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a b s t r a c t 

Cyclicality and instability inherent in the economy can manifest themselves in irregular fluctuations, in- 

cluding chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the eco- 

nomic system in the long run. We focus on an approach, associated with the identification of a deter- 

ministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model 

as an example, we demonstrate the use of effective analytical and numerical procedures for calculating 

the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as 

dimension and entropy. We use an analytical approach for localization of a global attractor and study 

limiting dynamics of the model. We estimate the Lyapunov exponents and get the exact formula for the 

Lyapunov dimension of the global attractor of this model analytically. With the help of delayed feedback 

control (DFC), the possibility of transition from irregular limiting dynamics to regular periodic dynamics 

is shown to solve the problem of reliable forecasting. At the same time, we demonstrate the complex- 

ity and ambiguity of applying numerical procedures to calculate the Lyapunov dimension along different 

trajectories of the global attractor, including unstable periodic orbits (UPOs). 

© 2021 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Increasing uncertainty, unpredictability, and instability in the 

orld, nature cataclysms, a series of economic crises, self-fulfilling 

xpectations which give rise to bubbles and crashes, as well as 

apid development and implementation of digital technologies in 

veryday life have posed a number of new challenges for scientists, 

overnments, and policy makers: to study, understand and inter- 

ret the behavior of complex dynamical systems, including socio- 

conomic models [1–3] . 

An inherent component of observed economic processes is 

yclicality, which is manifested through the occurrence of various 

ypes of fluctuations in the economic system under consideration. 

n particular, regular fluctuations could be either periodic boom- 

ust phenomena associated with predictable changes in some el- 

ments of the economic system that reappear at fairly constant 

ime intervals, or seasonal fluctuations that are permanent in na- 

ure. Regular and stable periodic oscillations lead to the predictable 
∗ Corresponding author at: Faculty of Information Technology, University of 

yväskylä, 40014 Jyväskylä, Finland. 
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ynamics of the process’ model and are quite simple to describe 

athematically. A number of straightforward quantitative mea- 

ures, such as phase-frequency characteristics and amplitude, can 

e calculated for them. 

However more often, economic systems exhibit irregular (in- 

luding chaotic) behavior. The role of irregular oscillatory dynamics 

or forecasting and stabilization of economic processes significantly 

epends on the source and nature of these fluctuations. On the one 

and, irregular economic fluctuations could be the result of un- 

sual events such as large bankruptcies, oil and currency shocks, 

oods, strikes, civil unrest, epidemics, etc. These events could be 

hought of as initiated by exogenous shocks. On the other hand, 

rregular fluctuations could be generated by endogenous mecha- 

isms inherent in the very nature of economic systems. Thus, there 

re two ways to examine of irregularity in the economy. First ap- 

roach takes into account random processes that are considered in 

he model as exogenous shocks. Second one is based on identifi- 

ation of a deterministic endogenous mechanism of occurrence of 

rregular fluctuations, which may also be chaotic. These two ap- 

roaches were developed in economics literature in parallel and 
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1 We assume that the potential (natural) levels of factors of production corre- 

spond to the production possibilities of a mid-size firm as a whole, reflecting its 

natural, technological, and institutional constraints. 
enerated a lot of discussion regarding the views on the sources of 

rregular fluctuations (see, e.g. [4–6] ). 

Since the 1970s, there has been keen interest in the study 

f deterministic chaotic dynamics in economic models within the 

ramework of the second approach. This research was stimulated 

y the discovery of chaos in dynamical systems by Lorenz [7] , Ueda 

t al. [8] . Many famous economists (see, e.g. [4,9–27] ) have sug- 

ested numerous examples of economic models in which quali- 

atively and quantitatively reasonable irregular fluctuations might 

ccur in purely deterministic settings. For instance, the larger lit- 

rature [9,13,14,19,20,28–31] examines the endogenous cycles and 

rregular chaotic dynamics which could be generated by determin- 

stic, equilibrium models of the economy. The models often exhibit 

omplex dynamics characterized by both chaotic behavior and in- 

tability. Such combination suggests a nonlinear dynamical system, 

omewhat unstable at the core, but effectively contained further 

ut. The contribution of these models has been to demonstrate 

he compatibility of endogenous irregular fluctuations with equi- 

ibrium dynamics in economics. At the same time, theoretical tools 

ere developed for effective chaos control, which, by small fine- 

uning the parameters of system, made it possible to stabilize se- 

ected orbits embedded in a chaotic attractor and nudge the dy- 

amics toward a desired trajectory. Examples applications of these 

ools can be found in [32–40] . The reviewed literature showed the 

elevance of chaos for economic models and contributed to de- 

elopment of advanced mathematical tools for study of complex 

onlinear dynamical systems in economics, which continues up to 

ow. During the last few years, highly influential authors published 

 number of significant papers (see, e.g. [41–49] ). The studies of 

odels with irregular dynamics have received a new impetus and 

pread into many subfields of economic theory. Especially, such 

odels offer important contributions in macroeconomics, dynam- 

cal game theory, theory of rational inattention, finance, environ- 

ental economics, and industrial organization (for survey of the 

iterature, see [50] ). 

To understand, describe and make measurable the properties 

f irregular dynamics it is important to calculate its quantitative 

haracteristics. Indicators based on Lyapunov exponents, including 

uch as entropy and dimension, naturally arise in economics [51] . 

n economic models these characteristics could be considered as 

ndicators of irregular (primarily, chaotic) behavior, as the growth 

ate of the value of some economic variable (for instance, tech- 

ology level), or as a measure of costs of making decisions by 

 rationally inattentive agent who acquires information about the 

alues of alternatives through a limited-capacity channel (see, e.g. 

52–55] ). In this paradigm important results and arguments were 

resented which provide novel support for the idea that business 

ycles may be largely driven by endogenous deterministic cyclical 

orces (see, e.g. [6,56,57] ). 

There are two main approaches in studying this topic. The first 

pproach is based on the possibility of obtaining analytical re- 

ults for low-dimensional nonlinear models (in the literature, two- 

imensional dynamical systems are most often studied). The sec- 

nd one is based on the ability to study complex irregular dy- 

amics using numerical procedures. However, the possibility of 

btaining reliable results using them is significantly limited due 

o the necessity of performing calculations only over finite time 

ntervals, rounding-off errors in numerical methods, and the un- 

ounded space of initial data sets [58–63] . It should be noted that 

he sensitivity to small changes in the initial data, inherent in ir- 

egular (chaotic) dynamics, can cause significant forecasting errors. 

his, on the one hand, can explain some of the difficulties asso- 

iated with forecasting behavior of the models, and on the other 

and could be interpreted as unpredictability in real world prob- 

ems (see, e.g. [6] ). Trajectories in models of such processes may 

e attracted not to a stationary point or a periodic cycle, but to an
2 
rregular invariant set, including chaotic attractor. Additional com- 

lexity of the dynamics can be also associated with various un- 

table orbits embedded into the chaotic attractor of the dynam- 

cal system. Stabilization of unstable orbits makes it possible to 

mprove the forecasting of the model dynamics [63] . Analytical 

ethods allow overcoming these limitations at least for some low- 

imensional models (see, e.g. [62,64] ) and are able to mitigate the 

nfluence of computer errors. Thus, this is capable of making reli- 

ble forecasts of model dynamics and of getting its exact qualita- 

ive and quantitative characteristics. 

