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ABSTRACT 

Romppanen, V. 2021. Between- and within-day repeatability of markerless 2D motion analysis 

using deep neural networks. Faculty of Sport and Health Sciences, University of Jyväskylä, 

Master’s thesis, 39 pp. 

The purpose of this study was to evaluate kinematic analysis repeatability by deep learning 

approach in countermovement jump. Seventy athletes (39 women, 31 men) performed two 

maximal countermovement jumps in either one session or two separate sessions (jumps 

separated by two-weeks). The jumps were filmed from lateral and frontal point of view. Video 

data from 50 athletes were selected randomly to be used for training the deep learning model 

with DeepLabCut. A total of 10 images were used from every athlete from this training set, 

meaning that a total of 500 images were used to create the model for frontal view and side view 

(sagittal) videos. The performance of this model was then evaluated by applying it on 11 within-

day measurements and 9 between-day measurements again for both frontal and sagittal videos. 

For frontal view videos, the marker locations were labelled for both sides of the body to 

shoulder (acromion), hip joint (greater trochanter), knee joint (mid-point of patella) ankle joint 

(mid-point between malleoli) and toes (head of shoe). The marker locations of shoulder 

(acromion), hip joint (greater trochanter), knee joint (lateral femoral condyle), ankle joint 

(lateral malleolus) and toes (head of shoe) were manually labelled for sagittal test images. For 

the sagittal videos, hip, knee and ankle joint angles were calculated by using atan2 function in 

Matlab, and for the frontal view videos, the same was done for the knee and ankle angles. To 

compensate for misplaced or missing markers, raw data was filtered with a median filter and 

subsequently with Butterworth 4th order low-pass filter. After filtering, data was further 

processed with Matlab by first aligning the curve data of consecutive (trial 1 and trial 2) jumps. 

Then data was cropped according to the movement of knee joint from sagittal plane: start of 

cropping was selected as the point where there was a 5-degree joint angle change from the 

initial standing position, and the end point was selected as the same calculated value after 

landing the countermovement jump. Test-retest values were calculated with intraclass 

correlation coefficients (ICC) for subjects in the evaluation set. The ICC model used for test-

retest was single measurement two-way mixed effects with absolute agreement. High mean ICC 

values were observed for sagittal within-day joint angles (0.95 ± 0.04 for hip joint, 0.96 ± 0.03 

for knee joint and 0.95 ± 0.05 for ankle joint). Similar values were found for mean between-

day measurements (0.95 ± 0.03 for hip joint, 0.95 ± 0.07 for knee joint and 0.89 ± 0.08 for ankle 

joint). On the contrary, correlations of joint angle values for frontal plane varied substantially 

more: For within-day measurements, mean ICC values revealed poor test-retest reliability for 

right knee angle (ICC = 0.43 ± 0.31), and moderate test-retest reliability for left knee (ICC = 

0.68 ± 0.23), right ankle (ICC = 0.62 ± 0.22) and left ankle (ICC = 0.53 ± 0.29) angles. Mean 

between-day ICC values demonstrated good (ICC = 0.75 ± 0.10) test-retest reliability for right 

knee angle, moderate test-retest reliability for left ankle angle (0.53 ± 0.17), and poor test-retest 

reliability for left knee (ICC = 0.49 ± 0.27) and right ankle (ICC = 0.34 ± 0.26) angles. These 

results imply that deep learning approach provides very repeatable measurements for sagittal 

joint angles in countermovement jump, but not as such for frontal plane kinematics. Hence deep 

learning approach provides an affordable and easy-to-access method to perform repeated 

measurements for 2-D motion analysis of countermovement jump and possibly other sports 

movements filmed from sagittal plane. Further studies on repeatability and the validation of 

deep learning-based systems are required to prove their accuracy and to provide reliable data 

for practitioners.   
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1 INTRODUCTION 

Human motion analysis has progressed gradually, and it is continuously applying more 

sophisticated technological tools, including markerless systems that utilize human body 

models, computer vision and machine learning (Colyer et al. 2018). The increasing numbers of 

research and the evolvement of these novel kinematic analysis tools is highlighting the 

importance of developing and testing technology in the field and exploring the opportunities 

they give. Until recent years, motion analysis has relied heavily on optoelectronic measurement 

systems, which are often described as the gold standard for movement analysis. The basic 

principle of optoelectronic system is detecting light from markers, which in turn is turned to 

electrical signal in the camera, whereas when using computer vision based and automated 

systems, markers are not required and often described as “markerless” motion analysis (van der 

Kruk & Reijne 2018; Mathis et al. 2018) Even though optoelectronic systems have been the 

gold standard for kinematic analysis for few decades, systems that work by using automated 

detection and recognition of poses and sport specific movement are becoming more prominent 

in biomechanical research and are appearing as practical applications. 

Using computer vision has applications for performance analysis including player tracking, 

semantic analysis, and movement analysis (Cust et al. 2019).  Markerless systems could provide 

a great contender to optoelectronic performance analysis systems especially in practical aspects 

due to their lower cost, invasiveness and time saving aspects, such as faster subject preparation 

and faster feedback to the practitioners. Additionally, markerless measurements may be 

performed outside of laboratory, providing quick and easily accessible kinematic analysis 

system to its users. 
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One of the most common sports tests for player performance evaluation and monitoring is 

countermovement jump (CMJ). The reliability of CMJ performance (jump height) has been 

explored quite vastly, with good implications of low variability (Carrol et al. 2019). However, 

there is variability present in CMJ kinematics between intra-subject trial-to-trial tests, just as it 

is higher in many other common sports tests and sports movements with fast power production 

(Raffalt et al. 2016; Wren et al. 2020). This is an important factor to take into account when 

considering the use of sports movements as a base to measure the accuracy and repeatability of 

a kinematic analysis system. 

Before markerless systems can be applied for biomechanical research or practical applications, 

their accuracy, repeatability, validity, and reliability should be confirmed. Machine learning 

shows possibility as method to perform relatively cheap kinematic analysis outside laboratory 

environment. Deep learning-based machine learning performance has been assessed for sagittal 

plane kinematics with underwater running, vertical jumps, squatting, walking and running 

(Cronin et al. 2019; Drazan et al. 2021; Ota et al. 2020; Ota et al. 2021). There is need for 

evaluation on the accuracy of deep learning as a motion analysis tool in recreational sports 

movements. Due to its prevalence in sport testing and research, and similarity to many other 

sports movements, CMJ is a fitting sports test to be assessed for kinematic analysis system 

performance. Hence the aim of this study is to evaluate kinematic analysis repeatability by deep 

learning approach in common sport testing situation with countermovement jump.  

  



 

   3  

 

2 MOTION ANALYSIS 

Analysing kinematic parameters derived with motion capture systems has become widely used 

method for biomechanical studies and applications. Earliest versions of motion analysis can be 

dated back to 1878, with Muybridge’s sequence of photos of a galloping horse (Chiari et al. 

2005). From there on, motion capture sensors and systems have gradually transformed from 

relatively inaccurate and time-consuming methods to more profound, practical, and accurate 

systems. Motion camera systems have evolved from manual digitization with “cursor-clicks” 

to programming methodologies providing real-time tracking and automized digitizing while 

offering faster analysis in the process (Winter 2009). In addition, motion analysis systems have 

become more commercially available, and they are providing very practical way to track human 

motion in real-time. (Allard et al. 1998, 42-50; Robertson et al. 2014, 13.) 

Currently kinematic analysis relies heavily on use of optoelectronic systems consisting of one 

or multiple cameras and markers attached on the studied body to enable motion analysis. 

