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Cyclicality and instability inherent in the economy can manifest themselves in irregular fluctuations, in-
cluding chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the eco-
nomic system in the long run. We focus on an approach, associated with the identification of a deter-
ministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model
as an example, we demonstrate the use of effective analytical and numerical procedures for calculating
the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as
dimension and entropy. We use an analytical approach for localization of a global attractor and study
Chaos o ) limiting dynamics of the model. We estimate the Lyapunov exponents and get the exact formula for the
/L\JEstat];!e pe“todlc orbit Lyapunov dimension of the global attractor of this model analytically. With the help of delayed feedback
sorbing se control (DFC), the possibility of transition from irregular limiting dynamics to regular periodic dynamics
Mid-size firm model . R . .
is shown to solve the problem of reliable forecasting. At the same time, we demonstrate the complex-
ity and ambiguity of applying numerical procedures to calculate the Lyapunov dimension along different
trajectories of the global attractor, including unstable periodic orbits (UPOs).
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1. Introduction

Increasing uncertainty, unpredictability, and instability in the
world, nature cataclysms, a series of economic crises, self-fulfilling
expectations which give rise to bubbles and crashes, as well as
rapid development and implementation of digital technologies in
everyday life have posed a number of new challenges for scientists,
governments, and policy makers: to study, understand and inter-
pret the behavior of complex dynamical systems, including socio-
economic models [1-3].

An inherent component of observed economic processes is
cyclicality, which is manifested through the occurrence of various
types of fluctuations in the economic system under consideration.
In particular, regular fluctuations could be either periodic boom-
bust phenomena associated with predictable changes in some el-
ements of the economic system that reappear at fairly constant
time intervals, or seasonal fluctuations that are permanent in na-
ture. Regular and stable periodic oscillations lead to the predictable

* Corresponding author at: Faculty of Information Technology, University of
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dynamics of the process’ model and are quite simple to describe
mathematically. A number of straightforward quantitative mea-
sures, such as phase-frequency characteristics and amplitude, can
be calculated for them.

However more often, economic systems exhibit irregular (in-
cluding chaotic) behavior. The role of irregular oscillatory dynamics
for forecasting and stabilization of economic processes significantly
depends on the source and nature of these fluctuations. On the one
hand, irregular economic fluctuations could be the result of un-
usual events such as large bankruptcies, oil and currency shocks,
floods, strikes, civil unrest, epidemics, etc. These events could be
thought of as initiated by exogenous shocks. On the other hand,
irregular fluctuations could be generated by endogenous mecha-
nisms inherent in the very nature of economic systems. Thus, there
are two ways to examine of irregularity in the economy. First ap-
proach takes into account random processes that are considered in
the model as exogenous shocks. Second one is based on identifi-
cation of a deterministic endogenous mechanism of occurrence of
irregular fluctuations, which may also be chaotic. These two ap-
proaches were developed in economics literature in parallel and
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generated a lot of discussion regarding the views on the sources of
irregular fluctuations (see, e.g. [4-6]).

Since the 1970s, there has been keen interest in the study
of deterministic chaotic dynamics in economic models within the
framework of the second approach. This research was stimulated
by the discovery of chaos in dynamical systems by Lorenz [7], Ueda
et al. [8]. Many famous economists (see, e.g. [4,9-27]) have sug-
gested numerous examples of economic models in which quali-
tatively and quantitatively reasonable irregular fluctuations might
occur in purely deterministic settings. For instance, the larger lit-
erature [9,13,14,19,20,28-31] examines the endogenous cycles and
irregular chaotic dynamics which could be generated by determin-
istic, equilibrium models of the economy. The models often exhibit
complex dynamics characterized by both chaotic behavior and in-
stability. Such combination suggests a nonlinear dynamical system,
somewhat unstable at the core, but effectively contained further
out. The contribution of these models has been to demonstrate
the compatibility of endogenous irregular fluctuations with equi-
librium dynamics in economics. At the same time, theoretical tools
were developed for effective chaos control, which, by small fine-
tuning the parameters of system, made it possible to stabilize se-
lected orbits embedded in a chaotic attractor and nudge the dy-
namics toward a desired trajectory. Examples applications of these
tools can be found in [32-40]. The reviewed literature showed the
relevance of chaos for economic models and contributed to de-
velopment of advanced mathematical tools for study of complex
nonlinear dynamical systems in economics, which continues up to
now. During the last few years, highly influential authors published
a number of significant papers (see, e.g. [41-49]). The studies of
models with irregular dynamics have received a new impetus and
spread into many subfields of economic theory. Especially, such
models offer important contributions in macroeconomics, dynam-
ical game theory, theory of rational inattention, finance, environ-
mental economics, and industrial organization (for survey of the
literature, see [50]).

To understand, describe and make measurable the properties
of irregular dynamics it is important to calculate its quantitative
characteristics. Indicators based on Lyapunov exponents, including
such as entropy and dimension, naturally arise in economics [51].
In economic models these characteristics could be considered as
indicators of irregular (primarily, chaotic) behavior, as the growth
rate of the value of some economic variable (for instance, tech-
nology level), or as a measure of costs of making decisions by
a rationally inattentive agent who acquires information about the
values of alternatives through a limited-capacity channel (see, e.g.
[52-55]). In this paradigm important results and arguments were
presented which provide novel support for the idea that business
cycles may be largely driven by endogenous deterministic cyclical
forces (see, e.g. [6,56,57]).