We continue the line of research on the limiting dynamics for 

 mid-size firm model, which began in [62,63] , where we have ob- 

ained conditions for the global stability. In this paper we focus on 

 different approach, associated with the identification of deter- 

inistic endogenous mechanisms of irregular fluctuations in eco- 

omic systems. We use an analytical approach for localization of a 

lobal attractor and study limiting dynamics of the model. We es- 

imate the Lyapunov exponents and get the exact formula for the 

yapunov dimension of the global attractor of this model analyt- 

cally. With the help of DFC, the possibility of transition from ir- 

egular limiting dynamics to regular periodic dynamics is shown 

o solve the problem of reliable forecasting. At the same time, we 

emonstrate the complexity and ambiguity of applying numeri- 

al procedures to calculate the Lyapunov dimension along different 

rajectories of the global attractor, including UPOs. 

. Problem statement 

For understanding and reliable predicting the behavior of eco- 

omic models in continuous time the study of its limit oscillations 

s an important task. This task could be solved by an analytical lo- 

alization of the global attractor (whenever applicable) for the cor- 

esponding system of ODE, i.e., constructing a bounded closed pos- 

tively invariant region (an absorbing set). On this attractor, along 

ith the corresponding solution for the system we obtain some 

stimates of irregular (including chaotic) dynamics. This allows us 

o calculate various quantitative characteristics based on the Lya- 

unov exponents such as the Lyapunov dimension of the attractor 

nd entropy. 

Consider the Shapovalov model proposed in [65] which de- 

cribes the behavior of a mid-size firm 

 

˙ x = −σ x + δy, 
˙ y = μx + μy − βxz , 
˙ z = −γ z + αxy , 

(1) 

here coefficients α, β , σ , δ, μ, γ at variables (x, y, z) ∈ R 

3 

re positive control parameters with the economic meaning. We 

efine this model in terms of the differences between actual lev- 

ls of the variables X , Y , and Z, denoted the growth of three main

actors of production: the loan amount X , fixed capital Y and the 

umber of employees Z (as an increase in human capital), and its 

otential (natural) levels x p , y p , and z p respectively 1 . Thus, we con- 

ider the gap between the actual and potential levels of factors of 

roduction: x = X − x p , y = Y − y p , and z = Z − z p , where X , Y , and

are nonnegative. Note that system (1) describes the behavior of 

 mid-size firm correctly when the global attractor or its absorbing 

et lays in the domain x ≥ −x p , y ≥ −y p , and z ≥ −z p . 

System (1) can be reduced to a Lorenz-like system 

 

˙ x = −cx + cy , 

˙ y = rx + y − xz , where b = 

γ
μ , c = 

σ
μ , r = 

δ
σ , 

˙ z = −bz + xy , 

(2) 
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Fig. 1. Analytical localization of the chaotic attractor of system (2) with parameters 

set at b = 5 . 7 , c = 18 . 3 , r = 51 by the global absorbing set B = B R 
⋂ 

�1 , where B R 
is the ellipsoid (gray), �1 is the parabolic cylinder (brown). Here M = 

1 
2 

(
1 
c 

+ 

b 
2 c 

)
= 

0 . 1052 , A = 0 . 1111 , and η = 29651 . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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e

sing the following coordinate transformation 

x, y, z) → 

( 

μ√ 

αβ
x, 

μσ

δ
√ 

αβ
y, 

μσ

δβ
z 

) 

, t → 

t 

μ
. (3) 

ystem (2) in crucial respect differs from the classical Lorenz sys- 

em [7] in the sign of the coefficient at y in the second equation,

hich is 1 here and -1 in the Lorenz system. 

Accordingly, the inverse transformation 

x, y, z) → 

( √ 

αβ

μ
x, 

r 
√ 

αβ

μ
y, 

rβ

μ
z 

) 

, t → μt (4) 

educes system (2) to system (1) with coefficients σ = cμ, δ = 

cμ, γ = bμ2 . 

In addition, system (1) with parameters satisfying the relations 
2 / (σ − δ) = μ and δ < σ < μ can be reduced to the well-known 

hen system [67] 

 

˙ x = −dx + dy , 

˙ y = ( c − d ) x + cy − xz , with b = γ , c = 

σ 2 

σ−δ
= μ, d = σ, d < c

˙ z = −bz + xy , 

(5)

sing coordinate substitutions 

x, y, z) → 

( 

1 √ 

αβ
x, 

σ

δ
√ 

αβ
y, 

σ

δβ
z 

) 

. (6) 

The possibility of reducing system (1) to the Chen system 

5) under the above conditions shows the complexity of studying 

 mid-size firm model. The problem of analytical calculation of the 

imension of the attractor for the Chen system remains an issue 

66] . 

It was shown in [62] that for system (2) the global 

bsorbing set B = �1 

⋂ 

B R can be constructed under condi- 

ions 2 < b < 2 c ( Fig. 1 ), where �1 = 

{ 

(x, y, z) ∈ R 

3 | z ≥ x 2 

2 c 

}
s the parabolic cylinder, B R = {(x, y, z) ∈ R 

3 | 1 [ Ax 2 − 2Mxy + y 2 +
2 

2 Transformations (3) and (4) do not change the direction of time, which is es- 

ential for analysis of the Lyapunov dimension and Lyapunov exponents [66] . 

S

w

3 
z − (r + (A + M ) c − M )) 2 ] ≤ η} is the ellipsoid, M = 

1 
2 

(
1 
c + 

b 
2 c 

)
, A > 

 

2 , and η = η(b, c, r, A ) > 0 . 

The presence of an absorbing set implies the existence of a 

lobal attractor A glob , which contains all local self-excited and hid- 

en attractors [68–76] and a stationary set. In the interior of the 

lobal absorbing set model (1) can show both regular and irregular 

imit dynamics depending upon values of model’s parameters [62] . 

n case of the global stability we observe regular dynamics when 

ll trajectories of system (2) tend to the stationary set { S 0 , S ±} , 
here S 0 =(0 , 0 , 0) , S ±=(±

√ 

b(r + 1) , ±
√ 

b(r + 1) , r + 1) are equi-

ibria of system (2) . As it was shown in [62] , the system is globally

table in the following parameter domain 

( b + 1 ) 
(

b 
c 

− 1 

)
< r < 

(
b 
c 

+ 1 

)
( b − 1 ) , 

2 < b < 2 c. 
(7) 

hus, in [62] the regular dynamics of system (2) was studied and 

he conditions of global stability were obtained. 

