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Abstract: Sami Lähdemäki, About mean-variance hedging with basis risk, Master’s
Thesis of mathematics, 52p., University of Jyväskylä, Deparment of Mathematics and
Statistics, autumn 2021.

In this thesis we introduce a mean-variance hedging problem in an incomplete
market. As a main source we follow X. Xue, J. Zhang and C. Weng article Mean-
variance Hedging with Basis Risk. We assume a time interval [0, T ] for some T > 0,
an arbitrage free financial market, and consider one risk-free asset and (m+ 1) risky
assets. The dynamics of the assets are given by stochastic differential equations with
deterministic and Borel-measurable coefficients. One risky asset is connected to the
pay-off function which we want to hedge. We assume that this connected asset can not
be used in hedging and this makes the market incomplete. Because of incompleteness
perfect hedging is not possible.

We define a profit-and-loss random variable by using the difference between the
value of the hedging portfolio and the pay-off function. A mean-variance criterion is
used to this random variable and by that the solution is a hedging strategy which
maximizes the difference between the expected value and variance of the profit-and-
loss random variable.

To find a solution we start by recalling some important results from probability
theory and stochastic analysis. We introduce shortly multiple stochastic integrals
and properties of them. These integrals are used to define the Malliavin derivative.
The mean-variance hedging problem is solved by using Linear-Quadratic theory. We
consider an auxiliary problem and show that by solving the auxiliary problem we
are able to solve the original problem. The solving method with Linear-Quadratic
theory is connected to the backward stochastic differential equations (BSDE) and in
the thesis we see also the connection of the BSDEs to the Malliavin derivative. We
compute an explicit formula for the Malliavin derivative of a forward contract and an
European put and call option.

The pay-off function in this thesis is assumed to be Malliavin differentiable and
hence we are able to give an explicit solution for the problem. As a main theorem
we formulate an explicit hedging strategy which solves the mean-variance hedging
problem in the incomplete market.
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Tiivistelmä: Sami Lähdemäki, About mean-variance hedging with basis risk, matema-
tiikan pro gradu -tutkielma, 52 s., Jyväskylän yliopisto, Matematiikan ja tilastotieteen
laitos, syksy 2021.

Tässä tutkielmassa perehdytään odotusarvo-varianssi -suojausongelmaan (engl.
mean-variance hedging problem) epätäydellisillä sijoitusmarkkinoilla. Päälähteenä seu-
raamme X. Xuen, J. Zhanging ja C. Wengin artikkelia Mean-variance Hedging with
Basis risk. Oletamme aikavälin [0, T ] jollekin T > 0, arbitraasivapaan sijoitusmarkki-
nan, yhden riskittömän sijoituskohteen ja (m+ 1) riskillistä sijoituskohdetta. Näiden
kohteiden arvon oletetaan noudattavan stokastisia differentiaaliyhtälöitä, joissa ker-
toimet ovat deterministisiä ja Borel-mitallisia. Yksi näistä riskillisistä sijoituskohteista
oletetaan liittyvän vaateeseen, jolle haluamme rakentaa suojaussalkun. Tätä kyseis-
tä sijoituskohdetta ei voida käyttää suojaussalkun rakentamisessa, mikä aiheuttaa
sijoitusmarkkinan epätäydellisyyden. Tämän vuoksi myös täydellisen suojaussalkun
rakentaminen ei ole mahdollista.

Määrittelemme voittoa/tappiota kuvaavan satunnaismuuttujan käyttämällä suo-
jaussalkun arvon ja vaateen erotusta. Odotusarvo-varianssi -kriteeriä käytetään tähän
satunnaismuuttujaan ja tämän johdosta ratkaisu on suojaussalkku, joka maksimoi
erotuksen voittoa/tappiota kuvaavan satunnaismuuttujan odotusarvon ja varianssin
välillä.

Ratkaisun löytämiseksi aloitamme kertaamalla tärkeitä ja tarpeellisia tuloksia to-
dennäköisyysteoriasta ja stokastisesta analyysistä. Tämän jälkeen esittelemme lyhyes-
ti moninkertaiset stokastiset integraalit ja niiden ominaisuuksia sekä käytämme näi-
tä Malliavin derivaatan määrittelyyn. Odotusarvo-varianssi -ongelman ratkaisun löy-
tämiseksi käytämme ”Linear-Quadratic” -teoriaa. Oletamme apuongelman ja osoi-
tamme, että ratkaisemalla apuongelman on mahdollista ratkaista myös alkuperäinen
ongelma. Käyttämämme ”Linear-Quadratic” -teoria on yhteydessä takaperoisiin sto-
kastisiin differentiaaliyhtälöihin ja tutkielmassa näemme näiden yhteyden Malliavin
derivaattaan. Johdamme myös eksplisiittiset ratkaisut suoran sopimuksen ja Euroop-
palaisen myynti- ja osto-option Malliavin derivaatalle.

Tässä tutkielmassa vaateen oletetaan olevan Malliavin derivoituva ja tämä mah-
dollistaa eksplisiittisen ratkaisun löytämisen. Pääteoreemana muotoilemme eksplisiit-
tisen suojaussalkun, joka ratkaisee odotusarvo-varianssi -ongelman tilanteessa, jossa
sijoitusmarkkina on epätäydellinen.
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Introduction

In this thesis we are interested in optimal hedging strategies for a given pay-off,
that means we try to determine a trading strategy which replicates the pay-off. We
assume that the financial market is arbitrage free and consists of one risk-free asset
earning by constant rate and (m+ 1) risky assets with dynamics given by stochastic
differential equations. In a complete market it is always possible to find a hedging
strategy which replicates a given pay-off, and this possibility is actually given as a
definition of completeness in [11]. However, in the setting of this thesis the asset
which is connected to our hedging objective is not allowed to be used in hedging. So
we only can use other assets which are stochastically dependent on the one which we
can not trade with. This causes the market to be incomplete. So our aim here is
to determine trading strategies such that the outcome is close to the given pay-off in
some sense.

We use a mean-variance criterion to measure the closeness. The portfolio selection
using this criteria has been proposed by Markowitz [17], where the variance is assumed
to be a measure for risk. We define a profit-and-loss random variable at terminal time
T > 0 by setting

V θ(T ) = Xθ(T )−G(S0;T ),

where Xθ is the value of the hedging portfolio using the hedging strategy θ, and G
is the pay-off function. By the mean-variance criterion the aim is to find a strategy
which solves the problem

max
θ∈Θ

{
E[V θ(T )]− γ

2
Var[V θ(T )]

}
,

where γ > 0 can be interpreted by [16] as the weight which the investor puts on the
variance.

To solve this problem we use stochastic Linear-Quadratic theory as a tool. This
method is used in [26] and [16] for example. Both papers assume a complete market
where all assets are possible to use for hedging. So we can only use the idea. The
main source for us which we follow is [24].

In Linear-Quadratic theory solving the mean-variance problem is connected to
solving two different equations. In our case these are a backward differential equation
and a backward stochastic differential equation. It is shown that if these two equations
are solvable, then also our problem can be solved.

We will see that solving the backward stochastic differential equation has a con-
nection to Malliavin derivatives so we also shortly introduce Malliavin calculus by
using [19]. Also the Malliavin derivative of the pay-off function is needed in the opti-
mal hedging strategy so we compute the Malliavin derivatives of a forward contract,
a European put and call option and an Asian option.
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INTRODUCTION 2

As a main result we are able to prove an explicit formula for the hedging strategy
which solves the mean-variance hedging problem in an incomplete market where the
basis risk follows from the setting.

The thesis is organized as follows: In Chapter 1 we recall some important results
from Probability theory and Stochastic analysis which are needed later. In Chapter 2
the basics of Malliavin calculus is given and at the end of the chapter the reader gets
some useful tools for calculating Malliavin derivatives. Chapter 3 is used to formulate
our hedging problem. In Chapter 4 we give the basic idea of stochastic Linear-
Quadratic problems and derive important results concerning our problem. Chapter 5
concludes the thesis and contains the main result, the optimal solution to our mean-
variance hedging problem. In Appendix A is a collection of results needed in this
thesis, and Appendix B contains a list of notations.



CHAPTER 1

Probability theory and stochastic analysis

Here we will give some basic definitions and tools from probability theory and
stochastic analysis. In this chapter we will use basically [7], [10], [13] and [15].

1.1. Probability space and random variables

Definition 1.1.1. Let Ω be a non-empty set. Then a system F of subsets A ⊂ Ω
is called σ-algebra on Ω if the following holds

(1) ∅,Ω ∈ F

(2) if A ∈ F then Ac ∈ F

(3) if A1, A2, ... ∈ F then ∪∞i=1Ai ∈ F.

In this situation the pair (Ω,F) is called a measurable space.

For later use we give a definition of the Borel σ-algebra.

Definition 1.1.2 ([25]Definition 1.4(ii)). Let B(Rd) be the system of all open
subsets in Rd for all d ∈ N. Then it is called Borel σ-algebra on Rd.

Definition 1.1.3. Let (Ω,F) be a measurable space. Then a map µ : F → [0,∞]
is called measure if the following two properties holds

(1) µ(∅) = 0
(2) for all A1, A2, ... ∈ F with Ai ∩ Aj = ∅ for i 6= j it holds

µ(∪∞i=1Ai) =
∞∑
i=1

µ(Ai).

Then (Ω,F, µ) is called measure space.

Definition 1.1.4. Let (Ω,F) be a measurable space. If for a measure µ : F →
[0,∞] it holds that µ(Ω) = 1 then we denote µ = P and the measure space (Ω,F,P)
is called probability space.

A special probability space, called a complete probability space, is used in many
cases.

Definition 1.1.5. Let (Ω,F,P) be a probability space. Let A ∈ F such that
P(A) = 0. If B ⊆ A implies that B ∈ F, then probability space is called complete.

To define random variables we start with simple functions.

Definition 1.1.6. Let (Ω,F) be a measurable space. A function f : Ω → R is
called simple function if there exists α1, . . . , αn ∈ R and A1, . . . , An ∈ F such that

f(ω) =
n∑
i=1

αi1Ai(ω),

3
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where 1A(ω) = 1 if ω ∈ A and 0 otherwise.

Definition 1.1.7. Let (Ω,F) be a measurable space and f : Ω → R. If there is
a sequence of simple functions (fn)∞n=1 such that

f(ω) = lim
n→∞

fn(ω)

for all ω ∈ Ω, then function f is called measurable. If the measurable space has a
probability measure P, then the measurable function is called random variable.

We do not always have to show that a function is a random variable by using
simple functions. For a measurable function there exists an equivalent condition
which is often more useful.

Proposition 1.1.8 ([7] Proposition 3.1.3). Let (Ω,F) be a measurable space and
let f : Ω→ R be a function. Then f is measurable if and only if

f−1((a, b)) := {ω ∈ Ω : a < f(ω) < b ∈ F},
for all −∞ < a < b <∞.

An important concept in probability is the independence of random variables. It
will be needed later.

Definition 1.1.9. Let (Ω,F,P) be a probability space and fi : Ω→ R be random
variables for all i = 1, 2, . . . , n. If for all B1, . . . , Bn ∈ B(R) one has

P(f1 ∈ B1, . . . , fn ∈ Bn) = P(f1 ∈ B1) . . .P(fn ∈ Bn),

then the random variables f1, . . . , fn are called independent.

1.2. Lebesgue integral

We assume that the reader is familiar with the Lebesgue integral and recall only
some important tools. As a reference we recommend [7]. Our first tool is Dominated
convergence.

Proposition 1.2.1 (Dominated convergence, ([7] Proposition 5.4.5)). Let (Ω,F, µ)
be a measure space and g, f1, f2, · · · : Ω→ R be measurable functions such that |fn| ≤ g
for all n ∈ N. Assume that g is integrable and limn→∞ fn = f . Then f is integrable
and

lim
n→∞

∫
Ω

fndµ =

∫
Ω

fdµ.

Another tool that gives a possibility to calculate integrals and especially expecta-
tions explicitly is the Change of variable formula which we formulate for a probability
space.

Proposition 1.2.2 (Change of variable, ([7] Proposition 5.6.1)). Let (Ω,F,P)
be a probability space, (R,B(R)) measurable space, f : Ω → R a random variable
and ϕ : R → R Borel-measurable function. Assume that Pf is the distribution of f,
meaning

Pf (B) = P({ω ∈ Ω : f(ω) ∈ B}) = P(f−1(B)),

for all B ∈ R. Then ∫
B

ϕdPf =

∫
f−1(B)

ϕ(f)dP,



1.3. STOCHASTIC PROCESSES 5

for all B ∈ R.

1.3. Stochastic processes

Families of random variables play an important role in stochastic analysis and in
our case we will give a definition for a continuous time interval [0, T ], where T > 0.

Definition 1.3.1. Let T > 0 and [0, T ]. Then a family of random variables
X = (Xt)t∈[0,T ] with Xt : Ω → R is called stochastic process with a continuous
interval [0, T ].

We can think a σ-algebra as all information what we have. Next we introduce a
definition which tells about the information what we have at some time point.

Definition 1.3.2. Let (Ω,F,P) be a probability space. Then the family of σ-
algebras (Ft)t∈[0,T ] is called filtration if Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t ≤ T and
(Ω,F,P, (Ft)t∈[0,T ]) is called stochastic basis.

Using a filtration one can say something about types of measurability of stochastic
processes.

Definition 1.3.3. Let (Ω,F,P, (Ft)t∈[0,T ]) be a stochastic basis andX = (Xt)t∈[0,T ],
Xt : Ω→ R a stochastic process. Then

(1) The process X is called measurable if the function (ω, t) 7→ Xt(ω) seen as a
map between Ω × [0, T ] and R is measurable with respect to F ⊗B([0, T ])
and B(R).

(2) The process X is called progressively measurable with respect to (Ft)t∈[0,T ] if
for all s ∈ [0, T ] the function (ω, t) 7→ Xt(ω) seen as a map between Ω× [0, s]
and R is measurable with respect to Fs ⊗B([0, s]) and B(R).

(3) The process X is called adapted with respect to (Ft)t∈[0,T ] if for all t ∈ [0, T ]
the random variable Xt is Ft-measurable.

Between these three different kinds of measurability one has the following connec-
tions.

Proposition 1.3.4 ([10] Propositions 2.1.10. and 2.1.11.). The following holds

(1) A progressively measurable process is measurable and adapted.
(2) An adapted process with left- or right-continuous paths is progressively mea-

surable.

Next we look at one famous stochastic process. It was first observed by Robert
Brown when he was looking at pollen in water by a microscope. He realized that
particles move incessant and irregular and published papers 1928 and 1929 about this
movement. After this observation 1905 Albert Einstein gave a correct explanation for
this phenomenon. From the perspective of mathematics in 1900 Louis Bachelier gave
a first, but not rigorous, definition for Brownian motion when he studied fluctuation
of stock prices. This was without a connection to Brownian motion in physics. The
first rigorous mathematical construction was given by Norbert Wiener in 1923.

