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Abstract

Estimations of time spent sedentary and in various physical activity intensities may vary according to 

data reduction methods applied. This study compared associations between children’s accelerometer 

data and adiposity and fitness markers using open source (mean amplitude deviation; MAD) and 

proprietary (counts) data reduction methods. Complete-case accelerometer, adiposity (Body Mass 

Index z-score, waist circumference), and fitness (cardiorespiratory, musculoskeletal) data from 118 

children (10.4±0.6 years, 49% girls) were analysed. Estimates of sedentary behaviour, light-, 

moderate-, vigorous- (VPA) and moderate- to vigorous-intensity (MVPA) physical activity were 

calculated using count- and MAD-based data reduction methods. Linear regression models between 

intensities and fitness and adiposity markers were conducted. Significant differences in estimates of 

time spent in all intensities were observed between MAD-based and count-based methods. Both 

methods produced evidence to suggest that sedentary behaviour was detrimentally, and physical 

activity (any intensity) was beneficially, associated with waist circumference. MVPA and VPA were 

beneficially associated with fitness markers using both data reduction measures. Overall, findings 

suggest that estimates of sedentary time and physical activity were not comparable. However, the 

strength and direction of the associations obtained between the different data reduction methods and 

adiposity and fitness outcomes were fairly comparable, with both methods finding stronger 

associations for VPA compared to MVPA. This suggests that future studies may be able to pool data 

using different data reduction approaches when examining associations between activity and health 

risk factors, albeit with caution.

Keywords: Movement; Youth; Objectively-measured; Device-based; Accelerometry; Mean 

Amplitude Deviation.
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1. Introduction

Regular participation in physical activity has been shown to be beneficial for children’s health 

(Poitras et al., 2016). Benefits include higher cardiorespiratory and muscular fitness, and lower body 

mass index (BMI) (Poitras et al., 2016). In contrast, excessive sedentary time, and in particular screen 

time, has been associated with health markers in children, such as unfavourable body composition and 

lower fitness (Carson et al., 2016). The current Australian 24-hour movement guidelines state that 

children should accumulate 60 minutes or more of moderate- to vigorous-intensity physical activity 

(MVPA) per day and spend two hours or less engaged in recreational screen time (Department of 

Health, 2019). Nevertheless, according to population-based survey data only 7.7% and 8.6% of 9-11 

year-old girls and boys in Australia, respectively, are meeting both these physical activity and screen-

based activity recommendations (Australian Bureau of Statistics, 2013). It is noted that movement 

behaviours can be measured using an array of devices (e.g. inclinometers, accelerometers; heart rate 

monitors) and quantified using different techniques (e.g., intensity cut-points; time sampling 

intervals), which may lead to different estimates of times spent being active and/or sedentary 

(Rowlands & Eston, 2007). It is important to accurately assess children’s physical activity and 

sedentary behaviour levels, and their associations with health outcomes, to obtain optimal information 

that can be used to design intervention programs and health promotion efforts that target the low 

prevalence of meeting these guidelines.

Accelerometry is the most commonly applied method for the device-based assessment of 

physical activity and sedentary time (i.e., little to no movement) in children (Ward, Evenson, Vaughn, 

Rodgers, & Troiano, 2005). In particular, the ActiGraph device (Pensacola, FL, USA) has been 

extensively used for monitoring as it has been shown to be strongly correlated with energy 

expenditure derived from doubly-labelled water (Plasqui & Westerterp, 2007). It has also 

demonstrated good validity and inter-instrument reliability for assessing activity levels in paediatric 

populations (Trost, McIver, & Pate, 2005). To date, most of the research that has used ActiGraph 

devices to classify physical activity (ranging from light- [LPA] to moderate- [MPA] to vigorous- 

[VPA]) and sedentary time (defined as little to no movement) in children have applied the proprietary 

count-based data reduction method provided by the manufacturer (Poitras et al., 2016). A
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Traditionally, this was warranted as older model devices with limited storage capacities stored 

only the summary measures (“counts”) of the raw acceleration signals in pre-specified units of time 

(epochs) (van Hees, Pias, Taherian, Ekelund, & Brage, 2010). Validated count-based cut-points (e.g., 

(Evenson, Catellier, Gill, Ondrak, & McMurray, 2008)) were then applied to classify the epochs as a 

specific intensity of sedentary time or physical activity, such as MVPA. However, other 

manufacturers have entered the market, and the algorithms behind proprietary counts vary by 

accelerometer brand and model, which limits the direct comparison of studies using different devices 

(Aittasalo et al., 2015). In addition, these count-based cut-points have been found to incorrectly 

classify up to 68% of physical activity intensities among children, as these are affected by a 

combination of processing error and calibration error (Fridolfsson et al., 2019), which may impact 

accuracy in determining the relation between movement behaviours and health (Trost, Loprinzi, 

Moore, & Pfeiffer, 2011). As a result, researchers highlighted the need to be provided with access to 

raw acceleration data for analysis (Trost et al., 2005), however, it is still uncertain as to whether these 

methods provide more accurate estimates of movement behaviours.