Optoelectronic measurement systems are currently described as the most accurate and golden 

standard for movement analysis (van der Kruk & Reijne 2018). Novel approaches which do not 

rely on using markers attached to the body or multi-camera system to produce movement 

analysis have become more apparent in the last decade. These systems can rely on depth sensor 

cameras, visual hull and other algorithms to enable motion-analysis. 

2.1 Marker-based motion analysis 

Marker-based optoelectronic measurement systems are currently the gold standard of pose 

estimation and motion analysis (van der Kruk & Reijne 2018). It is important to have base 

knowledge and understanding on methodology of these systems, since they work as point of 

reference for new systems when their system performance is being validated and the 

comparisons are made between the two.  
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The most typical way to collect kinematic data is to use camera or motion-capture system to 

record location of spherical and reflective markers attached to desired positions on the subject. 

The output becomes the movement and trajectories of each individual marker in the recording. 

This is followed by either manual or automatic digitizing to give out the coordinates of each 

individual marker. After this the coordinates are processed to produce information about 

segments joints and pose. (Allard et al. 1998; Robertson et al. 2014) 

Usually imaging systems use either video, digital video, or charge-coupled device cameras, 

which record reflection or ambient light of markers. In laboratory setting cameras emit their 

own light and record movement of the reflective markers on the body, or in some instances 

active markers that are emitting an infrared light. When studying planar 2-D motion, only one 

camera placed perpendicular to the plane of motion is necessary, whereas when studying 3-D 

motion, multi-camera systems are required. By utilizing the cartesian coordinate system, 

quantification of the position of markers in a recording can ultimately be used to analyse the 

displacement, velocity, and acceleration. These values can be used to describe segments, joint 

angles, and angular kinematics, and hence describe the movement of human body in the 

recording. (Robertson et al. 2014) 

Marker-based motion analysis includes very often the use of body models to describe and 

analyse the pose and the movement as completely as possible. Biomechanical models may have 

strong anatomical correlation and consist of real joint constraints, while some models are more 

kinematically oriented and used to reproduce joint kinematics. The most broadly used model 

for analysing the lower extremities in optoelectronic systems is the plug-in gait model. This 

model can be expanded to produce full-body plug-in gait model, which is represented as an 

example in figure 1. The same figure demonstrates simplistically the stages of motion capture 

with marker-based systems. (Leardini et al. 2017; Klöpfer-Krämer et al. 2020) 
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FIGURE 1: Marker-based motion analysis model construction from subject with attached 

reflective markers (A) to plug-in-gait model (B) to illustration of human skeleton (C). (Klöpfer-

Krämer et al. 2020) 

2.2 Markerless motion analysis 

In some situations, it is impractical to attach markers to the studied subject due to the movement 

itself, such as competition performance (Robertson et al. 2014). Additionally, using marker-

based optoelectronic systems are often expensive and more time consuming than markerless 

methods and may obstruct the natural movement of a given task (Mathis et al. 2018; Van der 

Kruk & Reijne, 2018; Colyer et al. 2018). Furthermore, raw video data can be analysed even 

post-hoc with markerless methods (Mathis et al. 2020).  Thus, it would be time-efficient and 

A) B) C) 
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beneficial to have valid and reliable markerless motion analysis systems for both research and 

practice. There are few methodological approaches in which this kind of automated markerless 

motion analysis is currently possible. These methods currently rely on either inertial 

measurement units (IMUs) or systems utilizing human body models, computer vision and 

machine learning algorithms (Colyer et al. 2018). Because the theory of IMUs differ 

substantially from the camera-based systems the focus in the upcoming parts will be on camera-

based markerless systems and computer vision.   

Vision based markerless systems consist of camera system used, the human body model, image 

features used, and the algorithms used to determine the body model parameters such as pose 

and shape. The algorithms are defined as generative or discriminative, where model parameters 

are compared to the captured image data to define best possible fit or captured image data is 

used to deduce model parameters, respectively. The general process of forming a pose in 

markerless systems is depicted in figure 2. As seen in the figure, this process can be divided to 

offline stage where body models or machine learning based algorithms are introduced, capture 

stage where image data is captured, processed and put into the algorithms that will form the 

output of final pose and shape of the body. (Colyer et al. 2018) 

FIGURE 2: General process and stages of forming a pose in markerless motion analysis systems 

(modified from Colyer et al. 2018). 
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2.2.1 Image capturing and processing 

Camera-systems used for the image capturing can be divided in two groups: depth-map cameras 

and colour video cameras. Depth-map cameras produce an image, in which every pixel 

describes the distance of this point from the camera. Depth-map cameras branch further to 

cameras that have binocular-stereo vision, which basically sense the distance of the object from 

two different pictures (thus named binocular), and light emitting “active” cameras which sense 

the distance from the reflection of the area of interest. Active cameras use usually either time-

of-flight, in which return time of single light pulse back to the camera is measured, or structured 

light systems, in which the depth is sensed by distortions of a certain pattern projected on the 

measurement area. (Colyer et al. 2018) 

Active depth sensing cameras which also capture color, such as Kinect, have been shown to be 

effective tools in interactive applications (Colyer et al. 2018). However, they do not reach the 

accuracy of traditional motion analysis systems in producing precise biomechanical pose 

estimation of a sports movement, even though there are implications of equally good reliability 

and accuracy for a limited number of movement parameters, especially in slower sports 

movements such as single leg squats and gait and simulated joint movement with a jig (Colyer 

et al. 2018; Eltoukhy et al. 2016; Kobsar et al. 2019; Mentiplay et al. 2018; Schmitz et al. 2014; 

Klöpfer-Krämer et al. 2020). Furthermore, application of these systems to sports biomechanics 

may not be ideal due to their low capture frequencies, ineffectiveness in longer ranges and 

detrimental effect of direct sunlight to the measurements (Colyer et al. 2018). 

Distinction of meaningful image features is subject of importance in computer vision and image 

processing. There are currently several possibilities in creating a markerless pose, and one of 

those includes using visual hull, which approximates the subject of interest in the space. Visual 

hull relies on multiple cameras creating an image silhouette by utilizing chroma keying, where 

coloring is used to paint the subject with one color and background with another. The 

combination of these silhouettes from multiple cameras produces the visual hull, and it has 

shown very accurate results for an automated markerless motion capture system (figure 3). 

(Colyer et al. 2018) 
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FIGURE 3: The process of 2D image capture (top row pictures), conversion to 2D silhouettes 

(middle row pictures) and back-projection and generation of visual hull (bottom row pictures). 

(Colyer et al. 2018) 

Another possibility to extract information from images is to utilize pose estimation algorithms. 

Raw video consists of collection a of images and the pixels they are constructed of. Inside the 

pictures, the interest of study usually involves objects and their location, scale, and orientation. 

These objects can be decomposed into multiple keypoints to give semantic meaning to objects 

such as certain body parts of a human subject. Simultaneously these keypoints provide the given 

x- and y-coordinates of these points and useful information about the movement of the subject 

to a researcher or practitioner. (Mathis et al. 2020) 
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Markerless pose estimation algorithms extract and map this information from images directly. 

Typically, this requires a set of example images, a training set. In summary, the function of 

pose estimation algorithms is the mapping of pixels of images to body part coordinates (figure 

4). The application and the training data that are used define the labelled body parts that the 

algorithm returns, which emphasizes the effect of algorithm customization for the functioning 

and behaviour of the applications. (Mathis et al. 2020) 

FIGURE 4: Pixel representation and key point representation of an image (Mathis et al. 2020). 