Definition 1.3.5 (Brownian motion, ([20] Definition 1.2.1)). Let (Ω,F,P) be a
probability space.
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(1) A process W = (Wt)t∈[0,T ] with W0 = 0 is called standard Brownian motion
if
(a) (Wt)t∈[0,T ] is continuous.
(b) For all n ∈ N and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = T the increments Wtn −

Wtn−1 , . . . ,Wt2 −Wt1 are independent.
(c) For all 0 ≤ s ≤ t ≤ T it holds Wt−s ∼ N(0, t− s).

(2) An Rd-valued stochastic process W = (Wt)t∈[0,T ], Wt = (W 1
t , . . . ,W

d
t ), where

W 1, . . . ,W d are Brownian motions independent from each other, is called a
d-dimensional Brownian motion.

Information from Brownian motion can be collected to a special σ-algebra.

Definition 1.3.6. Let W = (Wt)t∈[0,T ] be a Brownian motion which generates
σ-algebra for all t ∈ [0, T ]

FWt = σ(Ws : 0 ≤ s ≤ t).

If

N =
{
A ⊆ Ω : there exist a B ∈ FWT such that A ⊆ B and P(B) = 0

}
,

then (Ft)t∈[0,T ] with Ft = FWt ∨N is called augmentation of (FWt )t∈[0,T ].

1.4. Conditional expectation and martingales

Assume a probability space (Ω,F,P), a random variable f : Ω → R and another
σ-algebra G which is included in F. Then if the random variable f is F-measurable it
is not always G-measurable. The following proposition and definition introduce the
concept of conditional expectation.

Proposition 1.4.1 ([7] Proposition 7.3.1). Let (Ω,F,P) be a probability space,
G ⊆ F be a sub-σ-algebra and f a random variable such that f ∈ L(Ω,F,P). Then

(1) There exists a random variable g ∈ L(Ω,G,P) such that∫
B

fdP =

∫
B

gdP, for all B ∈ G.

(2) If there is g and g’ such that for both above hold, then

P(g 6= g′) = 0.

Definition 1.4.2 ([7] Definition 7.3.2). The random variable g ∈ L(Ω,G,P) in
Proposition 1.4.1 is called conditional expectation of f given G. It is denoted by

g = E[f |G].

It is good to notice that the conditional expectation can be changed on sets with
probability zero so it is unique only almost surely. The conditional expectation has
many properties which are listed below. For later use especially the property called
tower property is useful for us.

Proposition 1.4.3 ([7] Proposition 7.3.3 (1)-(9)). Let (Ω,F,P) be a probability
space and H ⊆ G ⊆ F sub-σ-algebras of F. Assume f, g ∈ L(Ω,F,P). Then we have
the following properties almost surely:
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(1) Linearity: Let λ, µ ∈ R. Then

E [λf + µf |G] = λE [f |G] + µE [g|G] .

(2) Monotonicity: Let g ≤ f almost surely. Then E [g|G] ≤ E [f |G].
(3) Positivity: Let f ≥ 0 almost surely. Then E [f |G] ≥ 0.
(4) Convexity: |E [f |G] | ≤ E [|f ||G].
(5) Projection property: Let f be G-measurable. Then E [f |G] = f .
(6) Tower property: E [E [f |G] |H] = E [E [f |H] |G] = E [f |H].
(7) Let h : Ω→ R be G-measurable and fh ∈ L(Ω,F,P). Then

E [fh|G] = hE [f |G] .

(8) Let G = {∅,Ω}. Then E [f |G] = E[f ].
(9) Let f be independent from G. Then E [f |G] = E[f ].

For the conditional expectation we have a similar property as Proposition 1.2.1
states for the Lebesgue integral. It is called Dominated convergence for conditional
expectation.

Proposition 1.4.4 ([1] Equation (15.14)). Let (Ω,F,P) be a probability space,
G ⊆ F be a sub-σ-algebra and (Xn)n∈N a sequence of random variables such that
|Xn| ≤ Y for all n ∈ N and for some integrable random variable Y. Assume also that
Xn → X almost surely when n→∞. Then

lim
n→∞

E [Xn|G] = E [X|G] .

The conditional expectation is used in the definition of martingales, which are
important processes in the field of stochastics.

Definition 1.4.5. Let (Ω,F,P, (Ft)t∈[0,T ]) be a stochastic basis. A stochastic
process M = (Mt)t∈[0,T ] is called martingale with respect to a filtration (Ft)t∈[0,T ] if

(1) Mt is Ft-measurable for all t ∈ [0, T ]
(2) E|Mt| <∞ for all t ∈ [0, T ]
(3) E[Mt|Fs] = Ms for all 0 ≤ s ≤ t ≤ T .

Moreover, a martingale M = (Mt)t∈[0,T ] belongs to Mc
2 if

(1) E|Mt|2 <∞ for all t ∈ [0, T ]
(2) the paths t→Mt(ω) are continuous for all ω ∈ Ω.

The space M
c,0
2 consists of all M ∈Mc

2 with M0 = 0.

Sometimes the set Mc
2 is not large enough, so we need also a definition for a larger

set of processes. For that a map called stopping time is needed.

Definition 1.4.6. Let (Ω,F) be a measurable space with filtration (Ft)t∈[0,T ].
Then the map τ : Ω → [0, T ] is called stopping time with respect to the filtration
(Ft)t∈[0,T ] if

{τ ≤ t} ∈ Ft, for all t ∈ [0, T ].

Definition 1.4.7. Let M = (Mt)t∈[0,T ] be a continuous and adapted process
with M0 = 0. If there exists an increasing sequence (τn)∞n=0 of stopping times with
limn→∞ τn(ω) = ∞ for all ω ∈ Ω such that Mτn = (Mt∧τn)t∈[0,T ] is martingale for
all n ∈ N, then the process M is called local martingale. Moreover, the set of local
martingales is denoted by M

c,0
loc.
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We have a sufficient condition for a local martingale to be a martingale.

Lemma 1.4.8. Let (Mt)t∈[0,T ] be a (continuous) local martingale and G such that

sup
t∈[0,T ]

|Mt| < G and EG <∞.

Then (Mt)t∈[0,T ] is martingale.

Proof. Let (τN)N≥1 be a localizing sequence. Now we have for 0 ≤ s < t ≤ T
that

E [Mt∧τN |Fs] = Ms∧τN .

By dominated convergence for conditional expectation (Proposition 1.4.4) we get

lim
N→∞

E [Mt∧τN |Fs] = E
[

lim
N→∞

Mt∧τN |Fs
]

= E [Mt|Fs] .
On the other hand we have

lim
N→∞

Ms∧τN = Ms.

So we conclude
E [Mt|Fs] = Ms.

�

1.5. Itô integral and Itô’s formula

In this section we recall the Itô integral. We assume the usual conditions meaning
that we have a complete probability space (Ω,F,P) and a right continuous filtration
(Ft)t∈[0,T ] which means ∩ε>0Ft+ε = Ft for all t ∈ [0, T ]. We also assume that all sets
of probability zero are included in F0 and W = (Wt)t∈[0,T ] is a standard Brownian
motion. We give only the definitions and main properties of the Itô integral. For
more information for example [10] is recommend. First we need simple stochastic
processes and a stochastic integral for them.

Definition 1.5.1. Let L = (Lt)t∈[0,T ] be a stochastic process. It is called simple
if there exist

(1) a sequence of time points such that 0 = t0 < t1 < · · · < tn = T and
(2) Fti-measurable bounded random variables υi : Ω→ R,

such that L has a representation

Lt(ω) =
n∑
i=1

υi−1(ω)1(ti−1,ti](t).

The set of all simple processes is denoted by L0.

Definition 1.5.2. Let L ∈ L0 and t ∈ [0, T ]. Then stochastic integral is defined
as

It(L)(ω) =
n∑
i=1

υi−1(ω)
(
Wti∧t(ω)−Wti−1∧t(ω)

)
.

The stochastic integral of a simple process is a continuous, square integrable mar-
tingale as the next proposition states.
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Proposition 1.5.3. Let L ∈ L0. Then I(L) = (It(L)t∈[0,T ]) ∈M
c,0
2 .

Stochastic integrals of simple processes can be extended to a larger set of inte-
grands.

Definition 1.5.4. The set of all progressively measurable stochastic processes
L = (Lt)t∈[0,T ], Lt : Ω→ R with

‖L‖L2,t =

(
E
∫ t

0

L2
udu

) 1
2

<∞ for all t ∈ [0, T ],

is denoted by L2.

Proposition 1.5.5 ([10]Proposition 3.1.12 (i)-(v)). The map I : L0 → M
c,0
2 can

be extended to J : L2 →M
c,0
2 with properties:

(1) Linearity: Let α, β ∈ R and L,K ∈ L2. Then

Jt(αL+ βK) = αJt(L) + βJt(K) a.s. for t ∈ [0, T ].

(2) Extension property: Let L ∈ L0. Then It(L) = Jt(L) a.s. for t ∈ [0, T ].
(3) Itô isometry: Let L ∈ L2. Then(

E
[
Jt(L)2

]) 1
2 =

(
E
∫ t

0

L2
udu

) 1
2

for t ∈ [0, T ].

(4) Continuity property: Let (K(n))∞n=1 be a sequence where K(n) ∈ L2 for all
n ∈ N. Let L ∈ L2. If d(K(n), L) =

∑∞
m=1 2−m min

{
1, ‖K(n) − L‖L2,m

}
→ 0

when n→∞, then

E

[
sup
t∈[0,T ]

|Jt(L)− Jt(K(n))|2
]
→ 0

as n→∞.
(5) Uniqueness: If Ĵ : L2 →M

c,0
2 is another mapping for which above properties

hold, then

P
(
Jt(L) = Ĵt(L), t ∈ [0, T ]

)
= 1,

for all L ∈ L2.

For L ∈ L2 we have that J(L) is a square integrable martingale. But this property
is vanishing in the next extension.

Definition 1.5.6. (1) The set of progressively measurable stochastic process
L = (Lt)t∈[0,T ] with

P
(
ω ∈ Ω :

∫ T

0

Lu(ω)2du <∞
)

= 1

is denoted by Lloc
2 .

(2) Let (τn)∞n=1 be a sequence of stopping times. It is called localizing for L =
(Lt)t∈[0,T ] ∈ Lloc

2 if
(a) 0 ≤ τ0(ω) ≤ τ1(ω) ≤ · · · ≤ T with limn→∞ τn = T for all ω ∈ Ω and
(b) Lτn = Lt1t≤τn ∈ L2 for all n = 0, 1, 2, . . .

The next lemma states the existence of a stochastic integral for processes in Lloc
2 .
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Lemma 1.5.7 ([10] Lemma 3.1.19). Let L ∈ Lloc
2 . Then there is a unique and

adapted process X = (Xt)t∈[0,T ] with X0 = 0 such that

P (Jt(L
τn) = Xt, t ∈ [0, τn]) = 1,

for all localizing sequences (τn)∞n=0 of L and for all n = 1, 2, . . . .

Remark 1.5.8. The uniquenes in Lemma 1.5.7 means that if there is a Y =
(Yt)t∈[0,T ] with the same properties, then P (Xt = Yt, t ∈ [0, T ]) = 1.

Definition 1.5.9. Let L ∈ Lloc
2 . Then the process X in Lemma 1.5.7 is called Ito

integral and it is denoted by

X =

(∫ t

0

LudWu

)
t∈[0,T ]

.

For integrands from Lloc2 the Itô integral is a local martingale:

Proposition 1.5.10 ([10]Proposition 3.1.23 (i)). Let L ∈ Lloc
2 . Then one has that(∫ t

0
LudWu

)
t∈[0,T ]

∈M
c,0
loc.

In many situations the task is to show that the integrand is in L2 implying that the
Itô integral is a martingale. As a notation we get for the Itô isometry in Proposition
1.5.5 (

E
[
(

∫ t

0

LudWu)
2

]) 1
2

=

(
E
∫ t

0

L2
udu

) 1
2

for t ∈ [0, T ].

A very useful tool in stochastic analysis is called Itô’s formula which allows us
to write stochastic processes in different form. To recall this we need first some
definitions.

Definition 1.5.11. Let A = (At)t∈[0,T ], At : Ω→ R be a stochastic process such
that

sup
n∈N

sup
0=t0≤t1≤...≤tn=t

n∑
k=1

|Atk(ω)− Atk−1
(ω)| <∞ a.s. for all t ∈ [0, T ].

Then the process A is said to be of bounded variation.

Definition 1.5.12. Let X = (Xt)t∈[0,T ] be a continuous and adapted stochastic
process. If there exist x0 ∈ R, L ∈ Lloc

2 and a progressively measurable process
a = (at)t∈[0,T ] with ∫ t

0

|au(ω)|du <∞

for all t ∈ [0, T ] and ω ∈ Ω such that X can be represented as

Xt = x0 +

(∫ t

0

LudWu

)
(ω) +

∫ t

0

audu a.s. for all t ∈ [0, T ],

then X is called Itô process.
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Definition 1.5.13. Let X = (Xt)t∈[0,T ] be a continuous and adapted process. If
there exist x0 ∈ R, M ∈Mloc

2 and a process A of bounded variation with A0 = 0 such
that

Xt = x0 +Mt + At,

then X is called a continuous semi-martingale.

Remark 1.5.14. Especially Itô processes are continuous semi-martingales since

sup
0=t0≤t1≤...≤tn=t

n∑
k=1

|
∫ tk

0

audu−
∫ tk−1

0

audu| = sup
0=t0≤t1≤...≤tn=t

n∑
k=1

|
∫ tk

tk−1

audu|

≤ sup
0=t0≤t1≤...≤tn=t

n∑
k=1

∫ tk

tk−1

|au|du

=

∫ t

0

|au|du <∞.

We give a version of Itô’s formula which is for continuous semi-martingales.

Proposition 1.5.15 ([10]Proposition 3.4.3). Let f ∈ C2(Rd) and Xt = (X1
t , . . . , X

d
t )

be a vector of continuous semi-martingales. Then almost surely

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂f

∂xi
(Xu)dX

i
u +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xu)d

〈
M i,M j

〉
u
,

where dX i
u = dM i

u + dAiu and 〈M i,M j〉u = 1
4

[〈M i +M j〉u − 〈M i −M j〉u] is called
cross-variation.

To make it possible to use explicitly above Itô’s formula, we need also the following
proposition.

Proposition 1.5.16 ([10]Proposition 4.4.3.). Let L ∈ Lloc
2 . Then〈∫ ·

0

LudWu

〉
t

=

∫ t

0

L2
udu,

for all t ∈ [0, T ] almost surely.

We had before the Lemma 1.4.8 which provided a condition when a local martin-
gale is a martingale. We are able to give a similar condition called Novikov’s condition
for the exponential martingale.