On the other hand, if condition (7) is violated, the system may 

xhibit irregular behavior, at which a chaotic attractor can be re- 

eal. As an example, Shapovalov et al. [65] , Shapovalov and Kaza- 

ov [77] , and Gurina and Dorofeev [78] show that system (1) ex- 

ibits chaotic behavior for some values of parameters. 

Localization of a global attractor and furthest calculation of the 

imit values of the finite-time Lyapunov exponents and the finite- 

ime Lyapunov dimension along various trajectories of this attrac- 

or are nontrivial tasks. While trivial attractors (stable equilibrium) 

an be easily found analytically or numerically, the search for pe- 

iodic or chaotic attractors can be a challenging problem. For nu- 

erical localization of the attractor, one needs to choose an initial 

oint in its basin of attraction. After a transient process, a trajec- 

ory, starting in a neighborhood of an unstable equilibrium, is at- 

racted to the state of oscillation and then traces it. Next, the com- 

utations are being performed for a grid of points in vicinity of the 

tate of oscillation to explore the basin of attraction and improve 

he visualization of the attractor. 

However, for an arbitrary system possessing a transient chaotic 

et, the time of transient process depends strongly on the choice of 

nitial data in the phase space and also on the parameters of nu- 

erical solvers to integrate a trajectory (e.g., order of the method, 

tep of integration, relative and absolute tolerances). This compli- 

ates the task of distinguishing a transient chaotic set from a sus- 

ained chaotic set (attractor) in numerical experiments. Since the 

lifetime” of a transient chaotic process can be extremely long and 

n view of the limitations of reliable integration of chaotic ODEs, 

ven long-time numerical computation of the finite-time Lyapunov 

xponents and the finite-time Lyapunov dimension does not guar- 

ntee a relevant approximation of the Lyapunov exponents and the 

yapunov dimension [59,61,63] . 

In this paper, we obtain analytical formula for the exact Lya- 

unov dimension for global attractor of system (2) . We demon- 

trate difficulties in numerical computation of the finite-time Lya- 

unov exponents and the finite-time Lyapunov dimension along 

ne randomly chosen trajectory over a long time interval which 

re caused by finite precision numerical integration of ODE, UPOs 

mbedded into the attractor, and choice of various initial data. This 

onfirms the significance of the deduced analytical formula for the 

yapunov dimension. 

. Analytical estimation of finite-time Lyapunov dimension and 

xact Lyapunov dimension 

In this section, we give the main definitions and explanations. 

ome definitions, proofs and technical parts used from now on- 

ards in this section are summarized in Appendix. 
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Rewrite system (2) in a form 

˙ 
 = f (u ) , f : R 

3 → R 

3 , (8) 

here f is a continuously differentiable vector-function. Let 

 (t, u 0 ) be any solution of (8) such that u (0 , u 0 ) = u 0 ∈ R 

3 exists

or t ∈ [0 , ∞ ) . For system (8) the evolutionary operator ϕ 

t (u 0 ) =
 (t, u 0 ) defines a smooth dynamical system { ϕ 

t } t≥0 in the phase 

pace (R 

3 , || · || ) : ({ ϕ 

t } t≥0 , (R 

3 , || · || ) ), with Euclidean norm. 

We consider fundamental matrix Dϕ 

t (u ) = 

(
y 1 (t) , y 2 (t) , y 3 (t) 

)
,

ϕ 

0 (u ) = I, with cocycle property, where { y i (t) } 3 
i =1 

are linearly in-

ependent solutions of the linearized system, I is the unit 3 × 3 

atrix. The finite-time local Lyapunov dimension [59,79] can be de- 

ned via an analog of the Kaplan-Yorke formula with respect to 

he set of ordered finite-time Lyapunov exponents . { LE i (Dϕ 

t (u )) = 

E i (t, u ) } 3 
i =1 

at the point u : 

im L ( t, u ) = d KY 
({ LE i ( t, u ) } 3 i =1 

)
= j ( t, u ) 

+ 

LE 1 ( t, u ) + · · · + LE j ( ,u ) ( t, u ) ∣∣LE j ( t,u ) +1 ( t, u ) | , 
(9) 

here j(t, u ) = max { m : 
∑ m 

i =1 LE i (t, u ) ≥ 0 } , dim L (t, u ) = 3 for

j(t, u ) = 3 , or t = 0 . If j(t, u ) ∈ { 1 , 2 } , then 

∑ j(t,u ) 
i =1 

LE i (t, u ) ≥ 0 ,

E j(t,u )+1 (t, u ) < 0 and 

dim L ( t, u ) = j ( t, u ) + s ( t, u ) : 

j ( t,u ) ∑ 

i =1 

LE i ( t, u ) + s ( t, u ) LE j ( t,u ) +1 ( t, u ) = 0 . (10) 

he finite-time Lyapunov dimension is defined as: 

im L (t, A ) = sup 

u ∈A 
dim L (t, u ) , (11) 

here A is a compact invariant set. 

The Douady–Oesterlé theorem [80] implies that for any fixed 

 > 0 the finite-time Lyapunov dimension on set A , defined 

y (11) , is an upper estimate of the Hausdorff dimension: 

im H A ≤ dim L (t, A ) . By the Horn inequality [81, p.50] , cocycle 

roperty, and invariance of A we have 3 sup u ∈A ( 
∑ j 

1 
LE i (kt, u ) + 

 LE j+1 (kt, u )) ≤ sup u ∈A ( 
∑ j 

1 
LE i (t, u ) + s LE j+1 (t, u )) for j ∈ { 1 , 2 } ,

 ∈ [0 , 1] and any integer k > 0 . The infimum is achieved at infin-

ty, otherwise for d : 0 < dim (T , A ) < d < lim inf k → + ∞ 

dim (kT , A )

rom (10) and the Horn inequality one gets a contradic- 

ion: 0 < liminf 
k → + ∞ 

sup 
u ∈A 

∑ d 
1 LE i (Dϕ 

kT (u )) ≤ liminf 
k → + ∞ 

sup 
u ∈A 

∑ d 
1 LE i (Dϕ 

T (u )) < 

 . Thus, the best estimation (11) takes the form Kuznetsov [79] 

im L A = inf 
t> 0 

sup 

u ∈A 
dim L (t, u ) = lim inf 

t→ + ∞ 

sup 

u ∈A 
dim L (t, u ) (12) 

nd is called the Lyapunov dimension . 