Newer models of accelerometers with larger storage capacities, offering feasible access to 

prolonged recordings of raw tri-axial acceleration data have appeared on the market. Raw data refers 

to data sampled several times per second (e.g., 100 samples per seconds), that was previously 

summarised in epochs. The samples are expressed in m/s2 or gravitational acceleration, and are the 

actual direct measure of physical acceleration and deceleration digitised by the accelerometer (van 

Hees et al., 2010). As a consequence, raw acceleration-based data reduction techniques have been 

developed, such as the mean amplitude deviation (MAD; (Aittasalo et al., 2015)), that provide new 

opportunities to examine physical activity, sedentary time and their associations with health outcomes 

(John & Freedson, 2012). MAD is calculated from the resultant of the three orthogonal accelerations, 

per epoch of interest, and it describes the mean variation of the dynamic acceleration component 

around the static component (Leinonen et al., 2016). Previous research in middle-aged adults has 

shown that compared to proprietary count-based data reduction, MAD data reduction underestimates 

free-living light-intensity physical activity (LPA) but overestimates MVPA (Leinonen et al., 2016). 

However, systematic explorations of the potential impact of the chosen data reduction method on 

estimated times in different intensities, and particularly associations with health outcomes (e.g., A
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fitness and adiposity) remain scarce. 

No previous studies have compared estimates of movement behaviours derived from count- 

and MAD-based data reduction methods among children. It is possible that differences in estimates 

using different techniques may impact associations with health risk factors (Leinonen et al., 2016). 

Exploring movement behaviours derived from different techniques may help to increase 

understanding of the associations between movement behaviours, assessed using valid and reliable 

devices, and health risk factors, and provide insights into which techniques may be most sensitive for 

detecting potential associations. This in turn can inform future studies that compare or combine data 

obtained using different data reduction methods (Leinonen et al., 2016). Therefore, the aim of this 

study was to compare estimations of sedentary time and time spent in LPA, moderate- (MPA), 

MVPA, and vigorous-intensity physical activity (VPA) based on proprietary count- and MAD-based 

data reduction methods, and to compare associations between these estimates and adiposity and 

fitness markers, in primary school-aged children.

2. Material and methods

2.1 Study sample 

Data for this study were drawn from the Fitness, Activity and Skills Testing (FAST) Study 

(data collected between July-November 2014; (Ridgers et al., 2018)). Catholic primary schools 

(n=68) within 30km of the Deakin University Burwood campus in Melbourne, Australia were 

randomly selected and invited to participate in the FAST Study. Six school principals (9% response 

rate) provided informed written consent and agreed for their schools to take part. All schools were 

located in high socioeconomic status (SES) areas based on the Socio-Economic Index for Areas 

(Australian Bureau of Statistics, 2011). All students in Year 4 and 5 (aged 8-11 years; n=458) at 

consenting schools were invited to take part in the study. Informed written consent to participate in 

the primary outcome assessments, which included accelerometry, a survey, and cardiorespiratory and 

musculoskeletal fitness, was returned by 138 children (51% girls; 30% response rate). The target 

sample size for the original outcomes paper study was determined as 120 using a sample size A
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calculation (Ridgers et al., 2018). Ethical approvals were obtained from Deakin University Human 

Ethics Advisory Group (HEAG-H 19_2014) and the Catholic Education Office Archdiocese of 

Melbourne (Project #1998) (Ridgers et al., 2018).

2.2 Procedure

Demographic information, such as age and sex, was reported by the child’s main carer in a 

short survey at the time of consent. Schools were visited by trained research staff on two different 

occasions. During the first visit, participants were provided with a GT3X+ ActiGraph accelerometer 

to wear on their right hip for eight consecutive days (except during sleep and contact- or water-based 

activities) and anthropometry data were collected. During the second visit, children returned the 

accelerometers, and completed fitness tests in the school gym during class time.

2.3 Health markers

Adiposity markers

Stature and body mass were measured using the SECA portable stadiometer (model 217; 

SECA, Germany) and Tanita calibrated electronic scale (BC-351; Tanita, Japan), respectively. For 

both stature and body mass, two measurements were taken and, if there was a difference of ≥0.1cm 

for stature or ≥0.1kg body mass, a third measurement was taken and the mean of the two nearest 

measurements was recorded. BMI (kg/m2) was calculated and converted to BMI z-scores using the 

age- and sex-standardized World Health Organization growth standards (WHO Multicentre Growth 

Reference Study Group, 2006). In addition, two measures of waist circumference (cm) were taken, 

using a flexible steel tape, at the narrowest point between the bottom rib and the iliac crest in the mid-

axillary plane. If a discrepancy of ≥1cm was detected, a third measure was taken and the average of 

the two closest measures was recorded instead. Trained research staff took all measures using 

standardised practices (Marfell-Jones, Stewart, & De Ridder, 2012).
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Cardiorespiratory and musculoskeletal fitness

Cardiorespiratory fitness was assessed using the multi-stage 20-m shuttle run test using 

standardised testing protocols (Institute of Medicine, 2012). Participants were required to pace 

themselves in time to recorded beeps. The time between beeps decreased as the test advanced, 

meaning that participants were required to increase their speed. The test finished when a child was 

unable to keep up with the pace of the beeps. The total number of shuttles successfully completed was 

recorded for use in the analyses. Previous research has shown that this test is strongly associated (R2 = 

0.89) with maximal oxygen uptake in children (Pitetti, Fernhall, & Figoni, 2002) and is the most 

feasible and appropriate field-based measure of cardiorespiratory fitness (Lang et al., 2018).