Proposition 1.5.17 ([10]Proposition 4.4.8). Let L ∈ Lloc
2 and t ∈ [0, T ]. Then

e
∫ t
0 LudWu− 1

2

∫ t
0 L

2
udu

is a martingale if

E
[
e

1
2

∫ T
0 L2

udu
]
<∞.
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1.6. Stochastic differential equations

In this section we focus on stochastic differential equations, also called SDEs, and
state a proposition about existence and uniqueness of solutions. For more informa-
tion about solving SDEs we recommend for example [13]. We assume again that the
usual conditions hold as in the previous section but now we assume (Wt)t∈[0,T ],Wt =
(W 1

t , . . . ,W
d
t ) to be a d-dimensional standard Brownian motion adapted to the filtra-

tion (Ft)t∈[0,T ].
Let b be a d-dimensional vector of functions and σ be a d× k-dimensional matrix

of functions. For bj and σij, j ∈ {1, 2, . . . , d}, i ∈ {1, 2, . . . , k} we assume that

(1) bj, σij : [0, T ]× Rd × Ω→ R.
(2) bj and σij are B([0, T ])×B(Rd)× F-measurable.
(3) For all t ∈ [0, T ], bj(t, ·, ·) and σij(t, ·, ·) are measurable with respect to

B(Rd)× Ft.

Definition 1.6.1. Let x0 ∈ Rd. Then

(1.1)

{
dXt = b(t,Xt)dt+ σ(t,Xt)dWt

X0 = x0

is called stochastic differential equation. The d-dimensional stochastic process X =
(Xt)t∈[0,T ] is called a strong solution if the following holds:

(1) X is Ft -adapted and has continuous sample paths.

(2)
∫ T

0
(|b(t,Xt)|+ |σ(t,Xt)|2) dt <∞ a.s. where |·| denotes both the d-dimensional

norm and the norm of a matrix.
(3) For all t ∈ [0, T ]

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs a.s.

Does an SDE always have a solution? We provide a property when there exist a
unique strong solution.

Proposition 1.6.2 ([13] Theorem 6.2.1). Assume SDE (1.1). If for b and σ the
following holds

(1) |b(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2) a.s.
(2) |b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ K|x− y|2 a.s.

for all t ∈ [0, T ], x, y ∈ Rd and some constant K > 0, then the SDE has a unique
strong solution X = (Xt)t∈[0,T ].

Remark 1.6.3. Uniqueness in the above proposition means that if there exists
another strong solution Y = (Yt)t∈[0,T ] then

P(Xt = Yt, t ∈ [0, T ]) = 1.

Remark 1.6.4. From [13] (proof of Theorem 6.2.1) we get that

E

[
sup
t∈[0,T ]

|Xt|2
]
<∞.

We conclude this section with some useful inequalities called Burkholder-Davis-
Gundy inequality and Hölder inequality.
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Proposition 1.6.5 (Burkholder-Davis-Gundy, ([10]Theorem 4.3.1)). Let L ∈
Lloc

2 . Then for any 0 < p <∞ there exist constants αp, βp > 0 such that

βp

∥∥∥∥∥∥
√∫ T

0

L2
tdt

∥∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ t

0

LsdWs

∣∣∣∣
∥∥∥∥∥
p

≤ αp

∥∥∥∥∥∥
√∫ T

0

L2
tdt

∥∥∥∥∥∥
p

.

Moreover, αp ≤ c
√
p for 2 ≤ p <∞ and for some constant c > 0.

The Hölder inequality we state for a probability space.

Proposition 1.6.6 (Hölder, ([7] Proposition 5.10.5)). Let (Ω,F,P) be a proba-
bility space and X, Y : Ω → R random variables. If 1 < p, q < ∞ and 1

p
+ 1

q
= 1,

then
E [|XY |] ≤ (E [Xp])

1
p (E [Y q])

1
q .



CHAPTER 2

Malliavin calculus

2.1. A multiple stochastic integral

Next we will follow Nualart [18] and give the basics of Malliavin calculus.

Definition 2.1.1. Let (Ω,F,P, (Ft)t∈[0,T ]) be a filtered probability space and H
a real and separable Hilbert space with scalar product 〈·, ·〉H and norm ‖ · ‖H . We
consider a stochastic process indexed by the elements of H:

W = {W (h);h ∈ H}.
We say that this process is an isonormal Gaussian process if W is a Gaussian family
of random variables such that for all h, g ∈ H

E [W (h)W (g)] = 〈h, g〉H
and

E [W (h)] = 0.

In this thesis we realize such an isonormal Gaussian process as follows. We assume
a probability space (Ω,F,P) carrying a Brownian motionW = (Wt)t∈[0,T ] and a special
Hilbert space with

L2
(
[0, T ],B([0, T ]), λ

)
=

{
f : [0, T ]→ R;

(∫ T

0

f(t)2dλ(t)

) 1
2

<∞

}
.

For all f, g ∈ L2([0, T ]), we letW (f) =
∫ T

0
f(s)dWs and 〈f, g〉L2([0,T ]) = E[W (f)W (g)].

Moreover, for all A ∈ B([0, T ]), we let W (A) = W (1A). In this way, we have an
isonormal Gaussian process as we defined above.

Next we define a set of special elementary functions, which will vanish on diago-
nals.

Definition 2.1.2. Let A1, . . . , An ∈ B([0, T ]) such that Ak ∩Al = ∅ for all k 6= l,
where k, l ∈ {1, . . . , n}. Then we define

Em =

{
f : [0, T ]m → R; f(t1, . . . , tm) =

∑n
i1,...,im=1 ai1···im1Ai1×···×Aim

(t1, . . . , tm)

where ai ∈ R and ai1···im = 0, if ik = ij for some k 6= j.

}
We define a multiple stochastic integral first for these elementary functions and

after that for all functions in L2([0, T ]m).

Definition 2.1.3. For f ∈ Em given as above a multiple stochastic integral is
defined as

Im(f) =
n∑

i1,...,im=1

ai1···imW (Ai1) · · ·W (Aim).

14
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Remark 2.1.4. One can easily check that this definition is independent from the
representation of f . Hence Im is well-defined.

This defined multiple stochastic integral has three important properties. Before
we state the properties, we introduce the symmetrization f̃ of a function f . This is

f̃(t1, . . . , tm) =
1

m!

∑
σ∈Sm

f(tσ(1), . . . , tσ(m)),

where Sm is the set of all permutations of {1, . . . ,m}.

Proposition 2.1.5. A multiple stochastic integral with integrands from Em has
the following properties

(i) Let f, g ∈ Em and α, β ∈ R. Then

Im(αf + βg) = αIm(f) + βIm(g).

(ii) If f̃ is symmetrization of f , then

Im(f̃) = Im(f).

(iii) If f ∈ Em and g ∈ En, then for the product of multiple stochastic integrals it
holds

E [Im(f)In(g)] =

{
0 if m 6= n

m!〈f̃ , g̃〉L2
[0,T ]m

if m = n.

Proof. (i) We can assume that f and g have the same partition A1, . . . , An,
because if not, we can make it to be the same by using intersections of sets.
Now

αIm(f) + βIm(g) = α
n∑

i1,...,im=1

ai1···imW (Ai1) . . .W (Aim)

+β
n∑

i1,...,im=1

bi1···imW (Ai1) . . .W (Aim)

=
n∑

i1,...,im=1

[αai1···im + βbi1···im ]W (Ai1) . . .W (Aim)

= Im(αf + βg)

(ii) Because of (i) we can assume a function

f(t1, . . . , tm) = 1Ai1×···×Aim (t1, . . . , tm).

For this we have by definition

Im(f) = W (Ai1) . . .W (Aim),

and for the symmetrization we have

Im(f̃) =
1

m!

∑
σ∈Sm

W (Aσ(1)) . . .W (Aσ(m)).
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Now for all permutations σ we can change order in the product such that we
always get

W (Aσ(1)) . . .W (Aσ(m)) = W (Ai1) . . .W (Aim).

By that we have

Im(f̃) =
1

m!
m!W (Ai1) . . .W (Aim) = Im(f).

(iii) Let f ∈ Em and g ∈ Ek. Because of (i) and (ii), we can assume that both
functions are symmetric and have the same partition A1, . . . , An. We have now

f(t1, . . . , tm) =
n∑

i1,...,im=1

ai1···im1Ai1×···×Aim (t1, . . . , tm)

and

g(t1, . . . , tk) =
n∑

j1,...,jk=1

bj1···jk1Aj1×···×Ajk (t1, . . . , tk).

Because the functions are symmetric, we have for all permutations

ai1···im = aσ(i1)···σ(im) and bj1···jk = bσ(j1)···σ(jk),

and because we have m! permutations for the function f and k! for g, we get

Im(f) = m!
∑

i1<···<im

ai1···imW (Ai1) . . .W (Aim)

and

Ik(g) = k!
∑

j1<···<jk

bj1···jkW (Aj1) . . .W (Ajk).

With these we get

E [Im(f)Ik(g)] = E

[
m!

∑
i1<···<im

ai1···imW (Ai1) . . .W (Aim)

×k!
∑

j1<···<jk

bj1···jkW (Aj1) . . .W (Ajk)

]
= m!k!

∑
i1<···<im

∑
j1<···<jk

ai1···imbj1···jk

×E [W (Ai1) . . .W (Aim)W (Aj1) . . .W (Ajk)] .

By Definition 2.1.2 we have Ai ∩Aj = ∅ for all i 6= j so this implies that W (Ai)
and W (Aj) are independet for all i 6= j. We have now two possibilities:

E [W (Ai1)...W (Aim)W (Aj1)...W (Ajk)] =


E[W (Ai1)

2]...E[W (Aim)2], if m = k

and iq = jq for all q ∈ {1, 2, ...,m},
0, all other cases.

So we conclude if m 6= k

E [Im(f)Ik(g)] = 0.
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And for m = k we get by Itô’s isometry and the fact that

E [W (Ai1) . . .W (Aim)W (Aj1) . . .W (Ajm)] = 0

unless iq = jq for all q ∈ {1, 2, . . . ,m} the following:

E [Im(f)Im(g)]

= E

[
m!

∑
i1<···<im

ai1···imW (Ai1) . . .W (Aim)m!
∑

j1<···<jm

bj1···jmW (Aj1) . . .W (Ajm)

]

= E

[
(m!)2

∑
i1<···<im

ai1···imbi1···imW (Ai1)
2 . . .W (A1m)2

]
= (m!)2

∑
i1<···<im

ai1···imbi1···imE
[
W (Ai1)

2
]
. . .E

[
W (Aim)2

]
= (m!)2

∑
i1<···<im

ai1···imbi1···imλ(Ai1) . . . λ(Aim)

= m!
n∑

i1,...,im=1

ai1···imbi1···imλ(Ai1) . . . λ(Aim)

= m!

∫ T

0

· · ·
∫ T

0

f(t1, . . . , tm)g(t1, . . . , tm)dλ(t1) . . . dλ(tm)

= m!〈f, g〉L2([0,T ]m).

And because we assumed the functions f and g to be symmetric, we have

E [Im(f)Im(g)] = E
[
Im(f̃)Im(g̃)

]
= m!〈f̃ , g̃〉L2([0,T ]m).

�

We also notice that if we have a symmetric function f ∈ Em, it holds for all
permutations σ ∈ Sm∫

[0,T ]m
|f(t1, . . . , tm)|2dλm =

∫
[0,T ]m

|f(tσ(1), . . . , tσ(m))|2dλm,

and thanks to the triangle inequality, this gives us

‖f̃‖L2([0,T ]m) = ‖ 1

m!

∑
σ∈Sm

f‖L2([0,Tm])

≤ 1

m!

∑
σ∈Sm

‖f‖L2([0,T ]m)

= ‖f‖L2([0,T ]m).

By that we conclude the inequality

(2.1) ‖f̃‖L2([0,T ]m) ≤ ‖f‖L2([0,T ]m).

Our next step is to extend the multiple stochastic integral to all functions in
L2([0, T ]m).

Proposition 2.1.6. The set Em is dense in L2([0, T ]m,B([0, T ]m), λm).
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Proof. We do the proof in three steps.

Step 1: Let ε > 0. First we show that we can approximate every 1A, where
A = A1 × · · · × Am and Ai ∈ B([0, T ]) for all i ∈ {1, . . . ,m}, by functions from Em.
Because the Lebesgue measure λ has no atoms, we can find for all A ∈ B([0, T ]m) a
measurable set B ⊂ A such that

0 < λ(B) < λ(A).

Now let B̃ = {B1, . . . , Bn} ⊂ B([0, T ]), where Bj ∩Bk = ∅ if j 6= k and λ(Bj) < ε

for all i = 1, . . . , n. We choose B̃ such that we can express every Ai as union of
Bj ∈ B̃. Since A ∈ [0, T ]m, we let λm(A) = Πm

i=1λ(Ai) = α and put εi1,··· ,im be 0 or 1.
In this case we can write

1A =
n∑

i1,...,im=1

εi1,··· ,im1Bi1×···×Bim .

If we define a set I which includes all (i1, . . . , im) where i1, . . . , im are all different and
put Ic = J , we get

1B =
∑

(i1,...,im)∈I

εi1,··· ,im1Bi1×···×Bim

and also 1B ∈ Em. Because in the set J are at least two of the i1, . . . , im equal, we
get

‖1A − 1B‖2
L2([0,T ]m) = ‖

∑
(i1,...,im)∈J

εi1,··· ,im1Bi1×···×Bim‖
2
L2([0,T ]m)

=
∑

(i1,...,im)∈J

εi1,··· ,imλ(Bi1)...λ(Bim)

≤
∑

(i1,...,im)∈J

λ(Bi1)...λ(Bim)

=

(
m

2

) n∑
j=1

(λ(Bj))
2
( n∑
i=1

λ(Bi)
)m−2

≤
(
m

2

)
ε
( n∑
i=1

λ(Bi)
)m−1

≤
(
m

2

)
εαm−1

→ 0, if ε→ 0.

Step 2: Next we show that every bounded function f ∈ L2([0, T ]m) can be
approximated by simple functions which are defined by using the sets of the form
A = A1 × · · · × Am. We use the Monotone class theorem for functions (Proposition
1.0.3). First let H be the set which includes all bounded and measurable functions f
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such that ‖f − fn‖L2([0,T ]m) → 0, when n→∞ and

(2.2) fn =
Nn∑
k=1

ank1Ank1×···×A
n
km
.

We define a set A = {A1 × · · · × Am, Ai ∈ B([0, T ]) for all i ∈ {1, . . . ,m}}. Now we
check the properties of the Monotone class theorem for functions.

(i) It is clear that 1A ∈ H for all A ∈ A by taking fn = 1A.
(ii) If we take f, g ∈ H and a, b ∈ R, we find for f and g simple functions fn and

gn such that fn → f and gn → g in L2([0, T ]m). Then afn + bgn is a simple
function, and afn + bgn → af + bg in L2([0, T ]m). By this we have af + bg ∈ H.

(iii) Let (gn)∞n=1 ⊆ H such that 0 ≤ gn ↑ h, where h is bounded. Because gn ∈ H

for all n ∈ N, there exists a sequence (fnk )∞k=1 of simple functions like (2.2) such
that ‖gn − fnk ‖L2([0,T ]m) ≤ ε

2n
for some k(n) ∈ N. Now we get

‖h− fnk(n)‖L2([0,T ]m) = ‖h− gn + gn − fnk(n)‖L2([0,T ]m)

≤ ‖h− gn‖L2([0,T ]m) + ‖gn − fnk(n)‖L2([0,T ]m)

≤ ‖h− gn‖L2([0,T ]m) +
ε

2n

→ 0, when n→∞.