There are two main approaches in studying this topic. The first
approach is based on the possibility of obtaining analytical re-
sults for low-dimensional nonlinear models (in the literature, two-
dimensional dynamical systems are most often studied). The sec-
ond one is based on the ability to study complex irregular dy-
namics using numerical procedures. However, the possibility of
obtaining reliable results using them is significantly limited due
to the necessity of performing calculations only over finite time
intervals, rounding-off errors in numerical methods, and the un-
bounded space of initial data sets [58-63]. It should be noted that
the sensitivity to small changes in the initial data, inherent in ir-
regular (chaotic) dynamics, can cause significant forecasting errors.
This, on the one hand, can explain some of the difficulties asso-
ciated with forecasting behavior of the models, and on the other
hand could be interpreted as unpredictability in real world prob-
lems (see, e.g. [G]). Trajectories in models of such processes may
be attracted not to a stationary point or a periodic cycle, but to an
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irregular invariant set, including chaotic attractor. Additional com-
plexity of the dynamics can be also associated with various un-
stable orbits embedded into the chaotic attractor of the dynam-
ical system. Stabilization of unstable orbits makes it possible to
improve the forecasting of the model dynamics [63]. Analytical
methods allow overcoming these limitations at least for some low-
dimensional models (see, e.g. [62,64]) and are able to mitigate the
influence of computer errors. Thus, this is capable of making reli-
able forecasts of model dynamics and of getting its exact qualita-
tive and quantitative characteristics.

We continue the line of research on the limiting dynamics for
a mid-size firm model, which began in [62,63], where we have ob-
tained conditions for the global stability. In this paper we focus on
a different approach, associated with the identification of deter-
ministic endogenous mechanisms of irregular fluctuations in eco-
nomic systems. We use an analytical approach for localization of a
global attractor and study limiting dynamics of the model. We es-
timate the Lyapunov exponents and get the exact formula for the
Lyapunov dimension of the global attractor of this model analyt-
ically. With the help of DFC, the possibility of transition from ir-
regular limiting dynamics to regular periodic dynamics is shown
to solve the problem of reliable forecasting. At the same time, we
demonstrate the complexity and ambiguity of applying numeri-
cal procedures to calculate the Lyapunov dimension along different
trajectories of the global attractor, including UPOs.

2. Problem statement

For understanding and reliable predicting the behavior of eco-
nomic models in continuous time the study of its limit oscillations
is an important task. This task could be solved by an analytical lo-
calization of the global attractor (whenever applicable) for the cor-
responding system of ODE, i.e., constructing a bounded closed pos-
itively invariant region (an absorbing set). On this attractor, along
with the corresponding solution for the system we obtain some
estimates of irregular (including chaotic) dynamics. This allows us
to calculate various quantitative characteristics based on the Lya-
punov exponents such as the Lyapunov dimension of the attractor
and entropy.

Consider the Shapovalov model proposed in [65] which de-
scribes the behavior of a mid-size firm

X=—0x+ 04y,

Y = ux+py — Bxz, (1)
Z=-yz+axy,

where coefficients @, B8, o, 8, u, Y atvariables (x, y, z) € R®
are positive control parameters with the economic meaning. We
define this model in terms of the differences between actual lev-
els of the variables X, Y, and Z, denoted the growth of three main
factors of production: the loan amount X, fixed capital Y and the
number of employees Z (as an increase in human capital), and its
potential (natural) levels xp, yp, and z,, respectively'. Thus, we con-
sider the gap between the actual and potential levels of factors of
production: x=X —xp,y =Y —yp, and z=Z — z,, where X, Y, and
Z are nonnegative. Note that system (1) describes the behavior of
a mid-size firm correctly when the global attractor or its absorbing
set lays in the domain x > —xp, ¥ > —yp, and z > —zp.

System (1) can be reduced to a Lorenz-like system

X=—x+cy,
y=1x+y-xz, whereb=1X c=2%r=2, (2)
z=—bz+xy,

T We assume that the potential (natural) levels of factors of production corre-
spond to the production possibilities of a mid-size firm as a whole, reflecting its
natural, technological, and institutional constraints.
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Fig. 1. Analytical localization of the chaotic attractor of system (2) with parameters
set at b=5.7, c =18.3, r = 51 by the global absorbing set B = Bg (€21, where Bg
is the ellipsoid (gray), €1 is the parabolic cylinder (brown). Here M = (1 + £) =
0.1052, A = 0.1111, and n = 29651. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

using the following coordinate transformation

K, ko
NCTARNCT

System (2) in crucial respect differs from the classical Lorenz sys-
tem [7] in the sign of the coefficient at y in the second equation,
which is 1 here and -1 in the Lorenz system.

Accordingly, the inverse transformation

JaB . r/aB
Y

no t
X,V,2) = L —z |, t—> —. 3
(*,y,2) Y 5B m (3)

*x,¥,2) > | —x, ,—2Z |, t—> ut (4)

B
uw
reduces system (2) to system (1) with coefficients o =cu,d =
rcp, y = bu’.

