≈ 0.49 ∼ e−2γE and the
anomalous dimension is large, γ ¼ 1.56. The obtained
anomalous dimension values behave similarly as in the
case of KCBK, and there similarly seems to be a systematic
preference for smaller σ0=2 with the Balitsky þ smallest
dipole coupling.
The ResumBK equation evolves generically more slowly

than the KCBK equation, which is reflected in the required
C2 values being smaller (except in the case Y0;BK ¼ 0 with
parent dipole prescription when the C2 values are compa-
rable). This is a consequence of the ResumBK equation
including an additional resummation of some single trans-
verse logarithms. The main effect of this resummation is
that it results in a slower evolution; see discussion in
Sec. III D. We have confirmed numerically that if the
resummation of single transverse logarithms is not
included, our fit results are almost intact, except that a
larger value for the parameter C2 is obtained.
In both ResumBK and KCBK fits with Balþ SD

running coupling, the obtained values for the proton
transverse area σ0=2 are generally smaller than what is
found in leading-order fits with similar running coupling
schemes, with or without a resummation of large transverse
logarithms [8,9,82]. The obtained saturation scales at
Y ¼ ln 1

0.01, on the other hand, are comparable to the
leading-order fit results. In the LO fits, one typically
obtains σ0=2 ∼ 16 mb (proton sizes comparable to our
results were found in the leading-order fit presented in
Ref. [81] where double logarithmic corrections were
resummed in the BK equation similarly as in our setup).
We note that the proton transverse area can in principle be

obtained by studying the squared momentum transfer t
dependence of exclusive vector meson production. If the
cross section is written as e−BDjtj at small jtj, the HERA
measurements on J=ψ production [92,93] give BD≈
4 GeV−2. Depending on the assumed proton density profile,
this corresponds to σ0=2 ≈ 9.8…19.6 mb (usingGaussian or
a step function profile). As the vector meson t spectra are not
measured precisely enough especially at large jtj, the exact
form of the proton density profile cannot be deduced.
Consequently, we find that all obtained values for the proton
transverse size σ0=2 in our fits to HERA reduced cross
section data are compatible with the J=ψ spectra. However,
we also note that the step function profile is not really favored
by theHERAdata [94]. Thus onewould prefer values that are
in the lower part of the range σ0=2 ≈ 9.8…19.6 mb. Indeed,
especially with the Balitsky þ smallest dipole running
coupling, our fit results for the proton size also favor such
smaller target sizes for the proton.

As we are neglecting the impact parameter dependence,
we cannot compute the evolution of the proton transverse
area and consequently use a fixed σ0=2 at all xBj. We note
that the HERA vector meson production data [93,95]
suggest that the transverse area depends logarithmically
on the center-of-mass energy. This growth is effectively
included in the energy dependence of the proton saturation
scale in our framework.
Let us finally discuss the results obtained with the third

evolution equation considered in this work, the BK
equation formulated in terms of the target momentum
fraction (TBK). The fit results in this case are shown in
Table III. While the fit qualities overall are quite similar to
the projectile momentum fraction setups, we find some
departures from the shared qualitative features of the
KCBK and ResumBK fits. With the Balitsky þ smallest
dipole running coupling the TBK evolution needs to be
slowed down more with a larger values of C2 compared to
KCBK and ResumBK equations. The TBK fit with
parent dipole coupling is more mixed in this respect: with
η0;BK ¼ 0 setups the C2 values are quite a bit larger but then
with η0;BK ¼ ln 1

0.01 the HERA data fit is found to require
only a small C2.
Comparing the initial conditions with η0;BK ¼ 0 and

