
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Limits of lateral expansion in two-dimensional materials with line defects

©2021 American Physical Society

Published version

Koskinen, Pekka

Koskinen, P. (2021). Limits of lateral expansion in two-dimensional materials with line defects.
Physical Review Materials, 5(9), Article L091001.
https://doi.org/10.1103/physrevmaterials.5.l091001

2021



PHYSICAL REVIEW MATERIALS 5, L091001 (2021)
Letter

Limits of lateral expansion in two-dimensional materials with line defects

Pekka Koskinen *

Nanoscience Center, Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland

(Received 7 May 2021; revised 10 August 2021; accepted 25 August 2021; published 8 September 2021)

The flexibility of two-dimensional (2D) materials enables static and dynamic ripples that are known to cause
lateral contraction, shrinking of the material boundary. However, the limits of 2D materials’ lateral expansion
are unknown. Therefore, here we discuss the limits of the intrinsic lateral expansion of 2D materials that are
modified by compressive line defects. Using thin sheet elasticity theory and sequential multiscale modeling, we
find that the lateral expansion is inevitably limited by the onset of rippling. The maximum lateral expansion
χmax ≈ 2.1 t2σd , governed by the elastic thickness t and the defect density σd , remains typically well below
1%. In addition to providing insight to the limits of 2D materials’ mechanical limits and applications, the results
highlight the potential of line defects in strain engineering, since for graphene they suggest giant pseudomagnetic
fields that can exceed 1000 T.
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The discoveries of two-dimensional (2D) materials were
followed by reports of their subtle mechanical properties [1].
They are never fully flat, since their elastic thinness makes
them susceptible for stabilizing out-of-plane rippling [2–4].
Rippling also implies in-plane softening and considerable
out-of-plane stiffening [5–7]. However, the materials’ high
in-plane stiffness keeps their surface area unchanged, which
implies lateral contraction, shrinking of the material bound-
ary [8]. This effect is best known from the negative thermal
expansion coefficient of graphene [9–11].

Rippling and lateral contraction are relevant for several
reasons. Ripples affect substrate adhesion (and vice versa) as
well as in-plane and out-of-plane deformations [12–17]. They
can be created by point defects [18], adsorbates [19], grain
boundaries [20,21], or line defects [6], also without excessive
hampering of the material’s mechanical and electronic proper-
ties [22]. Contraction influences the functioning of nanoscale
devices such as resonators and facilitates strain engineering
to control both mechanical and electronic properties [4,23].
However, despite the prominence of rippling and contraction
in practical applications and the abundance of related litera-
ture, one fundamental question remains open: What are the
limits of intrinsic lateral expansion for 2D materials?

An attractive strategy to address this question is to consider
2D materials with compressive line defects. The line defects
can act as tiny stitches that can induce local stretched areas
that—so the argument goes—cumulate into a global lateral
expansion [6]. Representing various physical origins such as
dislocations [24], adsorbate arrays [19,25,26], stacking varia-
tions [27], heterostructure interfaces [28], or grain boundaries
[29,30], line defects allow creating local compressive stress
at a relatively low defect density. While some line defects are
created during material synthesis, others can be created after-
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wards by chemical means or even by direct laser irradiation
[31,32].

In this Letter, I use thin sheet elasticity theory and sequen-
tial multiscale modeling to investigate the lateral expansion
limits of 2D materials with compressive line defects. Theory
permits analytical models with simple expressions for ripple
properties and lateral expansion. It turns out that lateral expan-
sion and rippling cannot coexist; rippling destroys expansion
effectively.

To model the defected 2D materials, I invoke the thin sheet
elasticity theory [33], because it has proven effective and
reliable even for atomic-scale deformations [1,34–41]. Theory
characterizes membranes by bending modulus kb, Poisson
ratio ν, and 2D Young’s modulus ks. The membrane’s intrinsic
length scale is given by the elastic thickness

t =
√

12kb/M, (1)

where M = ks/(1 − ν2) is the longitudinal modulus. Elastic
thickness equals the physical thickness of the 2D material
when viewed as a slab of isotropic elastic membrane. Table I
shows the parameters for the selected 2D materials [34,42–
46].

The theory can be augmented to include compressive line
defects, modeling them as stripes of width a, length l , and
a prestrain ε0 that implies the equilibrium length l (1 + ε0)
[Fig. 1(a)] [6]. The magnitude of a is around 2–3 Å as it arises
from the atomic structure of the defect [6]. The parameter

S = aε0 (2)

characterizes the strength of the line defect. For small de-
formations (strains � ε0) the line defect corresponds to
one-dimensional line stress τ = MS . The strength S is unique
for a given 2D material and line defect, but here I treat it as
a continuous parameter. I ignore tensile prestrain (ε0 < 0),
because it cannot induce lateral expansion in any situation.
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TABLE I. Elastic parameters for selected 2D materials.