Musculoskeletal fitness was assessed using two different sub-tests: 1) handgrip test (upper 

body) (Fernandez Santos, Ruiz, Gonzalez-Montesinos, & Castro-Pinero, 2016), and; 2) standing long 

jump (lower body) (Castro-Piñero et al., 2010). The handgrip test involved participants squeezing a 

dynamometer as hard and as fast as possible, for at least three seconds. Participants were instructed to 

maintain the elbow in full extension, with the arm straight down one side of the body (Fernandez 

Santos et al., 2016). Six trials were performed, with children alternating hands after each trial. The 

observed peak value (kg) with the dominant hand was then divided by their body mass to standardize 

this value for use in analysis. This test is strongly associated with a 1-repetition maximum bench press 

(R = 0.79) (Fernandez Santos et al., 2016), an indicator of upper body strength. The standing long 

jump required children to stand with both feet parallel behind a marked line and jump, with both feet 

simultaneously, as far as possible (Castro-Piñero et al., 2010). The longest distance from two 

attempts, measured from the marked line to the landing position (back of the heel), was used in the 

analyses (Castro-Piñero et al., 2010). This test is reliable (ICC = 0.99) and is strongly associated (R2 

= 0.829 - 0.864) with other measures of lower body strength (Castro-Piñero et al., 2010).

2.4 Accelerometer data reduction

For the purpose of this study, GT3X+ ActiGraph accelerometry data were reduced using 

count- and MAD-based data reduction methods. ActiGraph data were sampled at 30 Hz and the A
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normal filter was selected. Cut-offs to determine non-wear time (i.e., 20 minutes of minimal to no 

movement) were in accordance with their use in published literature specifically for each method and 

are described below in turn. For both approaches, only the wear time between 6.00am and 10.00pm 

was analysed. This decision was made to improve consistency across methods. As these vary slightly 

for each data reduction technique, these are described below in turn. Valid days were defined as those 

with ≥8 hours of wear time per day (Cain, Sallis, Conway, Van Dyck, & Calhoon, 2013). To be 

included in the analyses, children were required to have a minimum of four valid days as this has been 

shown to as this has been shown to indicate habitual physical activity with a minimum between-day 

intraclass reliability coefficient of r = 0.80 in this age group (Trost, Pate, Freedson, Sallis, & Taylor, 

2000). 

Proprietary count-based data reduction

Vertical axis data from the accelerometer were downloaded in 5-s epochs using ActiLife 

software (v.6.11.; ActiGraph, Pensacola, FL) and processed using a customised Excel macro. Non-

wear during waking hours was defined as continuous bouts of consecutive 0 counts of at least 20 

minutes (Cain et al., 2013). The 5-s epoch was used as longer bouts can underestimate sedentary 

behaviour and activity at higher intensities, due to the sporadic nature of children’s activity (Baquet, 

Stratton, van Praagh, & Berthoin, 2007). Count-based cut-points of 0-99, 100–2295, 2296–4011, and 

≥4012, developed by Evenson and colleagues (Evenson et al., 2008), were modified to 5-sec 

equivalents and used to calculate the total time spent sedentary and in LPA, MPA, and VPA, 

respectively, per day. These cut-points were developed in a laboratory study that showed that these 

can be used to distinguish differing levels of physical activity intensity as well as sedentary time in 

children (Evenson et al., 2008). Total time in MPA and VPA was summed to obtain MVPA. The 

proportion of total wear time that children spent sedentary and in LPA, MPA, and VPA per day was 

also calculated for descriptive purposes. 
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Open source MAD-based data reduction

The raw acceleration data (stored in .gt3x format) were downloaded using ActiLife software (v.6.11.; 

ActiGraph, Pensacola, FL). Custom-made Java and Matlab scripts (R2018a, Mathworks, Inc., Natick, 

MA, USA) were used to firstly auto-calibrate the acceleration data, following the approach developed 

by van Hees and colleagues (Van Hees et al., 2014), with the modification of not utilising weights in 

the optimisation of calibration coefficients (https://github.com/tjrantal/accelerometer-auto-

calibration). Our pilot experimentation indicated that marked overfitting may occur if utilising the 

weights. The calibration was applied on the sampled accelerations and MADs were calculated for 

non-overlapping 5-s epochs based on the calibrated resultant acceleration signal (Vaha-Ypya, 

Vasankari, Husu, Suni, & Sievanen, 2015). The auto calibration had minimal, if any, effect on the 

results. A visualisation of the (very small) calibration coefficients and offsets is provided in the 

Appendices Figure S1. Consequently, we ran the analyses only on the calibrated values.