In addition, system (1) with parameters satisfying the relations
0%/(c —8) = and § < o < p can be reduced to the well-known
Chen system [67]

X = —dx+dy,
y=(c—d)X+cy—xz, withb:y,c:a"—fﬁzu, d=o,d<c,
z=—bz+xy,

(5)

using coordinate substitutions

(*x.y.2) — L« Ty oz (6)
s Jap s Jap B )

The possibility of reducing system (1) to the Chen system
(5) under the above conditions shows the complexity of studying
a mid-size firm model. The problem of analytical calculation of the
dimension of the attractor for the Chen system remains an issue
[66].

It was shown in [62] that for system (2) the global
absorbing set B = Qi Bg can be constructed under condi-

tions 2 <b<2c (Fig. 1), where ;= {(x,y,z) eR3|z> ’%}
is the parabolic cylinder, Bg = {(x,y,2) € R?|1[Ax? — 2Mxy +y? +

2 Transformations (3) and (4) do not change the direction of time, which is es-
sential for analysis of the Lyapunov dimension and Lyapunov exponents [66].
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(z— (r+ (A+M)c—M))*] < n} is the ellipsoid, M = 1 (1 + £),A >
M2, and n = n(b,c,1,A) > 0.

The presence of an absorbing set implies the existence of a
global attractor Ag,,, which contains all local self-excited and hid-
den attractors [68-76] and a stationary set. In the interior of the
global absorbing set model (1) can show both regular and irregular
limit dynamics depending upon values of model’s parameters [62].
In case of the global stability we observe regular dynamics when
all trajectories of system (2) tend to the stationary set {Sp, Si+},
where Sp=(0,0,0), S:=@/b(r+1), £y/b(r+1),r+1) are equi-
libria of system (2). As it was shown in [62], the system is globally
stable in the following parameter domain

{(b+1)('g—1)<r<(3+1)(b_1), 7

2<b<2c

Thus, in [62] the regular dynamics of system (2) was studied and
the conditions of global stability were obtained.

On the other hand, if condition (7) is violated, the system may
exhibit irregular behavior, at which a chaotic attractor can be re-
veal. As an example, Shapovalov et al. [65], Shapovalov and Kaza-
kov [77], and Gurina and Dorofeev [78] show that system (1) ex-
hibits chaotic behavior for some values of parameters.

Localization of a global attractor and furthest calculation of the
limit values of the finite-time Lyapunov exponents and the finite-
time Lyapunov dimension along various trajectories of this attrac-
tor are nontrivial tasks. While trivial attractors (stable equilibrium)
can be easily found analytically or numerically, the search for pe-
riodic or chaotic attractors can be a challenging problem. For nu-
merical localization of the attractor, one needs to choose an initial
point in its basin of attraction. After a transient process, a trajec-
tory, starting in a neighborhood of an unstable equilibrium, is at-
tracted to the state of oscillation and then traces it. Next, the com-
putations are being performed for a grid of points in vicinity of the
state of oscillation to explore the basin of attraction and improve
the visualization of the attractor.

However, for an arbitrary system possessing a transient chaotic
set, the time of transient process depends strongly on the choice of
initial data in the phase space and also on the parameters of nu-
merical solvers to integrate a trajectory (e.g., order of the method,
step of integration, relative and absolute tolerances). This compli-
cates the task of distinguishing a transient chaotic set from a sus-
tained chaotic set (attractor) in numerical experiments. Since the
“lifetime” of a transient chaotic process can be extremely long and
in view of the limitations of reliable integration of chaotic ODEs,
even long-time numerical computation of the finite-time Lyapunov
exponents and the finite-time Lyapunov dimension does not guar-
antee a relevant approximation of the Lyapunov exponents and the
Lyapunov dimension [59,61,63].

In this paper, we obtain analytical formula for the exact Lya-
punov dimension for global attractor of system (2). We demon-
strate difficulties in numerical computation of the finite-time Lya-
punov exponents and the finite-time Lyapunov dimension along
one randomly chosen trajectory over a long time interval which
are caused by finite precision numerical integration of ODE, UPOs
embedded into the attractor, and choice of various initial data. This
confirms the significance of the deduced analytical formula for the
Lyapunov dimension.

3. Analytical estimation of finite-time Lyapunov dimension and
exact Lyapunov dimension

In this section, we give the main definitions and explanations.
Some definitions, proofs and technical parts used from now on-
wards in this section are summarized in Appendix.
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Rewrite system (2) in a form
u=f), f:R>-R3 (8)
where f is a continuously differentiable vector-function. Let
u(t, ug) be any solution of (8) such that u(0, up) = uy € R3 exists
for t € [0, 00). For system (8) the evolutionary operator ¢f(ug) =
u(t,up) defines a smooth dynamical system {¢'};.o in the phase
space (R3[| - [D: ({¢'}e0. (B3, ]| -[])), with Euclidean norm.

