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ABSTRACT 

Fagerlund, Janne 
Teaching, Learning and Assessing Computational Thinking through Programming with 
Scratch in Primary Schools 
Jyväskylä: University of Jyväskylä, 2021, 151 p. 
(JYU Dissertations 
ISSN 2489-9003; 438) 
ISBN 978-951-39-8882-1 (PDF) 
 
This doctoral thesis explores the teaching and learning of a competence referred to as 
‘computational thinking’ (CT) in the context of Scratch—an especially popular 
programming environment intended for young learners—in primary school classrooms. 
CT is an emerging topic in compulsory education that despite age-old roots in the 
discipline of computing has only recently begun to mature and gain a foothold in school 
curricula worldwide. It can be perceived as a multifaceted competence that students can 
learn by programming in age-appropriate ways (e.g. game design, robotics). In practice, 
however, CT’s journey to arrive in schools has been challenging. From a theoretical 
viewpoint, the challenges include the lack of uniformly defined concrete educational 
goals for CT and research-based pedagogical models for teaching and learning CT 
through programming. Consequently, large-scale studies have revealed shortcomings in 
teachers’ emphasis on CT and programming education at the grass-roots level. 

This study sheds light on the topic in four main ways. First, it specifies the educa-
tional goals of CT in the context of programming at the primary school level. Second, the 
study evaluates ways to assess students’ CT in Scratch. Third, it develops new methods 
for assessing students’ CT. Fourth, the study presents empirical evidence from a case 
study conducted at the 4th grade level. Acquired through artefact analysis and program-
ming process analysis, the evidence encompasses findings regarding students’ concep-
tual and practical encounters with CT through creative pair programming with Scratch 
in authentic classrooms. 

The main findings of the study include comprehensive rubrics for ‘CT-fostering’ 
programming contents that students can manipulate and programming activities they 
can carry out in Scratch. They also include research-based evidence for teaching and 
learning CT in Scratch in addition to methods of assessing CT in Scratch in primary 
school classrooms. The broader contributions of the thesis include a tactile, curriculum-
oriented outline of what CT can mean for primary education, particularly through pro-
gramming education. Additionally, the contributions encompass rich evidence-based in-
sight concerning ways CT can be taught and learnt collaboratively in Scratch and how 
such assessment practices that can enhance students’ CT learning in classrooms (i.e. clar-
ifying learning goals, evincing student understanding and providing feedback) can po-
tentially be facilitated in the classroom. 
 
Keywords: computational thinking, programming, Scratch, assessment, pair 
programming, primary education   



 
 
TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Fagerlund, Janne 
Ohjelmoinnillisen ajattelun oppiminen, opettaminen ja arviointi Scratch-ohjelmoinnin 
kautta peruskouluasteella 
Jyväskylä: Jyväskylän yliopisto, 2021, 151 s. 
(JYU Dissertations 
ISSN 2489-9003; 438) 
ISBN 978-951-39-8882-1 (PDF) 
 
Tässä väitöskirjassa tutkitaan “ohjelmoinnilliseksi ajatteluksi” (eng. computational thinking) 
lanseeratun osaamiskokonaisuuden oppimista, opettamista ja arviointia erityisesti lapsille 
ja nuorille kohdistetun ja suositun Scratch-ohjelmoinnin kontekstissa peruskoulun luok-
kahuonetilanteissa. Ohjelmoinnillinen ajattelu on perusasteen koulutuksessa uusi aihe-
piiri, jonka tieteellinen kypsyminen ja käytännön jalkautuminen eri maiden opetussuun-
nitelmiin on vasta käynnistynyt viime vuosina huolimatta aihepiirin ikivanhoista kytkök-
sistä tietojenkäsittelyn tieteenalaan. Ohjelmoinnillinen ajattelu voidaan tulkita monitahoi-
sena osaamisena, jota oppilaat voivat oppia ohjelmoimalla ikätasolleen sopivalla tavalla 
(esim. peliohjelmointi, robotiikka). Ohjelmoinnillisen ajattelun taival koulumaailmaan on 
ollut kuitenkin käytännössä haastava. Teoreettisesta näkökulmasta aihepiiriä haastavat 
puutteet yhdenmukaisesti määritellyistä konkreettisista kasvatustavoitteista sekä tutki-
musperustaisista pedagogisista malleista sen oppimiseen ja opettamiseen ohjelmoinnin 
kautta. Suurten otantojen tutkimukset ovat myös osoittaneet opettajien kamppailevan oh-
jelmoinnillisen ajattelun ja ohjelmoinnin opetuksen painotuksessa ruohonjuuritasolla. 

Tämä tutkimus valaisee aihepiiriä neljällä keskeisellä tavalla. Ensin tutkimus täs-
mentää ohjelmoinnillisen ajattelun kasvatustavoitteita ohjelmoinnin kontekstissa perus-
kouluasteella. Toiseksi tutkimus tarkastelee erilaisia menetelmiä ohjelmoinnillisen ajatte-
lun oppimisen arviointiin Scratchissa. Kolmanneksi tutkimuksessa kehitetään uusia me-
netelmiä oppilaiden ohjelmoinnillisen ajattelun osaamiseen arviointiin. Neljänneksi tutki-
muksessa esitellään empiiristä aineistoa neljännellä luokalla toteutetusta tapaustutkimuk-
sesta. Aineistoa käsiteltiin oppilaiden Scratch-ohjelmointiprojektien ja -prosessien analyy-
sien keinoin. Aineisto kuvastaa, kuinka oppilaat olivat tekemisissä ohjelmoinnillisen ajat-
telun tiedollisten ja taidollisten osa-alueiden kanssa käyttäessään Scratchia luovaan pa-
riohjelmointiin autenttisissa luokkahuonetilanteissa. 

Tutkimuksen päälöydöksiin kuuluvat kattavat koosteet ohjelmoinnillisen ajattelun 
oppimista tukevista ohjelmointisisällöistä ja -käytänteistä Scratch-ohjelmoinnin konteks-
tissa. Löydöksiin kuuluu myös empiiristä näyttöä ohjelmoinnillisen ajattelun oppimisesta 
ja opettamisesta Scratchin kautta peruskoulun neljännellä luokka-asteella sekä oppilaiden 
ohjelmoinnillisen ajattelun oppimisen arviointiin soveltuvia menetelmiä. Yleisellä tasolla 
tämän väitöskirjan edistysaskeleisiin kuuluu konkreettinen, opetussuunnitelmaan suun-
tautunut hahmotelma ohjelmoinnillisen ajattelun merkityksestä perusopetuksessa erityi-
sesti ohjelmoinnin opetuksen kautta. Edistysaskeleisiin kuuluu lisäksi rikasta tutkimuspe-
räistä tietoa ohjelmoinnillisen ajattelun opettamisesta ja yhteistoiminnallisesta oppimisesta 
luovan Scratch-ohjelmoinnin kautta sekä luokkahuonetilanteisiin tarkoitetuista arviointi-
käytänteistä, joilla voidaan teoriassa tukea oppilaiden ohjelmoinnillisen ajattelun oppi-
mista (ts. oppimistavoitteiden kirkastaminen, osaamistason selvittäminen, palautteenanto). 
 
Avainsanat: ohjelmoinnillinen ajattelu, ohjelmointi, Scratch, arviointi, pariohjelmointi, pe-
rusopetus  
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FOREWORD 

This thesis turned out to epitomise a surprisingly memorable adventure. To 
begin giving forewords for it, I must start from way back. 

When I was a kid in the 90s, my big brother showed me how to design my 
own computer programs, such as a simple virtual Christmas calendar, with a 
programming environment called Visual Basic on our home computer. A few 
years later, I was introduced to coding animations with ASCII characters (letters, 
number, symbols) in an elective QBasic course, which was the best course ever—
thank you teacher Teuvo Kaipainen! In my late teens, I taught myself to code 
narrative gameplay scenarios for my friends to play in Warcraft III at our LAN 
parties. When I minored in Educational Technology at the university, an inspira-
tion to code reignited, and among my pastimes was coding a digital tool for my 
wife to calculate her net salary based on her irregular work shifts. After having 
eventually began conducting research on programming education (i.e. complet-
ing this thesis), I received a few opportunities to assist my childhood friend Ville, 
a geology student, in computationally modelling something like ancient sedi-
mental layers on Finnish lake bottoms with Microsoft Excel. 

In short, I seem to have always taken joy in using computers for solving 
problems and being creative. Coding appears to have combined these tasks aptly 
for me. Despite me pursuing a degree in Education, it seemed only according to 
expectations that this affection snuck into my career somehow. 

This thesis took its first solid steps when the new Finnish primary school 
core curriculum was coming into effect just before 2016. An activity called ‘com-
puter programming’ was steering towards primary schools and the teaching 
practice of school teachers, who seemed mainly wary and insecure about the en-
tire thing. Yet, I could not avoid reliving all the coding-related joy of my personal 
history. Lending a hand to this educational reform on a grander scale seemed like 
a quest tailored just for me, so I had to embark on it. 

Acquiring a doctorate through this thesis turned out to be a rather unstable 
ride. It was not always easy to march on as a novice researcher, especially when 
working with a topic that was accompanied by strong societal expectations and 
even hype. The topic developed in a manic pace: 60% of the references cited in 
this thesis were published while this study was in progress! Yet, regardless of its 
hotness, the topic turned out to be very foreign and distant to so many especially 
in the field of Education where digital technology altogether struggles to find 
comfortable residency. To wit, I was required to be a ceaseless learner in every 
respect from the beginning to the end. I often felt like I was paving a lone path 
with roars of cheers by my side, but only a few signposts to show the way. 

Despite everything, I always found some way ahead. Perhaps the most no-
table benefactor was indeed the topic itself; its ‘hotness’, as praised so often by 
fellow colleagues. Most critically, I could not have built this work without those 
who trustingly chose to fund my learning. I address the greatest expressions of 
gratitude to the Department of Teacher Education at the University of Jyväskylä, 
the Central Finland Regional Fund, the Emil Aaltonen Foundation, and the Ellen 



 
 
and Artturi Nyyssönen foundation for being convinced of the importance of 
learning to understand this topic better. 

This thesis would not have sprung to life either without the individual peo-
ple who participated in concretely steering it to its conclusion. Above all, I hon-
orably acknowledge excellent reviewers Professor Matti Tedre and Dr. Jari Laru 
for the feedback to strengthen this work and the encouraging words illustrating 
where I seemed to have been especially successful. Thank you especially Matti 
Tedre for agreeing to be my opponent on the day of my defence. I also thank my 
supervisors, Professor Päivi Häkkinen, Dr. Mikko Vesisenaho, and Professor 
emeritus Jouni Viiri. It has been humbling to bask in your expertise and try to 
steal your time to pick up all the things that I possibly could during our shared 
time with this challenging project. With a pinch of bittersweetness, I also assert 
special recognition to the journal reviewers who shot my scholarly ideas in this 
unsettled topic down so many times, calibrating my understanding of how to do 
research in academia and challenging my resolve. 

Perhaps my most heartfelt gratitude goes to the three lovely teachers who 
eagerly volunteered to participate in the data collection of this study. Most of all, 
gratitude goes to their wonderful students who were astonishing in their creativ-
ity and excitement amidst the coding activities I got to introduce to them. I espe-
cially remember that one 4th grade girl who appeared to discover that same spark 
for coding within her as I did in my youth. Aside the scientific impact this study 
may make, the enthusiasm awoken in those children alone felt like I have 
achieved something good and important. 

This thesis had always intended to be of pragmatic value; an enterprise to 
be reflected fundamentally on societal reality and the educational practice of 
teachers and schools. With that in mind, maturating the reasoning in this work 
was thankfully in no manner done in isolation. A monumental token of gratitude 
goes to the Innokas Network with all the exceptionally excited teachers from all 
around the country and beyond. Thank you especially, Dr. Tiina Korhonen, for 
inviting me to work as a regional coordinator in Innokas, for guiding my way to 
other great opportunities, such as working as a leading teacher for the EU Code 
Week, and for inspiring the whole gang of Innokas educators onward in being 
collaborative and innovative with educational technology… without ever forget-
ting to enjoy the ride! 

Other very important people also nudged my understanding forward 
amidst this adventure. Warm individual recognitions go to Professor Mirja 
Tarnanen, Assistant Professor Pekka Mertala, Senior Researcher Kaisa Leino, and 
Jukka Lehtoranta—sterling researchers and educators with whom I had the luck 
to bounce ideas and make many contributions in the variety of projects we had 
and have going on. I also acknowledge the international computing education 
research community with which I got to make acquaintance in the conferences 
and doctoral consortiums. Thanks to our digi-pedagogically oriented JYULED 
team for all the cooperation. Acknowledgement goes especially to Memma Jun-
tunen for your compassionate support and collegiality toward me, especially 



 
 
when I started working at the university. A sincere thank you goes to Emilia Ahl-
ström who helped me a lot with Article III. I also thank Sini Salmela who assisted 
me in collecting the data while completing her own master’s thesis. 

Having reached this intermediate point in my academic journey, I find an 
opportunity to profess appreciation of the more affectionate kind. I earnestly bow 
to our informal postgraduate students’ peer support group (originally known as 
‘The Almost Dead Postgrads’ Society’) that helped me especially when I needed 
more will and confidence for enduring the doctoral turbulence we all learnt to 
know so well. In particular, I graciously mention (soon-to-be Dr.) Anne Martin—
with whom I found myself to share so many qualities yet least in the topics of 
our theses—who braved her own doctoral gauntlet concurrently and accounted 
for much peer support. Thank you also all the people in our Ruusupuisto office, 
the notorious 2D, who contributed in making our shared workdays funky and 
interesting. Thank you, all the meaningful people at our #JYUnique university 
and beyond who I fail to mention by name or affiliation. 

I suppose that it was my big brother Tomi, coincidentally a professional 
programmer, who opened my path to the topic of this thesis when we were kids. 
Despite being frustrated at the whiny little brat, you showed me how to code, 
and I used to copy your code when I could not design all that fancy stuff myself. 
You did not always like that, which is why sometimes mom, dad, or our big sister 
had to try to settle our disputes. To my family and all my friends: thank you for 
the shared life during the completion of this work. 

Lastly and most lovingly, I thank you, Suvi, my best friend and wife. You 
were there with me during the mundane and marvelous moments alike. With 
you I got to see our precious daughters Stella and Malla coalesce from stardust 
through ancient magic. You three give me the reason. 

This thesis is dedicated to my firstborn daughter, Stella. She successfully 
programmed a Bee-bot robot as a 1½-year-old when she ‘co-trained’ teachers 
with me in a programming-themed workshop at the University of Helsinki. More 
recently she has begun to provide me creative ideas to design in our own Scratch 
games (in the cover photo). She is truly a next-generation computational thinker. 
 
Jyväskylä 27.9.2021 
Janne Fagerlund  
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‘It’s more fun to compute.’ -Kraftwerk, 1981 

This thesis concerns the teaching and learning of an emerging, multifaceted com-
petence called computational thinking at the primary school level. This compe-
tence is investigated in the practical context of computer programming (colloqui-
ally called coding) in 4th grade students’ classroom practice while using a very 
popular programming environment called Scratch. 

This topic is relatively novel in compulsory education and not well under-
stood from the viewpoint of scientific research, and educational experts’ concep-
tions and expectations concerning this educational reform have varied. Therefore, 
to bring much-needed clarity to the topic and ground the choices made in this 
thesis, this chapter provides a comparatively introspective and rich introduction. 
In particular, the chapter elucidates the societal changes that have brought pro-
gramming and computational thinking to compulsory education across the 
world (in sections 1.1 and 1.2), discusses how these topics have been rationalised 
theoretically and practically in different ways (in section 1.3), describes focal gaps 
in previous research (in section 1.4) and outlines the scholarly development of 
the thesis (in section 1.5). 

1.1 A computer revolution 

We live in a highly digitalised society. Increasing in quantity and complexity, the 
technological dimensions of everyday life include such relatively familiar 
phenomena as computers, the Internet and robotic systems but also more abstract 
ones, such as the Internet of Things, artificial intelligence and big data (Korhonen, 
2017). Most people in the digitally developed world have a personal mobile 
device they can use for daily activities, such as purchasing goods from abroad, 
sharing media on virtual social networks and optimising navigational routes 
while traveling. Mobile devices are, in fact, computing machines (colloquially 
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called computers), just like traditional personal desktop computers (PCs) or 
laptops but smaller. However, today’s smartphones have more processing power 
than, for example, the computer used in sending Neil Armstrong to the moon in 
1969. 

Although it has been known for a long time that there are certain types of 
tasks computers cannot carry out (Turing, 1937), the limitations of what 
computers can do seem to be becoming ever fewer. Today, artificially intelligent 
systems can automatically detect cancer growth on mammograms. Machine 
learning ensures that consumers on the web are offered recommended products 
for shopping. Engineers can test passenger flights’ safety issues with computer 
simulations. Chemists can use algorithms to identify chemicals to improve 
reaction conditions to improve yields. Educators can use programmed cognitive 
tutors and adaptive learning environments to personalise students’ learning 
trajectories and improve learning outcomes (Buitrago Flórez et al., 2017; Grover, 
2018). Computers were recently used to employ algorithms to help seek a cure 
for the ongoing global pandemic 1 . Stephen Wolfram even highlighted 2  the 
potential of attaining a ‘theory of everything’ in physics via computational 
methods.  

On the flip side, computers have brought rather worrying concerns, such as 
job loss due to automation, mass surveillance, cyber war and sales of personal 
data (Denning & Tedre, 2019). Social media services employ algorithms that dis-
play selected content to their users and may amplify feelings of inferiority and 
cause mental problems (Boers et al., 2019). The World Health Organization has 
included digital game-playing as a disorder in the listing of standard diseases3. 
With constantly developing technology in a world where the role of creative 
problem solving is predicted to increase as machines take over routine tasks in 
various fields, new challenges arise in human thinking, emotions and ethics. As 
society digitalises at an accelerating pace, computational competence is vital for 
all people to ensure that humankind steers towards a productive and responsible 
future (Lonka et al., 2018). Kafai and Burke (2013a) raise an interesting question: 
Do the ‘digital natives’ have sufficient capacity to wield digital technology in a 
critical, creative and selective manner? In short, the scientific world and different 
sectors of industry are filled with complex problems that can greatly benefit from 
the innovative solutions of capable humans who have an understanding of a par-
ticular discipline and of computers (Grover, 2018; Martin, 2018). 

Ultimately, all computers follow the same technological baseline rules that 
were developed by humans for humans to overcome their own slowness and 
errors when performing rote tasks that could be computed effectively with 
automated devices. In short, computing is ‘any goal-oriented activity requiring, 
benefiting from or creating computers’, and it essentially includes ‘processing, 
structuring and managing various kinds of information’ (Association for 

 
1 https://onezero.medium.com/computer-scientists-are-building-algorithms-to-tackle-co-
vid-19-f4ec40acdba0 
2 https://writings.stephenwolfram.com/2020/04/finally-we-may-have-a-path-to-the-fun-
damental-theory-of-physics-and-its-beautiful/ 
3 https://www.who.int/news-room/q-a-detail/addictive-behaviours-gaming-disorder 

https://onezero.medium.com/computer-scientists-are-building-algorithms-to-tackle-covid-19-f4ec40acdba0
https://onezero.medium.com/computer-scientists-are-building-algorithms-to-tackle-covid-19-f4ec40acdba0
https://writings.stephenwolfram.com/2020/04/finally-we-may-have-a-path-to-the-fundamental-theory-of-physics-and-its-beautiful/
https://writings.stephenwolfram.com/2020/04/finally-we-may-have-a-path-to-the-fundamental-theory-of-physics-and-its-beautiful/
https://www.who.int/news-room/q-a-detail/addictive-behaviours-gaming-disorder
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Computing Machinery, 2005, p. 9). The information that computers can process, 
data, can be represented as seemingly infinite series of binary digits (1s and 0s), 
which are merely abstractions of physical voltage states and their changes in 
microchips. Today’s computer applications operate on much higher levels of 
abstraction; perhaps familiar examples are programming languages that more or 
less represent human language, although computer users can now largely 
disregard programming languages entirely and focus on using software (or 
‘apps’) (Denning & Tedre, 2019). 

Computing has existed as a human experience for a long time. Procedures 
similar to algorithms and information representation with numbers and symbols 
date back thousands of years. For example, the abacus was used to perform 
computational tasks in ancient Babylon around 1800 BC. Theoretically, a human 
being could perform the same computational tasks as an industrial computer 
used with, for example, particle accelerators, albeit much more slowly and most 
likely with a plethora of errors. The formalisation of key computational concepts 
in the 1930s and the rapid development of microchip technology in the 1990s 
enabled computational tasks to be carried out more quickly and efficiently with 
digital computers. Computing also expanded to different branches of science as 
a new meaningful way of doing scientific research. It was adopted primarily in 
studying natural phenomena by modeling them as information processes and 
using computing to understand them. However, such activities required new 
kinds of intellectual resources from people thinking of ways to implement such 
processes (Denning & Tedre, 2019; Tedre, 2015; Tedre & Denning, 2016). In other 
words, a major deficiency with the digital devices, gadgets or machines that do 
computing is that no matter how fast or accurate they are when doing mechanical 
calculations, they are not creative and require human help to solve complex real-
life problems. They need to be told intelligly beforehand how they should process 
particular data to reach a desired outcome. They need a declaration of preset 
instructions, a computer program, that includes sequences of computational steps 
or algorithms (Van Roy & Haridi, 2003). 

1.2 Programming returns to schools 

The ramifications of a digitally developing society has been a hot educational 
topic in recent decades. Much discourse has focused on how to use technology 
meaningfully to support learning processes in addition to what technological topics 
are justifiable targets of learning. More or less encompassing both viewpoints, 
information and communications technology (ICT) competence is an integral 
sub-topic of the so-called 21st century skills (Binkley et al., 2012). However, as 
Giordano et al. (2015) poetically put it in describing the current state of this 
educational topic, ‘Out goes ICT and how to use Microsoft Office; in comes 
coding and computer science.’ 

Themes such as robotics, programming, informatics, computer science (CS) 
and computing have begun to make stronger inroads into educational systems 
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worldwide, perhaps more than ever before. For example, in 2014, England 
adopted computing as mandatory content for all primary school (i.e. grades 1–9) 
students. In 2016, Finland was among the frontrunners in adopting computer 
programming, especially ‘graphical programming’ (see details below), in the na-
tional primary school core curriculum as mandatory learning content for all stu-
dents (Opetushallitus, 2014). More than 20 countries have subsequently followed 
suit, and the numbers seem to be growing (Balanskat et al., 2017; Bocconi et al., 
2018; Heintz et al., 2015; Mannila et al., 2014). In fact, according to a relatively 
recent international survey, topics such as artificial intelligence, cybersecurity, 
machine learning, robotics and web systems are included in several countries’ 
intended and enacted curricula from pre-primary to senior secondary years 
(Falkner et al., 2019). 

Age-appropriate learning activities amidst such topics in schools have often 
encompassed programming, particularly ‘graphical’ (or ‘block-based’) program-
ming (Grover & Pea, 2013). Industrial manufacturers have made available several 
computational kits, including physical kits with and without electronics, virtual 
kits and hybrid kits with virtual or tangible programming blocks. In fact, the pop-
ular ‘unplugged’ movement provides a myriad of learning resources that do not 
require the use of digital devices, which has made programming education avail-
able even for pre-schoolers and students who do not have access to technology 
(Brackmann et al., 2017; 2019; Looi et al., 2018; Moschella, 2019; Wu et al., 2018; 
Yu & Roque, 2019). Several previous studies have also compared programming 
environments in terms of their appeal and effect in learning (Szabo et al., 2019). 

Among the most popular and evidently appealing graphical programming 
environments adopted in primary schools is Scratch (Garneli et al., 2015; Lye & 
Koh, 2014; Szabo et al., 2019). Scratch can be used with a web browser for free to 
design interactive media, such as games, stories and animations, and share them 
with fellow designers across the world. The media projects are designed by pro-
gramming, that is, designing step-by-step sequences of instructions (algorithms) 
with pre-set code blocks (Resnick et al., 2009). 

The presence of computing, programming or a similar topic4 in primary ed-
ucation is by no means unprecedented (Denning & Tedre, 2019). Kafai and Burke 
(2013a) published an aptly titled paper, Computer programming goes back to school, 
and pointed out that coding has been introduced in schools in history. Particulary 
during the turning point of the 1980s–1990s, there was excessive enthusiasm for 
programming in learning. However, this enthusiasm greatly diminished by the 
mid-1990s due to a lack of meaningful subject-matter integration (i.e. teachers’ 
feeling that it was unnecessary), lack of qualified instruction and the emergence 
of modern multimedia technologies (e.g. CD-ROMs) and other digital novelties 
that were of interest to educators (e.g. teaching students to surf the Internet). Why 
should students learn this clumsy and seemingly not very important skill (Kafai 

 
4 The words ‘programming’ and ‘coding’ are occasionally used in various texts as inter-
changeable synonyms (e.g. Balanskat & Engelhardt, 2015). Coding (i.e. writing computer 
code) may be an attractive term in vernacular languages (Zhang & Nouri, 2019), but it is ac-
tually only a part of programming (i.e. program construction) let alone computational 
thinking (a foundation of thought) (Tedre & Denning, 2016). 
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& Burke, 2013a)? Today, educational systems across the world seem convinced 
that they should. By fairly common consent, recent discussions have coalesced to 
accommodate one particular emergent term to this frontier: computational thinking 
(CT)—a fundamental competence that everyone in the world should acquire 
(Wing, 2006; 2008). 

1.3 Computational thinking—an emerging competence 

CT erupted definitively into public view in 2006. Jeannette Wing, a professor of 
CS at Carnegie Mellon University, states that CT is a fundamental skill for 
everyone and is used everywhere in today’s digital world. It is a skill that school 
children should acquire, just as they learn reading, writing and math skills (Wing, 
2006). Wing’s timely call for action ignited a surge of discussions, scientific 
studies and educational initiatives on learning computer programming in 
schools (Tedre & Denning, 2016). Today, many educational institutions are 
interested in incorporating CT or proximal topics, such as computing, CS or 
programming, into school curricula (Balanskat & Engelhardt, 2015; Heintz et al., 
2015; Mannila et al., 2014). CT-related initiatives have even been recently seen at 
the preschool educational level (e.g. Bers et al., 2019). 

CT is a comparatively new, continuously maturing and trending educa-
tional topic; the amount of published research on the topic nearly quintupled be-
tween 2015 and 2017 (Hsu et al., 2018). In particular, the number of studies con-
ducted at the compulsory school level has increased rapidly in recent years. This 
is evidenced even by the publication years in the reference list of this thesis (Fig-
ure 1), which exemplifies the fast pace of growing knowledge on the topic and 
the necessity of being aware of ongoing developments. The first distinctly CT-
themed international scientific conference, CTE2017, was organised in Hong 
Kong in 2017 (Kong et al., 2017). According to a recent scientometric study of CT 
(Saqr et al., 2021), ‘CT research has been US-centric from the start, and continues 
to be dominated by US researchers both in volume and impact’. Approximate 
milestones in the development of the topic could be roughly categorised as fol-
lows: (1) early research in computing education (e.g. Papert, 1980; Resnick et al., 
1988), (2) the emergence and first definitions of CT (e.g. Wing, 2006; Lee et al., 
2011), (3) descriptions of the characteristics of CT (e.g. Barr & Stephenson, 2011; 
Shute et al., 2017) and (4) the rapid increase in empirical studies and reviews on 
CT (e.g. Moreno-León et al., 2015; Zhang & Nouri, 2019). 

The youth of CT as a research topic is also evidenced by the lack of well-
established theories, terminology and, especially, ways to interpret the educa-
tional relevance of CT. In fact, several motifs have prompted educational initia-
tives to include CT in school curricula. First, reacting to the past and the current 
digitalisation of the world and acting proactively for the foreseeable future, it is 
necessary to increase enrolment in the science, technology, engineering and 
mathematics (STEM) disciplines at the university level (see e.g. Trilles & Granell,  
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Figure 1.  Publication years of works cited in this thesis 

2020) and to train more qualified workers for the ICT sector5. Therefore, a key 
motif for introducing CT through coding in schools is to trigger students’ interest 
in computer programming and provide them opportunities to become more 
interested in it for further training and working as professional coders. 

A second motif for introducing CT through programming in education 
steps away from technology and the discrete application of computational tools 
and methods. It emphasises that CT promotes general and transferable thinking 
skills that can be utilised in a variety of problem-solving situations, such as in 
studying, working or carrying out everyday procedural tasks in non-computa-
tional settings. Although this claim has been shown to be little else than a myth 
for the lack of scientific evidence (De Bruyckere et al., 2020, p. 7–10; Denning 
2017), nationally famous teacher training kits are among famous examples mak-
ing such promises in a rather outspoken manner: ‘programming helps learn gen-
erally useful cognitive skills’ (Liukas & Mykkänen, 2014). 

The inclusion of CT-related topics in curricula has been thirdly motivated 
by the ability of CT to promote an understanding in computing that is relevant 
in all work sectors. Conrad Wolfram argued6, perhaps slightly provocatively, 
that schools should cease introducing calculation because computers do it much 
more efficiently: ‘humans should learn to use computing tools to address increas-
ingly complex problems’ by defining questions, abstracting them to computable 

 
5 https://minedu.fi/artikkeli/-/asset_publisher/kiuru-ohjelmointi-peruskoulun-ope-
tussuunnitelman-perusteisiin 
6 https://www.forbes.com/sites/tomvanderark/2020/06/29/stop-calculating-and-start-
teaching-computational-thinking/#1a13eb583786 

https://minedu.fi/artikkeli/-/asset_publisher/kiuru-ohjelmointi-peruskoulun-opetussuunnitelman-perusteisiin
https://minedu.fi/artikkeli/-/asset_publisher/kiuru-ohjelmointi-peruskoulun-opetussuunnitelman-perusteisiin
https://www.forbes.com/sites/tomvanderark/2020/06/29/stop-calculating-and-start-teaching-computational-thinking/#1a13eb583786
https://www.forbes.com/sites/tomvanderark/2020/06/29/stop-calculating-and-start-teaching-computational-thinking/#1a13eb583786
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forms, computing answers and interpreting the results. In essence, CT allows un-
derstanding how computing can be utilised in different subject areas. It can thus 
be seen to provide productive skills akin to writing even if students do not be-
come professional programmers. In a sense, everyone could learn to do ‘CT jobs’ 
in their work (Denning & Tedre, 2019; Grover & Pea, 2018). Perhaps the key ques-
tion is: Can you manage without coding in future workplaces? Although the fu-
ture is difficult to predict, there is a revolutionary prospect in this idea: people 
working in different fields could find entirely new and transformative solutions 
to problems that were not necessarily discovered before examining the range of 
problems in that field through ‘CT goggles’ (Tedre & Denning, 2016). 

As a consequence of the above motifs for introducing CT in schools, the 
majority of the nascent research on the topic has situated within the tradition on 
educational psychology. In particular, studies have adopted a cognitive view-
point, that is, that of individual learners, adhering to students’ understanding of 
CT as a conceptual whole and their abilities to solve different kinds of problems 
with CT (Kafai et al., 2019). To that end, CT and programming have been associ-
ated with the tradition of crafts pedagogy—hands-on doing and solving prob-
lems by manufacturing concrete artefacts for pragmatic utilisation (e.g. Blikstein, 
2020). 

However, when enacting programming education care must be taken to 
avoid falling into a discourse in which children are regarded merely as a tool for 
industry. CT can also be (and has been more rarely) examined from the viewpoint 
of educational sociology, which Kafai et al. (2019) concretise as a ‘situated view-
point’ (i.e. that of, for example, communities of practice) and a ‘critical viewpoint’ 
(i.e. that of society, structures of power, etc.). Programming should not be seen 
to present merely logical exercises and functional solutions that are free from val-
ues. Instead, computer code acts as someone’s choice—a socio-material text, 
laden with values, worldviews, identities and aims that can influence, control or 
manipulate societally or socially (Mertala et al., 2020). Accordingly, CT and pro-
gramming can also be associated with a somewhat newer paradigm, something 
akin to ‘computational literacy’. CT can aim to cultivate creativity, participation 
in social communities and gaining a critical view and an active role regarding 
how computing appears in the manifold social, political, cultural and ethical 
dimensions in the world (see Bocconi et al., 2018; Kafai et al., 2019; Lonka et al., 
2018; Williamson, 2016). 

Through the viewpoint of CT as a type of literacy, CT competence can also 
be perceived as an increasingly important component in 21st century education 
that manifests as a kind of digital ‘citizenship’ or ‘agency’ or perhaps a kind of 
computational ‘awareness’, ‘sophistication’, ‘fluency’ or ‘wisdom’. In an emanci-
patory sense, it is justifiable to teach all students to understand something about 
the ways in which computing is shaping our shared environments and provide 
them with tools to safely and responsibly navigate life in a continuously compu-
tationalised society (Høholt et al., 2021; Lonka et al., 2018). As a related concept, 
Dufva and Dufva (2018) conceptualise ‘digi-grasping’: not just ‘being in the dig-
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ital or the use of the digital’ but ‘grasping—an embodied understanding and em-
powered agency—of digital phenomena’. Høholt et al. (2021) recently proposed 
a model for progression in ‘computational empowerment’, which encompasses a 
notion of ‘reflexivity regarding the effect of technology in one’s own life and in 
society’ whilst becoming proficient in the more problem-solving domain in CT. 
As an example, the Korean curriculum has included CT and ‘informational ethics’ 
for over a decade (Jun et al., 2014). Meanwhile, the role of such notions in the 
Finnish national basic education core curriculum and in teacher training has been 
nearly non-existent or at least very limited (Mertala et al., 2020). 

With this rather diverse and unsettled background, CT continues its entry 
into primary education systems across the world, especially through program-
ming activities. Although the scientific and pragmatic efforts surrounding CT ed-
ucation have perceived the term in different ways, they have resulted in particu-
lar definitive ideas regarding competence, which are also adopted as the under-
pinnings of CT in this study. In particular, CT is perceived to be applied by inter-
preting information processes in the world and designing computations while 
solving problems (Denning & Tedre, 2019). It is perceived to involve understand-
ing, for instance, the concept of algorithms, which are sets of instructions that can 
be carried out to perform a task that solves a specific problem or a class of prob-
lems. Acquiring skills in and understanding abstraction are also required to rep-
resent the problems and their solutions with the tools, languages and symbols of 
computing. The above terms are among those that are typically referred to as the 
‘key concepts and practices’ of CT, which include several additional ones in 
somewhat disparate categorisations (see e.g. Barr & Stephenson, 2011; Bocconi et 
al., 2018; Csizmadia et al., 2015; Grover & Pea, 2018; Shute et al., 2017). Addition-
ally, focusing perhaps more on the attitudinal, dispositional or perceptive rather 
than the skill-related dimension in CT, such ideas as self-expression, questioning, 
perseverance, cybersafety, sustainability and computational ethics are held to be 
essential in CT (Barr & Stephenson, 2012; Brennan & Resnick, 2012; Duncan & 
Bell, 2015; Lonka et al., 2018).  

Although there is no definitive answer yet as to what ‘CT-like’ ways to think 
and perform tasks all students should learn, various tools and pedagogical meth-
ods have been developed to assist teachers to introduce and students to become 
familiar with aspects of CT in practice. Hoppe and Werneburg (2019) state that 
CT becomes meaningful ‘in the creation of ‘logical artifacts’ that externalise and 
reify human ideas in a form that can be interpreted and ‘run’ on computers’. In 
other words, the naturalistic purpose of CT is to understand and create usable 
technological solutions (e.g. devices, gadgets, programs or information systems) 
(Connor et al., 2017; Denning & Tedre, 2019). Programming a digital computer to 
do a particular task is consequently regarded as a central pathway for developing 
in CT (Grover & Pea, 2013; 2018). As stated previously, such programming con-
texts as robotics, unplugged exercises and Scratch have been commonly em-
ployed in schools in the expectation that they foster CT in some meaningful way. 



23 
 
1.4 Call for research in CT through programming 

Despite the strong interest in and multitude of tools and approaches for its 
implementation, the journey via which CT has come to schools has been difficult. 
One year after the implementation of the new curriculum in Finland, only 
slightly more than a fifth of Finnish primary and secondary school teachers had 
even tried programming with their students. Moreover, nearly 70% of teachers 
stated that they did not possess the required skills to use a graphical 
programming environment. Meanwhile, primary school students’ programming 
skills were confirmed to be at an extremely low level (Kaarakainen et al., 2017). 

Telling a similar story in 2019, the International Computer and Information 
Literacy Study (ICILS) conducted in 14 countries showed that there is much va-
riety in 8th grade students’ CT skills (Fraillon et al., 2020). ICILS also revealed that 
in Finland teachers generally emphasised the teaching of CT skills less in their 
teaching practice than teachers in other participating countries (Leino et al., 2019). 

Most school teachers may lack the necessary skills to combine sufficient 
technological, pedagogical and content-related knowledge in teaching CT and 
programming and to integrate them with other subject matter (Bull et al., 2020). 
New necessary CT-related knowledge (e.g. pedagogical content knowledge) re-
quired of teachers has been rightfully problematised and the importance of 
teacher training highlighted by several researchers (e.g. Armoni, 2019; Hubbard, 
2018; Iwata et al., 2020; Kong et al., 2020; Lamprou & Repenning, 2018; Mannila 
et al., 2018; Pears et al., 2019; Waite et al., 2020; Yadav et al., 2016). For instance, 
Rich et al. (2021) have found that teachers lacked confidence in teaching specific 
programming contents and CT concepts. Mäkitalo et al. (2019) have proposed a 
framework called CTPACK7 to pay attention to what kind of knowledge could 
be required of teachers to teach CT. Other barriers, such as the lack of computers, 
challenges in rearranging curricula, governmental policies and reluctance to 
adopt the emerging topic have also been suggested (Lockwood & Mooney, 2018). 

Additionally, the topic is so new in compulsory education that the reason 
why CT is important is not perhaps entirely clearly articulated or well-justified. 
Teachers may be inclined to teach ‘more important’ content than programming 
and CT. Lacking better knowledge, a teacher may ask ‘Why must I learn to teach 
this?’ Programming and CT may be seen as optional or extracurricular subjects 
that are more suited for after-school clubs or elective courses. Bull et al. (2020, p. 
13) provided reason for these notions and stated that ‘exporting technologies 
such as Scratch is easier than disseminating the accompanying ideas related to 
creativity and problem solving that Scratch was designed to support.’ The clari-
fication of CT’s educational objectives and making it tangible become highly vital. 

Additional concerns arise from the perspective of learning CT in the context 
of programming. Although a recent meta-analysis (Scherer et al., 2020) showed 

 
7 CTPACK is a derivative of the perhaps more well-known TPACK model, which portrays 
three types of knowledge: technological knowledge, pedagogical knowledge, and content 
knowledge. 
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that programming talent is not innate and that programming interventions are 
generally effective, especially at the primary school level, programming is noto-
riously difficult for students in many educational settings. Especially motivated 
students in extracurricular learning activities may have better learning outcomes 
than other students (Scherer et al., 2020). There are known challenges for educa-
tors who attempt to facilitate students’ deep learning and ‘thinking-doing’ for CT 
(Lye & Koh, 2014). Particularly in the widely adopted block-based programming 
environments, such as Scratch, in which learners can simply drag and drop pre-
assigned programming blocks, there is an ever-looming risk of mechanistic ‘do-
ing without thinking’ (Ben-Ari, 1998). These issues can be affiliated with the the-
oretical underpinnings in constructionism, which emphasises discovery-focused 
learning and hands-on doing (see e.g. Brennan & Resnick, 2012). 

Ways to support students’ CT learning in programming remains altogether 
a little studied frontier (Lye & Koh, 2014), and an overall picture of what is in-
volved when considering the pedagogy of CT in Scratch in primary school class-
rooms remains somewhat unclear. An aspiration to support students’ learning in 
CT can be found in the practice of formative assessment (see Black & Wiliam, 
2009), which has been underlined as a key topic of development in CT education 
(Lye & Koh, 2014). 

1.5 The focus of this study 

Altogether, a rather worrying picture of the current state of including CT and 
programming in schools presents itself, and it also foreshadows a rather 
concerning future. In short, there is much novelty enveloping CT; it is a relatively 
newly defined and rather complicated construct. New kinds of tools (e.g. Scratch) 
to foster its learning have emerged for teachers, and its inclusion in the context 
of programming in compulsory education has only begun somewhat recently 
(Basso et al., 2018; Grover et al., 2017; Heintz et al., 2016). There are few empirical 
studies focused on examining teaching and learning in this context. Evidence-
based knowledge about how students learn the versatile skills and knowledge 
associated with CT through programming with tools such as Scratch in general 
classrooms and about where potential pedagogical challenges lie is limited. In 
particular, it remains largely unclear how students’ learning of the multifaceted 
competence can be supported and what kind of role sociality in learning (e.g. pair 
programming) can play in the mix. 

In response to the growing demands surrounding CT education, this thesis 
takes the initiative in exploring how the learning of multifaceted CT can be sup-
ported in the context of programming with Scratch in primary school classrooms. 
The main theoretical concept of this thesis is CT, which is perceived to reside at 
the intersect of computing, programming and problem solving and which can be 
learnt in the Scratch programming environment meaningfully in primary schools 
(see also Zhang & Nouri, 2019) (see Figure 2). 
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Figure 2.  The relationship of key concepts in this thesis (modified from Zhang & Nouri, 
2019) 

In summary, computing is an age-old activity of systematically processing 
information and can be effectuated by humans and electronic machines alike 
(Tedre, 2015). Programming is a craft-like human activity to design and construct 
software systems that perform computations in automated programs (i.e. expres-
sions of algorithms that can control the actions of a machine) (Denning & Tedre, 
2019; Van Roy & Haridi, 2003). Scratch is a web-based programming environ-
ment targeted at young learners to creatively design interactive media, such as 
digital games and animations (Resnick et al., 2009). CT is a multifaceted compe-
tence that has several proclaimed educational benefits (e.g. providing coding 
skills, skills for computing across contexts, general problem-solving skills, com-
putational literacy). From there, CT can be understood from different viewpoints 
that involve potentially different kinds of important skills and knowledge and 
appropriate pedagogical methods to support learning.  

In this study, the focal viewpoint of CT is students’ computational problem-
solving skills that can be examined in the context of Scratch. The main justifica-
tion is pragmatic: CT is a relatively new topic that has struggled in gaining a solid 
foothold in primary schools despite it having been accompanied by several well-
established and age-appropriate practical tools and methods. There is an urgent 
need to assist teachers in better adopting CT in practice. CT is introduced in 
schools typically via programming; therefore, a focus on such teaching and learn-
ing activities that encompass problem-solving skills while designing concrete ar-
tefacts can provide valuable information regarding how to organise purposeful 
learning activities in schools. 

The overall scholarly and pragmatic aims of the study are to shed light on 
teaching, learning and assessing CT through programming with Scratch and 
through this process develop ways to potentially support students’ CT learning 
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with formative assessment in this context. Although formative assessment is not 
a target of investigation per se, it is an outlying point of reference that particularly 
motivates the methodological developments herein. On a similar note, the devel-
opments regarding assessment are expected to be situated alongside existing re-
search in CT to piece together holistic assessment in CT for further research and 
development. The concrete actions taken by this thesis to pursue the aims are as 
follows. 

First, this thesis specifies the educational goals of introducing CT through 
programming at the primary school level. Second, by so receiving the requisite 
theoretical framing for CT and using it, it evaluates ways to assess students’ CT 
in terms of those goals in Scratch. These actions stem from the circumstance that 
no clearly articulated educational objective for general-level CT currently exists 
in the primary school context. The notions adopted in previous literature con-
cerning what is relevant to teach, learn and assess about CT have thus been in-
consistent and rather limited and even programming-centric. This has resulted 
in a collection of relatively inconsistent and even narrow ways to approach the 
acquisition of evidence-based knowledge regarding students’ potentially rele-
vant skill areas in CT. It has also resulted in ambiguity concerning relevant CT 
learning contents and activities in Scratch for pedagogical decision making, such 
as designing programming courses, setting meaningful learning goals and select-
ing appropriate learning activities to pursue those goals. 

Third, this thesis develops new methods for assessing primary school stu-
dents’ CT richly and holistically in authentic programming situations. Fourth, 
following that operational groundwork, it provides rich empirical insight about 
students’ CT in the context of programming with Scratch. These actions stem 
as a consequence from the above-stated disorderly circumstance of the theories 
and operational measures in CT. There is a lack of rich evidence of how students 
can learn the various skills and knowledge involved in CT and of what kinds of 
factors can influence learning in classrooms. This is troublesome primarily for 
pedagogical decision making, especially in terms of awareness of well-grounded 
ways to support students’ CT learning in classroom contexts. Therefore, the pur-
pose of this empirical work is to explore and describe how students apply CT in 
practice in this context and learn as many lessons as possible in terms of ways to 
support their CT learning in Scratch. 

The research design, based on the actions taken by this thesis, necessitated 
both theoretical and empirical efforts. Therefore, a mixed methods design is em-
ployed. The efforts are divided into three peer-reviewed scientific journal articles 
of which the investigator was the first author. 

The first article is a literature review. It aims to contextualise CT compre-
hensively in the Scratch programming environment for teaching and learning in 
primary school classrooms and to explore the assessment of CT through Scratch 
in this context. 

The second article is an empirical study. It aims to attain rich empirical ev-
idence of primary school students’ diverse CT based on Scratch projects they pro-
grammed in naturalistic classroom situations. In the process, it also develops a 
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way to potentially support students’ CT in the context of assessing their Scratch 
projects. 

The third article is also an empirical study. Along with Article II, it aims to 
obtain rich empirical evidence of primary school students’ CT. It tackles the issue 
from the viewpoint of examining students’ pair programming processes in 
Scratch. By taking such an approach, it also paves the way in this rarely employed 
methodology by developing new analytical methods and discussing how to em-
ploy them to support students’ CT learning in classrooms. 

The above actions taken by this thesis and the roles of each article amidst 
those actions are summarised in Figure 3. 
 

 

Figure 3.  The actions taken in this thesis through the three research articles 



The sections in this chapter present the main theoretical background and litera-
ture related to this thesis. Based on previous literature, they describe the concep-
tual and practical premises related to CT and its role in primary education 
through programming, which has been often employed in schools as a pathway 
to teach and learn CT. 

The two main sections cover two broad themes that shape the study. The 
first main section, Computational thinking and programming (section 2.1), clari-
fies the historical roots of CT, the adopted definition for it, its relationship with 
programming and ways to concretise it for educational practice. The second main 
section, Teaching and learning CT in Scratch (section 2.2), overviews ways to im-
plement programming education in schools, especially with the Scratch pro-
gramming environment. It also explores how CT can be assessed through Scratch 
projects and shared Scratch programming processes to support students’ learn-
ing in classroom situations. 

2.1 Computational thinking and programming 

This section focuses on the term ‘computational thinking’ by examining it 
specifically in the context of computer programming. To get to the roots of the 
field and frame the current state of CT, the section begins by situating CT in the 
historical and contemporary contexts of computing education and ICT education 
(in subsection 2.1.1). Subsequently, based on previous literature, CT is defined 
for primary education (in subsection 2.1.2). The relationship between CT and 
programming—two affiliated conceptual spaces that are important to 
distinguish—are then clarified (in subsection 2.1.3). Last, the core skill and 
knowledge areas affiliated with CT are concretised as ‘core educational 
principles’ that students can learn by programming (in subsection 2.1.4). 

2 THEORETICAL BACKGROUND 



29 
 
2.1.1 A historical overview 

Teaching students to think ‘computationally’ when solving problems or in terms 
of algorithms8 in different professional fields are not new. According to Grover 
(2018), several researchers discussed solving problems and thinking using CS 
decades ago; for example, the problem-solving practices characteristic of CS were 
discussed in the 1960s, and there was a comparison with ‘CS thinking’ and 
mathematical thinking in the 1980s. 

In fact, CT is a term that Seymour Papert, a renowned computer scientist 
and educator mainly known for his research on the theory of constructionism 
and the development of the Logo programming language, first introduced in his 
book Mindstorms (Papert, 1980). Along with contemporary scholars, Papert be-
lieved that if a child could teach a computer a real-world phenomenon—such as 
a formula to solve a mathematical problem, proper syntax to form a sensible sen-
tence or a set of notes in a musical melody—the child would truly understand 
the phenomenon themeselves. Constructionism states that when making ‘things’, 
learners are implementing (i.e. creating externalisations of) their mental models 
of how the world works. Children could therefore also learn various subjects by 
programming matters related to them in an environment that is pedagogically 
well-suited for their age and the task (Bull et al., 2020). 

Perhaps the most well-known example of his ideas, Papert (1980) intro-
duced a two-dimensional virtual turtle that can be programmed with the Logo 
programming language (see illustration in Figure 4). He argued the meaningful-
ness of programming the turtle to move in a simulation according to a set of al-
gorithmic rules and to produce various geometrical shapes. By doing so, each 
individual learner could meaningfully engage in learning that is supported by 
perfect accuracy and extreme speed at the hands of a digital computer. Blikstein 
(2020) labelled this as ‘the principle of powerful expressiveness in making’; with 
the assistance of digital devices, learners’ externalised ideas can come into frui-
tion powerfully, feasibly and very quickly in ‘hands on’ and ‘heads in’ learning 
activities. 