Non-wear during waking hours was defined as any continuous bout of 20 minutes or longer 

with all MAD values less than 0.0042 g. The non-wear threshold was chosen based on pilot 

experimentation and is close to measurement noise. A value of 0 was then assigned to any epochs 

falling into non-wear time. MAD intensity cut-points for sedentary (<0. 0167 g), LPA (0. 0167 to 

<0.091 g), MPA (0.091 to <0.414 g), and VPA (≥0.414 g) were used to divide the data into total time 

spent in each category (Vaha-Ypya, Vasankari, Husu, Suni, et al., 2015). These intensity cut-offs 

were based on laboratory-setting research, which identified them as being the optimal classification 

between sedentary behaviours and slow walking (LPA; (Vaha-Ypya, Vasankari, Husu, Suni, et al., 

2015)), and corresponding with 3.0 METs (MPA) and 6.0 METs (VPA; (Vaha-Ypya, Vasankari, 

Husu, Manttari, et al., 2015)) in adults. Time spent in MVPA and proportions of time spent in each 

intensity were also calculated.

2.5 Statistical analyses

Stata v16 (StataCorp, College Station, TX, USA) was used to perform statistical analyses. 

Significance was set at α = 0.05 for all analysis. Descriptive analyses (mean and standard deviations) A
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were calculated for each variable. Initial multilevel model analyses (using the ‘xtmixed’ command) 

were used to make comparisons between absolute and proportional (to the wear time) estimations of 

sedentary time and time spent in LPA, MPA, VPA and MVPA using proprietary- and MAD-based 

data reduction methods, whilst accounting for clustering within schools and individuals.

Linear regression models were used to investigate associations between proprietary- and 

MAD-based accelerometry exposure variables (minutes per day) with health outcomes, including 

adiposity, musculoskeletal and cardiorespiratory fitness. With the exception of BMI-z score, all health 

outcomes were standardised to a mean of zero and a standard deviation of one to enable comparisons 

of the magnitude of the associations. Assumption testing was conducted for linearity, normality of 

residuals, homogeneity of variance and multi-collinearity; all assumptions were met and variables 

were normally distributed. Regression models accounted for school-level clustering and were adjusted 

for decimal age, sex, and monitor wear time. Obtained β-coefficients and 95% confidence intervals 

(CIs) of the proprietary- and MAD-based data reduction methods were calculated and initially 

compared in size (as an indicator of strength) and direction. In addition, 84% CIs were calculated and 

if these did not overlap across data reduction methods, a significant difference (approximating α = 

0.05) was assumed between findings based on the two different methods (Afshartous & Preston, 

2010; Julious, 2004). 

3. Results

3.1 Participant characteristics 

Complete data, including valid accelerometry, health outcomes and covariate data, were 

collected from 118 children (58 girls; 86% of sample). No significant differences were observed 

between children included in analyses versus those excluded. Table 1 shows the descriptive 

characteristics, including covariates and health outcomes, reported for the overall included sample and 

by sex. Table 2 presents descriptive statistics for the accelerometry variables derived using each data 

reduction method for complete cases. 
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On average, children were just over 10 years old and just under half of the sample were girls 

(49%). Boys had 0.4 kg/m2 lower mean BMI, greater cardiorespiratory fitness (approximately 24 

more shuttles), and a greater standing long jump (approximately 13 cm further) than girls. 

3.2 Estimations of free-living sedentary and physical activity time

Significant differences were observed between the count-based and MAD-based data 

reduction approaches for all activity intensity variables when calculated absolutely and proportional to 

the wear time but not for wear time estimates (Table 2). Overall, participants spent on average 68% of 

their day sedentary, and 24% and 9% in LPA and MVPA, respectively, when data were reduced using 

the count-based technique. In comparison, the mean proportions of wear time spent in sedentary, LPA 

and MVPA were 59%, 25% and 16%, on average, when using the open source MAD-based data 

reduction approach (Table 2). 

3.3 Associations of sedentary time and physical activity with adiposity and fitness markers

Table 3 shows the results from the regression models using the standardized adiposity and 

fitness markers. The results from regression models using the unstandardized variables can be found 

in the Appendices Table S1.

Adiposity markers

Table 3 shows the that higher levels of VPA were associated with lower (i.e., a favourable 

significant [p<0.05] negative β-coefficient) BMI z-scores and waist circumference, for the MAD-

based data reduction method only. In addition, detrimental associations for sedentary time, and 

beneficial associations for LPA, MPA and MVPA, with waist circumference were observed for both 

data reduction methods. 

Fitness markersA
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Table 3 shows that higher sedentary time was associated with poorer 20m shuttle run and long 

jump performances, when obtained with the proprietary data reduction method only. Time spent in 

MPA, MVPA and VPA were beneficially associated with all fitness markers when obtained with the 

proprietary data reduction method. In contrast, when obtained with the MAD-based data reduction 

method, beneficial associations were only observed for MVPA and VPA and all fitness markers. 

Comparisons between proprietary count- versus MAD-based estimates

Overall, the observed β-coefficients and 95% CIs for the two methods were mostly comparable in the 

number of significant associations and in terms of their size (as an indicator as the strength of 

association) and direction. The 84% CIs for the two different methods overlapped for all tested 

associations, except for MPA, VPA and MVPA and shuttle run scores (e.g., MVPA proprietary count-

based β-coefficients [84% CIs]: 0.0216 [0.0192, 0.0239] versus MAD-based: 0.0099 [0.0050, 

0.0148]).