We consider fundamental matrix Do (u) = (y'(t), y*(t),y3 (1)),
Dg®(u) =1, with cocycle property, where {y!(t)}? , are linearly in-
dependent solutions of the linearized system, I is the unit 3 x 3
matrix. The finite-time local Lyapunov dimension [59,79] can be de-
fined via an analog of the Kaplan-Yorke formula with respect to

the set of ordered finite-time Lyapunov exponents. {LE;(D¢*(u)) =
LE;(t,u)}3 , at the point u:

dimy (t, u) = d({LE;(t. w)}, ) = j(t. u)
(LEq(t u) + - -+ LEj u(t, u) )
I |LEj(r.u>H (t, w)]

where j(t,u) = max{m: }i", LE;(t, u) > 0}, dimL(t, u)=3 for
jtuy=3, or t=0. If j(t.u)e{1.2}, then /" LE(t,u) =0,
LE]*([_U)+] (t, U) <0 and

dim(t,u) = j(t,u) + s, u) :
Jj(tu)
> LEi(t, u) + S(t, u)LEjq )1 (¢, u) = 0. (10)
i=1
The finite-time Lyapunov dimension is defined as:
dimy (t, A) = supdimy (¢, u), (11)
ueA
where A is a compact invariant set.
The Douady-Oesterlé theorem [80] implies that for any fixed
t > 0 the finite-time Lyapunov dimension on set A4, defined
by (11), is an upper estimate of the Hausdorff dimension:
dimy A < dimg (¢, A). By the Horn inequality [81, p.50], cocycle
property, and invariance of A we have3supueA(Z{ LE;(kt,u) +
SLEj 1 (kt,u)) < supy. 4 (3 LE;(t, u) + SLEj, 1 (t,u)) for je{1,2},
s €[0,1] and any integer k > 0. The infimum is achieved at infin-
ity, otherwise for d:0 < dim(T, A) <d < liminf,_, ., dim(kT, A)
from (10) and the Horn inequality one gets a contradic-
tion: 0 < liminfsup 3¢ LE; (DT (u)) < liminfsup "¢ LE;(DeT (1)) <
k—+00ueA k—+o00yeA

0. Thus, the best estimation (11) takes the form Kuznetsov [79]

dimy A = infsupdimy (t, u) = liminfsup dimy(t, u) (12)
t>0 yea =>+00 yeg
and is called the Lyapunov dimension.

If the supremum of finite-time local Lyapunov dimensions on
set A is achieved at such an equilibrium point ueq = ¢! (ueq) € A:
dim; A = dimy ueq, then the Lyapunov dimension can be repre-
sented in analytical form and it is called the exact Lyapunov di-
mension in [82]. A conjecture on the Lyapunov dimension of self-
excited attractor [59,61,79] is that for a typical system, the Lya-
punov dimension of a self-excited attractor does not exceed the
Lyapunov dimension of one of the unstable equilibria, the unsta-
ble manifold of which intersects with the basin of attraction and
visualizes the attractor.

In a general case, analytical computation of the Lyapunov ex-
ponents and the Lyapunov dimension is hardly possible. However,
they can be estimated by the eigenvalues of the symmetrized Jaco-
bian matrix [80,83]. The KaplanYorke formula with respect to the
ordered set of eigenvalues v;(J(u)) = v;(u), v1(u) > vy (u) > v3(u),

3 see Appendix.
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i=1,2,3, of the symmetrized Jacobian matrix %(](u) +J(w)*),
J(u) =Df(u) [79] gives an upper estimation of the Lyapunov di-
mension of an attractor A:

dimp A = in fsupd ({LE;(t, u)}}, ) <supd® ({v;(w)}.,). (13)

t>0ueA ueA

Generally speaking, one cannot get the same values of {v,-(u)}f:1
at different points u; thus, the supremum of d*¥({v;(u)}? ;) on A
has to be computed. To obtain estimate (13), it is not necessary to
integrate the solutions of the system; however, the analytical esti-
mation of {vl-(u)}?:1 on the attractor may be a challenging task. At
the same time, an effective analytical estimation of the Lyapunov
dimension via (13) can be obtained by the Leonov method.* The in-
equality dimy A < dimg A < j + s holds, if

sup(vi (U, S) + -+ + (U, ) + 5.1 (1, S) + V(1)) < 0, (14)
ueA

where V(u) = (grad(V))*f(u), V:R3 > R! is a differen-
tiable scalar function, S is a nonsingular 3 x3 matrix,
vi(u,S) = v;i(SJ(w)S~1) is the ordered set of eigenvalues
vi(Ww,S) >v,(u,S) >v3(w,S), i=1,2,3, of the symmetrized

Jacobian matrix 1 (SJ(u)S~! + (J(w)S~1)*), je{1,2} is an integer
number, and s € [0, 1] is a real number.

4. Main result

Using the Leonov method [79,84] we estimate the Lyapunov ex-
ponents and obtain the Lyapunov dimension for the global attrac-
tor in system (2).

Theorem 1. If for parameters of system (2) the following relations
hold

2 <b<2c (15)

r> (lz-i-l)(b_])v (16)

(b+ 1)[(b—2)(b* + 6bc — 3c? + b) + c(2c — b) |
—c(b*+b—c(8—b))r =<0, (17)

then

dim]_Aglob =3- 2(b+C—]) (18)

c—1+\/(c+1)2+4cr’

Proof. Consider system (2) with the Jacobian matrix

—C c 0
J= (r -z 1 —)é) (19)
y X -

under the conditions (15) and (16). We apply the transformation
(3) with a nonsingular matrix

2 0 0
5= (_gf 1 o) (20)
0 0 1

to this system, where a = . Then the symmetrized Ja-

C
«/ (1+b)(c—b)+rc
cobian matrix of this system J(S/S~! + (/S~1)*)° has the follow-

ing eigenvalues
)\2 = —b, 1

2 2\ 2
_c-1.1 2 ofb+1 2b
Ma==— i2<(2b+1—6) +a (TX-H/) +<az—7 .