η0;BK ¼ ln 1
0.01 we see that every evolution starts from a

significantly larger anomalous dimension when η0;BK ¼ 0.
This difference is more pronounced compared to the
previously studied KCBK and ResumBK equations. This
is because the TBK evolution drives the dipole toward the
asymptotic shape with a small anomalous dimension
γ ∼ 0.6 [23]. This behavior is similar to the leading-order
BK equation, in which case it is already known that the
asymptotic shape cannot be used to parametrize the initial
condition [8].5 Indeed the development of the geometric
scaling regime independently of the initial condition is a
theoretically attractive feature of the TBK formulation.
However, HERA data seem to prefer to lie in the pre-
asymptotic regime in the fits. Thus, especially in the fits
with more evolution before the data region (smaller η0;BK),
one needs to slow down the evolution more and start with a
significantly larger anomalous dimension in order to still
have a transient form of the dipole amplitude in the data
regime.
The evolution of the dipole slope in TBK evolution is

shown in Fig. 4 at different evolution rapidities η. Unlike in
the case of KCBK equation discussed earlier and shown in
Fig. 3, the slope of the dipole from the TBK evolution is
decreasing with both running couplings in the r ∼ 1=Qs
regime. As shown in Ref. [23], the asymptotic anomalous
dimension γ ∼ 0.6 is obtained only at very large rapidities,
and at least the Balþ SD coupling case can be seen to be

5In [96] an asymptotic form of the initial condition produces
working results only when a significant additional “energy
conservation” correction in the BK evolution is used.
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evolving toward this asymptotic value. In the rapidity range
relevant in HERA or even LHeC kinematics the asymptotic
anomalous dimension is not reached. With the parent
dipole coupling, a significantly longer evolution is needed
before evolution toward the asymptotic shape at small r
becomes visible in the best fit case with a small anomalous
dimension γ ¼ 0.9 in the initial condition.
The dipole amplitudes at different evolution rapidities as

a function of dipole size are shown in Fig. 5. Here, results
obtained using all three considered evolution equations are
shown at fixed projectile rapidity Y ¼ Y0;BK þ ΔY. The
solution to the TBK evolution is shifted from the target
rapidity η to the projectile rapidity Y by performing the shift
(29). The shifted TBK solutions are shown in the region

where η > η0;BK. In the region where the dipole amplitude
is not small, all evolution equations result in comparable
dipole amplitudes. This is expected, as all the shown
dipoles result in a compatible description of the HERA
structure function data.
At small dipole sizes that do not significantly contribute

to the structure functions some differences appear. Despite
the fact that KCBK and ResumBK equations have very
similar initial conditions the resulting amplitudes differ
significantly for small dipoles. This is mostly driven by the
resummation of the single transverse logarithms not
included in the kinematically constrained BK equation,
as this resummation is more important at small parent
dipole size r. At very small dipoles the TBK evolved dipole
also differs significantly from the other dipoles when the
shift from target rapidity, Eq. (28), results in the dipole
being evaluated close to the initial condition. If the parent
dipole scheme for the running coupling were used, the
differences between the dipoles obtained from the different
evolution equations would be significantly reduced, as in
that scheme the coupling constant is generically smaller at
small r and differences between the evolution equations are
suppressed by the small αs.

B. Fitting the interpolated light-quark
reduced cross section

Next we consider fits to our interpolated light-quark
dataset. The fit results are also shown in Tables I–III.
Figure 6 shows a comparison between the HERA and
interpolated light-quark data with one of the fits, obtained
with the KCBK equation with the Balitsky þ smallest
dipole running coupling and initial condition parametrized
at Y0;BK ¼ ln 1=0.01.
The light-quark-only fits have quite distinct systematics

in comparison to the actual HERA data fits. Every single fit

FIG. 5. Dipole amplitudes of the three BK equations at an early
and later stage in the evolution at constant evolution rapidities
Y ¼ Y0;BK þ ΔY, with TBK solutions in η shifted into Y. Balitsky
þ smallest dipole running coupling is used, with the initial
conditions from the fits with Y0;BK ¼ η0;BK ¼ ln 1

0.01.

FIG. 6. Total and light-quark reduced cross sections computed
from KCBK fit compared with the light-quark pseudodata data
and HERA reduced cross section data [1]. Balitsky þ smallest
dipole running coupling is used with Y0;BK ¼ ln 1=0.01.