4. Discussion

4.1 Estimations of free-living sedentary and physical activity time

This study compared estimations of free-living sedentary time and time spent in LPA, MPA, 

VPA, and MVPA using proprietary count- and MAD-based data reduction methods. In addition, 

associations with adiposity and fitness markers in primary school-aged children using the different 

data reduction methods were examined. Significant differences were observed between the different 

data reduction methods for time spent sedentary and all physical activity intensities but not for wear 

time. Using the count-based method, children spent significantly more time SED and in VPA, and less 

time in LPA, MPA and MVPA than the MAD-based method. Interestingly, while the direction of the 

associations observed between SED time and physical activity with adiposity and fitness markers 

were generally consistent between the count-based and MAD-based data reduction methods, the 

strength of the associations differed depending on the method used. However, based on no A
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overlapping CIs, the only observed significant difference was for cardiorespiratory fitness. 

Specifically, a stronger association was observed with MPA, VPA and MVPA estimated using count-

based data reduction methods, compared to the MAD-based data. These findings suggest that 

different data reduction methods may influence estimations of children’s activity levels, though it may 

be possible to pool studies using different methods when assessing associations with health outcomes.

The results found that using different data reduction methods impacted the estimation of time 

spent in all activity intensities across the activity spectrum. These differences were particularly 

evident for MPA, with MAD-based data reduction approaches resulting in almost a threefold estimate 

of the percentage of time spent in that intensity (~14% of waking hours) compared to count-based 

data reduction approaches (~5%). Interestingly, differences in time spent in LPA were observed, 

despite the similarities in the proportion of time spent engaged in LPA (24% and 25%, respectively). 

The difference between estimates of MVPA between the two data reduction methods appear to largely 

be driven by differences in estimated MPA, which equated to 69.8 minutes per day. This finding is 

consistent with previous research by Leinonen and colleagues, albeit in middle-aged adults, who also 

found higher MVPA levels when using MAD reduced accelerometry data (Leinonen et al., 2016). 

However, the difference was counteracted by a lower observed free-living LPA in Leinonen and 

colleagues’ study (Leinonen et al., 2016), rather than the observed difference in SED time in the 

present study. Future research needs to show whether this is caused by actual different behaviours in 

these age groups (e.g., children versus adults) or may have been caused by different decisions with 

regards to data processing (e.g, Freedson (Freedson, Pober, & Janz, 2005) versus Evenson (Evenson 

et al., 2008) cut-points).

Several recent works (Brønd et al., 2019; Brønd, Andersen, & Arvidsson, 2017; Fridolfsson et 

al., 2019) delineated the impact of processing settings for the propriety ActiGraph count-based 

method, such as frequency filtering and calibration, which may lead to classification discrepancies 

that could explain the differences in estimations observed. As the count-based data reduction method 

is a more processed measure, it is expected that this has a different (i.e., non-linear) relationship with 

the specific physical activity intensities (Brønd et al., 2019), compared to the raw MAD-based data 

reduction with a more linear relation (Fridolfsson et al., 2019). For example, Fridolfsson and A
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colleagues (Fridolfsson et al., 2019) showed that classification discrepancy caused by frequency 

filtering was largest at the highest intensities (>MPA), which could explain the large differences 

observed in the current study for MPA and MVPA. Overall, our findings and that of others (Brønd et 

al., 2017; Fridolfsson et al., 2019) suggest that the count-based and MAD-based methods may not be 

comparable when estimating children’s daily sedentary time and physical activity. Future studies in 

children that aim to compare and/or pool data from these different methods should take this into 

consideration.

4.2 Associations of sedentary time and physical activity with adiposity and fitness markers

The present study investigated associations of free-living SED time and physical activity with 

adiposity and fitness markers using the two different data reduction methods. Overall, the observed β-

coefficients for associations with adiposity and fitness markers were similar in terms of size and 

direction for the two data reduction methods. The overlapping 95% CIs suggested that there were few 

differences in findings between the two methods, apart from the association between MVPA and 

cardiorespiratory fitness, where a significant difference was observed. Both methods produced 

evidence to suggest that sedentary behaviour was detrimentally and significantly associated with waist 

circumference, but not with BMI z-score. Although emerging evidence shows similar associations 

between sedentary time and adiposity outcomes in children, this is not consistent with previous 

reviews that have summarized the evidence on associations between device-based measures of 

sedentary time and adiposity and were unable to identify this association in current literature (Carson 

et al., 2016; Cliff et al., 2016). 

Both methods showed that LPA, MPA and MVPA were beneficially associated with waist 

circumference. Additionally, MAD-based VPA was beneficially associated with BMI z-score and 

waist circumference. This was not observed while using the count-based approach even though the 

lower intensities (LPA, MPA and MVPA) were associated with waist circumference in this method 

also. This is somewhat contrasts previous research that has indicated that favourable associations are 

typically observed for higher (e.g. VPA) compared to lower intensities (e.g. LPA) (Parikh & Stratton, A
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2011; Poitras et al., 2016), though acknowledging that these studies mostly focus on combined 

MVPA rather than assessing VPA individually. 