(21)

4 see Appendix.
5 Symbol * denotes the transposition of matrix.
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The inequalities

2(hj=Aj) =2 —(-1))@b+1-0)+2b+1-¢|>0, j=1.2,
(22)

imply A; > Ay > A3. From (21) following [84] we get the ratio

2+ A +SA3)=—(s+1)(c—1)-2b

+(1 ,5)((21” 1-0¢)? +a2(”+1x+y) + (az - %)2)

where s €[0,1] is a real number. Using the inequality vk+1 <

Vk+ 2%@ Vk > 0, | > 0, we obtain an estimate

(23)

2(A + Az +SA3)<—(c—1+2b)—s(c—-1)
+H1 —s)[(c+1)2-1-4cr]7

(24)
20 [—cz+ €2 4 ¢ (btlx 4 ]
[(e+1 )2+4cr] : 4 ( y)
We introduce the function V (x,y,z) = —2®¥2 _ where
[(c+1)%+4cr]2
2
0(x.y.2) = *QoX* + @ (—c Q1 + Q)y* + a°Q2* + ZT:Q]X4
—a?Qx°z — a*PQyxy — %z, (25)
P and Q; (i=0,1,2) are some positive real parameters. Then
20 4+ Ay +SA3)+2V < —(c—1+2b)—s(c—1)
+(1-s)[(c+1)? +4er]? + —20=2 (26)

AW (x.y.2) +6].

[(c+1) +4cr]7
where W(x,y,2) = —cz+ %2 + & nglx—i-y) Choose the param-
eters Pand Q; (i=0,1,2) of the function 8 (x,y, z) such that

2

F=W({X,y,2) +6 <0, Vx,y,z > ;—C (27)

Substituting W (x, y,z) and € in (27), we get
F = Az + Arx + Agxy + Asy?, (28)
where
Ao =@ (2c(b+P)Qi —2bQ; + §),
2 <b4+clz)2 —rPQ1>,

Ay = a2[((c— 1)P —2c)Q1 +2rQy + bi _ #]
ho=(} 420, <2 + D).
Then

Ap <0
A3§O
4A1A3—A%ZO

A =a
(29)

2

}:>F§O, Vx,y,zzx—, (30)

2c

b 1
c(bzr P) Q- 8c(bl+ Py’

c2+n 2 g )
2 b+ c+1)°ba? — 4c3
Q= Q@+ ( T ) .
2c+P 4a’bc?(r+1)(2c+P)
Since RHS of the second inequality in (31) is positive, we obtain

b 1 2 1
Q- *( Q2+4c(2+13))20’

Q=<
o Q=

(31)

cb+P) 2 8(b1P) \c2+P)
b 1 2 (b+c+1)*ba® — 4c3
cb+P) 2 B (2c+PQ2 Y a@bE(r+1)2ctp) ) ”

(32)
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Fig. 2. Parameters of system (2) complying with the conditions (15) and (17).

(b-2)P 0, 3P+2b+2
cb+P)2+P) 8c(b+P)(2+P) ~
(2c - b)P
_c(b+P)(26+P)Q2

(c(8c = byr —2b% — 4(3c + 1)b? — (2 + 13¢ — 6c?)b + 8c2)P+
+ 8bc2(b+P)(2c+P)(r+1)
+6bc2r — 2b(b + 1)(b? + b+ 6bc — 3¢?)
>0

It follows from condition (15) that the coefficient at Q, in the first
inequality of (33) is positive and the coefficient at Q, in the second
inequality of (33) is negative. Hence, we can reduce (33) to the
following inequalities

L(b,c,1,P) <Qy <R(b,c,1,P), (34)
where L(b, ¢, 1, P) = 352652 > 0,
_ (c(8c—b)r—2b3—4(3c+1)b?— (24+13c—6¢%)b+8c%) P+

R(b. c.1. P)= (30T Sz b

+6bc?r—2b(b41) (b*+b+6bc—3c?)

Inequalities (34) mean that a positive Q, exists such that
R(b,c,1,P) —L(b,c,1,P)

b+ P)(kyr + k
___ (b+P)(kir+ko) > 0. (35)

4bc(b—-2)(2c-b)(r+1)P —
where k; = —c(b2 +bh—c(8— b)), ko = (b+ D[ (b—2)(b? + 6bc -

3c2 +b) +c(2c— b)]. Since the denominator of fraction (35) is pos-
itive, we obtain required condition (17)

kir + ko < 0. (36)

This completes the proof. O

We obtain a formula for the exact Lyapunov dimension of the
global attractor for certain region D of the parameters (b, c¢) of sys-
tem (2) (Fig. 2). Here D is the region such that b and c in D satisfy
(15) and (17), and r is such that conditions (16) and (17) are held.
The same approach allows one to estimate of the topological en-
tropy of the global attractor [60,81,85,86].

To demonstrate significance of this analytical result we com-
pare it with numerical simulations. We discuss the difficulties of
numerical procedures for reliable estimation of the Lyapunov di-
mension and Lyapunov exponents along one randomly chosen tra-
jectory over a long time interval. A natural way to get reliable es-
timation of the Lyapunov dimension of an attractor A is to localize
the attractor A c C, to consider a grid of points Cgiq on C, and to
find the maximum of the corresponding finite-time local Lyapunov
dimensions for a certain time t =T. In Fig. 3 is shown the grid
of points Cgi¢ filling the basin of attraction: the grid of points fills
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100 —

Fig. 3. Numerical localization of the chaotic attractor of system (2) with parameters
set at b= 5.7, c = 18.3, r = 51 by the cuboid C and the corresponding grid of points

Cgrid-

cuboid C = [-27,27] x [-65, 65] x [3, 95] (containing the attractor)
rotated by 45 degrees around the z-axis, with the distance between
points equal to 0.5. The time interval considered is [0, T = 500]
at the time points t =t, =7k (k=1,...,N), N=1000 according
to the time step t =, — t,_; = 0.5, and the integration method is
MATLAB ode45 with predefined parameters. The infimum on the
time interval is computed at the points {tk}’l".