Although Papert’s ideas kindled a wave of contemporary theoretical dis-
cussions and empirical research on the learning of computer programming, the 
term CT was barely used in educational research let alone systematically incor-
porated in school practice. There was sporadic interest in introducing students to 
coding in schools in the 1980s and 1990s, particularly with contemporary text-
based programming languages that also occasionally adopted tangible technolo-
gies such as LEGO/Logo, and in exploratory pedagogical research (e.g. Resnick 
et al., 1988; Suomala, 1999). According to Kafai and Burke (2013a), the recent re-
ignition of coding in schools was fanned by the increased accessibility of easy-to-
use computers, especially outside of school. This gave rise to the participatory 
digital youth culture, an interest-driven culture of making, and connecting with  

 
8 ‘Computational thinking’ is a widely used term in English-speaking contexts, although 
the term ‘algorithmic thinking’ appears occasionally as a synonym for CT, especially in ed-
ucational curricula (Bocconi et al., 2018). Moreover, terms such as ‘procedural thinking’ 
(e.g. Aho, 2011) have been used to in referring to ideas similar to CT. 
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Figure 4.  An illustration of the Logo programming environment primarily used in the 
1970s 

broad networks of other young users, particularly underrepresented ones (e.g. 
women) (Kafai & Burke 2013a). 

Tedre and Denning (2016) view the re-emergence of coding in schools from 
another perspective. According to an overview of the historicity of CT, the main 
reason for the increased interest in computing and programming in schools stems 
from the fact that several scientific domains and sectors of work have begun to 
digitalise rapidly. Grover (2018) articulate the rise of ‘computational X’, that is, 
the ‘integration of CT to enable/enrich learning in other disciplines, mainly 
through the vehicle of programming and automating abstractions and models in 
other disciplines’. Similarly, Connor et al. (2017) state that CT is largely captured 
within ‘the understanding of domains that can be modelled by computational 
mechanisms’. Professionals in disciplines such as computational physics, bioin-
formatics and digital humanities can perform enormous computations by utilis-
ing simulation models and interpreting natural processes as information pro-
cesses to employ entirely new ways to do science (Denning & Tedre, 2019). 

Discourse on how every student should attain adequate ICT-related skills 
to cope in a future with ubiquitous digital technology dates back decades as well. 
However, the purpose of CT initiatives, in contrast to mere ICT skill acquisition, 
is beyond technological applications and hardware. CT is considered to be a 
broad foundation of thought and a set of skills that is employed autonomously 
in various authentic problem-solving situations (Bocconi et al., 2017; de Paula et 
al., 2014). It is more about understanding what information is and how it can be 
identified and modelled as processes, in particular with digital computing tech-
nology, that establish solutions in real-world situations (Connor et al., 2017). Such 
ideas partially align with subjects like computer literacy, information literacy, 
digital literacy, computational literacy and computational fluency, which have 
had various meanings in history and which can be viewed almost as synonymous 
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with CT or as closely related to it (see Grover, 2018; Grover & Pea, 2013). For 
instance, ‘technology comprehension’, a subject that has been incorporated in 
lower secondary schools in Denmark, combines computing with design and so-
cietal reflection, among other topics (Tuhkala et al., 2019). ‘DigCompEdu’, a 
framework authored by the European Commission (Redecker & Punie, 2017), 
lays out ‘digital competence’ as an overarching term that can be actualised in 
several ways, for example, by creating digital content and digital problem solv-
ing. 

2.1.2 Defining computational thinking 

Despite more than 10 years of discourse and growing aspirations surrounding 
CT, it has been plagued by the lack of a stable core description and definition, 
which has been a hindrance in relation to scientific research and has resulted in 
ambiguity and uncertainty in practical educational decision making. At present, 
CT is somewhat ill-structured because there is still no universal agreement about 
what it constitutes, how it differs from other thinking processes (see more details 
in subsection 6.3.1) and how to assess it (Tang et al., 2020). 

Wing (2006), who popularised CT, originally described it in the following 
way. CT is ‘the thought processes involved in formulating a problem and ex-
pressing its solution(s) in such a way that a computer—human or machine—can 
effectively carry out’. Later, she specified that problems and their solutions can 
be effectively carried out by ‘an information-processing agent’ (Wing, 2011). 
Since then, CT has been viewed as, for instance: 

• a set of skills (e.g. Csizmadia et al., 2015) 
• a competence (e.g. Voogt et al., 2015) 
• a problem-solving methodology (e.g. Barr & Stephenson, 2011) 
• a problem-solving process (e.g. Barth-Cohen et al., 2018; Kalelioglu et al., 

2016; Labusch et al., 2019; Standl, 2017) and 
• a type of literacy (e.g. Jacob & Warschauer, 2018; Kafai et al., 2019). 

Since Wing’s ‘call for action’, there has been much effort to determine what 
the term could or should mean in practice for professionals working in different 
fields, for experts in different branches of science and for students studying in 
comprehensive primary education. Additional attempts to refine or re-define the 
essence of CT have since appeared. For instance, Aho (2011) specified that an 
essential component in CT is to represent solutions to problems specifically as 
‘computational steps and algorithms’. Shute et al. (2017) also emphasised the al-
gorithmic component, defining CT as ‘the intellectual foundation required to 
solve problems effectively and efficiently (i.e. algorithmically, with or without 
the assistance of computers) with solutions that are reusable in different contexts’. 

Roughly put, there are two extreme views of what CT provides. First, per-
haps in a relatively cautious manner, it provides disciplinary knowledge of CS 
and the capability to use digital tools in different problem-solving situations (e.g. 
Denning, 2017). Perhaps it is an exaggeration, but is CT in fact just coding in dis-
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guise to prepare students for studies in computational disciplines in higher edu-
cation? Another view is somewhat more optimistic, which is that CT is virtually 
equivalent to kinds of generic problem-solving skills that can be applied in a va-
riety of (even non-computational or non-digital) situations (e.g. Wing, 2006). Per-
haps this is also an exaggeration, but is CT just a reissue or at most a nuanced 
depiction of skills that have already been practiced in schools over the ages? To 
make things more complex, there is the additional question of whether the prac-
tical skills in solving problems are more essential for students in terms of CT than 
the worldview that it can provide. Depending on the emphasis, educators and 
scholars can choose between focusing more or less on computational problem-
solving techniques or understanding, for instance, the social, cultural and ethical 
matters in the computational world. 

Some scholars argue that a broad definition of CT is acceptable, as the at-
tention should focus more on developing teaching, learning and assessing than 
on defining the ‘core’ versus the more ‘peripheral’ qualities in CT (Selby & Wool-
lard, 2014). In educational practice, it may even be sufficient to introduce mere 
CS to promote hypothetically broader CT (Hu, 2011). Additionally, Voogt et al. 
(2015) believe that the cognitive processes and practices within CT cannot be de-
fined clearly because they are difficult to implement in practice. Moreover, they 
emphasise that attempts to define CT very rigidly would elevate a logical defini-
tion and dilute the essential idea of CT as a pragmatic approach and make it in-
distinct from other 21st century skills. Yet, other views (e.g. Selby, 2014) underline 
that an unclear and a disagreed upon definition of CT may hinder CT in gaining 
a foothold in school curricula and the development of appropriate assessment 
tools. 

Currently, there is relative consensus among scholars and practitioners per-
haps in the middle of the extents. What makes CT special is not being mere dis-
ciplinary knowledge in CS or going as far as being applicable everywhere but 
being the application of computing in different problem-solving contexts. It is a type of 
thinking that has roots in the ancient activity of computing and the modern sci-
entific discipline of CS. In other words, CT borrows the concepts, models, ideas 
and techniques that are part of the discipline of CS. In practice, with the assistance 
of today’s digital computing machines, the core ‘habits of mind’ involved in CT 
allow people to produce entirely new kinds of scientific knowledge (e.g. com-
puter-assisted analysis of real-life phenomena), develop new knowledge con-
struction methodologies (e.g. simulations), digitalise societal structures (e.g. au-
tomated work) and, most of all, cope within those structures. CT becomes prag-
matically meaningful when it manifests as behaviour—computational problem 
solving. This particular type of problem solving is typically instrumentally sup-
ported by ICT tools and devices because automated digital machines are often 
much better (i.e. faster and more efficient) in carrying out rote computational 
tasks than humans (Denning & Tedre, 2019; Tedre & Denning, 2016). In fact, 
‘computational problem solving’ has been viewed as an optional label to ‘com-
putational thinking’ (Grover, 2018).  
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The praxis of CT is any real-life domain—whether another scientific disci-
pline or a sector of work—that contains a problem that can be solved computa-
tionally. Endorsing this view, CT has been visualised as a ‘connecting tissue’ be-
tween CS/programming and disciplinary knowledge of the world (Martin, 2018). 
To utilise CT meaningfully in a problem-solving situation, knowledge of both 
ends is required—understanding problems and obtaining solutions with the as-
sistance of CS and ICT (Denning & Tedre, 2019; Michaelson, 2015). In conclusion, 
this study perceives CT as disciplinary knowledge of CS when solving problems 
with ICT tools in different domains or disciplines (Figure 5). 

CT can be acquired by gaining understanding in CS, ICT and problem-solv-
ing in addition to knowledge of problems in some real-world domain. Thus, CT 
is higher-order thinking, which can be exemplified with, for example, Bloom’s 
taxonomy (Selby, 2015). It does not aim for merely remembering certain CS con-
cepts when using them in operating digital devices. Instead, it is the deliberate 
application of computational concepts and practices and digital tools in mean-
ingful (and perhaps even new and creative) ways in real-life situations. To in-
clude such characteristics tangibly in primary education, this study defines the 
following educational objective for CT: students learn to 

• understand what computing can/cannot do 
• understand how computers do the things that they do and 
• apply computational tools, models and ideas to solve problems in vari-

ous contexts. 

Recent studies overviewing curricula in different countries have shown that 
such pedagogical notions are relevant in schools by way of introducing CS, pro-
gramming, computing or informatics embedded within different subjects but not 
for CT specifically (Heintz et al., 2016; Mannila et al., 2014). Students are also ex-
pected to acquire particular attitudes or perceptions, such as understanding in 
computational ethics, through such approaches (Lonka et al., 2018). However, to 
focus on a manageable theoretical range, this study omits the investigation of 
students’ more non-cognitive CT-related dispositions and limits its scope to the 
aspect of computational problem solving. 

 

Figure 5.  The theory-practice reciprocity of CT and its proximal topics 
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2.1.3 The relationship of CT and programming 

To make research and development in CT education tangible, a concrete 
characterisation of the conceptual ideas and practical skills involved with CT as 
problem solving is required. For example, Denning and Tedre (2019) qualified 
key principles that are involved in ‘professional CT’, that is, the kind of problem 
solving that CT experts carry out when working professionally in different fields. 
In a similar fashion, foundations akin to the ‘core educational principles’ of CT 
can be formulated to characterise what can be taught and learnt about CT in 
primary schools. 

Several previous works have unpacked CT into different kinds of atomic 
sub-parts (e.g. key concepts and practices) to specify what skills and knowledge 
are relevant to it, but those sub-parts have varied across the existing literature 
(Lye & Koh, 2014; Shute et al., 2017). To that point, the lack of uniform terminol-
ogy in framing CT’s essential sub-parts has also problematised discussions and 
developing consensual approaches. CT has been said to comprise, for example, 
key ‘facets’, ‘components’ or ‘elements’ (Shute et al., 2017), ‘principles’ (Settle & 
Perkovic, 2010), ‘capabilities’ (Barr & Stephenson, 2011), ‘abilities’ (de Araujo et 
al., 2016) and ‘concepts’, ‘practices’ and ‘perspectives’ (Brennan & Resnick, 2012; 
Csizmadia et al., 2015; Grover & Pea, 2018). 

At its broadest, CT can be viewed as a rich and polymorphous collection of 
intellect, abilities, attitudes and dispositions. Constraints are in order to investi-
gate it sensibly. This study focuses on investigating primary school students’ CT-
related problem solving in the context of programming, omitting the ‘profes-
sional CT’ and the more attitudinal, dispositional or perceptive dimensions of it. 
This rather popular approach adopts a view of CT as involving something that 
could be referred to as its key concepts (describing ‘the what’ in what students 
are dealing with) and key practices (describing ‘the how’ in how they are per-
forming) (see also Angeli et al., 2016; Csizmadia et al., 2015; Grover & Pea, 2018; 
Hsu et al., 2018; Shute et al., 2017). 

Clarifying ‘the what’ and ‘the how’ in teaching and learning CT in the con-
text of programming has blurred the vision of many attempting to study and 
develop CT education. A layer of obscurity is often caused by something that can 
be described as the concept-spatial ambiguity in CT. The question is: When are 
we teaching or learning skills that are specifically CT (general, transferable) ra-
ther than CS (belonging to that specific scientific discipline), programming (a 
craft-like human activity) or coding (the act of writing computer language) skills? 
This notorious problem often seems to have been resolved in previous studies by 
avoiding being clearly tied to the slippery term that CT is. Instead, studies have 
often investigated how students learn CS concepts or programming concepts 
while relying on the assumption that they learn something about CT. 

The act of programming can be described broadly as, for example, changing 
the settings of an alarm clock. Despite this, it is often referred to more rigorously 
as the craft-like design and construction of software systems that run automated 
programs in computing machines. When writing programs, programmers use 
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various data types and logical operations that establish algorithms, which are 
general-level instructions to solve a specific problem regardless of, for example, 
which programming language or digital tool is employed to implement said al-
gorithm in a particular situation (Van Roy & Haridi, 2003). It is vital to appreciate 
that computing and programming are not synonyms; programming is a practical 
activity whereas computing is a way of understanding computer systems that 
can be promoted by doing programming (de Paula et al., 2014). 

Programming and CT have a rich and intimate relationship. Programming 
can be examined as an indication of students’ CT-related capabilities (e.g. Grover 
& Pea, 2013), but it is better to examine this relationship in full detail. According 
to Tang et al. (2020), the key concepts and practices representing CT have been 
defined in two different conceptual dimensions or hierarchies—context-specific 
(competences related to a specific practical programming environment) and 
cross-contextual (competences related to both domain-specific knowledge and 
more generic problem solving). 

The context-specific dimension involves second-order programming con-
cepts, which embodies programming and computing-related concepts that have 
been, for instance, assessed as latent evidence of students’ CT skills. Particularly 
regarding the Scratch programming environment (see subsection 2.2.2), Brennan 
and Resnick’s (2012) famous categorisation of such programming-centric ideas 
has spawned a myriad of research juxtaposing programming almost directly 
with CT. The authors proposed that the concepts that CT encompasses and that 
students should learn to understand and use specifically in Scratch are, for in-
stance, ‘loops’, ‘conditional structures’ and ‘variables’. In their handbook Con-
cepts, Techniques, and Models of Computer Programming, Van Roy and Haridi (2003) 
portray such concepts as the data types and operations that programmers use to 
specify systems and design programs that implement those systems. Empirical 
studies that have examined students’ learning of programming with Scratch have 
referred to similar conceptual ideas as, for example, ‘CS subjects’ (Zur-Bargury 
et al., 2013), ‘CS concepts’ (Meerbaum-Salant et al., 2013), ‘programming compo-
nents’ (Seiter & Foreman, 2013), ‘language primitives’ (Werner et al., 2014) and 
‘computational concepts’ (Moreno-León et al., 2015). 

The context-specific dimension rests aside the first-order cognitive CT di-
mension that carries a more cross-contextual interpretation. According to this in-
terpretation, CT skills can be derived from programming concepts, but they are 
more rooted in cognitive thinking skills that transfer to a variety of computational 
problem-solving contexts. According to this view, the concepts and practices con-
stituting CT include interdisciplinary capabilities or competence areas instead of 
skills and knowledge specific to mere programming (or any other practical prob-
lem-solving context) (Tang et al., 2020). This view aligns with the notion that the 
kind of CT that students should develop is aimed to be applicable in different 
areas of life and work (e.g. Wing, 2006). As Patton et al. (2019) put it, the decon-
textualisation of computing from real-world contexts and applications can 
threaten to decrease students’ understanding of the relevance of its utilisation in 
their future. 
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Framing CT’s core constituents in a narrowly scoped practical context may 
prove to be limiting in terms of its potential transferability across different com-
putational contexts. Therefore, this thesis’ view is that CT’s key concepts and 
practices are not by default conceptually aligned to a particular practical context, 
as in the context-specific dimension, but that they can potentially be applied in 
various contexts, as in the cross-contextual interpretation. However, as program-
ming is a meaningful pathway to develop in CT, it can comprise context-specific 
elements that can influence the development of cross-contextual CT concepts and 
practices. Therefore, the relationship between programming and CT is under-
stood in this thesis as a conjoined one. In programming, students’ programming 
activities and the programming contents they encounter can foster certain areas within 
CT. In turn, students’ CT can be assessed by observing their programming work because 
the computer programs that students design to solve particular problems can in-
dicate the conceptual and practical encounters they have had and suggest their 
capabilities and progress in CT (Brennan & Resnick, 2012; Denning, 2017; Grover 
& Pea, 2013, 2018; Kafai & Burke, 2013b; Seiter & Foreman, 2013). This framing is 
further concretised in Scratch in subsection 2.2.5. 

2.1.4 CT’s core educational principles  

It is necessary to establish what constitutes the first- and second-order 
dimensions in the relationship between CT and programming. Prior literature 
has framed the more cross-contextual key concepts and practices in CT in 
different ways. Building from the Great Principles of Computing, Settle and 
Perkovic (2010) presented a framework for CT across the curriculum in 
undergraduate education. They proclaimed that CT involves such principles and 
keywords as ‘communication’, ‘automation’ and ‘design’ that organise the 
pivotal instances of CT that can translate to contexts outside CS. 

In 2009 (and later in 2018), the International Society for Technology in Edu-
cation (ISTE) and the Computer Science Teachers Association collaborated to de-
vise an operational definition for CT in K–12 classrooms. Among their core ideas 
concerning what CT is were concepts and methodologies that students use when 
solving problems with a computer, such as ‘data collection’, ‘abstraction’ and ‘al-
gorithms and procedures’. Such concepts were embedded in activities across 
multiple disciplines (Barr & Stephenson, 2011; ISTE, 2018). 

In the aftermath of computing being introduced in British schools in 2014, 
Csizmadia et al. (2015) developed a conceptual framework for CT that involved 
concepts such as ‘logical reasoning’, ‘thinking algorithmically’ and ‘decomposi-
tion’. They intended to help teachers to incorporate CT stemming from prior ef-
forts in computing and CS education in the Computing at School projects that 
would also support learning and thinking in other curricular areas. Similarly, 
Angeli et al. (2016, p. 50–51) designed a K–6 CT curriculum comprising CT skills 
and implications for teacher knowledge. 

In a subsequent attempt to demystify CT to support the educational reforms 
spurred by the topic globally, Shute et al. (2017) reviewed prior literature and 
synthesised such CT facets as ‘decomposition’, ‘iteration’ and ‘generalisation’ as 
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ways of thinking and acting that students can display by developing and using 
certain skills. Similarly, Hsu et al. (2018) reviewed prior literature and discussed 
how CT could be taught and learnt in K–12. Furthermore, based on recent wide-
spread discourse on CT, Grover and Pea (2018) attempted to bring clarity regard-
ing what CT is and what it is not by providing their own categorisation of such 
CT concepts and practices as ‘logic and logical thinking’, ‘evaluation’ and ‘creat-
ing computational artefacts’. 

Altogether, the previous works provide kindred yet not entirely convergent 
categorisations of the key concepts and practices that compose the theoretical 
space of cross-contextual CT (and the terminology by which they are referred to) 
(see Figure 6). It is worth noting, though, that CT is an elusive term that continues 
finding an established form, and it involves areas that could be interpreted to be 
more in its ‘central’ or ‘peripheral zones’. Concise views of CT can be rather pro-
gramming-centric and omit potentially essential areas in general-level CT. In turn, 
generous views may overlap with other competence areas. By framing CT based 
on several previous works, this study strives to adopt a relatively generous rather 
than a narrower view to expand our understanding of the potentially meaningful 
borders of CT. This approach can be feasibly limited, as needed. 

Researchers have carried out detailed investigations into how students can 
learn the various key concepts and practices of CT, such as abstraction (e.g. Liebe 
& Camp, 2019; Statter & Armoni, 2020; Waite et al., 2018), decomposition (e.g. 
Rich et al., 2018), data variables (e.g. Rich et al., 2020) and algorithms (e.g. Dwyer 
et al., 2014). In fact, debugging was examined several decades ago in program-
ming education (e.g. Klahr & Carver, 1988; Pea et al., 1987; Vessey, 1985) and with 
contemporary environments (e.g. Liu et al., 2017). CT has also been viewed spe-
cifically through the distinct disciplines or practices of ‘modelling’ (Sengupta et 
al., 2018) and ‘design’ (Oleson et al., 2020). Then again, pattern recognition and 
generalisation can be viewed as immensely vast concepts because patterns exist 
everywhere, and recognising and generalising based on them are cognitive pro-
cesses that likely transcend all contexts of human experience and cognition. 

Altogether, the key concepts and practices are broad and qualitatively dif-
ferent, testifying to the catalysts for the infamous complexity and an unclear con-
sensus regarding CT. From there, it is important to consider what the concepts 
and practices mean, especially in programming, and how they can be viewed as 
 

 

Figure 6.  Key concepts and practices that prior literature associates with CT 



38 
 
a holistic but dismantlable collection of ideas, models and techniques that can be 
taught and learnt conveniently and studied systematically. Few prior works have 
systematically explored the relationships between CT and programming. Those 
that have include Selby (2015), who theorised a general model that parallels 
Bloom’s taxonomy with a few select CT concepts (e.g. decomposition, abstraction) 
and programming skills (e.g. code constructs, an algorithm). The model presents 
a hierarchy of cognitive complexity in CT and programming and thus teaching 
order that, in short, begins by students learning to comprehend basic code 
constructs and ending with them having skills to evaluate algorithms. Kong (2016) 
proposed a framework according to which specific areas in CT are delivered 
through a number of learning projects, which are used to review students’ extent 
of understanding. Zhang and Nouri (2019) also reviewed on a relatively general 
level how different programming elements relate to specific CT concepts and 
devised a progression for them for certain age groups. 

Although these works are on point, they have remained rather program-
ming-centric or too generic to account for several important conceptual and prac-
tical areas that can be regarded as important in CT education in practice. Various 
programming contents that students manipulate and programming activities 
that they carry out can foster the skills and knowledge involved inclusively in CT 
in different ways. Fortunately, the research categorising CT’s key concepts and 
practices has characterised the skills and knowledge included in CT that students 
can gain while programming in manifold ways. To concretise said skills and 
knowledge, this study summarises them uniquely as CT’s core educational prin-
ciples (CEPs)—fundamental computational facts, conceptual ideas and tech-
niques; atomic elements of CT to enable the systematic contextualisation of CT in 
specific programming environments. The CEPs derived from previous literature 
are as follows: 

• Abstraction. A range of digital devices can be computers that run pro-
grams (Csizmadia et al., 2015; Grover & Pea, 2018). Programming lan-
guages, algorithms and data are abstractions of real-world phenomena 
(Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 2018). Solving 
complex problems becomes easier by reducing unnecessary detail and by 
focusing on parts that matter (for example, by using data structures and 
appropriate notation) (Angeli et al., 2016; Csizmadia et al., 2015; Grover 
& Pea, 2018; Hsu et al., 2018). 

• Algorithms. Programmers solve problems with sets of instructions start-
ing from an initial state, going through a sequence of intermediate states 
and reaching a final goal state (Angeli et al., 2016; Barr & Stephenson, 
2011; Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 2018; Settle & 
Perkovic, 2010; Shute et al., 2017). Sequencing, selection and repetition 
are the basic building blocks of algorithms (Angeli et al., 2016; Barr & 
Stephenson, 2011; Csizmadia et al., 2015; Grover & Pea, 2018). Recursive 
solutions solve simpler versions of the same problem (Barr & Stephen-
son, 2011; Csizmadia et al., 2015; Grover & Pea, 2018). 



39 
 

• Automation. Automated computation can solve problems (Csizmadia et 
al., 2015; Grover & Pea, 2018; Hsu et al., 2018). Programmers design pro-
grams with computer code for computers to execute (Csizmadia et al., 
2015; Grover & Pea, 2018; Settle & Perkovic, 2010). Computers can use a 
range of input and output devices (Csizmadia et al., 2015). 

• Collaboration. Programmers divide tasks and alternate in roles (Grover 
& Pea, 2018). Programmers build on one another’s projects (Angeli et al., 
2016; Grover & Pea, 2018). Programmers distribute solutions to others 
(Grover & Pea, 2018). 

• Coordination and Parallelism. Computers can execute divided sets of 
instructions in parallel (Barr & Stephenson, 2011; Csizmadia et al., 2015; 
Hsu et al., 2018; Shute et al., 2017). The timing of computation in partici-
pating processes requires control (Settle & Perkovic, 2010). 

• Creativity. Programmers employ alternate approaches to solving prob-
lems and ‘out-of-the-box thinking’. Creating projects is a form of creative 
expression (Grover & Pea, 2018). 

• Data. Programmers find and collect data from various sources and mul-
tilayered datasets that are related to each other (Barr & Stephenson, 2011; 
Hsu et al., 2018; Shute et al., 2017). Programs work with various data 
types (e.g. text, numbers) (Barr & Stephenson, 2011; Csizmadia et al., 
2015; Hsu et al., 2018). Programs store, move and perform calculations on 
data (Angeli et al., 2016; Barr & Stephenson, 2011; Csizmadia et al., 2015; 
Settle & Perkovic, 2010). Programs store data in various data structures 
(e.g. variable, table, list, graph) (Angeli et al., 2016; Barr & Stephenson, 
2011; Csizmadia et al., 2015). 

• Efficiency. Algorithms have no redundant or unnecessary steps (Csiz-
madia et al., 2015; Shute et al., 2017). Designed solutions are easy for peo-
ple to use (Csizmadia et al., 2015). Designed solutions work effectively 
and promote positive user experience. Designed solutions function cor-
rectly under all circumstances (Csizmadia et al., 2015; Grover & Pea, 
2018). 

• Iteration. Programmers refine solutions through design, testing and de-
bugging until the ideal result is achieved (Grover & Pea, 2018; Shute et 
al., 2017). 

• Logic. Programmers analyse situations and check facts to make and ver-
ify predictions, make decisions and reach conclusions (Angeli et al., 2016; 
Csizmadia et al., 2015; Grover & Pea, 2018). Formulated instructions 
comprise conditional logic, Boolean logic, arithmetic operations and 
other logical frameworks (Angeli et al., 2016; Csizmadia et al., 2015; 
Grover & Pea, 2018; Hsu et al., 2018). 

• Modelling and design. Programmers design human-readable represen-
tations and models of an algorithmic design that can later be pro-
grammed (Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 2018; 
Shute et al., 2017). Programmers organise the structure, appearance and 
functionality of a system well (Csizmadia et al., 2015; Settle & Perkovic, 
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2010). Visual models, simulations and animations represent how a sys-
tem operates (Angeli et al., 2016; Barr & Stephenson, 2011; Csizmadia et 
al., 2015; Hsu et al., 2018). 

• Patterns and Generalisation. Data and information structures comprise 
repeating patterns based on similarities and differences in them (Angeli 
et al., 2016; Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 2018; 
Shute et al., 2017). Repeating patterns form general-level solutions that 
apply to a class of similar problems (Barr & Stephenson, 2011; Csizmadia 
et al., 2015; Grover & Pea, 2018; Hsu et al., 2018; Shute et al., 2017). Gen-
eral-level ideas and solutions solve problems in new situations and do-
mains (Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 2018; Shute 
et al., 2017). 

• Problem decomposition. Large problems and artefacts decompose into 
smaller and simpler parts that can be solved separately (Angeli et al., 
2016; Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 2018; Shute et 
al., 2017). Large systems are composed of smaller meaningful parts (An-
geli et al., 2016; Grover & Pea, 2018). Programs comprise objects, the 
main program and functions (Barr & Stephenson, 2011). 

• Testing and debugging. Programmers evaluate and verify solutions for 
appropriateness according to their desired result, goal or set criteria. An-
geli et al., 2016; Csizmadia et al., 2015; Grover & Pea, 2018; Hsu et al., 
2018). Programmers evaluate solutions for functional accuracy and de-
tect flaws using methods involving the observation of artefacts in use 
and comparing similar artefacts (Angeli et al., 2016; Csizmadia et al., 
2015; Grover & Pea, 2018; Hsu et al., 2018; Shute et al., 2017). Program-
mers trace code, design and run test plans and test cases and apply heu-
ristics to isolate errors and fix them (Angeli et al., 2016; Csizmadia et al., 
2015; Grover & Pea, 2018; Hsu et al., 2018; Shute et al., 2017). Program-
mers make fair and honest judgements in complex situations that are not 
free of values and constraints (Csizmadia et al., 2015). 

2.2 Teaching and learning CT in Scratch 

This section begins by overviewing the growing number of programming envi-
ronments intended for introducing CT and programming in schools (in subsec-
tion 2.2.1). In particular, the section explains why creative computing in Scratch 
was selected as the focal programming context to examine students’ CT in this 
study. The capabilities of Scratch as a programming tool and its background ped-
agogical ideology are described (in subsection 2.2.2). 

Subsequently, previous research on the pedagogy of programming is 
scoped (in subsection 2.2.3). In particular, the section highlights the disordered 
state of empirical knowledge regarding students’ learning of multifaceted CT in 
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Scratch in classrooms. Consequently, the need for a more systematic understand-
ing of what is involved when examining students’ learning and ways to support 
it is suggested. In that regard, the section then elaborates the pedagogical interest 
labelled ‘assessment for learning’ (in subsection 2.2.4) to position the develop-
ments in this study in an organised and potentially functional manner. These de-
velopments include two assessment viewpoints selected for this study—aiming 
to support students’ learning by assessing the CT-fostering programming con-
tents in their Scratch projects (‘the what’) and by assessing CT-fostering program-
ming activities in their collaborative programming processes in Scratch (‘the 
how’) (in subsection 2.2.5). 

2.2.1 Scratch amid contemporary programming environments 

Programming education often adheres to project-based construction of external 
artefacts in environments emphasising personalised learning, active searching 
and discovery (Brennan & Resnick, 2012; Papert, 1980; Resnick et al., 2009). 
Multiple kinds of contemporary environments and contexts have been 
developed for students to learn programming and CT in schools and beyond (see 
sample environments in Figure 7). They include robotics (e.g. Barth-Cohen et al., 
2018; Chalmers, 2018), physical and unplugged tools (e.g. Brackmann et al., 2019), 
game development (e.g. Denner et al., 2012), app design (e.g. Papadakis et al., 
2017) and ‘digital fabrication’ (e.g. Iwata et al., 2020; Suero Montero, 2018). The 
former is also referred to as the ‘maker movement’, which emphasises hands-on 
doing (e.g. tinkering) and problem solving in technology-rich environments (e.g. 
Korhonen & Lavonen, 2015; Sormunen et al., 2019).  

Reinforcing Wing’s (2006) original portrayal of CT highlighting that both 
humans and digital devices can carry out computational tasks, empirical research 
has found that conceptual learning in CT and programming can occur in non-
programming situations aside from mere programming (Grover et al., 2019). 
Therefore, using programming or even computers is not always even mandatory 
to develop CT. For instance, Twigg et al. (2019) presented a creative story-based 
pedagogy approach to introducing key CT concepts to small children though 
children’s literature. Haroldson and Ballard (2020) gathered several CS-related 
children’s picture books and graphic novels and found that they largely included 
notes of computational practices, such as developing and using abstractions and 
creating computational artefacts. Bers et al. (2019) successfully introduced com-
putational concepts to 3-year-old children through engaging tangibly program-
mable robots. Game-based learning, that is, learning by playing video games, has 
been relatively long recognised as a pathway to learn CT (e.g. Ch’ng et al., 2019; 
Gibson & Bell, 2013; Kazimoglu et al., 2012). Additionally, educators have em-
ployed various approaches, including kinaesthetic ones (e.g. the ‘unplugged’ 
movement, such as play acting9) to promote authentic and exciting learning 

 
9 ‘Harold the Robot’ (https://classic.csunplugged.org/harold-the-robot-2/) (and others 
akin to it) can perhaps be considered one of the most popular play-like activities that have 
been used to begin computational learning with young students. 

https://classic.csunplugged.org/harold-the-robot-2/
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Figure 7.  Some contemporary programming environments utilised in schools 

experiences, facilitate hands-on making and support even early childhood 
education students and students with special needs (Del Olmo-Muñoz et al., 2020; 
Garneli et al., 2015). 

Programming in the aforementioned different ways could be seen to occur 
in a type of ‘microworld’ that can have unique characteristics in terms of the pro-
gramming language used, the thematic setting, the design limitations and the 
computational concepts available for use (Pelánek & Effenberger, 2020). Different 
kinds of programming environments may thus contribute more or less strongly 
to learning different areas in CT (Park & Shin, 2019). In particular, the relation-
ship of ‘non-programming’ (e.g. unplugged exercises) and CT is not entirely 
straightforward. On one hand, Grover et al. (2019) found that conceptual learning 
in non-programming situations prior to actual programming significantly im-
proved learning gains among primary school students. On the other hand, utilis-
ing the ever-developing power of modern computing machines and designing 
algorithms that control them in order to address human concerns are the natu-
ralistic and rational goals of CT (Denning, 2017; Denning & Tedre, 2019). Some-
what more practically, Huang and Looi (2020) contemplated that CT is separated 
from programming in unplugged approaches, but this separation can influence 
the definitions and instruction in CT. For instance, how can CT, a competence 
encompassing computational problem solving with digital computers, be as-
sessed without using programmatic representations? On an entirely other note, 
Bull et al. (2020) pointed out that a small percentage of technology purchased for 
schools is altogether even used. Introducing CT with specially bought devices 
can therefore be fiscally unresponsible. Furthermore, considering that the time 
available for CT instruction in schools is usually constrained, the use of digital 
computers as deliverers of automated feedback raises the stakes (Bull et al., 2020). 



43 
 

Although non-programming approaches have increased in popularity in 
CT education, digital computer programming has perhaps been a more estab-
lished route to facilitate activities that foster students’ acquisition of CT at several 
educational levels (Grover & Pea, 2013; Lu & Fletcher, 2009; Voogt et al., 2015). 
Programming a digital computer is activating, artefact-oriented work the goal of 
which is to design technological systems and programs that can be used (Grover 
& Pea, 2013; Van Roy & Haridi, 2003). Programming environments enabling such 
work encompass designing computer code with text-based languages, that is, 
with text, numbers and symbols (Michaelson, 2015). Yet, graphical programming 
languages have long been utilised as pathways to begin learning programming 
through positive experiences with younger students and novice learners (Na-
varro-Prieto & Cañas, 2001; Resnick et al., 2009; Taylor et al., 1986), even in higher 
education (e.g. Malan & Leitner, 2007). Graphical programming languages are at 
a higher level of abstraction, and they include much more pictorial information 
in contrast to text-based languages. Typically, programs are designed with the 
provided visual code blocks that are combined to accomplish specific computa-
tional operations (see comparison in Figure 8). Key pedagogical premises in 
graphical languages are that they make abstract computational ideas more con-
crete, provide a limited set of computational operations, eliminate the possibility 
of syntactic mistakes (i.e. typing errors), promote a feeling of tinkerability and 
direct more focus to higher-order concepts instead of technical details10 (Bull et 
al., 2020; Maloney et al., 2010). Graphical programming languages have even 
been found to minimise students’ misconceptions of particular computational 
models (Mladenović et al., 2018). To that point, the Finnish national primary 
school core curriculum explicitly states that students aged 9–12 should practice 
programming in a graphical programming environment (Opetushallitus, 2014, p. 
235). 

Environments for learning CT (programming-focused and non-program-
matic alike) differ in terms of, for example, whether they are either stand-alone 
or more akin to programming platforms and whether they come with integrated 
learning support (e.g. tasks, feedback). Although particular environments can be 
viewed as contexts to merely become acquainted with elementary-level CT and 
programming, CT has the expectation to be a competence that transfers to other 
computational problem-solving contexts in different scientific disciplines (or 
school subjects) and real-life contexts. Therefore, it should not ultimately operate 
only as an isolated target for learning but as a way to shape learning methods 
and learning processes by combining subjects in non-traditional and engaging 
ways, as emphasised in contemporary views of authentic, multidisciplinary 
learning (Lonka et al., 2018). In fact, several studies have explored in theory and  

 
10 Currently, the effect of graphical programming environments on cognitive learning out-
comes versus text-based ones is not entirely clear (Xu et al., 2019). However, a recent meta-
analysis (Scherer et al., 2020) confirmed that although visual languages may convey dis-
tractive elements, visualization in programming languages has a moderate effect on learn-
ing, likely by means of reducing cognitive load and aiding the creation of mental models 
through visual representations. 
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Figure 8.  Similar programs in two programming languages (left: Scratch, right: Java-
Script in Micro:bit) 

practice how activities encompassing different elements in CT can be 
meaningfully integrated across entire curricula (e.g. Dong et al., 2019; Isbell et al., 
2009; Israel et al., 2015; Perković et al., 2010; Settle & Perković, 2010). CT has also 
been more closely examined within specific subjects, such as: 

• language studies (e.g. Weng, 2018; Whyte et al., 2019) 
• scientific inquiry (e.g. Basu et al., 2014; Hutchins et al., 2018; Luo et al., 

2020; Sengupta et al., 2013; Swanson et al., 2019; Weintrop et al., 2015; 
Yadav et al., 2018) 

• crafts (e.g. Kafai et al., 2019; Lui et al., 2018) and 
• math (e.g. Kahn et al., 2011; Kong, 2019; Promraksa et al., 2014; Tan et al., 

2019). 
In practice, CT has often been introduced in STEM (Hutchins et al., 2018; 

Kafai et al., 2019) or science, technology, engineering, the (liberal) arts and math-
ematics (STEAM) (e.g. Pears et al., 2019) contexts through topics such as robotics, 
web development, circuit boards and product design or software engineering 
(Lockwood & Mooney, 2018). For instance, Nijenhuis-Voogt et al. (2020) inter-
viewed teachers and found that they had taught algorithms in various contexts, 
including professional or scientific (e.g. solving professional problems), every-
day life (digital creativity) and societal contexts (e.g. through real-world analo-
gies). Problem-based learning, project-based learning, collaborative learning and 
game-based learning have shown to be the most common approaches adapted in 
previous studies (Hsu et al., 2018). Notably, however, although the incorporation 
of CT through contexts such as design and robotics has increased students’ inter-
est and engagement (e.g. Luo et al., 2020), it has yet to show encouraging empir-
ical results in terms of effectively learning subject matter (Tang et al., 2020). There 
is a known need for longitudinal and controlled studies identifying the effective-
ness of pedagogical approaches in CT education (Szabo et al., 2019). 

Particularly in environments emphasising designing and making rather 
than drilling and solving pre-set exercises, students’ learning in programming 
can be theorised by constructionism (see more in subsection 2.2.2), which essen-
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tially involves the active design of personally meaningful concrete artefacts. No-
tions emphasised in 21st century education have emphasised the importance of 
promoting such learner-centred, collaborative and multidisciplinary project-
based learning experiences for students (Lonka et al., 2018; Opetushallitus, 2014). 
In terms of programming, Kafai and Burke (2013a) raise three points of shift—
shifting from computer code in itself to meaningful applications and their mak-
ing, shifting from mere programming environments to communities of making 
and shifting from creating ‘from scratch’ to creating via ‘remix’. Blikstein (2020) 
discusses ‘the emancipatory principle in making’: an opportunity to reconnect 
learning to the real world to allow students to express their ideas and participate 
in the world of computing on their own terms. CT learning through program-
matic design can indeed be driven by students’ interest areas and enjoyment in 
making (Brennan & Resnick 2012). Therefore, it is justifiable for students to par-
ticipate in multidisciplinary project-based learning activities that can have real-
world connections. One especially popular, versatile and accessible (e.g. free to 
use) environment facilitating such activities is Scratch (Hsu et al., 2018). 

2.2.2 Creative computing with Scratch 

CT is examined in this thesis in the context of programming with Scratch, a web-
based programming environment that originated11 at the Massachusetts Institute 
of Technology Media Lab. In Scratch, students can combine various thematically 
coloured graphical blocks to establish sets of algorithmic instructions (‘scripts’) 
that can, when semantically valid, produce creative behaviours (e.g. animations) 
for digital characters (‘sprites’, such as a penguin or a fox) on the computer screen 
(Figure 9) (Maloney et al., 2010; Resnick et al., 2009). There is also a stripped ver-
sion of Scratch called ScratchJr, which has made graphical programming and the 
basics of CT available and meaningful to even very young students, such as pre-
school aged children (e.g. Papadakis et al., 2016). ScratchJr has been utilised in 
schools especially in early childhood education for acquainting young children 
with block-based digital media design and assisting the transition from more 
playful coding (e.g. unplugged approaches) to environments utilising coding 
languages, such as graphical programming with Scratch (Bers et al., 2019). 

The developers of Scratch designed the environment to improve the tech-
nological fluency of children attending after-school centres in economically dis-
advantaged communities in the United States (Resnick et al., 2003). Since its 
launch, Scratch has spread to more than 150 countries, has been translated into 
more than 40 languages and has been used by more than 26 million registered 
users who have shared more than 30 million programming projects, according to  
 

 
11 The first version of Scratch was released in 2007, and a second version was publicly re-
leased in 2013. The current version, Scratch 3.0, was released in 2019, when empirical data 
for this study was collected. However, the results attained in this study with the 2.0 version 
of Scratch are still valid for the newest version, as no major functional changes were made 
to the 3.0 version. The current version is free to use on its website: https://scratch.mit.edu/ 

https://scratch.mit.edu/
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Figure 9.  Sample screenshots from Scratch 

current statistics on its website12. In addition, it is by far the most often employed 
programming language in scientific research (Hsu et al., 2018). 

Prior to the development of Scratch, several educators saw that there were 
particular problems with the available programming languages. Children strug-
gled with the programming language syntax and the fact that the affordances 
that the tools offered were mainly detached from children’s interests (Bull et al., 
2020). Consequently, the developers of Scratch aimed to enable the design of di-
verse projects, such as games, stories, animations, simulations and music/art per-
formances by promoting creativity and personalisation. The block-based coding 
is supposed to feel ‘tinkerable’ to promote a feel of playing, building and evolv-
ing plans, goals, structures and stories organically. Scratch also aims to be more 
social; it is a public web-based social platform where users share their projects 
publicly and view, use, comment and remix others’ projects (Resnick et al., 2009). 
Its informality has been promoted by supporting computational creation in and 
out of school (Brennan, 2013). Besides the intended benefits, the actual effect of 
using Scratch in teaching and learning programming was recently discovered to 
be significantly greater than other languages13 (Scherer et al., 2020). 

Programming with Scratch is rooted in the constructionist approach to 
learning (Brennan & Resnick, 2012). According to Ackermann (2001), Papert 
based the theory of constructionism as a kind of ‘art of learning’ on Piaget’s epis-
temological theory of constructivism. In particular, Papert underlined that stu-
dents learn and build new knowledge on top of their prior knowledge by actively 
participating in discovery and creating tangible artefacts in project-based settings. 
According to Papert, the relevance of new knowledge and personal interest 

 
12 https://scratch.mit.edu/statistics/ 
13 Although visuality was confirmed to have an effect on learning, an even larger effect was 
found in physicality (e.g. robotics). This finding suggested that the immediate feedback 
gained from observing the behavior of programmed physical tools and motivation for en-
gaging in coding (Scherer et al., 2020). 

https://scratch.mit.edu/statistics/
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should be at the heart of the learning process to make learning as effective as 
possible (see Papert, 1980; Papert & Harel, 1991). 

In light of Papert’s constructionism, Scratch provides a tool for students to 
act as creative imaginers and designers and active manipulators of data and pro-
grammatic operations that establish meaningful computational systems for a cre-
ative purpose (Brennan & Resnick, 2012). This is also known as ‘creative compu-
ting’, an approach that emphasises self-expression, imagination and personal in-
terest areas (Brennan et al., 2014). In practice, students have used Scratch with 
more drill-like, scenario-like or open-ended problem/project-based approaches 
to design multidisciplinary, interactive media projects that are thematically con-
nected to various curricular areas (Garneli et al., 2015; Hameed et al., 2018; Robles 
et al., 2018; Saéz-López et al., 2016). Among concrete examples are designing cre-
ative projects to learn about numerical sequences, environmental science and sto-
rytelling (Moreno-León & Robles, 2016). Such projects have even been discovered 
to have a positive effect on students’ motivation to study subject content (e.g. 
Weng, 2018). 

2.2.3 Pedagogical underpinnings in graphical programming 

Previous research concerning the pedagogy of programming spans multiple ed-
ucational levels and programming contexts (e.g. kinds and purposes of learning 
tasks), contributing to the versatility of key pedagogical underpinnings concern-
ing, for instance, learning objectives, instructional strategies and guidance meth-
ods. Although only relatively few studies on teaching and learning specifically 
cross-contextual CT in Scratch or other graphical programming environments 
have been conducted in recent years, relevant pedagogical underpinnings can be 
adopted from more context-independent educational research in programming 
and empirical studies of other programming environments. In fact, the theoreti-
cal roots of programming—graphical or otherwise—can be traced to the founda-
tions of cognitive psychology (e.g. Pea & Kurland, 1984) and constructionism (Pa-
pert, 1980). 

Learning CT through programming can be viewed through the process of 
‘conceptual change’, that is, having some kind of previous knowledge and expe-
riencing an assimilation (conceptual capture) or accommodation process (con-
ceptual exchange) (Duit & Treagust, 2003). When considering the pedagogy in 
CT in the context of programming, it is important to note that programming in-
volves various tasks, some of which can be considered rather complex. In addi-
tion to the mere design of code, programming includes planning and organising 
code, monitoring the problem-solving process and success, self-reflection and 
troubleshooting (Scherer et al., 2020). Furthermore, problem solving with CT in 
programming requires interpreting and navigating multiple representations of 
information across, for instance, task instructions, programming interfaces and 
output (Barth-Cohen et al., 2018). It requires operating on multiple levels of ab-
straction and thinking in terms of complex systems with several co-operating 
logical components (Csizmadia et al., 2015). These facts inevitably establish a 
complex system of areas in which conceptual change can occur in programming.  
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Although graphical programming environments, such as Scratch, may be 
more effective for young novices when starting to learn programming (Navarro-
Prieto & Cañas, 2001; Resnick et al., 2009; Taylor et al., 1986), learners build new 
knowledge beyond the pictorial information only when the icons representing 
the computational objects come to establish new mental models (Ben-Ari, 1998). 
In fact, there is nascent evidence that CT interventions may not always have the 
desired effect on students’ conceptual learning (e.g. Bers et al., 2014; Luo et al., 
2020). More precisely, misconceptions and difficulties in students’ learning of 
certain computational notions have been empirically discovered (e.g. Burke, 2012; 
Franklin et al., 2013; Maloney et al., 2008; Meerbaum-Salant et al., 2013; Seiter, 
2015; Seiter & Foreman, 2013; Swidan et al., 2018). 

Although approaches such as blended learning (i.e. using both online and 
traditional materials and methods) and game-based learning (i.e. playing games 
to learn) were recently found to have slightly larger effect sizes in learning, there 
is no currently known, explicitly best instructional approach to facilitate the con-
ceptual learning of computer programming (or, rather, there are several effective 
ways to teach and learn it) (Scherer et al., 2020). Previous research on Scratch 
specifically with young learners has revealed a positive effect of design-based 
learning, encouraging the facilitation of more constructionist-like learner-centred 
doing rather than direct instruction of knowledge (e.g. Jun et al., 2017). 

The built-in emphasis on constructionist learning in Scratch largely encour-
ages facilitating learning by discovery in creative, open-ended scenarios with lit-
tle deliberate instruction. Such settings have several voiced benefits, such as in-
creasing motivation, adapting to versatile learning strategies and increasing the 
relevance of learning by introducing new knowledge when it is concretely 
needed (Brennan & Resnick, 2012). Previous educational research has empha-
sised learners’ individual cognition, but the social dimension in learning has re-
cently been emphasised as enhancing learning as well (Roschelle & Teasley, 1995). 
A salient learning theoretical underpinning is collaborative learning through pro-
gramming in pairs (or small groups). Students programming artefacts together 
have a joint goal, and they also share meanings and build knowledge together by, 
for instance, asking questions, explaining and comparing viewpoints (Arisholm 
et al., 2007; Preston, 2005; Wei et al., 2021). Highly collaborative and engaging 
programming activities have been found to significantly moderate children’s at-
titudes towards learning programming (Sharma et al., 2019). In turn, highly 
structured rather than tinkering and fantasy-focused learning tasks have been 
found to have a negative impact on students’ interest in programming (Dohn, 
2019). These issues are important to consider because interest in programming 
indicates higher programming self-efficacy, and better attitudes toward collabo-
ration indicate higher creative self-efficacy (Kong et al., 2018). 