MVPA and VPA were beneficially and significantly associated with fitness markers using 

both data reduction measures. Both methods showed larger observed β-coefficients (i.e., stronger 

associations) for VPA compared to MVPA (e.g., for MAD, β=0.04 for VPA vs β=0.01 for MVPA). 

This was observed across most outcomes, regardless of the data reduction method used. Previous 

research has shown consistent associations between MVPA and VPA and cardiorespiratory fitness 

(Parikh & Stratton, 2011; Poitras et al., 2016), though associations with musculoskeletal fitness have 

been mixed (Owens, Galloway, & Gutin, 2017). 

The only notable difference between methods in observed associations with fitness markers 

was for MPA, which were only significant when using the count-based data reduction approach and 

not the MAD-based data reduction approach. It is unclear why this was observed given the greater 

engagement in MPA found when using the count-based as opposed to the MAD-based data reduction 

approach. The only observed difference between associations between health outcomes and activity 

intensity was for cardiorespiratory fitness. A stronger association (i.e., larger β-coefficient) was 

observed with MVPA estimated using count-based data reduction methods, despite the lower 

engagement in MVPA identified using this method. It is possible that this may be attributable to, in 

part, the proportion of time that VPA accounted for in the MVPA estimate when derived using the 

count-based method (~45% compared to ~15%). This requires further research. Overall, while the 

need to use raw acceleration data instead of proprietary activity counts for measuring the intensity of 

physical activity has been expressed previously (Aittasalo et al., 2015; Trost et al., 2011), these results 

suggest that results obtained with both methods are fairly comparable, and the overall conclusion 

drawn from the study would have remained the same independent of the method used. 

4.3 Study limitations

This study has several limitations which should be considered. There are several different 

acceleration-based techniques and cut-points currently being used by researchers (Aittasalo et al., A
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2015; de Almeida Mendes et al., 2018; Freedson et al., 2005). This study used the Evenson cut-points 

(Evenson et al., 2008), which have been shown to have acceptable classification accuracy for activity 

across the activity spectrum. However, it is noted that the cut-points were adapted for 5-sec epochs, 

and it is unclear whether this is a valid way to analyse data given the non-linear response that counts 

have to intensities of physical activity (Brønd et al., 2019). In addition, the MAD cut-points were 

developed in adults and may not be directly applicable in children, which may have led to a 

measurement error. Comparisons with studies using other MAD cut-points (e.g., (Aittasalo et al., 

2015); 0.0269g for LPA) are warranted. Moreover, the comparability of MADs to a range of 

proprietary count-based techniques and with other methods, such as the Euclidian norm minus one 

and high pass filter vector magnitude, should be further explored. This will provide valuable insights 

concerning the impact of choosing these different methods in determining the relation between 

movement behaviours and outcomes of interest. A second limitation is the potential inability to 

accurately differentiate between sedentary time and LPA using ActiGraph accelerometers (Cliff et al., 

2016), which may have influenced the apparent associations with health outcomes. The present study 

used the normal ActiGraph filter, however, the low frequency filter could be selected to extend the 

sensitivity to lower intensity activity. There is a need to replicate this study using data collected using 

posture-based devices and/or using ActiGraph models with the low frequency extension filter. 

Thirdly, this study recruited a relatively small sample of primary school-aged children. Whilst the 

target sample size of 120 participants for the original outcomes paper was met (Ridgers et al., 2018), 

only 9% of contacted schools participated and the active consent may have reduced the numbers of 

participants in the study. Due to the small number of participants, sex and age differences in activity 

levels and associations with health outcomes using the different data reduction methods were not 

explored. Future studies should examine whether similar observations are found in different 

population sub-groups. Lastly, this study utilised ActiGraph accelerometers worn on the hip. With the 

increased use of wrist-worn accelerometers (Rowlands et al., 2014), future studies should examine 

whether similar findings are observed when using different accelerometer placements. 
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4.4 Conclusion

The present study provides a comprehensive comparison between proprietary (count) and 

open source MAD-based data reduction methods in children. Findings suggest that the estimates of 

sedentary time and physical activity were significantly different between the two methods used. 

Future studies that compare estimates of daily sedentary time and physical activity of different 

intensities should note that these may not be comparable. However, the strength and direction of the 

associations obtained between the different data reduction methods and adiposity and fitness 

outcomes were fairly comparable, with both methods finding stronger associations for VPA compared 

to MVPA. However, as stronger and more significant associations were observed for the count-based 

versus the MAD-based data reduction approach, comparisons of these techniques with free-living 

studies in children is needed to inform guidance on whether to pool data from studies using these 

different techniques. 

5. Perspective

Utilizing and comparing movement behaviours derived from different techniques may help to 

increase the understanding of the associations between movement behaviours and health risk factors, 

and provide insights into which techniques may be most sensitive for detecting potential associations. 