2.2.2 Creating body model 

The use of kinematic models has many advantages also in markerless motion capture. The body 

models in markerless motion analysis are similar to those in optoelectronic systems: a 

biomechanical skeleton is defined as a set of joints and the bones. Their parameters include the 

length of these bones and the respective joint angles of bones associated with that joint. For 

discriminative analysis these values are often enough, whereas generative approaches require 

information about the volume of the subject. (Colyer et al. 2018) 

Depending on the system and body models used, models may have strong anatomical 

correspondence by having real joint constraints, while some models are more kinematically 

oriented and used to reproduce joint kinematics. In generative automated computer vision, the 

model representation is usually in the form of “spatial 3D gaussians”, where these spatial 

gaussians are attached to the skeleton model (figure 5). These generative models may also be 

produced by high-accuracy 3D scanning or generic statistical 3D models utilizing 3D triangle 

meshes. (Leardini et al. 2017; Colyer et al. 2018)  
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FIGURE 5: Formation of generative 3D spatial gaussian model (middle, right) from simple 

skeletal model (left). (Colyer et al. 2018) 

2.2.3 Generative vs. discriminative approaches 

The main function of generative approaches is the comparison of a captured image to a specific 

hypothesis. Generation of body model is followed by comparison of features from captured 

images and calculating error value, describing how much the captured image differs from the 

body model (Colyer et al. 2018). The final output of generative approaches is the best-fit pose, 

and its name describes this approach appropriately: The best fitting pose of the model is 

computed according to the provided image in each frame of capture. 

In contrast to generative approaches, discriminative approaches do not try to process and fit 

body model parameters to the image and are also referred to as model-free algorithms. 

Discriminative algorithms can be divided in two separate methods. The first one includes using 

image features directly to describe the pose of a subject. This can be done by using machine 

learning based regressions, where the computer is taught how to determine the pose of the 

skeleton using image data. Most recently deep learning has been utilized to track particular 

body parts of multiple people in a supervised way. (Colyer et al. 2018; Mathis et al. 2018) 
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The second procedure includes a large database of pose examples and subsequently searching 

for a matching pose from this database to the captured image. Creation of this database can be 

however quite demanding, since it needs to include an enormous number of pose examples 

from different camera angles. If there is not enough data, results could easily become invalid. 

The accuracy is hence dependent on what the system already knows and likely blind to any 

small new variations that might exist in the captured data. (Colyer et al. 2018) 

2.3 Motion analysis with machine learning algorithms 

2.3.1 Machine Learning 

Machine learning is a rapidly expanding area in computer science, with numerous possible 

applications. Machine learning is the automated process to detect meaningful patterns in data 

(Shai & Shai 2014). More practically defined, machine learning is the process in which 

algorithms learn from given data to build an automated model and perform tasks without 

explicit programming (Cust et al. 2019). Machine learning requires incorporation of previous 

knowledge and biasing the learning process for the success of learning algorithms. This means 

that stronger prior knowledge or assumptions yields an easier learning process. However, 

stronger prior knowledge also leads consequently to less flexible learning (Shai & Shai 2014). 

One simple example of machine learning algorithm is called “naïve Bayes”, which can, for 

example, be used to separate spam e-mails from important e-mails (Goodfellow et al. 2016).  

It is important to consider the relationship between artificial intelligence (AI) and machine 

learning. AI describes the use of a computer to model intelligent behaviour with minimal 

involvement of human control (Kalmet et al. 2020). Thus, machine learning can be seen as AI 

since it adjusts intelligent learning process into detecting meaningful patterns by parsing 

information from large datasets (Shai & Shai 2014). Hence machine learning behaves as sub-

discipline within AI. 

Machine learning systems are composed of four elements: dataset, model, criterion as loss 

function, and optimization algorithm (Mathis et al. 2020). The input to an automated learning 
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algorithm is certain training data, and the output may take the form of another computer 

program that can perform a certain task (Shai & Shai 2014). The output in an automated learning 

algorithm can be described as response function hσ(x), that will predict a ground truth variable 

y from input vector of variables x. Then models can be introduced to either classification 

techniques to predict a target class or regressions to predict discrete continuous or discrete 

values. Ultimately, the models will find an optimal set of parameters to describe the response 

function and simultaneously make predictions on new and yet unobserved and unlabelled data 

to minimize a loss function. In sports biomechanics the data inputs can be obtained for example 

from inertial measurement units (IMUs) or cameras. (Cust et al. 2019) 

A very simplified real-life learning example would be picking out fresh and good tasting 

oranges from a big bowl with raw, fresh, and rotten oranges. Here, oranges represent the input, 

variables x would describe the properties of an orange, such as colour, hardness, and a particular 

smell, and variable y (the label) would describe the taste of the orange. Then a model could be 

introduced to select oranges that taste good (i.e. have bright orange colour and have certain 

hardness and smell) by utilizing a loss function (i.e. mapping out good tasting oranges from bad 

tasting oranges by giving out penalty for not achieving good taste). Now the model could 

describe the optimal set of parameters that yield a tasteful orange. These responses would create 

predictions for new patches of oranges and the learning process would end to picking even 

better tasting oranges according to certain combination of parameters x.  

Model training can be altered by using either supervised learning, unsupervised learning, or 

semi-supervised learning (Cust et al. 2019). Supervised learning includes introducing certain 

significant information (a label) to a learning algorithm to direct a faster and more precise 

learning process. There is an environmental factor that teaches and supervises the learner by 

giving additional information as labels (Shai & Shai 2014). In the previous orange example, 

such label could be “rotten oranges”, describing oranges that can be excluded right away. When 

looking at unsupervised learning however, there is no clear distinction between training and 

test data. Learner processes the input data to produce a summary or compressed version of a 

given data set, for example as clusters of similar objects. Semi-supervised learning or 

intermediate learning setting provides some additional information to the learner, but it is 

somehow limited and requires the learner to predict more information for test examples than 
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what was available at learning setting (Shai & Shai 2014). In the previous orange example, this 

could be explained in such way that there is only some vague label available as information, 

such as “face expression” of the person who tastes the orange. This would only create more 

predictions to learning due to the many possible reasons why a person has a certain face 

expression (for example mood and familiarity with eating oranges), rather than qualifying 

oranges based on their own qualities.  

When using images as databases feature representations are a necessity to recognize complex 

object in the images (Goodfellow et al. 2016; Mathis et al. 2020). In this process the whole 

image representation (i.e. surroundings) is recognized together with mapped features. This 

learning mechanism is very beneficial, since human processing of complex images is much 

more laborious, slower and less accurate. However, since numerous factors cause variation and 

affect how an object is seen in the image (i.e. lighting, camera-angle, shadows, reflections etc.), 

it can be hard to disentangle and remove unnecessary factors of variation. Deep learning 

provides a great possibility to fix this issue by expressing the representations relative to other 

simpler representations. In other words, deep learning allows a computer model to gradually 

learn more and more abstract features in order to recognise objects. (Goodfellow et al. 2016) 

2.3.2 Deep learning 

Deep learning, or in other words artificial neural networks, is one branch of machine learning, 

where deep neural network is inspired from the architecture of biological neural networks of 

the human brain. These hierarchical models create a deep architecture consisting of 

representative learning hidden layers. When compared to machine learning, the advantage is 

that these computational learning models allow data input features to be automatically extracted 

from raw data and transformed to handle unstructured data (Cust et al. 2019; Goodfellow et al. 

2016). Figure 6 demonstrates the basic principles of how deep learning can represent a person 

as simpler concepts in an image (Goodfellow et al. 2016). As seen in the figure, deep learning 

works in the multilayer perception, or feedforward deep network. As in machine learning, each 

layer works as an input-output function, where each output provides a representation as input 

for each new layer. In the figure, the input is represented as observable visible layer. Now, as 
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the computer cannot extract the wanted features (meaning the definition of a person in the image 

in this example) directly from the pixels of the image, they are extracted on more abstract hidden 

layers. The edges of pixels can be identified easily from the picture on the first hidden layer by 

comparing the brightness of adjacent pixels. The second layer can be deducted to describe the 

corners and contours, which are identifiable as certain compilation of edges. From here the third 

layer can be used to detect different parts of particular objects by finding certain pattern of 

corners and contours. From here the specific combination of these object parts can be used to 

describe and recognize a specific object in the image as the final output. 