For system (2) with parameters under consideration, we use a
MATLAB realization of the adaptive algorithm of the finite-time Lya-
punov dimension and Lyapunov exponents computation [59] and ob-
tain the maximum of the finite-time local Lyapunov dimensions at
the grid of points (maxuecgrid dim(t,u) is computed for trajecto-
ries of system (2) using MATLAB ode45 integration method with
predefined parameters and with threshold parameter & = 0.01 for
adaptively adjusting the number of SVD approximations). For pa-
rameters b = 5.7, c = 18.3, r = 51 we get
maxdim; (100, u)=2.0808,

ueCyrig

maxdim; (500, u)=2.0792. (37)
ueCrig

Note that if for a certain time, t = t;, the computed trajectory is
out of the cuboid, the corresponding value of the finite-time local
Lyapunov dimension is not taken into account in the computation
of the maximum of the finite-time local Lyapunov dimensions.

If the maximum of local Lyapunov dimensions on the global at-
tractor, which involves all equilibria, is achieved at an equilibrium
point: dimy (ug;) = maxye4 dimy (u), then this allows one to get an-
alytical formula for the exact Lyapunov dimension [82].

The exact Lyapunov dimension dimpAg, = dimSy = 2.4347 >
dimpA ~ maxuecgriddimL(tk, u) ~ 2.0808 (see (37)) obtained by for-
mula (18) and the estimation (37) are consistent with the hy-
pothesis on the Lyapunov dimension of self-excited attractor. Us-
ing Theorem 1 we can get the value of the exact Lyapunov dimen-
sion on the global attractor, which coincides with the Lyapunov di-
mension at a stationary (zero) point. This result is nontrivial since
to compute reliably numerically the dimensions on the trajectories
of the global attractor is extremely difficult. We demonstrate chal-
lenging nature of this task by the following examples.

Choosing the initial data somewhere in the phase space, we can
obtain the values of the dimensions along the various trajectories
by a numerical procedure. Generally speaking, these values of the
dimensions will also be different. For instance, system (2) has the
analytical solution u(t) = (0, 0, zge~?) which tends to the equilib-
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Fig. 4. Period-1 UPO u'P% (t) (red, period 7; = 0.69804) stabilized using the UDFC
method, and pseudo-trajectory (t, ug"") (blue, t € [0, 100]) in system (2) with pa-
rameters set at b=>5.7, c=18.3, r = 51.

rium Sy = (0,0, 0) from any initial point (0,0,zy) € R3. The exis-
tence of such solutions in the phase space complicates the pro-
cedure of visualization of a chaotic attractor (pseudo-attractor) by
one pseudo-trajectory with arbitrary initial data computed for a
sufficiently large time interval. In particular, the numerical compu-
tation of finite-time local Lyapunov exponents along this trajectory
during any time interval does not lead to averaging of these values
across the attractor, but to tending of these values to the finite-
time local Lyapunov exponents of Sj.

The challenges of the finite-time Lyapunov dimension compu-
tation along the trajectories over large time intervals is connected
with the existence of UPOs embedded in a chaotic attractor. Along
with the existence of the analytical solution u(t) = (0,0, zge™)
the global attractor of system (2) contains a period-1 UPO.

Consider system (8). Let utP°(t,u,"") be its UPO with pe-
riod T > 0, uP°(t — 7, upP’") = u¥P°(t, uy™"), and initial condition
uP’t = utP°(0, up™"). To compute the UPO, we add the unstable
delayed feedback control (UDFC) [87] in the following form:

u(t) = f(u(t)) — KB[F(t) + w(t)],
W(t) = 22w(t) + (A — AZ)Eu(®),

N

Fy(t) =Cu(t) — (1-R) Y R'Cu(t — kT), (38)
k=1

where 0 <R < 1 is an extended DFC parameter, N=1,2, ..., co de-

fines the number of previous states involved in delayed feedback
function Fy(t), A2 > 0, and A% < 0 are are additional UDFC param-
eters, B, C are vectors and K > 0 is a feedback gain. For the initial
condition uy”" and T = T we have Fy(t) =0, w(t) =0, and, thus,
the solution of system (38) coincides with the periodic solution of
initial system (8).