However, it is important to take note of the criticism for foundational ideas 
in more discovery-focused learning (see e.g. Mayer, 2004; Kirschner et al., 2006). 
Historically, disciplines have been taught as a body of knowledge; however, 
there has been occasional advocacy for pedagogical approaches that encourage 
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relatively unguided practical or project-oriented work, thus rejecting the struc-
tured presentation and explanation of disciplinary content. Research has not 
shown support for instruction using minimal guidance, whereas it nearly exclu-
sively supports direct instructional guidance, especially with novice to interme-
diate learners (Kirschner et al., 2006). According to Mayer (2004), ‘minimal to no 
guidance’ does not, however, problematise the active learner but the seemingly 
inactive instructor. Lack of guidance in pure discovery leads to unconstructive or 
even misled construction of new knowledge. Based on decades of research on 
problem solving, he states that students may need guidance to discover and pro-
ductively make sense of new knowledge. In particular, having learnt Logo pro-
gramming extensively under pure discovery conditions, students struggled with 
fundamental code constructs, had misconceptions about programmatic logic and 
remained at the novice level in planning (Mayer, 2004). 

Studies utilizing contemporary programming environments have also 
shown that students can face and require help with challenges regarding specific 
computational concepts (e.g. Franklin et al., 2013). Programming will likely al-
ways result in errors that are typically caused by a discrepancy between the pro-
grammer’s mental model (what they wish to achieve) and what the project actu-
ally does (Ben-Ari, 1998). A well-known practice, particularly in the context of 
more contemporary graphical programming contexts, is ‘bricolage’. This is de-
scribed by Ben-Ari (1998) as ‘endless debugging of the “try-it-and-see-what-hap-
pens” variety’. Additionally, programmers can encounter more programming 
practice centered challenges regarding, for instance, shared knowledge creation 
in pairs (e.g. Lewis & Shah, 2015). 

Alongside even more distant research on school students’ constructionist 
learning in programming (e.g. Suomala, 1999), this study understands that dis-
covery can be a main building block in learning in the spirit of constructionism, 
but it should not leave learners alone to rely on chance with their potentially un-
productive and even misleading knowledge construction strategies. Instructors 
can facilitate and guide learning, for instance, by organising learning contents, 
employing cognitive apprenticeship, assisting with cognitive conflicts and 
providing scaffolding (e.g. Collins et al., 2018). On a general level, Lee et al. (2011) 
coined the ‘use–modify–create’ model to define an overall progression for learn-
ing programming. Similarly, Xie et al. (2019) proposed that novice programmers 
learn to trace code, write syntax, comprehend generalisable computational ab-
stractions and implement those abstractions incrementally. Carlborg et al. (2019) 
proposed a scope of autonomy model to support teachers in developing appro-
priately and incrementally challenging instructional material for programming. 
In a similar fashion, Franklin et al. (2020a) discovered several behavioural im-
provements with a learning strategy called TIPP&SEE, which has students exam-
ine premade projects and then explore their contents. Weintrop et al. (2019) de-
veloped a rubric to assist teachers in evaluating computing curricula, and 
Coenraad et al. (2020) confirmed its effectiveness with teachers. 

On a more grassroots level, several pedagogical methods and strategies, 
such as using information processing activities (e.g. metaphors, mind mapping) 
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and supporting meta-cognitive processes via reflection, have been employed to 
support students’ learning in programming education at different educational 
levels and for different phases in teaching and learning processes (Garneli et al., 
2015; Hsu et al., 2018; Lye & Koh, 2014; Manches et al., 2020; Webb & Rosson, 
2013). In ensuring that students are working to produce meaningful knowledge, 
they can be provided solution hints, clarification of concepts, milestones for their 
processes and scaffolding for learning specific skills, such as using computational 
patterns used in programming games (Luo, 2005; Nickerson et al., 2015). Scaf-
folding can also be used, for example, to help in breaking the program down into 
smaller programs (e.g. how to program dialogues between sprites) (Lye & Koh, 
2014) or elucidating what contents are required to design specific creative fea-
tures, such as score counting in a game. A contemporary instructional element 
can also be the connected nature of learning where expertise can be networked. 
Students can participate in communal knowledge-creation processes by engag-
ing with their peers and other programmers through various resources on the 
Internet, especially by searching and remixing existing materials on the Scratch 
website (Brennan & Resnick, 2012). 

Perhaps more fundamentally, students can program in pairs to achieve a 
common goal so that one student operates as the ‘driver’ (controlling the com-
puter) and the other operates as the ‘navigator’ (assisting in reviewing and veri-
fying the design) (Höfer, 2008). Pair programming has generally been confirmed 
to produce several advantages, such as improvements in the quality of design, 
enhanced knowledge creation, reducing errors and defects in the work and im-
proving novice programmers’ motivation in particular (Arisholm et al., 2007; 
Preston, 2005; Wei et al., 2021). Such advantages can be theoretically affiliated 
with principles in social constructivist learning, such as negotiation of different 
viewpoints (Roschelle & Teasley, 1995). Although research-based knowledge of 
collaboration is thin in this educational context, collaborative programming has 
generally been confirmed to be effective despite the fact that it can add further 
components that burden the already demanding problem-solving process 
(Scherer et al., 2020). In fact, success in pair programming has been generally 
shown to be influenced by students’ skill levels, previous learning histories, 
learning strategies, attitudes, personalities, emotions and even physical environ-
ments (Ally et al., 2005; Denner et al., 2014; Campe et al., 2020; Scherer et al., 2018). 

In summary, there is significant pedagogical knowledge regarding students’ 
learning in programming, but key information about CT learning during pair 
programming in Scratch in naturalistic classroom situations is scant and disor-
dered. In other words, effective teaching and learning practices for CT in contem-
porary programming contexts are not yet fully understood as a tangible and prac-
tically applicable pedagogical system. One reason is that CT is multifaceted, and 
previous studies have viewed it in discrepant ways and have mainly focused on 
second-order programming concepts rather than first-order cognitive CT as 
viewed through, for instance, its core educational principles (see subsection 2.1.3). 
Another reason may be that programming is a new topic in terms of the utilised 
technologies (e.g. networked programming environments) and contemporary 
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pedagogical (e.g. collaborative learning) and epistemological underpinnings (e.g. 
constructionism). Additional empirical information from classroom situations is 
needed to enrich evidence-based knowledge of teaching and learning CT in 
Scratch. Additionally, a distinct theoretical framing could be utilised to organise 
key information about students’ CT learning and ways to support it. In this study, 
such a framing is as follows. 

2.2.4 Assessment for learning 

An outlying goal of this thesis is to develop ways to support students’ CT 
learning through Scratch in school classrooms. An important motivation for 
selecting this viewpoint stems from the fact that programming is often difficult 
for students even when employing easy-to-use graphical tools (Lye & Koh, 2014). 
This study ties knowledge about students’ CT learning at the primary school 
level and ways to support it in the context of Scratch to the pedagogical interest 
of ‘assessment for learning’. In concrete terms, this interest aligns with the 
practice of ‘formative assessment’. 

In terms of background, CT is multifaceted; it involves, among other things, 
an understanding of computational concepts and practical skills in problem solv-
ing, particular vocabulary and certain worldviews, attitudes and characteristics 
(Barr & Stephenson, 2011; Csizmadia et al., 2017; Grover & Pea, 2018; Lonka et 
al., 2018; Shute et al., 2017). The complex nature of CT has resulted in a need to 
move towards holistic systems of assessment that probe it from multiple entry 
points (Basso et al., 2018; Grover et al., 2017). Different types of assessments can 
contribute to holistic assessment systems in CT for measuring, documenting and 
supporting student achievement (Basso et al., 2018). Although no established ho-
listic assessment systems exist, several previous works provide methods that 
could contribute to their creation. In fact, the assessment of programming, which 
is a central pathway to develop CT, goes back decades (e.g. Pea et al., 1987). There 
are also several relatively recent literature reviews on ways to assess CT (Cu-
tumisu et al., 2019; Da Cruz Alves et al., 2019; Lockwood & Mooney, 2018; Ro-
man-González et al., 2019; Shute et al., 2017; Tang et al., 2020). Taken together, 
the reviews reveal that perhaps more than a hundred unique assessments of CT 
through programming currently exist. 

As an overview, specific assessments in CT have targeted different educa-
tional levels ranging from primary schools to university training and in-service 
teacher training. In particular, assessment set in the context of formal education 
has begun to claim a significant share of research, especially in recent years. Stu-
dents’ skills and understanding regarding CT have been assessed both generi-
cally and in practical contexts, such as block-based programming languages (e.g. 
Scratch, Alice), web-based simulations, robotics and game-based tasks. Assess-
ments have been implemented in authentic programming scenarios, with portfo-
lios and traditional methods, such as interviews, self-report scales and surveys. 
They have been mainly computer-based, and few have been automatised. A com-
mon approach has been to develop an assessment for CT based on the particular 
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theoretical viewpoint of CT adopted. Most studies have been conducted in the 
US (Cutumisu et al., 2019; Shute et al., 2017; Tang et al., 2020). 

One way to make sense of the myriad of assessments in CT is to consider 
the purpose of the assessment. For example, the various assessment approaches 
can be distinguished based on whether they are intended to be used by the 
teacher, the student or an administrator (Da Cruz Alves et al., 2019). From this 
viewpoint, three types and purposes of assessment can be distinguished: diagnos-
tic, which aims to identify students’ preconceptions, lines of reasoning and learn-
ing difficulties to inform teachers about students’ existing knowledge; summative, 
which aims to measure and document learning primarily for the purpose of grad-
ing; and formative, which aims to inform instruction and provide feedback to stu-
dents on their learning (Black & Wiliam, 1998; Keeney, 2008). 

In one sense, CT can be perceived as a quantifiable product of learning, that 
is, acquired mastery that can be measured for summative or diagnostic purposes 
(Tang et al., 2020). Examples include summative tests measuring scholastic apti-
tude, skill-transfer assessments, perception and attitude assessments with ques-
tionnaires and vocabulary tests (Roman-González et al., 2019). Such methods 
have measured, for instance, students’ skills in CT or programming and their 
dispositions and attitudes toward CT (Tang et al., 2020). Notable examples in-
clude the Bebras task, which measures the transfer of CT to various types of real-
world problems (Dagienè & Futschek, 2008). Román-González et al. (2017a) de-
veloped and validated a CT test measuring students’ abilities regarding such sec-
ond-order programming concepts as sequences, loops and conditional structures. 
Zapata-Cáceres et al. (2020) adapted this test for early educational stages. A no-
table large-scale comparative assessment is conducted in the ICILS study (Frail-
lon et al., 2020). Moreover, focusing on a non-cognitive domain in CT, Kong et al. 
(2018) and Mannila et al. (2020) developed survey instruments to investigate such 
matters as students’ self-efficacy, interest and attitude toward programming. 

CT can also be assessed as a learning experience or a process, which can be 
difficult with all traditional assessment methods (Tang et al., 2020). Rather than 
being generic, the assessment can connect to a particular learning situation, for 
example, by employing an automated script, an application or manual rubrics to 
evaluate concrete CT-related learning (e.g. a programming project or a process). 
Such tools and rubrics exist and can be used to effectuate either static, dynamic 
or manual analysis to provide dichotomous, polytomous or composite scoring of 
work (Da Cruz Alves et al., 2019). Notable examples include the Fairy Assess-
ment (Werner et al., 2012), which evaluates students’ performance in terms of 
comprehending, designing and solving pre-provided programming tasks in the 
Alice programming environment. Repenning et al. (2015) developed Computa-
tional Thinking Pattern Analysis for measuring and visualising how students im-
plemented CT-related elements in games they programmed in the AgentSheets 
programming environment. In a similar work, Koh et al. (2010) developed the 
Computational Thinking Pattern graph that evaluates students’ game projects 
made with the AgentSheets software and provides visual feedback regarding key 
patterns (e.g. cursor control, collision) implemented in the games. Koh et al. (2014) 
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developed the Real Time Evaluation and Assessment of Computational Thinking 
framework for the Scalable Game Design Arcade programming environment to 
provide teachers a dashboard to evaluate their students’ proficiency in the above-
mentioned patterns. 

Many of the tools or rubrics assessing CT as a learning experience or a pro-
cess are intended for summative use, as only a few of them provide explicit sug-
gestions or tips on how to improve the design (Da Cruz Alves et al., 2019). As-
sessments that aim to enhance students’ learning have been altogether over-
looked in previous studies, and future developments in CT assessment are en-
couraged to be more learner-driven, to identify individual learning paths and 
gaps and to integrate instructional feedback (Basso et al., 2018; Robles et al., 2018). 
Assessments could therefore utilise, for example, tools that can provide feedback 
in terms of individual progress in set learning goals (Roman-González et al., 
2019), which is more strongly linked with the core purpose of assessment for 
learning. Educators could benefit greatly from methods that can support and 
guide students’ learning instead of methods that merely establish ‘where the stu-
dents are’ (Brennan & Resnick, 2012; Lye & Koh, 2014). Normative rather than 
individual and mastery-oriented assessment approaches can also promote inad-
vertent competition among students and can cause students with more difficul-
ties in learning to become demotivated and lose confidence in their capacity to 
learn. Instead, classroom-based tasks associated with formative assessment can 
enhance students’ individual learning performance and their belief about their 
own performance capacities (Black & Wiliam, 1998; 2009). 

Two foundational ideas are at the core of formative assessment: a student’s 
perception of a gap between a desired learning goal and their present skill or 
understanding and action taken by the student to close that gap (Black & Wiliam, 
1998). Black and Wiliam (1998; 2009) concretised instructional processes that can 
promote the effectuation of such underpinnings in classroom situations. In short, 
students are presented learning goals that they understand. Their subsequent 
learning work is supported by activating them as instructional resources for one 
another and guiding them to understand how their current skills differ from the 
set learning goals. The students are then guided to take appropriate action to 
match their skills with the learning goals (Black & Wiliam, 1998; 2009). Such a 
framing could be used to encapsulate and organise relevant pedagogical infor-
mation, such as effective instructional strategies and guidance methods for CT 
education in Scratch in classrooms. This study adopts this framing to examine 
students’ CT in Scratch from two viewpoints justified by the nature of the learn-
ing context at hand: assessing the ‘what’ (the programming contents in students’ 
Scratch projects) and the ‘how’ (students’ pair programming activities). 

2.2.5 Assessing programming contents and activities 

Previous research has carried out multiple analyses concerning programming 
contents (the ‘what’) and programming activities (the ‘how’) in Scratch through 
versatile operational methods and theoretical connections to CT. In other words, 
existing assessments vary greatly in terms of how the assessment has been 



54 
 
developed based on a particular theoretical viewpoint of CT (Shute et al., 2017). 
Illustratively, the developers of Scratch found that CT manifests as ‘concepts’ (e.g. 
sequences, loops), ‘practices’ (e.g. iteration, remixing) and ‘perspectives’ (e.g. 
questioning, expressing) in the programming environment in question (Brennan 
& Resnick 2012). 

It is important to return to the distinction between ‘first-order cognitive CT’ 
and ‘second-order programming concepts’, however (see subsection 2.1.2). CT 
encompasses various skills that are expected to be transferable across computa-
tional contexts. Therefore, this thesis views CT as being represented by cross-
contextual (i.e. first-order) key concepts and practices, such as ‘algorithms’, ‘ab-
straction’ and ‘problem decomposition’, and more specific skills and knowledge 
concretised through the core educational principles (see subsection 2.1.3). In turn, 
various programming contents and programming activities (i.e. second-order) 
may be relevant in displaying and fostering CT. To investigate CT through pro-
gramming contents and activities sufficiently and support the journey to educa-
tional practice, it is necessary to clarify what second-order programmatic af-
fordances contextualise the different first-order CEPs14. Figure 10 illustrates this 
reciprocal theory–practice space and highlights the primary objective of Article I: 
contextualising the multifaceted theory of CT to the versatile programmatic prac-
tice in Scratch. 

The quest for contextualisation appears promising in terms of the richness 
of both the first-order and second-order dimensions. CT has rich existing descrip-
tions, and the programming contents and activities in Scratch have been opera-
tionalised in several studies although typically without a clear connection to spe-
cific skill or knowledge areas in CT. 

Assessment of the ‘what’, that is, the programming contents (e.g. the code) 
in students’ Scratch projects could be viewed as a form of content analysis based 
on observed data in programmed artefacts (‘artefact analysis’). Students’ pro-
gramming projects are rich, concrete and contextualised examples and demon-
strations of their conceptual encounters with CT (Brennan & Resnick, 2012; 
Grover & Pea, 2013). The indications of CT in creatively designed projects can 
reveal the progression of students’ conceptual understanding and application of 
CT. This can be revealed using formative assessment methods, such as examining 
students’ projects and portfolios of projects to evince their development in com-
putational design over time (Brennan & Resnick, 2012). 

Artefact analysis has been widely adopted in estimating students’ CT in 
Scratch in previous research. For instance, Maloney et al. (2008) examined the 
frequency of particular code constructs (second-order programming concepts) in 
students’ Scratch projects. Franklin et al. (2013; 2017) and Meerbaum-Salant et al. 
(2013) examined similar contents in students’ projects more qualitatively (e.g. 
how they were implemented). Moreno-León et al. (2015) developed ‘Dr. Scratch’,  

 
14 It is important to note, however, that some conceptual and practical dimensions in CT as 
viewed herein through the CEPs (see subsection 2.1.2) may stem—at least partly—from 
programming methodology rather than the other way around as a rule. Therefore, the di-
rections of fit in Figure 10 are not necessarily always purely one-way. 
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Figure 10.  The relationship of CT and programming as interpreted in this study 

an automated assessment framework, to reveal the computational sophistication 
of Scratch projects based on the presence of particular code constructs. Seiter 
(2013) investigated how students performed when solving pre-designed learning 
scenarios. Seiter and Foreman (2013) examined so-called ‘design pattern 
variables’, that is, semantically meaningful combinations of code constructs that 
established creative features, such as animations and user interaction, in students’ 
projects as indications of their CT. Other studies (Basu 2019; Funke et al., 2017; 
Wilson et al., 2012) examined what kinds of non-programmatic contents, such as 
instructions to use the project and the appropriate naming of the designed 
computational objects, students’ projects included. 

In turn, students’ programming processes can denote ‘practical encounters 
with CT’, going hand-in-hand with projects they have designed and providing a 
complementary view of students’ understanding of concepts and skills in the 
practices they employ (Brennan & Resnick, 2012). Some aspects in CT practices 
can be social (e.g. collaboration) or highly process-oriented (e.g. iterative devel-
opment), and they can become evident in temporal examinations of program-
ming processes or via social interactions. In fact, in programming contexts other 
than Scratch, examinations of programming processes rather than of the final 
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projects have uncovered ‘counterintuitive data’ and ‘patterns with better predic-
tive power than exams’ (Blikstein et al., 2014). In Scratch, previous studies have 
explored what kinds of design phases students’ programming processes involve 
(Burke, 2012), to what extent students have carried out various tasks, such as an-
alysing scripts or testing play (Ke, 2013), and how students talk and operate in 
programming roles at different times (Lewis, 2011; Lewis & Shah, 2015; Shah et 
al., 2014; Tsan et al., 2018). Previous research has shown especially that the qual-
ity of talk may vary greatly during pair programming and that a risk for one-
sided decision-making in favour of the driver can be high (Deitrick et al., 2014; 
Tsan et al., 2020; Zakaria et al., 2019). 

This thesis focuses on ways in which assessment could benefit students’ 
learning in authentic programming situations. Therefore, after contextualising 
relevant CT-related contents and activities to teach and learn in Scratch, an op-
portunity for operationalising them for enacting formative assessment processes 
(setting learning goals, evincing learning, and providing feedback) emerges. Pre-
vious studies have not thoroughly considered ways to effectuate those processes 
in Scratch or other programming environments. As an example, currently avail-
able tools for automated assessment of projects in Scratch, such as ‘Dr. Scratch’ 
(Morenó-León et al., 2015) and ‘Ninja Code Village’ (Ota et al., 2016), assess CT 
generically instead of contextually. Unlike Black and Wiliam (1998) suggest as a 
way of promoting formative assessment, they provide feedback related to abso-
lute levels of performance rather than progress. Nonetheless, the effectuation of 
formative assessment in Scratch appears conceivable. By means of assessing stu-
dents’ programming projects and programming processes, the empirical sub-
studies in this thesis (Articles II and III) aim to attain rich evidence concerning 
how the teaching and learning of CT can occur in Scratch in primary school class-
rooms. The pedagogical relevance of this evidence is promoted by discussing it 
in terms of the processes portrayed in formative assessment in a theoretical fram-
ing described as follows. 

As programming can be reasoned to foster students’ CT (Brennan & Resnick, 
2012), learning goals for CT can be established indirectly in the form of program-
ming contents to manipulate and programming activities to carry out in Scratch. 
Scratch programming contents and programming activities recognised in previ-
ous literature could aggregately cover CT comprehensively and could be formu-
lated as creative features in Scratch (e.g. animations, user interaction) to design 
in games or animations to advocate for their relevance for students. Similarly, 
evidence that demonstrates students’ CT capabilities and progressions could be 
gathered by assessing what they have programmed in their Scratch projects and 
how they manage to effectuate programming activities (Grover & Pea, 2013; 
Román-González et al., 2019; Seiter and Foreman, 2013). Perhaps more precisely, 
the contents that students have implemented in their projects can indicate ‘con-
ceptual encounters’ they have had with conceptual aspects in CT (e.g. data, algo-
rithms), and the programming activities that students carry out can indicate 
‘practical encounters’ they have had with more practical aspects in CT (e.g. iter-
ative design, debugging). 
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On the other hand, it is imperative that the evidence of learning generated 
and displayed for assessment is relevant (Black and Wiliam, 1998). There are 
known risks involved with block-based programming environments in particu-
lar in which students can make design decisions without knowing exactly what 
they are doing. It is therefore vital to consider what students are thinking while 
implementing computational designs (Lye & Koh, 2014). Ways to do so are as-
sessing primarily semantically rather than merely technically meaningful pro-
gramming contents in artefact analysis (Seiter & Foreman, 2013) and examining 
how the projects came into fruition through a particular kind of design process 
(Lye & Koh, 2014). It may also be relevant to consider the context of the program-
ming activity (e.g. the type of project, programming objective) (Moreno-León et 
al., 2017) and its determining nature (e.g. more open-ended design or working 
with pre-existing materials) (Lee et al., 2011). 

Last, when assessment takes place during actual programming processes, 
targeted feedback could be provided for key places (e.g. scripts) in the program-
ming project being designed or the ongoing programming activities at appropri-
ate times (Lye & Koh, 2014). For instance, meaningful and authentic feedback can 
be provided with respect to errors or bugs in the project (Hao et al., 2021; Vi-
havainen et al., 2013) or an ineffective programming strategy, such as unproduc-
tive trial-and-error programming (see Ben-Ari, 1998). 



The lack of comprehensive and well-established theoretical models for CT 
through programming learning activities and the scarcity and disorganised state 
of empirical evidence of students’ learning from authentic school classroom en-
vironments has made research-based pedagogical decision making troublesome. 
Despite the global interest in introducing CT in schools, several matters have re-
mained unclear. These include knowledge regarding what is the more general-
level (cf. an overly programming-centric) educational goal for introducing CT in 
primary education, what conceptual and practical areas in CT students can learn 
and how students’ CT learning can be supported while they are using such age-
appropriate and popular programming environments as Scratch collaboratively 
in authentic classrooms. 

To recap, the broad aims of this thesis are to shed light on how the learning 
of multifaceted CT can be supported by assessing students’ Scratch program-
ming in primary school classrooms in terms of teaching, learning and assessing 
CT through programming with Scratch. The actions taken in this thesis (see Fig-
ure 3) to meet its aims can be shaped as a research procedure in which answers 
to two research questions (RQs) are sought. 

The first RQ is: 

1) How have the skill and knowledge areas affiliated with multifaceted
CT been assessed in Scratch at the primary school level?

This evaluative question stems from an initial overview of background literature 
performed at the beginning of this research. Subsection 2.1.2 underlines the the-
oretical complexity surrounding the term ‘computational thinking’ and high-
lights operational inconsistency concerning what kinds of core cross-contextual 
skills and knowledge it can be framed to encompass. As a consequence, no clearly 
articulated educational objective exists for learning CT comprehensively (i.e. 
what to teach and learn in it) through programming in primary education. There-
fore, as a theoretical background, CT was concretised in the context of program-
ming in subsection 2.1.3. However, as this concretisation was novel, there is no 

3 AIMS AND RESEARCH QUESTIONS 
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systematic categorisation depicting how the manifold practical affordances in 
specific programming environments (namely Scratch) can foster students’ more 
general-level CT. Therefore, previous studies focusing on assessment in Scratch 
at the primary school level need to be reviewed next to this new perspective to 
generate theoretical and operational underpinnings for further empirical re-
search in this study. Article I responds to this need by employing a systematic 
literature review. 

The second RQ is: 

2) How did 4th grade students encounter CT conceptually and practi-
cally while programming with Scratch in general classrooms? 

This question demarcates an empirical investigation that stems from the 
theoretical and operational background work done for RQ1. In particular, 
subsection 2.2.3 overviews the lack and disorganised state of evidence-based 
knowledge and methods for assessing how students can learn the various 
conceptual and practical areas involved with CT in Scratch in classrooms, thus 
problematising pedagogical decision making, such as ways to support students’ 
CT learning. Therefore, this RQ operates indirectly as a pathway for developing 
new methods to assess students’ CT. However, its core purpose is to employ 
those methods to attain rich insight regarding how 4th grade students were 
involved with CT during a programming course in naturalistic classroom 
situations. Article II focuses on this matter by assessing the students’ 
programmed Scratch projects (artefact analysis), and Article III focuses on the 
matter by examining students’ pair programming processes (process analysis). 



This chapter describes the context and design of the study. It includes the educa-
tional context, that is, Finnish primary education and especially programming 
education positioned mainly under the transversal competence ‘ICT competence’ 
in the primary school core curriculum (in section 4.1). The chapter also provides 
information about the students who participated in data collection (in section 4.2) 
in addition to the programming course in which they participated and the data 
that was collected in this research (in section 4.3). The main underpinnings of 
analysis of the collected data are subsequently outlined (in section 4.4), and the 
epistemological underpinnings regarding the research design (in section 4.5) and 
ethical aspects considered in conducting this study (in section 4.6) are elaborated. 

4.1 Primary education in Finland 

4.1.1 The core curriculum 

After compulsory preschool education, Finnish students attend a 9-year compul-
sory comprehensive school that starts at age seven and finishes at age 16. Nearly 
all primary schools are public and are funded and administered by municipali-
ties. All schools follow national curriculum guidelines, which are rebranded and 
published every 10 years, but teachers at the grass-roots level have a relatively 
significant amount of autonomy in deciding upon, for example, the methods of 
instruction. Schools and/or municipalities are also permitted to devise their own 
local curricula provided they do not conflict with contents in the national stand-
ard core curriculum (Opetushallitus, 2014). 

In August 2016, the Finnish primary school system adopted the latest core 
curriculum (Opetushallitus, 2014), which remains in effect until 2026. Fundamen-
tal overall pedagogical premises embracing the core curriculum include that stu-
dents are encouraged to be increasingly active, autonomous and cooperative goal 

4 CONTEXT AND DESIGN 
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setters and problem solvers. In practice, learning activities in schools should in-
volve knowledge building through active thinking and doing, investigating var-
ious real-life phenomena and planning and reflecting on one’s own work alone 
and together with others. Learning is also viewed as pervasive in various con-
texts and in all stages of life (Opetushallitus, 2014, p. 17). 

Compared to the previous curricula, methods for assessment are more di-
verse in the new curriculum. The main purpose of assessment in the curriculum 
is to support the students’ learning by providing them versatile and frequent 
feedback on their learning progress. Additionally, students’ capability to assess 
their own and their peers’ learning is expected to be developed. In practice, stu-
dents are encouraged to participate in the assessment of their own learning by 
understanding and discussing assessment criteria and their progression regard-
ing them. Assessment always rests upon set learning objectives and criteria. The 
core curriculum comprises concrete assessment criteria signifying ‘good perfor-
mance’ (i.e. mark ‘8’ on a scale of 4 to 10) in every subject at the end of the 6th and 
9th grades. Each teacher assesses their students by referring to the mark ‘8’ com-
petence descriptions in the core curriculum (Opetushallitus, 2014, p. 47–54). 

For the first time in the Finnish school system, the core curriculum also ex-
plicitly characterises seven so-called ‘transversal competences’ 15 , which are 
sketched as broad skill, knowledge, value, attitude and volition areas that pene-
trate all curricular areas (and each other). An expressed rationale of the transver-
sal competences is that knowledge is holistic, and practical activities in life re-
quire skills that transcend and combine different ways of thinking and doing. 
Real-world phenomena thus encompass connections and interrelationships that 
can be meaningfully explored by examining larger wholes instead of bits and 
pieces of facts. Although teaching and learning in the context of traditional sub-
jects still takes place, students are encouraged to engage in authentic and inter-
disciplinary learning in theme-based or phenomenon-based settings that involve 
conceptual or practical elements from more than one traditional school subject. 
A concrete requirement in the core curriculum is that schools are obligated to 
organise at least one multidisciplinary learning module with a clearly defined 
theme each semester (Opetushallitus, 2014, p. 20; 31–32). 

4.1.2 ICT competence (T5) 

A key revision in the new Finnish primary school core curriculum is the ubiqui-
tous role of ICT in teaching and learning via the fifth transversal competence, ICT 
competence (T5), which is introduced in the curriculum in the following manner: 

ICT competence is an important civic competence in itself and as a part of multiliteracy. 
It is both a learning objective and a tool for learning. All students should have the 
opportunity to develop their ICT skills during primary education. ICT is employed in 

 
15 The seven transversal competences in core curriculum are: (1) Thinking and learning to 
learn; (2) Taking care of oneself and others, managing daily activities, safety; (3) Cultural 
competence, interaction and expression; (4) Multiliteracy; (5) ICT competence; (6) Compe-
tence for the world of work, entrepreneurship; (7) Participation and influence, building the 
sustainable future (Opetushallitus, 2014). 
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an organised fashion during all primary grades, in different subjects, and in multidis-
ciplinary learning modules and other schoolwork. (Opetushallitus, 2014., p. 23.) 

The four main domains of ICT competence are as follows: 

1) Students are guided to understand the operational and functional principles of ICT 
in addition to the fundamental concepts and develop their practical ICT skills while 
making their own creations. 

2) Students are instructed to use ICT responsibly, safely and ergonomically. 

3) Students are taught to use ICT in information management and in inquiry and cre-
ative work. 

4) Students gain experiences and practice ICT use for interacting and networking. 
(Opetushallitus, 2014., p. 23.) 

ICT competence is grounded in the surrounding world in the following way: 

Students are guided to recognise different applications and purposes of ICT and notice 
their meaning in everyday life, in interactions between people and as means to influ-
ence. Why ICT is required in studying, work and the society and how these skills have 
become a part of general working life skills are pondered together. Students learn to 
evaluate the effect of ICT in terms of sustainable development and act as responsible 
consumers. During primary education, students gain experiences in using ICT also in 
international interaction. They learn to perceive its meaning, opportunities, and risks 
in the global world. (Opetushallitus, 2014., p. 23.) 

4.1.3 Programming in Finnish schools 

Although programming is not an unprecedented educational topic in primary 
education, it is explicitly mentioned as a mandatory learning content in the core 
curriculum for the first time in Finnish education in three settings16—ICT com-
petence (T5) and the subjects of math and crafts. The specific content areas, teach-
ing objectives and assessment criteria of programming in the curriculum are di-
vided into three grade categories—grades 1–2, 3–6 and 7–9. 

Chronologically, programming is first positioned under grades 1–2 in the 
following ways: 

ICT competence (T5): Students gain and share experiences in working with digital 
media and age-appropriate programming (Opetushallitus, 2014, p. 101). 

Math (teaching objective): To train the student to form sequences of instructions and 
act according to instructions. 

Math (content area): Becoming familiar with the basics of programming starts by 
forming sequences of instructions, which are also tested (Opetushallitus, 2014, p. 129). 

 
16 Programming and CT are in all likelihood new professional topics to most teachers who 
had not received formal training in them in pre-service teacher training prior to the newest 
core curriculum. Systematic in-service support (e.g. professional training programs) was 
not provided by educational policy organizations either while the curricular change was 
taking place. 
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For grades 3–6: 

ICT competence (T5): As students try programming, they gain experiences regarding 
how the functionality of technology depends on human-made solutions (Opetushalli-
tus, 2014, p. 157). 

Math (teaching objective): To inspire the student to form sets of instructions as com-
puter programs in a graphical programming environment. 

Math (content area): Planning and implementing programs in a graphical program-
ming environment (Opetushallitus, 2014, p. 235). 

Math (mark ‘8’ when finishing the 6th grade): The student should be able to program 
a functional program in a graphical programming environment (Opetushallitus, 2014, 
239). 

Crafts (content area): Practicing the functionalities established with programming, 
such as robotics and automation (Opetushallitus, 2014, p. 271). 

For grades 7–9: 

ICT competence (T5): Programming is practised as a part of the studies in different 
subjects (Opetushallitus, 2014, p. 284) 

Math (teaching objective): To instruct the student to develop their algorithmic think-
ing and skills to apply mathematics and programming in solving problems. 

Math (content area): Programming and simultaneously practicing good programming 
practices. (Opetushallitus, 2014, 375.) 

Math (mark ‘8’ when finishing the 9th grade): student should be able to apply the 
principles of algorithmic thinking and to program simple programs (Opetushallitus, 
2014, p. 379). 

Crafts (content area): Using embedded systems in crafts, that is, applying program-
ming in plans and manufacturing products (Opetushallitus, 2014, p. 431). 

4.2 Participants 

Students between grades 4 and 6 were initially sought to participate in the study. 
Motivated teachers at a local professional coding-themed training event (the 
‘coding roadshow’ event organised by the Innokas Network 17  in 2016) were 
recruited via an open, verbally expressed invitation. An incentive for 
participation was the opportunity for a visiting teacher from the university to 
assist in introducing programming to the students in the teachers’ classrooms. 

 
17 The Innokas network is a network of teachers, learners, school leaders and other educa-
tional experts mainly in Finland. The network organises free of charge professional training 
and events aiming to educate active 21st century learners, especially from the viewpoint of 
versatile use of technology (https://www.innokas.fi/en/). 

https://www.innokas.fi/en/
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Three teachers showed interest in participating, and one 4th grade teacher 
with a convenient schedule was selected to participate in the study. The teacher 
represented two of their colleagues in an average-sized Finnish municipal pri-
mary school in a medium-sized town, effectively allowing a group of three 4th 
grade classes (Ca, Cb, Cc) and their regular teachers (Ta, Tb, Tc) to participate in 
the study. The three classes comprised 22 (Ca), 21 (Cb) and 26 (Cc) students, of 
which 57 (62% girls, 38% boys) acquired the informed consent of their legal 
guardians. The students (S1 … S57) were 10–11 years old when the study started. 
The students were surveyed and found to be generally inexperienced in pro-
gramming and were thus found to represent a typical general classroom. Only a 
few students had had previous programming experience: 

‘I have programmed with Scratch Jr. and in Code[.org] website’ (S1) 

‘With dad’ (S13) 

‘Code.org (S17) 

‘I have made three games with Scratch” (S21) 

‘It was some Angry birds’ (S22) 

‘Scratch Junior’ (S41) 

‘Can’t remember its name but sometimes I edit with iMovie’ (S45) 

‘Little bit with a program whose name I don’t remember’ (S47) 
 
Two of the 57 participating students were non-native Finnish speakers. The 
classes also included students with special needs who participated in the 
programming activities but did not choose to participate in the data collection. 

Each of the three classes attended a programming course separately once 
per week for approximately 4 months (12 sessions in total) in 2017. Due to the 
participants’ young age and their novice stage of learning in programming, the 
primary objective of the course was to introduce the students to fundamental 
Scratch features and CT through perceivably introductory programming con-
tents and programming activities. Learning was intended to occur in the context 
of interest-driven design of creative media projects, such as interactive anima-
tions and stories, in programming in pairs. 

The design of the course was inspired by previous studies utilising Scratch 
(Grover et al., 2014; Meerbaum-Salant et al., 2013). Learning activities during the 
course encompassed unplugged exercises, more and less guided and discovery-
focused tasks, debugging challenges, worked examples for remixing and more 
open-ended or thematised design projects. The employed learning materials in-
cluded selections from the Creative Computing guide (Brennan et al., 2014). The 
implementation of the programming course and the data collection were piloted 
in one 3rd grade classroom in another school prior to the actual programming 
course and data collection. 
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The author of this thesis (‘visiting teacher’) operated as the primary instruc-
tor of the course. The regular teacher of each class was always present. A research 
assistant and a learning assistant for the special needs students were present dur-
ing most sessions. All the teachers guided the students’ work. Sharing, informal 
collaboration with peers and working at home were encouraged. 

All sessions apart from the unplugged exercises (session 1, see sub-section 
4.3) took place in the school’s computer lab. The lab had 15 computers available 
for the students to use. The regular teachers grouped the students (two or three 
students per group) based on perceived shared skill level or similar interest areas. 
Group compositions remained primarily the same throughout the course, alt-
hough sporadic variations were made due to absences or cooperative difficulties 
among the students. Only a few students worked alone either for the entire 
course or during certain sessions. 

4.3 Data collection 

The data collected and selected for further analysis included a corpus of previ-
oust studies (RQ1/the literature review) and two datasets collected from the par-
ticipants (RQ2/the empirical analyses). The data for the literature review is de-
scribed in more detail under the summary of Article I (in subsection 5.1). The 
empirical datasets included the students’ Scratch projects made during the ses-
sions and video recordings of students programming in pairs while program-
ming their final projects of the course. 

In terms of the Scratch projects, the students programmed different kinds 
of ‘design’, ‘tutorial’, ‘remix’ and ‘debug’ projects during the course (Table 1). 
The tutorial projects (P2), debugging challenges (P4, P7) and remixed projects (P5) 
involved pre-set objectives that guided towards modifying specific program-
ming contents. Typically, sessions focusing on these projects began with a 
teacher-led demonstration of a particular computational or creative feature (e.g. 
sprites sprint racing) or an incomplete Scratch project that required implement-
ing or debugging particular programming contents. The students were subse-
quently instructed to follow the tutorial or remix and finalise and creatively ex-
tend their own projects. In contrast, the programmatic requirements of the design 
projects (P1, P3, P6, P8) were less rigid. Typically, the students imagined and de-
signed their own projects within certain boundaries, having an opportunity to 
seek information from the Internet. With projects P3 and P8, the students were 
able to plan their projects with pen and paper over one prior session. In addition 
to collecting the finished projects, the students’ written plans for the final projects 
(P8) were photographed when programming of said projects started. 

Once the course ended, all projects that the students had returned in 
‘Scratch studios’ that were created for them were collected as data. Projects made 
outside the sessions were excluded because they were found to be mainly incom-
plete drafts. Authorship of the projects was determined based on two criteria: 
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Table 1.  Scratch projects made weekly during the course 

Project Name Type Objective Key contents N 

P1 ‘Scratch  
surprise’ 

Design Create and modify 
sprites and scripts with 
blocks. 

Scratch GUI (e.g. 
logging in, using blocks); 
experimenting 

33 

P2 ‘Cat dance’ Tuto-
rial 

Program a dance perfor-
mance. 

Scripting, iteration, 
‘sequence’, ‘event’ 

28 

P3 ‘10 blocks’ Design Plan and program your 
own series of instruc-
tions. 

Planning, animating, 
‘wait’, ‘loop’ 

22 

P4 ‘Debugging’, 
part 1 

Debug Debug up to four faulty 
programs. 

Code-reading, debugging  64 

P5 ‘Dinosaur 
race’ 

Remix Remix a faulty program 
and fix an animation. 

Remixing, ‘initialisation’, 
‘event-sync’, ‘parallelism’ 

26 

P6 ‘Riddler  
game’ 

Design Program a game that 
asks questions, receives 
keyboard inputs and 
checks the correctness of 
answers. 

‘Variable’, ‘conditional’, 
‘user interaction’ 

30 

P7 ‘Debugging’, 
part 2 

Debug Debug up to four faulty 
programs. 

Code-reading, debugging  96 

P8 Final  
projects(*) 

Design Design an interactive 
game, story, or anima-
tion. 

Planning, creative design  26 

Total: 325 

(*) Programming processes were video and audio recorded, and hand-made plans for 
the projects were photographed. 
 
the student had returned a self-reflection sheet from the session (confirming 
attendance), and the student’s name was written on the project introduction page 
(confirming participation in design). Both tasks were enforced by the teachers at 
the end of each session. 

As the second main empirical dataset, the programming processes of 12 
random pairs (dyads), four dyads from each of the three classes, were video and 
audio recorded when they programmed their final projects (P8) over two 45-mi-
nute sessions. The computer screens were recorded with software called Cam-
Studio, and a GoPro camera and a voice recorder were set next to each dyad (see 
Figure 11). CamStudio was used to simultaneously record each group’s on-screen 
activity on the computer. To enhance the students’ voice levels, a digital voice 
recorder was placed under the monitor of the computers. The raw audio and 
video data streams were synchronised with video editing software to produce 
full session video files in which the dyads’ talk and behaviour on and off the 
computer while programming their projects transpired. Dyads with absentees 
and those with data losses due to technical difficulties were omitted, resulting in  
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Figure 11.  The data collection setting and sample footage for Article III 

four dyads with rich data for analysis. In total, eight videos (mean duration = 38 
min, 0 s)—two sessions from the four dyads—were analysed. The dyads’ initial 
project plans and screen captures of their finished projects in Scratch were also 
collected as data. 

4.4 Data analysis 

The mixed methods analysis of the data in this thesis split into two approaches: 
theoretical analysis for RQ1 and empirical analysis for RQ2 (Figure 12). The 
analysis performed for RQ1 intended to specify the educational goals of CT and 
evaluate ways to assess CT in Scratch (the first two main actions of this thesis, see 
Figure 3). Theoretically, the analysis leaned on the distinction between ‘first-order 
cognitive CT’—construed herein via the CEPs—and ‘second-order programming 
concepts’ (‘the what’ and ‘the how’ in Scratch programming) (see Figure 10). In 
concrete terms, the analysis sought to contextualise the theory of the cross-
contextual CEPs to the programmatic practice in Scratch. As overviewed in chapter 
2, CT has rich existing descriptions, and the programming contents and activities 
in Scratch have been operationalised in several previous studies. Thus, extensive 
literature searches were seen as a promising pathway to systematically gather and 
re-structure existing information in this educational setting. 

The analyses performed for RQ2 intended to develop new assessment 
methods for CT in Scratch and provide rich empirical insight about learning in 
Scratch at the primary school level (the third and fourth main actions of this the-
sis, see Figure 3). The analyses built on the theoretical framings established as 
results of the literature review: the gathered and re-structured operational 
measures for assessing students’ CT based on Scratch programming contents  
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Figure 12.  The mixed methods approach of analysing the data for the two RQs 

they implement (‘the what’, in Article II) and programming activities that they 
carry out (‘the how’, in Article III). Respectively, mixed methods by ways of 
artefact analysis and a programming process analysis were found as a suitable 
pathway for combining these complementary assessments based on previous 
similar empirical studies (see subsection 2.2.5). 

The main interest of this study is attaining rich empirical evidence of stu-
dents’ CT learning in general classrooms. Besides this interest, the analysis of CT-
fostering programming contents and activities in RQ2 was accompanied by the 
previously established additional interest of potentially enacting important form-
ative assessment processes during students’ hands-on learning processes. The 
analyses of the data thus aimed at focusing on introductory programming con-
tents and activities that could be potentially meaningful learning goals for stu-
dents, valid indications of learning, and appropriate targets of feedback. In Arti-
cle II, a content analysis framework for creative, introductory-level programmed 
features in Scratch projects, such as animations and user interaction, was found 
as a meaningful pathway to combine these interests. Article III, in turn, focused 
on the more social and process-oriented or temporal aspects of programming, 
which manifested expectedly much less visibly in static programmed artefacts. 

The more detailed measures of analysing the data in the articles are de-
scribed under the articles’ summaries (in chapter 5) and in the original articles. 

4.5 Research philosophy 

Epistemologically, the literature review (in Article I) was based on rationalistic 
principles, that is, theoretical reasoning, or in other words the structured presen-
tation of existing knowledge, to discover new truths (Schryen et al., 2015). In turn, 
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the case study (in Articles II and III) is based on the paradigm of empiricism, 
which is characteristic of educational sciences and emphasises the value and re-
liability of making observations of reality and drawing conclusions from them 
(Given, 2008). The empirical study is accompanied by a pragmatic interest, an 
attempt to produce practically applicable contributions to the topic (Yin, 2012). 
This interest can be summarised as the attainment of pedagogical knowledge for 
educational practice, particularly the more successful inclusion of CT and pro-
gramming in primary schools. Moreover, this study examines learning, that is, a 
complex real-life phenomenon, and is founded on theoretical underpinnings con-
strued by the author from a maturating research topic to discern real-life occur-
rences. The study can therefore be said to have an interpretivistic rather than a 
purely objective and value-free position (Mack, 2010). 

The case study part of this thesis adopts a mix of exploratory and descrip-
tive aspects (Yin, 2012) as it seeks to discover new knowledge and explain its 
characteristics richly in the current ill-understood state of research on this topic. 
Data collection in authentic classrooms was considered particularly important 
for these purposes. Authentic classroom situations were expected to highlight 
important but little studied and therefore inadequately understood pedagogical 
issues in CT. These included CT learning in time-constrained classroom settings, 
variety among the learning experiences of different kinds of students in compul-
sory education and the quality of instruction and guidance regarding the novel 
subject matter in non-controlled classrooms. The expectation was that the empir-
ical findings could be reflected in tandem with theories in social constructivism, 
constructionism and creative computing education to produce applicable peda-
gogical models for classroom contexts. The findings were primarily intended for 
further comparison (e.g. affirmation, correction, specification) in other practical 
contexts and the further creation or specification of theoretical models and hy-
potheses for formal experimentation (Yin, 2012).  

The intended explorations and descriptions in the case study prompted the 
utilisation of both quantitative and qualitative (i.e. mixed) methods, thus leading 
the study to abide by both holistic and atomistic evaluations of the acquired evi-
dence. More concretely, a pivotal question is whether the investigation of CT can 
be approached through small and separatable concepts or whether the phenom-
enon is something else other than the sum of its parts. Although both notions are 
employed while interpreting the results, the interpretations put more emphasis 
on the qualitative dimension. In other words, although the analyses utilised im-
portant knowledge gained by examining quantities, the study does not system-
atically perform, for instance, statistical tests. Instead, it draws on the foremost 
strength of qualitative methods: the in-depth study of a complex issue. 

4.6 Ethical aspects 

This study followed the ethical code of conduct guidelines provided by the 
University of Jyväskylä, the organisation where this research was conducted, and 
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The Finnish National Board on Research Integrity 18  (TENK) throughout the 
entire research process. Prior to data collection, the plan for data collection was 
presented to the principal of the participating school, the participating teachers 
and students and the legal guardians of the participating students in a written 
letter. The letter also included informed consent (Appendix A). The regular 
teachers of the classes gave the letters to the legal guardians in a parent–teacher 
meeting so the guardians could familiarise themselves with the study 
information without urgency at home. A signed permission slip marked with 
either ‘participate’ or ‘not participate’ was returned to the school by the students. 
An opportunity to cancel participation at any point of the study was offered to 
the principal, the teachers, the students and the students’ legal guardians. 

To deal with the students’ concerns about the data collection instruments 
(e.g. the GoPro cameras), the instruments were brought to the school prior to the 
data collection and the students given an opportunity to see how they worked. 
The cameras were set in place for a mock session without recording. Additionally, 
the investigator explicitly told the students that the capturing devices were not 
intended to evaluate their behaviours but to merely record naturally occurring 
events. 

A data management plan was devised and upheld based on the university’s 
adapted guidelines complying with current legislation on data protection (e.g. 
GDPR19). In particular, to protect the privacy of the participants, all data was 
anonymised after data collection (e.g. the names of the students in Article III are 
all pseudonyms). All raw data was stored safely on an encrypted hard disk be-
hind locked doors and in password-protected cloud storage. 

 
18 https://tenk.fi/fi/tiedevilppi/hyva-tieteellinen-kaytanto-htk 
19 General Data Protection Regulation: https://europa.eu/youreurope/business/dealing-
with-customers/data-protection/data-protection-gdpr/index_en.htm 

https://tenk.fi/fi/tiedevilppi/hyva-tieteellinen-kaytanto-htk
https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-protection-gdpr/index_en.htm
https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-protection-gdpr/index_en.htm


This section summarises the aims, analyses, main results and relevant points of 
discussion in the three articles establishing the broader efforts of this thesis. An 
overview of the RQs and research designs, including the datasets used, of each 
article are presented in Table 2. 