FIGURE 6: Example of deep learning model. (Goodfellow et al. 2016) 
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2.3.3 Pose estimation 

Pose estimation falls directly under object detection by feedforward deep network. Deep 

learning algorithms have even been benchmarked as the best algorithms to create human pose 

estimations. In pose estimation from an image, the working system can be viewed consisting of 

an “encoder”, which extracts features from the images, and “decoder” creating body part 

location predictions from these features, similarly to previous example. Encoders and decoders 

are also known as the backbone and output heads, respectively. (Mathis et al. 2020) 

Currently, encoders, and decoders work as deep neural networks (DNN) optimized on the pose 

estimation. The ideal process for estimating a pose is to learn representations from raw video 

or image datasets (encoding part) and creating predictive model for the human pose (decoding 

part). Practically this can be produced with a sequence of differentiable and non-linear 

transformative multiple layers, and by utilizing back-propagation algorithm for the model as a 

whole (Mathis et al. 2020). As opposed to forward propagation by feedforward neural network, 

where an input x levels up to next hidden layer to produce output y, continuing until final output, 

back-propagation allows final output information to flow back to determine the gradient of the 

function in hand (Goodfellow et al. 2016). It is worth mentioning that according to Mathis et 

al. (2020) DNN-based tools optimize the feature representation exactly for pose estimation 

tasks. 
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The input-output relationships that a model should learn are defined by the datasets. When 

performing pose estimation, the output is defined as a specific pose, and the input is defined a 

specific image (Figure 7). Composed body model will be updated by the optimisation algorithm 

to reduce the size of the loss function. Here the goal of the loss function is to measure the 

similarity between the predicted and the ground truth value. Properties of these system elements 

will define how the pose-estimation system works and behaves. (Mathis et al. 2020) 

FIGURE 7: Machine learning model training by using human annotated key points. (Mathis et 

al. 2020) 

As discussed earlier, discriminative methods can be divided in two depending on the datasets: 

the data can be extracted from one or multiple datasets or from self-captured raw image or video 

data. These two are also essential when discussing deep learning as a tool for pose estimation. 

Earlier gathered databases can be used for pretraining of computer vision models. The datasets 

considering image recognition are commonly much larger than those datasets for pose 

estimation purposes: Image recognition datasets such as ImageNet consists of over 14,2 million 

images in 21 000 different classes, whereas benchmark pose estimation datasets such as MPII 

pose consist of 40 000 images of 26 000 individuals. The computer can be pre-trained with 
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these datasets by using transfer learning. Transfer learning is described as the ability to use 

parameters from a network trained for a certain task as part of another network to enhance its 

performance. (Mathis et al. 2020) An example of this could be a model trained to detect object 

classes (for example a dog, a cat or a table) and re-train it to perform pose estimation. 

When using self-captured image or video data, relatively small number of images are sufficient 

for model training, especially when the data is captured in laboratory setting. Datasets used 

sufficient to create a model for task of interest commonly contain 200 to 500 images (Mathis et 

al. 2018; Cronin et al. 2019). Cronin et al. (2019) demonstrated that 300 to 400 images are 

adequate to train a neural network to recognize and label body parts as accurately as manually 

performed labelling by a human. However, when it is possible, Mathis et al. (2020) recommend 

using pre-trained pose estimation algorithms since they can save time, increase robustness and 

less training data is required. Also, using encoder architectures that have been pre-trained on 

larger scale datasets has been demonstrated to be beneficial for pose estimation measurements 

for relatively small laboratory setting (Mathis et al. 2018; Mathis et al. 2020). 

A model in deep learning describes the statistical operations that are involved in the 

development of an automated prediction (Cust et al. 2019). Deep learning models can use 

generic encoder architectures usually based on object recognition. There are several different 

architecture designs that are used for pose estimation. The use of these architectures is 

advantageous since they affect the most critical properties of the algorithms. These include for 

example training-data requirements as mentioned earlier, algorithm inference speed, and 

memory demands of the computer. An example of commonly used backbone architecture is 

residual networks (ResNets). Convolutional neural networks (CNN) are shallow backbone 

architectures and are defined as DNN consisting of multiple convolutional layers. Their 

optimization becomes hard and performance decreases when the number of layers increases 

over 20. ResNets provide a possibility to networks with much larger depths without weakening 

the output. Their working principle differs from CNNs by adding the input value to the loss 

function (y = x + f (x), instead of y = f (x)). ResNets provide improved optimization and 

regularizes the loss function. (Mathis et al. 2020) 
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Keypoints of desired body parts on the object can be represented as simple coordinates on image 

data. Deep learning utilizes loss function to determine the loci of these points, and there are two 

methods to achieve this. The keypoints can be deducted by using regression or more commonly, 

by using grid same size as the input image to create a heatmap of location probabilities for every 

body part (figure 8). (Mathis et al. 2020) 

FIGURE 8: One possibility for the network training with heatmaps. Input image is processed 

through feedforward network, and the target heatmap is compared to the forward prediction 

heatmap. Now with back propagating the loss (which measures the difference between 

predicted and target or ground truth heatmap) can be minimized and the network parameters 

are optimized. (Mathis et al. 2020) 

Most pose estimation packages work using the same principles. Currently there are about 10 

packages available for use, each with different focus on certain user experience, networks and 

efficiency and accuracy of handling the data. Currently one of the most cited and used deep 

learning tool for animal and human motion capture is DeepLabCut. When using these deep 

learning tools, possible errors may occur due to low video quality and poor labelling quality 

and quantity. (Mathis et al. 2020) This emphasises the importance of labelling accuracy and 

proper set-up for measurements to ensure accurate pose estimation by using deep learning. 
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2.3.4 Accuracy  

When discussing about accuracy of pose estimation by deep learning, one way to approach it is 

to compare the performance of human labeller and the computed pose estimation. Cronin et al. 

(2019) evaluated deep neural network performance (DeepLabCut) by comparing pairwise 

Euclidean distances of marker locations with root mean square error in underwater running. 

When comparing a training set trained with 500 images, the results showed an error of 2,92 

pixels, or about 1 centimetre. These represented similar values over models trained over 400 

and 300 images. The root mean square error started to increase significantly when the models 

were trained with less than 300 images (figure 9). These results imply that using 300 images or 

more for training the model is sufficient for the same accuracy as a human labeller (Cronin et 

al. 2019), although this depends on the dataset used. 

FIGURE 9: Root mean square error (RMSE) increases when using less than 300 images for 

training a model. Using 300 images or more can be sufficient to reach as accurate pose 

estimation as a human labeller would give.  
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2.3.5 Validity 

There have been few studies comparing deep neural networks performance to marker-based 

systems. Strong agreement has been demonstrated between markerless and marker-based 

motion capture for sagittal plane kinematics in vertical jump with DeepLabCut and bilateral 

squat with OpenPose (Drazan et al. 2021; Ota et al. 2020).  Ota et al. (2021) demonstrated 

similar results with good to excellent values of intraclass correlation in sagittal kinematics of 

walking and running on a treadmill by comparing the performance of a markerless system 

(OpenPose) to an optoelectronic system (Vicon). However, for frontal plane kinematics, poor 

intraclass correlation values and no significant correlations were found in walking and running 

on a treadmill between these systems (Ota et al. 2021). Thus, there seems to be good level of 

validity for markerless systems in sagittal plane kinematics, but not yet so in frontal plane 

kinematics. 