If the supremum of finite-time local Lyapunov dimensions on 

et A is achieved at such an equilibrium point u eq ≡ ϕ 

t (u eq ) ∈ A :

im L A = dim L u eq , then the Lyapunov dimension can be repre- 

ented in analytical form and it is called the exact Lyapunov di- 

ension in [82] . A conjecture on the Lyapunov dimension of self- 

xcited attractor [59,61,79] is that for a typical system, the Lya- 

unov dimension of a self-excited attractor does not exceed the 

yapunov dimension of one of the unstable equilibria, the unsta- 

le manifold of which intersects with the basin of attraction and 

isualizes the attractor. 

In a general case, analytical computation of the Lyapunov ex- 

onents and the Lyapunov dimension is hardly possible. However, 

hey can be estimated by the eigenvalues of the symmetrized Jaco- 

ian matrix [80,83] . The KaplanYorke formula with respect to the 

rdered set of eigenvalues νi (J(u )) = νi (u ) , ν1 (u ) ≥ ν2 (u ) ≥ ν3 (u ) ,
3 see Appendix. 

4 
 = 1 , 2 , 3 , of the symmetrized Jacobian matrix 1 
2 (J(u ) + J(u ) ∗) ,

(u ) = D f (u ) [79] gives an upper estimation of the Lyapunov di- 

ension of an attractor A : 

im L A = in f 
t> 0 

sup 
u ∈A 

d KY 
({ LE i ( t, u ) } 3 i =1 

)
≤sup 

u ∈A 
d KY 

({ νi ( u ) } 3 i =1 

)
. (13) 

enerally speaking, one cannot get the same values of { νi (u ) } 3 
i =1 

t different points u ; thus, the supremum of d KY ({ νi (u ) } 3 
i =1 

) on A
as to be computed. To obtain estimate (13) , it is not necessary to 

ntegrate the solutions of the system; however, the analytical esti- 

ation of { νi (u ) } 3 
i =1 

on the attractor may be a challenging task. At

he same time, an effective analytical estimation of the Lyapunov 

imension via (13) can be obtained by the Leonov method . 4 The in- 

quality dim H A ≤ dim L A < j + s holds, if 

up 
u ∈A 

(
ν1 ( u, S ) + · · · + ν j ( u, S ) + sν j+1 ( u, S ) + 

˙ V ( u ) 
)
< 0 , (14) 

here ˙ V (u ) = ( grad (V )) ∗ f (u ) , V : R 

3 → R 

1 is a differen-

iable scalar function, S is a nonsingular 3 × 3 matrix, 

i (u, S) = νi (SJ(u ) S −1 ) is the ordered set of eigenvalues 

1 (u, S) ≥ ν2 (u, S) ≥ ν3 (u, S) , i = 1 , 2 , 3 , of the symmetrized

acobian matrix 1 
2 (SJ(u ) S −1 + (SJ(u ) S −1 ) ∗) , j ∈ { 1 , 2 } is an integer

umber, and s ∈ [0 , 1] is a real number. 

. Main result 

Using the Leonov method [79,84] we estimate the Lyapunov ex- 

onents and obtain the Lyapunov dimension for the global attrac- 

or in system (2) . 

heorem 1. If for parameters of system (2) the following relations 

old 

 < b < 2 c, (15) 

 > 

(
b 

c 
+ 1 

)
( b − 1 ) , (16) 

 

b + 1 ) 
[
( b − 2 ) 

(
b 2 + 6 bc − 3 c 2 + b 

)
+ c ( 2 c − b ) 

]
−c 

(
b 2 + b − c ( 8 − b ) 

)
r ≤ 0 , (17) 

hen 

im L A glob = 3 − 2(b + c − 1) 

c − 1 + 

√ 

(c + 1) 2 + 4 cr 
. (18) 

roof. Consider system (2) with the Jacobian matrix 

 = 

( −c c 0 

r − z 1 −x 
y x −b 

) 

(19) 

nder the conditions (15) and (16) . We apply the transformation 

3) with a nonsingular matrix 

 = 

( −1 
a 

0 0 

− b+1 
c 

1 0 

0 0 1 

) 

(20) 

o this system, where a = 

c √ 

( 1+ b ) ( c−b ) + rc 
. Then the symmetrized Ja- 

obian matrix of this system 

1 
2 

(
SJS −1 + (SJS −1 ) ∗

)
5 has the follow- 

ng eigenvalues 

2 = −b, 

1 , 3 =− c − 1 

2 
± 1 

2 

( 

( 2 b + 1 − c ) 
2 + a 2 

(
b + 1 

c 
x + y 

)2 

+ 

(
az − 2 b 

a 

)2 
) 

1 
2 

. 

(21)
4 see Appendix. 
5 Symbol ∗ denotes the transposition of matrix. 
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Fig. 2. Parameters of system (2) complying with the conditions (15) and (17) . 
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T
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p
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t
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fi

d  

o

he inequalities 

 

(
λ j − λ j+1 

)
≥ −( −1 ) 

j 
( 2 b + 1 − c ) + | 2 b + 1 − c | ≥ 0 , j = 1 , 2 , 

(22)

mply λ1 ≥ λ2 ≥ λ3 . From (21) following [84] we get the ratio 

 ( λ1 + λ2 + sλ3 ) = −( s + 1 ) ( c − 1 ) − 2 b 

 ( 1 − s ) 

(
( 2 b + 1 − c ) 

2 + a 2 
(

b+1 
c 

x + y 
)2 + 

(
az − 2 c 

a 

)2 
)

(23) 

here s ∈ [0 , 1] is a real number. Using the inequality 
√ 

k + l ≤
 

k + 

l 

2 
√ 

k 
, ∀ k > 0 , l ≥ 0 , we obtain an estimate 

 ( λ1 + λ2 + sλ3 ) ≤−( c − 1 + 2 b ) − s ( c − 1 ) 

+ ( 1 − s ) 
[
( c + 1 ) 

2 + 4 cr 
] 1 

2 

+ 

2 ( 1 −s ) 

[ ( c+1 ) 
2 +4 cr ] 

1 
2 

[ 
−cz + 

a 2 z 2 

4 
+ 

a 2 

4 

(
b+1 

c 
x + y 

)2 
] 
. 