Table 2. Overview of the articles 

Article Aim Design 

I Contextualise CT comprehensively in the 
Scratch programming environment for teach-
ing and learning in primary school class-
rooms and explore the assessment of CT 
through Scratch in this context 

A systematic literature re-
view of 30 identified previ-
ous studies 

II Gain rich empirical insight of 4th grade stu-
dents’ CT by assessing Scratch projects that 
they designed during a programming course 

Empirical analysis of Scratch 
projects (N=325) made by 4th 
grade students (N=57) 

III Gain rich empirical insight into 4th grade stu-
dents’ CT by analysing the programming ac-
tivities they carried out in pairs (dyads) while 
programming creative projects as final assign-
ments in the programming course 

Empirical analysis of the pro-
ject plans and programming 
processes (video data) of 4th 
grade student dyads (N=4) 

5.1 Article I: Computational thinking in programming with 
Scratch in primary schools: A systematic review 

5.1.1 Aims 

This article aimed to contextualise CT comprehensively in the Scratch program-
ming environment for teaching and learning in primary school classrooms and 

5 SUMMARY OF ARTICLES 
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to explore the assessment of CT through Scratch in this context. In practice, the 
article included a literature review on studies involving assessments of Scratch 
programming contents and activities at the primary school level (K–9). The ob-
jective of the review was to gather Scratch programming contents and activities, 
use the defined theory of CT (i.e. the CEPs, see sub-section 2.1.4) as a lens to view 
them specifically as ‘CT-fostering’ contents and activities and explore ways in 
which they could be formatively assessed in classroom settings. The RQs were:  

1) What Scratch programming contents and activities have been assessed 
in K–9? 

2) How have Scratch programming contents and activities been assessed? 
3) How do different Scratch programming contents and activities contextu-

alise CT concepts and practices via the core educational principles? 

5.1.2 Methods 

The article employed a systematic literature review method. Extensive literature 
searches were performed to find peer-reviewed studies focusing on the assess-
ment of Scratch programming contents and activities at the K–9 educational level. 
After defining and employing exact inclusion and exclusion criteria for 432 
search results in select journal databases (e.g. Association for Computing Ma-
chinery, ScienceDirect) plus additional searches on Google Scholar and ‘snow-
balling’, 30 publications were selected for review. 

The Scratch programming contents and activities assessed in the publica-
tions were described based on their type (RQ1) and the employed assessment 
method and taxonomy or rubric (RQ2). Simultaneously, by employing content 
analysis, the contents and activities were aligned to CT concepts and practices 
according to CT’s core educational principles (in subsection 2.1.4, also listed in 
the original article) that they contextualised (RQ3). The analysis resulted in ru-
brics for Scratch contents and activities that can be rationalised to foster students’ 
skills and knowledge in cross-contextual CT. Furthermore, the discovered meth-
ods for assessing CT based on the contents and activities were examined accord-
ing to how they potentially enabled formative assessment processes as presented 
by Black and Wiliam (2009). 

5.1.3 Main results 

Prior studies focusing on programming in Scratch in K-9 involved the assessment 
of various kinds of programming contents and activities with diverse assessment 
methods and taxonomies or rubrics. Four distinct programming substance 
categories were found and called ‘code constructs’, ‘coding patterns’, 
‘programming activities’ and ‘other programming contents’ (illustrative 
examples are demonstrated below). Methods of analysing the said contents and 
activities included, for example, artefact analyses, teacher observations and 
interviewing. The assessment taxonomies or rubrics included, for example, the 
presence or frequency of particular contents in programmed Scratch projects, the 
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description of students’ behaviours and the completion percentage of pre-
designed contents in projects. 

Only six studies considered the direct assessment of cross-contextual CT 
through the contents and activities, and the remaining studies assessed them 
with or without presenting CT as a motivational theme in the study. Nevertheless, 
the contents and activities were found to contextualise the core educational prin-
ciples of CT in manifold ways regardless of prior studies having directly estab-
lished similar links. However, particular CEPs were not necessarily very straight-
forward to contextualise in Scratch discretely or in sufficient depth to assess them 
meaningfully (e.g. ‘out-of-the box thinking’, ‘making decisions and reaching con-
clusions’, ‘finding and collecting data’, ‘identifying real-world applications of 
CT’). 

An example of an assessment instrument that analysed CT through pro-
grammed code constructs in Scratch projects was a web-based automatic analysis 
tool called Dr. Scratch. Students can use Dr. Scratch by inserting the web address 
of their Scratch project into the tool. The tool then evaluates the presence of spe-
cific coding blocks in the project as an indication as to what competence the de-
signer has regarding particular key concepts in CT (e.g. an ‘if’ block in the project 
code stands as evidence for competence in Logic) (Moreno-León et al., 2015). Sev-
eral other studies assessed the use of code constructs in similar ways without 
directly aligning them with CT. Nonetheless, several studies were found to con-
textualise or concretise CT in different ways. For instance, the ‘initialisation’ code 
construct sets initial values for sprites’ properties, such as their size or position 
on the computer screen. This construct contextualises the notion of designing sets 
of instructions that start from an initial state (a fundamental CEP in the concept 
of Algorithms). 

An illustrative set of examples of assessing CT through ‘coding patterns’ 
(i.e. code constructs combined in semantically meaningful ways to establish a 
larger computational structure) was found in a publication by Seiter and Fore-
man (2013). The authors reported using an analysis model with which they ob-
served and categorised the presence and progression level of coding patterns, 
such as ‘Animate looks’, ‘Maintain score’ and ‘User interaction’, in students’ 
game, animation and storytelling themed Scratch projects. The presence of spe-
cific patterns in a project indicated an estimation of the student’s proficiency lev-
els in particular areas in cross-contextual CT. 

Ways of assessing ‘other programming contents’ that were found to contex-
tualise CT were discovered in several studies. Previous studies examined, for in-
stance, the number of different scripts and different sprites in students’ projects 
(contextualising particular CEPs in Abstraction and Problem decomposition) and 
the meaningful naming of data variables (in Abstraction and Modelling and de-
sign, respectively). 

As examples of assessing students’ CT through their ‘programming activi-
ties’, Burke (2012) described and Ke (2013) examined the amount of students’ ef-
fectuation of particular design phases (e.g. drafting, analysing scripts and testing) 
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while designing their projects. Such phases contextualised ways in which stu-
dents can carry out the cyclical design of projects (a key CEP in the practice of 
Iteration). 

5.1.4 Discussion 

The CEPs that were not very straightforward to contextualise in Scratch can be 
too vague or general to be taught distinctly in programming. They can also man-
ifest more meaningfully when using other programming environments and en-
vironments that can promote engaging learning activities for novice program-
mers (e.g. Lego Mindstorms, the App Inventor) in compulsory education. 

In terms of the CEPs that were rather straightforward to contextualise in 
Scratch, this article provided two new operational rubrics. The first rubric pro-
duced by this review is that of ‘CT-fostering Scratch programming contents’ (the 
‘what’). In short, students’ understanding and skills in CT are fostered by imple-
menting and can be assessed based on code constructs (e.g. ‘loop’, ‘variable’), 
coding patterns (e.g. ‘change location’) and other programming contents (e.g. 
sprite naming) in Scratch projects. The rubric prompted a novel analysis of a 
more conceptual view of cross-contextual CT from students’ Scratch projects as 
was carried out in Article II. 

The second rubric produced by this review, modelled in adjunction to the 
notion of CT as a problem-solving process, includes the ‘CT-fostering program-
ming activities’ (the ‘how’), such ascollaboration, iterative design, and testing 
and debugging, in and around programming with Scratch. The activities depict 
the computational problem-solving practices that students can develop and em-
ploy when designing Scratch projects. The activities may leave traceable evidence 
in projects as static content (e.g. remixed contents) but may be more thoroughly 
typified in students’ programming processes. The rubrics prompted a novel anal-
ysis of a more practical view of cross-contextual CT from students’ Scratch pro-
gramming processes as was carried out in Article III. 

The summaries should not be regarded as complete, because CT is a devel-
oping body of holistic skills and understanding in computational problem-solv-
ing (Tedre & Denning, 2016; Wing, 2006). The view of CT adopted here is rela-
tively inclusive, and it can encompass areas that can be positioned in the more 
‘central’ or ‘peripheral’ zones of CT that can be included or excluded as needed. 
Additionally, due to their versatility, simple descriptions of the contents and ac-
tivities were considered a reasonable starting point. Thus, the contents and activ-
ities could be interpreted to contextualise different areas in CT in various ways. 

Some of the summarised CT-fostering contents and activities could be 
meaningfully examined using objective metrics (e.g. presence of code segments), 
whereas others may be more subjective in nature (e.g. creative expression). On a 
related note, the contents and activities should not be viewed as isolated gim-
micks but as components that conjoin meaningfully while, for instance, design-
ing games, creating storytelling projects or animating while additionally pro-
cessing learning contents in other curricular areas (Garneli et al., 2016; Moreno-
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León et al., 2017). Scratch can promote self-expression, interest and fun in learn-
ing programming in settings that are built on such pedagogical underpinnings 
as constructionism and co-creation (Brennan & Resnick, 2012). Meaningful learn-
ing thereby includes authentic problems and selections of projects. In terms of 
CT in such settings, it is important to particularly focus on how students are 
thinking as they are programming (Lye & Koh, 2014). 

In terms of formative assessment, first, holistic assessment should recognise 
the diversity of problem-solving situations and align contextualised, task-specific 
assessment rubrics to the focal areas of CT (Grover et al., 2017; Moreno-León et 
al., 2017). Educators can use precise CT-fostering rubrics (e.g. coding patterns 
and their underlying code constructs) as indirect CT learning goals and criteria. 

Second, as programming is a demonstration of CT (Grover & Pea, 2013), the 
contents that students implement in Scratch projects can be viewed as evidence 
of their CT. Although the examination of code constructs within semantically 
meaningful coding patterns improves the validity of the assessment, program-
ming projects are not direct measurements of thinking (Seiter & Foreman, 2013). 
It is crucial to complement the assessment by examining programming processes 
(Grover et al., 2017). According to the review, prior studies assessed students’ 
programming activities via, for instance, observation, discourse analysis and in-
terviewing. In schools, complicated research-designated tools are time-consum-
ing. Additionally, prior studies assessed only certain CEPs and not CT compre-
hensively. Therefore, project content implementation could be examined along-
side both peer-to-peer (see e.g. Israel et al., 2016) and student–project (see e.g. Ke, 
2014) interactions (see Articles II and III). 

Third, the instantiation of CT-fostering contents could be supported in real 
time by providing targeted timely feedback for specific code segments in the stu-
dents’ projects (Lye & Koh, 2014). New methods for enabling such processes 
could be developed (e.g. micro-programmatic analysis of instantiated coding pat-
terns) (see also Vihavainen et al., 2013), and existing automated assessment tools 
(e.g. Moreno-León et al., 2015) that cover some areas of CT could be revisited to 
better satisfy this need. 

5.2 Article II: Assessing 4th grade students’ computational think-
ing through Scratch programming projects 

5.2.1 Aims 

This article aimed to acquire rich empirical insight regarding 4th grade students’ 
CT by assessing Scratch projects they designed during a programming course 
(artefact analysis). It revised a profound assessment framework and used it em-
pirically to assess the programming contents and indicative cross-contextual CT 
in a sample of primary school students’ (N=57) Scratch projects (N=325) (see de-
scription of data in section 4.3). The objective of the assessment was to investigate 
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students’ conceptual encounters with CT in a comparatively comprehensive and 
fine-grained manner in naturalistic classroom situations and to evaluate the sig-
nificance of the obtained evidence in CT education and the next steps in devel-
oping formative assessment of CT in schools. The RQs were:  

1) What programming contents did the students’ Scratch projects contain? 
2) What core educational principles in CT did the students conceptually en-

counter? 

5.2.2 Methods 

The priorities in the analysis of the students’ projects were to aggregate manifold 
programming contents indicating CT in Scratch thoroughly and systematically, 
to analyse programmed contents in the projects primarily through coding pat-
terns (in particular, individually instantiated patterns and their underlying code 
constructs) and to account for the context of the contents rather than merely their 
technical presence.  

An assessment framework was revised from various prior works (e.g. 
Meerbaum-Salant et al., 2013; Moreno-León et al., 2015; Seiter & Foreman, 2013). 
It was designed to assess three kinds of meaningful programming contents—in-
dividually instantiated coding patterns (e.g. ‘Animation’, ‘User Interaction’), the 
types of those instances (e.g. ‘Timed animation’, ‘Keyboard input’) and the code 
constructs (e.g. ‘control’, ‘coordination’) that establish those particular in-
stances20. This ‘instantiated coding patterns-first’ analysis was intended for se-
mantic meaningfulness in creative design and for the possibility of micro-pro-
grammatic assessment (e.g. for targeted feedback). Based on the literature review 
carried out in Article I, the students’ conceptual encounters with the core educa-
tional principles in CT’s concepts and practices were logged for each student 
through all the implemented contents in their projects. 

The method enabled the examination of the qualities and quantities of the 
students’ conceptual encounters with specific CEPs in the following CT con-
cepts/practices: Abstraction, Algorithms, Automation, Coordination, Creativity, 
Data, Logic, Modelling and design, Patterns and Problem decomposition. 

5.2.3 Main results 

The comparatively inclusive view of what students can learn about CT through 
Scratch and the use of a profound assessment framework resulted in ample and 
manifold empirical findings of contents programmed by the students and respec-
tive indications of their conceptual encounters with cross-contextual CT at differ-
ent times of the programming course. In particular, the results yielded an assort-
ment of detailed insight about the versatile ways in which the students imple-
mented programming contents in the ‘tutorial’, ‘remix’, ‘debugging’ and ‘design’ 

 
20 See detailed rubrics in https://www.researchgate.net/publication/344411984_As-
sessing_4th_Grade_Students'_Computational_Thinking_through_Scratch_Program-
ming_Projects 

https://www.researchgate.net/publication/344411984_Assessing_4th_Grade_Students'_Computational_Thinking_through_Scratch_Programming_Projects
https://www.researchgate.net/publication/344411984_Assessing_4th_Grade_Students'_Computational_Thinking_through_Scratch_Programming_Projects
https://www.researchgate.net/publication/344411984_Assessing_4th_Grade_Students'_Computational_Thinking_through_Scratch_Programming_Projects
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projects they programmed during the course. This insight is exemplified here se-
lectively and partially through three viewpoints: chronological, programming 
content, and the students’ project portfolios. 

From a chronological viewpoint, the students’ first projects (P1)—more dis-
covery-focused experimentations with different features in Scratch—displayed 
evidence against spontaneous learning of event-driven design of algorithms. As 
much as 58% of all coding pattern instances in all P1 projects were dysfunctional. 
Programmatically, this was caused by the missing ‘control’ and ‘coordination’ 
constructs in the scripts. Although the presence of these constructs increased 
greatly in subsequent projects (see below), they were still occasionally missing 
throughout the course, indicating recurring difficulties with these basic features 
or projects that were not finished in the given time. ‘Initialisation’ remained a 
frequently missing construct throughout the course. 

The median and mode completion rates of the highly structured tutorials 
(P2) made after the discovery-oriented first session were only 50% (four of eight 
coding pattern instances). However, these projects did entail contents that were 
not covered by the tutorial, indicating that the tutorials were left incomplete prior 
to proceeding to creative design or that contents were modified after completing 
the tutorial. After completing the tutorial, the presence of dysfunctional coding 
pattern instances decreased to a mere 12% in the second design projects (P3) (and 
remained at a similar level throughout the programming course). 

From a programming content viewpoint, two separately introduced collec-
tions of debugging challenges (P4 and P7) each comprised four faulty projects 
that the students were guided to begin correcting, potentially submitting all four 
of them. The number of total submissions in each collection and the correctness 
of those projects both varied. In particular, the number of submitted projects de-
creased drastically in the face of a project involving faulty ‘looped animation of 
location’ with ‘move’ and ‘bounce’ blocks. In turn, 95% of the students correctly 
debugged a ‘repeat until’ block, which was not introduced during the course 
prior to the challenge. 

In projects that had pre-set programming objectives, the students imple-
mented the contents that were minimally required of them correctly for the most 
part. Among these projects was remixing an incomplete project (P5) and imple-
menting an instance type called ‘Event-sync animation (location)’ with the ‘ini-
tialisation’ code construct for two separate sprites in it. Other mainly correctly 
implemented pre-set programming objectives also entailed creative games (e.g. 
P6) that asked questions, received keyboard inputs as responses (i.e. the ‘Key-
board input’ instance type) and evaluated the correctness of the answers (i.e. a 
‘Data manipulation’ coding pattern involving the testing of a stored variable). 
Few students failed to meet the pre-set objectives due to unscripted blocks or the 
lack of particular key code constructs (e.g. ‘initialisation’). 

In projects where the students had more creative freedom (P1, P3 and P8), 
‘Animation’ was by far the most commonly instantiated pattern (49% of all in-
stances), followed by ‘User Interaction’ (25%) and ‘Speech and sound’ (20%). 
‘Data Manipulation’ (4%) and ‘Collision’ (2%) were rarely instantiated. Similarly, 
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volitionally designed coding patterns in all the projects made during the course 
were by far mostly ‘Animation’, ‘Speech and sound’, and ‘User interaction’. 

Ultimately, the students’ portfolios, which were aggregated by the investi-
gator from all projects each student had submitted, contained between 2 to 14 
projects (Median = 10), indicating that few students participated in designing 
only a few projects or that all portfolios did not include all projects programmed 
during the course. Nevertheless, the portfolios demonstrated the varying num-
ber of instance types of coding patterns the students programmed during the 
course. Among the most common types were ‘Event-sync animation’, ‘Mono-
logue’ and ‘Green flag’. More than half of the solution types had a median of zero, 
potentially highlighting more advanced contents. Similar statistics were comput-
able for the code constructs as well, but their high number rendered reporting 
inappropriate; nonetheless, among the most common constructs were ‘sequence’ 
(Mdn = 55), ‘repeat’/’forever’ (Mdn = 22) and ‘green flag’ (Mdn = 16). 

According to the students’ conceptual encounters in CT, as indicated by the 
programming contents in their project portfolios, all the students re-instantiated 
the coding patterns and code constructs (Patterns) and decomposed the projects 
into smaller parts (Problem decomposition). Nearly all (>90%) the students de-
signed complex projects (Abstraction), implemented algorithm control structures 
and ‘initialisation’ (Algorithms), remixed (Collaboration) and utilised logical op-
erators (Logic). However, less than half (<50%) of the students abstracted behav-
iours for sprites (Abstraction), used procedures (Algorithms), utilised I/O de-
vices (Automation) and synchronised parallel scripts (Coordination). None of the 
students implemented recursive solutions (Algorithms) or Boolean logic (Logic). 
Variation was large among instantiating synchronised parallel scripts (Coordina-
tion), demonstrating that the few students who encountered this principle did so 
several times. 

5.2.4 Discussion 

Although the results confirmed findings in previous studies, the unique frame-
work allowed revealing novel insight. Most importantly, assessing programmed 
contents ‘instantiated coding patterns-first’ allowed attaining insight regarding 
students’ implementation of CT-fostering programming contents in diverse cre-
ative circumstances that were semantically meaningful, thus also favouring the 
legitimacy of the examination. 

Among the expected results was that the more prevalent conceptual en-
counters could be expected to occur somewhat naturalistically in Scratch. At the 
programmatic level, the more common conceptual encounters were very likely 
caused by the instantiation of particular contents, namely those that are integral 
to designing interactive media (e.g. the ‘Animation’ coding pattern) (Brennan & 
Resnick, 2012), those that are integral to the nature of event-driven programming 
in Scratch (e.g. the ‘event-sync animation’ instance type) (Maloney et. al., 2010) 
or those that are among code constructs or code blocks that novice programmers 
typically first learn to use (e.g. ‘green flag’) (Grover et al., 2014). 
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Perhaps most intriguing and relevant for pedagogical consideration was ex-
amining what the students rarely or never programmed (e.g. the ‘Data manipu-
lation’ and ‘Collision’ coding patterns, instance types with conditional logic and 
state-sync methods, the ‘repeat until’ and ‘custom variable’ code constructs) and 
how this affected their conceptual encounters with CT. After all, several of the 
less-encountered CEPs even during the 12 programming sessions can be consid-
ered as fairly fundamental in terms of learning CT more exhaustively (Grover & 
Pea, 2018). 

A significant underlying reason for the seldom encountered CEPs may 
come down to the types of projects designed. Moreno-León et al. (2017) showed 
that the presence of certain constructs typically varies between projects in differ-
ent genres. The projects programmed by the students typically lacked usability 
and consequently resembled projects more for viewing than playing. Therefore, 
the students may have lacked opportunities to explore supplementary Scratch 
project genres, such as simulations or more sophisticated games for which the 
more rarely encountered contents may be more typical. Many of the program-
ming contents were also not systematically introduced during the course, sug-
gesting that students may be inclined to intentionally implement contents with 
which they are familiar. Furthermore, different kinds of external devices, such as 
microphones or extensions that Scratch inherently supports, which could have 
enabled designing more versatile projects, were not available in the school. 

Examination of the contents programmed by the students in different kinds 
of projects at different times also suggested, above all else, that the students did 
not seem to intrinsically grasp controlling algorithms (Algorithms) and coordi-
nating them with, for instance, timing (Coordination) at the beginning of the 
course. It was important to note that ‘control’ and ‘coordination’ became signifi-
cantly more prevalent after the students had completed the scripting tutorial. On 
a related note, most students debugged the previously unused ‘repeat until’ 
block correctly in a structured debugging challenge (P7.4). This finding rein-
forced the ‘use-modify-create’-like idea (see Lee et al., 2011) that debugging chal-
lenges (or remixing in general) could offer a viable route between direct instruc-
tion and more open-ended design to teach students to understand and use even 
more advanced constructs. 

Examining contents implemented at different points in time also suggested 
that a conceptual encounter may not self-evidently guarantee gaining a deep un-
derstanding. This was primarily suggested by the notorious ‘initialisation’ code 
construct (see also Franklin et al., 2013; 2017), which was occasionally still miss-
ing towards the end of the course despite it having been directly instructed in P5. 
However, because the fairly fundamental ‘control’ and ‘coordination’ code con-
structs were also occasionally missing even in the final projects, suspicion arises 
as to whether all projects were fully completed in the allocated time. These infer-
ences most importantly highlight the importance of complementing the analysis 
of students’ CT by examining their programming processes, leading to Article III. 
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5.3 Article III: Fourth grade students’ computational thinking in 

pair programming with Scratch: A holistic case analysis 

5.3.1 Aims 

This article aimed to gain rich empirical insight regarding 4th grade students’ CT 
by analysing the programming activities they carried out in pairs (dyads) while 
programming creative projects as final assignments in the programming course 
described in section 4.3. The article developed new pair programming process 
analysis methods and adopted methods from proximal research paradigms to 
explore and describe four student dyads’ (D1, D2, D3, D4) initial project plans, 
programming processes over two programming sessions (Mean duration = 38 
min, 0 sec) and finished Scratch projects. The objective of the analyses was to 
investigate interlinked programmatic and non-programmatic factors shaping 
students’ Scratch programming processes and potentially regulating their shared 
CT learning, artefact-related outcomes, and non-cognitive aspects, such as their 
enjoyment in programming, in classrooms. The RQs were: How did the 4th grade 
dyads: 

1) plan their open-ended Scratch projects? (Planning) 
2) cyclically design the projects? (Iteration) 
3) mutually participate in the design, activate teachers and peers, and search 

for external materials? (Collaboration) 
4) locate and fix bugs? (Debugging) 

5.3.2 Methods 

The studied CT dimensions targeted by the four above RQs were not directly 
identifiable in the data. Instead, smaller, more straightforwardly identifiable oc-
currences jointly denoting them in the data were analysed as follows. 

The data was analysed in two main ways. First, by employing content anal-
ysis, the students’ initial project plans and final projects were examined in terms 
what the dyads aimed to design (programming contents, graphics, audio) based 
on their initial project plans and how they eventually succeeded in doing so. The 
analyses utilised a framework for programming contents in Scratch projects 
adopted from Article II. 

Second, the video data portraying the dyads’ shared programming pro-
cesses was analysed systematically in three overlapping layers—what happened 
on the computer screen (design events), who used the computer (computer control) 
and what kind of talk occurred (talk). For example, for the design events, the anal-
ysis pinpointed such events as ‘inactivity’, ‘graphical design’, ‘coding’ and ‘test-
ing play’. In turn, the analysis of talk differentiated ‘silence’, ‘teacher talk’, ‘mu-
tual talk’ and ‘peer talk’. These occurrences were further specified as, for example, 
different forms of ‘help-seeking’ or, in terms of mutual talk, ‘disputing’, ‘telling’, 
‘opening’ and ‘negotiating’. 
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The multilayered coding of the three layers produced a myriad of infor-
mation, and main targets for interpreting relevant findings from the data were 
specified to answer the RQs. For example, for examining ways in which the stu-
dents carried out ‘testing and debugging’, analysis focused mainly in and around 
‘bug reveal’ occurrences in the design events layer. The interpretations utilised 
qualitative and quantitative methods: for instance, when examining how the stu-
dents carried out ‘iteration’, the temporal positions of different design events 
during the sessions were examined as a whole. 

The analysis method enabled the examination of the quality and quantities 
of the students’ shared practical encounters with specific CEPs in the following 
CT concepts/practices (referred to in the article as ‘CT activities’): Project plan-
ning and modelling, Iterative design, Collaboration and Testing and debugging. 

5.3.3 Main results 

The four dyads had planned assorted creative projects to be programmed over 
the two final sessions of the programming course. The data revealed several ways 
in which the dyads carried out the CT activities while the versatile creative plans 
materialised into the projects (described in more detail in the original article). The 
main results are exemplified below more in terms of their generic meaning rather 
than the intricate analysis and coding of the data. 

Dyad 1, involving students Sami (S17) and Pete (S2) from class Ca, had 
planned a tower defence game. Their plan included pseudo-code-like depictions 
of both basic level features (e.g. motion animations) and advanced ones (e.g. a 
timer). Sami had designed a part of the project at home prior to the first design 
session. During the two sessions, the students tested play after coding and coded 
after having revealed bugs much more often than effectuating other design 
events. They also altogether effectuated approximately five times more produc-
tive than unproductive design, such as actual coding. All unproductive design 
was rather insignificant except for a sequence of frustrating mishaps when failing 
to use the graphical editing tools. However, despite the seemingly efficient de-
sign, the students had exceptionally imbalanced roles: computer control was 
largely one-sided (Sami: 78% driving, Pete: <1%) and Sami was approximately 
five times more verbal in one-sided talk. Nonetheless, Pete once complemented 
Sami’s skills in debugging by pointing out a bug and participating in the negoti-
ation while finding solutions. The students’ debugging once also revealed an in-
effective approach: modifying irrelevant code in place of code that would have 
fixed the bug. Furthermore, in another bug, the regular teacher of the class (Ta) 
was unable to help the students. In turn, the visiting teacher explicated the solu-
tion, but the students did not seem to grasp the solution by facing a similar bug 
again later. After the two design sessions, D1’s final project was lacking the more 
advanced features. 

Dyad 2, involving Johanna (S4) and Mari (S8) from class Ca, had planned a 
Harry Potter themed story. Their plan included pseudo-code-like depictions of 
exclusively basic level contents, such as animations and user interaction, next to 
descriptions of backdrops and sprites for the project. The students began with a 
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rather extensive focus (approx. 21 minutes) on graphical design before continu-
ing to coding. D2 showed similar effective iterative tendencies concerning testing 
play and coding to D1 with the addition that no unproductive coding transpired. 
However, D2 transitioned as often as fifteen times to unproductive graphical de-
sign, mainly involving discouraging difficulties with drawing sprites in the 
graphical editor. Moreover, participation within D2 was also highly irregular 
based on amount of driving (Johanna: 78%, Mari: 10%) and one-sided talk (Jo-
hanna: 70%). Johanna also showed dominative behaviours while, for instance, 
exhibiting unilateral ineffective coding by merely guessing what she should do 
while programming. Although the students switched roles, disputing and com-
puter conflicts occurred while Mari appeared to want to smuggle in single-
minded ideas when given the rare chance to drive. The students also encountered 
altogether ten bugs, four of which appeared substantial for involving the same 
construct: initialisation. D2’s final project comprised a majority of the features 
they had initially planned. 

Dyad 3, involving Marja (S18) and Anne (S29) from class Cb, had planned a 
princess rescue game. Their plan included both basic and advanced level features 
planned in generic human language and occasional pseudo-code resembling 
Scratch blocks. The students’ first session was dedicated predominantly to de-
signing the graphics, and their design was altogether efficient in ways similar to 
D1 and D2. Despite presenting their project to a peer at the end of the first session, 
there was no substantial project-related talk with peers among any dyad. Also 
similarly to the previous dyads, participation was uneven in terms of driving 
(Marja: 77%, Anne: 11%) despite high amounts of negotiation, harmonious 
switches in driving, and help-seeking from the partner. The most substantial 
findings concerned the high amount of inactivity (44% of the time), which tran-
spired with interlaced bug revealing (84% of all playtests). In particular, the stu-
dents were unable to implement their plans for the more advanced contents by, 
for example, adjusting irrelevant scripts and receiving variably effective help 
from the regular teacher (Tb). Ultimately, D3’s final project was relatively small 
for lacking the more advanced features. 

Dyad 4, involving Tinja (S52) and Saana (S54) from class Cc, had planned a 
beach story. Their plan encompassed human-language descriptions of graphics 
and a narrative progressing through exclusively basic level features, such as an-
imations. Their rather short focus on graphical design allowed them to effectuate 
altogether mostly coding (27% of the time) while altogether designing efficiently 
based on similar tendencies for productive design and testing play often as dis-
cussed with the previous dyads. Despite the high amount of negotiation (66% of 
all mutual talk), computer control was again highly unbalanced (Tinja: 95%, Mari: 
2%). Tinja even chased Saana away from the computer thrice, increasing her per-
sonal account of one-sided talk and especially the amount of ‘telling’. Moreover, 
the dyad demonstrated bug workarounds in place of programmatic fixes, inabil-
ity to generalise the abstractions of previously implemented contents, and ineffi-
cient coding in form of mere guessing. D4’s final project encompassed more than 
what they had planned. 
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5.3.4 Discussion 

Few previous studies have focused on students’ CT-fostering programming ac-
tivities in pair programming in Scratch in primary school classrooms. Geared 
with a combined exploratory-descriptive design, rich data and a multilayered 
analytical methodology, this case study specified results regarding students’ 
Scratch programming gained in previous studies (e.g. Burke, 2012; Ke, 2013; 
Lewis, 2011; Shah et al., 2014; Tsan et al., 2018), provided novel empirical evi-
dence for theories in programming education and especially in terms of CT and 
pointed the way for additional and more focused research. 

The examination of the dyads’ planning (Project planning and modelling) 
next to the subsequent design highlighted that plans fundamentally guided the 
design processes, stressing the importance of appropriate initial planning. More 
free-form planning (e.g. pseudo-code-like depiction, drawing; Burke, 2012) ap-
peared characteristic to the students, but the translation of such plans into even 
previously implemented programming contents occasionally benefitted from 
various forms of instructional support (Carlborg et al., 2019; Lye & Koh, 2014). 
Altogether, initial plans implying unawareness of operable designs led to stren-
uous debugging, discouraging creative compromises, inefficient trial-and-error, 
and unfinished projects. On the other hand, free planning may guide students to 
merely implementing what they know and not what they could potentially learn. 
In fact, spontaneous planning and refinement through, for instance, browsing the 
graphics (Ke, 2013) and suggesting new ideas during programming (Campe et 
al., 2020) guided the design as well. Discovery as highlighted in constructionism 
(Brennan & Resnick, 2012) could be worthwhile, although it can demand intense 
support from knowledgeable teachers (Kong et al., 2020), which can be inappro-
priate in classroom settings. Planning could thus involve guidelines orienting to-
ward basic core programmable features in more story-like projects at the intro-
ductory stage of learning in open-ended programming and regard more ambi-
tious features as extraneous learning opportunities (Mayer, 2004). 

The students’ iterative design processes (Iterative design) displayed a typi-
cal progression from graphical design to coding, both of which were altogether 
perhaps slightly pressurised and hindered in the limited time of two 45-minute 
sessions. A priority between the more computational (Denning & Tedre, 2019) 
and the more self-expressive (Brennan & Resnick, 2012) emphasis may be re-
quired in open-ended Scratch programming in classrooms, for example, by in-
structing students’ to utilise merely premade graphics. Nonetheless, the novice 
programmer students’ autonomous design raised expectations for an inherent 
occurrence of staying on-task, testing play often, attempting to fix bugs, and 
make mainly productive modifications. The more exact quality of design, how-
ever, varied, as seen through such examples as guessing and adjusting irrelevant 
code (i.e. trial-and-error) (Ben-Ari, 1998). 

Examinations of the social domain in pair programming (Collaboration) 
specified how students’ participation may occur, highlighting control of the ex-
pectedly shared design process as a key issue. Most crucially, the drivers were 
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apparently afforded with privilege (Lewis & Shah, 2015; Tsan et al., 2020; Zakaria 
et al., 2019) to dictate how to activate the navigator regardless of the quality of 
their contributions. This setup evidently led to missed opportunities to imple-
ment new contents (Deitrick et al., 2014), thus also potentially learning (Brennan 
& Resnick, 2012), dissociation from the design (Lewis & Shah, 2015), and alto-
gether dissimilar knowledge acquisition, interest, and enjoyment. Curiously, no 
rationale emerged for the programming roles, leading to the prospect that a risk 
of participatory imbalance can reside in self-directed pair programming without 
deliberate pedagogical consideration. For example, teacher mediation can be re-
quired in reflecting viewpoints and reconciling students’ differences (Roschelle 
& Tesley, 1995; Tsan et al., 2021; Zakaria et al., 2019) in addition to mandatory 
role switches (Lewis & Shah, 2015) and distribution of design tasks. Furthermore, 
representing another aspect in collaboration, the lack of utilisation of external re-
sources (Brennan & Resnick, 2012) showed that such practices may need to be 
explicitly facilitated. 

Findings related to debugging (Testing and debugging) showed how bugs 
appeared to diagnose the students’ programming incapabilities (Ben-Ari, 1998) 
and, as a pedagogically desirable effect, lead learning to new places. The findings 
also specified where students’ misconceptions can potentially reside at the intro-
ductory level in Scratch and how high loads of information (Lye & Koh, 2014) 
and the inability to generalise computational abstractions regularly (Brennan & 
Resnick, 2012; Grover & Pea, 2018) may hinder open-ended design, both appear-
ing central for instructional support. Altogether, although learning through dis-
covery and bugs appeared viable in this educational context, the quality of de-
bugging was crucial. It depended on the students’ individual capabilities and ac-
tions, such as employed help-seeking methods (Mäkitalo et al., 2011). Im-
portantly, such ineffectual debugging practices as developing workarounds, ad-
justing irrelevant code, and guessing emerged, again stressing the importance of 
teacher knowledge and support (Kong et al., 2020) especially of effective pro-
gramming contents and good programming strategies as were overviewed in Ar-
ticle I. 



This study specified the educational goal of introducing CT through 
programming at the primary school level and evaluated ways to assess students’ 
learning in terms of that goal in Scratch. It also developed new methods for 
assessing primary school students’ CT richly and holistically in authentic 
programming situations and provided rich empirical insight about students’ 
CT in the context of programming with Scratch. These actions were divided into 
three peer-reviewed scientific journal articles. This chapter begins by 
summarising the key findings of the three articles vis-à-vis the two formulated 
RQs (in section 6.1). The overall contributions of the thesis are subsequently 
discussed on a more general level (in section 6.2), the limitations of the study 
are elaborated (in section 6.3) and suggestions for further research and practical 
development are highlighted (in section 6.4). Last, the author makes closing 
remarks regarding the current developments, trends, challenges and prospects 
in this particularly heated educational topic based on this research (in section 
6.5). 

6.1 Summary of key findings 

The first RQ of this thesis was ‘How have the skill and knowledge areas 
affiliated with multifaceted CT been assessed in Scratch at the primary school 
level?’ Article I (the literature review) showed that Scratch contextualises the 
different conceptual and practical areas in the adopted comparably inclusive 
view of CT as viewed through the CEPs in multiple ways. Particular CEPs may 
not manifest in Scratch very discretely, as they can be either too generic or can 
be better learnt in other programming environments. Otherwise, the practical 
affordances in and around Scratch can be understood to enable the 
manipulation of specific CT-fostering programming contents (code constructs, 
coding patterns, other programming contents) and the effectuation of specific 
CT-fostering programming activities. The contents and activities can be 

6 CONCLUSIONS 
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assessed in several ways and can be used for instrumentalising processes in 
formative assessment—clarifying learning goals indirectly for CT through 
programming contents and activities, evincing student understanding through 
their ability to put those contents and activities into practice and providing 
feedback about the ways in which they do so while programming in Scratch. 

The second RQ was ‘How did 4th grade students encounter CT conceptu-
ally and practically while programming with Scratch in general classrooms?’ 
Article II revised a framework for analysing CT-fostering programming con-
tents (types of instantiated coding patterns and their underlying code con-
structs) from the 4th grade students’ Scratch projects they programmed during 
a programming course. The analysis provided rich empirical insight regarding 
the students’ conceptual encounters with CT through semantically meaningful 
creative features in their projects. The results suggest that particular conceptual 
encounters occur more naturalistically in this educational context, specifically 
through particular coding patterns and code constructs that are typical in ani-
mation and story-like projects. In turn, other conceptual encounters can require 
deliberate instructional planning and pedagogical thought. Recommendations 
for more structured instruction rather than mere pure discovery-focused learn-
ing, reinforcing previous learning by re-implementing programming contents 
and progressing towards the implementation of more game-like projects 
emerged in particular. 

Article III employed a multilayered analysis to analyse CT-fostering pro-
gramming activities that 4th grade student dyads carried out when planning 
and programming their final open-ended creative projects in the course. The 
results denoting the students’ practical encounters with CT suggest that initial 
project planning is vital in terms of both avoiding impending design pitfalls 
and offering appropriate learning opportunities. Spontanenous planning and 
discovery can also lead the process, however, by demanding intense support 
from knowledgeable teachers. Although dyads’ autonomous programming can 
in many ways be profitable, their programming processes, including the capa-
bility to proceed autonomously and require help, can vary greatly. In particular, 
specific undesirable actions regarding implementing and debugging pro-
grammed contents and social knowledge construction both within the dyads 
and in terms of activating external instructional resources can emerge. The find-
ings highlight crucial areas of learning and the necessity of deliberate guidance 
alongside support for self-directed problem solving. 

6.2 Contributions of the study 

The contributions of this study can be viewed from two perspectives. First, this 
study defined a tangible educational objective for CT in the context of program-
ming at the primary school level as a theoretical premise for RQ1. The objective 
was first formulated as a general description in subsection 2.1.2 and subse-
quently concretised as CT’s CEPs in the context of programming in subsection 
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2.1.4. In other words, the thesis formulated a tactile outline of what CT can mean 
for primary education, particularly through programming education. As this 
idea has not been entirely clear in prior literature, this theoretical groundwork 
can be viewed as a meaningful contribution to the field21. 

The second perspective concerns the developments gained by answering 
the RQs via the articles. In terms of RQ1, the literature review in Article I illu-
minated ‘second-order programming concepts’ in the context of the especially 
popular Scratch programming environment and mapped them to the ‘first-or-
der cognitive CT’ as viewed through the CEPs. The main contributions of the 
article were therefore the rubrics for Scratch programming contents and activi-
ties contextualised systematically in CT. Although the results were specific to 
Scratch, the results are discussed in more generic terms from a curricular view-
point (in subsection 6.2.1). 

In terms of RQ2, the empirical case studies in Articles II and III built on 
the theoretical preparatory work in Article I and focused on authentic, creative 
pair programming situations in naturalistic classroom situations by means of 
artefact analysis and programming process analysis. More precisely, the articles 
attained rich empirical evidence of the students’ conceptual and practical en-
counters with CT based on contents they programmed in their projects and the 
students’ ways of carrying out CT-fostering programming activities in pairs. 
The main contributions of the articles were research-based evidence for teach-
ing and learning CT in Scratch and methods of assessing CT in Scratch in pri-
mary school classrooms. To discuss these contributions coherently, they are or-
ganised in the theoretical context of ‘assessment for learning’, in particular in 
the processes depicted in formative assessment (in subsection 6.2.2), which was 
set as the overall pedagogical interest of this thesis. 

6.2.1 CT in the curriculum 

This study exemplified how introductory CT could be concretised 
comprehensively via core educational principles (in subsection 2.1.4). This 
theoretical framework could be interpreted as a set of conceptual and practical 
overall learning criteria for CT interpreted as a problem-solving methodology. 
This contribution is important, because two interconnected matters in CT have 
remained somewhat obscure: its educational intent and its consequent 
conceptualisation for teaching and learning in primary schools. The obscurity 
has been further enhanced by mixing programming in the pot as the enacted 
curricular subject instead of CT (see Heintz et al., 2015; Mannila et al., 2014). It 
is therefore important to stress the multiple potential educational benefits that 
CT can bring (e.g. teaching coding skills, generic cognitive skills, computational 
problem-solving skills and computational literacy). It is also important to be 
aware of the different ways to concretise its core skills and knowledge and, in 

 
21 It is vital to appreciate that the term CT is still young and prone to further shaping. Amid 
ongoing discussions of what kinds of skills are more central and more peripheral in CT, 
this study cultivated a relatively inclusive view of CT to find meaningful grappling points 
between curricular areas in educational practice. 
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particular, highlight the distinction between the two key conceptual domains 
in which teaching and learning can be examined: first-order cognitive CT, such 
as the concept of Algorithms, and second-order programming concepts, such 
as particular code constructs in Scratch. 

Despite the rather lacklustre direct presence of CT in school curricula, such 
activities as programming and computing have made inroads in schools as both 
compulsory and elective subjects and through separate or integrated roles in 
other topics (Balanskat, Engelhardt, & Ferrari, 2017; Bocconi, Chioccariello, & 
Earp, 2018; Heintz et al., 2015; Mannila et al., 2014). Illustratively, in the Finnish 
core curriculum (Opetushallitus, 2014) (see subsections 4.1.1 through 4.1.3), 
programming is mentioned in the ICT transversal competence (T5), which is 
expected to penetrate all school subjects. It is also defined more explicitly in the 
subjects of math and crafts. Although this study did not perform detailed cur-
riculum analyses, it is safe to say that CT does not appear very sweepingly in 
the Finnish curriculum. For instance, ‘algorithmic thinking’ as mentioned in the 
curriculum (Opetushallitus, 2014, p. 379) is not clearly defined. Moreover, as a 
concrete example, to receive mark ‘8’ at the end of the 9th grade, it is sufficient 
for a Finnish student to have programmed simple computer programs. The em-
pirical data of this study revealed that such an achievement can be highly trivial 
for the multifaceted CT. Critically put, does programming a Scratch sprite to 
perform a dance animation constitute deep understanding of computing as a 
foundation of problem solving and a societal phenomenon? 

It is important to note, however, that the types of thinking or thought pro-
cesses (or: concepts and practices) affiliated with CT (e.g. abstraction, problem 
decomposition) can be rather universal and altogether present in different parts 
of the curriculum without distinct mentions of CT. Nonetheless, the inclusion 
of CT as a clearly defined competence would likely promote its more methodi-
cal adoption in teaching and teacher training. CT possesses a unique discipli-
nary conceptual and practical background (Denning & Tedre, 2019), which may 
need to be taught and learnt with deliberate measures rather than expecting 
that it spreads routinely and strongly as a stowaway competence via other 
learning. In other words, claims of CT being a competence intrinsic to all teach-
ers appear to have no strong evidence (Denning, 2017) and may disregard the 
unique nature of CT as a deliberate practice of the discipline of computing with 
ICT tools in different real-life situations (see Figure 5). 

Altogether, such programming environments as Scratch may facilitate tak-
ing small ‘doses’ of CT, as also demonstrated in the programming course or-
ganised in this study. However, contemporary pedagogy promotes program-
ming and CT as ways to shape learning methods and learning processes by 
combining subjects in multidisciplinary learning throughout the school journey 
(Lonka et al., 2018). As justified by the ubiquitous role of computing in the 
world (Denning & Tedre, 2019) and to advocate for computing in multidiscipli-
nary learning (Lonka et al., 2018), CT and programming could transcend the 
curriculum much more concretely and expansively than in current curricular 
guidelines in Finland. This is also emphasised in part by the obtained evidence, 
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which suggests that single or even multiple conceptual and practical encounters 
with CT may not ensure very deep learning. 

Simply put, CT will need sturdier forms in school curricula in the coming 
years. Despite CT having been introduced in the context of various school sub-
jects in previous research (see subsection 2.2.1), a systematic integration of CT 
in the curriculum would require further effort. The interest in introducing CT 
in cross-disciplinary STEM or STEAM topics (e.g. Hutchins et al., 2018; Kafai et 
al., 2019; Pears et al., 2019) is a step ahead, but juxtaposing CT with STEAM 
overly strongly may add to the risk of CT and programming becoming more 
profiled as topics that are irrelevant in other school subjects. Studies have begun 
to integrate CT in a variety of subjects, including the humanities (see subsection 
2.2.1), and bolstering such endeavours can be extremely fruitful for the more 
expansive incorporation of CT in schools. 

Providing justification for its validity and breadth, the theorisation for CT 
in this study relied on several publications on CT from earlier cross-curricular 
frameworks (e.g. Settle & Perkovic, 2010) to more recent scholastic attempts to 
bring clarity to the competence (e.g. Grover & Pea, 2018). The purpose of the 
atomisation of CT into CEPs was particularly to clarify the components of the 
competence to attain a tangible framework for research and practice. It is still 
vital to be mindful of the more ‘gestalt’ function of CT in the design of mean-
ingful computational artefacts rather than as a collection of manoeuvres that 
are exploited one by one or ‘checkboxes’ to mark as ‘taught’ in the curriculum 
(see also Voogt et al., 2015). 

Despite the above, there is justification for the notion that some parts of 
CT (e.g. the design of algorithms) are taught in isolation in schools by, for in-
stance, engaging students to program primitive robots (e.g. Bee-bots) to acquire 
fundamental computational concepts (Grover et al., 2019). Earlier school grades 
could orientate students towards using technology and understanding simpler 
computational models to become fluent in them. The more far-sighted educa-
tional objective in CT can be to deepen understanding in select ways by play-
fully computing solutions for real life-like problems in new and interesting 
learning situations. The versatile computational techniques, models and ideas 
depicted in the CEPs could thus be taught and learnt across the curriculum in 
situations where they are applicable. 

The skills and knowledge displayed via the CEPs and contextualised more 
exactly in Scratch contribute to the whole competence of CT, but they should 
not be seen as all-encompassing. Scratch (or any other specific programming 
environment) is typically intended for a specific kind of computational aspira-
tion and is thus likely to have limitations with respect to fostering CT exhaust-
ively. CT-related skills, such as efficient design (see e.g. Csizmadia et al., 2015; 
Shute et al., 2017), complexity management (see e.g. Angeli et al., 2016; Hsu et 
al., 2018), ‘out-of-the-box’ thinking (see e.g. Grover & Pea, 2018) and making 
decisions and reaching conclusions (see e.g. Angeli et al., 2016; Csizmadia et al., 
2015; Grover & Pea, 2018) are intricate cognitive tasks that likely manifest in 
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different ways, which can also be held as a criticism of their overly generic def-
initions. Despite all, no computational tool or environment likely facilitates the 
learning of CT all-embracingly or demonstrates how computing can be per-
formed across a very broad selection of problem-solving situations. To account 
for both the versatility of CT and the plurality of students learning it, CT should 
be taught and learnt in various contexts, some of which can focus more or less 
on, for instance, research, the creation of artefacts or creativity (Nijenhuis-Voogt 
et al., 2020). By any established definition of the competence, such themes as 
robotics, digital fabrication, game-making, simulation design and web design 
are each very important CT-fostering topics to include in teaching and learning. 

The breadth and non-hierarchical quality of the substance established in 
the CEPs can, however, pose a challenge for integrating CT and programming 
progressively into a curriculum and guiding the design of learning modules at 
the grass-roots level. Until the repertory increases in hierarchy, key questions 
may include: What are more central and more peripheral skill or knowledge 
areas that all students should learn? What is the appropriate criteria for mark 
‘8’ at the 9th grade when considering the multifaceted nature of CT? How 
should the different ways of putting CT into practice (i.e. programming and 
other ways) be translated as generic guidelines? More research to answer such 
questions is needed, although the results of this study were able to provide 
prefatory outlines, especially from the viewpoint of programming with Scratch 
(see subsection 6.2.2). Still, if the general purpose of primary education is fos-
tering an understanding of the world and preparing for further studies and 
work life, then perhaps a taxonomical approach can serve as an initial guideline 
in setting the bar in CT education: ‘a tool for everybody (basic-level understand-
ing), a professional tool for some people (advanced-level problem solving)’. 