This means that h ∈ H.

With all this we conclude by the Monotone class theorem for functions (Proposi-
tion 1.0.3) that H contains all σ(A) = B([0, T ]m)-measurable and bounded functions.

Step 3: We show that every function f ∈ L2([0, T ]m) can be approximated by
bounded functions from L2([0, T ]m). Now let N ∈ N. We take a function fN =
(−N)∨ f ∧N which is bounded for any square integrable f and limN→∞ f

N = f . By
Dominated convergence (Proposition 1.2.1) we get

lim
N→∞

‖fN − f‖2
L2([0,T ]m) = lim

N→∞

∫
[0,T ]m

|fN − f |2dλm

≤ lim
N→∞

∫
{[0,T ]m:|f(t)|>N}

|f |2dλm

= 0.

�

This above proposition means, if we take f ∈ L2([0, T ]m) there exist fn ∈ Em for
all n = 1, 2, . . . such that fn → f as n → ∞ in L2([0, T ]m). By that, Proposition
2.1.5 (iii) and inequality (2.1) we get

E [Im(fn)− Im(fk)]
2 = E [Im(fn − fk)]2

= m!‖f̃n − f̃k‖2
L2([0,T ]m)

≤ m!‖fn − fk‖2
L2([0,T ]m)

→ m!‖f − f‖2
L2([0,T ]m)) = 0,
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when n, k → ∞. This means that the sequence
(
Im(fn)

)
n≥0

is Cauchy sequence in

the space L2(Ω,F,P). Because Im is linear and continuous operator, by Proposition
1.0.1 we can extend the operator Im uniquely to the space L2([0, T ]m) with the same
properties as given in Proposition 2.1.5. Moreover, if f ∈ L2([0, T ]m,B([0, T ]m), λm),
then we denote the multiple stochastic integral by∫ T

0

· · ·
∫ T

0

f(t1, . . . , tm)dWt1 . . . dWtm = Im(f).

Proposition 2.1.7. Let f ∈ L2([0, T ]m) and g ∈ L2([0, T ]n), where n,m ∈ N.
Then the following holds almost surely

(i) Let m = n and α, β ∈ R. Then

Im(αf + βg) = αIm(f) + βIm(g).

(ii) If f̃ is the symmetrization of f , then

Im(f̃) = Im(f).

(iii) For product of multiple stochastic integrals it holds

E [Im(f)In(g)] =

{
0 if m 6= n

m!〈f̃ , g̃〉L2([0,T ]m) if m = n.

We can use instead of the multiple stochastic integral the iterated stochastic in-
tegral.

Proposition 2.1.8. For symmetric f ∈ L2([0, T ]m) it holds almost surely

Im(f) = m!

∫ T

0

∫ tm

0

· · ·
∫ t3

0

(∫ t2

0

f(t1, . . . , tm)dWt1

)
. . . dWtm .

Proof. Let Sm be the set of all permutations of {1, . . . ,m}. Since f is a sym-
metric function and by Proposition 2.1.6, we can first assume that the function f is
zero on diagonals. In this situation we get∫ T

0

· · ·
∫ T

0

f(t1, . . . , tm)dWt1 . . . dWtm

=

∫ T

0

· · ·
∫ T

0

∑
π∈Sm

f(t1, . . . , tm)1{tπ(1)≤···≤tπ(m)}dWt1 . . . dWtm

=
∑
π∈Sm

∫ T

0

· · ·
∫ T

0

f(t1, . . . , tm)1{tπ(1)≤···≤tπ(m)}dWtπ(1) . . . dWtπ(m)

=
∑
π∈Sm

∫ T

0

· · ·
∫ tπ(3)

0

∫ tπ(2)

0

f(t1, . . . , tm)dWtπ(1) . . . dWtπ(m)

=
∑
π∈Sm

∫ T

0

· · ·
∫ tπ(3)

0

∫ tπ(2)

0

f(tπ(1), . . . , tπ(m))dWtπ(1) . . . dWtπ(m)

= m!

∫ T

0

· · ·
∫ t3

0

∫ t2

0

f(t1, . . . , tm)dWt1 . . . dWtm .

Now we use Itô’s isometry to extend the result to all symmetric f ∈ L2([0, T ]m).
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�

We finish the multiple stochastic integral section with a theorem stating that
every square integrable random variable which is FW -measurable can be expressed by
a series of multiple stochastic integrals.

Theorem 2.1.9 ([18] Theorem 1.1.2). Let F ∈ L2(Ω,FW ,P), where the σ-algebra
FW is generated by the Brownian motion W = (Wt)t∈[0,T ]. Then every F can be
uniquely expressed as

F =
∞∑
m=0

Im(fm),

where fm ∈ L2([0, T ]m), and fm is a symmetric function, for all m ∈ N.

2.2. The Malliavin derivative

Multiple stochastic integrals can be used to define Malliavin derivatives. First we
let

C∞p (Rn) =

 f : Rn → R; ∂|α|f
∂x
α1
1 ···∂x

αn
n

exists for all |α| = α1 + · · ·+ αn,

with αi ∈ N0, f and ∂|α|f
∂x
α1
1 ···∂x

αn
n

have polynomial growth

 .

We also need a set of smooth random variables, so we let

S =

{
F = f(W (h1), . . . ,W (hn)); f ∈ C∞p (Rn),
h1, . . . , hn ∈ L2([0, T ]m), n ≥ 1

}
.

Definition 2.2.1. For F ∈ S the Malliavin derivative is a stochastic process
(DtF )t∈[0,T ] with

DtF =
n∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi(t).

This Malliavin derivative is a linear operator from the space S ⊂ L2(Ω,F,P) to
the space L2(Ω× [0, T ],F⊗B([0, T ]),P⊗λ). Next we introduce for all p ∈ N a norm

‖F‖1,p =
(
E(|F |p) + E(‖DF‖pL2([0,T ]))

) 1
p .

The next proposition states that the Malliavin derivative is a closable operator.

Proposition 2.2.2 ([19] Proposition 1.2.1). The Malliavin derivative D : S ⊂
Lp(Ω,F,P)→ Lp(Ω× [0, T ],F⊗B([0, T ]),P⊗ λ) is a closable operator for all p ≥ 1.

Now we define (D̄,D1,p) as an extension of (D,S) where

D1,p =

{
x ∈ Lp(Ω,F,P); there exists a Cauchy sequence
(xn)∞n=1 ⊆ S such that xn → x in ‖ ‖1,p

}
and p ≥ 1. By defining (D̄,D1,p) in this way we have a closed operator since if (xn)∞n=1

is a Cauchy sequence in ‖ ‖1,p and xn → x in ‖ ‖1,p, this means that there exists
for a given ε > 0 an n(ε) ∈ N such that for all m,n ≥ n(ε)

E|xn − xm|p + E
(∫ T

0

|Dtxn −Dtxm|2dt
) p

2

≤ ε.
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Hence there exist y ∈ Lp(Ω × [0, T ],F ⊗ B([0, T ]),P ⊗ λ) such that Dxn → y in
Lp(Ω× [0, T ],F ⊗B([0, T ]),P⊗ λ). Then x ∈ D1,p and D̄x = y.

We use again D instead of D̄ and get the Malliavin derivative (D,D1,p). Especially
we will consider D1,2 i.e. the case p = 2, and D1,∞ := ∩p≥1D1,p. Notice that we have

D1,∞ ⊂ D1,2.

We collect here for later use properties of the Malliavin derivative. The proofs can
be found in Nualart [18] and [19].

Proposition 2.2.3 ([18] Proposition 1.2.1). Let F ∈ L2(Ω,F,P) have the repre-
sentation F =

∑∞
m=0 Im(fm), where fm ∈ L2([0, T ]m), and fm are symmetric for all

m ∈ N. Then F ∈ D1,2 if and only if
∞∑
m=1

mm!‖fm‖2
L2([0,T ]m) <∞.

And for these F, we have DF ∈ L2(Ω× [0, T ],F ⊗B([0, T ]),P⊗ λ) with

DtF =
∞∑
m=1

mIm−1(fm(·, t)).

Proposition 2.2.4 ([18]Proposition 1.2.2). Let the function f : R→ R be contin-
uously differentiable such that |f ′| ≤ M for some M ∈ N and assume that F ∈ D1,2.
Then it holds

(i) f(F ) ∈ D1,2

(ii) Dt(f(F )) = f ′(F )DtF .

The above assertion extends to Lipschitz functions.

Proposition 2.2.5 ([18]Proposition 1.2.3). Let f : R→ R be a Lipschitz function
and F ∈ D1,2. Then it holds

(i) f(F ) ∈ D1,2

(ii) There exists a random variable G bounded by the Lipschitz constant M ∈ N of
f and

Dt(f(F )) = GDtF.

We want to apply the Malliavin derivative also to solutions of SDEs. Therefore
we assume a stochastic differential equation

(2.3)

{
dXt = g(t,Xt)dt+ f(t,Xt)dWt

X0 = x0 ∈ R

such that for the coefficients the following two properties hold:

(a) |f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K|x− y| for all x, y ∈ R and t ∈ [0, T ]
(b) t→ f(t, 0) and t→ g(t, 0) are bounded for t ∈ [0, T ].

Then the solution is Malliavin differentiable as it is stated in the following proposition.

Proposition 2.2.6 ([19]Theorem 2.2.1). Let (a) and (b) hold. Then there exists
a solution (Xt)t∈[0,T ] for (2.3) and Xt ∈ D1,∞ for all t ∈ [0, T ]. Moreover,

DrXt = f(r,Xt) +

∫ t

r

f̄(s)Dr(Xs)dWs +

∫ t

r

ḡ(s)Dr(Xs)ds for r ≤ t a.e.
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and
Dr(Xt) = 0 for r > t a.e.,

where f̄(s) and ḡ(s) are uniformly bounded and adapted processes. If the coefficents
in (2.3) are continuously differentiable, then

f̄(s) =
∂f

∂x
(s,Xs)

and

ḡ(s) =
∂g

∂x
(s,Xs).



CHAPTER 3

Mean-variance hedging with basis risk:
Formulation of the problem

3.1. Continuous financial market

Before formulating our problem we recall some definitions for a continuous fi-
nancial market on the time interval [0, T ], for some T > 0, by using [4]. Let
(Ω,F,P, (Ft)t∈[0,T ]) be a stochastic basis which satisfies the usual conditions i.e. the
probability space is complete and the filtration (Ft)t∈[0,T ] is right-continuous with the
sets of probability zero included in F0. Assume that the financial market consists of
one riskless asset {B(t), t ∈ [0, T ]} which has a constant interest rate r > 0 and m
risky assets {Si(t), t ∈ [0, T ]}, i = 1, 2, . . . ,m which are Ft -adapted stochastic pro-
cesses with Si(0) = si > 0 for all i = 1, 2, . . . ,m. Let θ(t) = (θ0(t), θ1(t), . . . , θm(t))T

be the Ft -adapted investment strategy at time t ∈ [0, T ]. With this we denote the
capital of investor which follows from strategy θ by

Xθ(t) = θ0(t)B(t) + θ1(t)S1(t) + · · ·+ θm(t)Sm(t)

at time t ∈ [0, T ]. At time t = 0 the investor has some initial capital Xθ(0) = x0 ≥ 0.

Definition 3.1.1. Let the capital have a representation

Xθ(t) = Xθ(0) +

∫ t

0

θ0(u)dB(u) +

∫ t

0

θ1(u)dS1(u) + · · ·+
∫ t

0

θm(u)dSm(u)

with almost surely conditions ∫ t

0

|θ0(u)|dB(u) <∞

and ∫ t

0

[θi(u)Si(u)]2 du <∞ for i=1,2,. . . ,m.

Then the strategy θ is called self-financing.

Definition 3.1.2. Let θ be a self-financing strategy. If there exists a constant
C > 0 such that

P
(
Xθ(t) > −C, t ∈ [0, T ]

)
= 1,

then the strategy θ is called admissible.

By using admissible strategies we can define an arbitrage-free market which is
needed later.

Definition 3.1.3 ([4] Definition 1). Let θ be an admissible strategy such that

(1) Xθ(0) ≤ 0
(2) Xθ(T ) ≥ 0

24



3.2. FORMULATION OF THE PROBLEM 25

(3) P
(
Xθ(T ) > 0

)
> 0,

then it is called an arbitrage. If there exists no arbitrage in the market, then the
market is called arbitrage-free.

3.2. Formulation of the problem

We will follow [24] and start formulating the setting. We assume a complete
probability space (Ω,F,P) and a time interval [0, T ] for some T > 0. For t ∈ [0, T ], we
assume W =

{
(W 0(t), ...,Wm(t))T , t ∈ [0, T ]

}
to be an (m+ 1)-dimensional standard

Brownian motion. We denote the transpose of a vector or a matrix M by MT . Let
F = (Ft)t∈[0,T ] be the augmented filtration generated by the Brownian motion W and
(F0

t )t∈[0,T ] be the augmented filtration generated by W 0.
We assume also an arbitrage free financial market with a risk-free asset earning

with a constant rate r > 0 and m + 1 risky assets {Si(t), t ∈ [0, T ]} i = 1, 2, . . . ,m.
We let {S0(t), t ∈ [0, T ]} be the asset connected to the pay-off function with dynamics

(3.1)

{
dS0(t) = S0(t)[µ0(t)dt+ σ00(t)dW 0(t)]

S0(t) = s0 > 0,

where µ0(t) is the expected return rate and σ00(t) is the volatility.
We consider G(S0;T ) be the pay-off function at maturity T > 0 and assume the

following:

Assumptions 3.2.1. G(S0;T )

(1) G(S0;T ) ∈ D1,2.
(2) The asset S0 can not be used to hedge the pay-off G.

Remark 3.2.2. As a consequence from the above we have to use the risky assets
{Si(t), t ∈ [0, T ]}, i = 1, 2, . . . ,m and the risk-free asset for hedging.

The price processes of the risky assets we consider are given by the stochastic
differential equations

(3.2)

{
dSi(t) = Si(t)[µi(t)dt+

∑m
j=0 σij(t)dW

j(t)]

Si(t) = si > 0,

for i = 1, 2, . . . ,m. Here µi(t) is the expected return rate and (σi0(t), σi1(t), . . . , σim(t))
is the volatility vector of the i-th asset. We will also write

σi(t) = (σi0(t), . . . , σim(t))T ,

for all i = 1, . . . ,m, and use matrix notation for

σ(t) =


σ1(t)T

σ2(t)T

...
σm(t)T

 = (σij(t))m×(m+1) ∈ Rm×(m+1).

The following is assumed throughout the thesis.

Assumptions 3.2.3. µi : [0, T ]→ R and σij : [0, T ]→ R
(1) The functions µi and σij are bounded and Borel-measurable for all i, j =

0, 1, . . . ,m.
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(2) There exists a constant ρ such that σ(t)σ(t)T ≥ ρI for all t ∈ [0, T ], where I
denotes the (m×m) identity matrix.