(24) 

We introduce the function V (x, y, z) = 

θ (x,y,z) 

[ (c+1) 2 +4 cr] 
1 
2 

, where 

θ (x, y, z) = a 2 Q 0 x 
2 + a 2 (−c Q 1 + Q 2 ) y 

2 + a 2 Q 2 z 
2 + 

a 2 

4 c 
Q 1 x 

4 

−a 2 Q 1 x 
2 z − a 2 P Q 1 xy − c 

b 
z, (25) 

 and Q i (i = 0 , 1 , 2) are some positive real parameters. Then 

 ( λ1 + λ2 + sλ3 ) + 2 ̇

 V ≤ −( c − 1 + 2 b ) − s ( c − 1 ) 

 ( 1 − s ) 
[
( c + 1 ) 

2 + 4 cr 
] 1 

2 + 

2 ( 1 −s ) 

[ ( c+1 ) 
2 +4 cr ] 

1 
2 

[
W ( x, y, z ) + 

˙ θ
]
, 

(26) 

here W (x, y, z) = −cz + 

a 2 z 2 

4 + 

a 2 

4 

(
b+1 

c x + y 
)2 

. Choose the param- 

ters P and Q i (i = 0 , 1 , 2) of the function θ (x, y, z) such that 

 = W (x, y, z) + 

˙ θ ≤ 0 , ∀ x, y, z ≥ x 2 

2 c 
. (27)

ubstituting W (x, y, z) and 

˙ θ in (27) , we get 

 = A 0 z 
2 + A 1 x 

2 + A 2 xy + A 3 y 
2 , (28)

here 

 0 = a 2 
(
2 c ( b + P ) Q 1 − 2 bQ 2 + 

1 
4 

)
, 

 1 = a 2 
(

( b+1 ) 
2 

4 c 2 
− rP Q 1 

)
, 

 2 = a 2 
[
( ( c − 1 ) P − 2 c ) Q 1 + 2 rQ 2 + 

b+1 
2 c 

− c 
ba 2 

]
, 

 3 = a 2 
(

1 
4 

+ 2 Q 2 − c ( 2 + P ) Q 1 

)
. 

(29) 

hen 

A 0 ≤ 0 

A 3 ≤ 0 

4 A 1 A 3 − A 

2 
2 ≥ 0 

} 

⇒ F ≤ 0 , ∀ x , y , z ≥ x 2 

2c 
, (30) 

 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

Q 1 ≤ b 

c ( b + P ) 
Q 2 − 1 

8 c ( b + P ) 
, 

Q 1 ≥ 2 

c ( 2 + P ) 
Q 2 + 

1 

4 c ( 2 + P ) 
, 

Q 1 ≥ 2 

2 c + P 
Q 2 + 

( b + c + 1 ) 
2 
ba 2 − 4 c 3 

4 a 2 bc 2 ( r + 1 ) ( 2 c + P ) 
. 

(31) 

ince RHS of the second inequality in (31) is positive, we obtain 

 

 

 

 

 

 

 

 

 

b 

c ( b + P ) 
Q 2 − 1 

8 c ( b + P ) 
−

(
2 

c ( 2 + P ) 
Q 2 + 

1 

4 c ( 2 + P ) 

)
≥ 0 , 

b 

c ( b + P ) 
Q 2 − 1 

8 c ( b + P ) 
−

(
2 

2 c + P 
Q 2 + 

( b + c + 1 ) 
2 
ba 2 − 4 c 3 

4 a 2 bc 2 ( r + 1 ) ( 2 c + P ) 

)
≥ 0 , 

(32
5 
 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( b − 2 ) P 

c ( b + P ) ( 2 + P ) 
Q 2 − 3 P + 2 b + 2 

8 c ( b + P ) ( 2 + P ) 
≥ 0 , 

− ( 2 c − b ) P 

c ( b + P ) ( 2 c + P ) 
Q 2 

+ 

(
c ( 8 c − b ) r − 2 b 3 − 4 ( 3 c + 1 ) b 2 −

(
2 + 13 c − 6 c 2 

)
b + 8 c 2 

)
P+ 

8 bc 2 ( b + P ) ( 2 c + P ) ( r + 1 ) 

+6 bc 2 r − 2 b ( b + 1 ) 
(
b 2 + b + 6 bc − 3 c 2 

)
≥ 0 . 

(33) 

t follows from condition (15) that the coefficient at Q 2 in the first 

nequality of (33) is positive and the coefficient at Q 2 in the second 

nequality of (33) is negative. Hence, we can reduce (33) to the 

ollowing inequalities 

 (b, c, r, P ) ≤ Q 2 ≤ R (b, c, r, P ) , (34)

here L (b, c, r, P ) = 

3 P+2 b+2 
8 P(b−2) 

> 0 , 

R (b, c, r, P )= 

(c(8 c−b) r−2 b 3 −4(3 c+1) b 2 −(2+13 c−6 c 2 ) b+8 c 2 ) P+ 
8 bc (2 c−b)(r+1) P 

+6 bc 2 r−2 b(b+1)(b 2 + b+6 bc −3 c 2 ) 
. 

Inequalities (34) mean that a positive Q 2 exists such that 

 ( b, c, r, P ) − L ( b, c, r, P ) 

= − ( b + P ) ( k 1 r + k 0 ) 

4 bc ( b − 2 ) ( 2 c − b ) ( r + 1 ) P 
≥ 0 , (35) 

here k 1 = −c 

(
b 2 + b − c(8 − b) 

)
, k 0 = (b + 1) 

[
(b − 2)(b 2 + 6 bc −

 c 2 + b) + c(2 c − b) 
]
. Since the denominator of fraction (35) is pos-

tive, we obtain required condition (17) 

 1 r + k 0 ≤ 0 . (36) 

his completes the proof. �

We obtain a formula for the exact Lyapunov dimension of the 

lobal attractor for certain region D of the parameters (b, c) of sys- 

em (2) ( Fig. 2 ). Here D is the region such that b and c in D satisfy

15) and (17) , and r is such that conditions (16) and (17) are held.

he same approach allows one to estimate of the topological en- 

ropy of the global attractor [60,81,85,86] . 

To demonstrate significance of this analytical result we com- 

are it with numerical simulations. We discuss the difficulties of 

umerical procedures for reliable estimation of the Lyapunov di- 

ension and Lyapunov exponents along one randomly chosen tra- 

ectory over a long time interval. A natural way to get reliable es- 

imation of the Lyapunov dimension of an attractor A is to localize 

he attractor A ⊂ C, to consider a grid of points C grid on C, and to

nd the maximum of the corresponding finite-time local Lyapunov 

imensions for a certain time t = T . In Fig. 3 is shown the grid

f points C grid filling the basin of attraction: the grid of points fills 
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Fig. 3. Numerical localization of the chaotic attractor of system (2) with parameters 

set at b = 5 . 7 , c = 18 . 3 , r = 51 by the cuboid C and the corresponding grid of points 

C grid . 
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Fig. 4. Period-1 UPO u upo 1 (t) (red, period τ1 = 0 . 69804 ) stabilized using the UDFC 
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rameters set at b = 5 . 7 , c = 18 . 3 , r = 51 . 
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f  

e
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t
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i  

λ  

w  

w  

g

o  

o  

j

o  

u

o  
uboid C = [ −27 , 27] × [ −65 , 65] × [3 , 95] (containing the attractor)

otated by 45 degrees around the z-axis, with the distance between 

oints equal to 0.5. The time interval considered is [0 , T = 500]

t the time points t = t k = τ k (k = 1 , . . . , N) , N = 10 0 0 according

o the time step τ = t k − t k −1 = 0 . 5 , and the integration method is

ATLAB ode45 with predefined parameters. The infimum on the 

ime interval is computed at the points { t k } N 1 
. 