Another crucial layer to consider in the discourse regarding CT in the cur-
riculum is the computational literacy aspect in CT. The core question in this 
regard is how learning activities and activities beyond the planning and design 
of artefacts can contribute to students’ expanding perspective on computing as 
a social and societal phenomenon (see also Bocconi et al., 2018; Høholt et al., 
2021; Kafai et al., 2019; Lonka et al., 2018; Williamson, 2016). For instance, 
Mertala et al. (2020) argue that the structure of power generated by algorithms 
penetrating societal reality and controlling people’s behaviours is not currently 
taken into account in primary education. Programming is presented through 
logical exercises that seem free from such values as participation, democracy 
and making a difference, which are otherwise emphasised in the Finnish cur-
riculum and which are also relevant in the societal role of coding. A presented 
solution is examining coding as a textual event and code as a socio-material text 
that has societal and social consequences. Programming is not just a functional 
process or a skill needed for the workplace to satisfy economic growth. An ex-
tremely important but possibly enormous endeavour would be including CT 
and programming more resolutely in the context of multiliteracy—showing stu-
dents gradually what kinds of possibilities and challenges accompany technol-
ogy and algorithmic practices (Mertala et al., 2020). Embedding the dimension 
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of CT as problem solving within this approach could be a justified ‘big picture’ 
of CT in the curriculum. 

6.2.2 Formative assessment of CT in Scratch 

6.2.2.1 Clarifying learning goals 
This study construed cross-contextual CT concretely through CEPs and 
examined how the CEPs can be contextualised as—and potentially learnt 
through—programming contents (‘the what’) and programming activities (‘the 
how’) in Scratch (second-order programming concepts). In contrast to the rather 
intangible portrayals of CT learning goals in earlier literature, the concrete CEPs 
can be used to clarify learning goals or criteria for learning directly for CT. This 
idea follows the notion that the starting point of any educational intervention 
is the educational goal—what students are (individually or collaboratively) 
expected to learn (Black & Wiliam, 2009). To understand how particular second-
order programmatic affordances in different practical contexts (e.g. the code 
blocks in a programming environment) necessitate learning about the CEPs 
and/or foster their learning, the CEPs may require further contextualisation. In 
this spirit, the comprehensive rubrics for Scratch programming contents and 
programming activities presented in Articles II and III can be used to clarify 
indirect but contextualised cross-contextual CT learning goals for students in 
the context of Scratch. 

The contents and activities can in themselves be meaningful targets of 
learning; they serve as computational models, ideas or techniques that aid in 
establishing solutions to different problems in the design of Scratch projects. 
Learning can be defined as understanding the contents and activities as concep-
tual bodies and practical approaches and implementing them in the practice of 
programming as appropriate contents and activities. The rubrics may be 
adapted in other graphical programming environments as well, but thorough 
rubrics would likely necessitate a systematic contextualisation. 

In particular, the comprehensive categorisations for semantically mean-
ingful CT-fostering programming contents—coding patterns and code con-
structs as represented as graphical code blocks and their combinations in 
Scratch (see examples in Figure 13 and detailed rubrics in Article II)—can oper-
ate as core computational ideas that are presented and explored in early and 
intermediate levels of learning programming in schools. The myriad contents 
shape meaningful creative features in the design of authentic animations, sto-
ries and games. Therefore, understanding and using them can be seen funda-
mental in the design of purposeful computational models for media projects in 
Scratch (Seiter & Foreman, 2013), potentially while processing the substance of 
other curricular areas (Moreno-León & Robles, 2016).  

The process of assessment for learning incorporates a notion of systema-
tising ways to guide the interpretations of assessment results and responses to 
those interpretations in a formative way. In other words, Black and Wiliam 
(1998) highlight the importance of ‘criterion sequences’ (also referred to as 
learning progressions, learning trajectories or learning paths) as models of 
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Figure 13.  Sample CT-fostering Scratch programming contents 

conceptual change to which instructors could match their feedback strategies. 
This study supported the ideas that students learn specific programming 
contents more easily than others (see e.g. Seiter & Foreman, 2013) and that 
specific programming contents are more typical of certain kinds of Scratch 
projects (see e.g. Moreno-León et al., 2017). The growing knowledge of novice 
students learning to implement programming contents in Scratch projects may 
thus justify the proposition of a preliminary, general and overall learning path 
for CT in Scratch at the primary school level (Figure 14). 

To restate the rationale behind the path, specific conceptual encounters with 
CT appear to occur more habitually among novice learners initially capable of 
designing more animation-like and storytelling-like projects, which typically en-
compass such contents as ‘timed animations’, ‘monologues’ and ‘sprite clicking’ 
(see also Moreno-León et al., 2017; Seiter & Foreman, 2013). Then again, to expe-
dite conceptual encounters with the perhaps more unconventional or advanced 
contents, it is important to facilitate venturing towards designing more complex 
games, simulation-like projects and even more sophisticated animations that typ-
ically encompass such contents as ‘data manipulation’ (e.g. in score counting in 
games), the use of different input and output devices (e.g. with the mouse), ‘col-
lision’ of sprites and synchronised ‘dialogues’ among different sprites. The pro-
gramming course organised in this study (12 sessions) was by all measures short 
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Figure 14.  A general learning path for CT-fostering contents in creative coding with 
Scratch 

in terms of venturing towards the more advanced stages along this path, thus 
advocating for the inclusion of programming over longer periods of time in 
schools for more profound CT learning. 

The sample contents situated in the path are currently merely directive, 
whereas they could be more methodically categorised for a rigorously developed 
and validated learning trajectory. In fact, Bloom’s taxonomy has been employed 
previously for defining learning continuums in programming (see e.g. Selby, 
2015), but, as Meerbaum-Salant et al. (2013) noted as a limitation in hierarchical 
taxonomies, some programming contents can be easier to create than others can 
be to understand. Instead, they developed the Bloom/SOLO taxonomy for par-
ticular code constructs (e.g. initialisation, looping). A few other studies (e.g. Gane 
et al., 2021; Niemelä, 2018; Rich et al., 2018; 2020) have developed focal learning 
trajectories for particular areas in cross-contextual CT as well. Nonetheless, a me-
ticulous learning progression for all relevant CT-fostering programming contents 
(in media design with Scratch or other programming environments) at the pri-
mary school level would require further development. It may also be relevant to 
ponder whether very meticulous learning trajectories are needed for the general 
purpose of introducing primary school students to introductory CT in, above all, 
an engaging and inspiring way. 

Although not formulated as learning trajectories, this study categorised a 
polymorphous collection of programming contents in Scratch that included the 
ostensibly variably challenging ways of instantiating the coding patterns as cre-
ative features in projects. The abundant contents can hypothetically serve the 
purpose of providing different learners a suitable level of demand, as highlighted 
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in formative assessment (Black & Wiliam, 1998; 2009). In the spirit of guided dis-
covery, instructors can facilitate the learning of specific contents uniformly for all 
students (Mayer, 2004), but this would likely bring the necessity of CTPACK (see 
Mäkitalo et al., 2019) or another corpus of requisite teacher knowledge into the 
mix for effective instructional design. Optionally, students can set learning goals 
for themselves indirectly via creative features (e.g. the coding patterns) in Scratch. 
This may, in turn, necessitate an increased level of metacognition; however, an-
other solution could be employing a rough learning progression along which stu-
dents could proceed at their own speed and monitor their progress. Such an ap-
proach would align with the formative notion of reinforcing students’ perfor-
mance and self-efficacy by providing them process goals regarding their progress 
towards set learning goals (Black & Wiliam, 1998). 

Following the idea of the ‘use-modify-create’ model (Franklin et al., 2020a; 
Lee et al., 2011), learning CT-fostering programming contents could be uniformly 
modelled as a three-stage progression: ‘I can use’ (understanding), ‘I can modify’ 
(applying), ‘I can create’ (creating). Such a model has recently been found to pro-
vide a productive balance between more structured and more open-ended explo-
ration, to reinforce knowledge by using familiar blocks and to encourage to ex-
plore new blocks, combine blocks in new ways and express creatively through 
creative customisation (Franklin et al., 2020b). The results of Article II also rein-
forced the ideas that using and modifying pre-existing projects (e.g. debugging 
challenges, remix projects) and even structured tutorials can lead to learning new 
programming contents. In turn, pure discovery did not necessarily work well at 
all, perhaps because it led the students to attempt to create with too many choices 
without sufficient previous knowledge. On a similar note, Carlborg et al. (2019) 
concretised how the autonomy in learning (e.g. the amount of available program-
matic choices) could be reduced or increased to adjust the difficulty level of learn-
ing. Extreme constructionist ideas of pure discovery can be powerful in select 
situations, but other methods, such as structured tutorials and demonstration, 
may be occasionally required to accelerate learning in time-constrained class-
rooms (see also Mayer, 2004; Kirschner et al., 2006). 

This study proposes a model for effectuating progressive learning strategies 
that accounts for different difficulty levels in learning (e.g. for different kinds of 
learners) (Figure 15). The model is compiled from the results of this study along-
side existing pedagogical models on learning introductory programming—the  
scope of autonomy (Carlborg et al., 2019), the ‘use-modify-create’ model (Lee et 
al., 2011) and the ‘TIPP&SEE’ model (Franklin et al., 2020a). The model is 
intended for the viewpoint of programming contents as latent learning goals in 
cross-contextual CT, and it is structured based on current empirical knowledge 
of students’ CT learning in Scratch. The core idea of the model is that a learning 
strategy (and a consequent level of autonomy and the openness of more exact 
criteria) is selected for a particular learning scenario focusing on particular 
programming contents or content areas based on the desired (individual or 
shared, guided or self-set) level of learning. Importantly, learning may not need 
to follow the model strictly linearly, and it may not need to always traverse the  
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Figure 15.  A proposed model for learning CT through manipulating programming con-
tents in Scratch 

entire continuum for each content area. Steps can be skipped, as the utility of each 
step may ultimately depend on a variety of factors, including the previous 
knowledge and learning strategy adopted by individual students in different 
situations. 

Another key layer in clarifying learning intentions for CT through program-
ming is that of CT-fostering programming activities. The programming activities 
could be considered as design strategies or procedural skills aside contents that 
are implemented in programmed projects (Angeli et al., 2016; Csizmadia et al., 
2015; Grover & Pea, 2018; Shute et al., 2017). In general, they may be altogether 
more relevant in more design-like situations (i.e. at the ‘create’ stages in the learn-
ing processes) as indicated by their core definitions: planning in CT should effec-
tively guide the design of computational solutions (Csizmadia et al., 2015), and 
iterative design should be valuable for the expectation of refining the artefact 
through cyclical development (Brennan & Resnick, 2012). Then again, collabora-
tion can be emphasised for its capacity to enhance knowledge construction 
(Roschelle & Teasley, 1995), while testing and debugging can ensure that the de-
signed solutions achieve what they intend to achieve (Ben-Ari, 1998). 

This study showed how the CT-fostering programming activities can man-
ifest as behavioural actions in pair programming in Scratch in addition to what 
actions were more common, how they positioned temporally and how specific 
challenges appeared amidst them. Based on the nascent empirical results ob-
tained in this study and the scarcity of previous empirical research, it is not en-
tirely straightforward to define what kinds of specific actions are conclusively 
effective or ineffective either universally or at specific moments of learning. 
Therefore, it still remains slightly unclear how the effectuation of particular ‘good’ 
actions or the avoidance of ‘bad’ actions should be justifiably posed as common 
goals in CT. Instead, current best knowledge is that different kinds of actions are 
situationally relevant, and it can be favorable for students to become aware of 
ways of putting the activities into practice that can be useful in particular situa-
tions. Current knowledge can thus be incipiently synthesised to nominate actions 
that can be profitable for programming and learning CT (Table 3). 
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Table 3.  An incipient synthesis of profitable actions in (i.e. potentially good ways for) 

carrying out CT-fostering programming activities in Scratch 

CT-fostering  
programming activity 

Profitable actions 

Project planning  Drawing pictures of sprites and backdrops 
Ensuring a programmatic core by planning with familiar contents 
(e.g. with block-like pseudocode) 
Opening new learning opportunities by planning with imagina-
tion (e.g. with human language) 

Iterative design Allocating time-wise suitable phases for the design process (e.g. 
graphical design and coding) 
Remaining focused on the task 
Making reasoned (i.e. not arbitrary) design attempts or modifica-
tions 
Becoming familiar with the practical affordances in the program-
ming environment (i.e. the different code blocks and editing tools) 
Paying attention to computational similarities in the scripts to gen-
eralise abstractions of contents 

Collaboration Activating the driver and the navigator in all design events and 
phases 
Discussing ideas beforehand and making bilateral decisions 
Seeking help from peers and instructors 
Browsing and remixing existing projects and searching for infor-
mation on the Internet 

Testing and debug-
ging 

Testing play often after coding 
Preparing to deal with uncertainty and seek information 
Staying conscious of the purpose of and contents in each script 
Avoiding blind guessing 

 

6.2.2.2 Evincing student understanding 
The assessment rubrics used in Articles II and III can denote students’ conceptual 
understanding in CT, such as the knowledge required for instantiating different 
types of coding patterns, and their practical skills in CT, such as their ability to 
fix bugs effectively. An essential purpose of evincing student understanding is to 
harness information gained from the learning activities to move learning 
forwards in line with the learning goals (Black & Wiliam, 1998; 2009). For this 
purpose, learning the various conceptual and practical areas in CT could be 
examined through the phenomenon of conceptual change (see Duit & Treagust, 
2003). 

However, when viewing CT as a competence learnt through programming 
(Tang et al., 2020), conceptual change in CT is bound to be examined as a latent 
phenomenon. To do so, similar to how the rubrics for programming contents and 
activities in Scratch can be used for setting indirect learning goals for CT, student 
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understanding in CT can be evinced through contents in their programming pro-
jects and the programming activities they carry out while programming (Grover 
& Pea, 2013; Román-González et al., 2019; Seiter & Foreman, 2013). As a concrete 
example, dysfunctionally implemented programming contents (typically bugs) 
can be valuable demonstrations of naïve knowledge (e.g. misconceptions)—con-
ceptual understanding that is expected to change. Similarly, inefficient or erratic 
actions (e.g. arbitrary modifications or guessing while fixing bugs) may similarly 
imply the lack of established skills (see also Ben-Ari, 1998; Swidan et al., 2018). 
Conceptual change in CT through programming could thus be viewed through 
practical exhibitions of the realisations as to how particular programming con-
tents achieve specific intended creative features and how specific actions are ef-
fective for improving the design. 

On the whole, more traditional assessments, such as aptitude tests (e.g. 
Román-González et al., 2017a), may be established in more stringent validation 
processes and thus be more reliable in the pursuit of evincing student under-
standing in CT. Their use may nonetheless guide more towards diagnostic or 
summative purposes than formative ones (Keeney, 2008). The assessment rubrics 
employed in this study and intended for formative use were founded upon a 
diligent literature review (in Article I) and studious methodological development 
(in Articles II and III). Their development intended to translate learning goals 
into understandable terms (Black & Wiliam, 2009), improve validity in observa-
tion-based assessment (Seiter & Foreman, 2013) and enable the analysis of de-
tailed programmatic targets to facilitate accurate feedback (Hao et al., 2021; Vi-
havainen et al., 2013). Altogether, this study showed support for the claim that 
different analyses can provide important information for an overall view of stu-
dents’ CT (Basso et al., 2018; Grover et al., 2017). 

Evincing conceptual change through contents in projects or activities dur-
ing programming processes can be performed in different ways. As shown by 
earlier research and also as carried out in this study, the analyses can be based 
on, for instance, presence (e.g. Burke, 2012), frequency (e.g. Maloney et al., 2008), 
correct implementation (e.g. Seiter, 2013), completion rate (Franklin et al., 2013) 
or comparison to success criteria (e.g. Sáez-López et al., 2016) in more or less 
quantitative or qualitative ways. With this study’s understanding, universal 
premises in assessing student understanding could be phrased as the observment 
of ‘functional and purposefully implemented programming contents’ and ‘effi-
cient and purposefully effectuated programming activities or actions’. What is 
purposeful can depend on the context of learning—what the project being de-
signed intends to achieve. Different analysis methods may therefore be appropri-
ate with respect to the project type, learning goal and level of learning (see Fig-
ures 13 and 14). More tangibly, the evincing process can be shaped by such ques-
tions as ‘To what extent does the project contain these desired contents?’, 
‘What/which of these contents does the project contain?’ and ‘How does this ac-
tion improve the design of this project?’. 

Evincing reliable evidence of conceptual change can require careful longi-
tudinal assessment. The results show that although conceptual change in CT can 
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be fostered by implementing contents and effectuating activities, single (or even 
multiple) conceptual or practical encounters may not ensure that the contents or 
activities in question are subsequently always put into practice functionally or 
steadily (i.e. learnt well). The implementation of specific contents or the effectu-
ation of specific actions may also have been a result of a coincidence or caused 
by external factors (e.g. teacher solving the problem), demonstrating how assess-
ments of mere end products can be questioned (Lye & Koh, 2014). Altogether, it 
is justifiable to postulate that continuous conceptual and practical encounters are 
more reliable in implying conceptual change, especially if the implementation of 
contents or the effectuation of actions occurs autonomously in new situations. 
Similar arguments also appear in learning progression taxonomies in which the 
ability to abstract computational models and create new programs in program-
matic situations that vary in complexity can denote higher-order learning (see e.g. 
Meerbaum-Salant et al., 2013; Selby, 2015). In all, repetitions in implementing 
contents and effectuating programming activities functionally, effectively and 
purposefully (i.e. in a self-regulated way) can be crucial for both learning and 
eliciting valid evidence of learning. 

Moreover, importantly, evincing student understanding in ‘all of CT’ 
through all possible kinds of programming contents and activities can be an over-
whelming task. Guidelines to direct the focus of manual assessment to essential 
targets may be in order. For this purpose, the results of this study suggest there 
are specific areas in CT that students grasp more autonomously—thus also ap-
pearing to need less support for learning—while other areas, such as specific pro-
gramming contents, design-related actions and social actions, may benefit from 
more deliberate guidance. 

The results justify the synthesis of essential target areas to evince student 
understanding in introductory CT through Scratch among novice learners at the 
primary school level (Table 4). The targets (both content and activity-oriented), 
which are by no means exhaustive based on this exploratory study, are formu-
lated especially from fundamental or profitable CT-related areas that the stu-
dents did not necessarily learn autonomously or effectively in Scratch. However, 
although the students appeared to learn to implement specific programming con-
tents (e.g. the ‘Animation’ coding pattern, ‘looping’) or practices (e.g. testing play 
often) more autonomously, all skills and knowledge likely need to be learnt as 
purposefully as any other ones. 

Another element that can burden the practice of evincing student under-
standing in CT in programming is the process of the evincing itself, particularly 
when considering the traditional approach of the teacher as the manual assessor. 
Complicated research-designated tools as employed in this study are labour-in-
tensive and time-consuming. As emphasised in curricular guidelines (e.g. Ope-
tushallitus, 2014) and contemporary pedagogical literature (Black & Wiliam, 
2009), programming also presents—and perhaps even encourages—the practices 
of peer assessment and self-assessment to promote social constructivist learning 
and metacognition. Additionally, there have been efforts to automatise assess-
ments in Scratch. Currently, a tool called Dr. Scratch provides summative scores 



99 
 
for Scratch projects based on the presence of particular code constructs (Moreno-
León et al., 2015). A discontinued automated assessment tool called Scrape pro-
vided a visualisation of code blocks used by a programmer in Scratch (Brennan 
& Resnick, 2012). Such tools could be modified to provide students a self-assess-
ment dashboard to monitor some conceptual encounters with CT over time. Sim-
ilarly, a tool for reviewing the process of implementing code blocks in scripts (see 
Funke & Geldreich, 2017) can provide a fruitful opportunity for self-reflection of 
design processes. Moreover, the broadly used Creative Computing guide for teach-
ers (Brennan et al., 2014) presents such methods as ‘critique groups’, ‘project 
pitching’, ‘unfocus groups’ and ‘gallery walks’ that can be structured to focus on 
the assessment of specific CT-fostering contents or activities. 

Table 4.  Essential target areas to evince students’ introductory skills and understanding 
in CT through Scratch at the primary school level 

Target of assessment for 
learning 

Specification 

Fundamental programming 
contents 

The basics of scripting, namely implementation of the ‘con-
trol’ and ‘coordination’ code constructs 

Advanced programming 
contents 

Implementation of more advanced contents, such as ‘data 
manipulation’, ‘collision’, ‘conditional logic’ and ‘custom 
variables’ 

Recurring implementation 
of functional contents 

Steadiness of efficient design as observable through, for in-
stance, the lack of recurring bugs 

Creative planning for con-
straints 

Accounting for, for instance, previous skills, the intended 
level of learning and the allocated time 

Knowledge of code blocks 
and editing tools 

Awareness of what tools to use and selections to make 

Generalising solutions Understanding of algorithmic similarities in types of coding 
patterns and code constructs (e.g. ‘initialisation’) 

Comprehension of the 
scripts 

Cognizance of the functional parts of one’s own project for 
efficient project refinement and location of errors 

Making aforethought de-
sign modifications 

Avoiding blind guessing 

Bilateral decision making Constructive talk and equal participation 

Information searching Activating peers in the classroom and searching for infor-
mation or materials on the Internet 

 

6.2.2.3 Providing feedback 
This study provided insight of ways to provide feedback for CT learning in 
Scratch in the classroom. The purpose of feedback is to move learning from its 
current (evinced) state towards the learning goals (Black & Wiliam, 2009). It is 
important to begin with noting that constructionism emphasises adapting to 
versatile learning strategies by personalising learning and promoting active 
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searching and discovery. The paradigm underscores the increased effect for the 
relevance of learning when new knowledge (e.g. a new conceptual area) emerges 
‘organically’ when it is truly needed (Brennan & Resnick, 2012; Resnick et al., 
2009). Such moments can be extremely powerful for learning when they manifest 
through the self-directed, active externalisation of one’s own thinking (e.g. 
designing a program) with a computer (Papert, 1980). In a sense, the computer 
(or the programming environment) is thus always present to provide ‘feedback’, 
not least in the form of bugs (Ben-Ari, 1998); the programmer has implemented 
an erroneous computational model, and the computer states this by behaving in 
an unexpected manner. Therefore, there can be room for students to build their 
own learning processes in programming by solving problems more or less alone. 

Decades of research on learning by constructivist ideas does not, however, 
support the notion of leaving the students completely alone. In fact, prior re-
search supports the better impact of strong instructional guidance, especially 
among novice learners (Kirschner et al., 2006). A central problem in pure discov-
ery is students’ inability to select relevant incoming information. Support can be 
necessary in programming to help students make sense of the information at 
hand, organise it and integrate it with previous knowledge (Mayer, 2004). In 
practice, problems in programming can manifest as the inability to understand 
what actually went wrong when a computer states there is a problem. In other 
words, students may not make sense of what mental model conflicts with the 
brutal feedback from the computer (Ben-Ari, 1998). Such findings were common-
place also among the students programming with Scratch in this study. Therefore, 
this study understands that, as underlined in formative assessment (Black & Wil-
iam, 1998; 2009), intervention in the form of providing deliberate feedback can be 
highly beneficial among school students while pair programming in Scratch, akin 
to how deliberate instructional design is carried out in the clarification of learning 
goals and evincing of student understanding to gain goal-oriented information 
to enhance learning. 

Feedback in programming can be versatile. In fact, social constructivism 
states that knowledge can be built through social interactions (Roschelle & Tea-
sley, 1995). Key ways to retain the foremost strengths of constructionism (i.e. ac-
tive searching and discovery) and incorporate the utility of feedback can be to 
promote shared knowledge construction through pair programming, peer inter-
actions and searching for information on the Internet (Arisholm et al., 2007; Bren-
nan, 2013; Brennan & Resnick, 2012). In theory, students working together to-
wards a shared goal may naturally give constant feedback to each other while 
building mutual understanding. In turn, information sharing and receiving feed-
back can occur informally in the classroom or through facilitated moments, such 
as ‘gallery walks’ (Brennan et al., 2014). Then again, the online Scratch commu-
nity holds millions of projects available for reflecting on one’s own work (Bren-
nan & Resnick, 2012). 

Despite the voiced benefits of social interactions in programming, this study 
was unable to excavate very rich empirical evidence of them. The study merely 
showed further evidence that novice programmer students can carry out such 



101 
 
acts as negotiating and suggestion making in programming (see also Campe et 
al., 2020); however, the role of such moments as potential mutual feedback in the 
process of shared knowledge construction remained unexplored. Perhaps more 
importantly, the students demonstrated practices that may even have been ad-
verse to discovery and collaboration. In short, the students were not always able 
to make sense of new conceptual areas (e.g. code constructs), find new program-
matic possibilities and put them into use and activate each others’ knowledge in 
the shared work equally and effectively. Even more, the results did not reveal 
ways in which knowledge construction beyond the computer could have oper-
ated as mirrors for one’s own work because such events were scarce or even non-
existent. In conclusion, the results suggest that school students’ collaborative CT 
learning processes in Scratch could benefit from or even necessitate scaffolding, 
that is, planned or spontaneous support tailored for individual learners to accel-
erate learning (see also Touretzky et al., 2013; Vihavainen et al., 2013). 

Solutions in planned scaffolding, which may not manifest as feedback per 
se, can occur in the ways elaborated in the previous sections. To recap, they can 
include clarifying focused and progressively challenging learning goals in sensi-
ble and interesting ways to maintain students’ motivation and keep them focused 
on the task (see also Lye & Koh, 2014). As a form of ‘self-feedback’ (reflection), 
students can monitor their learning progress through, for example, a project port-
folio or review their previous programming processes to contemplate what could 
be done differently. Additionally, important acts of planned scaffolding can in-
clude those that the results of this study implied to perhaps have acted against 
learning, including building the physical environment to support collaborative 
practices (e.g. equal access to the input control devices), pairing creatively or at-
titudinally like-minded students or those having similar learning strategies and 
ensuring a common knowledge background (Ally et al., 2005; Scherer et al., 2018). 
Problematically, different solutions may work very differently for each individ-
ual learner (Denner et al., 2014). 

Solutions in spontaneous scaffolding during programming processes 
could, in turn, be interpreted as ways of providing timely and targeted feedback 
to move learning forwards. Research regarding effective acts of guidance in 
Scratch is only taking its first steps, and this study provided little insight on top 
of the growing body of knowledge. 

First, although the effectiveness of different guidance acts cannot be gener-
alised yet, levels of help-seeking, varying from asking for validation to ‘how’ to 
implement something (see also Franklin et al., 2013), and help-receiving, varying 
from instrumental (e.g. demonstrating which similar coding pattern already 
works) or executive (e.g. stating what code blocks are required) help (see also 
Mäkitalo et al., 2011), were beneficial depending on the students’ particular situ-
ation. This is perhaps expected given the complexity of the conceptual and prac-
tical areas manifesting in CT next to the students’ presumably varying skill and 
knowledge levels, thus inevitably complicating the development of an all-fitting 
pedagogical model of effective feedback. Perhaps, in principle, more instrumen-
tal or implicative help guides students to process information more themselves, 
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as emphasised in socio-constructivist learning (Roschelle & Teasley, 1995). How-
ever, as demonstrated by the data, sometimes executive or explicative help can 
be necessary (Kirschner et al., 2006), for instance, to reveal entirely new concep-
tual areas, code blocks, design tools or effective design acts or social acts. 

Second, the results of this study illuminated concrete forms of help-receiv-
ing that, alongside previous research in guidance, can be used to advance 
knowledge of appropriate ways of providing feedback for learning CT through 
implementing programming contents and effectuating programming activities in 
Scratch (Figure 16). These ways of feedback can be plural. They include demon-
strating a solution to the problem, for instance, in terms of how to break the in-
tended creative functionality into coding patterns and code constructs. Students’ 
attention can also be directed to focal places, such as pre-existing functional so-
lutions (e.g. initialisations) or relevant information (e.g. parameters) in the imple-
mented contents (Lye & Koh, 2014). Asking elaborative questions may prompt 
reflection and guide attention to relevant contents, such as locations of bugs 
(Webb & Rosson, 2013). Available choices regarding, for example, which coding 
patterns or code constructs could suit the planned feature, can be narrowed (Carl-
borg et al., 2019). Altogether, information can be presented in different ways, in-
cluding with pseudo-code and metaphors, such as a hand-mixer for ‘looping’ 
(Pérez-Marín et al., 2020), road junctions for conditionals (Georgina et al., 2015) 
or embodied metaphors with gestures (Manches et al., 2020). Milestones for, for 
example, how much of the pre-set contents have been implemented may keep 
students on the right path (Luo, 2005; Nickerson et al., 2015). In addition, other 
known ways, such as reminding of the time left, repeating previous learning and 
conceptualising students’ thinking (using the vocabulary), may be helpful. 

Decisive requisites in providing efficient feedback can be sufficient for com-
municating relevant information in addition to appropriate knowledge for select-
ing favorable feedback methods at the right time. Routine pedagogical 
knowledge may partially suffice; however, for learners, a key purpose of obtain-
ing feedback is getting in touch with expert knowledge (Kirschner et al., 2006). A 
teacher can be an expert in CT (Mäkitalo et al., 2019), but given the current state 

 

 

Figure 16.  Ways of providing spontaneous feedback for students programming in Scratch 
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of the inclusion of CT and programming in schools (see e.g. Fraillon et al., 2020; 
Kaarakainen et al., 2017), this may rarely be the case. Yet, expert knowledge can 
reside elsewhere too, such as in the Scratch community (Brennan & Resnick, 2012) 
or elsewhere in the educational community, such as among more experienced 
student tutors in the school (Korhonen & Lavonen, 2016). Teachers may not need 
to know everything if time is available to consider the options and seek 
information from various sources.  

The lack of time typical of schools may be an obstacle for facilitating the 
giving and receiving of efficient feedback. Further support for spontaneous acts 
of feedback on students’ programming work can be necessary. This study devel-
oped concrete rubrics for CT-fostering programming contents and activities. All 
the discussed formative assessment processes can point towards dealing with 
this substance; for instance, the segments that can be clarified as learning goals 
and evinced as latent indications of student understanding, manifesting as pro-
grammed contents in projects or effectuated programming activities, can operate 
as targets of in-time targeted feedback. As intended in the development of the 
rubrics for programming contents, there is an opportunity to reveal bugs through 
dysfunctional contents as examined in Article II, potentially denoting manifesta-
tions of misconceptions, and to facilitate further learning, such as by illustrating 
new types of coding patterns that are similar to the ones currently implemented 
(Figure 17). Similarly, the analysis of students’ programming activities can reveal 
what undesired actions are occurring, and feedback can concern what actions 
could replace them. 

Convenient and systematic instrumentalisation of feedback for program-
ming contents and activities would require practical tools or models. Automated 
assessment tools have been proposed and used in other programming environ-
ments as ways of providing well-timed contextual feedback, particularly for pro-
gramming projects (Hao et al., 2021; Vihavainen et al., 2013). Such tools have en-
abled code analysis, especially as a mode of self-assessment in Scratch and for 
particular areas in CT (see e.g. Moreno-León et al., 2015). Recently, Talbot et al. 
(2020) reported on the automatic assessment of patterns in students’ Scratch pro-
grams, which provides reason to assume that areas in the rubrics used manually 
in this study could be automatised as well. 

Importantly, however, there are aspects in CT that computerised feedback 
providers may not recognise. In particular, it may be difficult for them to deter-
mine what conflicting mental model the students have that is causing a particular 
bug and what instructional strategy fits the learners and the learning situation in 
question, thus being perhaps constrained to provide more or less generic feed-
back. Additionally, as noted in Article I, not all areas in CT are indicated by static 
contents in projects, such as those with relevance to events beyond the computer 
(e.g. social actions). The indications for CT can also be qualitative in nature (e.g. 
precise modification sprites’ parameters, such as size) or computationally com-
plex, especially in advanced projects, leaving much of the important feedback on 
the shoulders of human-to-human interaction. 
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Figure 17.  Hypothetical feedback for CT-fostering programming contents in Scratch pro-
jects 

Formative assessment should altogether be considered a situational and a 
contextual process rather than a purely technical one. It essentially includes, for 
instance, observing students’ demeanour, initiative taking and explication of key 
substance. The quality of teacher–student dialogue during formative assessment 
and the reception of and response to feedback by students may involve intricate 
personal and social factors, such as self-perception, teacher’s beliefs, student’s 
attitudes to learning and such emotions as insecurity and fear of failing. Moreo-
ver, as students must be aware how far away they are from their objectives and 
how they can reach them, metacognitive skills in, for example, perceiving the 
level of one’s own understanding and the gaps in it play a key role (Black & Wil-
iam, 1998; 2009; Keeley, 2008). Automated assessment should therefore perhaps 
be considered not as a replacement but as a supplement to teachers’ pedagogical 
expertise and the traditional, valuable student–teacher discourse. 

Last, the various challenges that students can face while learning CT in pro-
gramming (e.g. lack of success in debugging, social conflicts, not finishing in time) 
can be complex, very cumbersome and even discouraging. Still, they should not 
be considered purely negative. For instance, bugs can pinpoint where naïve con-
ceptual understanding exists (Ben-Ari, 1998) and provide an opportunity to learn 
meta-skills (e.g. dealing with uncertainty, searching for information to solve the 
problem) (Barr & Stephenson, 2011). The purpose of formal education is to facil-
itate learning and growth, and, especially in constructionist-focused hands-on 
activities, encountered challenges can show where they could importantly take 
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place. Therefore, not facing any bugs can perhaps be considered a rather wasteful 
learning process in programming. 

6.3 Limitations of the study 

This study acknowledges particular limitations that concern the current overall 
knowledge skirting the investigated topic in addition to the research design, that 
is, the employed methods and the collected data. The limitations and their 
potential influence regarding the obtained results are disclosed in this section, 
and the gaps that the limitations have left are discussed as avenues for further 
research in the subsequent section. 

6.3.1 Investigating CT 

Specific aspects regarding the author’s professional understanding of the topic 
should be discussed to ensure the transparency of the reported observations and 
reasoning in this study. The author is a Master of Education by formal training, 
and his professional understanding of computing and CS is limited to hobby-
level programming and bachelor-level studies in educational technology (includ-
ing CS1 and CS2 courses). The author’s understanding of CT as an educational 
topic has mainly influenced the thesis process (i.e. completion of the three arti-
cles). In particular, after beginning this research project, the main theoretical con-
cepts in CT were determined through a thorough literature review to reinforce 
external and code construct validity (Yin, 2012). Subsequently, the author partic-
ipated in national conferences on education and educational technology in addi-
tion to international conferences and doctoral consortia on CT and computing 
education. The view of CT in educational practice has been pivotally influenced 
by the implemented programming course and the author’s experiences in teacher 
training at the university level and in several national in-service training projects 
and school projects in the Innokas Network. 

The interpretations or choices made in this thesis can be dissected in multi-
ple ways and to varying levels of granularity. One way to discuss the interpreta-
tions can be through the key places where there is lack of consensus in CT. In all, 
the shortcomings in clearly defining CT justifies a fair amount rightful criticism 
in the topic. Despite such threats that emerge from these notions to the salience 
of CT, they can be viewed as facilitators of the maturation of this topic. 

The first major domain of criticism has to do with the motifs of introducing 
CT in schools. One such motif is preparing students to work in the ICT sector. 
This study restates Mertala et al. (2020) in the argument that although such an 
economic or even political uplift includes the need to have the female population 
better represented in coding professions, there are optimistic and, in certain 
senses, misleading claims around maintaining political economy and competi-
tiveness. In fact, studies conducted in several countries have recognised that pri-
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vate and multinational corporations have influenced the instatement of program-
ming-related educational reforms and have even carried out comparably large-
scale teacher training interventions. The manner in which financial and capital-
istic demands have shaped educational policy and practice has perhaps been 
rightfully criticised (Mertala et al., 2020). In all, this study viewed that a justified 
motif of introducing CT in schools can be a combination of several arguments 
and therefore focused on investigating CT from a clearly stated viewpoint (elu-
cidated in section 2.1). 

In addition, it is not entirely straightforward to define the skill and 
knowledge areas that all students should acquire to become sufficiently skilled 
computational thinkers and computational problem solvers for subsequent stud-
ies and work life. In fact, scientific efforts from the last decade have only brain-
stormed what CT can teach exactly. The theoretical notions and the literature re-
view carried out in this study are founded largely upon rationalisation of the ex-
isting knowledge that, according to a recent scientometric study, has a strong 
cultural inclination to the US (Saqr et al., 2021). Critically put, there is reason to 
suspect that the current state the topic is under the influence of only developing 
theories and culturally biased educational ideas. This study attempted to miti-
gate any potential effect caused by the maturating state of CT by critically con-
templating the adequacy of the current theories in the investigated educational 
context (i.e. Finnish education). 

A related matter has to do with the incompleteness in defining CT com-
pared to other types of thinking22 and its position alongside other curricular top-
ics, such as technology education, media education and civics, which have been 
used to target the acquisition of similar skills (Kalelioğlu et al., 2016). In fact, CT 
in terms of its ‘computational problem solving’ aspect could be interpreted as a 
combination of certain ways of thinking and ICT skills, which are portrayed in 
various renderings of the 21st century skills (e.g. Binkley et al., 2012) and the cur-
rent Finnish primary school core curriculum (Opetushallitus, 2014). Similarly, the 
‘computational literacy’ aspect of CT could be viewed as a specific thematic 
branch in the ‘multiliteracy’ topic, which is also depicted in these frameworks. 
Meanwhile, some scholars (e.g. Sengupta et al., 2018) posit that programming in 
K–12 should be reframed more generally as ‘modelling’, which could help edu-
cators better adopt it across subjects and disciplines. It could also be interesting 
to consider whether a focus on programming would be enough for the kinds of 

 
22 CT and programming skills have correlated positively with, for example: 

• reasoning and mathematical skills, such as modelling and data analysis (Popat & 
Starkey, 2018; Scherer et al., 2018; Shute et al., 2017), 

• critical thinking (Popat & Starkey, 2018), 
• creativity (Durak & Saritepeci, 2018; Israel-Fishelson et al., 2020; Scherer et al., 

2018), 
• social skills and self-management (Popat & Starkey, 2018), 
• computer and information literacy (Fraillon et al., 2020), 
• algorithmic thinking, cooperation and critical thinking (Durak & Saritepeci, 2018), 
• general problem solving skills (Çiftci & Bildiren, 2020; Durak & Saritepeci, 2018), 
• mental rotation skills (Città et al., 2019), 
• nonverbal–visuospatial reasoning, arithmetic abilities and different aspects of nu-

meracy (e.g. fact retrieval and problem completion) (Tsarava et al., 2019) 
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objectives that CT education as portrayed in this study is expected to reach. Is CT 
just a trendy term promoting programming education, which, in fact, covers all 
fundamental computational skills that 21st century learners need? These kinds of 
conceptual forks currently spread the tentacles of CT far and wide to other (per-
haps more well-established) disciplinary frameworks and types of thinking, fur-
ther confusing educational experts’ views of CT. Amidst this labyrinth, this study 
attempted to synthesise an inclusive but theoretically justified collection of what 
core skills and knowledge CT encompasses. 

A third criticism in CT relates to its somewhat optimistically presumed 
built-in transferability. CT is often comprehended as a fundamental skill for eve-
ryone regardless of their work domain or study discipline (Barr & Stephenson, 
2011; Lu & Fletcher, 2009; Wing, 2006). The integration of CT within and across 
disciplines has been examined in many prior works (e.g. Basu et al., 2014; Israel 
et al., 2015; Niemelä, 2018; Perković et al., 2010; Sengupta et al., 2013; Settle & 
Perković, 2010; Weintrop et al., 2015; Yadav et al., 2016). In short, the notion of 
universally applicable CT that is necessary for everyone has received some criti-
cism, most notably due to the lack of empirical support (e.g. Denning, 2017). Guz-
dial (2015, p. 60) pointed out that ‘there has not been a study since Wing’s 2006 
paper that has successfully demonstrated that students in a computer science 
class transferred knowledge from that class into their daily lives.’ 

However, it is essential to disclose what is the kind of transfer that CT 
should achieve. In one sense, learning CT or programming has not been shown 
to teach generic problem-solving skills (De Bruyckere et al., 2020, p. 7–10). How-
ever, the significance of CT does not depend on whether it fosters the learning of 
skills far beyond its own disciplinary essence or not; instead, it can be justified 
(and has been justified herein) to be important in its own right. However, the 
more important kind of transfer is perhaps whether learning and utilising CT in 
different computational contexts, such as in different programming environ-
ments in schools, transfers to other computational contexts, thus providing ra-
tionale for the existence of cross-contextual CT skills altogether. Do algorithms 
for storytelling in Scratch teach you to design algorithms for professional simu-
lations? 

To be precise, the transfer of skills from programming domains to non-pro-
gramming domains and the acquisition of general cognitive skills hypothetically 
gained through programming has been critically discussed for decades (Klahr & 
Carver, 1988; Pea & Kurland, 1984; Salomon & Perkins, 1985). Empirical studies 
have demonstrated both positive transfer effects between programming lan-
guages (e.g. Armoni et al., 2015; Wu & Anderson, 1990) and minimal to no trans-
fer effects (e.g. Parsons & Haden, 2007). They have also highlighted cognitive 
parts that can facilitate the transfer of certain types of computational content (e.g. 
Franklin et al., 2016). A relatively recent meta-analysis on transfer effects in learn-
ing programming (Scherer et al., 2018) showed evidence of a strong effect for near 
transfer and a moderate effect for far transfer. 
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Studies of transfer in CT, a higher-order competence that programming 
should foster, are lacking (Hsu et al., 2018). The current best knowledge on trans-
fer in CT suggests that the contexts of learning and subsequent application 
should be similar (Bull et al., 2020). Denning (2017) saw that the controversial 
claims of CT’s sweeping transferability can produce obscure definitions for it, 
and teaching it in classrooms may therefore turn out to be little more than a strug-
gle for teachers. The same problem perhaps goes for other relatively ambiguously 
described 21st century skills, which are still quite hard to pinpoint and conclu-
sively define to investigate their meanings very rigorously. Therefore, this study 
is also left to rely on the prospect rather than the assurance that the investigated 
kind of CT transfers to other computational contexts. Restraint was thus exer-
cised in assuming any kind of assured transferability of the CT studied herein; 
rather, this matter is clearly stated as one of the most crucial topics of further 
research.  

6.3.2 Case study with Scratch 

The empirical side of this study is subject to the preconditions, advantages and 
deficits of a case study design (Yin, 2012). In short, the case study could not (and 
did not aim to) gather data to make systematic comparisons, find trends and 
generalise the findings to different teaching and learning situations. Instead, it 
aimed to dive into the particular case deeply, apply novel theoretical and 
methodological approaches and uncover in-depth knowledge by composing rich 
accounts of the students and their encounters with CT and programming. The 
results were primarily targeted for wider comparison, creation of theoretical 
models, stimulation of hypotheses for experimentation and further 
methodological development. The selection of the participants employed 
convenience sampling, that is, drawing the sample non-randomly with emphasis 
on practicability instead of randomness. The results may therefore not represent 
the population thoroughly, which is why care was exercised when deriving 
generalisable implications from the results. 

Scratch was selected as the practical context to be examined in the study for 
the practical reason that it is free, accessible, multilingual, versatile and has a ‘low 
floor’ (i.e. that it is novice-friendly). It is still only one programming environment 
among many, and it has a one-of-a-kind quality and perhaps even pedagogical 
ideology in creative computing (Brennan & Resnick, 2012). For instance, educa-
tional robotics and microchip tinkering (e.g. Micro:bit, Arduino)—which have in 
part also been profoundly ‘hot’, especially in the context of STEAM education—
promote activities that are different in nature when compared to designing inter-
active media projects. The author’s view is, however, that despite their far-reach-
ing educational benefits in facilitating, for instance, collaboration, hands-on do-
ing and being immersed in physical devices, maker learning contexts may have 
less expansive and slightly narrow connections with CT (e.g. a focus on mechan-
ical and electrical engineering) than programming contexts with an aim of pro-
ducing purely digital artefacts. Additionally, despite the relatively high level of 
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digital equipment in Finnish schools, technology is expensive, and free of charge 
ways to open doors to design-oriented CT are more equitable. 

It is also possible that newer technologies, such as those focusing more on, 
for example, artificially intelligent systems and less on ‘finite automata’ machines 
and imperative algorithmic principles, can turn up to offer new kinds of tools, 
gadgets and computational kits with which CT is practiced in schools. Although 
the results are applicable mainly in Scratch, the expectation of this study is that 
the theoretical foundations would be analytically generalisable to other problem 
solving domains. 

6.3.3 Observational methods 

Limitations in the central methodological approach of this study—assessing 
students’ CT by means of observation—concern the two main analysis methods 
used, artefact analysis and programming process analysis. In essence, reliability 
and validity in assessing CT through programming are metrics for how much we 
can trust what assessment tells us (Tang et al., 2020). This issue is especially 
important when assessment is carried out by methods of observation, for which 
only a few reports of reliability and validity by, for instance, comparing scoring 
results with other validated tools such as inter-rater reliability, expert judgement 
and exploratory factor analysis exist (Jun et al., 2014; Tsarava et al., 2018). The 
lack of the psychometric reliability of validity in assessing CT-related topics is a 
common issue in learning CT through programming; for instance, Lin et al. (2020) 
reviewed 60 STEM-related maker activity assessments and found that only 15% 
provided evidence of reliability and validity. Furthermore, it is also possible that 
assessment instruments that have been ‘validated’ by comparing them to 
previous instruments that have been subjected to the same process may merely 
accelerate the ‘downward spiral’ of invalidity. 

An overall limitation in this study is that no tests, questionnaires or other 
assessment methods were employed to compare findings regarding the students’ 
learning obtained via the artefact and process analyses. This was due to the lim-
ited time to complete the dissertation while focusing on the main goals of this 
study. The development of the analyses relied strongly on existing research, and 
other available measures were taken to increase validity and reliability (see de-
tails below), but they did not undergo rigorous validation processes. Such pro-
cesses could have specified their operational underpinnings and contributed to 
their capacity in reliably indicating students’ actual CT capabilities, potentially 
leading to stronger and more reliable evidence. However, this limitation was con-
sidered acceptable in this early-stage study and case study design, which did not 
aim to produce generalisable results for large-scale decision-making. 

A related limitation in this study concerns the validity in determining par-
ticipants’ cognition based on the results of their hands-on work. The artefacts that 
the students programmed were only latent measurements of their thinking 
(Seiter & Foreman, 2013). In particular, the block-based programming environ-
ments in which students can drag-and-drop pre-existing blocks to form scripts 
incorporate a risk of students designing something that they do not understand 
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(Lye & Koh, 2014). Although research investigating and remedying the reliability 
and validity issues in artefact analyses has begun to emerge (e.g. Román-Gonzá-
lez et al., 2019), this issue still remains worthy of scrutiny. 

To advocate the validity of programming contents evinced as indications of 
thinking, it is preferable to consider the context of the contents (e.g. recognising 
the learning assignment) and examine meaningful evidence semantically rather 
than merely technically (Seiter & Foreman, 2013). The artefact analysis in Article 
II increased construct validity (i.e. investigating the intended competence) spe-
cifically in this way. The semantics-directed patterns-first evincing process of 
programming contents can be justified to produce a more legitimate manifesta-
tion of student understanding compared to assessments that are merely con-
cerned with the mere ‘nut and bolt’ qualities in programmed projects. Further-
more, the artefact analysis employed a rigid rule-based analysis to decrease the 
requirement of making qualitative interpretations. 

Despite measures taken to combat issues of validity and reliability in arte-
fact analysis, it is important to note how products come to be (Lye & Koh, 2014). 
Although triangulation methods were not employed systematically to account 
for increased reliability in all findings, this study complemented artefact analysis 
with a sample of process analyses and discussed the insight gained in the overall 
examination of the findings. Additionally, grounded by the fact that students’ CT 
activities are not necessarily directly identifiable from their programming pro-
cesses, the multilayered analysis of programming activities can be justified to en-
compass comparably high construct validity. The process analysis also incorpo-
rated a blind inter-rater reliability check to increase reliability in the analysis. 