2.3.6 Repeatability 

There does not seem to be any studies published yet considering the repeatability of markerless 

kinematic analysis systems. If the accuracy and validity of these novel systems prove to be 

reliable, more studies are necessary to determine whether these systems yield reliable test-retest 

values. In comparison, multiple studies demonstrate that the repeatability of optoelectronic 

systems appears to be reliable in walking and running activities, with within-session 

measurements showing a higher test-retest reliability compared to measurements separated by 

at least two days (Wright et al. 2011; Sinclair et al. 2012; Leszczewska et al. 2012; Judson et 

al. 2020).  

It is important to note that when assessing the repeatability of motion analysis systems, the 

measured movement itself may affect the result. Wren et al. (2020) demonstrated that there 

exists a high trial-to-trial variability in the joint range of motion parameters when performing 

different sports tasks. This highlights that the end results in test-retest reliability measurements 

may be dependent on the assessed sports movement.  
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3 RESEARCH QUESTIONS AND HYPOTHESES 

As deep learning approach is becoming more prominent in kinematic analysis, and as there are 

not yet published studies about its repeatability, which is one of the important factors defining 

the validity of a measurement system, there is an increasing demand for researching this area 

of topic. Hence, the aim of this study was to evaluate kinematic analysis repeatability by a deep 

learning approach and its repeatability in consecutive countermovement jumps (within-day and 

between-day) for athletes. The interest focused on calculating the joint angles for each jump 

trial, and then estimating intraclass correlation coefficients for each subject’s first and second 

trial. Finally, the aim was to use this correlation data to calculate the mean and standard 

deviation of these correlations for every angle measured to deduce the test-retest reliability of 

the deep learning approach. The hypotheses of this study were that the intraclass correlation 

coefficient for angle data would have low variability between subjects’ trials demonstrating 

high correlations, and good repeatability for both sagittal and frontal plane angle data. 
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4 METHODOLOGY 

This study included a total of 70 subjects (age: 18.8 ± 2.9 years, height: 177.2 ± 11.3 cm, mass: 

74.2 ± 13.8 kg; 39 females and 31 males). The subjects were national elite level recreational 

athletes in football (38 females), basketball (16 males), ice hockey (9 males), track and field 

athletes (6 males) and one female team gym athlete. Participants provided written informed 

consent before participating in the tests and gave information about their injury background. 

All the test subjects were healthy, non-injured athletes who were familiar with the counter 

movement jump test. This study was part of the Training Room Project by the Research institute 

of Olympic Sport. The study received ethical approval from the ethical committee of the 

University of Jyväskylä and all the tests were conducted according to the Helsinki declaration. 

4.1 Measurements 

The measurements began with instructed warm-up for each test subject. Guided warm-up 

consisted of 5 minutes on a cycle ergometer at the subject’s preferred pace, followed by 

dynamic activation movements and stretches. After the warm-up, the test subjects were guided 

to stand over an “x” marked on the ground and instructed to perform two maximal counter 

movement jumps, with brief a pause (3-10 seconds) in between each jump. Subjects were 

instructed to “jump as high as possible with their hands placed on the side of their body”. Each 

performance was recorded with two GoPro 3 hero -cameras (GoPro Inc., San Mateo, CA, US) 

with a 120 Hz frame rate and resolution of 1280 width and 720 height in pixels. The cameras 

were placed on two camera-stands at hip height perpendicular to each other, five meters from 

the measurement area.  The first camera faced the subject (frontal view), and the second one 

faced subject’s left side (sagittal view). To synchronise the videos from both cameras for 

subsequent analysis, a small piece of tape was attached to a stand visible to both cameras and a 

laser pointer was used to point a laser at the tape at the beginning of each trial. The tests were 

performed in two separate areas, with different lighting and background. The test set-up is 

represented in figure 10. The within-day jumps were performed during the same test session 

with a brief pause between the jumps. Between-day jumps were performed in two different test 

sessions separated by two weeks. 
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FIGURE 10: The test set-up. 

4.2 Computing and training of data 

After collection of data, the video files were first synchronised and cropped with an open-source 

program, Kinovea. The synchronisation was achieved by selecting a frame where the laser was 

visible for both cameras at the same location on the tape. The jump height was calculated with 

equation: ½ × g × (t / 2)2, where g = 9,81 m/s2 and t is the flight time. Flight time was defined 

as the time between the first point when the feet left the ground completely and the point where 

they touched the ground after the jump. The used application for training the deep learning 

model was DeepLabCut (Mathis et al. 2018). Individual models were trained for each camera 

view separately. Both frontal and sagittal models of CMJ performance were each processed by 

500 randomly selected test images from 50 subjects (10 images from each) to provide sufficient 

accuracy in the deep learning process (Cronin et al. 2019). For frontal view videos, the marker 

locations were labelled for both sides of the body to shoulder (acromion), hip joint (greater 

trochanter), knee joint (mid-point of patella), ankle joint (mid-point between malleoli) and toes 

(head of shoe), as seen on figure 11. The marker locations of shoulder (acromion), hip joint 

(greater trochanter), knee joint (lateral femoral condyle), ankle joint (lateral malleolus) and toes 

(head of shoe) were manually labelled for sagittal test images, as seen on figure 12.  In most 

cases, all the markers were visible throughout CMJ performance.   
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These images were then used to train a deep learning network to predict the location of markers 

and joint angles separately for the frontal and sagittal view camera. The models were trained 

using Resnet-101 model. Evaluation was performed for remaining 20 subjects (11 for within-

day and 9 for between-day evaluation). The jumps from these subjects were not part of creating 

the model. For the sagittal videos, hip, knee and ankle joint angles were calculated by using 

atan2 function in Matlab. For the frontal view videos, inspection of knee and ankle angles were 

selected for the analysis due to the research interest and importance and were similarly deduced 

with atan2 function. To correct for misplaced or missing markers, raw data was filtered with a 

median filter and subsequently with Butterworth 4th order low-pass filter. 

After filtering, data was further processed with Matlab by first aligning the curve data of 

consecutive (trial 1 and trial 2) jumps. This was accomplished by inspecting sagittal knee angle: 

The first point where knee angle increased again after the eccentric and concentric phase of 

CMJ was deduced for both jump trials. This point would indicate the end of knee extension 

approximately at take-off. Next the data was cropped accordingly. Starting point was defined 

as the point where the subject started lowering their centre of mass with the eccentric phase of 

CMJ. The ending point was defined as the point after landing the CMJ where the subject 

regained their normal stance. Again, by using the sagittal angle data, the first point where the 

knee angle increased by more than 5 degrees from average knee angle of standing still before 

the jump was deduced for each jump. Starting and ending points of cropping were determined 

by this angle for each jump. If there were differences in knee angle during standing before the 

CMJ, the jump with larger initial knee angle (meaning lower stance) was used for both jumps 

to determine the starting and ending points for cropping. This data was then compiled to a table 

for statistical analysis. 
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FIGURE 11: Marker locations for frontal view videos, with the locations at shoulder (blue dots), 

hip joint (purple dots), knee joint (pink dots), ankle joint (orange dots) and at head of the shoe 

(yellow dots). The images represent the phases of CMJ: 1) initial stance, 2) the end of eccentric 

phase (the lowest point of center of mass), 3) end of concentric phase (take-off), 4) highest point 

during the flight, 5) the end of eccentric phase of landing (the lowest point of center of mass at 

landing).   
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FIGURE 12: Marker locations for sagittal videos, with the locations at shoulder (dark blue 

dots), hip joint (light blue dots), knee joint (green dots), ankle joint (orange dots) and at head 

of the shoe (red dots). The images represent the phases of CMJ: 1) initial stance, 2) the end of 

eccentric phase (the lowest point of center of mass), 3) end of concentric phase (take-off), 4) 

highest point during the flight, 5) the end of eccentric phase of landing (the lowest point of 

center of mass at landing). Note that the image representing the take-off (3) is taken one frame 

before the ground contact is lost and the highest knee extension is achieved.     