For system (2) with parameters under consideration, we use a 

ATLAB realization of the adaptive algorithm of the finite-time Lya- 

unov dimension and Lyapunov exponents computation [59] and ob- 

ain the maximum of the finite-time local Lyapunov dimensions at 

he grid of points ( max u ∈C grid 
dim L (t, u ) is computed for trajecto- 

ies of system (2) using MATLAB ode45 integration method with 

redefined parameters and with threshold parameter ξ = 0 . 01 for 

daptively adjusting the number of SVD approximations). For pa- 

ameters b = 5 . 7 , c = 18 . 3 , r = 51 we get 

max 
 ∈C grid 

dim L ( 100 , u ) =2 . 0808 , 

max 
u ∈C grid 

dim L ( 500 , u ) =2 . 0792 . (37) 

ote that if for a certain time, t = t k , the computed trajectory is

ut of the cuboid, the corresponding value of the finite-time local 

yapunov dimension is not taken into account in the computation 

f the maximum of the finite-time local Lyapunov dimensions. 

If the maximum of local Lyapunov dimensions on the global at- 

ractor, which involves all equilibria, is achieved at an equilibrium 

oint: dim L (u cr 
eq ) = max u ∈A dim L (u ) , then this allows one to get an-

lytical formula for the exact Lyapunov dimension [82] . 

The exact Lyapunov dimension dim L A glob = dim L S 0 = 2 . 4347 > 

im L A ≈ max u ∈C grid 
dim L (t k , u ) ≈ 2 . 0808 (see (37) ) obtained by for-

ula (18) and the estimation (37) are consistent with the hy- 

othesis on the Lyapunov dimension of self-excited attractor. Us- 

ng Theorem 1 we can get the value of the exact Lyapunov dimen- 

ion on the global attractor, which coincides with the Lyapunov di- 

ension at a stationary (zero) point. This result is nontrivial since 

o compute reliably numerically the dimensions on the trajectories 

f the global attractor is extremely difficult. We demonstrate chal- 

enging nature of this task by the following examples. 

Choosing the initial data somewhere in the phase space, we can 

btain the values of the dimensions along the various trajectories 

y a numerical procedure. Generally speaking, these values of the 

imensions will also be different. For instance, system (2) has the 

nalytical solution u (t) = (0 , 0 , z e −bt ) which tends to the equilib-
0 

6 
ium S 0 = (0 , 0 , 0) from any initial point (0 , 0 , z 0 ) ∈ R 

3 . The exis-

ence of such solutions in the phase space complicates the pro- 

edure of visualization of a chaotic attractor (pseudo-attractor) by 

ne pseudo-trajectory with arbitrary initial data computed for a 

ufficiently large time interval. In particular, the numerical compu- 

ation of finite-time local Lyapunov exponents along this trajectory 

uring any time interval does not lead to averaging of these values 

cross the attractor, but to tending of these values to the finite- 

ime local Lyapunov exponents of S 0 . 

The challenges of the finite-time Lyapunov dimension compu- 

ation along the trajectories over large time intervals is connected 

ith the existence of UPOs embedded in a chaotic attractor. Along 

ith the existence of the analytical solution u (t) = (0 , 0 , z 0 e 
−bt )

he global attractor of system (2) contains a period-1 UPO. 

Consider system (8) . Let u upo (t, u 
upo 1 
0 

) be its UPO with pe-

iod τ > 0 , u upo (t − τ, u 
upo 1 
0 

) = u upo (t, u 
upo 1 
0 

) , and initial condition

 

upo 1 
0 

= u upo (0 , u 
upo 1 
0 

) . To compute the UPO, we add the unstable

elayed feedback control (UDFC) [87] in the following form: 

˙ u ( t ) = f ( u ( t ) ) − KB [ F N ( t ) + w ( t ) ] , 

˙ w ( t ) = λ0 
c w ( t ) + 

(
λ0 

c − λ∞ 

c 

)
F N ( t ) , 

F N ( t ) = C ∗u ( t ) − ( 1 −R ) 

N ∑ 

k =1 

R 

k −1 C ∗u ( t − kT ) , (38) 

here 0 ≤ R < 1 is an extended DFC parameter, N = 1 , 2 , . . . , ∞ de-

nes the number of previous states involved in delayed feedback 

unction F N (t) , λ0 
c > 0 , and λ∞ 

c < 0 are are additional UDFC param-

ters, B, C are vectors and K > 0 is a feedback gain. For the initial 

ondition u 
upo 1 
0 

and T = τ we have F N (t) ≡ 0 , w (t) ≡ 0 , and, thus,

he solution of system (38) coincides with the periodic solution of 

nitial system (8) . 

For system (2) with parameters b = 5 . 7 , c = 18 . 3 , r = 51 , us-

ng (38) with B ∗ = ( 0 , 1 , 0 ) , C ∗ = ( 0 , 1 , 0 ) , R = 0 . 7 , N = 100 , K = 10 ,
0 
c = 0 . 1 , λ∞ 

c = −5 , one can stabilize a period-1 UPO u upo 1 (t, u 0 )

ith period τ1 = 0 . 69804 from the initial point u 0 = (0 . 1 , 0 . 1 , 0 . 1) ,

 0 = 0 on the time interval [0 , 100] (see Fig. 4 ). We use the Pyra-

as procedure [87,88] for numerical stabilization and visualization 

f UPOs. For the initial point u 
upo 1 
0 

≈ (29 . 6688 , 26 . 1650 , 73 . 8221)

n the UPO u upo 1 (t) = u (t, u 
upo 1 
0 

) we numerically compute the tra-

ectory of system (38) without the stabilization (i.e. with K = 0 ) 

n the time interval [0 , T = 100] (see Fig. 4 ). We denote it by

˜  (t, u 
upo 1 
0 

) to distinguish this pseudo-trajectory from the periodic 

rbit u (t, u 
upo 1 
0 

) . On the initial small time interval [0 , T 1 ≈ 2 τ1 ] ,
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Fig. 5. Period-1 UPO u upo 1 (t) (red, period τ1 = 0 . 69804 ) stabilized using the UDFC 

method, pseudo-trajectory ˜ u (t, u upo 1 
0 

) (blue), and the analytical value LE 1 (u upo 1 
0 

) 

(green) for t ∈ [0 , 100] in system (2) with parameters set at b = 5 . 7 , c = 18 . 3 , r = 51 . 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 

e

p

B  

d

t

c

T

L  

t

s  

i

c

c

g

t

i

p

i

p  

m

c

(

d
>

≥

5

c

m

i

l

L

g

t

L

w

t

u

l

t

a

c

p

o

t

i

e

D

c

i

A

e

A

p

(

I

t

i

s

a

s

n

c

s

A

t

t  

i

i

D

 

i  

a

D

d

0  

L

L  

o

c

p  

s  

a

s

 

c  
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t

ven without the control, the obtained trajectory ˜ u (t, u 
upo 1 
0 

) ap- 

roximately traces the ”true” trajectory (periodic orbit) u (t, u 
upo 1 
0 

) . 

ut for t > T 1 , without a control, the pseudo-trajectory ˜ u (t, u 
upo 1 
0 

)

iverges from u (t, u 
upo 1 
0 

) and visualize a local chaotic attractor A . 