FIG. 4. Anomalous dimension evolution with TBK, using the
initial conditions parametrized at η0;BK ¼ ln 1

0.01. The evolved
rapidity range from the initial condition is denoted by Δη.
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setup used needs a substantially larger C2 and to a varying
degree larger anomalous dimensions. Lastly, and impor-
tantly, light-quark fits need larger values of σ0 compared to
the corresponding total HERA cross section fit.
The slow evolution speed (visible as a large C2 espe-

cially when using the parent dipole prescription) and a large
σ0 in the light-quark pseudodata fits can be understood to
result from an effective description of nonperturbative
effects. We expect that there is a nonperturbative hadronic
contribution in the light-quark production cross section
which is large (resulting in a large σ0) and evolves more
slowly as a function of Bjorken xBj than the fully
perturbative cross sections, like charm production. In our
framework, these nonperturbative effects correspond to
large dipoles, with sizes larger than roughly the inverse
pion mass. In this case, quark-antiquark dipoles are not the
right degrees of freedom, and one should in principle use an
another effective description for the nonperturbative phys-
ics, e.g., the vector meson dominance [97–100] model.
The same nonperturbative effects are there also in the total

reduced cross section and, consequently, in our fits to full
HERA data. However, the full reduced cross section also
includes the more reliably perturbative charm production
contribution (and a small b quark one), with a much faster x
evolution and a smaller magnitude (σ0). Consequently, when
performing our (massless) NLO fits to the full HERA data
more weight is given to perturbative contributions compared
to light-quark fits, and there is less need for the fit parameters
to adjust to nonperturbative effects with unnatural values.
These observations are compatible with some of

the previous analyses. In the study by the AAMQS
Collaboration [8] it was found that a combined fit to both
charm and total reduced cross section requires one to
introduce separate fit parameters for the charm quarks,
especially the charm quarks require a smaller σ0. A slowly
evolving nonperturbative contribution to the light-quark
production was also found to be necessary in Refs. [29,40].
In the dipole picture applied here, one finds that very large
dipoles up to a few femtometers contribute significantly to
the light-quark structure function [86]. In reality, non-
perturbative confinement scale effects not included in our
perturbative calculation are expected to dominate in these
cases as discussed above.
To arrive at one of our central points of this article, we

make the observation that even though the HERA DIS data
has been described well with leading-order dipole picture
fits with the BK equation in the past, simultaneous fits to
the full data and charm quark data have not been successful
with a single BK-evolved amplitude (note however the
existence of fits [94,101,102] using parametrizations that
mimic BK evolution). Similar results are found in the recent
study with the target rapidity BK prescription as well [82]:
fits to the full data are excellent but the fit parametrizations
do not describe the heavy-quark data. Our next-to-leading-
order analysis, where we separately consider the light-

quark production only, results in similar conclusions. This
indicates that the description of the light-quark contribution
has a large theoretical uncertainty as well in any such fit to
the full DIS data.
Thus we find that it would be preferable to fit the charm

quark structure function F2;c separately (or inclusive FL
data, as the longitudinal photon splits generally to smaller
dipoles, resulting in smaller nonperturbative contributions).
The FL measurements from HERA [103] are however not
precise enough for our purposes (see the next section). Very
precise FL data (among with inclusive and charm structure
functions) can be expected from the future Electron Ion
Collider [104,105] or from the LHeC [106].

C. Beyond HERA

Given the equality in the capabilities of the different
versions of the BK equation in describing the HERA and
light-quark data, a question arises if it is possible to
distinguish the different fit schemes and find the preferred
form of the BK equation. In general, one might expect to
see differences in the Q2 dependence of the structure
functions at small x (in the HERA kinematics, the fit
procedure ensures a compatible evolution). This is because
the Q2 dependence is controlled by the anomalous dimen-
sion, which behaves differently in ResumBK and KCBK
evolutions, when compared to the BK equation formulated
in the target momentum fraction as shown in Figs. 3 and 4.
At asymptotically small x both approaches can result in

the same Q2 dependence of the cross section in spite of the
different anomalous dimensions. This can be seen as
follows. Let us first consider the BK equation formulated
in the target rapidity and write the dipole amplitude as
N ∼ ðQ2

sr2Þγ . The TBK equation results in the saturation
scale scaling asQ2

s ∼ x−λ, as the evolution range is ln 1=xBj.
This gives N ∼ xBj−λγðQ2Þ−γ, and consequently the struc-
ture functions behave as