The value of our hedging portfolio at time t is denoted by Xθ(t), where θ denotes
the used hedging strategy. This hedging strategy is specified as a vector θ(t) =
(θ1(t), θ2(t), . . . , θm(t))T where every θi(t) is the amount which is invested in the risky
asset Si(t). This holds for all i = 1, . . . ,m. The amount which is invested in the
risk-free asset, we get by Xθ(t)−

∑m
i=1 θi(t).

For the value process of the hedging portfolio, we have the following SDE

(3.3)

{
dXθ(t) = [rXθ(t) + b(t)T θ(t)]dt+ θ(t)Tσ(t)dW (t)

Xθ(0) = x0 > 0

where b(t) denotes the expected excess return vector in form

b(t) = (µ1(t)− r, µ2(t)− r, . . . , µm(t)− r)T ,
and x0 is the initial value. We will denote our hedging strategy shortly by {Xθ(t), θ(t)}
at time t ∈ [0, T ]. We can measure the hedging error at terminal time T by G(S0;T )−
Xθ(T ). Instead of this, we define

(3.4) V θ(T ) = Xθ(T )−G(S0;T ),

which we call profit-and-loss random variable. This will measure the closeness of our
hedging strategy to the pay-off, and negative values indicate a hedging error. We will
use a mean-variance criterion whose pioneer was Markowitz [17]. By that we try to
find an optimal hedging strategy which we denote by θ∗. We assume γ > 0 be the
weight which the investor give for the variance. This strategy will be found by solving

(3.5) max
θ∈Θ

{
E[V θ(T )]− γ

2
Var[V θ(T )]

}
,

where Θ is the set of all admissible hedging strategies, meaning

Θ =
{
θ : θ ∈ L2

}
,

and L2 was defined in Definition 1.5.4. So we aim to maximize E[V θ(T )] and minimize
Var[V θ(T )].

Remark 3.2.4. We assume that the set of admissible hedging strategies consists
of progressively measurable and square integrable hedging strategies which differs
from [24] where they assume square integrable and Ft -adapted strategies.



CHAPTER 4

The hedging strategy as stochastic linear-quadratic problem

For information about the general stochastic linear-quadratic theory, also called
LQ theory, we recommend the reader to [2] and especially to Chapter 6 in [25]. Our
aim is to find a hedging strategy θ∗ such that it maximizes the difference, that is

(4.1) E
[
V θ∗(T )

]
− γ

2
Var

[
V θ∗(T )

]
= sup

θ∈Θ

(
E
[
V θ(T )

]
− γ

2
Var

[
V θ(T )

])
.

This question was treated in [24] where they refer to Section 3 in [26] for constructing
a problem which can be solved by using the technique from Section 3 in [16].

Solving (4.1) is the same as if we try to find a hedging strategy θ∗ which solves

(4.2) min
θ∈Θ

{
J1(θ; γ) =

γ

2
Var

[
V θ(T )

]
− E

[
V θ(T )

]}
where γ > 0 is the weight which the investor puts on the variance. By Section 3 in
[26] this problem can be solved using an auxiliary problem which is defined as

(4.3) min
θ∈Θ

{
J2(θ; γ, λ) = E

[γ
2
V θ(T )2 − λV θ(T )

]}
with the parameters γ > 0 and −∞ < λ < ∞. The next lemma states that we can
find any optimal solution for (4.2), if it exists, by solving (4.3).

Lemma 4.0.1 ([24] Lemma 1). If θ∗(·) is the solution to (4.2), then it is the optimal
control for the auxiliary problem (4.3) when λ is given by

λ = 1 + γE[V θ∗ ].

Proof. Let θ∗(·) be the solution for the problem (4.2). Let us assume that θ∗(·)
is not the optimal control for (4.3). This means that there exists a θ(·) such that for
the corresponding V θ(·) it holds

J2(θ; γ, λ)− J2(θ∗; γ, λ)

=
γ

2
E
[
V θ(T )2

]
− λE

[
V θ(T )

]
−
(γ

2
E
[
V θ∗(T )2

]
− λE

[
V θ∗(T )

])
=

γ

2

(
E
[
V θ(T )2

]
− E

[
V θ∗(T )2

])
− λ

(
E
[
V θ(T )

]
− E

[
V θ∗(T )

])
(4.4)

< 0.

Now we define the function

(4.5) f(x, y) =
γ

2
x− γ

2
y2 − y

for x, y ∈ R. It is easy to check that this function is concave. If we plug E
[
V θ(T )2

]
and E

[
V θ(T )

]
into the function f , we get

f
(
E
[
V θ(T )2

]
,E
[
V θ(T )

])
=

γ

2
E
[
V θ(T )2

]
− γ

2

(
E
[
V θ(T )

])2 − E
[
V θ(T )

]
27
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=
γ

2
Var

(
V θ(T )

)
− E

[
V θ(T )

]
,

which is the same expression as in (4.2). Since γ > 0 and the only second partial

derivative of (4.5) which differs from 0 is ∂2f(x,y)
∂y∂y

= −γ we get by Taylor approximation

([5] Theorem 2.8.3) that

f(x, y) = f(x0, y0) +
γ

2
(x− x0)− (1 + γy0)(y − y0)−

∫ 1

0

(1− t)γ(y − y0)2dt

≤ f(x0, y0) +
γ

2
(x− x0)− (1 + γy0)(y − y0).

By that and using (4.4) we have

f
(
E
[
V θ(T )2

]
,E
[
V θ(T )

])
≤ f

(
E
[
V θ∗(T )2

]
,E
[
V θ∗(T )

])
+
γ

2

(
E
[
V θ(T )2

]
− E

[
V θ∗(T )2

])
−
(
1 + γE

[
V θ∗(T )

]) (
E
[
V θ(T )

]
− E

[
V θ∗(T )

])
< f

(
E
[
V θ∗(T )2

]
,E
[
V θ∗(T )

])
.

This is a contradiction, since θ∗(·) is the optimal control to (4.2).
�

Now, if we do some manipulations for the expression in (4.3)

E
[γ

2
V θ(T )2 − λV θ(T )

]
= E

[
γ

2

(
V θ(T )2 − 2λ

γ
V θ(T )

)]
= E

[
γ

2

((
V θ(T )− λ

γ

)2

− λ2

γ2

)]

= E

[
γ

2

(
V θ(T )− λ

γ

)2

− λ2

2γ

]

= E

[
γ

2

(
V θ(T )− λ

γ

)2
]
− λ2

2γ

we can re-formulate our auxiliary problem (4.3) as

min
θ∈Θ

{
E
[γ

2
V θ(T )2 − λV θ(T )

]}
= min

θ∈Θ

{
E
[
γ

2
(V θ(T )− λ

γ
)2

]}
− λ2

2γ
.

Using the notation from (3.4) we can write
(4.6)

min
θ∈Θ

{
E

[
γ

2

(
V θ(T )− λ

γ

)2
]}
−λ

2

2γ
= min

θ∈Θ

{
E

[
γ

2

(
Xθ(T )−G(S0;T )− λ

γ

)2
]}
−λ

2

2γ
.

By putting

(4.7) ξ = G(S0;T ) +
λ

γ
,
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we get a new stochastic LQ problem

(4.8) min
θ∈Θ

{
J3(θ;λ, γ) = E

[(
Xθ(T )− ξ

)2
]}

.

So after all manipulations and because of Lemma 4.0.1 this means that we can solve
the original problem (4.2) by solving (4.8).

We will follow [24] to solve (4.8). The method used there originates from Section
3 in [16]. We remark here that the variable ξ in problem (4.8) depends from G(S0;T )
and especially on S0. In Section 3 from [16] the problem uses instead of ξ a constant
d ∈ R. This makes the difference between [16] and [24].

First we introduce some notation. Recall that σ and b were used for the value
process of the hedging portfolio (3.3).

Let

(4.9) Σ(t) = σ(t)σ(t)T

and

(4.10)

{
κ(t) = b(t)TΣ(t)−1b(t)

ζ(t) = b(t)TΣ(t)−1σ(t)e1,

where e1 = (1, 0, . . . , 0)T .
Solving problem (4.8) is connected to the following two equations: the backward

differential equation

(4.11)

{
dP (t) = [κ(t)− 2r]P (t)dt,

P (T ) = 1

and the backward stochastic differential equation

(4.12)

{
dϕ(t) = {[κ(t)− r]ϕ(t) + ζ(t)ψ0(t)}dt+ ψ0(t)dW 0(t),

ϕ(T ) = −ξ.

The next proposition shows that (4.11) and (4.12) have unique solutions in the
space where we have an augmented filtration generated by the Brownian motion.

Proposition 4.0.2 ([10] Theorem 5.3.3). Let (Ω,FW ,P, (FWt )t∈[0,T ]) be a filtered
probability space with Brownian motion and let f be a function such that f : [0, T ] ×
Ω× R× R→ R. Assume that

(1) ξ ∈ L2(Ω,F,P).
(2) f(·, ·, y, z) is progressively measurable for all y, z ∈ R
(3) There exists an Lf > 0 such that .

|f(t, ω, y, z)− f(t, ω, ŷ, ẑ)| ≤ Lf (|y − ŷ|+ |z − ẑ|)
for all (t, ω) ∈ [0, T ]× Ω and y, ŷ, z, ẑ ∈ R.

(4) E
∫ T

0
f(t, 0, 0)2dt <∞.

Then

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s)

has a unique solution (Y, Z) ∈ S2×L2, where S2 is the set of all adapted and contin-
uous processes (Yt)t∈[0,T ] with E sup0≤t≤T X

2
t <∞.
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Since (4.11) and (4.12) are linear equations, they can be solved explicitly.

Proposition 4.0.3. Equations (4.11) and (4.12) have solutions

(4.13) P (t) = e
∫ T
t [2r−κ(s)]ds

and

(4.14) ϕ(t) = e−
∫ T
t (κ(s)−r+ 1

2
[ζ(s)]2)dsE

[
−ξe−

∫ T
t ζ(s)dW 0(s)

∣∣F0
t

]
,

respectively.

Proof. Let t ∈ [0, T ]. We first solve (4.11). Interpreting (4.11) as a backward
stochastic differential equation we may apply Proposition 4.0.2 and conclude that it
has a unique solution. Hence it suffices to check that P (t) given in (4.13) solves (4.11):

dP (t)

dt
=

de
∫ T
t [2r−κ(s)]ds

dt

=
de

∫ T
0 [κ(s)−2r]dse−

∫ t
0 [2r−κ(s)]ds

dt

= e
∫ T
0 [2r−κ(s)]dse−

∫ t
0 [2r−κ(s)]ds (κ(t)− 2r)

= e
∫ T
t [2r−κ(s)]ds (κ(t)− 2r) ,

with
P (T ) = e

∫ T
T 2r−κ(s)ds = 1.

So P (t) = e
∫ T
t 2r−κ(s)ds is the unique solution for (4.11).

Now we consider (4.12) with solution (ϕ, ψ0). We use solving method from [6].
First let {

Ψ(t) = −Ψ(t)[κ(t)− r]dt−Ψ(t)ζ(t)dW 0(t)

Ψ(0) = 1.

This is a linear stochastic differential equation which has a unique solution (see for
example [13] or [14]) given by

Ψ(t) = e
∫ t
0 −(κ(s)−r)− 1

2
ζ(s)2ds−

∫ t
0 ζ(s)dW

0(s).

By (4.12) we have

ϕ(T ) = ϕ(t)−
∫ T

t

[κ(s)− r]ϕ(s) + ζ(s)ψ0(s)ds−
∫ T

t

ψ0(s)dW 0(s),

and we can use Itô’s formula

Ψ(T )ϕ(T ) = Ψ(t)ϕ(t) +

∫ T

t

Ψ(s)dϕ(s) +

∫ T

t

ϕ(s)dΨ(s) +

∫ T

t

1d 〈Ψ, ϕ〉

= Ψ(t)ϕ(t)−
∫ T

t

Ψ(s) ([κ(s)− r]ϕ(s) + ζ(s)ψ0(s)) ds

−
∫ T

t

Ψ(s)ψ0(s)dW 0(s) +

∫ T

t

ϕ(s)Ψ(s)[κ(s)− r]ds

+

∫ T

t

ϕ(s)Ψ(s)ζ(s)dW 0(s)−
∫ T

t

ψ0(s)Ψ(s)ζ(s)ds
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= Ψ(t)ϕ(t) +

∫ T

t

ϕ(s)Ψ(s)ζ(s)−Ψ(s)ψ0(s)dW 0(s).

It can be shown similarly as in the proof of Theorem 4.16, which comes later,
by using Lemma 1.4.8, the Burkholder-Davis-Gundy inequality (Proposition 1.6.5),
Remark 1.6.4 and Hölder’s inequality (Proposition 1.6.6) that the stochastic integral
is a martingale. We get by taking the conditional expectation with respect to F0

t

Ψ(t)ϕ(t) = E
[
Ψ(T )ϕ(T )|F0

t

]
.

Dividing this equation by Ψ(t) gives us

ϕ(t) = e−
∫ T
t κ(s)−r+ 1

2
ζ(s)2dsE

[
−ξe−

∫ T
t ζ(s)dW 0(s)|F0

t

]
.

�

If we assume that G is a European option we can use the notation ξ = G(S0(T ))+
λ
γ
, and ϕ can be interpreted as the price. Let

dP̃ = e−
∫ T
0 ζ(s)dW 0(s)− 1

2

∫ T
0 ζ(s)2dsdP,

where e−
∫ T
0 ζ(s)dW 0(s)− 1

2

∫ T
0 ζ(s)2ds is a martingale by Novikov’s condition (Proposition

1.5.17) since ζ is bounded. By Girsanov’s Theorem [[10] Proposition 4.4.6] we have
that the process

W̃ =
{
W̃ (t), t ∈ [0, T ]

}
,

where W̃ (t) = W 0(t)+
∫ t

0
ζ(s)ds for t ∈ [0, T ] is a Brownian motion under the measure

P̃. Using this, we can rewrite the SDE for S0 as follows

dS0(t) = S0(t)
[
µ0(t)dt+ σ00(t)dW 0(t)

]
= S0(t)

[
µ0(t)dt− σ00ζ(t)dt+ σ00(t)dW̃ (t)

]
= S0(t)

[
µ̃0(t)dt+ σ00(t)dW̃ (t)

]
,

where µ̃0(t) = µ0(t)− σ00(t)ζ(t) and S0(0) = s0. For this we have a solution

S0(t) = s0e
∫ t
0 µ̃0(s)− 1

2
σ00(s)2ds+

∫ t
0 σ00(s)dW̃ (s).