In general, the closeness of the real trajectory u (t, u 0 ) and 

he corresponding pseudo-trajectory ˜ u (t, u 0 ) calculated numeri- 

ally can be guaranteed on a limited short time interval only. 

he obtained values of the largest finite-time Lyapunov exponent 

E 1 (t, u 
upo 1 
0 

) computed along the stabilized UPO u (t, u 
upo 1 
0 

) and the

rajectory without stabilization ˜ u (t, u 
upo 1 
0 

) give us the following re- 

ults. On the initial part of the time interval [0 , T 1 ≈ 2 τ1 ] , one can

ndicate the coincidence of these values with a sufficiently high ac- 

uracy. After t > T 2 ≈ 10 the difference in values becomes signifi- 

ant and the corresponding graphs diverge in such a way that the 

raph corresponding to the unstabilized trajectory is higher than 

he parts of the graphs corresponding to the UPO and the analyt- 

cal value largest Lyapunov exponent: LE 1 (u 
upo 1 
0 

) = 1 . 80401 , com- 

uted via Floquet multipliers (see Fig. 5 ). 

Using numerical experiments, we analyze the chaotic dynam- 

cs of system (2) and visualize a self-excited attractor for values of 

arameters b = 5 . 7 , c = 18 . 3 , r = 51 . At the same time, we get for-

ula for the exact Lyapunov dimension of the global attractor for 

ertain region of the parameters (b, c, r) (15) and (16) of system 

2) by the analytical way. Thus, we get the following relations 

im L A glob = dim L S 0 = 2 . 4347 

 dim L A ≈ max 
u ∈C grid 

dim L ( t k , u ) ≈ 2 . 0808 

dim L u 

up o 1 ≈ 2 . 0738 . 

(39) 

. Conclusion 

In this paper, we studied the irregular behavior (including 

haotic attractor) of the mid-size firm model, assuming the deter- 

inistic endogenous mechanism for generating these fluctuations 

n the economic system. Using an analytical approach, we calcu- 

ated quantitative characteristics of irregular dynamics, such as the 

yapunov dimension, and demonstrated the complexity and ambi- 

uity of using numerical procedures for calculating these indica- 

ors. First, we proved a theorem about the exact formula for the 

yapunov dimension of the global attractor in the model. Similar 

ay could be used for getting the formula for the topological en- 
7 
ropy. Second, we identified an UPO for the model and stabilized it 

sing the Pyragas control procedure. Third, we numerically calcu- 

ated the finite-time Lyapunov dimension along the trajectories of 

he global attractor, including UPO, thereby providing support for 

rguments about difficulties of application of the numerical pro- 

edures and importance of the obtained exact formula for the Lya- 

unov dimension of the global attractor. We believe that expanding 

ur knowledge of the role, sources, as well as qualitative and quan- 

itative characteristics of irregular oscillatory dynamics may dimin- 

sh researchers’ reliance on unrealistically large shocks to explain 

conomic data. 
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ppendix 

Let { ϕ 

t } t≥0 denote a smooth dynamical system with continuous 

ime, and let set A be its compact invariant set. Fundamental ma- 

rix Dϕ 

t (u ) = 

(
y 1 (t) , y 2 (t) , y 3 (t) 

)
, Dϕ 

0 (u ) = I consists of linearly

ndependent solutions { y i (t) } 3 
i =1 

of the linearized system, where I

s the unit 3 × 3 matrix, with the following cocycle property: 

ϕ 

t+ s ( u ) = Dϕ 

t ( ϕ 

s ( u ) ) Dϕ 

s ( u ) , ∀ t, s ≥ 0 , ∀ u ∈ R 

3 
. (40) 

Let LE i (·) = t −1 ln σi (·) for t > 0 , where σi (Dϕ 

t (u )) = σi (t, u ) ,

 = 1 , 2 , 3 , be the singular values of Dϕ 

t (u ) (i.e. σi (t, u ) > 0

nd σi (t, u ) 2 are the eigenvalues of the symmetric matrix 

ϕ 

t (u ) ∗Dϕ 

t (u ) with respect to their algebraic multiplicity), or- 

ered so that σ1 (t, u ) ≥ σ2 (t, u ) ≥ σ3 (t, u ) > 0 for any u ∈ R 

3 , t ≥
 . Consider a set of finite-time Lyapunov exponents { LE i (Dϕ 

t (u )) =
E i (t, u ) } 3 

i =1 
at the point u : 

E i (t, u ) = 

1 

t 
ln σi (t, u ) , t > 0 , i = 1 , 2 , 3 , (41)

rdered by decreasing for all t > 0 . We can introduce the following 

oncepts – the finite-time local Lyapunov dimension (of map ϕ 

t at 

oint u ): dim L (t, u ) = dim L (ϕ 

t , u ) , the finite-time Lyapunov dimen-

ion (of map ϕ 

t with respect to set A ): dim L (t, A ) = dim L (ϕ 

t , A ) ,

nd the Lyapunov dimension (of dynamical system { ϕ 

t } t≥0 with re- 

pect to set A ): dim L A = dim L ({ ϕ 

t } t≥0 , A ) . 