1

jψγ�→qq̄j2 F2;LðQ2Þ ∼ ðQ2Þ−γ; ð36Þ

where we have scaled out the Q2 dependence originating
from the virtual photon wave function ψγ�→qq̄. Substituting
an asymptotic anomalous dimension γ ∼ 0.7 we get

1

jψγ�→qq̄j2 F2;LðQ2Þ ∼ ðQ2Þ−0.7: ð37Þ

On theother hand,when applying theKCBKorResumBK
equations formulated in terms of the projectile momentum
fraction, the evolution range is controlled by lnW2 ¼
lnðQ2=xBjÞ. Consequently, we get Q2

s∼ðW2Þλ∼ðQ2=xBjÞλ.
This gives
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1

jψγ�→qq̄j2 F2;L ∼ ðQ2Þγðλ−1Þ: ð38Þ

In general, in the case of ResumBK and KCBK we expect
γ ∼ 1 as the evolution does not change the asymptotic
anomalous dimension. Using λ ∼ 0.3 for the generic evolu-
tion speed we get

F2;L ∼ jψγ�→qq̄j2ðQ2Þ−0.7; ð39Þ

which is the same Q2 scaling as obtained in case of TBK
equation; see Eq. (37).
In practice, however, in HERA or even LHeC kinematics

the TBK evolution has not reached its asymptotic form, and
the anomalous dimension is still close to unity as shown in
Fig. 4. Consequently, the Q2 dependence is expected to be
slower in the TBK evolution in realistic kinematics. We
note that the structure functions are not actually sensitive to
the slope of the dipole at asymptotically small r but in the
region r ∼ 1=Qs or r ∼ 1=Q, which makes it in practice
difficult to compare Q2 dependences analytically. We also
note that when computing the structure function at low xBj,
also dipole amplitudes at higher xBj are probed when
performing the z2 integral.
The numerically calculated Q2 dependence of the

structure functions F2 and FL is shown in Fig. 7. The
results are shown at small xBj ¼ 5.6 × 10−5 corresponding
to the LHeC kinematics using each of the BK equations,
employing the fit to the full HERA data with the Balþ SD
running coupling prescription and Y0;BK ¼ η0;BK ¼ ln 1

0.01.
For comparison, the leading-order result based on Ref. [9]
is shown. Compared to the leading-order fit, the Q2

dependence is weaker at next-to-leading order, due to
the different asymptotic shape of the dipole amplitude
(the leading-order BK equation develops a small anoma-
lous dimension γ which results in faster Q2 dependence).
The different fit schemes that result in an equally good

description of the HERA data start to differ slightly at large
Q2 when considering the Bjorken-xBj region not included
in the fits. The longitudinal structure function FL is more
sensitive to small dipole sizes, and as such it can be
expected to be more sensitive on the details of the
evolution. This is especially visible when the ResumBK
evolution is compared to other approaches: the Q2 depend-
ence is much weaker at large Q2. This is due to the
resummation of single transverse logarithms not included
in other evolution schemes, which has the largest effect at
small parent dipole sizes probed at large Q2. However, in
the realistic kinematical range considered here, the differ-
ence between the fits is moderate. This suggests that our
next-to-leading-order predictions for the structure functions
in the future collider experiments are robust. Future high-
energy DIS data from e.g., LHeC will be extremely precise,
with the expected uncertainties in the structure function

measurements being even at the per mill level [106]. As
such one could be sensitive to details in NLO BK evolution,
even though the effects are not large. Ultimately more
differential measurements in addition to the reduced cross
section will be needed.
The most precise measurement of the proton longitudinal

structure function FL up to date is performed by the H1
Collaboration at HERA [103] (with compatible results
obtained by the ZEUS Collaboration [107]). In Fig. 8
we compare the FL computed from our fits to the H1 data.
Due to the limited statistics, the most precise results are not
reported as a function of both x and Q2, but at fixed x;Q2

combinations. Consequently, it is crucial to note that the
higher Q2 points are measured at higher x. All three fit
setups result in almost identical FL, as expected as the FL is
measured in the kinematical domain mostly included in our