By the above we get for ϕ

ϕ(t) = −e−
∫ T
t κ(s)−r+ 1

2
ζ(s)2dsE

[
ξe−

∫ T
t ζ(s)dW 0(s)|F0

t

]
= −e−

∫ T
t κ(s)−rdsEP̃

[
ξ|F0

t

]
= −e−

∫ T
t κ(s)−rds

(
EP̃
[
G(S0(T ))|F0

t

]
+
λ

γ

)
= −e−

∫ T
t κ(s)−rds

(
EP̃

[
G
(
s0e

∫ T
0 µ̃0(s)− 1

2
σ00(s)2ds+

∫ T
0 σ00(s)dW̃ (s)

)
|F0

t

]
+
λ

γ

)
= −e−

∫ T
t κ(s)−rds

(
EP̃

[
G
(
S0(t)e

∫ T
t µ̃0(s)− 1

2
σ00(s)2ds+

∫ T
t σ00(s)dW̃ (s)

)
|F0

t

]
+
λ

γ

)
.
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Because σ00 and µ̃0 are deterministic we have that∫ T

t

µ̃0(s)− 1

2
σ00(s)2ds+

∫ T

t

σ00(s)dW̃ (s)

follows normal distribution with mean
∫ T
t
µ̃0(s)− 1

2
σ00(s)2ds and variance

∫ T
t
σ00(s)2ds

(see [10] Example 3.1.13). Also S0(t) is F0
t -measurable and e

∫ T
t µ̃0(s)− 1

2
σ00(s)2ds+

∫ T
t σ00(s)dW̃ (s)

is independent from F0
t . This means that it is possible to use the Black-Scholes for-

mula to calculate the price of an European option. For more information about the
Black-Scholes formula we recommend for example Section 4 in [11].

For ease of the presentation, let

(4.15) Γ(t) = b(t)ϕ(t) + σ(t)e1ψ0(t).

The following theorem shows the connection between problem (4.8) and equations
(4.11) and (4.12).

Theorem 4.0.4 ([24] Theorem 1). Let P ∈ C([0, T ]) and (ϕ, ψ0) ∈ S2 × L2 be
the solutions of (4.11) and (4.12). Then the problem (4.8) is solvable and the unique
feedback control is given by

(4.16) θλ(t) = −Σ(t)−1

[
b(t)Xθλ(t) +

1

P (t)
Γ(t)

]
.

The associated optimal value is

(4.17) J3(θλ;λ) = P (0)x2
0 + 2ϕ(0)x0 + 2E[ξ2]− E

[∫ T

0

1

P (t)
Γ(t)TΣ(t)−1Γ(t)dt

]
.

Proof. Let θ ∈ Θ and Xθ the solution to (3.3) corresponding to θ. We can write
the function of problem (4.8) as

(4.18) J3(θ;λ) = E
[(
Xθ(T )− ξ

)2
]

= E
[(
Xθ(T )

)2
]
− 2E

[
ξXθ(T )

]
+ E

[
ξ2
]
.

Now we get by Itô’s formula

(Xθ(t))2 = x2
0 +

∫ t

0

2Xθ(s)θ(s)Tσ(s)dW (s)

+

∫ t

0

2Xθ(s)
(
rXθ(s) + b(s)T θ(s)

)
+ θ(s)Tσ(s)σ(s)T θ(s)ds.

Recall that we used notations

Σ(t) = σ(t)σ(t)T

and {
κ(t) = b(t)TΣ(t)−1b(t)

ζ(t) = b(t)TΣ(t)−1σ(t)e1.

By using (4.11) and Itô’s formula again, we get

P (t)
(
Xθ(t)

)2
= P (0)x2

0 +

∫ t

0

P (s)d
(
Xθ(s)

)2
+

∫ t

0

(
Xθ(s)

)2
dP (s)

= P (0)x2
0 +

∫ t

0

P (s)2Xθ(s)θ(s)Tσ(s)dW (s)
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+

∫ t

0

P (s)
[
2Xθ(s)

(
rXθ(s) + b(s)T θ(s)

)]
+ θ(s)TΣ(s)θ(s)ds

+

∫ t

0

(
Xθ(s)

)2
(κ(s)− 2r)P (s)ds

= P (0)x2
0 +

∫ t

0

2P (s)Xθ(s)θ(s)Tσ(s)dW (s)(4.19)

+

∫ t

0

P (s)
[
2Xθ(s)b(s)T θ(s) + θ(s)TΣ(s)θ(s) +

(
Xθ(s)

)2
κ(s)P (s)

]
ds.

We want to show that{∫ t

0

2P (s)Xθ(s)θ(s)Tσ(s)dW (s); t ∈ [0, T ]

}
is martingale. We use Lemma 1.4.8. LetG = sup0≤t≤T |

∫ t
0

2P (s)Xθ(s)θ(s)Tσ(s)dW (s)|.
Now it is clear that G is a bound for the martingale and by the Burkholder-Davis-
Gundy inequality (Proposition 1.6.5) and Hölder inequality (Proposition 1.6.6) we
get

E|G| ≤ αE

[(∫ T

0

(2P (s)Xθ(s)θ(s)Tσ(s))2ds

) 1
2

]

≤ 2αE

[
sup

0≤t≤T
|P (t)Xθ(t)σ(t)|

(∫ T

0

(θ(s)T )2ds

) 1
2

]

= 2α sup
0≤t≤T

|P (t)σ(t)|E

[
sup

0≤t≤T
|Xθ(t)|

(∫ T

0

(θ(s)T )2ds

) 1
2

]

≤ 2α sup
0≤t≤T

|P (t)σ(t)|
(
E sup

0≤t≤T
|Xθ(t)|2

) 1
2
(
E
∫ T

0

(θ(s)T )2ds

) 1
2

< ∞,

where the last inequality follows by Remark 1.6.4 and assumptions of P, σ and θ. By

Lemma 1.4.8 the Itô-integral
{∫ t

0
2P (s)Xθ(s)θ(s)Tσ(s)dW (s); t ∈ [0, T ]

}
is a martin-

gale and

E
[∫ t

0

2P (s)Xθ(s)θ(s)Tσ(s)dW (s)

]
= 0.

So by setting t = T and taking expectation of (4.19), we get

E
[
P (T )

(
Xθ(T )

)2
]

= E
[(
Xθ(T )

)2
]

= P (0)x2
0 + E

{∫ T

0

[
P (t)

(
2Xθ(t)b(t)T θ(t) + θ(t)TΣ(t)θ(t)

)
(4.20)

+
(
Xθ(t)

)2
κ(t)P (t)

]
dt

}
.



4. THE HEDGING STRATEGY AS STOCHASTIC LINEAR-QUADRATIC PROBLEM 34

Similarly, we use Itô’s formula to ϕ(t)Xθ(t) and get

ϕ(t)Xθ(t) = ϕ(0)x0 +

∫ t

0

Xθ(s)dϕ(s) +

∫ t

0

ϕ(s)dXθ(s)(4.21)

+

∫ t

0

1d

〈∫ ·
0

ψ0(z)dW 0(z),

∫ ·
0

θ(z)Tσ(z)dW (z)

〉
s

.

For the cross-variation we have〈∫ ·
0

ψ0(z)dW 0(z),

∫ ·
0

θ(z)Tσ(z)dW (z)

〉
s

=

〈∫ ·
0

ψ0(z)dW 0(z),
m∑
l=0

m∑
k=1

∫ ·
0

θk(z)σkl(z)dW l(z)

〉
s

=
m∑
l=0

〈∫ ·
0

ψ0(z)dW 0(z),
m∑
k=1

∫ ·
0

θk(z)σkl(z)dW l(z)

〉
s

.

Because of independence of the Brownian motions W 0,W 1, . . . ,Wm we get〈∫ ·
0

ψ0(z)dW 0(z),
m∑
k=1

∫ ·
0

θk(z)σkl(z)dW l(z)

〉
s

= 0, if l 6= 0.

By the above computations〈∫ ·
0

ψ0(z)dW 0(z),

∫ ·
0

θ(z)Tσ(z)dW (z)

〉
s

=

〈∫ ·
0

ψ0(z)dW 0(z),
m∑
k=1

∫ ·
0

θk(z)σk0(z)dW 0(z)

〉
s

=

∫ s

0

ψ0(z)θ(z)Tσ(z)e1dz.

Substituting this into (4.21) and using (4.12) for ϕ and (3.3) for Xθ yields

ϕ(t)Xθ(t) = ϕ(0)x0 +

∫ t

0

Xθ(s)dϕ(s) +

∫ t

0

ϕ(s)dXθ(s)

+

∫ t

0

1d

〈∫ ·
0

ψ0(z)dW 0(z),

∫ ·
0

θ(z)Tσ(z)dW (z)

〉
s

= ϕ(0)x0 +

∫ t

0

Xθ(s)dϕ(s) +

∫ t

0

ϕ(s)dXθ(s)

+

∫ t

0

ψ0(s)θ(s)Tσ(s)e1ds

= ϕ(0)x0 +

∫ t

0

Xθ(s) [(κ(s)− r)ϕ(s) + ζ(s)ψ0(s)] ds

+

∫ t

0

Xθ(s)ψ0(s)dW 0(s) +

∫ t

0

ϕ(s)
[
rXθ(s) + b(s)T θ(s)

]
ds
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+

∫ t

0

ϕ(s)θ(s)Tσ(s)dW (s) +

∫ t

0

ψ0(s)θ(s)Tσ(s)e1ds

= ϕ(0)x0 +

∫ t

0

Xθ(s)ψ0(s) + ϕ(s)θ(s)Tσ(s)dW 0(s)

+

∫ t

0

Xθ(s)κ(s)ϕ(s) +Xθ(s)ζ(s)ψ0(s) + ϕ(s)b(s)T θ(s)

+ψ0(s)θ(s)Tσ(s)e1ds

= ϕ(0)x0 +

∫ t

0

Xθ(s)ψ0(s) + ϕ(s)θ(s)Tσ(s)dW 0(s)

+

∫ t

0

Xθ(s)b(s)TΣ(s)−1b(s)ϕ(s) +Xθ(s)b(s)TΣ(s)−1σ(s)e1ψ0(s)

+ϕ(s)b(s)T θ(s) + ψ0(s)θ(s)Tσ(s)e1ds

= ϕ(0)x0 +

∫ t

0

Xθ(s)ψ0(s) + ϕ(s)θ(s)Tσ(s)dW 0(s)

+

∫ t

0

Xθ(s)b(s)TΣ(s)−1 [b(s)ϕ(s) + σ(s)e1ψ0(s)]

+θ(s)T [b(s)ϕ(s) + σ(s)e1ψ0(s)] ds

= ϕ(0)x0 +

∫ t

0

Xθ(s)ψ0(s) + ϕ(s)θ(s)Tσ(s)dW 0(s)(4.22)

+

∫ t

0

Xθ(s)b(s)TΣ(s)−1Γ(s) + θ(s)TΓ(s)ds,

where (4.15) was used for the last equality. It can be shown similarly as before that{∫ t

0

[
Xθ(s)ψ0(s) + ϕ(s)θ(s)Tσ(s)

]
dW 0(s); t ∈ [0, T ]

}
is a martingale and hence

E
[∫ t

0

[
Xθ(s)ψ0(s) + ϕ(s)θ(s)Tσ(s)

]
dW 0(s)

]
= 0.

By choosing t = T and taking expectation, we get

E
[
ϕ(T )Xθ(T )

]
= −E

[
ξXθ(T )

]
= ϕ(0)x0 + E

{∫ T

0

[
b(s)TΣ(s)−1Γ(s)Xθ(s) + θ(s)TΓ(s)

]
ds

}
.(4.23)

We write (4.18) by using (4.20) and (4.23) for some θ ∈ Θ. We separate the terms
which depend on θ and from those which do not. Then we notice that if we put (4.16)
instead of θ we get the inequality

J3(θ;λ) = E
[(
Xθ(T )

)2
]
− 2E

[
ξXθ(T )

]
+ E

[
ξ2
]

= P (0)x2
0 + 2ϕ(0)x0 + E[ξ2]

+E
[∫ T

0

P (t)
[
2Xθ(t)b(t)θ(t) + θ(t)TΣ(t)θ(t) +

(
Xθ(t)

)2
κ(t)

]
dt

]



4. THE HEDGING STRATEGY AS STOCHASTIC LINEAR-QUADRATIC PROBLEM 36

+2E
[∫ T

0

[
b(t)TΣ(t)−1Γ(t)Xθ(t) + θ(t)TΓ(t)

]
dt

]
= P (0)x2

0 + 2ϕ(0)x0 + E
[
ξ2
]
− E

[∫ T

0

1

P (t)
Γ(t)TΣ(t)−1Γ(t)dt

]
+E

∫ T

0

(
Xθ(t)b(t) + Σ(t)θ(t) +

1

P (t)
Γ(t)

)T
×Σ(t)−1

(
Xθ(t)b(t) + Σ(t)θ(t) +

1

P (t)
Γ(t)

)
P (t)dt

≥ P (0)x2
0 + 2ϕ(0)x0 + E

[
ξ2
]
− E

[∫ T

0

1

P (t)
Γ(t)TΣ(t)−1Γ(t)dt

]
= J3(θλ;λ),

where one can see the third equality by multiplying the terms. This calculation shows
that (4.16) is the optimal control for (4.8) and the associated optimal value is given
by J3(θλ;λ). Our inequality can be an equality only when θ = θλ so (4.16) is also
unique.

�

We have the explicit formula for ϕ but as we see above, the optimal θλ depends
also on Γ and in that way on ψ0. Assume a backward stochastic differential equation

(4.24) Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s),

such that it has a solution. The next proposition shows the connection between the
Malliavin derivative and the solution (Y, Z).

Proposition 4.0.5 ([6] Proposition 5.3. and [9] Theorem 3.12). Let the BSDE
(4.24) have a solution (Y, Z). Assume the following

(1) ξ ∈ D1,2,
∫ T

0
E[|Duξ|2]du <∞, E[ξ4] <∞

(2) f : Ω × [0, T ] × R × R → R is continuously differentiable in (y, z) with
uniformly bounded and continuous derivatives

(3) for each (y, z) ∈ R× R
(a) f(·, y, z) is progressively measurable
(b) f(·, y, z) ∈ D1,2

(c) Df(·, y, z) ∈ L2([0, T ])

(d) E
[∫ T

0
f(t, y, z)2dt+

∫ T
0

∫ T
0
Duf(t, y, z)2dudt

]
<∞

(4) E
∫ T

0
f(t, 0, 0)4dt <∞

(5)
∫ T

0
E
[
(Duf(t, Y (t), Z(t)))2] du <∞

(6) for all t ∈ [0, T ] and y, ŷ, z, ẑ ∈ R
|Duf(t, ω, y, z)−Duf(t, ω, ŷ, ẑ)| ≤ Ku(t, ω) (|y − ŷ|+ |z − ẑ|) ,

where Ku : [0, T ] × Ω → [0,∞) is adapted process with
∫ T

0
E[|Ku|p]du < ∞

for some p > 0.

Then (Y, Z) ∈ D1,2 × D1,2 and
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(i) f(t, Y (t), Z(t)) ∈ D1,2

(ii) DuY (t) = DuZ(t) = 0 for 0 ≤ t < u ≤ T
(iii)

DuY (t) = Duξ +

∫ T

t

[
df

dy
(s, Y (s), Z(s))DuY (s) +

df

dz
(s, Y (s), Z(s))DuZ(s)

+Duf(s, Y (s), Z(s))

]
ds−

∫ T

t

DuZ(s)dW (s),

for u ≤ t ≤ T . Moreover, Z(t) = DtY (t), for 0 ≤ t ≤ T .