The analysis of the students’ shared programming processes resulted in ad-
ditional potential limitations as well. In pair programming—although pedagog-
ically meaningful—it can be difficult to estimate the level of understanding of 
each individual learner. Moreover, real-life incidents in the non-controlled class-
room situations may have masked or distorted key evidence regarding the stu-
dents’ capabilities. Perhaps most fundamentally, the audio data turned out to be 
partially unclear due to the noisy classroom atmosphere, resulting in discourse 
analyses being limited to a rather generic level. Additionally, the students’ pro-
gramming activities may have been influenced by contextual and non-program-
matic factors that were possibly not caught by the recording devices. In summary, 
although the depth of discovery was not as deep as possible, this cost was ac-
ceptable in order to acquire evidence from authentic classroom situations. The 
evidence obtained to speak to the students’ learning in CT (rather than their con-
ceptual and practical encounters as examined herein), however, may not be com-
plete and exact. 
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6.4 Future research 

This study raised several fruitful opportunities for future research on this young 
and unestablished topic. The opportunities stem from the possibility of deepen-
ing the insight gained in the study by using the employed methods in novel ways 
or accounting for the limitations. They also stem from the opportunities to adopt 
different theoretical viewpoints or research designs or study different educa-
tional contexts to complement general knowledge of the topic. 

In terms of the employed methods (i.e. artefact analysis and programming 
process analysis), an incentive for a methodical instrument validation process 
surfaces to calibrate the frameworks to measure students’ CT more accurately 
(see Tang et al., 2020). Although the analysis frameworks are founded theoreti-
cally upon existing frameworks, the capacity of the methods to operate as credi-
ble measures in eliciting the qualities of students’ learning could be increased by, 
for instance, comparing the results of the assessment with other established 
methods, such as the CT test (Román-González et al., 2017a). 

Using the research-designated assessment rubrics for analysing the projects 
and processes was time-consuming, and the outlined formative assessment sys-
tem currently carries only hypothetical potential. Enacting formative assessment 
in practice with the models presented in subsection 6.2.2 would therefore benefit 
greatly from empirical testing in unique school environments and dynamic class-
room situations. Future studies could investigate ways in which teachers and 
students could utilise the models manually and how (parts of) the assessment 
could be automatised akin to such tools as Dr. Scratch (Moreno-León et al., 2015) 
or other real-time dashboard-like assessments (e.g. Koh et al., 2010; 2014; Re-
penning et al., 2015). 

The assessment developed in this study is intended especially for use in the 
context of such creative multidisciplinary projects for introductory CT learning 
at the primary school level as reported by Burke (2012), Hameed et al. (2018) and 
Whyte et al. (2019). An opportunity for pragmatically valuable research could be 
further collecting and estimating the ‘CT potential’ in various kinds of multidis-
ciplinary project templates suitable for processing key substance in primary 
school curricula (see also Moreno-León & Robles, 2016). 

This study examined formative assessment as a collection of rather corpo-
real pedagogical strategies. The various core tasks involved with it are rich and 
contextual, though, and the entire process of formative assessment in the class-
room could be investigated more focally. For instance, when examining the ap-
plicability of the methods of feedback as hypothesised in subsection 6.2.2.3, it 
may be worthwhile to additionally investigate how students react to the received 
feedback (e.g. putting effort into reaching learning goals or abandoning them). It 
would also be meaningful to investigate how students’ behaviours link to the 
teacher’s behaviours (e.g. quality of dialogue), what students’ beliefs in their ca-
pacity to learn are and how the different kinds of feedback (e.g. heavily cued and 



112 
 
rapid) can lead to different kinds of problem-solving strategies (see Black & Wil-
iam, 1998). 

Alongside increasing knowledge about applicable ways to evince student 
understanding and provide feedback in classroom situations, this study gave rea-
son to produce incipient learning progressions (or ‘criterion sequences’, see Black 
& Wiliam, 1998) in CT through programming, especially in the context of Scratch 
(see subsection 6.2.2.1). Fully congruent and more conclusive learning progres-
sions utilising, for instance, the Bloom/SOLO taxonomy (e.g. Meerbaum-Salant 
et al., 2013) or similar notions as in existing trajectories on specific areas in CT 
(see e.g. Niemelä, 2018; Rich et al., 2018; 2020; Gane et al., 2021), invite further 
attention, particularly in terms of CT as viewed through the CEPs. 

Additionally, the prospect of aligning the CEPs alongside other disciplinary 
skills and types of thinking, thus perhaps expediting their way into school cur-
ricula as well, can be a major although enticing endeavour. However, as is char-
acteristic of the various definitions and operationalisations of CT, the formulation 
of the CEPs can develop in future investigations with regard to form, emphasis 
or level of granularity (e.g. abstracting them into more or less compact modules) 
for convenience in cross-curricular integration and the design of meaningful 
learning tasks and instruction (Tang et al., 2020). Yet, with evolving trajectories 
in CT and increasing knowledge of the higher levels of the competence in partic-
ular, learning activities and therefore also the assessment may become more com-
plex. Mapped, rubrics-based assessment frameworks may become impractical, 
which implies that they may be more relevant for the kind of ‘introductory’, 
‘must-know’ or ‘threshold’ substance in CT. 

In terms of correcting the limitations of this study, perhaps the most crucial 
avenue for further research lies in more detailed investigation of collaboration in 
the context of programming, in particular, ways of (and ways to support) collab-
orative talk, seeking help and receiving help in this context and information 
searching. Even though pair programming has been studied—particularly in 
higher education and in text-based programming environments—more in-depth 
studies are needed, especially among young learners. Studies could learn to bet-
ter understand the ways in which social interactions influence school students’ 
design processes, shared knowledge creation and non-programmatic matters, 
such as affective factors in collaborative creation, which can also have pivotal 
effects in learning, especially in creative design contexts. A slightly separate but 
potentially crucial point of interest may reside in the domain of vocabulary. Lan-
guage can be particularly central in collaborative problem solving and shared 
knowledge construction in CT, which includes the verbalisation of potentially 
unfamiliar and abstract computational matters23 (Barr & Stephenson, 2011). 

 
23 Earlier research suggests that novice learners tend to think and talk about structural ra-
ther than the behavioural or functional parts of the computational system they are design-
ing (Werner et al., 2014). Vandenberg et al. (2020) also found that students’ ability to think 
about and verbalise abstract computational phenomena can vary according to their prior 
experience and general developmental level. Piagetian theory of cognitive development 
could provide a framework for understanding students’ thinking and discourse in CT 
through programming. 
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Another crucial avenue for future research lies in a pursuit intrinsic to edu-
cation—developing students’ cognition. In CT instruction, it is vital for instruc-
tors to become aware of the quality of skills and knowledge that students develop 
while programming. There is no systematic review of empirical studies, such as 
the ones conducted in this thesis, to synthesise current overall knowledge of how 
students learn the various CT skills and knowledge through programming. Such 
a review could result in a coherent overall view of key pedagogical matters at 
play in CT education; however, conducting such a review may still be somewhat 
premature. Additional empirical work could still be undertaken to learn to un-
derstand students’ thinking at different stages of learning (see e.g. Figure 15)—at 
the time of naïve skills or knowledge, while becoming acquainted with new con-
ceptual matters, the moments of conceptual change and subsequent moments of 
putting the new concepts or practices into effect in a self-regulated manner. It 
remains equally important to learn more lessons with think-aloud methodologies 
designated to discern students’ in-time thinking while solving computational 
problems. The same applies for longitudinal studies, which can examine the tem-
poralities in students’ encounters with different CEPs, as can be indicated by ar-
tefact analyses and process analyses. Furthermore, important gaps concern the 
lack of organised empirical knowledge regarding such matters as the effects of 
feedback (see Figures 16 and 17) to promote conceptual change in different kinds 
of learning situations. 

For future research differing in terms of viewpoints, designs or contexts, 
this study most essentially prompts the contextualisation of the CEPs in other 
programming environments or ‘microworlds’, such as with robotic kits (e.g. 
Barth-Cohen et al., 2018; Chalmers, 2018), physical and unplugged tools (e.g. 
Brackmann et al., 2019) and digital fabrication contexts (e.g. Iwata et al., 2020; 
Suero Montero, 2018), in addition to non-programmatic contexts. Professionals 
working in different fields and specialising in computing may be equipped with 
valuable understanding concerning what computational methods are used in 
their respective fields and the ways in which CT enables solving familiar prob-
lems better or even illuminates new problems to solve (Denning & Tedre, 2019). 
The uniform contextualisation of the CEPs, albeit labour-intensive, could lead to 
added consensus on the topic and ground future scholarly and pragmatic efforts 
in CT education in similar theoretical premises. It could lead to recognising CT 
areas that are better learnt in particular contexts or with specific tools or ap-
proaches, further strengthening the overall discussion on the inclusion of CT in 
the curriculum. Additionally, analyses rooted in similar theoretical premises 
could be utilised in different domains to increase the growing evidence on the 
transfer of CT from one domain to another. 

This study also essentially prompts the design of holistic assessment sys-
tems for CT in Scratch, more generally in programming and beyond program-
ming. The assessment systems could be developed to integrate the viewpoints 
herein and such known assessments as the Bebras challenge (Dagienè & Futschek, 
2008) and the CT test (Román-González et al., 2017a). It could also potentially 
incorporate conceptual and practical notions omitted in this research, such as 
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‘other programming contents’ (see Article I), areas of CT that remain outside the 
CEPs or were difficult to concretise in programming or in Scratch or nuances that 
the CEPs potentially overlooked. As encouraged in CT assessment (Basso et al., 
2018; Grover et al., 2017), the system could assess CT with diagnostic, summative 
and formative emphases from multiple viewpoints in multiple learning contexts 
in school and beyond. 

Holistic assessment systems should also encompass the more non-cognitive 
notions in CT to bring the competence closer to one that encompasses 
‘Knowledge, Skills, Attitudes, Values and Ethical aspects’, as theorised by Seiter 
and Foreman (2013). This study investigated the problem-solving dimension in 
CT, which can be interpreted to reside alongside the perhaps equally relevant 
‘computational literacy’ dimension (i.e. more social and societal matters of com-
puting) (see Høholt et al., 2021; Lonka et al., 2018; Mertala et al., 2020). Despite 
nascent empirical research (e.g. Kong et al., 2018; Mannila et al., 2020), this di-
mension is currently rather ill-defined, abstruse and scarcely studied. This study 
thus encourages concretising what are the more cross-contextual computational 
attitudes, perceptions or dispositions—stemming potentially from societal reality 
and adapted to the core functions of primary education—that students could or 
should gain in primary education. Future research could proceed to investigate 
how such dispositions could be incorporated in programming education or more 
general-level CT education in, for instance, the form of developing learning ac-
tivities that include interpreting and/or designing computer programs and other 
ways of being engaged with the computational world. A natural next step could 
also be related to the assessment of such dispositions. 

6.5 Closing remarks 

CT is a contended term that has received much attention in educational discourse 
in recent decades. It is vital to appreciate that it is an age-old idea and is only new 
and understandably more acute in today’s world in relation to the rapid 
development and ubiquity of digital technology. Nonetheless, educational 
scholars and practitioners have begun to actively ask such questions as ‘What is 
CT exactly?’, ‘Who does it belong to?’ and ‘How much do students need it?’ 
Straightforward answers have been difficult to provide because the topic is so 
young, unsettled and directed to the future, which is difficult to predict very 
accurately. 

The topic has been put into practice and developed actively in schools, li-
braries, science centres, non-profit organisations and after-school clubs through 
such initiatives as robotics, making and digital fabrication, even for years before 
CT jumped in front of the public eye. Scientific research has also only just come 
into play to strengthen a research-based understanding of the term. A concurrent 
richness and difficulty has been that it has brought together experts from differ-
ent worlds, such as crafts, engineering, higher education, basic education, early 
childhood education, computing, CS and information technology. Discussions 
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have in many ways been ground-breaking but also cumbersome due to the lack 
of many shared qualities, such as vocabularies, disciplinary paradigms and per-
haps even interests. 

CT is still a highly problematic term for several reasons. First, the terminol-
ogy, which would greatly enable discussing the topic by referring to the same 
ideas, is still not well-established. Second, the educational goal of CT can be 
viewed in different ways; CT can allegedly foster generic procedural skills, pro-
vide computational problem-solving skills, teach mere coding or enrich a kind of 
computational literacy. Consequently, it can be either a very rigid disciplinary 
set of methods that must be explicitly taught or more akin to a pervasive cogni-
tive foundation that stealthily transcends entire curricula through such skills as 
decision making and decomposition. Although some goals can be justified as too 
limited, too hopeful, too ambitious, too industry-centred or too vague, all of them 
can be relevant in some ways. How can such a slippery thing be grabbed and 
framed conveniently? 

That said, one of the less studied albeit highly compelling goals of CT de-
serves a distinct mention. The importance of teaching students computational 
literacy skills has been rightfully promoted in recent years. It is becoming inevi-
tably important to teach young people to understand what kinds of computa-
tional phenomena shape the digital world, how they influence our lives and how 
we should learn to comprehend them and relate to them as critical agents of the 
world. There is much popular talk about recommender algorithms, Internet pri-
vacy, information bubbles, storing and selling personal information, digital war-
fare and online tracking, among others, each of which have programmed things 
and CT behind them. It seems crucial to open the field from the viewpoint of 
educational sociology. An immediately following question could be whether 
something akin to computational literacy should be coined as a separate term or 
just be positioned under ‘regular’ media literacy or multiliteracy. Nonetheless, 
the importance of CT literacy seems all the more significant in the ever-accelerat-
ing era of digitalisation and robotisation that drives a bigger and bigger gap be-
tween school and the real world. 

Perhaps nascent solutions are in sight. Perhaps computational literacy (an 
understanding of computing and the computational world) is crucial for every-
one and computational problem solving (skills to apply and create with compu-
tational technologies) is useful for ‘some’ people. Currently, it feels safe to only 
say that those ‘some’ are ‘those who will do CT jobs in the future’. In other words, 
we need insight with respect to how the core principles of CT are utilised or could 
be utilised in different types of problem-solving situations (e.g. in different sec-
tors of work) in the real world. It is not likely that all professional workers need 
‘creative CT’ yet, although the computationalisation of different work sectors is 
evident. Still, that does not necessarily mean there should be a divorce between 
engineers who build, coders who code and other workers who do the ‘normal’ 
work. It seems more appropriate to think that everyone needs a basic under-
standing (e.g. vocabulary, knowledge of the methods and techniques) of compu-



116 
 
tational problem solving to be able to communicate ideas with software design-
ers equipped with deeper CT. ‘How can CT assist me in my work?’ Perhaps an-
swers to questions such as this could also facilitate the inclusion of CT more ex-
pansively, and particularly in non-programmatic situations, across different sub-
jects in school curricula. 

Overall, in primary education CT can be viewed as a basic but multifaceted 
cornerstone of ‘computational knowing and doing’, which provides a spring-
board for gaining deeper skills to solve complex problems in real-life situations 
in the future. More prophetic visions even portray it as an entirely new kind of 
competence, something that rises to the same level as writing and calculating, 
that enables conjuring unseen things to make the world a better place. Although 
such claims may seem deranged, CT has already brought us the Internet, social 
media, smart phones and mind-boggling applications of artificial intelligence. 

As was perhaps expected in the research and development of this complex 
and unestablished competence, no easy and all-encompassing model for teaching 
and learning emerged. In contrast, this study showed that several matters can 
and perhaps need to be taken into account when attempting to teach, learn, assess 
and study CT comprehensively, systematically and reliably. Perhaps it is there-
fore sensible to in a way return to the starting point of this thesis and interpret 
CT more holistically rather than too atomistically to avoid overly detailed and 
too broken approaches (‘not seeing the forest for the trees’). With that in mind, a 
guideline for educational practitioners to do ‘at least something related to CT’ 
can be a good starting point to introduce students and practitioners themselves 
to the world of computing at this starting point of its hopefully enduring and 
gradually fortifying voyage to formal education. 

The author strongly suggests that the arguments in this thesis stress an in-
vitation to put as much effort as possible into continuing to develop this topic 
educationally. The results of this thesis have already begun to be put into place 
in national curricular consultation, in-service and pre-service teacher training 
and the design of international learning materials, but there is much work yet to 
be done. The efforts of this study are aimed at a broad pragmatic interest of edu-
cational research—developing the school. There are several known challenges 
with CT amidst this interest, and they can be seen to concern such key elements 
as learning and learning environments, teacher knowledge and collaboration, 
shared leadership and teamwork and school partnerships (Korhonen & Lavonen, 
2016). Next to even the most finely elucidated competences, laid out learning tra-
jectories, or fine-tuned pedagogical models, researchers need to better under-
stand key practical requisites faced by learners, teachers, school leaders and ed-
ucational policy makers alike in designing and enacting CT education. Amidst 
the ongoing struggles, the big question remains: How can educational research 
guide change in the school? What key questions remain unanswered regarding, 
for example, learner dispositions, teachers’ understanding of CT and their own 
beliefs about developing their CTPACK, leadership and curricular work? 

At the end of this study, the author would like to state his personal profes-
sional wish that all students would have the opportunity to gain an interest in 
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programming and cultivate strong basic CT skills in order to have a good chance 
of deepening them in their further studies, work life and other life situations. 
That said, it is desirable that the role of programming would not diminish in fu-
ture core curricula or be left to an elective status, as has unfortunately happened 
in the core curriculum of the Finnish upper secondary school. Instead, each stu-
dent’s right to study CT should continue unimpeded from pre-school to higher 
education. Meanwhile, it is highly desirable that vocational education and the 
different scientific disciplines at universities embrace the adventure of seeking 
the possibilities that CT can provide for the problem-solving methodologies char-
acteristic of their fields. 

How the learning of the new and multifaceted CT can be best facilitated and 
supported still remains partially shrouded, but despite the challenges encoun-
tered, the current direction of ongoing developments looks promising. CT is 
studied to an increasing extent, programming belongs to everyone in the Finnish 
primary school core curriculum and teachers seem to increasingly be doing 
something about it. Still, the growth of CT in schools has been surprisingly slow, 
and the topic does not seem to grab the interest of too many educational profes-
sionals, unlike other technological topics such as those aimed at supporting 
learning processes in general or providing immersive learning experiences (e.g. 
learning with virtual reality applications). Digital technology and computing as 
targets of learning rather than facilitators of learning are increasingly important, 
but the demand and supply do not seem to meet. Nonetheless, pedagogical mod-
els are being constantly developed for different educational situations, and the 
challenges of adopting CT and programming in schools and other educational 
institutions are being constantly studied nationally and internationally. 

Meanwhile, hundreds of motivated and excited students compete annually 
in programmatic events, such as sumo wrestling with Lego robots and game 
making with Scratch (see Figure 18), which only demonstrates that the topic can 
generate a great deal of interest and excitement very broadly. Based on these facts, 
we have come far from approximately 70 years ago when, according to Denning 
and Tedre (2019), programming was viewed mainly as a ‘black art’ that was ac-
cessible mainly to the elite. 
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Figure 18.  Scratch programming during GameDev, a game design competition organised 
at the Innokas programming and robotics tournament (photo: Miika Miinin) 
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YHTEENVETO 

Tietokonevallankumous on täällä! Merkittävä osa nykyisin käyttämistämme mo-
nimutkaisista laitteista, kuten älypuhelimet ja autot, ja palveluista, kuten pankki- 
ja viihdepalvelut, ovat pohjimmiltaan tietokoneita ja niiden suorittamia tietoko-
neohjelmia. Siitä huolimatta edistyneemmätkin tietokoneet ovat vain tietojenkä-
sittelylaitteita, jotka noudattavat täysin samoja käsitteellisiä periaatteita kuin 
vaikkapa alkeelliset helmitaulut. Vasta 1900-luvulla tietokoneiden nykypäivänä 
toteuttamia tiedonkäsittelytapoja sähköistettiin ja automatisoitiin, tietojenkäsit-
telytiedettä virallistettiin ja digitaalisia tietojenkäsittelykoneita rakennettiin ja 
tuotiin koteihin ja työpaikoille. Erilaisten tietokoneohjelmien luonti on sittemmin 
tuottanut valtavia hyötyjä, kuten lääketieteen uudistuksia ja lentoturvallisuuden 
simulaatioita, mutta toki myös vakavia huolenaiheita, kuten verkkovalvontaa ja 
informaatiosodankäyntiä. 

Samaan aikaan tietokoneiden suorittamien ohjelmien itse tekeminen eli oh-
jelmointi on palannut kouluihin pakollisena tai valinnaisena oppisisältönä eri 
maissa, mukaan lukien Suomessa. Erilaiset lapsille ja nuorille tarkoitetut pelin- 
ja leikinomaiset ohjelmoinnin kontekstit, kuten robotiikka, pelinteko ja ”värk-
käily” ovat runsastuneet merkittävästi. Erityisen suosittujen ympäristöjen jou-
kossa on tässäkin tutkimuksessa tarkasteltu ilmainen, verkkoselaimella käytet-
tävä ohjelmointiympäristö Scratch, jolla voi luoda monipuolisesti erilaisia inter-
aktiivisia tarinoita, animaatioita ja pelejä ponnistaen omasta luovuudesta ja 
omista kiinnostuksenkohteista. Omiin Scratch-ohjelmointitöihin suunnitellaan 
erilaisia digitaalisia hahmoja, kuten vaikkapa taruolentoja, sekä tapahtumapaik-
koja, joille ohjelmoidaan erilaisia toimintoja, kuten liikettä, puhetta ja ääntä liit-
tämällä yhteen kuvakepohjaisia koodilohkoja. 

Ohjelmoinnin oppimisen erääksi keskeiseksi tavoitteeksi koulussa on esi-
tetty ohjelmoinnillisen ajattelun oppiminen. Ohjelmoinnillinen ajattelu voidaan 
tulkita monitahoisena tieto- ja taitokokonaisuutena, joka ammentaa tietojenkäsit-
telytieteen tieteenalalle ominaisista ajattelun ja tekemisen tavoista. Sen tarpeelli-
suuden perusteiksi on esitetty muun muassa lisääntynyt ammattikoodaajien 
tarve, ohjelmoinnillisen mallien ja menetelmien yleistyminen eri työaloilla, yleis-
maailmallisten tietojen ja taitojen oppimisen mahdollisuudet sekä ymmärryksen 
jalostaminen alati ohjelmoinnillistuvasta yhteiskunnasta. 

Ohjelmoinnillinen ajattelu on kuitenkin hyvin uusi käsite, jota koskeva tut-
kimus ja tietämys on vasta hiljalleen kasvamassa. Ohjelmoinnin ja sitä kautta 
opittavan ohjelmoinnillisen ajattelun opetusta on jalkautettu eri koulutusasteille 
ja eri maihin erilaisten kasvatustavoitteiden linjassa erilaisin tavoin ja kenties eri-
laisin odotuksinkin. Tuoreiden tutkimusten mukaan erityisesti suomalaisopetta-
jat eivät koe kykenevänsä opettaa ohjelmointia, ja he painottavat ohjelmoinnilli-
sen ajattelun oppimista omassa opetuksessaan verrattain vähän. Suomalaisoppi-
laiden ohjelmoinnin osaaminen on tutkitusti matalaa, ja ohjelmointi tiedetään 
muutenkin hyvin haasteelliseksi aktiviteetiksi erityisesti taidon oppimisen alku-
vaiheissa. 
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Tässä väitöstutkimuksessa tutkittiin ohjelmoinnillisen ajattelun oppimisen 
tukemista Scratch-ohjelmoinnin kontekstissa peruskoulun luokkahuonetilan-
teissa. Tutkimuksessa toteutettiin neljä toimenpidettä: 

(1) ohjelmoinnillisen ajattelun kasvatustavoitteiden täsmentäminen ohjel-
moinnin kontekstissa, 

(2) ohjelmoinnillisen ajattelun arviointimenetelmien tarkastelu Scratchissa,  
(3) uusien arviointimenetelmien kehittäminen Scratch-ohjelmointitilantei-

siin ja 
(4) rikkaan empiirisen tiedon hankinta 4.-luokkalaisoppilaiden ohjelmoin-

nillisesta ajattelusta Scratchissa. 
Tutkimuksen toteuttamisen pohjana toimi taustakirjallisuudesta uudella ta-

valla muotoiltu ohjelmoinnillisen ajattelun opetuksen perusprinsiipeistä koostuva teo-
reettinen viitekehys. Perusprinsiipeillä kuvattiin konkreettisesti, millaista ym-
märrystä oppilaat voivat tarkalleen ottaen omaksua esimerkiksi erilaisten algo-
ritmien luomisesta ja tietokoneiden ymmärtämän tiedon eli datan hyödyntämi-
sestä ohjelmoinnissa. Viitekehyksen mukaan ohjelmoinnillisen ajattelun opetuk-
sen päämääränä on ruokkia ymmärrystä siitä, mitä tietojenkäsittelyllä voidaan 
tehdä, miten tietokoneet käsittelevät tietoa sekä miten tietojenkäsittelyn erilaisia 
työkaluja, malleja ja ideoita voidaan käyttää ratkaisemaan erilaisia oikean elä-
män ongelmia. Sen mukaan ohjelmoinnillinen ajattelu voidaan tulkita eri tilan-
teissa sovellettavana ylätason osaamisena, ja ohjelmointi on puolestaan alemman 
tason osaamista, joka voi tietyillä tavoilla saada aikaan ohjelmoinnillisen ajatte-
lun oppimista. 

Tutkimuksen pedagogisena kehysteoriana toimi konstruktionistinen oppi-
miskäsitys. Konstruktionistiseen oppimiseen kuuluu ajatus siitä, että erilaisten 
konkreettisten tuotosten (esim. ohjelmointitöiden) luominen ulkoistaa oppijan 
oman ajattelua. Tosielämän ilmiöiden opettaminen tietokoneelle ohjelmoiden 
näin ollen mahdollistaa ja osoittaa kyseisen ilmiön oppimista. Konstruktionismia 
on sovellettu usein erityisesti löytämällä oppimisen yhteydessä: oppiminen ta-
pahtuu spontaaneissa tilanteissa, joissa uutta tietoa tarvitaan yllättäen jonkin 
käytännön ongelman ratkaisemiseksi. Tutkimuksessa kuitenkin tulkittiin, että 
vaikka spontaani löytäminen olisikin oppimisen perusperiaate, oppimista voi 
olla toisinaan tarpeen tukea ja ohjata. Keskeisiä toimia voivat olla erityisesti for-
matiivisessa arvioinnissa määritellyt tukistrategiat: selkeiden oppimistavoittei-
den asettaminen, oppilaiden osaamisen määrätietoinen selvittäminen ja tarkoi-
tuksenmukainen palautteenanto. Tutkimuksessa tulkittiin, että näitä strategioita 
voidaan mahdollistaa oppilaiden autenttisissa ohjelmoinnillisen ajattelun oppi-
misen tilanteissa tarkastelemalla oppilaiden Scratch-ohjelmointitöitä ja heidän 
ohjelmointikäytänteitään Scratchissa. 

Tutkimus oli luonteeltaan monimenetelmäinen, ja se toteutettiin kolmen 
tieteellisen vertaisarvioidun tutkimusartikkelin kautta. Artikkelissa I toteutettiin 
systemaattinen kirjallisuuskatsaus (30 kirjallisuuslähdettä), joka kokosi erilaisia 
tapoja arvioida ohjelmoinnillisen ajattelun perusprinsiipien oppimista Scrat-
chissa. Toisin sanoen katsauksessa koostettiin laajasti erilaisia tapoja arvioida 
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Scratch-ohjelmoinnin sisältöjä ("mitä" oppilaat ohjelmoivat) ja ohjelmointikäy-
tänteitä ("miten" oppilaat ohjelmoivat). Näitä sisältöjä ja käytänteitä tulkittiin sa-
malla uudella tavalla juurikin ohjelmoinnillista ajattelua ruokkivina sisältöinä ja 
käytänteinä. 

Artikkelien II ja III empiiriset tapaustutkimukset kokosivat monipuolista 
aineistoa oppilaiden ohjelmoinnillisesta ajattelusta käytännön luokkahuonetilan-
teissa. Tutkimukseen kerättiin aineistoa 57:ltä 4.-luokan oppilaalta (62% tyttöjä, 
38% poikia) kolmesta keskikokoisen keskisuomalaisen koulun rinnakkaisluo-
kasta. Oppilaat osallistuivat 12 oppitunnin mittaiseen Scratch-ohjelmoinnin 
opintojaksoon vuonna 2017. Oppilaat olivat tutkimuksen alettua kokemattomia 
ohjelmoijia, joten jakson tavoitteena oli tutustuttaa oppilaat Scratch-ohjelmoin-
nin peruskäyttöön ja ohjelmoinnillisen ajattelun perusteisiin. Oppilaat työsken-
telivät jakson aikana pääsääntöisesti pareittain saman tietokoneen äärellä ohjel-
moiden yhteisiä luovia ohjelmointitöitään. 

Tutkimuksessa kerättiin kaksi aineistokokoelmaa: oppilaiden tekemät 
Scratch-ohjelmointityöt (N=325) sekä videotallenteet neljän oppilasparin ohjel-
mointityöskentelystä jakson viimeisten vapaavalintaisten ohjelmointitöiden val-
mistamisesta kahden oppitunnin ajalta. Molemmissa tutkimusartikkeleista kehi-
tettiin ja sovellettiin uusia analyysimenetelmiä ohjelmoinnillisen ajattelun teo-
reettisesti perusteltuun arviointiin. 

Artikkelissa II oppilaiden tekemistä Scratch-ohjelmointitöistä tarkasteltiin 
erityisesti ohjelmoituja ”koodauskaavoja” eli yleistason ohjelmointiteknisiä mal-
leja, joilla ohjelmointitöiden toiminnallisuuksia oli ohjelmoitu, sekä ennen kaik-
kea näiden sisältöjen viitteitä ohjelmoinnillisen ajattelun oppimiseen. Tutkimuk-
sen mukaan oppilaat olivat laajasti joskaan eivät täysin tyhjentävästi tekemisissä 
ohjelmoinnillisen ajattelun perusprinsiipien kanssa opintojakson aikana. Tulok-
set antoivat ymmärtää, että oppilaat saattoivat oppia ohjelmoinnillisen ajattelun 
perusprinsiipejä vain osittain eikä kaikkia kovin syvällisesti. Oppiminen näytti 
tapahtuvan luontaisemmin tietynlaisten ohjelmointiteknisten mallien kautta, 
jotka ovat tyypillisiä Scratchissa toteutettaville harjoitustöille eli yleisimmiten 
animaatioille ja tarinallisille töille. Ohjelmoinnillisen ajattelun laaja-alaisempi op-
piminen näytti edellyttävän päämäärätietoisempia opetuksellisia valintoja, ku-
ten ajoittaista tiedon suoraa esittämistä pelkän ”etsimisen ja löytämisen” sijaan, 
aiemmin käsiteltyjen ohjelmoinnillisten mallien käytön osaamisen vahvistamista 
sekä ennen kaikkea monimutkaisempien pelinomaisten ohjelmointitöiden to-
teuttamista järjestettyjen oppituntien lisäksi. 

Artikkelissa III oppilaiden pariohjelmointiprosesseista tarkasteltiin erilaisia 
tapoja, joilla parit toteuttivat yhdessä ohjelmoinnilliseen ajatteluun kuuluvia 
käytänteitä, kuten luovaa suunnittelua, yhteistoiminnallista työskentelyä ja ”de-
buggaamista”. Artikkelin päähavaintoihin kuului löydös siitä, että luovien ohjel-
mointitöiden alkusuunnittelu on tärkeää niin ohjelmointiprosesseissa oleellisesti 
häämöttävien sudenkuoppien välttämiseksi kuin toisaalta uusien oppimismah-
dollisuuksien avaamiseksi. Toisaalta omien ohjelmointitöiden spontaani kehit-
tely ja uusien ideoiden löytäminen matkan varrella voivat johdatella ohjelmoin-
tiprosessia uutta oppimista avaaviin suuntiin, jolloin vaatimuksena voi toisaalta 
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olla ohjelmoinnillisesti taitavan opettajan tiivis tuki uusien asioiden oppimisessa. 
Tulokset osoittivat myös, että vaikka oppilaiden itsenäinen pariohjelmointityös-
kentely voi olla monilta osin tehokasta ja tuottoisaa, itsenäisen työskentelyn su-
juvuus ja ajoittaiset avuntarpeet voivat vaihdella yksilöllisesti. Oppilaiden oma-
johtoisen työskentelyn aikana voi nousta erityisesti pedagogisesti huomionarvoi-
sia ei-toivottuja toimintatapoja niin ohjelmoinnillisten virheiden korjaamisessa, 
sopivien ohjelmoinnillisten sisältöjen (esim. koodirakenteiden) löytämisessä ja 
käyttämisessä kuin yhteisen tiedonrakentelun osalta sekä parin sisäisesti että ul-
kopuolisten tietoresurssien, kuten luokkahuonetovereiden hyödyntämisessä. 
Löydökset korostavat kaikkiaan, mitkä ohjelmoinnin ja oppimisen ohjaamisen 
osa-alueet ovat kenties keskeisimpiä sekä miten oppilaskeskeistä ongelmanrat-
kaisua prosessia voitaisiin luokkahuoneessa tukea. 

Sekä artikkelin I kirjallisuuskatsaus että artikkelien II ja III empiiriset löy-
dökset antavat kokonaisuudessaan viitteitä ohjelmoinnillisen ajattelun oppimi-
seen sekä valtakunnallisen perusopetuksen opetussuunnitelman että ruohonjuu-
ritason opetuksen näkökulmista. 

Opetussuunnitelman näkökulmasta on kaikkiaan tärkeää tunnistaa ohjel-
moinnillisen ajattelun osaamisen moninaiset hyödyt ja siihen kuuluvat moninai-
set tietämisen ja taitamisen tavat, joita voidaan harjoitella eri tavoin esimerkiksi 
ohjelmoimalla. Vaikka tutkimuksessa ei varsinaisesti arvioitu ohjelmoinnin roo-
lia opetussuunnitelmassa, voidaan kevyelläkin vertailulla todeta ohjelmoinnilli-
sen ajattelun opetuksen perusprinsiipien esiintyvän nykyisessä peruskoulun 
opetussuunnitelmassa kapea-alaisesti. Ohjelmoinnillista ajattelua saatetaan toki 
oppia eri oppiaineissa ilman erillismainintaakin, mutta kyseisen osaamiskoko-
naisuuden ainutlaatuinen, tietojenkäsittelyn alueesta ammentava luonne voi 
edellyttää sen opettamista ja oppimista harkituin menetelmin esimerkiksi sisäl-
lyttämällä tässä tutkimuksessa konkretisoituja prinsiipejä opetussuunnitelman 
eri alueille. Käytännössä Scratchin kaltaisilla ohjelmointiympäristöillä voidaan 
oppia ohjelmoinnillista ajattelua ”pienin annoksin”, mutta on erityisen tärkeää 
tulkita ohjelmoinnillinen ajattelu pitkäkestoisesti ruokittavana, kokonaisvaltai-
sena osaamisena. Sitä ei välttämättä opita parhaiten tarkasti eriteltyjen alakritee-
rien kautta, vaan kokonaisvaltaisesti teknologiaa hyödyntävän tietojenkäsittelyä 
hyödyntävän ongelmanratkaisun kautta erilaisissa oppimistilanteissa ja erilai-
silla työvälineillä. Karkeasti ohjelmoinnillisen ajattelun oppimäärä voidaan raa-
mittaa koulun näkökulmasta ”jokaisen työkaluksi, joidenkin ammattityökaluksi.” 

Ruohonjuuritason kannalta tutkimus tuotti konkreettisia keinoja oppilai-
den ohjelmoinnillisen ajattelun oppimisen tukemiseen ohjelmoinnin kautta. 
Näitä keinoja voidaan eritellä kolmen keskeisen pedagogisen strategian kautta: 
(1) oppimistavoitteiden asettaminen, (2) oppilaiden osaamisen selvittäminen ja 
(3) palautteenanto. 

(1) Oppimistavoitteiden asettaminen. Tutkimuksen tuloksina syntyneet 
monipuoliset kokoelmat ohjelmoinnillisen ajattelun perusprinsiipejä ja niiden 
kontekstualisoimia Scratch-ohjelmointisisältöjä ja -käytänteitä voidaan soveltaa 
oppimistavoitteina kouluopetuksessa erilaisten luovien ja monialaisten Scratch-
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ohjelmointitöiden teossa. Tulokset antoivat lisäksi perusteita ohjelmointisisältö-
jen järjestämiseen karkeina oppimisen etenemisen polkuina Scratchissa (kuviot 
13 ja 14). Tiivistäen: ohjelmoinnillisen ajattelun oppiminen voidaan aloittaa al-
keista laatimalla interaktivisia animaatioita ja tarinoita, joissa sovelletaan oletet-
tavasti perustavanlaatuisempia ohjelmoitavia ohjelmointiteknisiä malleja. Oppi-
misen myöhemmissä vaiheissa jatketaan toteuttamaan monimutkaisempia pelin-
omaisia ohjelmointitöitä, joissa ohjelmoinnilliset mallit ja ratkaisut ovat karkeasti 
ottaen edistyneempiä ja monimutkaisempia. Oppilaat voivat edetä polulla ja seu-
rata omaa osaamistaan esimerkiksi sen mukaan, kuinka hyvin he kokevat osaa-
vansa käyttää, muokata tai luoda ymmärrettävyydeltään eritasoisia malleja ja 
ratkaisuja. Oppilaiden on tärkeä myös oppia ymmärtämään tilannekohtaisesti, 
millaiset ohjelmointikäytänteet voivat viedä omaa ohjelmointityötä ja oppimista 
eteenpäin. 

(2) Oppilaiden osaamisen selvittäminen. Oppilaiden kulloistenkin osaamis-
tasojen selvittämisen tavoitteena on valjastaa saatu tieto oppimisen yksilölliseksi 
edistämiseksi. Oppilaiden ohjelmointitöihinsä ohjelmoimia malleja ja ratkaisuja 
sekä heidän toteuttamiaan ohjelmointikäytänteitä voidaan tulkita osaamisen 
osoituksina: millaista käsitteellistä ymmärrystä (esim. erilaisista algoritmeista) ja 
praktista osaamista (esim. debuggauksesta) he ovat hankkineet ja pystyvät so-
veltamaan käytännössä. Osaamisen taso voi näyttäytyä eri tavoin, kuten esimer-
kiksi oikein ohjelmoitujen ratkaisujen runsaan määrän tai toistuvan teknisesti on-
nistuneen käytön kautta. Yleisesti ottaen osaamisen kriteerinä voidaan pitää oh-
jelmoinnillisten ratkaisujen ja ohjelmointikäytänteiden hyötyjen ja käyttötapojen 
ymmärtämistä ja niiden soveltamista omiin ohjelmointitöihin koodilohkoina tai 
tehokkaina ohjelmoinnin tapoina tilannekohtaisesti tavoitteellisella tavalla. 
Osaamisen todentaminen voi edellyttää pitkäkestoista tai syvällistä arviointia, ja 
koko ohjelmoinnillisen ajattelun kokonaisuuden arviointi voikin olla haastava 
tehtävä. Sen sijaan tutkimuksen tulokset vihjasivat, että arviointi voi olla hedel-
mällisintä sellaisten ohjelmointiteknisten mallien ja ohjelmointikäytänteiden 
osalta, joita oppilaat eivät näytä omaksuvan kovin itseohjautuvasti tai helposti 
(ks. taulukko 4). 

(3) Palautteenanto. Oppilaille annettavan palautteen tarkoituksena on oh-
jata oppimista sen nykytilasta tavoiteltavaan tilaan eli oppimistavoitteita kohti. 
Vaikka ohjelmoinnin oppimiseen on konstruktionistisen oppimiskäsityksen mu-
kaan tarkoitus jättää tilaa itseohjautuvalle oppimiselle esimerkiksi tietokoneen 
antaman jatkuvan palautteen (mm. ohjelmointivirheiden eli bugien) ansiosta, op-
pilaat näyttävät tarvitsevan toisinaan tukea tietokoneen välittämän tiedon ym-
märtämisessä. Tärkeä tapa mahdollistaa jatkuvan palautteen saaminen voi olla 
rohkaista sosiaalista tiedonrakentelua niin pariohjelmoinnin, vertaispalautteen 
kuin esimerkiksi Internet-tiedonhakujen kautta. Näiden käytänteiden toteutta-
minen voi olla kuitenkin oppilaille omatoimisesti haasteellista, jolloin opettajien 
voi olla tarpeen tukea oppimista niin ennenaikaisesti (esim. havainnollistamalla 
oppimisen polkua) kuin spontaanisti esiin tulevissa tilanteissa. Spontaanin pa-
lautteen muodot väistämättä vaihtelevat, sillä ohjelmoinnillisessa ajattelussa ol-
laan tekemisissä luonteeltaan hyvinkin vaihtelevien oppisisältöjen kanssa, kun 
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taas myös oppilaiden osaamistasot ja avuntarpeet sekä sopivat yksilöllisen tuen 
muodot voivat vaihdella. Tukea voidaan tarvita karkeasti ottaen niin esiin tule-
vien ongelmien ratkaisemiseen (esim. debuggauksessa) kuin uusien oppimisen 
väylien avaamiseenkin (esim. tehokkaampien ohjelmointiteknisten mallien löy-
tämisessä). Epäsuorempi apu voi rohkaista itsenäisempään ongelmanratkaisuun, 
mutta joskus suorempikin apu voi olla tarpeen. Tutkimuksen tulokset konkreti-
soivatkin erilaisia spontaanin tuen muotoja (kuvio 16), joiden edellytyksenä voi 
kuitenkin olla opettajan osaaminen ohjelmoinnillisessa ajattelussa tai muunlaiset 
puitteet, kuten riittävä aika yhteiselle tiedonhaulle, kokeneempien oppilaiden 
vertaistuki tai automaattiset arviointityökalut. 

Tutkimus herätti lukuisia jatkotutkimusaiheita. Ensinnäkin tutkimuksessa 
sovellettujen arviointimenetelmien tieteellinen validointi vahvistaisi niiden ky-
kyä mitata oppilaiden osaamista. Lisäksi tutkimuksessa kehitettyjen, yllä kuvat-
tujen oppimisen tukemisen mallitoteuttamistapojen kokeileminen dynaamisissa 
luokkahuonetilanteissa toisi lisätietoa niiden toteuttamisen soveltuvuudesta 
käytännössä. Formatiivinen arviointi onkin monimuotoinen prosessi, jonka tii-
moilta on syytä tutkia myös esimerkiksi opettajan ja oppilaan vuorovaikutusta 
sekä sitä, kuinka oppilaat reagoivat saamaansa palautteeseen. Lisäksi ohjelmoin-
nillisen ajattelun perusprinsiipien järjestäminen väkevämmiksi oppimispoluiksi, 
niiden rinnastaminen erilaisiin tietämisen ja taitamisen tapoihin (esim. mate-
maattisiin taitoihin ja luovuuteen) sekä niiden oppiminen erilaisten monialaisten 
ohjelmointityömallipohjien kautta voisi edistää ohjelmoinnillisen ajattelun jal-
kautumista opetussuunnitelmaan. 

Myös tutkimuksessa esiin tulleet vajeet jättivät osaltaan tärkeitä tutkimus-
aiheita jatkoon. Tärkeää olisi ennen kaikkea tutkia koululaisten yhteistoiminnal-
lisuutta ohjelmoinnissa erityisesti yhteistoiminnallisen puheen, vertaisoppimi-
sen, opettajan tuen ja tiedonhaun näkökulmista. Yhtäältä tärkeää on syventää 
ymmärrystä siitä, kuinka oppilaat tarkalleen ottaen ajattelevat ja kuinka heidän 
ajattelunsa muuttuu ohjelmoinnillisen ajattelun oppimisen eri vaiheissa. 

Tämän nuoren ja vakiintumattoman aihepiirin tutkimus rohkaisi myös tut-
kimaan ohjelmoinnillisen ajattelun perusprinsiipien opettamista ja oppimista 
muissa ohjelmointiympäristöissä ja myös ei-ohjelmoinnillisissa tilanteissa. Tut-
kimus on tärkeää yhteisymmärryksen lisäämiseksi sekä esimerkiksi ohjelmoin-
nillisen ajattelun oppimisen siirtovaikutuksen tutkimuksessa. Kaikkiaan tutki-
mus rohkaisee jatkotutkimuksia jalostamaan kokonaisvaltaisia arviointimalleja, 
joissa huomioidaan ohjelmoinnillisen ongelmanratkaisuosaamisen lisäksi myös 
oppilaiden ”ohjelmoinnillisen medialukutaidon” ulottuvuus. Aihepiiriä koske-
vassa tutkimuksessa on kaikkiaan ensisijaisen tärkeää pitää yllä ymmärrystä siitä, 
millaiset seikat oppimisessa, opettajuudessa, koulun johtajuudessa ja koulun yh-
teistyöverkostoissa edistävät ja estävät tämän uuden mutta yhteiskunnallisesti 
kasvavan tärkeän aihepiirin jalkautumista koulun arkeen. 
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Abstract

Computer programming is being introduced in educational curricula, even at

the primary school level. One goal of this implementation is to teach compu-

tational thinking (CT), which is potentially applicable in various computational

problem‐solving situations. However, the educational objective of CT in primary

schools is somewhat unclear: curricula in various countries define learning

objectives for topics, such as computer science, computing, programming or

digital literacy but not for CT specifically. Additionally, there has been confusion

in concretely and comprehensively defining and operationalising what to teach,

learn and assess about CT in primary education even with popular programming

akin to Scratch. In response to the growing demands of CT, by conducting a

literature review on studies utilising Scratch in K–9, this study investigates what
kind of CT has been assessed in Scratch at the primary education level. As a

theoretical background for the review, we define a tangible educational objective

for introducing CT comprehensively in primary education and concretise the

fundamental skills and areas of understanding involved in CT as its “core
educational principles”. The results of the review summarise Scratch program-

ming contents that students can manipulate and activities in which they can

engage that foster CT. Moreover, methods for formatively assessing CT via

students' Scratch projects and programming processes are explored. The results

underpin that the summarised “CT‐fostering” programming contents and ac-

tivities in Scratch are vast and multidimensional. The next steps for this study

are to refine pedagogically meaningful ways to assess CT in students' Scratch

projects and programming processes.

KEYWORD S

assessment, computational thinking, primary school, programming, Scratch

1 | INTRODUCTION

The ubiquity of computing and computer science (CS)
has expanded rapidly in modern society [1]. Meanwhile,

countries such as Finland, England and Estonia have
incorporated computer programming as a compulsory
topic in primary education (K–9) [27,39]. Programming
with Scratch, a graphical, block‐based programming

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2020 The Authors. Computer Applications in Engineering Education published by Wiley Periodicals LLC



language, is especially popular in this age group, thus
providing a potentially impactful context for educational
research. However, several scholars regard programming
education not as an end in itself but essential—though
nonexclusive—for fostering computational thinking (CT)
(i.e., supporting the cognitive tasks involved in it) [23].
CT is an umbrella term that embodies an intellectual
foundation necessary to understand the computational
world and employ multidimensional problem‐solving
skills within and across disciplines [56,61].

Despite its popularity, there has been some short-
comings and uncertainty surrounding CT in terms of, for
instance, teacher training needs concerning the aims and
intents of CT education. In fact, curricula in different
countries pose various educational objectives for such
topics as CS, computing, programming or digital literacy
but not for CT specifically [27]. Relatedly, there have
been shortcomings in concretising what to teach, learn
and assess regarding CT in schools, although previous
literature portrays particular concepts and practices (e.g.,
“Algorithms”, “Problem decomposition”) that can shape
students' skills and understanding in CT and contribute
to its educational objective [8,34]. However, CT poten-
tially learnt while programming with tools as Scratch has
been typically perceived as, for instance, the code con-
structs that students use in their projects, which can be
asserted to represent mere programming competence
instead of the predictably higher level CT. When using
such tools as Scratch, various programming contents that
students manipulate and programming activities in
which they engage can foster the skills and areas of un-
derstanding involved with CT in different ways. Previous
literature has not systematically and thoroughly in-
vestigated how the practical programmatic affordances in
Scratch can represent and foster the manifold skills and
areas of understanding associated with CT as described in
its core concepts and practices.

The aims of this study are to contextualise CT com-
prehensively in the Scratch programming environment
for teaching and learning in primary school classrooms
and explore the assessment of CT through Scratch in this
context. In practice, a literature review for studies in-
volving assessments in Scratch in K–9 is conducted. As a
theoretical background, we define a tangible educational
objective for CT in the context of programming in pri-
mary education based on previous literature. Moreover,
as a springboard for investigating the skills and areas of
understanding included in CT in Scratch, we concretise
CT's core educational principles (CEPs)—fundamental
computational facts, conceptual ideas, and techniques
that students can learn—from CT concepts and practices
presented in earlier research. The goals of the review are
to gather Scratch programming contents and activities,

use the CEPs as a lens to view them specifically as
“CT‐fostering” contents and activities, and explore ways
in which they could be formatively assessed in classroom
settings.

2 | COMPUTATIONAL THINKING
THROUGH PROGRAMMING IN
PRIMARY EDUCATION

2.1 | An educational objective

Wing [61,62] originally defined CT as “the thought
processes involved in formulating problems and their
solutions so that the solutions are represented in a form
that can effectively be carried out by an information‐
processing agent”. Michaelson [43] underlined that CT is
a way of understanding problems whereas CS provides
concepts for CT in search of a praxis. Aho [1] revisited
Wing's original definition and emphasised that solutions
pertinent to CT are namely algorithmic. However, CT
still has no solid core definition [24]. It has been viewed
as a competence [58], a thought process [1,62], a set of
skills [61] and a problem‐solving process [54]. However,
the consensus is that it draws on disciplinary concepts
and models central to CS and utilises the power of
computing [56].