(a)

(b)

FIG. 7. Structure functions F2 and FL computed from HERA
data fit parametrizations extrapolated to the LHeC kinematics.
For comparison, the corresponding leading-order predictions
from Ref. [9] are shown.
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reduced cross section fits. Even though the future Electron
Ion Collider [104] will not reach as small Bjorken-x values
as the LHeC, the FL measurements it can perform will be
very useful as the HERA measurement has large uncer-
tainties and it only covers a small fraction of the phase
space where the details of the evolution cannot be accessed.

VI. CONCLUSIONS

We have performed, for the first time, a fit to the HERA
structure function data in the color glass condensate
framework at next-to-leading-order accuracy in the case
of massless quarks. As the full next-to-leading-order BK
equation is computationally demanding, we approximate it
by employing evolution equations that resum higher-order
corrections enhanced by large transverse logarithms. As a
result of the fits, we obtain the initial condition for the
perturbative BK evolution. The resulting dipole-target
scattering amplitude can be used in other phenomenologi-
cal applications, for example when calculating particle
production in proton-nucleus collisions at next-to-leading
order in αs.
Similarly as in the leading-order fits previously studied

in the literature, we find that it is possible to obtain an
excellent description of the precise combined HERA
structure function data. Equally good fits are obtained
when using both the BK equation formulated in terms of
the projectile momentum fraction, and the recently pro-
posed BK equation where the evolution rapidity is dictated
by the fraction of the target longitudinal momentum. When
extrapolated to LHeC energies, the different BK evolution
prescriptions are found to result in moderate differences in
theQ2 dependence of the structure functions. This suggests
that the NLO calculation presented here is robust, and has a
strong predictive power for future DIS measurements in
new experimental facilities such as the EIC or LHeC.

As next-to-leading-order impact factors for massive
quarks are not yet available, it is not possible to compute
charm and bottom contribution to the structure functions.
To perform consistent fits, we also generated an interpo-
lated light-quark dataset by subtracting the interpolated
charm and bottom contribution from the HERA reduced
cross section data. Fits to these light-quark data require a
much slower Bjorken-x evolution than we naturally get
from the perturbative evolution equations applied.
Additionally, the apparent proton transverse size obtained
is significantly larger than seen when fitting the full HERA
data. These features we interpret to result from a non-
perturbative hadronic component in the light-quark pro-
duction cross section. This component is large (resulting in
a large proton transverse area) and evolves more slowly
as a function of Bjorken x, as expected for a hadronic
component.
Our results demonstrate the need for massive quark

impact factors at next-to-leading-order accuracy in the
CGC framework, which would allow fits to fully pertur-
bative charm cross section separately. Precise measure-
ments of the charm structure function over a wide range of
x and Q2, in addition to the longitudinal structure function,
from future experiments will also be useful. The fits to the
generated light-quark data should in principle be consid-
ered our principal preferred fits as there the agreement
between the data and the massless theory should be on the
most solid footing. However, if used for QCD phenom-
enology in other observables where the presumed non-
perturbative contribution is smaller, the best one can do is
use the full HERA data fits.
In addition to inclusion of the quark masses and the

usage of the full NLO BK, the NLO DIS calculation can be
improved by relaxing some of the kinematical assumptions.
First, in addition to the gluon momentum fraction z2, the
quark momentum fraction z1 should not be allowed to get
arbitrary close to end points z1 → 0; 1 in order to avoid
production of qq̄ pairs with invariant mass larger than the
center-of-mass energy. Additionally, in the virtual correc-
tion one should also perform the integral over the gluon
momentum fraction and evaluate the dipole operator at the
same rapidity as in the real term. This would make it
possible to also consistently include a Q2-dependent
evolution range in the virtual contribution. Finally, when
the Balitsky prescription for the running coupling is used in
the BK evolution, there is a mismatch in the running
coupling schemes between the impact factor and the
evolution equation which could be improved. We plan to
address these issues in future work.
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