No previous studies have compared estimates of movement behaviours derived from count- and 

MAD-based data reduction methods and associations with health among children. Therefore, the aim 

of this study was to compare estimations of sedentary time and time spent in a range of physical 

activity intensities based on proprietary count- and MAD-based data reduction methods, and to 

compare associations between these estimates and adiposity and fitness markers, in primary school-

aged children. Findings suggest that the estimates of sedentary time and physical activity were 

significantly different between the two methods used. Future studies that compare estimates of daily 

sedentary time and physical activity of different intensities should note that these may not be 

comparable. The strength and direction of the associations obtained between the different data 

reduction methods and adiposity and fitness outcomes were fairly comparable, with both methods A
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finding stronger associations for VPA compared to MVPA. However, as stronger and more 

significant associations were observed for the count-based versus the MAD-based method, merging 

data obtained with different data reduction methods should be done carefully. This study contributes 

to the evidence base informing accurate assessment of children’s physical activity and sedentary 

behaviour levels, and their associations with health outcomes. Future studies may progress this 

exploration by investigating which MAD-values correspond to the count-based cut points – and vice 

versa – and describing the cut-points variance between the participants. This has the potential to 

inform future studies that could contribute to movement behaviour guidelines, which in turn may 

inform the development and evaluation of intervention programs.
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Table 1. Participants characteristics (included sample: n=118) 

 
Girls (n=58) 

Mean ± SD 

Boys (n=60) 

Mean ± SD 

Total (n=118) 

Mean ± SD 

Age (y) 10.3 ± 0.6 10.6 ± 0.6 10.4 ± 0.6 

Height (cm) 141.0 ± 8.5 143.5 ± 6.0 142.3 ± 7.4 

Body mass (kg) 36.3 ± 8.2 36.5 ± 6.6 36.4 ± 7.4 

BMI 18.0 ± 2.5 17.6 ± 2.5 17.8 ± 2.5 

BMI z-score 0.5 ± 0.9 0.4 ± 1.1 0.5 ± 1.0 

BMI (% NW/OW/OB) 66/29/5 70/18/12 68/24/8 

Waist circumference (cm) 65.8 ± 8.0 65.8 ± 8.0 65.8 ± 8.0 

20m shuttle run (shuttles) 35.4 ± 16.7 59.1 ± 24.2 47.4 ± 23.9 

Handgrip (kg) 16.9 ± 4.7 19.2 ± 3.6 18.0 ± 4.3 

Handgrip/Weight  0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 

Standing long jump (cm) 129.6 ± 20.1 142.1 ± 21.4 135.9 ± 21.6 

Abbreviations: BMI Body mass index; NW Normal weight; OW Overweight; OB Obese 
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Table 2: Sedentary and physical activity time (mins/day) using different data reduction methods (n=118) 

 

Count-based  

data reduction 

Mean ± SD (mean %) 

MAD-based  

data reduction 

Mean ± SD (mean %) 

Difference in  

absolute values 

p-value 

Difference in  

proportional values 

p-value 

SED (min/day) 509.3 ± 60.1** (67.6) 451.5 ± 63.3** (58.9) <0.0001 <0.0001 

LPA (min/day) 177.8 ± 29.1** (23.6) 189.0 ± 30.8** (24.6) 0.0005 0.0053 

MPA (min/day) 36.7 ± 9.7** (4.9) 106.5 ± 22.0** (13.9) <0.0001 <0.0001 

VPA (min/day) 29.5 ± 11.3** (3.9) 19.3 ± 8.5** (2.5) <0.0001 <0.0001 

MVPA (min/day) 66.2 ± 19.5** (8.8) 125.8 ± 27.6** (16.4) <0.0001 <0.0001 

Wear time (min/day) 753.3 ± 59.6  766.3 ± 63.6    0.0918 N/A 

** Indicates significance at p ≤0.01 for both absolute and proportional (to the weartime) values 

Abbreviations: SED Sedentary time; LPA Light-intensity physical activity; MPA Moderate-intensity physical activity; VPA = Vigorous-

intensity physical activity; MVPA Moderate- to vigorous-intensity physical activity; N/A: Non Applicable. 

Initial multilevel model analyses (using the ‘xtmixed’ command) were used to make comparisons between absolute and relative (to the wear 

time) estimations of sedentary time and time spent in LPA, MPA, VPA and MVPA using proprietary- and MAD-based data reduction methods, 

whilst accounting for clustering within schools and individuals. 

Mean %: Proportion of the wear time.  
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Table 3: Associations of time (min/day) spent in activity intensity and standardized 

adiposity and fitness markers with proprietary- and MAD-based data reduction 

methods (n=118) 

  Count-based approach MAD-based approach 

 

β-coefficient (95% CI) 

[84%CI] 

β-coefficient (95% CI) 

[84%CI] 

 BMI z-score 

SED 
0.0009 (-0.0051, 0.0068) 

[-0.0030, 0.0047] 

0.0031 (-0.0019, 0.0082) 

[-0.0001, 0.0064] 

LPA 
0.0023 (-0.0049, 0.0095) 

[-0.0023, 0.0069] 

-0.0042 (-0.0140, 0.0055) 

[-0.0105, 0.0020] 

MPA 
-0.0013 (-0.0167, 0.0140) 

[-0.0112, 0.0085] 

-0.0021 (-0.0096, 0.0053) 

[-0.0069, 0.0026] 

MVPA 
-0.0086 (-0.0224, 0.0052) 