Remark 4.0.6. The assumption
∫ T

0
E[K4

u]du < ∞ from [6] Proposition 5.3 can

be relaxed to
∫ T

0
E[|Ku|p]du < ∞ for some p > 1. This is shown in [9]. Also a proof

of (i) one can find in [9].

In our case we get a simplified version as a corollary:

Corollary 4.0.7 ([24] Proposition 2.). Let (4.12) have the solution (ϕ, ψ0) and
assume that ξ ∈ D1,2 with E[ξ4] <∞. Then

(i) Duϕ(t) = Duψ0(t) = 0, for 0 ≤ t < u ≤ T ,

(ii) Duϕ(t) = −Duξ −
∫ T
t

[κ(s) − r]Duϕ(s) + ζ(s)Duψ0(s)ds −
∫ T
t
Duψ0(s)dW 0(s),

for u ≤ t ≤ T . Moreover, ψ0(t) = Dtϕ(t), for 0 ≤ t ≤ T .

By the above corollary, we are able to give an explicit formula for ψ0. For later
use, we give also explicit formulas for the expectations of ϕ and ψ0.

Proposition 4.0.8 ([24] Proposition 3.). Let (ϕ, ψ0) be the solution to the BSDE
(4.12). Then

(4.25) ψ0(t) = Dtϕ(t) = e−
∫ T
t (κ(s)−r+ 1

2
[ζ(s)]2)dsE

[
−e−

∫ T
t ζ(s)dW 0(s)Dtξ|F0

t

]
,

(4.26) E[ϕ(t)] = e−
∫ T
t (κ(s)−r+ 1

2
[ζ(s)]2)dsE

[
−ξe−

∫ T
t ζ(s)dW 0(s)

]
,

(4.27) E[ψ0(t)] = E[Dtϕ(t)] = e−
∫ T
t (κ(s)−r+ 1

2
[ζ(s)]2)dsE

[
−e−

∫ T
t ζ(s)dW 0(s)Dtξ

]
.

Proof. To show (4.25) we put Y (t) = Duϕ(t) and Z(t) = Duψ0(s) in

Duϕ(t) = −Duξ −
∫ T

t

[κ(t)− r]Duϕ(s) + ζ(s)Duψ0(s)ds−
∫ T

t

Duψ0(s)dW 0(s).

Then we have

(4.28) Y (t) = −Duξ −
∫ T

t

[κ(t)− r]Y (s) + ζ(s)Z(s)ds−
∫ T

t

Z(s)dW 0(s)

which is a backward stochastic differential equation. Defining a linear stochastic
differential equation{

dΨ(t) = −Ψ(t)[κ(t)− r]dt−Ψ(t)dW 0(t)

Ψ(T ) = 1,

we can use the same method as in the proof of Proposition 4.0.3 to get the solution.
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To show (4.26) we take the expectation of the formula from Proposition 4.0.3 and
use tower property for the conditional expectation. It can be done similarly also for
(4.27).

�

We introduced the notation ξ = G(S0;T )+ λ
γ

in (4.7) to get formula (4.8). By the

above proposition we see that ψ0 depends on Dtξ so we have to find a formula also
for that. By Assumptions 3.2.1 we have G(S0;T ) ∈ D1,2 and we can use Proposition
2.2.4 to get Dtξ = DtG(S0;T ). We are able to find this Malliavin derivative explicitly
for some common financial instruments.

Lemma 4.0.9. Assume a forward contract with a payoff G(S0;T ) = S0(T ), where
S0 has the dynamics from (3.1). Then

DtG(S0;T ) = DtS0(T ) = S0(T )σ00(t).

Proof. By Proposition 2.2.6 we have that

DtS0(T ) = S0(t)σ00(t) +

∫ T

t

Dt(S0(s))σ00(s)dW 0(s) +

∫ T

t

Dt(σ00(s))S0(s)dW 0(s)

+

∫ T

t

Dt(S0(s))µ0(s) +Dt(µ0(s))S0(s)ds

= S0(t)σ00(t) +

∫ T

t

Dt(S0(s))σ00(s)dW 0(s) +

∫ T

t

Dt(S0(s))µ0(s)ds.

Since σ00 and µ0 are deterministic, hence their Malliavin derivative is zero. By putting
Y (T ) = DtS0(T ) we get a linear stochastic differential equation

(4.29) Y (T ) = S0(t)σ00(t) +

∫ T

t

Y (s)σ00(s)dW 0(s) +

∫ T

t

Y (s)µ0(s)ds,

which we are able to solve. The solving method can be found for example in [13]. We
get as a solution

(4.30) Y (T ) = S0(t)σ00(t)e
∫ T
t σ00(s)dW 0(s)+

∫ T
t µ0(s)− 1

2
σ2
00(s)ds.

Similarly we can solve (3.1) and this gives us

(4.31) S0(t) = s0e
∫ t
0 σ00(s)dW 0(s)+

∫ t
0 µ0(s)− 1

2
σ2
00(s)ds.

By substituting (4.31) to (4.30) we get

Y (T ) = DtS0(t) = s0e
∫ t
0 σ00(s)dW 0(s)+

∫ t
0 µ0(s)− 1

2
σ2
00(s)ds

×σ00(t)e
∫ T
t σ00(s)dW 0(s)+

∫ T
t µ0(s)− 1

2
σ2
00(s)ds

= σ00(t)s0e
∫ T
0 σ00(s)dW 0(s)+

∫ T
0 µ0(s)− 1

2
σ2
00(s)ds

= σ00(t)S0(T ).

�

Lemma 4.0.10. Assume European put and call options with payoffs G(S0;T ) =
(K − S0(T ))+ and G(S0;T ) = (S0(T )−K)+ respectively. Then

(1) Dt(K − S0(T ))+ = −1{S0(T )≤K}S0(T )σ00(t)
(2) Dt(S0(T )−K)+ = 1{S0(T )≥K}S0(T )σ00(t).
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Proof. (1) Let K ∈ [0,∞) and F : [0,∞)→ R with F (x) = (K − x)+. To
use Proposition 2.2.4, we need to have a continuously differentiable function.
Let n ∈ N and

(4.32) fn(x) =


−1, if x ≤ K − 1

n
x−(K− 1

n
)

2
n

− 1, if K − 1
n
≤ x ≤ K + 1

n

0, if x ≥ K + 1
n
.

With fn we get a continuously differentiable and bounded function

Fn(x) = K +

∫ x

0

fn(y)dy.

By Lemma 4.0.9 and Proposition 2.2.4

Fn(S0(T )) ∈ D1,2

and

DtFn(S0(T )) = fn(S0(T ))DtS0(T )

= fn(S0(T ))S0(T )σ00(t).

Now we want to show that

Fn(S0(T ))→ F (S0(T ) in D1,2.

Let us recall that for all G ∈ D1,2 we have

‖G‖1,2 =
(
E[G2] + E‖DG‖2

L2([0,T ])

) 1
2 <∞.

We will show the convergence in two parts:
(i) Since F and Fn are bounded, and for all x ∈ R it holds Fn(x) →

F (x), when n → ∞, we get by the Dominated convergence (Proposition
1.2.1)

lim
n→∞

E|Fn(S0(T ))− F (S0(T ))|2 = 0.

(ii) Recall that D is a closed operator. Now

E‖D.Fn(S0(T )) + 1{S0(T )≤K}S0(T )σ00‖2
L2([0,T ])

= E
∫ T

0

|fn(S0(T ))S0(T )σ00(t) + 1{S0(T )≤K}S0(T )σ00(t)|2dt

= E
∫ T

0

|(fn(S0(T )) + 1{S0(T )≤K})S0(T )σ00(t)|2dt

= E
[
|fn(S0(T ) + 1{S0(T )≤K}|2S0(T )2

] ∫ T

0

σ00(t)2dt.

We use (4.32) for fn and estimate by using the inequality (a+b)2 ≤ 2a2 +2b2

and |fn(x)| ≤ 1 for all x ∈ R

E
[
|fn(S0(T )) + 1{S0(T )≤K}|2S0(T )2

]
= E

[ ∣∣∣∣−1{S0(T )≤K− 1
n
} +

(
S0(T )− (K − 1

n
)

2
n

− 1

)
1{K− 1

n
≤S0(T )≤K+ 1

n
} + 1{S0(T )≤K}

∣∣∣∣2
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×S0(T )2

]
= E

[ ∣∣∣∣(S0(T )− (K − 1
n
)

2
n

− 1

)
1{K− 1

n
≤S0(T )≤K+ 1

n
} + 1{K− 1

n
<S0(T )≤K}

∣∣∣∣2 S0(T )2

]
≤ 2E

[
1{K− 1

n
<S0(T )≤K}S0(T )4

]
+ 2E

[
1{K− 1

n
≤S0(T )≤K+ 1

n
}S0(T )4

]
.

By Change of variable (Proposition 1.2.2) we have

2E
[
1{K− 1

n
<S0(T )≤K}S0(T )4

]
+ 2E

[
1{K− 1

n
}≤S0(T )≤K+ 1

n
S0(T )4

]
= 2

∫
{K− 1

n
<x≤K}

x4dPS0(T )(x) + 2

∫
{K− 1

n
≤x≤K+ 1

n
}
x4dPS0(T )(x).

If we take intersections of sets we get

∩∞n=1{K −
1

n
< x ≤ K} = ∅

and

∩∞n=1{K −
1

n
≤ x ≤ K +

1

n
} = {K}.

Now because S0 is a geometric Brownian motion (exponential Brownian mo-
tion), S0 has a continuous distribution which has all moments and

2

∫
∅
x4dPS0(T )(x) + 2

∫
{K}

x4dPS0(T )(x) = 0.

By (i) and (ii) Fn(S0(T )) → F (S0(T )) in D1,2 and since the operator D
is closed we conclude that

DtF (S0(T )) = −1{S0(T )≤K}S0(T )σ00(t).

(2) We get from the put-call parity by writing (x −K)+ = (x −K)1{x≥K} and
(K − x)+ = (K − x)1{x≤K}

(x−K)+ − (K − x)+ = (x−K)1{x≥K} − (K − x)1{x≤K}

= x1{x≥K} −K1{x≥K} −K1{x≤K} + x1{x≤K}

= x−K.
By putting x = S0(T ) we get

(S0(T )−K)+ − (K − S0(T ))+ = S0(T )−K
which can be written as

(S0(T )−K)+ = S0(T )−K + (K − S0(T ))+.

Since (S0(T )−K)+ = (K − S0(T ))+ = 0, when S0(T ) = K, we get

Dt(S0(T )−K)+ = DtS0(T )−DtK +Dt(K − S0(T ))+

= S0(T )σ00(t)− 1{S0(T )≤K}S0(T )σ00(t)

= 1{S0(T )≥K}S0(T )σ00(t).

�
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Lemma 4.0.11. Assume an Asian option with payoff G(S0;T ) =
(

1
T

∫ T
0
S0(r)dr −K

)
+

.

Then

Dt

(
1

T

∫ T

0

S0(r)dr −K
)

+

= 1{ 1
T

∫ T
0 S0(r)dr≥K}

σ00(t)

T

∫ T

t

S0(r)dr.

Proof. This can be done similarly as the proof of Lemma 4.0.10. The only thing
we need is the Malliavin derivative

Dt

(
1

T

∫ T

0

S0(r)dr

)
which we get by Proposition 2.2.6

Dt(
1

T

∫ T

0

S0(r)dr) =
σ00(t)

T

∫ T

t

S0(r)dr.

�



CHAPTER 5

The optimal hedging strategy

The aim of this chapter is to find the optimal hedging strategy which solves the
mean-variance hedging problem. For this we need an explicit formula for λ.

Proposition 5.0.1. Assume the optimal hedging strategy θλ as given in Theorem
4.0.4. Then

λ =
1

N

{
1− γE [G(S0;T )] + γe

∫ T
0 r−κ(t)dtx0

}
+
γ

N

∫ T

0

ζ(t)E[ψ0(t)]e−r(T−t)dt

+
γ

N

∫ T

0

κ(t)Σ(t)−1e−
∫ T
t κ(s)+ 1

2
ζ(s)2dsE

[
G(S0;T )e−

∫ T
t ζ(s)dW 0(s)

]
dt,

if N = 1−
∫ T

0
κ(t)Σ(t)−1e

∫ T
t −κ(s)dsdt > 0.

Proof. Let θλ be a hedging strategy given in (4.16). We plug this into (3.3) and
get

Xθλ(t) = x0 +

∫ t

0

rXθλ(s) + b(s)T θλ(s)ds+

∫ t

0

θλ(s)
Tσ(s)dW (s).

Since θλ ∈ Θ and σ is bounded,{∫ t

0

θλ(s)σ(s)dW (s); t ∈ [0, T ]

}
is a martingale and

E
[∫ t

0

θλ(s)σ(s)dW (s)

]
= 0,

for all t ∈ [0, T ]. Let t = T . Taking the expectation and using (4.16) and (4.10) leads
to

E
[
Xθλ

]
= x0 + E

∫ T

0

rXθλ(s) + b(s)T θλ(s)ds

= x0 + E
∫ T

0

rXθλ(s)− b(s)TΣ(s)−1

[
b(s)Xθλ(s) +

1

P (s)
Γ(s)

]
ds

= x0 +

∫ T

0

(r − κ(s))E
[
Xθλ(s)

]
− b(s)TΣ(s)−1 1

P (s)
E [Γ(s)] ds.

This can be seen as a differential equation by putting y(T ) = E[Xθλ(T )]. For this we
get the solution

(5.1) E
[
Xθλ(T )

]
= x0e

∫ T
0 r−κ(s)ds −

∫ T

0

b(s)Σ(s)−1 1

P (s)
E [Γ(s)] e

∫ T
s r−κ(u)duds.

42
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We use the explicit formula for P which was given in Proposition 4.0.3 and get

E
[
Xθλ(T )

]
= x0e

∫ T
0 r−κ(s)ds −

∫ T

0

b(s)Σ(s)−1E [Γ(s)] e
∫ T
s (−r)duds

= x0e
∫ T
0 r−κ(s)ds −

∫ T

0

b(s)Σ(s)−1E [Γ(s)] e−r(T−s)ds.

Using first the notation (4.15) and then (4.10) leads to

E
[
Xθλ(T )

]
= x0e

∫ T
0 r−κ(s)ds −

∫ T

0

b(s)Σ(s)−1E [Γ(s)] e−r(T−s)ds

= x0e
∫ T
0 r−κ(s)ds −

∫ T

0

b(s)Σ(s)−1E [b(s)ϕ(s) + σ(s)e1ψ0(s)] e−r(T−s)ds

= x0e
∫ T
0 r−κ(s)ds −

∫ T

0

κ(s)E [ϕ(s)] e−r(T−s) + ζ(s)E [ψ0(s)] e−r(T−s)ds.

By Lemma 4.0.1 we know that the solution for (4.2) can be found by using the solution
of (4.3) with

(5.2) λ = 1 + γE
[
V θλ(T )

]
.