4.3 Statistical analysis 

After all the raw data of marker locations were filtered and exported, the values were imported 

to IBM SPSS Statistic 26 (IBM Corp., Armonk, NY, US) for statistical analysis. The mean and 

standard deviation were calculated for jump heights, and test-retest values were calculated by 

intraclass correlation coefficients (ICC) for subjects whose jumps were not used in the creation 

of the deep learning model. The ICC model used for test-retest was single measurement two-

way mixed effects with absolute agreement, as Koo and Li (2016) recommend in their guideline 

for selecting and reporting ICC. By using 95 % confidence interval the following values were 

used to determine the indication of test-retest reliability: Poor (0,5 or less), moderate (0,5 – 

0,75), good (0,75 – 0,9) and excellent reliability (0,9 or greater) (Koo & Li 2016). 

1)        2)   3)     4)   5) 
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5 RESULTS 

The mean jump height of the first and subsequent countermovement jumps for within-day 

subjects were 0.30 ± 0.04 m and 0.30 ± 0.03 m, respectively. For between-day subjects the 

mean jump height was 0.44 ± 0.04 m for the first measurement and 0.43 ± 0.05 m after two-

week time. The jump height ICC values were 0.74 and 0.94 for within- and between-day 

subjects, respectively. 

5.1 Sagittal angles and correlations 

Sagittal CMJ joint angle data from a typical subject is represented in figure 13. The within-day 

ICC values for this subject were 0.99, 0.98 and 0.97 for hip, knee and ankle angle, respectively. 

For within-day subjects (T1–T11), ICC values ranged between 0.87 – 0.99, 0.90 – 0.99 and 

0.82 – 0.99 for hip, knee and ankle angles, respectively. For between-day subjects (T12–T20), 

these values ranged between 0.88 – 0.98, 0.76 – 0.98 and 0.73 – 0.97 for hip, knee and ankle 

angles, respectively. 

The grouped mean ICC values equalled 0.95 ± 0.04, 0.96 ± 0.03 and 0.95 ± 0.05 for within-day 

subjects, and 0.95 ± 0.03, 0.95 ± 0.07 and 0.89 ± 0.08 for between-day subjects, for hip, knee 

and ankle angles, respectively. All ICC values and their 95 % confidence intervals for each 

subject and the grouped means for both within-day and between-day measurement values are 

displayed in table 1 and table 2, respectively. 
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FIGURE 13: Representation of within-day sagittal joint angle data for a single subject. Full 

extension of each joint is defined at 180° joint angle and decrease in joint angle denotes joint 

flexion. Hip, knee and ankle joint angles all show high ICC values and thus represents excellent 

test-retest reliability for this particular subject.  
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TABLE 1: ICC values for all the sagittal joint angles of within-day subjects and their grouped 

means and standard deviations. 

TABLE 2: ICC values for all the sagittal joint angles of between-day subjects and their grouped 

means and standard deviations. 

 

Subject Hip ICC CI 95% Knee ICC CI 95% Ankle ICC CI 95% 

T1 0.96 0.95 – 0.97 0.99 0.97 – 0.99 0.94 0.92 – 0.95 

T2 0.97 0.96 – 0.98 0.97 0.62 – 0.99 0.93 0.87 – 0.95 

T3 0.99 0.99 – 0.99 0.99 0.98 – 0.99 0.97 0.96 – 0.97 

T4 0.87 0.55 – 0.94 0.90 0.81 – 0.94 0.82 0.78 – 0.86 

T5 0.99 0.99 – 0.99 0.98 0.88 – 0.99 0.97 0.91 – 0.98 

T6 0.97 0.97 – 0.98 0.98 0.98 – 0.99 0.90 0.86 – 0.93 

T7 0.98 0.96 – 0.98 0.99 0.98 – 0.99 0.99 0.98 – 0.99 

T8 0.98 0.95 – 0.99 0.95 0.80 – 0.98 0.96 0.94 – 0.97 

T9 0.94 0.92 – 0.95 0.96 0.95 – 0.97 0.98 0.98 – 0.98 

T10 0.88 0.61 – 0.94 0.90 0.76 – 0.95 0.98 0.95 – 0.99 

T11 0.92 0.87 – 0.95 0.94 0.91 – 0.95 0.98 0.97 – 0.98 

Mean 0.95 ± 0.04 
 

0.96 ± 0.03 
 

0.95 ± 0.05 
 

Subject Hip ICC CI 95% Knee ICC CI 95% Ankle ICC CI 95% 

T12 0.88 0.85 – 0.91 0.76 0.70 – 0.81 0.83 0.64 – 0.91 

T13 0.94 0.92 – 0.95 0.98 0.88 – 0.99 0.93 0.70 – 0.97 

T14 0.96 0.93 – 0.97 0.95 0.94 – 0.96 0.77 0.70 – 0.83 

T15 0.98 0.93 – 0.99 0.96 0.86 – 0.98 0.87 0.83 – 0.90 

T16 0.89 0.75 – 0.94 0.95 0.91 – 0.96 0.73 0.59 – 0.81 

T17 0.95 0.94 – 0.96 0.97 0.90 – 0.98 0.97 0.91 – 0.98 

T18 0.96 0.92 – 0.97 0.96 0.93 – 0.98 0.95 0.93 – 0.96 

T19 0.98 0.97 – 0.98 0.97 0.95 – 0.98 0.94 0.92 – 0.95 

T20 0.96 0.93 – 0.98 0.98 0.98 – 0.98 0.97 0.96 – 0.98 

Mean 0.95 ± 0.03 
 

0.95 ± 0.07 
 

0.89 ± 0.08 
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5.2 Frontal plane angles and correlations 

Frontal plane CMJ joint angle data from a typical subject is represented in figure 14. The within-

day ICC values for this subject were 0.64, 0.97, 0.50 and 0.73 for right knee valgus, left knee 

valgus, right ankle and left ankle angle, respectively. For within-day subjects, ICC values 

ranged between -0.14 – 0.93, 0.31 – 0.97, 0.19 – 0.91 and -0.03 – 0.84 for right knee, left knee, 

right ankle and left ankle angles, respectively. For between-day subjects, these values ranged 

between 0.53 – 0.88, 0.13 – 0.82, 0.22 – 0.77 and 0.04 – 0.74 for right knee, left knee, right 

ankle and left ankle angles, respectively.  

The grouped mean ICC values equalled 0.43 ± 0.31 for right knee angle, 0.68 ± 0.23 for left 

knee angle, 0.62 ± 0.22 for right ankle angle and 0.53 ± 0.29 for left ankle angle in within-day 

subjects. For between-day subjects, ICC values were 0.75 ± 0.10 for right knee angle, 0.49 ± 

0.27 left knee angle, 0.53 ± 0.17 for right ankle angle and 0.34 ± 0.26 for left ankle angle. All 

ICC values and their 95 % confidence intervals for each subject and the grouped means for 

within-day subjects are displayed in table 3 and table 4, and for between-day subjects they are 

displayed in table 5 and table 6. 
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FIGURE 14: Representation of frontal plane joint angle data for a single subject. For knee joint, 

positive values represent knee valgus and negative values knee varus. For ankle joint, positive 

values may represent ankle pronation and external rotation at knee and hip joint, and negative 

values may represent ankle supination and internal rotation at knee and hip joint when the sole 

of the foot is in contact with the ground. Zero angle defines naturally the neutral position of the 

joint. For this subject, left knee angle represents excellent test-retest reliability, whereas right 

knee, and both ankle angles demonstrate only moderate test-retest reliability. 
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TABLE 3: ICC values for frontal plane knee joint angles of within-day subjects and their 

grouped means and standard deviations. 