[-0.0175, 0.0002] 

-0.0051 (-0.0109, 0.0008) 

[-0.0088-, 0.0013] 

VPA 
-0.0238 (-0.0585, 0.0110) 

[-0.0461-, 0.0015] 

-0.0365 (-0.0540, -0.0190)** 

[-0.0477-, 0.0252] 

 Waist circumference 

SED  
0.0070 (0.0024, 0.0117)* 

[0.0041, 0.0100] 

0.0085 (0.0041, 0.0129)** 

[0.0057, 0.0113] 

LPA  
-0.0066 (-0.0124, -0.0008)* 

[-0.0103-, 0.0028] 

-0.0129 (-0.0224, -0.0033)* 

[-0.0190-, 0.0068] 

MPA  
-0.0243 (-0.0451, -0.0035)* 

[-0.0376-, 0.0109] 

-0.0122 (-0.0201, -0.0044)* 

[-0.0173-, 0.0072] 

MVPA  
-0.0163 (-0.0317, -0.0009)* 

[-0.0262-, 0.0064] 

-0.0121 (-0.0182, -0.0061)** 

[-0.0160-, 0.0082] 

VPA  
-0.0292 (-0.0670, 0.0087) 

[-0.0535-, 0.0049] 

-0.0403 (-0.0645, -0.0161)** 

[-0.0558-, 0.0248] 
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 20m shuttle run 

SED  
-0.0053 (-0.0067, -0.0039)** 

[-0.0062-, 0.0044] 

-0.0034 (-0.0068, 0.0000) 

[-0.0055-, 0.0012] 

LPA  
0.0004 (-0.0033, 0.0042) 

[-0.0020, 0.0029] 

0.0010 (-0.0034, 0.0053) 

[-0.0018, 0.0038] 

MPA  
0.0303 (0.0067, 0.0538)* 

[0.0152, 0.0454]† 

0.0057 (-0.0061, 0.0175) 

[-0.0018, 0.0133]† 

MVPA  
0.0216 (0.0179, 0.0253)** 

[0.0192, 0.0239]† 

0.0099 (0.0023, 0.0175)* 

[0.0050, 0.0148]† 

VPA  
0.0400 (0.0293, 0.0507)** 

[0.0332, 0.0469]† 

0.0607 (0.0401, 0.0813)** 

[0.0475, 0.0739]† 

 Handgrip (divided by weight) 

SED  
-0.0039 (-0.0089, 0.0011) 

[-0.0071-, 0.0007] 

-0.0036 (-0.0100, 0.0028) 

[-0.0077, 0.0005] 

LPA  
0.0009 (-0.0079, 0.0098) 

[-0.0047, 0.0066] 

0.0024 (-0.0095, 0.0143) 

[-0.0052, 0.0100] 

MPA  
0.0240 (0.0075, 0.0405)* 

[0.0134, 0.0346] 

0.0088 (-0.0048, 0.0225) 

[0.0001, 0.0176] 

MVPA  
0.0148 (0.0090, 0.0206)** 

[0.0111, 0.0185] 

0.0089 (0.0000, 0.0178) 

[0.0032, 0.0146] 

VPA  
0.0250 (0.0113, 0.0388)** 

[0.0162, 0.0338] 

0.0306 (0.0114, 0.0497)** 

[0.0183, 0.0428] 

 Standing long jump 

SED  
-0.0064 (-0.0108, -0.0021)* 

[-0.0092-, 0.0036] 

-0.0051 (-0.0107, 0.0005) 

[-0.0087-, 0.0015] 

LPA  
0.0034 (-0.0020, 0.0087) 

[-0.0001, 0.0068] 

0.0047 (-0.0052, 0.0147) 

[-0.0016, 0.0111] 

MPA  
0.0301 (0.0030, 0.0573)* 

[0.0127, 0.0475] 

0.0102 (-0.0039, 0.0242) 

[0.0012, 0.0192] 

MVPA  
0.0205 (0.0114, 0.0296)** 

[0.0146, 0.0263] 

0.0110 (0.0003, 0.0217)* 

[0.0041, 0.0179] 

VPA  
0.0369 (0.0277, 0.0461)** 

[0.0310, 0.0428] 

0.0427 (0.0168, 0.0685)** 

[0.0261, 0.0593] A
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* Indicates significance at p ≤ 0.05. ** Indicates significance at p ≤0.01.  

† Indicates that 84% CIs of count- and acceleration-based data reduction methods do not 

overlap. In that case, a significant difference (α = 0.05) was assumed between findings based 

on the two different methods (Afshartous & Preston, 2010; Julious, 2004).  

CI = confidence interval; SED = sedentary time; LPA = Light-intensity physical activity; 

MPA = Moderate-intensity physical activity; MVPA = Moderate- to vigorous-intensity 

physical activity; VPA = Vigorous-intensity physical activity. 

Regression models accounted for school-level clustering and were adjusted for decimal age, 

sex, and monitor wear time. 

BMI (kg/m
2
) was converted to BMI z-scores using the age- and sex-standardized World 

Health Organization growth standards (WHO Multicentre Growth Reference Study Group, 

2006).  
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