The purpose of primary education is to learn about
the world and to prepare for subsequent studies and
working life. Although CT's transferability across
problem‐solving contexts has been questioned [14], Wing
[61] posited that CT as a collection of transversal skills
and knowledge is necessary for everyone. Lonka et al [33]
underlined that students, regardless of their future pro-
fession, should learn to identify the central principles and
practices of programming and understand how they in-
fluence everyday life.

To include CT's such essential characteristics and
purposes [33,53,56,61] tangibly in primary education, we
define the following educational objective for it: students
learn to understand what computing can/cannot do,
understand how computers do the things that they do
and apply computational tools, models and ideas to solve
problems in various contexts. According to recent
reviews of curricula in various countries, such educa-
tional ideas are relevant in schools via CS education,
programming or embedded within different subjects, but
not for CT specifically [27,39]. By exploring computing,
students should also gain certain attitudes and perspec-
tives, such as understanding computational ethics [33].
However, this study limits its scope by focusing on CT's
key concepts and practices, which have been often
highlighted in previous literature to characterise
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fundamental areas of understanding in computing and
skills in computational problem‐solving.

Definitions for the key concepts and practices in CT
have varied throughout previous literature. For instance,
in the context of Scratch, Brennan and Resnick [9] pre-
sented a concrete CT framework that comprised concepts
(e.g., loop, variable), practices (e.g., debugging, iteration)
and perspectives (e.g., expressing, questioning).
Although meaningful for CT, such context‐specific
frameworks may be unsuitable for framing CT across
programming contexts and promoting deeper learning.
[24] Therefore, based on prior research framing CT
concepts and practices in a broader fashion, we con-
cretise the fundamental skills and areas of understanding
involved in CT as its core educational principles (CEPs) as
a background.

2.2 | Core educational principles

Several studies have framed CT's key concepts and
practices more generally in programming, computing or
CS in various ways. CT is an elusive term that continues
finding clear borders, and it involves areas that could be
interpreted to be more in its “central” or “peripheral
zones”. Concise views of CT can be rather programming‐
centric and omit potentially essential areas in the
general‐level CT. In turn, generous views may overlap
with other competence areas, such as math. By framing
our view of CT based on several previous works, we strive
to adopt a relatively generous rather than a concise view.
The motivation is that the more generous views have
been adopted less often, and they can expand our
understanding of the potentially meaningful borders of
CT assessment through Scratch in K–9 and be feasibly
reduced to the extent, as needed.

Settle and Perkovic [51] developed a conceptual fra-
mework to implement CT across the curriculum in un-
dergraduate education. In 2009, the International Society
for Technology in Education and the Computer Science
Teachers Association [3] devised an operational defini-
tion for CT concepts and capabilities to promote their
incorporation in K–12 classrooms. In the aftermath of
computing having been introduced in British schools in
2014, Czismadia et al [13] developed a framework for
guiding teachers in teaching CT‐related concepts,
approaches and techniques in computing classrooms.
Relatedly, Angeli et al [2] designed a K–6 CT curriculum
comprising CT skills and implications for teacher
knowledge. To demystify CT's ill‐structured nature, Shute
et al [53] reviewed CT literature and showed examples of
its definitions, interventions and assessments in K–12.
Similarly, Hsu et al [28] reviewed prior literature and

discussed how CT could be taught and learned in K–12.
To further illuminate CT's application in different con-
texts, Grover and Pea [24] elaborated what concepts and
practices CT encompasses.

To concretise the skills and areas of understanding
associated with CT concepts and practices in these works
as atomic elements to enable their systematic con-
textualisation in Scratch, the definitions of the concepts
and practices can be summarised to include CT's CEPs
for teaching and learning at the primary school level.

• Abstraction. A range of digital devices can be compu-
ters that run programmes [13,24]. Programming
languages, algorithms and data are abstractions of real‐
world phenomena [13,24,28]. Solving complex
problems becomes easier by reducing unnecessary de-
tail and by focusing on parts that matter (via, e.g., using
data structures and an appropriate notation)
[2,13,24,28].

• Algorithms. Programmers solve problems with sets of
instructions starting from an initial state, going
through a sequence of intermediate states and reaching
a final goal state [2,3,13,24,28,51,53]. Sequencing, se-
lection and repetition are the basic building blocks of
algorithms [2,3,13,24]. Recursive solutions solve sim-
pler versions of the same problem [3,13,24].

• Automation. Automated computation can solve pro-
blems [13,24,28]. Programmers design programmes
with computer code for computers to execute
[13,24,51]. Computers can use a range of input and
output devices [13].

• Collaboration. Programmers divide tasks and alternate
in roles [24]. Programmers build on one another's
projects [2,24]. Programmers distribute solutions to
others [24].

• Coordination and Parallelism. Computers can execute
divided sets of instructions in parallel [3,13,28,53]. The
timing of computation at participating processes re-
quires control [51].

• Creativity. Programmers employ alternate approaches
to solving problems and “out‐of‐the‐box thinking” [24].
Creating projects is a form of creative expression [24].

• Data. Programmers find and collect data from various
sources and multilayered datasets that are related to
each other [3,28,53]. Programmes work with various
data types (e.g., text, numbers) [3,13,28]. Programmes
store, move and perform calculations on data
[2,3,13,51]. Programmes store data in various data
structures (e.g., variable, table, list, graph) [2,3,13].

• Efficiency. Algorithms have no redundant or un-
necessary steps [13,53]. Designed solutions are easy
for people to use [13]. Designed solutions work ef-
fectively and promote positive user experience [13,24].
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Designed solutions function correctly under all
circumstances [13,24].

• Iteration. Programmers refine solutions through de-
sign, testing and debugging until the ideal result is
achieved [24,53].

• Logic. Programmers analyse situations and check facts
to make and verify predictions, make decisions and
reach conclusions [2,13,24]. Formulated instructions
comprise conditional logic, Boolean logic, arithmetic
operations and other logical frameworks [2,13,24,28].

• Modelling and design. Programmers design human‐
readable representations and models of an algorithmic
design, which could later be programmed [13,24,28,53].
Programmers organise the structure, appearance and
functionality of a system well [13,51]. Visual models,
simulations and animations represent how a system
operates [2,3,13,28].

• Patterns and Generalisation. Data and information
structures comprise repeating patterns based on simi-
larities and differences in them [2,13,24,28,53].
Repeating patterns form general‐level solutions that
apply to a class of similar problems [3,13,24,28,53].
General‐level ideas and solutions solve problems in
new situations and domains [13,24,28,53].

• Problem decomposition. Large problems and artefacts
decompose into smaller and simpler parts that can be
solved separately [2,13,24,28,53]. Large systems are
composed of smaller meaningful parts [2,24]. Pro-
grammes comprise objects, the main programme and
functions [3].

• Testing and debugging. Programmers evaluate and
verify solutions for appropriateness according to their
desired result, goal or set criteria [2,13,24,28]. Pro-
grammers evaluate solutions for functional accuracy
and detect flaws using methods involving observation
of artefacts in use and comparing similar artefacts
[2,13,24,28,53]. Programmers trace code, design and
run test plans and test cases and apply heuristics to
isolate errors and fix them [2,13,24,28,53]. Pro-
grammers make fair and honest judgements in com-
plex situations that are not free of values and
constraints [13].

In practice, various programming tasks can foster
skills and understanding in the ways of thinking and
doing involved in CT as described in the CEPs. In
Scratch, students manipulate programmatic contents,
that is, the objects and logic structures that establish
computational processes in their projects, and engage in
certain programming activities while designing said
contents [9]. Hence, it is meaningful to examine how
various Scratch programming contents and activities
contextualise the CEPs in practice.

2.3 | Assessment in scratch

Scratch is a free web‐based programming tool that al-
lows the creation of media projects, such as games, in-
teractive stories and animations, connected to young
peoples’ personal interests and experiences. Projects are
designed by combining graphical blocks to produce be-
haviours for digital characters (“sprites”). Block‐based
languages typically have a “low floor”: students cannot
make syntactic mistakes because only co‐applicable
blocks combine into algorithmic sets of instructions
(“scripts”) [9,38].

Despite the affordances of graphical tools, pro-
gramming is cognitively complex, and rich conceptual
mental models may not emerge spontaneously [4,40].
An “in time” pedagogy in which new knowledge is
presented whenever necessary through various project‐
based activities is a popular approach; however, it
requires the careful formulation of authentic problems
and selection of projects (i.e., ways to introduce CT
appropriately via programming contents and activities)
[20,34]. Moreover, learning can be supported with a
formative assessment that determines “where the lear-
ner is going”, “where the learner is right now” and “how
to get there”. In practice, instructors should clarify the
intentions and criteria for success, elicit evidence of
students’ understanding and provide appropriate feed-
back that moves learning forward [6]. Programming is a
potentially fruitful platform for enabling these processes
because it demonstrates students’ CT and provides a
potential accommodation for timely and targeted
learning support [23,34].

Several previous empirical studies have shown in part
how specific programming contents and activities in
Scratch could be assessed. However, the contents and
activities have been scarcely contextualised in CT. To
examine how CT could be thoroughly introduced and
respectively assessed in Scratch in K–9 (primary educa-
tion), this study reviews prior literature focused on as-
sessing Scratch contents and activities in K–9 and aligns
them to CT concepts and practices according to the
summarised CEPs (see Section 2.2). The purpose is to
derive elementary CT‐fostering learning contents and
activities and to explore appropriate methods for their
formative assessment in primary schools. Hence, the re-
search questions are:

What Scratch programming contents and activities
have been assessed in K–9?

How have Scratch programming contents and activ-
ities been assessed?

How do different Scratch programming contents and
activities contextualise CT concepts and practices via
the CEPs?

FAGERLUND ET AL. | 15



3 | METHODS

3.1 | Search procedures

To begin answering the research questions, literature sear-
ches were performed for peer‐reviewed studies focusing on
the assessment of Scratch programming contents and ac-
tivities in K–9 (Figure 1). First, searches were conducted
with the terms “computational thinking” and “Scratch” in
the ScienceDirect, ERIC, SCOPUS and ACM databases.
Publications were sought as far back as 2007 when Scratch
was released [9]. The searches resulted in 432 studies (98 in
ScienceDirect, 27 in ERIC, 217 in SCOPUS and 90 in ACM)
on November 27th, 2019. Duplicate and inaccessible pub-
lications were excluded from this collection.

The abstracts of the remaining studies were screened,
and both empirical and nonempirical studies were in-
cluded if they addressed assessment in Scratch (or highly
similar programming languages) in K–9. Publications
conceptualising generic assessment frameworks were
included if Scratch and primary education were men-
tioned as potential application domains. Studies set in
other or unclear educational levels were excluded to
maintain a focus on primary schools. Studies written in
other languages than English were excluded.

The remaining 50 studies was not presumed to cover
all potentially relevant work. Further searches were
conducted similarly with the terms “computational
thinking” and “Scratch” on Google Scholar, which pro-
vided a running list of publications in decreasing order of

relevance. These publications were accessed individually
until the search results concluded to no longer provide
relevant studies. Simultaneously, the reference lists of all
included studies were examined for discovering other
potentially relevant publications.

Altogether 81 obtained studies were then screened for
the assessment instruments that they employed. Studies
analysing students’ Scratch project contents or their
programming activities in Scratch were included. Studies
analysing the learning of other subject domain contents
or addressing other theoretical areas such as motivation,
attitudes and misconceptions were excluded. Assessment
instruments that were defined in insufficient detail or
were adapted in an unaltered form from prior studies
were excluded since they provided no additional
information for the RQs. For example, we found that
several articles employed the assessment instrument
called “Dr. Scratch” (see results). To attain information
regarding what Scratch programming contents and ac-
tivities have been assessed in K–9 and how said contents
and activities have been assessed altogether, we only in-
cluded the paper that originally introduced said contents
and activities, granted that the work was attainable.
Finally, 30 publications were selected for review.

3.2 | Analysis of studies

The Scratch programming contents and activities assessed
in the studies were described based on their type (RQ1)

FIGURE 1 Literature search protocol
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and the employed assessment method and taxonomy or
rubric (RQ2). Simultaneously, by employing content
analysis, the contents and activities were aligned to CT
concepts and practices according to the CT's CEPs (see
Section 2.2) that they contextualised (RQ3) (indicated in
results by CT concepts and practices highlighted in par-
entheses). The analysis was carried out by the first author.

Due to the complexity of CT, however, there is an
immense level of detail to which the contextualisation in
RQ3 could potentially reach. For instance, reducing un-
necessary detail (Abstraction) can involve various
broader programming tasks and detailed subtasks.
However, Voogt et al [58] stated that it is important to
discover “what matters” for CT. Therefore, as our first
step, we settled on merely describing what the assessed
contents and activities that contextualised CT were in-
stead of attempting to further analyse how they could
foster CT in different ways.

The analysis resulted in rubrics to Scratch contents
and activities that foster skills and understanding in CT
concepts and practices. The discovered assessment
methods were examined according to how they poten-
tially enabled formative assessment processes as pre-
sented by Black and Wiliam [6].

Potential limitations in reviews especially concern the
definition of the RQs, search procedure, selection of articles,
bias in the source material and its quality and the ways of
presenting the results [26]. Therefore, we wish to make the
following remarks concerning the repeatability, objectivity
and transparency herein. By describing the procedure
comprehensively and in detail, we aimed to reveal any bias
(e.g., concerning the use of appropriate search strings in
representative databases) [12,26]. Additionally, we strived to
describe the inferences made and the logic behind them
clearly and give equal weight to all reviewed work, though
spotlighting evidence that stands out in the process and
potentially suggests subjectivity in the source material [26].
Furthermore, we aimed to reinforce consistency in the
analysis by iteratively evaluating the contents of the articles,
ensuring that we interpreted them the same way at different
times [35]. By externally checking the research process and
debriefing the results among the authors, we aimed to
verify further that the meanings and interpretations re-
sonated among different researchers [12].

4 | FINDINGS

4.1 | Scratch contents and activities and
their assessment

Prior studies utilising Scratch in K–9 involved the as-
sessment of various programming contents and activities

with diverse assessment methods and taxonomies or
rubrics (RQ1, RQ2) (Table 1). Four distinct programming
substance categories were found and were named as
“code constructs”, “coding patterns”, “programming ac-
tivities” and “other programming contents”. Altogether,
20 studies assessed code constructs as the logic structures
(e.g., sequence of blocks, “repeat” [44]) that programmers
use to establish algorithmic sets of instructions in Scratch
projects. Ten studies assessed coding patterns, combina-
tions of code constructs that act as larger programmatic
units for specific semantical purposes (e.g., “Animate
Motion” [50]). Eleven studies examined students’ pro-
gramming activities (e.g., “script analysis” [30]), whereas
six studies examined other programming contents (e.g.,
“project genres” [19]). Only six studies considered the
direct assessment of CT, and the remaining studies as-
sessed the contents or activities with or without pre-
senting CT as a motivational theme.

Structured with the aforementioned four substance
categories, the following subsections describe the nature
of the discovered contents and activities and their as-
sessment methods more completely and elaborate their
relationships with the CEPs (RQ3).

4.2 | CT's CEPs in Scratch

4.2.1 | Code constructs

Three studies assessing code constructs examined CT
specifically. “Dr. Scratch”, a web‐based automatic ana-
lysis tool, assessed the use of blocks in Scratch projects
(Table 2) [44]. Relatedly, Wangenheim et al [59] used
“CodeMaster”, a similar yet more extensive rubric for
projects made in the Snap! programming environment.
In terms of CEPs contextualised in Scratch by these tools,
for instance, “if” blocks and logic operations con-
textualise conditional logic and Boolean logic (Logic),
and the rubrics to “flow control” contextualise the basic
building blocks of algorithms (Algorithms). Moreover,
the rubrics to “data representation” contextualise work-
ing with different data types, performing operations on
data and using various data structures (Data) in addition
to abstracting real‐world phenomena as data (Abstrac-
tion). Moreover, the “ANTLR” tool presented by Chang
et al [11] expanded the rubrics of Dr. Scratch to include
recursion (Algorithms).

Two other automated tools, “Ninja Code Village”
(NCV) presented by Ota et al [46] and “Scrape” by used
by Ke [30], examine similar code constructs to
Dr. Scratch without aligning them to CT. However, si-
milar to Dr. Scratch's rubrics in “Abstraction and Pro-
blem decomposition”, NCV's rubrics for the “procedure”
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TABLE 1 A summary of studies involving the assessment of Scratch programming contents and activities in K–9

# Authors

Assessment in Scratch

Contents/activities Method Taxonomy/rubric

1 Benton et al [5] Coding patterns (CT) Self‐evaluation Difficulty rating

2 Blau et al [7] Other programming contents Artefact analysis Presence/frequency

3 Brennan and Resnick [9] Code constructs + programming
activities (CT)

Artefact analysis Presence/frequency

Performance evaluation Skill description

Interview

4 Burke [10] Code constructs Artefact analysis Presence/frequency

Programming activities Observation Description, data‐driven
Interview

5 Chang et al [11] Code constructs (CT) Artefact analysis Presence/frequency

6 Ericson and McKlin [15] Code constructs Test Correct answer

Coding patterns Correct drawing

7 Franklin et al [16] Coding patterns Observation Correctness level

Code constructs Test Correct answer

Programming activities Observation Behaviour type

8 Franklin et al [17] Code constructs Artefact analysis Content completion
(percentage)Coding patterns

9 Funke et al [19] Coding patterns Artefact analysis Progression level

Code constructs Presence/frequency

Other programming contents

10 Funke and Geldreich [18] Code constructs Log data analysis Description

11 Grover and Basu [21] Code constructs Test Correct response

Coding patterns Think‐aloud

12 Gutierrez et al [25] Other programming contents Artefact analysis Presence/frequency

13 Israel et al [29] Programming activities Observation + discourse analysis Behaviour type

14 Ke [30] Code constructs Artefact analysis Presence/frequency

Programming activities Observation Behaviour type

15 Lewis [31] Code constructs Test Correct answer

Self‐evaluation Likert

16 Lewis and Shah [32] Programming activities Discourse analysis Behaviour type

Hypotheses, data‐driven

17 Mako Hill et al [36] Programming activities Artefact analysis Presence/frequency

Other programming contents

18 Maloney et al [37] Code constructs Artefact analysis Presence/frequency

19 Meerbaum‐Salant et al [41] Programming activities Observation Behaviour type

20 Meerbaum‐Salant et al [42] Code constructs Test Correct response

Coding patterns

21 Moreno‐León et al [44] Code constructs (CT) Artefact analysis Presence

22 Ota et al [46] Coding patterns Artefact analysis Presence

Code constructs

23 Sáez‐López et al [55] Code constructs Test N/A

Programming activities + other
programming contents

Self‐evaluation Performance level

Observation

(Continues)
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code construct contextualise different kinds of functions
and procedures that act as separate instruction sets to
solve specific problems (Algorithms). Moreover, Scrape
and Dr. Scratch examined external device usage via
various input/output devices (e.g., keyboard, mouse)
(Automation).

Regarding other assessment methods, Lewis [31]
asked students to describe the output of example scripts
comprising certain code constructs and evaluate how
hard it was to learn them. Meerbaum‐Salant et al [42]
conducted summative tests with a revised Bloom/
SOLO taxonomy on students’ understanding in parallel

execution within and across different sprites, which
was underlined to often require the synchronisation
of different scripts. Relatedly, several other studies
[10,19,37,60] manually examined students’ projects for
the “synchronisation” code construct, which was juxta-
posed with the “coordination” or “communication” code
constructs. The implementation of synchronisation, co-
ordination and communication contextualises controlling
the timing of computation in participating processes
(Coordination and Parallelism). In Scratch, coordination
and synchronisation of parallel processes can occur with
timing (e.g., the “wait” block), state‐sync (e.g., the “wait

TABLE 1 (Continued)

# Authors

Assessment in Scratch

Contents/activities Method Taxonomy/rubric

24 Seiter [49] Coding patterns Artefact analysis Presence

25 Seiter and Foreman [50] Code constructs + coding patterns (CT) Artefact analysis Presence

26 Shah et al [52] Programming activities Discourse analysis Behaviour type

27 Tsan et al [57] Programming activities Discourse analysis Behaviour type

Observation

28 Wangenheim et al [59] Code constructs (CT) Artefact analysis Presence

29 Wilson et al [60] Code constructs Artefact analysis Presence

Other programming contents

30 Zur‐Bargury et al [63] Code constructs Test Correct response

TABLE 2 Evidence for CT as examined by Dr. Scratch [26]

Competence level

CT concept Basic Developing Proficient

Abstraction and Problem
decomposition

More than one script and
more than one sprite

Make‐a‐blocks Cloning

Parallelism Two scripts start on
“green flag”

Two scripts start on when key is
pressed/when sprite is clicked on
the same sprite

Two scripts start on “when I receive
message”, “create clone”, “when %s is
>%s” or “when backdrop change to”
blocks

Logical thinking “If” block “If‐else” block Logic operations

Synchronisation “Wait” block “Broadcast”, “when I receive
message”, “stop all”, “stop
program” or “stop programs
sprite” blocks

“Wait until”, “when backdrop change to”
or “broadcast and wait” blocks

Flow control Sequence of blocks “Repeat” or “forever” blocks “Repeat until” block

User interactivity “Green flag” block “Key pressed”, “sprite clicked”, “ask
and wait” or mouse blocks

“When %s is >%s”, video or audio blocks

Data representation Modifiers of sprite
properties

Operations on variables Operations on lists
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until” block) or event‐sync (e.g., the “when I receive”
block) and by blocking or stopping further script execu-
tion [44,50]. Moreover, Franklin et al [16,17] manually
assessed the use of the “initialisation” code construct,
that is, setting initial state values (Algorithms) for sprite
properties such as location or size.

4.2.2 | Coding patterns

Seiter and Foreman [50] developed the “Progression for
Early Computational Thinking” (PECT) model to
manually examine CT through project‐wide design pat-
tern variables: “Animate Looks”, “Animate Motion”,
“Conversate”, “Collide”, “Maintain Score” and “User
Interaction”. The design pattern variables are assessed
with rubrics to specific code construct combinations,
whereas students’ understanding in CT is indicated by
the presence of specific level variables in a Scratch pro-
ject. In addition to the relationships between CT and
programming contents disclosed directly in PECT (see
Seiter and Foreman [50] for detailed rubrics), in Scratch,
coding patterns and code constructs themselves
contextualise repeating patterns and generalisable com-
putational solutions (Patterns and Generalisation). The
implementation of coding patterns and code constructs
also contextualises breaking complex projects into smal-
ler, manageable parts that establish the larger system.
Coding patterns could also be considered as the functions
of different objects (i.e., sprites) (both Problem decom-
position). Moreover, each coding pattern can be inter-
preted as a separate solution to a problem (Algorithms),
which, in turn, is an abstraction of a real‐world phe-
nomenon (Abstraction).

Benton et al [5] asked students to rate the difficulty of
different kinds of algorithms, which resembled PECT's
“Animate Motion” coding pattern. Franklin et al [17]

examined the “Breaking down actions” coding pattern,
which resembled a combination of PECT's “Collision”
and “Animate Motion”. However, unlike in PECT, this
coding pattern required parametric precision (e.g., an
exact number in a “move” block), which can be essential
in ensuring that designed solutions achieve the desired
results (Efficiency). Similarly, test questions employed by
Meerbaum‐Salant et al [42] and Grover and Basu [21]
concerning coding patterns, which resembled PECT's
“Animate Motion” and “Maintain Score”, necessitated
distinguishing between separate overlapping coding
patterns (see example in Figure 2). These solutions
spotlighted the option of examining individually in-
stantiated rather than project‐wide coding patterns in
students’ projects.

Ericson and McKlin [15] asked students to draw the
outputs of scripts comprising a coding pattern, which
resembled PECT's “Animate Motion” with the “pen”
code construct. In Scratch, pen is used to draw visual
lines as sprites move and, therefore, visualise algorithms
(Modelling and design), although several other pro-
grammed features (e.g., conversations, animations) also
manifest visually or vocally in Scratch. The authors also
introduced a coding pattern for reading keyboard inputs
and storing them in the “answer” variable (Automation)
in addition to using conditional structures and Boolean
expressions to evaluate the value stored in the variable
(Logic).

Franklin et al [16] adopted a mixed methods ap-
proach with the “Hairball” plugin and a qualitative
coding scheme to additionally examine the “Complex
Animation” coding pattern, which resembled PECT's
“Animate Motion” and “Animate Looks” with a “loop”
code construct. Similarly, Seiter [49] used a three‐level
SOLO taxonomy to assess a “Synchronising costume with
motion” coding pattern, which resembled the parallel
execution of the same two coding patterns. Additionally,

FIGURE 2 Questions that necessitate distinguishing two independent motion parameters: facing direction and location
(supplementary materials by Meerbaum‐Salant et al 2013)
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the “Multi‐sprite conversation” coding pattern en-
compassed a synchronised dialogue‐animation. The syn-
chronisation of coding patterns themselves also
contextualises controlling the timing of participating
processes (Coordination and Parallelism).

4.2.3 | Other programming contents

Blau et al [7] and Mako Hill et al [36] examined the
amount of scripts and sprites in students’ projects.
Similarly with Dr. Scratch, Moreno‐León et al [44]
examined “more than one script and one sprite” aligned
to Abstraction, which encompasses solving complex
problems, and Problem decomposition, which en-
compasses decomposing a complex system into man-
ageable parts. Relatedly, Gutierrez et al [25] examined
“documentation” (i.e., code comments) in projects
whereas Wilson et al [60] and Funke et al [19] examined
the “custom naming of sprites”, “meaningful naming of
variables” and “no extraneous blocks”, all of which can
make complex artefacts more understandable and man-
ageable (Abstraction) and organise their structure and
appearance (Modelling and design). Additionally, these
studies examined the “functionality of projects”, which
contributes to ensuring that a project is correct with re-
spect to the desired goals (Efficiency). A “clearly defined
goal” and “instructions” as also examined by these stu-
dies are key features in projects that are easy to use and
trigger appropriate user experiences (Efficiency). Then
again, “customised sprites”, “customised stages”, “ori-
ginality of a project” and the “ability to communicate and
express through artefacts”, as examined by Sáez‐López
et al [55], can promote creative expression (Creativity).

Lastly, Blau et al [7] examined how many projects
students had created and remixed while Funke et al [19]
categorised projects’ genres. Gutierrez et al [25] examined
the extent to which students had made only superficial
changes with respect to sample projects. Designing and
remixing a number of projects contributes to creating
different kinds of computerised solutions that each have
a specific purpose (Automation).

4.2.4 | Programming activities

None of the 11 studies that examined programming ac-
tivities focused directly on CT apart from Brennan and
Resnick [9], who described four practices – “being in-
cremental and iterative”, “testing and debugging”, “re-
using and remixing” and “abstracting and modularising”
– which largely aligned with the broader CT concepts and
practices as examined in the current work. They also

proposed two methods for examining said practices: in-
terviews and design scenarios. Similar to Brennan and
Resnick's “reusing and remixing”, Blau et al [7] examined
students’ social participation (e.g., friends, comments and
favourited projects), whereas Mako Hill et al [36]
examined students’ credit‐giving habits. These activities
relate to building on other programmers’ work and dis-
tributing one's own work (Collaboration).

Focusing on project design phases, Burke [10]
categorised students’ programming processes into
“brainstorming and outlining” and “drafting, feedback
and revising”. Ke [30] categorised students’ game devel-
opment acts more elaborately (e.g., “Off‐task”, “Script
analysis”, “Test play”). Funke and Geldreich [18] con-
ceptualised a visualisation technique to describe script
design processes. Meerbaum‐Salant et al [41] identified
two programming habits: bottom‐up programming (bri-
colage) and extremely fine‐grained programming. These
activities demonstrate different ways to plan (Modelling
and design) and refine solutions (Iteration) and evaluate
them, detect flaws, isolate errors and fix bugs (Testing
and debugging).

Focusing on human‐to‐human interactions, Franklin
et al [16] recorded the help levels students required when
programming. Israel et al [29] developed the C‐COI in-
strument for coding students’ behaviours as steps in
collaborative problem‐solving processes. Shah et al [52]
and Lewis and Shah [32] examined students’ equity,
quality of collaboration, task focus and speech during
programming. Sáez‐López et al [55] questioned and
observed students’ sharing and playing with their pro-
grammes, active participation and clear communication.
Tsan et al [57] analysed students’ collaborative dialogue.
Such manifold aspects of interaction affect task division
and role alternating (Collaboration).

5 | DISCUSSION

5.1 | Typifying elementary CT in
Scratch

By conducting a literature review, we explored the
assessments of programming contents and activities in
Scratch and aligned them to CT concepts and practices
according to CT's CEPs (in Section 2.2), which were
derived from previous contemporary literature as a
background to enable the systematic contextualisation of
CT in Scratch. The view of CT adopted in this study is
relatively broad, and it can encompass areas that can be
positioned in a more “central” or “peripheral zones” of
CT and get included or excluded as needed. In the fol-
lowing sections, we provide summaries that include the
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reviewed CT‐fostering Scratch programming contents
and activities. As encouraged by prior studies [23,34], we
also discuss the formative assessment of the contents and
activities in students’ authentic programming projects
and processes rather than, for instance, ranking or cer-
tifying students’ competence or regarding them with tests
to highlight potentially meaningful ways to support
learning.

The summaries should not be regarded as complete
since CT is a developing body of broad and complex
ideas. Hence, we also discuss which CEPs were not
straightforwardly contextualised in Scratch. Additionally,
as CT is a collection of holistic skills and understanding
in computational problem‐solving [56,61], the contents
and activities could be interpreted to contextualise dif-
ferent areas in CT in various ways. Therefore, we recap
and capsulise the results mainly as Scratch contents and
activities contextualising the CT concepts and practices
more generally rather than the single CEPs. Moreover,
the contents and activities should not be viewed as iso-
lated gimmicks but as components that conjoin mean-
ingfully while, for instance, designing games, creating
storytelling projects or animating while processing
learning contents in other curricular areas [20,45].
Scratch can promote self‐expression, interest and fun in
learning programming in settings that are built on such
pedagogical underpinnings as constructionism and co‐
creation [9,47]. Meaningful learning thereby includes
authentic problems and meaningful selections of projects.
In terms of CT in such settings, it is important to focus
especially on how students are thinking as they are pro-
gramming [34].

5.1.1 | Contents in Scratch projects

Students’ CT can be evaluated based on the code con-
structs (e.g., “loop”, “variable”), coding patterns (e.g.,
“change location”) and other programming contents
(e.g., sprite naming) (Table 3) they have implemented in
different kinds of Scratch projects. The PECT model
presented by Seiter and Foreman [50] proposed a com-
paratively comprehensive rubric for coding patterns and
code constructs. However, parametric precision high-
lighted the importance of examining individually in-
stantiated patterns rather than project‐wide coding
patterns: for instance, each property (e.g., size, position)
of each sprite has an independent state, which necessi-
tates paying attention to, for instance, initialising them
separately (e.g., “change location for Sprite1”) [16,17].
The presence, frequency, correct implementation or
completion rate of particular contents as evaluated in
several prior studies can demonstrate students’ CT.

Although particular studies [5,19,42] additionally pro-
posed progression levels or difficulty ratings for particular
contents, fully congruent and thus conclusive learning
progressions for CT in Scratch were not explicit in the
reviewed studies. Therefore, applying a learning tax-
onomy (e.g., Bloom/SOLO [42]) systematically to the
contents gathered herein would require further
investigation.

5.1.2 | Activities in Scratch

CT‐fostering Scratch programming activities may leave
traceable evidence in projects as static contents but may
be more thoroughly identified in students’ programming
processes. For example, Standl [54] framed CT as a
problem‐solving process that includes phases, such as
describing the problem, abstracting the problem, de-
composing the problem, designing the algorithm and
testing the solution. The CT‐fostering activities in Scratch
described in the reviewed studies can be similarly sum-
marised as a model of a CT problem‐solving process
(Figure 3). As demonstrated by several studies, students’
CT‐fostering activities can be evaluated by means of ob-
servation, interviewing or self‐evaluation next to a de-
sired skill description or performance level.

In particular, project planning can include, for in-
stance, algorithmic flowcharts, pseudo‐code, drawings
and lists (Modelling and design) [10]. Decomposition of
planned or programmed solutions into smaller, man-
ageable parts (Problem decomposition) could be ex-
amined with a rubric to coding patterns and code
constructs, such as with the one presented by Seiter and
Foreman [50]. The actual code‐writing can resemble
“bricolage” or decomposition into logically coherent
units, and it can comprise repeating cycles of designing,
analysing scripts and testing play (Iteration, Testing and
debugging) [30,41]. However, due to lack of empirical
demonstration, it is somewhat unclear what kinds of
activities in Scratch lead to effective and fair evaluation
and verification of programmed solutions (testing and
debugging) and removing redundant and unnecessary
steps in scripts (Efficiency). Meanwhile, solutions can be
shared and remixed (Collaboration) to gain feedback and
new ideas [9]. Additionally, during programming, stu-
dents may recognise how previously designed coding
patterns or code constructs could be reused (Patterns and
Generalisation), although it remains somewhat unclear
how such events occur in practice. Furthermore, task
division and role alternating (Collaboration), which may
be influenced by factors concerning equity, task focus,
talk, active participation and clear communication, are
present during all activities [32].
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TABLE 3 CT‐fostering programming contents in Scratch projects

CT concept/
practice Scratch contents (and source studies, see Table 1)

Abstraction • Sprite properties, variables and lists (abstractions of properties)
[1,3,4,6,8,9,11,14,15,18,20,22,24,25,29,30]

• Coding patterns, make‐a‐blocks and cloning (abstractions of
behaviours) [1,5–9,11,14,20–22,24,25,28,30]

• Continuous events (repeat until), discrete events (wait until) and
initialisation (abstractions of states) [1,7,8,11,20,22,24,25,28,30]

• Complex projects with several scripts and sprites [3,5,9,21,28]

Algorithms • Coding patterns, make‐a‐blocks and cloning (coding separate
procedures as specific functionalities)
[1,6–9,11,14,20,22,24,25,28,30]

• Initialisation [1,7,8,20,24,25]
• Sequencing, looping and selection in coding patterns (algorithm
control) [1,3–6,8,9,11,14,15,18,20–25,28–30]

• Self‐calling (recursive) make‐a‐blocks [5,22]

Automation • Green flag, key press, sprite click, keyboard input, mouse,
sensing, video and audio events (I/O device use)
[3–7,9,14,18,21,22,24,25,28–30]

• Animations, games, art, stories and simulations (project
genres) [3,9]

Collaboration • Publishing projects [2]
• Remixing and credit‐giving [3,17]
• Commenting, requesting friends, favouriting, “love‐its” [2,3]

Coordination and
Parallelism

• Synchronised parallel code constructs and coding patterns within
a sprite and across sprites [3–5,9,12,18,20–25,28,29]

• Coordinated parallel code constructs and coding patterns with
timing, states, events, blocking (ask and wait) and stopping script
execution [3–9,18,20–22,24,25,28,29]

Creativity • Customised sprites and stages [9,12,23]
• Modifying a remixed project [3,12,29]
• Expressing personal interest areas [3,23]

Data • Sprite properties, Scratch variables, custom variables, lists and
cloud variables (storing and manipulating data in data types)
[1,3,4,6,8,9,11,14,15,18,20,22,24,25,28–30]

Efficiency • Precise data manipulation [1,6,8,15,20,24,30]
• Defined project goal [29]
• Use instructions [9,29]
• Functionality [9,29]

Logic • If, if‐else, nested conditionals [3,4,6,9,11,14,15,18,20–22,28–30]
• And, or, not (Boolean logic) [3–5,9,11,14,15,18,21,28,29]
• Arithmetic operations [3,9,15,18,29,30]
• Absolute and relational operations [1,3]

Modelling and
design

• Looks and motion animation, pen drawing and sounds
(algorithm animation) [1,3–9,11,14,15,22,24,28,30]

• No extraneous blocks [9,12,29]
• Meaningful names for sprites and variables [9,11,12,29,30]
• Code comments [12]

Patterns and
Generalisation

• Reinstantiated code constructs [4,7,9,25]
• Reinstantiated coding patterns [7,11,20,30]

Problem
decomposition

• Coding patterns and code constructs (decomposition)
[1,3–11,14–16,18,20–25,28–30]

• Separately scripted behaviours or actions (modularisation) [3,25]

Note: The concepts and practices may not be entirely mutually exclusive in terms of the contents.
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5.2 | Formative assessment of CT in
Scratch

In this study, we lean on the following notion on for-
mative assessment: its processes involve (1) clarifying
learning intentions and criteria for success, (2) eliciting
evidence of students’ current understanding and (3)
providing feedback to move learning forward [6].

In CT, holistic assessment should recognise the
diversity of problem‐solving situations and align con-
textualised, task‐specific assessment rubrics to the focal
areas of CT (1) [22,45]. Educators could utilise concrete
and contextualised CT‐fostering Scratch project
functionality rubrics (e.g., coding patterns and their un-
derlying code constructs) or performance descriptions as
indirect CT learning intentions and criteria.

Since programming is a demonstration of CT [23], the
contents that students can implement in Scratch projects
as summarised in Table 1 can be elicited as evidence of
their CT (2). However, programming projects are not
direct measurements of thinking, and there has been
justified questioning concerning students’ learning of
computational concepts while working with such tools as
Scratch [47]. However, signs of validity in assessing CT in
the context of programming have begun appearing [48].

The examination of code constructs within semantically
meaningful coding patterns could further improve the
validity of the assessment [50]. Comprehensive rubrics
for such contents could be adopted in future empirical
research assessing students’ CT in a wide‐ranging and
systematic manner attempting to, for instance, examine
the issue of validity further, gain rich empirical insight, or
weigh the usefulness of such rubrics in classroom
practice.

It is crucial to complement the assessment by
examining programming processes. [22] Prior studies
examined students’ programming activities via, for in-
stance, observation, discourse analysis and interviewing
(see Table 1). In schools, complicated research‐
designated tools are time‐consuming. Additionally, prior
studies assessed only certain CEPs and not CT compre-
hensively. Hence, an extensive and a pedagogically
meaningful programming process assessment tool or
rubric would also require further development. In future
research, project content implementation could be
examined alongside both peer‐to‐peer [29,32,52,57] and
student‐project [18,30] interactions. In‐depth empirical
examinations of interactions resulting in different kinds
of contents could surface diverse desirable and undesir-
able programming activities. Such in‐depth investigations

FIGURE 3 CT‐fostering activities in Scratch (and source studies, see Table 1)
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could also focus on discussing pedagogically meaningful
assessment instruments for schools.

Lastly, the instantiation of CT‐fostering contents
could be supported in real time by providing targeted
timely feedback for specific code segments in the stu-
dents’ projects (3) [34]. Although the feedback can be
generated by teachers or peers, existing automated as-
sessment tools (e.g., Dr. Scratch [44], NCV [46], Scrape
[30]) that cover some areas of CT could be revisited to
better satisfy this need.

5.3 | Fostering CT beyond the rubrics

Some CEPs were not straightforwardly contextualised in
Scratch. First, removing redundant or unnecessary steps
in algorithms (Efficiency) was not assessed beyond ex-
amining unscripted blocks as shown by Wilson et al [60].
Similarly, project functionality in general may not alone
ensure positive user experience or functionality under all
circumstances (Efficiency). Second, finding and collect-
ing data from various sources and multilayered datasets
(Data) may be problematic to effectuate in Scratch be-
cause it is primarily a media design tool and not a
general‐purpose programming language [38]. However,
the domain of simulation‐genre projects and the use of a
range of I/O devices could potentially provide opportu-
nities for data collection [9,13]. Thirdly, it is essential for
students to understand that computers, operating sys-
tems, applications and programming languages are high‐
level abstractions of computations occurring in circuits
and wires, how various digital devices could be used as a
computer and identify real‐world applications of CT
(Abstraction and Automation). These CEPs could be
meaningfully explored and assessed in the contexts of
other programming tools and environments that can
promote engaging learning activities for novice pro-
grammers (e.g., Lego Mindstorms [20], the App Inventor
[47]) throughout compulsory education.

Then again, some CEPs were not contextualised in an
in‐depth manner. For instance, designing projects with
several scripts and sprites as examined by Funke et al [19]
contextualises managing complexity (Abstraction), but this
task is likely very multilayered [24]. Similarly, the CEPs
in Patterns and Generalisation and Problem decomposi-
tion [24] likely involve intricate cognitive tasks when
instantiating code constructs and coding patterns as ex-
amined by, for instance, Seiter and Foreman [50] and
Grover and Basu [21]. Moreover, alternate approaches to
solving problems and “out‐of‐the‐box thinking” (Creativ-
ity) are vague ideas that may only hold meaning in prac-
tical educational contexts. Then again, making fair and
honest judgements in complex situations that are not free

of values and constraints (Testing and debugging) and
analysing situations and checking facts to make and verify
predictions, making decisions and reaching conclusions
(Logic) are very broad ideas that could relate to nearly all
aspects of computational problem‐solving. Furthermore,
as the CEPs and the programming contents contextualis-
ing them emerged from previous works in this nascent
research area, there can be relevant CT beyond what is
currently known.

6 | CONCLUSIONS

Building on our current understanding of the key skills
and areas of understanding associated with CT—often
represented as its core concepts and practices and ato-
mised here concretely as CT's CEPs—this study placed a
particular focus on CT in the context of Scratch in K–9
(primary education). We summarised “CT‐fostering”
Scratch programming contents and activities from 30
studies into operational rubrics for teaching, learning and
assessment at the primary school level. The results are
applicable in educational practice, but the rubrics can be
developed in future investigations. That said, the rubrics
should not be regarded as complete or all‐inclusive as CT
is a developing research topic. However, by shedding
light into its CEPs fostered via Scratch we also managed
to raise some important areas that would benefit from
further investigations. Some dimensions in CT could be
meaningfully examined through quantitative metrics
(e.g., code construct segments), whereas others may be
more qualitative in nature (e.g., creative expression). The
next aspiration could be applying a learning progression
taxonomy to the contents and activities systematically.

Moreover, methods of formative assessment for con-
tents and activities were explored. With this study as a
springboard, our next steps are to refine pedagogically
meaningful ways to assess CT in students' Scratch pro-
jects and programming processes. Validated assessment
frameworks could potentially be extended into auto-
mated, formative learning‐support systems that students
can benefit from when programming.

What still gravely requires attention in CT is the
quality of understanding that students develop while
programming. Additionally, as CT is an interdisciplinary
collection of skills and knowledge, it can develop through
various tasks in different kinds of problem‐solving con-
texts. To unify theories in CT education, the contents and
activities in other programming environments (e.g., ro-
botics, digital game‐play) and nonprogramming domains
should be reviewed in a similar fashion. Operational
methods of assessing CT similarly in different contexts
could be used to tackle the notorious transfer problem.
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Abstract. Computational thinking (CT) has been introduced in primary schools worldwide. 
However, rich classroom-based evidence and research on how to assess and support students’ CT 
through programming are particularly scarce. This empirical study investigates 4th grade students’ 
(N = 57) CT in a comparatively comprehensive and fine-grained manner by assessing their Scratch 
projects (N = 325) with a framework that was revised from previous studies to aim towards en-
hancing CT. The results demonstrate in detail the various coding patterns and code constructs the 
students programmed in assorted projects throughout a programming course and the extent to 
which they had conceptual encounters with CT. Notably, the projects indicated CT diversely, and 
the students altogether encountered dissimilar areas in CT. To target the acquisition of CT broadly, 
manifold programming activities are necessary to introduce in the classroom. Furthermore, we 
discuss the possibilities of applying the assessment framework employed herein to support CT 
education through Scratch in classrooms.
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Introduction

Computational thinking (CT) has been increasingly incorporated in primary schools 
across the world often by means of graphical programming (Bocconi et al., 2018; Man-
nila et al., 2014). Using Scratch to design interactive games, animations, and stories that 
are thematically connected to different curricular areas is especially popular among the 
age group (Garneli et al., 2015; Moreno-León et al., 2017). Being a new topic in pri-
mary education, however, CT involves areas that necessitate research-based pedagogi-
cal knowledge. In particular, it is vital to more intricately spotlight what CT students 
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can gain in various ways and how their CT learning could be pedagogically supported 
while programming (Lye and Koh, 2014; Shute et al., 2017). On a related note, although 
previous literature (e.g., Barr and Stephenson, 2011) describes what kinds of skills and 
knowledge CT involves, the term still has no universally accepted depiction. Adopting a 
relatively extensive view of CT (as opposed to an overly concise one merely embodying 
tool-specific programming skills) enables investigating skills that are potentially trans-
ferable across problem-solving domains. To that end, this study investigates primary 
school students’ CT deeply based on Scratch projects they programmed in naturalistic 
classroom situations. In the process, we also aim to develop ways to support students’ 
learning of CT in this context.

These aspirations led us to “assessment for learning”, in particular, formative as-
sessment, which can support students’ learning performance and their beliefs about 
their own capabilities (Black and Wiliam, 1998; 2009). When outlining CT rather 
extensively, though, various types of programming contents in Scratch can indicate 
CT (Seiter and Foreman, 2013). Our review of relevant studies shows that although 
several assessments of CT in Scratch projects exist, they mostly cover contents that 
indicate partial areas in CT, such as its certain core concepts or principles in particular 
learning scenarios.

The objective of this study is to gain rich empirical insight of 4th grade students’ CT 
by assessing Scratch projects that they designed during a programming course. In order 
to assess the students’ CT extensively through their Scratch projects and set a stage to 
facilitate known learning benefits in formative assessment in the classroom in the future, 
we were encouraged to build on existing works to revise an especially profound assess-
ment framework. This article reports on the preparatory use of the framework in assess-
ing programming contents and indicative CT in the students’ different kinds of Scratch 
projects in a comparatively comprehensive and fine-grained manner. By comprehensive-
ness, we refer to the wide-ranging categorization embodying what students can learn in 
CT and how manifold programming contents indicate CT. By fine granularity, we refer 
to the way of systematically analyzing small-scale programmatic evidence in Scratch 
projects for advantages in research and learning-support alike. We evaluate and discuss 
the significance of the attained evidence in CT education and the next steps of develop-
ing formative assessment of CT in schools.

Assessing CT in Scratch Projects

Positioning CT in Primary Education

The term computational thinking (CT) was popularized by Jeannette Wing (2006; 
2011) as “the thought processes involved in formulating a problem and expressing its 
solution(s) in such a way that a computer – human or machine – can effectively carry 
out.” CT provides competencies for adapting to the digitalized world and solving prob-
lems across disciplines by applying computational tools, models, and ideas (Denning 
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and Tedre, 2019). Broadly viewed as a competence that, apart from mere programming 
skills, involves broader concepts and practices, such as algorithms, data, and problem 
decomposition, which describe manifold skills and areas of understanding that are ex-
pected to transfer to different problem-solving domains (Angeli et al., 2016; Barr and 
Stephenson, 2011; Csizmadia et al., 2015; Grover and Pea, 2018; Hsu et al., 2018; Shute 
et al., 2017). Amid continuing efforts to conclusively capsulize the exact nature of CT, 
we define the kinds of skills and knowledge it can involve in a relatively inclusive rather 
than overly condensed manner.

In several countries, CT or its proximal topics (e.g., informatics, computer science, 
programming) are integrated in the learning of different curricular areas (Heintz et al., 
2016). At the primary school level, block-based programming has been an especially 
popular way to promote CT (Grover and Pea, 2013). Meaningful learning can occur in 
multidisciplinary project-based settings in which students have autonomy regarding, for 
instance, how they learn (Lonka, 2018). Scratch has been often used in teaching and 
learning practice, for example, through creative game design, storytelling, or animation 
while the substance of other curricular areas is being processed (Garneli et al., 2015; 
Moreno-León et al., 2017).

The focus of this study is in assessment for learning, which aims to promote learning 
rather than merely rank or certify it. In particular, the processes associated with formative 
assessment can support classroom learning (Black and Wiliam, 2009). Programming is 
cognitively complex, and support for learning CT through programming is vital for mak-
ing learning more effective (Lye and Koh, 2014). However, CT involves several aspects, 
and it should be assessed from several entry points (Grover et al., 2017). Earlier research 
has indicated that assessing students’ Scratch projects is among essential entry points be-
cause programmed projects are rich, concrete, and contextualized approximations of the 
students’ conceptual encounters with CT (Brennan and Resnick, 2012; Román-González 
et al., 2019; Seiter and Foreman, 2013). Therefore, whilst adopting a comparatively inclu-
sive view of CT, in the following sections we review previous studies on the assessment 
of students’ Scratch projects from the viewpoint three formative assessment processes: 
what to teach and learn (i.e., clarifying learning objectives), estimating students’ current 
level of understanding, and providing relevant feedback (Black and Wiliam, 2009).