TABLE 4: ICC values for frontal plane ankle joint angles of within-day subjects and their 

grouped means and standard deviations. 

Subject Right Knee ICC CI 95% Left Knee ICC CI 95% 

T1 0.64 0.48 – 0.74 0.97 0.96 – 0.98 

T2 0.53 0.19 – 0.71 0.31 0.17 – 0.44 

T3 0.45 0.32 – 0.55 0.90 0.78 – 0.94 

T4 0.40 0.26 – 0.51 0.48 0.38 – 0.57 

T5  -0.06  -0.18 – 0.06 0.94 0.92 – 0.95 

T6 0.93 0.91 – 0.95 0.89 0.85 – 0.91 

T7 0.47 0.24 – 0.63 0.68 0.50 – 0.79 

T8 0.67 0.25 – 0.83 0.81 0.75 – 0.86 

T9 0.64 0.45 – 0.75 0.55 0.44 – 0.64 

T10  -0.05  -0.16 – 0.06 0.60 0.44 – 0.71 

T11 0.07  -0.06 – 0.21 0.35  -0.04 – 0.61 

Mean 0.43 ± 0.31 
 

0.68 ± 0.23 
 

Subject Right Ankle ICC CI 95% Left Ankle ICC CI 95% 

T1 0.50 0.39 – 0.60 0.73 0.66 – 0.79 

T2 0.91 0.82 – 0.95 0.71 0.62 – 0.78 

T3 0.86 0.79 – 0.90 0.63 0.55 – 0.70 

T4 0.19 0.01 – 0.35 0.37 0.26 – 0.47 

T5 0.83 0.78 – 0.87 0.84 0.55 – 0.92 

T6 0.70 0.29 – 0.85 0.52 0.28 – 0.67 

T7 0.56  -0.05 – 0.80  -0.01  -0.13 – 0.10 

T8 0.47 0.35 – 0.58 0.78 0.15 – 0.91 

T9 0.29 0.07 – 0.47 0.02 0.08 – 0.14 

T10 0.67 0.26 – 0.83 0.36 0.23 – 0.47 

T11 0.79 0.66 – 0.86 0.82 0.53 – 0.91 

Mean 0.62 ± 0.22 
 

0.53 ± 0.29  
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TABLE 5: ICC values for frontal plane knee joint angles of between-day subjects and their 

grouped means and standard deviations. 

TABLE 6: ICC values for frontal plane ankle joint angles of between-day subjects and their 

grouped means and standard deviations.  

Subject Right Knee ICC CI 95% Left Knee ICC CI 95% 

T12 0.53 0.43 – 0.62 0.47 0.37 – 0.57 

T13 0.81 0.15 – 0.93 0.38 0.07 – 0.59 

T14 0.88 0.84 – 0.90 0.70 0.63 – 0.76 

T15 0.70 0.47 – 0.81 0.13 0.00 – 0.25 

T16 0.66 0.38 – 0.80 0.82 0.61 – 0.90 

T17 0.72 0.65 – 0.77 0.17 0.04 – 0.29 

T18 0.84 0.72 – 0.90 0.71 0.63 – 0.78 

T19 0.82 0.77 – 0.85 0.18 0.05 – 0.31 

T20 0.74 0.56 – 0.83 0.82 0.64 – 0.89 

Mean 0.75 ± 0.10 
 

0.49 ± 0.27 
 

Subject Right Ankle ICC CI 95% Left Ankle ICC CI 95% 

T12 0.54 0.11 – 0.75 0.04  -0.07 – 0.17 

T13 0.60 0.51 – 0.69 0.17 0.04 – 0.30 

T14 0.22 0.08 – 0.34 0.74 0.61 – 0.82 

T15 0.56 0.40 – 0.68 0.46 0.35 – 0.56 

T16 0.50 0.41 – 0.59 0.32 0.21 – 0.42 

T17 0.77 0.71 – 0.82 0.28  -0.09 – 0.60 

T18 0.58 0.37 – 0.72 0.33  -0.01 – 0.57 

T19 0.28 0.09 – 0.60 0.59 0.39 – 0.71 

T20 0.66 0.05 – 0.85 0.08  -0.03 – 0.21 

Mean 0.53 ± 0.17 
 

0.34 ± 0.26 
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6 DISCUSSION 

When comparing sagittal within-day joint angles for countermovement jump, deep learning 

approach yields very high ICC values for hip joint, knee joint and ankle joint. Similar values 

were found for between-day measurements separated by two-weeks for all measured joints. 

Thus, according to guidelines of Koo and Li (2016), only between-day value of ankle joint gave 

good test-retest reliability, and the rest demonstrated excellent test-retest reliability. Hence deep 

learning approach for determining sagittal hip, knee and ankle joint angles in countermovement 

jump seems to provide very repeatable results independent of the time between the 

measurements. The proposed hypothesis for sagittal joint angles can be accepted. 

However, similar results were not found for the same jumps in frontal plane data. Deep learning 

approach gave varying ICC values for knee and ankle joint angles. Also, some of the ICC values 

were negative for few subjects. For within-day measurements, ICC values revealed poor (ICC 

= 0.43 ± 0.31) test-retest reliability for right knee angle, and moderate test-retest reliability for 

left knee (ICC = 0.68 ± 0.23), right ankle (ICC = 0.62 ± 0.22) and left ankle (ICC = 0.53 ± 0.29) 

angles. The results were similarly varied over between-day subjects, when assessing the frontal 

plane data of countermovement jumps. Between-day ICC values proved good (ICC = 0.75 ± 

0.10) test-retest reliability for right knee angle, moderate test-retest reliability for left ankle 

angle (0.53 ± 0.17), and poor test-retest reliability for left knee (ICC = 0.49 ± 0.27) and right 

ankle (ICC = 0.34 ± 0.26) angles. It is also important to consider the high deviation of these 

values: Some of the subjects presented excellent test-retest reliability in some of the joint angles 

(as an example view left knee ICC for the subject in figure 14), and some instead presented 

moderate or very poor reliability values (for example right ankle of the subject in figure 14). 

Thus, deep learning approach may not be suitable for repeated measurements, and the proposed 

hypothesis for frontal plane joint angles is declined. However, the high variance in joint 

kinematics in frontal plane may not be due to the system, but also due to the variability of frontal 

plane kinematics in countermovement jump itself. 
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Since there were clear variations for both within-day and between-day frontal plane results, it 

may be concluded with high likelihood that the reason for the variation did not lie in the time 

period between the measurements. Instead, the reason for varying results may be due to the 1) 

deep learning system itself, 2) variability in countermovement jump kinematics in frontal plane, 

3) poor and inadequate training of deep learning model, 4) effect of learning and fatigue on 

jump kinematics in between-day trials or 5) a combination of these factors. To determine if 

deep learning system itself is causing the variability, possible other factor (points 2-5 listed 

above) need to be evaluated. 

In human movement there is commonly variability in joint range of motion and muscle 

activation and coordination strategy, depending on the task and its complexity. Indeed, when 

analysing 3D-kinematics of countermovement jumps there exists coordination pattern 

variability in countermovement jumps, and it tends to be larger for younger athletes (Raffalt et 

al. 2016). Wren et al. (2020) demonstrated similar large within-subject variability for drop 

jumps, which have quite similar movement pattern to CMJ, with variability in kinematic 

parameters: Their results gave variation of range of motion of measured joints between 2-11° 

for sagittal plane, between 2-6° for frontal plane and between 2-7° for transverse plane. 