For system (2) with parameters b=5.7, c=18.3, r =51, us-
ing (38) with B* = (0,1,0), C* = (0,1,0), R=0.7, N = 100, K = 10,
A2 = 0.1, A% = —5, one can stabilize a period-1 UPO u"P°1(t, ug)
with period 71 = 0.69804 from the initial point ug = (0.1,0.1,0.1),
wg = 0 on the time interval [0, 100] (see Fig. 4). We use the Pyra-
gas procedure [87,88] for numerical stabilization and visualization
of UPOs. For the initial point uy™' ~ (29.6688, 26.1650, 73.8221)
on the UPO u°1 (t) = u(t, uy"*") we numerically compute the tra-
jectory of system (38) without the stabilization (i.e. with K = 0)
on the time interval [0,T = 100] (see Fig. 4). We denote it by
a(t, uy™") to distinguish this pseudo-trajectory from the periodic
orbit u(t,uy?"). On the initial small time interval [0, Ty ~ 211],
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Shapovalov system
3.4 Largest finite-time Lyapunov exponent

= along UPO (with Pyragas stabilization, dde23)
= along pseudo-trajectory (no stabilization, ode45)
----- value via Floquet multiplier

3.2

2.8

2.6

2.4

22

1.8

1.6
0 20 40 60 80 100

Fig. 5. Period-1 UPO u"P°: (t) (red, period 7, = 0.69804) stabilized using the UDFC
method, pseudo-trajectory d(t,uy™) (blue), and the analytical value LE;(upP")
(green) for t € [0, 100] in system (2) with parameters set at b= 5.7, c = 18.3, r = 51.
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

even without the control, the obtained trajectory ii(t,u,”"') ap-

proximately traces the "true” trajectory (periodic orbit) u(t, ug"").

But for t > T;, without a control, the pseudo-trajectory d(t, up™")
diverges from u(t, ugpol) and visualize a local chaotic attractor A.

In general, the closeness of the real trajectory u(t,ug) and
the corresponding pseudo-trajectory {i(t,ug) calculated numeri-
cally can be guaranteed on a limited short time interval only.
The obtained values of the largest finite-time Lyapunov exponent
LE; (t, ug™") computed along the stabilized UPO u(t, u,**") and the
trajectory without stabilization i(t, ugpol) give us the following re-
sults. On the initial part of the time interval [0, T; ~ 271¢], one can
indicate the coincidence of these values with a sufficiently high ac-
curacy. After t > T, ~ 10 the difference in values becomes signifi-
cant and the corresponding graphs diverge in such a way that the
graph corresponding to the unstabilized trajectory is higher than
the parts of the graphs corresponding to the UPO and the analyt-
ical value largest Lyapunov exponent: LE;(uy™') = 1.80401, com-
puted via Floquet multipliers (see Fig. 5).

Using numerical experiments, we analyze the chaotic dynam-
ics of system (2) and visualize a self-excited attractor for values of
parameters b = 5.7, c = 18.3, r = 51. At the same time, we get for-
mula for the exact Lyapunov dimension of the global attractor for
certain region of the parameters (b, c, r) (15) and (16) of system
(2) by the analytical way. Thus, we get the following relations

dimLAglob = dimLSO = 2.4347
>dim A~ maxdimy (t;, u)~ 2.0808 (39)
uel

Cgrid

>dimu¥Pr ~ 2.0738.
5. Conclusion

In this paper, we studied the irregular behavior (including
chaotic attractor) of the mid-size firm model, assuming the deter-
ministic endogenous mechanism for generating these fluctuations
in the economic system. Using an analytical approach, we calcu-
lated quantitative characteristics of irregular dynamics, such as the
Lyapunov dimension, and demonstrated the complexity and ambi-
guity of using numerical procedures for calculating these indica-
tors. First, we proved a theorem about the exact formula for the
Lyapunov dimension of the global attractor in the model. Similar
way could be used for getting the formula for the topological en-

Chaos, Solitons and Fractals 152 (2021) 111365

tropy. Second, we identified an UPO for the model and stabilized it
using the Pyragas control procedure. Third, we numerically calcu-
lated the finite-time Lyapunov dimension along the trajectories of
the global attractor, including UPO, thereby providing support for
arguments about difficulties of application of the numerical pro-
cedures and importance of the obtained exact formula for the Lya-
punov dimension of the global attractor. We believe that expanding
our knowledge of the role, sources, as well as qualitative and quan-
titative characteristics of irregular oscillatory dynamics may dimin-
ish researchers’ reliance on unrealistically large shocks to explain
economic data.
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Appendix

Let {¢'};~o denote a smooth dynamical system with continuous
time, and let set A be its compact invariant set. Fundamental ma-
trix De* (u) = (y! (t),yz(t),y3(t)), D@ (u) =1 consists of linearly
independent solutions {yi(t)}?:1 of the linearized system, where |
is the unit 3 x 3 matrix, with the following cocycle property:

D' (u) = D' (¢* (u))De*(u), Vt,s > 0, Yu € R>. (40)

Let LE;(:) =t"'Ino;(-) for t >0, where o;(De!(u)) = o;(t, u),
i=1,2,3, be the singular values of Dg'(u) (ie. oj(t,u) >0
and o;(t,u)? are the eigenvalues of the symmetric matrix
Dgt(u)*Det(u) with respect to their algebraic multiplicity), or-
dered so that oq(t,u) > oy (t,u) > o3(t,u) > 0 for any u e R3, t >
0. Consider a set of finite-time Lyapunov exponents{LE;(Dg’(u)) =
LE;(t.u)}3 , at the point u:

LEi(t,u)z%lnoq-(t,u), t>0, i=1,2,3, (41)

ordered by decreasing for all t > 0. We can introduce the following
concepts - the finite-time local Lyapunov dimension (of map ¢’ at
point u): dimy (t, u) = dimy (¢!, u), the finite-time Lyapunov dimen-
sion (of map ¢! with respect to set A): dimy(t, A) = dimy (¢!, A),
and the Lyapunov dimension (of dynamical system {¢‘};~o with re-
spect to set A): dim A = dim ({¢'}¢=0, A).