So by (3.4), (4.7) and the above calculations for E
[
Xθλ(T )

]
we get

λ = 1 + γE
[
Xθλ(T )−G(S0;T )

]
= 1 + γx0e

∫ T
0 r−κ(s)ds − γ

∫ T

0

κ(s)Σ(s)−1E [ϕ(s)] e−r(T−s)ds(5.3)

−γ
∫ T

0

ζ(s)E [ψ0(s)] e−r(T−s)ds− γE [G(S0;T )] .

In order to find an expression for λ we need to make sure which terms on the right-
hand side of (5.3) depend on λ. Since Dsξ = Ds(G(S0;T ) + λ

γ
) = Ds(G(S0;T )) in the

formula for E[ψ0] given in Proposition 4.0.8, we can see that the only part depending
on λ is E[ϕ(s)] which is given in Proposition 4.0.8. By using (4.7) we get

E[ϕ(s)] = e−
∫ T
s κ(u)−r+ 1

2
ζ(u)2duE

[
−ξe−

∫ T
s ζ(u)dW 0(u)

]
= −e−

∫ T
s κ(u)−r+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
s ζ(u)dW 0(u)

]
−λ
γ
e−

∫ T
s κ(u)−r+ 1

2
ζ(u)2duE

[
e−

∫ T
s ζ(u)dW 0(u)

]
.

Now we notice that by Novikov’s condition (Proposition 1.5.17) we have an exponen-
tial martingale with

(5.4) E
[
e−

∫ T
s ζ(u)dW 0(u)− 1

2
ζ(u)2du

]
= 1.

With this we get E[ϕ(s)] simplified to

E[ϕ(s)] = −e−
∫ T
s κ(u)−r+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
s ζ(u)dW 0(u)

]
− λ

γ
e−

∫ T
s κ(u)−rdu.
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Substituting this into (5.3) leads to

λ = 1− γE [G(S0;T )] + γx0e
∫ T
0 r−κ(s)ds − γ

∫ T

0

ζ(s)E [ψ0(s)] e−r(T−s)ds

−γ
∫ T

0

κ(s)Σ(s)−1e−r(T−s)
{
− e−

∫ T
s κ(u)−r+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
s ζ(u)dW 0(u)

]
−λ
γ
e−

∫ T
s κ(u)−rdu

}
ds

= 1− γE [G(S0;T )] + γx0e
∫ T
0 r−κ(s)ds − γ

∫ T

0

ζ(s)E [ψ0(s)] e−r(T−s)ds

+γ

∫ T

0

κ(s)Σ(s)−1e−
∫ T
s κ(u)+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
s ζ(u)dW 0(u)

]
ds

+λ

∫ T

0

κ(s)Σ(s)−1e−
∫ T
s κ(u)duds.

By moving all terms depending on λ to the left-hand side we get

λ− λ
∫ T

0

κ(s)Σ(s)−1e−
∫ T
s κ(u)duds

= 1− γE [G(S0;T )] + γx0e
∫ T
0 r−κ(s)ds − γ

∫ T

0

ζ(s)E [ψ0(s)] e−r(T−s)ds

+γ

∫ T

0

κ(s)Σ(s)−1e−
∫ T
s κ(u)+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
s ζ(u)dW 0(u)

]
ds.

Now taking λ as common divisor and dividing the equation with

N := 1−
∫ T

0

κ(s)Σ(s)−1e−
∫ T
s κ(u)duds

we get provided that N > 0

λ =
1

N

{
1− γE [G(S0;T )] + γe

∫ T
0 r−κ(s)dsx0

}
+
γ

N

∫ T

0

ζ(s)E[ψ0(s)]e−r(T−s)ds

+
γ

N

∫ T

0

κ(s)Σ(s)−1e−
∫ T
s κ(u)+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
s ζ(u)dW 0(u)

]
ds.

�

Before we formulate our main result let us recall the setting and summarize the
outcome we have so far. We assumed a complete probability space (Ω,F,P), a time
interval [0, T ] for some T > 0 and an arbitrage free financial market with one risk-
free asset earning with constant rate r > 0, (m + 1) risky assets {Si(t), t ∈ [0, T ]}
for i = 1, 2, . . . ,m with dynamics given in (3.2) and an asset {S0(t), t ∈ [0, T ]} with
dynamics (3.1). The asset S0 was assumed to be not allowed to use in hedging. The
expected return rates and volatilities were assumed to be deterministic and Borel-
measurable.
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The object for which we wanted to find the hedging strategy was the pay-off
function G(S0;T ) with maturity T > 0. The assumptions for G are given in Assump-
tion 3.2.1. The value process of the hedging portfolio was denoted by Xθ, and the
dynamics for this was given by the SDE (3.3) where θ was our hedging strategy.

We consider a profit-and-loss random variable

(5.5) V θ(T ) = Xθ(T )−G(S0;T )

to describe our hedging error at terminal time T . The mean-variance criterion was
used to determine an optimal hedging strategy, meaning that we tried to find a
strategy which solves the problem

(5.6) max
θ∈Θ

{
E
[
V θ(T )

]
− γ

2
Var

[
V θ(T )

]}
,

where γ > 0 is assumed to be the weight which the investor give for the variance.
This is the same as solving

(5.7) min
θ∈Θ

{
J1(θ; γ) =

γ

2
Var

[
V θ(T )

]
− E

[
V θ(T )

]}
and finding a solution for this was connected to the auxiliary problem

(5.8) min
θ∈Θ

{
J2(θ; γ, λ) = E

[γ
2
V θ(T )2 − λV θ(T )

]}
where γ > 0 and −∞ < λ < ∞. The connection between the solutions of these two
problems was shown in Lemma 4.0.1.

We re-formulated the auxiliary problem to

(5.9) min
θ∈Θ

{
J3(θ;λ, γ) = E

[
(Xθ(T )− ξ)2

]}
,

where ξ = G(S0;T ) + λ
γ
. Solving (5.9) was connected to equations for P and ϕ given

in (4.11) and (4.12). These had explicit solutions

P (t) = e
∫ T
t 2r−κ(s)ds(5.10)

ϕ(t) = e−
∫ T
t (κ(s)−r+ 1

2
ζ(s)2)dsE

[
−ξe

∫ T
t ζ(s)dW 0(s)|F0

t

]
(5.11)

ψ0(t) = e−
∫ T
t (κ(s)−r+ 1

2
[ζ(s)]2)dsE

[
−e−

∫ T
t ζ(s)dW 0(s)Dtξ|F0

t

]
.(5.12)

Especially we got for the expectation of ψ0(t)

(5.13) E[ψ0(t)] = e−
∫ T
t (κ(s)−r+ 1

2
[ζ(s)]2)dsE

[
−e−

∫ T
t ζ(s)dW 0(s)Dtξ

]
.

With the above solutions, Theorem 4.0.4 showed that (5.9) is solvable with the solu-
tion

(5.14) θλ(t) = −Σ(t)−1
[
b(t)Xθλ(t) + P (t)Γ(t)

]
and in Proposition 5.0.1 we derived the explicit formula for the λ connected to the
optimal hedging strategy.

Collecting all above together we are able to formulate the optimal hedging strategy
which solves the mean-variance hedging problem:
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Theorem 5.0.2. Assume the above setting and consider the mean-variance hedg-
ing problem

max
θ∈Θ

{
E
[
V θ(T )

]
− γ

2
Var

[
V θ(T )

]}
,

where γ > 0, V θ(T ) = Xθ(T ) − G(S0;T ) is the profit-and-loss random variable at
terminal time T > 0 with the hedging portfolio Xθ and a Malliavin differentiable
pay-off function G(S0;T ) ∈ D1,2. Then the optimal hedging strategy is

θ∗(·) = θλ(·) = −Σ(·)−1
[
b(·)Xθλ(·) + P (·)γ(·)

]
,

where P is given in (5.10), ϕ in (5.11), E[ψ0] in (5.13) and

λ =
1

N

{
1− γE [G(S0;T )] + γe

∫ T
0 r−κ(u)dux0

}
+
γ

N

∫ T

0

ζ(t)E[ψ0(t)]e−r(T−t)dt

+
γ

N

∫ T

0

κ(t)Σ(t)−1e−
∫ T
t κ(u)+ 1

2
ζ(u)2duE

[
G(S0;T )e−

∫ T
t ζ(u)dW 0(u)

]
dt

with N = 1−
∫ T

0
κ(t)Σ(t)−1e

∫ T
t −κ(s)dsdt > 0.

Proof. The result will follow by Theorem 4.0.4, Lemma 4.0.1 and Proposition
5.0.1.

�

Remark 5.0.3. By varying the weight γ we get a family of solutions.



APPENDIX A

Here we collect some results which are needed in the calculations of this thesis.

Proposition 1.0.1 ([22]Theorem 4.2.14). Let Z be a normed linear space and Y
a complete normed linear space. Assume a linear set X such that X ⊆ Z and let
A : X → Y be a bounded linear operator. If X is dense in Z, then A can be extended
to space Z with preserving the norm.

Definition 1.0.2. Let Ω 6= ∅. Then non-empty system P of subsets of Ω is called
π-system if

A ∩B ∈ P for all A,B ∈ F.

The following proposition states a powerful tool called Monotone class theorem
for functions.

Proposition 1.0.3 (Monotone class for functions, ([7] Proposition 9.3.13)). Let
A ⊆ 2Ω be a π-system which contains Ω and assume H ⊆ {f ; f : Ω→ R} such that

(1) 1A ∈ H for all A ∈ A,
(2) linear combinations of elements of H are also in H,
(3) if (fn)∞n=1 ⊆ H such that fn ↑ f and f is bounded, this implies f ∈ H.

Then H contains all bounded functions f , which are σ(A)-measurable.

Next we assume spaces X, Y to be Banach spaces and an operator A to be linear.
We denote the domain of A by D(A) ⊆ X and the image set by R(A) ⊆ Y . Then we
have next definition adapted from [23] (where only the case X = Y was considered):

Definition 1.0.4. A linear operator A with D(A) ⊆ X and R(A) ⊆ Y is called a
closed operator if for every Cauchy sequence (xn)∞n=1 ⊆ D(A) such that xn → x and
Axn → y it follows that x ∈ D(A) and Ax = y.

Definition 1.0.5 ([8], Definition 1.3.5). Let X and Y be Banach spaces and let
S ⊆ X be a linear subspace. A linear operator A : S → Y is called closable if for any
(xn)∞n=1 ⊆ S such that xn → 0 and Axn → y it follows that y = 0.

A closable linear operator can be extended in the following way:

Proposition 1.0.6. If a linear operator A : D(A) → Y is closable, then it does
have a closed extension Ā : D(Ā)→ Y such that A = Ā on D(A) and D(A) ⊆ D(Ā).

Proof. We define an extension

D = {x ∈ X : there exists (xn)∞n=1 ⊆ D(A) with xn → x and Axn → y}

and Ā : D → Y by Āx→ y. We show that (Ā,D) is well-defined, linear and closed.

47
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(1) Ā is well-defined: Let us assume that xn → x and Axn → y and another
sequence (zn)∞n=1 ⊆ D(A) which also converges to x, but Azn → w. Then
xn − zn → 0 and A(zn − xn) → y − w. Since A is closable we have that
y − w = 0 which is equal to y = w.

(2) Ā is linear: Let α, β ∈ R and x1, x2. By definition of D there exists sequences

(x
(n)
1 )∞n=1 and (x

(n)
2 )∞n=1 such that x

(n)
1 → x1 and x

(n)
2 → x2 with Ax

(n)
1 → Āx1

and Ax
(n)
2 → Āx2, when n→∞. Now

αĀx1 + βĀx2 = α lim
n→∞

Ax
(n)
1 + β lim

n→∞
Ax

(n)
2

= lim
n→∞

A(αx
(n)
1 + βx

(n)
2 )

= Ā(αx1 + βx2),

since A is a linear operator.
(3) Ā is closed: Assume that (xn)∞n=1 ⊆ D such that xn → x and Āxn → y.

We show that then x ∈ D and Āx = y. If (xn)∞n=1 ⊆ D then there exists
(zn)∞n=1 ∈ D(A) with

‖xn − zn‖X → 0

and
‖Āxn − Āzn‖Y → 0

when n→∞. Now since

‖x− zn‖X ≤ ‖x− xn‖X + ‖xn − zn‖X
→ 0, as n→∞

and

‖y − Azn‖Y ≤ ‖y − Āxn‖Y + ‖Āxn − Azn‖Y
→ 0 as n→∞

it follows that x ∈ D and Āx = y.

�
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Notations

L2([0, T ]m) The set of Borel functions f : [0, T ]m → R with ‖f‖2
L2([0,T ]m) =∫

[0,T ]m
f 2dλm <∞, also denoted by L2([0, T ]m,B([0, T ]m), λm).

L0 The set of simple stochastic processes given in
Definition 1.5.1, L = (Lt)t∈[0,T ], Lt : Ω→ Rm.

L2 The set of progressively measurable stochastic processes

L = (Lt)t∈[0,T ], Lt : Ω→ Rm with
(
E
∫ T

0
L2
tdt
) 1

2
<∞.

Lloc
2 The set of progressively measurable stochastic processes

L = (Lt)t∈[0,T ], Lt : Ω→ Rm with P
(
ω ∈ Ω :

∫ T
0
Lu(ω)2du <∞

)
= 1.

Lp(Ω,F,P) The space of random variables f : Ω→ R with (E[fp])
1
p <∞ for

p ≥ 1.

Mc
2 The set of continuous martingales M = (Mt)t∈[0,T ],

Mt : Ω→ R with E [M2
t ] <∞.

M
c,0
2 The set of continuous martingales M = (Mt)t∈[0,T ],

Mt : Ω→ R with M0 = 0 and E [M2
t ] <∞.

M
c,0
loc The set of continuous local martingales given in Definition 1.4.7.

Em The set of elementary functions f : [0, T ]m → R of the form
f(t1, ..., tm) =

∑n
i1,...,im=1 ai1···im1Ai1×···×Aim

(t1, ..., tm) where

ai ∈ R and ai1···im = 0, if ik = ij for some k 6= j and Ak ∩ Al = ∅
for all k 6= l with k, l ∈ {1, 2, ..., n}.

S2 The set of all adapted and continuous stochastic processes
L = (Lt)t∈[0,T ], Lt : Ω→ R, with E

[
sup0≤t≤T L

2
t

]
<∞.

C([0, T ]) The set of continuous functions f : [0, T ]→ R.

C∞p (Rn) The set of functions f : Rn → R such that ∂|α|f
∂x
α1
1 ···∂x

αn
n

exists for all

|α| = α1 + ...+ αn, where αi ∈ N0, f and ∂|α|f
∂x
α1
1 ···∂x

αn
n

have polynomial

49
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growth.

S The set of smooth random variables of the form
F = f(W (h1), . . . ,W (hn)) where f ∈ C∞p (Rn) and h1, ..., hn
∈ L2([0, T ]m).

D1,p The domain of the Malliavin derivative operator in space
Lp(Ω,F,P).

Θ The set of hedging strategies θ : [0, T ]→ Rm, θ(t) = (θ1(t), ..., θm(t))T ,
with θ ∈ L2.
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