Furthermore, Carroll et al. (2019) demonstrated just moderate reliability for countermovement 

jump depth (ICC = 0.61) for intrasession CMJ depth and poor reliability for intersession CMJ 

jump depth (ICC = 0.39), indicating that there would be probably exist differences also in 

angular values of joints. Carroll et al. (2019) also demonstrated high intra- and intersession 

reliability for jump height (intrasession ICC = 0.94, intersession ICC = 0.92). This study also 

demonstrated relatively high within- and between day reliability for jump heights (within-day 

ICC = 0.74, between-day ICC = 0.94). This implies that there is not high variability in jump 

heights and thus this factor does not have a large impact to the movement variability in CMJ. 

Variability might also be affected by leg movement during the flight phase of CMJ. Firstly, 

small variation in the take-off might lead also to different type of muscle activation to prepare 

for the landing, increasing the variability of joint angles in the air between two trials. As another 

example, a few subjects had a large ankle dorsiflexion during the flight phase, which may have 

blocked the vision of ankle marker in frontal-view videos. This could increase the amount of 
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filtering of frames where there are missing markers, and so increase the variability between two 

jumps.  

In addition, variability might be affected by countermovement jump movement strategy: Rauch 

et al. (2020) demonstrated in their study how NBA players can be divided to three different 

eccentric phase movement strategies during CMJ (stiff flexors, hyper flexors, and hip flexors). 

There may theoretically be more room for variability for athletes belonging to hyper flexors 

and hip flexors group, since they have more angular displacement at each joint during CMJ 

compared to stiff flexors. The variability of joint kinematics during a countermovement jump 

has not been studied from frontal plane directly, but all the factors mentioned above could be 

explaining the variability in frontal plane kinematics to some extent in the current study.  

Another factor explaining varying test-retest reliability of frontal-plane angles may be weak 

training of deep learning model. Discrepancies in training the model may have come from poor 

judgement of marker positions, compromised vision due to placement of hands over hips, 

different types of clothes on the subjects in the training set, and the number and variability of 

training images. Placement of knee, ankle and toe markers were very consistent during manual 

labelling thanks to their clear visibility and separability. Manual labelling of the hip joint was 

however a time consuming task. To stay consistent in placing the hip marker, the researchers 

had to look at the shape of the thigh and hip. This process was quite precise and consistent for 

all the subjects, who had tight sports pants without loose parts and relatively short shirt, with 

hand placed at the sides of the body above the hip. However, for several subjects this process 

was more tedious due to baggy shorts and longer shirts and/or too low placement of the hands 

at the side of the body. It is however important to note that training these models with as many 

different types of subject settings may help in creating more universal and practical model for 

use. This may however have caused more variability in the placement of the hip marker, 

resulting in larger variability for knee joint angles. This however is not the only factor affecting 

the end results, since great variability existed also at ankle joint angles (tables 4 and 6).  

Furthermore, if the variability in frontal angles is due to poor model training, this should be 

evident in the tracked videos. After doing general observations on the test set on the accuracy 
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of marker placement, this should not be the case. This fact highlights that the reason for the 

higher variability in frontal kinematics might be due to the variability in the countermovement 

jump itself and other factors, rather than poor model training. However, it is important to note 

that only a single model per camera view was trained. It is possible that with more data and/or 

different hyperparameters, the results would have been less variable. 

There might be effects from learning and fatigue for between-day measurements, since they 

were separated by two-weeks. Since subjects of this study were actively training, they could 

have had a strenuous training session a few days prior to the tests, which could decrease joint 

range of motion and subsequently decrease the correlation between the sessions, if there were 

no similar stress factors before the first tests. Another factor affecting the correlations could 

have come from the level of the athlete and/or learning process of the test protocol.  

The most likely scenario is some form of combination of these factors. However, since sagittal 

joint angles provided excellent test-retest reliabilities and marker placement seemed good after 

general observations on frontal view of the test set, it is very likely that movement variability 

of subjects in frontal plane angles explain largely the varying ICC values. Additionally, the 

varying ICC values in frontal plane angles could also be explained by the movement strategies 

that different planes of movement provide. In the eccentric phase of countermovement jump, 

the only possibility for the joint angles is to decrease their values through flexion in sagittal 

plane, whereas from the start of concentric phase to the take-off these joint angles are always 

increasing through joint extension. In frontal plane however, there is more room for movement 

strategy variation. For example, less experienced athlete may have knee valgus in the first trial 

but neutral knee position or knee varus in the second trial, if they are for example leaning their 

upper body more over to another side compared to their first jump. This reasoning could explain 

some of the negative ICC values too (i.e. substantially different frontal plane angle changes for 

the same subject). In future, the best solution would probably be to measure multiple 

countermovement jumps in a single session and determine their means to diminish the 

variability. Another solution to avoid problems from placing the hip marker would be to train 

the model so, that the markers are placed on the lateral body outline to indicate the location of 

joints. This would not be anatomically correct of course, but it could improve the system 
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performance by making the point of recognition more visible by contrasting the background to 

the measured leg. 

A few of the ICC values were negative for frontal plane joint angles. Usually, ICC values should 

be between 0 and 1 to define the correlation within a class of data. The ICC is calculated by 

using the following ratio: ICC = (variance of interest) / (total variance) = (variance of interest) 

/ (variance of interest + unwanted variance). Because variances are calculated by performing 

statistical estimates, there is a possibility of poor ICC estimations, resulting in negative values. 

This is often due to small sample size (Liljequist et al. 2019). Negative values imply low or 

non-existing correlation between two sets of data. 

A few limitations of this study should be acknowledged. The first source of limitations exists 

in the group that was studied. The results apply mostly to athletes, and thus provide information 

about system performance of deep learning approach for more consistent jumps with relatively 

small variability in joint angles. The variability of countermovement jumps might be larger for 

non-athletes, leading to larger inconsistencies in subsequent measurements, regardless of the 

measurement system used. It would be beneficial to recognise these differences of variability 

of human movement when assessing performance data. Additionally, there could have been 

more sources of error from athletes’ lack of motivation for the tests, muscle soreness or fatigue 

from earlier training sessions leading to differences in countermovement jump kinematics and 

the effect of learning to perform countermovement jump in alternated movement strategy in 

between-day sessions. 

In practical terms, these results imply that deep learning approach could provide a great tool for 

coaches and athletes to assess the sagittal joint angles in countermovement jumps. It would help 

many workers in the field to provide biomechanical analysis at an affordable price and with 

ease. Applications of analysing sagittal joint angles could include for example recognising the 

movement strategy groups and targeting training accordingly to personal needs of athletes. 

Analysing frontal plane joint angles with deep learning however would probably require more 

studies considering the naturally occurring variability in countermovement jump kinematics by 

studying the repeatability and validity of multiple jumps in the same session. Furthermore, to 
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provide as accurate data as possible independent of movement strategies and variabilities within 

them, it would be essential to validate a deep learning approach for kinematic analysis by 

comparing its performance against an optoelectronic system in human movement. 

In conclusion, deep learning approach provides very repeatable measurements for sagittal joint 

angles in countermovement jump, but not as such for frontal plane kinematics. This implies that 

deep learning approach provides an affordable and easy-to-access method to perform repeated 

measurements for 2-D motion analysis of countermovement jump and possibly other sports 

movements filmed from sagittal plane. However, the validation of these systems is required to 

further prove their accuracy and to provide reliable data for practitioners.   
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