Consider the dynamical system ({¢'};-o, (R, || -[])) under the
change of coordinates w = h(u), where h : R3 — R3 is a diffeomor-
phism. In this case the dynamical system ({¢'}r0. (R®,[|-[])) is

transformed to the dynamical system ({(ﬂﬁ}[zg), and the compact
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set A ¢ R? invariant with respect to {¢'};-¢ is mapped to the com-
pact set h(A) c R3. Here

D}, (w) = Dh(g" (u))Dg (u) (Dh(w)) " (42)

Proposition 1. (see, e.g. [79, 89]) For any diffeomorphism h: R3 —
R3 the Lyapunov dimension is invariant with respect to diffeomor-
phism, i.e.

dimy ({¢'}e=0, A) = dimi ({¢} }e=0, h(A)). (43)

The proof of this proposition uses the Horn inequality
for (42) and the fact that singular values of Dh(¢f(u)) and
(Dh(¢*(u)))~! are uniformly bounded in t on A. Moreover, instead
of Dh one can consider any 3 x 3 matrix H(u) such that all its ele-
ments are scalar continuous functions of u and det H(u) # 0 for all
ue A and get®

Jim_ (LEi (H(¢* )Dg! () (Hw)) ") — LE; (DWID)) =0,
i=1,2,3,

dim; ({¢'};-0. A) = liminf;_, . sup
ueA

d* ({LE; (H(¢" (u)Dg" (w) (HW)) ')
(44)

If an equilibrium ueq=@(ueq) €A has simple real eigenvalues,
then a nonsingular 3 x 3 matrix S exists such that the lineariza-
tion takes the form SDf(ueq)S™" = diag(Aq(tieq), -, A3(Ueg)),
where  Aj(Ueq) > Aji1(Ueq), i=1,2. Then, by the linear
change of variables w=h(u) =Su and the invariance we get
tEIJPOO LE;(t, Ueq) = Ai(Ueq) and dimy teg = dKY({)\i(ueq))}?:y

For analytical estimation of the Lyapunov dimension via the
eigenvalues of the symmetrized Jacobian matrix we use the gen-
eralized Liouville’s relation (see, e.g., [83],[81, p.68]) and get, Vt >
0, u e A, the following:

M-~

LE; (¢" (1)) + SLEj,1 (' ()
1

t
1

< -
0

j
V(@ () +5Vj41 (97 (u))dT (45)
i=1
J
<sup vi(u) 4+ svja (U).

ueA j=1
From (45) we obtain the upper estimation of the Lyapunov dimen-
sion (13).

The Leonov method of analytical estimation of the Lyapunov di-
mension is based on (44) and (13). Following [84,90,91], we con-
sider H(u) = p(u)S, where p : R3 — R! is a continuous scalar func-
tion, S is a nonsingular 3 x 3 matrix. Then we compute the Lya-
punov dimension by (44):

dim; A = lim infsup d*¥ ({LE; (p(¢' (W) p(u)~" SDp* w)S™")}3),
t—+o0 ueA

and estimate it by (13). For that by (41) and (45) we get the esti-
mation:

1 LE(p(¢* () p(u)'SD@ (w)S ")
<jtIn(p(¢'@)p@)™") + § fo Ly vi(SJw)s)dr.

In general, while under the diffeomorphism h(u) = Su the Lya-
punov dimension is invariant and J(u) — SJ(u)S~!, the values
v;(SJ(w)S~1) = v;(u, S) are not invariant and, thus, S together with
p(u) may be used to simplify their computation (the idea with S
was introduced in [90, Eq.(8)] and p(u) was introduced in [84]).

(46)

6 By the Horn inequality for the matrices Dy (¢! (u)) = H(¢'(u))Det (u)H(u)™!
and Dg* (u) = H(g" (1))~ Dy (¢* (u))H(u).
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The scalar multiplier of the type p(¢!(u))(p(u))~! can be in-
terpreted as the changes of Riemannian metrics [92] (see, also
[81]). The following theorem is a reformulation of the results from
Leonov [91], 93] (see also [79,81]).

Theorem 2. If there exist an integer j € {1,2}, a real s € [0, 1], a dif-
ferentiable scalar function V : R3 — R, and a nonsingular 3 x 3 ma-
trix S such that condition (14), i.e.

sup(vy (U, S) + -+ + v;(U, S) + 5vj,1 (U, S) +V(u)) < 0,
ueA

is satisfied, where V (u) = (grad(V))* f(u), then dimy A4 < dim A <
Jj+s.
Proof. Let p(u) = e@WU+)™" Then (G +5) 1 In(p(et w)p) )=

L(Jy V(@7 ())dt). Thus by invariance of A and (45) from (46) we
get

J
> LEi(SD@" (u)S™") + SLEj,1 (SDg" (u)S™")
i=1
£ +9) 110 (et )p) ) < (47)

i
<sup (Z Vi (U, S) +svj1 (U, S) + V(u)) <0.

ued i

Since tliT (j+35)F1In (p(¢' W)p(u)~") =0 for any u € A there ex-
ists T > 0 such that

j
> " LEi(SD@ (u)S~") + SLEj 1 (SDg" (u)S™') < 0,Vt > T, u € A48)
i=1

Thus, taking into account (10), dim; A < j+s. O
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