Consider the dynamical system 

({ ϕ 

t } t≥0 , (R 

3 , || · || ) ) under the

hange of coordinates w = h (u ) , where h : R 

3 → R 

3 is a diffeomor-

hism. In this case the dynamical system 

({ ϕ 

t } t≥0 , (R 

3 , || · || ) ) is

ransformed to the dynamical system 

({ ϕ 

t 
h 
} t≥0 

)
, and the compact 
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[

et A ⊂ R 

3 invariant with respect to { ϕ 

t } t≥0 is mapped to the com-

act set h (A ) ⊂ R 

3 . Here 

ϕ 

t 
h (w ) = Dh (ϕ 

t (u )) Dϕ 

t (u ) 
(
Dh (u ) 

)−1 . (42)

roposition 1. (see, e.g. [79 , 89] ) For any diffeomorphism h : R 

3 →
 

3 the Lyapunov dimension is invariant with respect to diffeomor- 

hism, i.e. 

im L ({ ϕ 

t } t≥0 , A ) = dim L ({ ϕ 

t 
h } t≥0 , h (A )) . (43)

The proof of this proposition uses the Horn inequality 

or (42) and the fact that singular values of Dh (ϕ 

t (u )) and

Dh (ϕ 

t (u ))) −1 are uniformly bounded in t on A . Moreover, instead 

f Dh one can consider any 3 × 3 matrix H(u ) such that all its ele-

ents are scalar continuous functions of u and det H(u ) � = 0 for all

 ∈ A , and get 6 

lim 

→ + ∞ 

(
LE i 

(
H(ϕ 

t (u )) Dϕ 

t (u ) 
(
H(u ) 

)−1 
)

− LE i 

(
Dϕ 

t (u ) 
))

= 0 , 

i = 1 , 2 , 3 , 

im L ({ ϕ 

t } t≥0 , A ) = lim inf t→ + ∞ 

sup 

u ∈A 
 

KY 
({ LE i 

(
H(ϕ 

t (u )) Dϕ 

t (u ) 
(
H(u ) 

)−1 } 3 1 

))
. 

(44) 

If an equilibrium u eq ≡ϕ(u eq ) ∈ A has simple real eigenvalues, 

hen a nonsingular 3 × 3 matrix S exists such that the lineariza- 

ion takes the form SD f (u eq ) S 
−1 = diag 

(
λ1 (u eq ) , · · ·, λ3 (u eq ) 

)
,

here λ j (u eq ) ≥ λ j+1 (u eq ) , i = 1 , 2 . Then, by the linear

hange of variables w = h (u ) = Su and the invariance we get

lim 

→ + ∞ 

LE i (t, u eq ) = λi (u eq ) and dim L u eq = d KY ({ λi (u eq )) } 3 i =1 
. 

For analytical estimation of the Lyapunov dimension via the 

igenvalues of the symmetrized Jacobian matrix we use the gen- 

ralized Liouville’s relation (see, e.g., [83] , [81, p.68] ) and get, ∀ t >

 , u ∈ A , the following: 

j 
 

i =1 

LE i 

(
ϕ 

t ( u ) 
)

+ s LE j+1 

(
ϕ 

t ( u ) 
)

1 

t 

t ∫ 
0 

j ∑ 

i =1 

νi ( ϕ 

τ ( u ) ) +sν j+1 ( ϕ 

τ ( u ) ) dτ

sup 
u ∈A 

j ∑ 

i =1 

νi ( u ) + sν j+1 ( u ) . 

(45) 

rom (45) we obtain the upper estimation of the Lyapunov dimen- 

ion (13) . 

The Leonov method of analytical estimation of the Lyapunov di- 

ension is based on (44) and (13) . Following [84,90,91] , we con- 

ider H(u ) = p(u ) S, where p : R 

3 → R 

1 is a continuous scalar func-

ion, S is a nonsingular 3 × 3 matrix. Then we compute the Lya- 

unov dimension by (44) : 

im L A = lim inf 
t→ + ∞ 

sup 

u ∈A 
d KY 

({ LE i 

(
p(ϕ 

t (u )) p(u ) −1 SDϕ 

t (u ) S −1 
)} 3 1 

)
, 

nd estimate it by (13) . For that by (41) and (45) we get the esti-

ation: 
 j 
i =1 

LE i 

(
p 
(
ϕ 

t ( u ) 
)

p ( u ) 
−1 SD ϕ 

t ( u ) S −1 
)

j 1 
t 

ln 

(
p 
(
ϕ 

t ( u ) 
)

p ( u ) 
−1 

)
+ 

1 
t 

∫ t 
0 

∑ j 
i =1 

νi 

(
SJ ( u ) S −1 

)
dτ. 

(46) 

n general, while under the diffeomorphism h (u ) = Su the Lya- 

unov dimension is invariant and J(u ) → SJ(u ) S −1 , the values

i (SJ(u ) S −1 ) = νi (u, S) are not invariant and, thus, S together with

p(u ) may be used to simplify their computation (the idea with S

as introduced in [90, Eq.(8)] and p(u ) was introduced in [84] ). 
6 By the Horn inequality for the matrices D H (ϕ t (u )) = H(ϕ t (u )) Dϕ t (u ) H(u ) −1 

nd Dϕ t (u ) = H(ϕ t (u )) −1 D H (ϕ t (u )) H(u ) . 
[  

8 
he scalar multiplier of the type p(ϕ 

t (u ))(p(u )) −1 can be in- 

erpreted as the changes of Riemannian metrics [92] (see, also 

81] ). The following theorem is a reformulation of the results from 

eonov [91] , 93 ] (see also [79,81] ). 

heorem 2. If there exist an integer j ∈ { 1 , 2 } , a real s ∈ [0 , 1] , a dif-

erentiable scalar function V : R 

3 → R 

1 , and a nonsingular 3 × 3 ma-

rix S such that condition (14) , i.e. 

up 
u ∈A 

(
ν1 ( u, S ) + · · · + ν j ( u, S ) + sν j+1 ( u, S ) + 

˙ V ( u ) 
)
< 0 , 

s satisfied, where ˙ V (u ) = ( grad (V )) ∗ f (u ) , then dim H A ≤ dim L A <

j + s. 

roof. Let p(u ) = e V (u )( j+ s ) −1 
. Then ( j + s ) 1 t ln (p(ϕ 

t (u )) p (u ) −1 )=
1 
t ( 

∫ t 
0 

˙ V (ϕ 

τ (u )) dτ ) . Thus by invariance of A and (45) from (46) we 

et 

j 
 

i =1 

LE i (SDϕ 

t (u ) S −1 ) + s LE j+1 (SDϕ 

t (u ) S −1 ) 

( j + s ) 
1 

t 
ln 

(
p(ϕ 

t (u )) p(u ) −1 
)

≤

sup 

u ∈A 

( j ∑ 

i =1 

νi (u, S) + sν j+1 (u, S) + 

˙ V (u ) 
)

< 0 . 

(47) 

ince lim 

t→ + ∞ 

( j + s ) 1 t ln 

(
p(ϕ 

t (u )) p(u ) −1 
)

= 0 for any u ∈ A there ex-

sts T > 0 such that 

j 
 

i =1 

LE i 

(
SD ϕ 

t ( u ) S −1 
)

+ s LE j+1 

(
SD ϕ 

t ( u ) S −1 
)

< 0 , ∀ t > T , u ∈ A . (48) 

hus, taking into account (10) , dim L A < j + s . �
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