Assessment for Learning in Scratch

What to Teach and Learn
CT can be concretized in programming through core educational principles, such as 
“algorithm control structures”, “parallel execution”, and “Boolean logic”. These prin-
ciples can be manifested in Scratch in at least three categories: code constructs, coding 
patterns, and other programming contents. (Fagerlund et al., 2020.)

Code constructs, akin to language primitives, such as those for controlling the flow 
in programs (i.e., “sequence”, “conditional”, “loop”) can be observed directly as Scratch 
blocks. For instance, Moreno-León et al. (2015) used Dr. Scratch, an automated analysis 
tool, to examine the presence of sequences of blocks, “repeat” blocks and “if” blocks in 
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Scratch projects. Other studies (Basu, 2019; Franklin et al., 2013; 2017; Maloney et al., 
2008; Meerbaum-Salant et al., 2013) additionally examined projects manually for cer-
tain blocks representing constructs, such as “initialization” and “coordination.”

Additionally, akin to classes, projects can comprise coding patterns: semantically 
meaningful combinations or templates of constructs that achieve specific functionalities 
(e.g., animation of size). For instance, the Progression for Early Computational Think-
ing (PECT) model assesses project-wide patterns, such as “Maintain score” and “User 
interaction”, which incorporate different types of templates that can be programmed by 
combining specific code constructs in specific ways (Seiter and Foreman, 2013). Frank-
lin et al. (2013; 2017), Ota et al. (2016), and Seiter (2015) examined similar patterns to 
those in PECT, such as “Count up score” and “Multi-sprite synchronization.”

Concerning the more social elements of programming and metaprogrammatic ele-
ments, projects can also contain other programming contents, such as “project use in-
structions” and the “appropriate naming of sprites” (Basu, 2019; Funke et al., 2017; 
Wilson et al., 2012).

Manipulating such contents in Scratch simultaneously fosters and demonstrates CT 
(Brennan and Resnick, 2012). Learning goals and intentions (Black and Wiliam, 2009) 
regarding students’ skills and areas of understanding in CT can thus be clarified in-
directly as meaningful and reasonably demanding contents for students to creatively 
design in projects. Aggregating the various contents distributed among previous stud-
ies and assessment frameworks can establish systematic and comprehensive (albeit 
not necessarily all-encompassing) coverage of CT-fostering programming contents in 
Scratch.

Estimating Current Level of Understanding
Students’ learning can be enhanced by guiding them to perceive a gap between set learn-
ing goals and their own present skills or understanding. Information regarding this gap 
can be generated by students, peers, or instructors. (Black and Wiliam, 1998.) In CT, 
evidence that points towards students’ skills and understanding can be elicited by ex-
amining what they have programmed in their projects (Grover and Pea, 2013; Román-
González et al., 2019; Seiter and Foreman, 2013). More tangibly, programmed contents 
in projects indicate conceptual encounters with CT’s core educational principles. How-
ever, it is crucial that learning tasks generate and display relevant evidence of learning 
(Black and Wiliam, 1998). Evincing CT through programmed projects can be risky for 
two reasons.

First, static artifacts are not direct measurements of thinking. In particular, block-
based programming environments can present validity concerns, as students can drag 
and drop blocks without knowing what they are doing (Lye and Koh, 2014). Hence, 
observational methods should involve rigorously considering the circumstance of the 
evidence. Analyzing contents primarily through coding patterns improves validity by 
ensuring that the implemented blocks achieve semantically meaningful computational 
models (Seiter and Foreman, 2013).

Second, Scratch enables various project design opportunities: projects can be de-
signed in different genres, such as animation, game, and story (Maloney et al., 2010), 
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which typically contain different programmatic characteristics and, respectively, indica-
tions for CT (Moreno-León et al., 2017). Programming can also be effectuated through 
activities such as remixing or debugging preexisting contents or designing something 
new (Lee et al., 2011). Moreover, individual experiences may vary when students are 
activated as instructional resources for each other, for instance, in pair programming. 
Such contextual factors influencing what constitutes relevant evidence of learning may 
increase the more students are activated in owning their own learning. (Black and Wil-
iam, 2009.) In summary, to advocate the relevance of the examined contents, it is prefer-
able to consider the context of the contents (e.g., recognizing the learning assignment) 
and interpret their semantical significance rather than merely technical one.

Providing Feedback
After a gap between learning goals and the students’ current knowledge has been high-
lighted, the students are guided to take action to close that gap (Black and Wiliam, 
1998). While students program, meaningful and authentic feedback can be provided 
with respect to the contents in their projects. The feedback should facilitate the correc-
tion of specific errors or poor strategies with suggestions on how to improve the work 
(e.g., by providing scaffolding), based on individual progress toward achieving goals 
(Black and Wiliam, 1998). In this respect, alternatively to evincing the most proficient 
segments in students’ projects, assigning scores, and providing generic feedback (see 
Moreno-León et al., 2015; Seiter and Foreman, 2013), project contents can be examined 
“micro-programmatically” (e.g., Vihavainen et al., 2013).

In Scratch, the scripts of a project can comprise individually instantiated coding 
patterns and their underlying code constructs. For instance, sprites’ properties, such as 
location or size, are animated distinctly from one another (see Franklin et al., 2013, 
2017; Meerbaum-Salant et al., 2013). Such fine-grained evidence, that is, specific micro-
programmatic project parts, in fact, benefits all three formative assessment processes: 
operating as meaningful learning goals for students to program in projects, semantically 
meaningful evidence of their understanding, and meaningful targets for feedback. How-
ever, examining instantiated coding patterns is an overlooked analytical approach when 
applied to CT-fostering programming contents comprehensively and systematically.

The Current Study

The purpose of this study was to gain rich empirical insight of 4th grade students’ 
(N = 57) CT by assessing the programming contents in Scratch projects (N = 325) that 
they designed during a programming course. Prompted by the means established above 
to attain rich evidence of students’ CT through their Scratch projects along with setting 
a stage to facilitate formative assessment in the future, we were encouraged to revise 
an assessment framework based on previous studies. The research questions (RQs) are 
as follows:

What programming contents did the students’ Scratch projects contain?(1) 
What core educational principles in CT did the students conceptually encounter?(2) 
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Methods

Research Design

This empirical study had an embedded single-case design. The studied case was an in-
troductory programming course organized for primary school students, and the units of 
analysis were the Scratch projects that the students made during the course. This study 
intended to immerse in the particular case deeply rather than acquire data to generalize 
or represent the population for widespread decision-making. Previous studies have as-
sessed students’ Scratch projects in this age group and in compulsory education (e.g., 
Funke et al., 2017). However, this study adopted novel theoretical and analytical ap-
proaches that contributed in uncovering in-depth knowledge. This knowledge, attained 
from one situational context, was intended for wider comparison, creation of theoreti-
cal models, stimulation of hypotheses for experimentation, and further methodological 
development. On that account, the employed research method was that of a descriptive 
case study. Description relied on the theoretical premises regarding the assessment of CT 
in Scratch projects, as outlined in the previous sections. The main theoretical concepts 
and developed framework were determined through a thorough literature review to rein-
force external and code construct validity. (Yin, 2012.)

Participants

The students of three 4th grade classes from an average-sized Finnish municipal primary 
school participated in this study. The classes were selected because the students were 
surveyed as generally inexperienced at programming. Also, a prequestionnaire con-
firmed that the students were largely novices at programming, apart from a few previous 
programming experiences. The classes comprised 22, 21, and 26 students, from which 
57 of them (62% girls and 38% boys) had informed consent provided by their legal 
guardians. The students were between 10 and 11 years old during data collection. Two 
of the participants were nonnative Finnish speakers. The classes also included students 
with special needs who participated in the programming activities but chose not to par-
ticipate in data collection.

Data Collection

The data collected in this study was the Scratch projects the students programmed 
during a programming course that followed general guidelines in the Finnish primary 
school core curriculum. Each class attended the course separately one lesson per week 
for 4 months (13 lessons in total) in early 2017. The course was piloted with one class 
in another school to estimate and develop the employed pedagogical methods and data 
collection methods. The lessons were conducted mainly in the school’s computer lab, 
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which had 15 functional computers. The teachers grouped the students (1-3 students per 
group) at the start of the course based on perceived shared skill levels or similar inter-
est areas. The first author was the primary instructor of the course due to the regular 
teachers’ lack of experience in programming education. The regular teacher of each 
class was always present, and a research assistant and learning assistant for special 
needs students were present during most of the lessons. All the teachers participated in 
guiding the students’ work.

The course design was inspired by previous studies (Grover et al., 2014; Meerbaum-
Salant et al., 2013). As the students were relatively young and new to programming, 
the main objective of the course was to introduce fundamental Scratch features and CT 
through perceivably introductory programming contents and activities to the students. 
The course began by discussing applications of programming in the world and “un-
plugged” exercises over one lesson. Subsequently, lesson-specific learning goals were 
targeted by programming Scratch projects (see below), which included selections from 
the Creative Computing guide (Brennan et al., 2014).

The student groups programmed different kinds of projects during the course (Ta-
ble 1). “Tutorial”, “Debugging”, and “Remix” projects involved preset objectives that 
guided toward designing, remixing, or debugging specific contents. Typically, these les-
sons began with a teacher-led demonstration of a feature (e.g., sprites sprint-racing) or 
an incomplete program that required implementing or error-correcting particular con-
tents (e.g., “event-sync” code construct as the opening shot). Subsequently, the students 
were guided to follow the tutorial or remix and complete and creatively extend their 

Table 1
Projects the students programmed during the course used as data

Project Name Type Objective Key contents N

P1 “Scratch surprise” Design Create and modify sprites and 
scripts with blocks.

Scratch GUI (e.g., 
logging in, using blocks); 
experimenting

  33

P2 “Cat dance” Tutorial Program a dance performance. Scripting, iteration, 
“sequence”, “event”

  28

P3 “10 blocks” Design Plan and program your own series 
of instructions.

Planning, animating, 
“wait”, “loop”

  22

P4 “Debugging”, 
part 1

Debug Debug up to four faulty programs. Code-reading, debugging   64

P5 “Dinosaur race” Remix Remix a faulty program and fix an 
animation.

Remixing, “initialization”, 
“event-sync”, “parallelism”

  26

P6 “Riddler game” Design Program a game that asks 
questions, receives keyboard 
inputs and checks the correctness 
of answers.

“Variable”, “conditional”, 
“user interaction”

  30

P7 “Debugging”, 
part 2

Debug Debug up to four faulty programs. Code-reading, debugging   96

P8 Final projects Design Design an interactive game, story, 
or animation.

Planning, creative design   26

Total: 325
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own project. By contrast, the programmatic requirements of “Design” projects were less 
rigorously set: the students imagined and programmed projects within certain negotiated 
boundaries (e.g., a riddler game), having an opportunity to search for ideas from the 
Internet and, with projects P3 and P8, plan their projects with pen and paper over one 
lesson. All projects that the students had assigned to provided studios once the course 
ended were collected as data. Projects made outside the lessons were excluded because 
they were mainly incomplete drafts.

Data Analysis

Revising the Rubrics
As asserted previously, our priority was to aggregate manifold programming contents 
indicating CT thoroughly and systematically in Scratch projects. To prioritize gaining 
especially rich insight on the two essentially interconnected content areas, individu-
ally instantiated coding patterns and their underlying code constructs, the examinations 
of “other programming contents” (see Appendix C) are omitted here. We selected the 
PECT model’s (Seiter and Foreman, 2013) voluminous rubrics as a baseline for our 
rubrics (described below). Several revisions to expand and regularize PECT’s rubrics to 
patterns and constructs and convert its project-wide categorization to an instance-based 
one were made based on other previous studies, our initial reviews of the students’ proj-
ects, and our personal experiences in Scratch as follows.

Concerning coding patterns, for instance, “Animate Motion” and “Animate Looks” 
were merged because sprites’ all properties (e.g., position, size) are animated with the 
same constructs. “Conversate” was revised into “Speech and Sound” to examine sepa-
rately programmed conversations using text, sound, or both. “Maintain score”, which 
originally focused on manipulating score-like integers, was revised into a more general 
“Data manipulation” to also reveal manipulations of other variables, such as strings (Er-
icson and McKlin, 2012). Moreover, we added new ways to program the patterns, such 
as video/audio sensing (see Moreno-León et al., 2015) and extensions (e.g., “Makey 
Makey”) in “User interaction.”

Concerning code constructs, for instance, we renamed “sequencing and looping” to 
“control” (Moreno-León et al., 2015) and included conditional structures in it (Grover 
and Pea, 2018). “Parallelism” was split into parallelism “within” and “across” sprites 
(Meerbaum-Salant et al., 2013). “Initialization” was revised to function correctly on 
any event if a sprite was hidden until then. “Coordination” with timing was revised to 
function correctly with any block with a duration. We also added new Scratch-specific 
constructs: “pen” (Ericson and McKlin, 2012), “I/O” (Moreno-León et al., 2015), and 
“make-a-block” (Basu, 2019; Ota et al., 2016).

Analyzing Programming Contents
In short, the analysis of programming contents in Scratch projects began from examin-
ing individually instantiated coding patterns. Each instance was analyzed in terms of 
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what code constructs established said instance, and this combination determined the 
instance’s type. Each of these contents demonstrated students’ conceptual encounters 
with CT. This analysis is next described in more detail (the analysis rubrics are presented 
in appendices as supplementary online material1).

The coding patterns (Table 2) served as a starting point for categorizing the scripts 
and Scratch blocks of each sprite. Specific code constructs revealed the presence of an 
instance: for example, “property” code constructs revealed “Animation” pattern instanc-
es in a sprite (e.g., “show” and “hide” blocks revealed animations of visibility, see Ap-
pendix A). Similarly, “say” or “think” blocks revealed text-based “Speech and sound” 
instances, while “play sound” or “play note” blocks revealed sound-based ones.

Each uncovered instance was then keyed separately for all of its relevant underlying 
code constructs represented as Scratch blocks (Appendices A and B). The state of the 
constructs was keyed as either present (1) or missing (0) or on a 3-point nominal scale 
(see example in Fig. 1). Each uncovered instance in each sprite (e.g., animation of vis-

1 See link in https://orcid.org/0000-0002-0717-5562

Table 2
Coding patterns in Scratch projects

Coding pattern Instances

Animation (AN) Modify background, costume, visibility, size, layer, an effect, facing direction, or 
position with timing, looping, state-sync, or event-sync

Speech and sound (SS) Text, sound, or text-sound monologues and dialogues
Collision (CO) Test if, repeat until, or wait until colliding with another object
Data Manipulation (DM) Use/modify, test separately, loop until, or wait until a value in a Scratch variable, 

a named variable, or a named list
User Interaction (UI) Green flag, click/key press, mouse use, keyboard input, video/audio, extensions

Fig. 1. Code constructs and resulting types for two example coding pattern instances. 
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ibility for Dog) was considered a single instance unless the sprite’s scripts comprised 
different “control” or “coordination” constructs for separate instances of the same type. 
In such cases, a new instance was detached from the original one (see example in 
Fig. 2). Similarly, the “Speech and Sound” instances in each sprite were considered 
monologues, but monologues in different sprites were merged if they established a 
dialogue with the “parallelism” or “coordination” constructs.

The resulting construct combinations for coding pattern instances enabled deter-
mining which particular instance type (e.g., “Timed animation” [AN–1], “Time-sync 
dialogue” [SS–2], see Appendix A) the programmed instance was if the minimum re-
quirements for the required constructs in the instance types were met. The instance was 
defined as dysfunctional if the construct combinations did not meet the minimum re-
quirements of any instance type.

The categorization resulted in a collection of different individually instantiated pat-
terns and their underlying constructs that established the scripts in each sprite in each 
project. As the categorization focused on directly observable Scratch blocks following 
rigid rule-based coding (i.e., not requiring interpretation of the contents), it was per-
formed by the first author by examining screenshots taken of the program code in each 
project using Atlas.ti software.

To analyze only relevant programming contents, the scripts in Debug and Remix 
projects (see Table 1), which comprised premade block segments that the students re-
ceived for modification, were categorized only for segments that the students had cre-
ated or changed. Tutorial, Debug, and Remix projects, which had pre-set objectives 
(e.g., designing specific contents), were analyzed according to how much intended con-
tent the students programmed, how the projects varied relative to that content, and what 
other content the projects comprised. Design projects, which were more ill-structured 
regarding programmatic prerequisites, were described for the content the students pro-
grammed in them.

Fig. 2. Left: an instantiated “Timed animation (location)” coding pattern. Right: the location 
modification on the bottom (i.e., ”change x by 10“) is detached as a new instance because it 
is coordinated with another code construct, that is, “event-sync”.
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Interpreting Conceptual Encounters with CT

Based on our prior work in mapping Scratch programming contents and CT (Fagerlund 
et al., 2020), conceptual encounters with the core educational principles in CT’s con-
cepts and practices (Appendix C) were logged for each student through the functional 
and self-designed coding pattern instances and code constructs in these instances. For 
example, each “Animation“ coding pattern instance and each “variable (state 1)” code 
construct logged a conceptual encounter with the “Abstractions of properties” (Abstrac-
tion) core educational principle. Resultantly, each student’s personal project portfolio 
(see also Brennan & Resnick, 2012), which was aggregated by the investigator from 
all projects the student had submitted, included a positive whole number for each CT-
fostering content type.

First, the content types indicating conceptual encounters were examined if they were 
present in the portfolios. To determine variation in the diverse content types (e.g., the 
student could have implemented particular constructs more often than particular instanc-
es that both indicate an encounter with a specific principle), comparability needed to be 
established: coefficients of variation were computed as a quotient of mean and standard 
deviation for each content type.

Additionally, to provide an overview of each conceptual encounter, some of which 
were indicated by potentially more than one content type (e.g., “Sprites’ properties”, 
“Variables”, and “Lists” all indicate an encounter with “Abstractions of properties“), 
the presence of each content type within each core educational principle was totaled. 

Fig. 3. Analysis of programming contents in Scratch projects in this study.
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Subsequently, a mean presence (%) and average coefficient of variation (%) was com-
puted for encounters in each core educational principles as a whole.

An overview of the analysis is portrayed in Fig. 3. In summary, any and all individu-
ally coding pattern instances (see Table 2) were examined from each Scratch project. 
Each instance was analyzed in terms of what relevant code constructs established it, 
and this combination determined the instance’s predetermined type (see Appendices A 
and B). Each of these contents demonstrated the CT the authoring student conceptually 
encountered (see Appendix C).

Results

Programming Contents in Students’ Scratch Projects (RQ1)

Tutorials
 “Getting Started with Scratch” (P2) was a Tutorial that was accessed through the Help 
menu directly in the Scratch editor (see examples in Figures 4 and 5). All submitted 
projects (N = 28) comprised the instructed “Green flag” (UI–1), “Time-sync animation 
(location)” (AN–1) and “Sound monologue” (SS–1) instance types, and all projects but 
one of them contained the instructed “Text monologue” (SS–1). None of the projects 
comprised the remaining instructed instance types, indicating that the projects were 
incomplete or that contents were removed after completing the tutorial. Therefore, the 
final median and mode completion rates of the tutorials were 50% (four of eight in-
stances). However, each project entailed uninstructed instances (Mdn = 2, Max = 7) in 
the “Animation” (total: 24), “Speech and sound” (5), and “User interaction” (1) pat-
terns, indicating that the students had proceeded to custom design halfway through the 
tutorial or after having removed contents from the finished tutorial.

Fig. 4. A fully completed “Getting Started with Scratch” tutorial and the instances as instructed by it.
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Remixes
In the P5 projects (N = 26), the students were tasked to remix an incomplete project and 
add the “Event-sync animation (location)” (AN–5) instance type with the “initialization” 
code construct for two separate sprites. Twenty-two (85%) of these projects met these 
requirements whereas the remaining four projects (15%) comprised the “event-sync” 
construct for starting scripts that entailed location animations, but the locations were not 
initialized (see comparison in Fig. 6).

Similar to the P2 (Tutorial), 69% of the projects comprised other instance types than 
those that the students were minimally required to implement (Mdn = 3, Max = 9) again 
exclusively in the “Animation” (total: 39), “Speech and sound” (24), and “User Interac-
tion” (3) patterns.

Fig. 5. A half-completed tutorial including two uninstructed instances.

Fig. 6. Left: the initial problem. Center: “Event-sync animation (location)” (AN–5) with 
“initialization.” Right: “Event-sync animation (location)” (AN–5) followed by “Looped ani-
mation (location)” (AN–2) with no “initialization”.
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Debugging Challenges
Debugging challenges parts one (P4) and two (P7) each comprised four faulty projects, 
which the students were guided to begin correcting, potentially submitting all four of 
them. In contrast to P7, the numbers of submitted projects decreased drastically in P4 
(Table 3), indicating that many students struggled with P4.3 (looped animation of loca-
tion with move and bounce).

In P4.1, the students were challenged to implement “initialization” to preexisting 
animation of location. Most groups submitted incorrect responses, for example, by pro-
gramming the sprite to glide back to its starting location prior to program termination. In 
P4.2, although all submitted projects comprised a programmatically functional instanti-
ated “Animation (direction)” pattern, complete evaluation of correctness required manu-
ally verifying that the sprite rotated 360 degrees. In P4.3, the two incorrect responses 
lacked the “bounce” code construct.

In P7.3 and P7.4, the challenge was to change the parameters in preexisting “Test 
collision in loop” (CO–2) and “Loop until costume #” (DM–3) instance types. Manual 
observation was again required to verify the correctness of the parameters. Only one 
response in each project respectively was incorrect, comprising “repeat” blocks instead 
of conditional looping.

Design Projects
The first type of Design project that the students programmed during the course was 
themed as “Riddler games” (P6, N = 30). In these projects, the students were instructed 
to design a game that asks questions, receives keyboard inputs as responses, and evalu-
ates the correctness of the answers. Programmatically, the game minimally required a 
“Keyboard input” (UI–4) and an appropriate instance type in “Data Manipulation” to 
test a stored value in the “answer” variable (i.e., DM–2, DM–3, or DM–4). All but 
two projects (93%) comprised both instances. These two projects involved “ask” blocks 

Table 3
P4 and P7 debugging projects solved by student groups

Project Debugging objective Submitted
N Correct Solved

P4
4.1 “Timed animation (location)” (AN–1) with “initialization” 27   19% 19%
4.2 “Animation (direction)” (any instance type) with 360° rotation(*) 25 100% 93%
4.3 “Looped animation (location)” (AN–2) with “move” and “bounce” 10   80% 30%
4.4 “Text–sound monologue” (SS–1)   3 100% 11%
P7
7.1 “Event-sync animation (costume)” (AN–5) with “repeat” 27   96% 96%
7.2 “Event-sync animation (stop)” (AN–5) in four different sprites 25 100% 93%
7.3 “Test collision in loop” (CO–2) with “Nano” parameter(*) 23   96% 81%
7.4 “Loop until (costume #)” (DM–3) with correct condition to finish looping(*) 21   95% 74%

*The rubrics themselves did not verify the use of correct parameters.



Assessing 4th Grade Students’ Computational Thinking through Scratch ... 625

for question-asking and “if-else” blocks for answer checking, but these blocks were 
unscripted, rendering them dysfunctional and indicating that the projects were unfin-
ished. All functional answer tests were conditional structures in “Test value” (DM–2). 
In addition to the instructed requirements, all the projects entailed other instance types 
(Mdn = 5, Max = 11) exclusively in the “Animation” (total: 55), “Speech and sound” 
(62), and “User Interaction” (49) patterns.

The students had more creative freedom for the other Design projects. These proj-
ects included “Scratch Surprise” (P1), the students’ first self-designed Scratch project; 
“10 Blocks” (P3) as exercises in script planning; and interactive games, stories, or 
animations (P8) as final project assignments. The division of functional instances in 
these projects (Table 4) revealed that “Animation” was substantially the most com-
monly instantiated pattern (49% of all instances), followed by “User Interaction” (25%) 
and “Speech and sound” (20%). “Data Manipulation” (4%) and “Collision” (2%) were 
rarely instantiated.

The P1 projects (N = 33) typically comprised various blocks as nascent scripts but 
without events to start them (see examples in Fig. 7). As a result, 58% of all instances 
were dysfunctional, suggesting that the students did not spontaneously grasp event-driv-
en scripting entirely or merely experimented with different features. The most common 
functional instance types were “Monologue” (SS–1) (total: 28, in 45% of the projects), 
“Green flag” (UI–1) (total: 22, in 42%), and “Timed animation” (total: 21, in 30%).

Table 4
The numbers of instantiated coding patterns in the three open-ended design projects  

that students programmed during the course

Coding pattern Instantiated in open-ended design projects Total
P1 “Scratch surprise” 
(N = 33)

P3 “10 blocks” 
(N = 22)

P8 Final projects 
(N = 26)

Animation 83 77 417 577
Speech and sound 64 50 127 241
Collision   3   0   36   39
Data Manipulation 17   0   40   57
User Interaction 30 27 200 257

Fig. 7. Sample unscripted blocks from three P1 projects.
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The P3 projects (N = 22) had typically one or two sprites performing simple behav-
iors, such as introducing themselves with “Timed animation” (AN–1) (total: 45, in 86% 
of the projects), “Monologue” (SS–1) (total: 39, in 86%), and “Click/Key press” (UI–1) 
(total: 15, in 59%) (see Fig. 8). However, in contrast to the P1 projects, only 12% of all 
instances in these projects were dysfunctional, indicating that the students had begun 
internalizing the idea behind scripting.

The final project assignments, the P8 projects (N = 26), entailed thematically and 
programmatically versatile game, animation and story-like projects (see Fig. 9 and 

Fig. 8. An example P3 project.

Fig. 9. The components and scripts in a relatively complex P8 project.
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Fig. 10). 9% of the instances in these projects were dysfunctional, suggesting that the 
students still struggled with implementing contents or that the projects were not en-
tirely finished. Of the functional instance types, the most common were “Event-sync 
animation” (AN–5) (total: 258, present in 89% of the projects), “Green flag” (UI–1) 
(total: 113, in 92%), and “Monologue” (SS–1) (total: 57, present in 81% of the proj-
ects).

Project Portfolios
The students’ portfolios (N = 57) contained between 2 to 14 projects (Mdn = 10), sug-
gesting that few students participated in designing only two projects or that all portfo-
lios did not include all programmed projects. Nevertheless, the portfolios demonstrated 
the varying numbers of instance types that the students programmed during the course 
(Table 5). The most common types were “Event-sync animation” (AN–5), “Monologue” 
(SS–1), and “Green flag” (UI–1). More than half of the instance types received a median 
of zero, potentially highlighting more advanced contents.

Similar statistics were computable for the code constructs as well, but their high 
number rendered reporting inappropriate; however, the most common constructs 
were “sequence” (Mdn = 55), “repeat”/”forever” (Mdn = 22), and “green flag” 
(Mdn = 16).

Fig. 10. The components and scripts in a relatively simple P8 project.
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Table 5
Minimum, maximum, and median numbers of instance types in students’ project portfolios

Instance types of coding patterns Numbers in project portfolios
Min Max Median

Animation (AN)    
1–Timed animation
2–Looped animation
3–State-sync animation (repeat until)
4–State-sync animation (wait until)
5–Event-sync animation

0
0
0
0
0

  32
  20
  11
  11
146

4
6
0
0
9

Speech and sound (SS)
1–Monologue
2–Time-sync dialogue
3–State-sync (repeat until) dialogue
4–State-sync (wait until) dialogue
5–Event-sync dialogue

2
0
0
0
0

  18
    6
    0
    7
  15

7
0
–
0
0

Collision (CO)
1–Test collision separately
2–Test collision in loop
3–Wait for collision

0
0
0

    5
    5
    3

0
1
0

Data manipulation (DM)
1–Use/modify variable
2–Test value
3–Loop until value
4–Wait for value

0
0
0
0

    6
    5
    2
    0

0
1
1
–

User interaction (UI)
1–Green flag
2–Click/key press
3–Mouse use
4–Keyboard input
5–Video/audio
6–Extensions

1
0
0
0
0
0

  25
  20
    4
    5
    0
    0

6
2
0
1
–
–

Missing Code constructs
Examining code constructs in the instances revealed that the P1 projects were often 
missing the “control” and “coordination” constructs (Table 6), which essentially ren-
dered most instances dysfunctional. Although the lack of these constructs decreased 
greatly in subsequent projects, they were still occasionally missing, indicating recurring 
difficulties or unfinished projects. “Initialization” remained as a frequently missing con-
struct throughout the course.

Students’ Conceptual Encounters in CT (RQ2)

According to the students’ conceptual encounters in CT, as indicated by the program-
ming contents in their project portfolios (Table 7), all the students re-instantiated the 
coding patterns and code constructs (Patterns) and decomposed the projects into smaller 
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parts (Problem decomposition). Nearly all (>90%) the students designed complex proj-
ects (Abstraction), implemented algorithm control structures and “initialization” (Algo-
rithms), remixed (Collaboration), and utilized logical operators (Logic).

Table 6
Code constructs missing from coding pattern instances in the students’ projects

Code construct Missing from projects
P1 P2 P3 P4 P5 P6 P7 P8

“Control”         
 Number   99     8   7   4   2 15     2   30
 Percentage   50%     5%   5%   4%   2%   7%     1%     4%
“Coordination”
 Number 113   15 16   6   3 24     6   54
 Percentage   57%   10% 10%   7%   3% 11%     3%     7%
“Initialization”(*)
 Number   24   41 61 73 37 33 587 131

Percentage   83% 100% 91% 92% 45% 73% 100%   35%

*Only in functional Animation instances.

Table 7
Presence of and variation among conceptual encounters with  

CT’s core educational principles in students’ project portfolios

CT concept/practice Core educational principle Indication in project portfolios
Presence Coefficient of variation

Abstraction Abstractions of behaviors   34% 277.4
Abstractions of properties   63%   66.3
Abstractions of states   54% 291.2

Algorithms Algorithm control   91%   84.6
Procedures   34% 277.4
Starting from initial state   93% 216.6
Recursion     0%    –

Automation I/O devices   33% 152.1
Coordination Coordinating scripts   57% 183.8

Synchronizing scripts   18% 437.5
Creativity Modifying remixes   81%   69.8
Data Storing and manipulating data   50% 240.6
Logic Boolean logic     0%    –

Conditional structures   44% 239.0
Operations   96% 104.5

Modeling and design Algorithm animation   66%   58.6
Patterns Re-instantiated coding patterns/code constructs 100%   23.1
Problem 
decomposition

Decomposition 100%   76.3
Modularized features   63% 153.9
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However, less than half (<50%) of the students abstracted behaviors for sprites (Ab-
straction), used procedures (Algorithms), utilized I/O devices (Automation), and syn-
chronized parallel scripts (Coordination). None of the students implemented recursive 
solutions (Algorithms) or Boolean logic (Logic). Variation was large among instantiat-
ing synchronized parallel scripts (Coordination), demonstrating that the few students 
who encountered this principle did so several times.

Discussion

CT through programming is a new topic in primary education that necessitates evidence-
based pedagogical knowledge, especially regarding assessment that enhances learning 
(Lye and Koh, 2014). This study assessed 4th grade students’ CT by focusing on their 
Scratch projects designed in naturalistic classroom situations. We adopted a compara-
tively inclusive view of what students can learn in CT through Scratch and, by revis-
ing a profound assessment framework, focused uniquely on individually instantiated 
coding patterns and their underlying code constructs, that is, relatively fine-grained 
evidence. The framework uncovered ample and manifold empirical findings of contents 
programmed by the students and respective indications of their conceptual encounters 
with CT. Next, we discuss the significance that this evidence and employing the assess-
ment framework may have in teaching and learning CT in Scratch, highlighting also 
limitations that our analysis poses. Moreover, we address our outlying goal: developing 
formative assessment systems in schools.

Programming Contents Indicating CT

Coding Patterns
The students implemented instances of “Animation”, “Speech and Sound”, and “User 
Interaction” by far the most, specifying previous findings (Seiter and Foreman, 2013) 
concerning that these patterns are altogether most typically present in students’ proj-
ects. These patterns were also exclusively volitionally designed. Concerning conceptual 
encounters with CT, these contents indicated that the students repeatedly experienced 
abstracting properties and behaviors (Abstraction), designing procedures (Algorithms), 
animating algorithms (Modeling and design), manipulating pre-provided data (Data), 
decomposing projects into coding patterns and code constructs (Problem decomposi-
tion), and reinstantiating patterns and constructs (Patterns). These experiences could be 
expected to occur somewhat naturalistically in Scratch, which is essentially a tool for 
designing interactive media (Brennan and Resnick, 2012).

Perhaps more intriguing and relevant for pedagogical consideration is that, by contrast, 
“Data manipulation” and “Collision” were seldom designed. This influenced the students’ 
conceptual encounters with CT mainly via the relative scarcity of variables, condition-
als, and logical operations (specified in the following sections), which can, however, be 
considered as fairly fundamental computational concepts (Grover and Pea, 2018). An 
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underlying cause may concern the designed types of projects: Moreno-León et al. (2017) 
showed that the presence of certain constructs typically varies between projects in differ-
ent genres. We perceived the students’ projects most akin to animations and stories with 
little interactivity. Therefore, they may have lacked opportunities to explore supplemen-
tary genres, such as simulations or more sophisticated games to which Data Manipulation 
and Collision may be more typical (see Seiter and Foreman, 2013). Facilitating the design 
of such presumably more complex projects can be justified in advanced stages of learning 
CT. These patterns were also not systematically introduced during the course, proposing 
that students may be inclined to volitionally designing familiar contents and that they 
could benefit from deliberate guidance towards unfamiliar contents.

Instance Types
Our systematic categorization of instance types in the coding patterns allowed analyz-
ing the students’ CT in novel detail. The most often instantiated instance types, such 
as “event-sync animation” (AN–5), “monologue” (SS–1), and “green flag” (UI–1) (see 
Table 5), indicated that the students repeatedly experienced coordinating scripts with 
timing and events (Coordination), controlling algorithms by sequencing and looping 
(Algorithms), and modularizing animations and speaker roles (Problem decomposition). 
The prominence of these experiences may stem from the nature of event-driven pro-
gramming in Scratch (Maloney al., 2010) and blocks representing code constructs that 
novice programmers typically first learn to use (see Grover et al., 2014).

Again, perhaps more interesting and allusive in terms of CT pedagogy was that the 
students sporadically experienced utilizing conditional logic and arithmetic operations 
(Logic), abstracting program states with continuous events (Abstraction), coordinating 
scripts with states (Coordination), modularizing data manipulation and collision detec-
tion (Problem decomposition), and utilizing key pressing, clicking, and keyboard in-
puts (Automation). Supplementing prior studies (Burke, 2012; Franklin et al., 2013; 
Maloney et al., 2008), these findings specified exactly how students implement user 
interaction in their projects: in this study, they mainly implemented “green flag” instead 
of different I/O devices, indicating that the projects typically lacked usability and, con-
sequently, resembled projects more for viewing than playing. As discussed above, the 
other features, such as logical operations and collision detection, may be more typical to 
presumably more advanced game-like projects (Moreno-León et al., 2017), proposing 
a need for educators to purposefully introduce game-like features in Scratch and thus 
CT more extensively. Despite few examples in prior studies (e.g., Burke, 2012; Sáez-
López et al., 2016), how the substance of different curricular topics could be processed 
while creatively designing usable Scratch projects, such as games and simulations, is not 
extensively known. The integration of CT in Scratch thoroughly across the curriculum 
at the primary school level presents a fruitful opportunity for pedagogical planning and 
further research.

Several instance types were instantiated infrequently or never. The students therefore 
experienced little if any abstracting program states with discrete events (Abstraction), 
utilizing Boolean logic (Logic), modularizing behaviors with state-sync (Problem de-
composition), and utilizing mouse, video/audio, and extensions (Automation). Devices, 
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such as microphones or extensions like Makey Makey, which could have promoted ex-
ploring these areas in CT, were not available in the school. As the use of various I/O 
devices is key in CT, schools could acquire such physical add-ons for learning purposes, 
and their meaningful use in cross-curricular programming with Scratch could also be 
diversely considered. Implementing mouse use (UI–3) could also again be more typical 
to game-like projects, although the students may have also disregarded it because it was 
not explicitly taught or demonstrated. For the abundance of creative opportunities in 
Scratch, students could be guided to browse existing projects in the Scratch repository 
to gain ideas and knowledge of what possibilities exist altogether. In turn, code blocks, 
such as the “wait until” and Boolean operations, which essentially relate to the other 
above-mentioned less encountered areas of CT, are specified below.

Code Constructs
Several previous studies have examined students’ use of code constructs. However, 
assessing them within instantianted coding patterns allowed us to gain insight regard-
ing their use in diverse creative circumstances that were, perhaps most importantly, 
semantically meaningful, thus also favoring the legitimacy of the examination. Among 
notable findings was that the students’ first projects (P1) comprised mainly unscripted 
blocks and parameter state changes without “coordination”, suggesting that the stu-
dents did not intrinsically grasp controlling algorithms (Algorithms) and coordinating 
them with, for instance, timing (Coordination). Control and coordination became great-
ly more prevalent after the students had completed the scripting tutorial (see Table 6), 
suggesting that direct instruction can be effective for learning these fundamentals of 
programming and an effective way to launch especially introductory courses in schools. 
However, these constructs were occasionally still missing in the final projects (P8), pos-
sibly exhibiting “bad programming habits” (Moreno-León et al., 2015), situated here 
under other programming contents (see Appendix C), and highlighting a need to remind 
students to maintain their use. However, the projects may have been incomplete, sug-
gesting a lack of time and underlining the ever-challenging need for educators to ensure 
sufficient time for designing.

The students typically controlled the programmed instances with “sequences” and 
“loops” and coordinated them with “timing” and “event-sync” (see Table 5). “Condi-
tional looping” (i.e., the “repeat until” block) and “conditional structures” were rare 
in control whereas “state-sync”, “blocking”, and “stopping” were rare in coordination. 
Consequently, the students seldom encountered the different ways to control algorithms 
(Algorithms) and coordinate automated processes (Coordination). Coordination by stop-
ping and blocking may be somewhat exceptional in Scratch: stopping causes repeat-
ing animations to halt, being relevant mainly in projects involving infinite looping in 
“looped animation” (AN–2) (e.g., stopping a sprite from moving forever), and blocking 
is established with the “ask/set and wait” block, being relevant mainly in projects where 
“keyboard input” (UI–4) blocks the execution of an “Animation” pattern (e.g., sprite 
motion temporarily stopped to receive a specific input). However, because these con-
tents are relevant for CT, an opportunity remains to consider pedagogically meaningful 
ways to incorporate them in programming tasks.
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Then again, “repeat until” and “wait until”, which represent “state-sync”, are blocks 
that have been noted to be difficult for students to use (Basu, 2019; Seiter and Foreman, 
2013). These blocks can be used, for instance, to synchronize collision detection (e.g., 
CO–2, CO–3) and speaker roles in dialogues (e.g., AN–3, AN–4), highlighting game-
like and story-like projects with colliding and conversing sprites as potentially mean-
ingful – although presumably more advanced – contexts to introduce these constructs. 
However, most students debugged the “repeat until” block correctly in a structured de-
bugging challenge (P7.4), suggesting that such challenges could offer a viable route 
between direct instruction and more open-ended design to teach students to understand 
and use even more advanced constructs.

Concurring with the findings of Franklin et al. (2013, 2017), “initialization” was 
missing to varying degrees throughout the course. Most students debugged initialization 
correctly in P4, however, few students demonstrated avoiding it by programming the 
sprite to glide back to the starting location. Initialization was explicitly instructed with 
P5, which may have reflected on its high presence (see Table 6). Nevertheless, we found 
that its presence subsequently decreased and varied, suggesting that a conceptual en-
counter may not self-evidently guarantee gaining a deep understanding. Instead, encoun-
tering contents repeatedly over time can be necessary for enhancing understanding and 
developing more rigorous skills. However, initialization is not mandatory for programs 
to execute in Scratch, contesting whether Scratch facilitates conceptually encountering 
it consistently and demonstrating students’ understanding reliably in it.

The students manipulated exclusively Scratch variables, resulting in no experiences 
with abstracting properties as custom variables and lists and manipulating them (Ab-
straction, Data). Similarly, the lack of arithmetic and Boolean operations revealed that 
the core educational principles in Logic remained largely unencountered. Moreover, the 
students rarely implemented “parallelism”, resulting in sparse experiences in synchro-
nization (Coordination). Variables, Boolean operations, and parallelism have been pre-
viously discovered to be somewhat difficult for students to understand and use (Basu, 
2019; Maloney et al., 2008; Meerbaum-Salant et al., 2013; Seiter and Foreman, 2013). 
In Scratch, parallelism could be introduced meaningfully when synchronizing anima-
tions (e.g., AN–4), establishing dialogues (e.g., SS–2), or waiting for sprites to collide 
(e.g., CO-3) especially in game-like projects. For variables and logical operations, stu-
dents could design Data Manipulation with comparisons (DM–2, DM–3, or DM–4) in, 
for instance, a math quiz project.

Lastly, the students never used “pen”, which can visualize sprites’ movement paths 
(Ericson and McKlin, 2012) and, therefore, animate algorithms (Modeling and de-
sign). However, algorithm animation occurs naturalistically through most programmed 
features in Scratch, contesting the significance of this construct. Moreover, “make-a-
blocks” were nonexistent, and only one student used “cloning” once. Consequently, 
the students mainly never abstracted and programmed custom behaviors or clones’ be-
haviors (Abstraction, Algorithms) or implemented recursive solutions (Algorithms). 
These constructs have been rarely addressed in prior K–9 studies, suggesting that they, 
in addition to other contents that were rarely implemented, may better suit more expe-
rienced programmers.
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Implications for Research and Practice

Despite the prevalent ideology of interest-driven design and discovery-based learn-
ing in Scratch (Brennan and Resnick, 2012), direct instruction and structured debug-
ging could effectively introduce students to fundamental contents and contents which 
they cannot manage to implement or fail to realize as hidden possibilities. These ap-
proaches can be purposeful when students begin to learn scripting in Scratch, become 
later introduced with such fundamental constructs as “initialization”, and are guided 
to realize previously unknown creative opportunities, such as mouse use (UI–3). In-
vestigating how the instruction of particular contents (e.g., user interaction) could 
pave way for students’ constructive less-structured explorations (e.g., moving from 
green flag to other kinds of interactivity) and how students’ interactions with various 
resources in different tasks could lead to successful content implementations could 
be pedagogically informative. The model of scope of autonomy recently introduced 
by Carlborg et al. (2019) could provide a vignette through which to examine such 
issues. Moreover, our results suggest that a mere conceptual encounter may not as-
sure gaining robust knowledge, and learning through implementing contents requires 
repetitions. Therefore, we restate known concerns (e.g., Lye & Koh, 2014) providing 
reason to meticulously examine when and how students gain genuine skills and deep 
understanding in CT while programming.

For learning CT comprehensively, it can be important to design various, presumably 
more complex kinds of projects, including narratives with several speakers, games with 
colliding objects and score count, projects with data manipulation, and, altogether, proj-
ects that are usable with different I/O devices. Creative contexts in which students could 
implement such contents, especially the seemingly more advanced ones (e.g., Data Ma-
nipulation, Collision, coordination by stopping and blocking, custom variables, Boolean 
operations), could be adapted from the rubrics in future empirical studies. This could be 
to examine their feasibility along with considering how to organize compact yet fruitful 
programming courses in schools. It seems especially important for practitioners to find 
time to introduce the potentially more complex contents through more complex projects 
(e.g., games and simulations). The rubrics employed herein may suggest some content 
organization and the results may suggest the kinds of programming capabilities that 
students may gain more intrinsically than they do others. However, developing rigid 
learning trajectories applying, for instance, the Bloom/SOLO taxonomy (e.g., Meer-
baum-Salant et al., 2013) for contents would require more studies. In practice, however, 
it is pedagogically justifiable to offer a “high ceiling” for students to potentially reach 
(Brennan and Resnick, 2012).

Limitations in Analysis

Although programmed artefacts are latent manifestations of thinking, evidence to rein-
force their validity in analyzing CT has begun to emerge. For instance, analysis by Dr. 
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Scratch, whose rubrics were included in our framework, has been convergent with edu-
cators’ grades, various software complexity metrics, and CT tests (Román-González 
et al., 2019). We aimed to reinforce validity by building our rubrics on existing frame-
works and, especially, focusing on semantically meaningful contents that the students 
had assuredly encountered. Nevertheless, finished projects may not have exposed all 
relevant evidence especially gained by ways that deviate excessively from implement-
ing contents (e.g., code-reading, social interactions). Hence, it is vital to complement 
assessment with other methods, such as examining students’ programming processes 
(Basso et al., 2018; Grover et al., 2017).

The students’ conceptual encounters with CT were problematic to analyze deeply 
regarding the quality of gained skills and understanding. For instance, systematically 
investigating learning progressions would have required examining more projects. Ad-
ditionally, this study did not investigate other programming contents, such as “no extra-
neous blocks” (see Appendix C), which could have complemented the findings.

The rubrics covered most blocks available in Scratch 2.0, allowing the assumption 
that they are relatively comprehensive. However, parametric precision (see Meerbaum-
Salant et al., 2013) was not analyzed as it would have required labor-intensive in-
terpreting of sprites’ parameters in different program states. Moreover, large projects 
may include more complex contents, such as synchronized coding patterns (see Seiter, 
2015), which we similarly determined too labor-intensive to categorize. CT also em-
bodies aspects that were difficult to instrumentalize in Scratch, such as recognizing 
computing in the world (Barr and Stephenson, 2011; Csizmadia et al., 2015). There-
fore, the rubrics should be interpreted as representing core CT-fostering contents and 
not necessarily as all-inclusive.

Approaching Formative Assessment

Learning goals for CT represented as programming contents can be presented rela-
tively comprehensively to students with the rubrics in Appendix C. Educators could 
systematically introduce CT in semantically meaningful contexts through storytelling, 
animating, or game development in more open-ended or structured programming tasks 
that are thematically connected to different curricular areas (Bocconi et al., 2018). As 
exemplified in this work, eliciting evidence of students’ skills and understanding in CT 
can be carried out by assessing students’ Scratch projects. To moderate the hindrance 
concerning slow and laborious manual analysis, assessment could focus only on se-
lected code segments.

The purpose of feedback is to stimulate the correction of specific errors or poor 
strategies with clear suggestions on how to improve the work based on progress toward 
achieving goals (Black and Wiliam, 1998). Feedback in micro-programmatic analysis 
can, firstly, pinpoint errors directly or by hinting when fundamental constructs (e.g., 
control, coordination, initialization) are missing from a specific instance. Second, more 
generally, it can guide towards improving the current instance types (e.g., relative in-
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stead of absolute parameter changes, synchronized dialogues instead of monologues, 
using different synchronization methods) or provide tutorials demonstrating how to 
design new instance types (e.g., score counting as Data Manipulation, Collision of 
sprites in a game).

Altogether, the formative assessment processes discussed above can be carried out 
by the teacher. However, as highlighted in formative assessment, especially for nur-
turing students’ metacognition and collaboration (Black and Wiliam, 2009), students 
could assess their own or their peers’ projects. Our aspiration is that the rubrics could 
be automated to be employed in a learning-support system that can assess projects ac-
curately and provide timely suggestions (see also Moreno-León et al., 2015).

Conclusions

CT continues finding foothold through programming in schools, although it has been 
enveloped by a scarcity of research focused especially on supporting learning. Pushing 
from such circumstance, this study used a comparatively comprehensive and fine-grained 
framework aimed towards enhancing especially primary school students’ learning of CT. 
We assessed the programming contents and indicative conceptual encounters with CT 
through 4th grade students’ versatile Scratch projects. The results provided in-depth in-
sight of students’ experiences with diverse areas in CT and the future steps of assessing 
it in Scratch in classroom situations.

To target the acquisition of CT through Scratch broadly in the classroom, it can be 
necessary to introduce manifold programming activities and design various kinds of 
projects apart from merely those that are especially characteristic to the tool. Pedagogi-
cal focus could be placed especially on guiding students towards unfamiliar and more 
advanced contents and creative possibilities. However, returning to familiar contents 
may be necessary occasionally to reinforce skills. Direct instruction and structured 
debugging can accompany the prevalent discovery-based learning approaches. Rather 
worryingly, however, available time to complete very intricate projects during lessons 
can be limited, which accentuates the potential benefit of incorporating programming 
in different curricular areas. Programming courses could thus promote designing us-
able projects that gamify or simulate other curricular topics. Devising and testing such 
learning tasks in practice provides an important aspiration for pedagogical planning and 
further investigation. However, Scratch can be effective for acquiring certain areas in 
CT, which should be learned in various contexts.

Concerning holistic assessment of CT, this study presents a framework for assessing 
particular areas in CT through Scratch projects. Future scholarly works could include 
large-scale reports of CT encountered over periods of time (e.g., entire curricula) and 
detailed investigations into individual students’ experiences. Future studies could espe-
cially examine how the rubrics could be used to support learning in dynamic classroom 
contexts in the ways theorized herein. However, it is altogether important to comple-
ment the assessment of static projects with other methods.
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