Material ks (eV/Å2) kb (eV) ν t (Å)

Graphene [34] 21 1.5 0.15 0.93
Bilayer graphene [42] 42 180 0.15 7.2
MoS2 [43,44] 8 12 0.3 4.2
BN [34] 17 1.3 0.2 0.96
Silicene [45,46] 3.8 0.4 0.4 1.1

Based on earlier atomic simulations, reasonable compressive
prestrains lie in the range ε0 � 20% [6].

The theory was then harnessed for numerical simulations
of defected membranes in an Lx × Ly periodic rectangular
cell. The membrane was discretized to an Nx × Ny grid and the
optimum morphology was solved numerically by minimiz-
ing the total elastic energy; see Supplemental Material (SM)
for details [47–50]. Materials of different elastic thicknesses
t = 1.0 . . . 10 Å were simulated by adopting a fixed Poisson
ratio (ν = 0.15) and longitudinal modulus (M = 21.5 eV/Å2)
while varying kb according to Eq. (1). Line defect strengths S
were adjusted by choosing the width equal to a typical lattice
constant a = 2.5 Å and varying ε0. Since the main parameters
are t and S , the above choices do not restrict the general
validity of the results. In the numerical implementation, be-
cause the atomic scale is much smaller than the grid spacing
(a � Lx/Nx), the line defects were introduced via a sequential
multiscale model (SM) [47].

To construct a comprehensive understanding of the effect
of line defects, I start by discussing isolated infinite and finite
line defects before analyzing experimentally relevant random
line defect networks.

FIG. 1. Rippling of a 5 nm × 10 nm 2D membrane (t = 1.0 Å)
by an infinitely long compressive line defect. (a) One ripple wave-
length from a line defect with S = 0.1 Å (a = 2.5 Å and ε0 = 4%).
The vertical dimension is scaled by a factor of 5 and the width of the
line defect is exaggerated. (b) Ripple height H as a function of the
line defect strength S. The membrane buckles at S = 0.04 Å;
the arrow points at the geometry in (a). (c) Surface energy density
(left scale) and ripple height (right scale) as a function of ripple
wavelength λ = Lx for S = 0.1 Å.

Consider a 5 nm × 10 nm membrane with t = 1.0 Å and
an infinitely long (l = Lx) line defect along the x axis
[Fig. 1(a)]. The membrane is initially planar, but buckles to a
rippled conformation upon increasing the line defect strength
from zero to S = 0.04 Å [Figs. 1(a) and 1(b)]. The ripple
forms because it releases the compressive stress of the line
defect. A further increase in S leads to a monotonous increase
in ripple height. The ripple height profile can be approximated
by the sine wave

z(x, y) = 1
2 H exp

(−y2/2σ 2
)

sin (2πx/λ), (3)

where H is the peak-to-peak height, λ is the wavelength, and
σ is a measure for the lateral width of the ripple.

The above choice of Ly = 10 nm was irrelevant because
the ripple decays exponentially in the y direction. However,
the choice of Lx must be investigated in detail, as it directly
determines the ripple wavelength. Fixing S = 0.1 Å and in-
creasing Lx leads to monotonously increasing ripple height
and a minimum of the surface energy density E/(LxLy) at
Lx = 56.3 Å with H = 2.62 Å [Fig. 1(c)]. This minimum
implies that the ripple wavelength in an extended system is
λ = 56.3 Å.

The rippling with line defects can be investigated also
analytically. As derived in SM, adopting the ripple profile (3)
leads to the estimates for the optimum wavelength as

λ = 6.8 t2/S, (4)

for the ripple height as

H = 2.7t, (5)

and for the ripple width as σ ≈ λ/5 [47]. The estimates
suggest that wavelengths increase for elastically thicker mem-
branes and weaker line defects, which is plausible when
viewed in terms of energy; shorter ripples require more en-
ergy, which is available in stronger line defects. Unexpectedly,
however, the ripple height H depends only on elastic thickness
and is independent of the properties of the line defect. This
implies that ripples would form even with very weak line
defects—although with very long wavelengths. In addition,
the analytical model provides estimates for maximal slopes
max(|dz/dx|) = 1.2S/t , curvatures max(Cxx ) = S2/t3, and
strains max(εxx ) = 0.4(S/t )2 (SM) [47]. For graphene, the
strain field implies pseudomagnetic fields equal to 5 × 104S3

Å−3 T (SM) [47,51–53]. For example, graphene with S = 0.3
Å suggests maximal slopes 0.36, curvatures 0.27 nm−1, local
strains 3%, and pseudomagnetic field that exceeds 1000 T.

The analytical results are confirmed by systematic numer-
ical simulations with t = 1 . . . 10 Å and S = 0 . . . 0.37 Å. As
Eqs. (4) and (5) predict, ripple wavelengths are inversely pro-
portional to S and quadratically proportional to t [Fig. 2(a)],
while the ripple amplitude is directly proportional to the elas-
tic thickness, independent of S [Fig. 2(b)].

This S independence of H brings about a curious effect
for lateral elastic properties. The longitudinal modulus M ′
of the entire simulation cell, which accounts also for rip-
pling, becomes entirely constant—independent of either t or
S [Fig. 2(c)]. Governing the energy curvature upon straining
Lx, the longitudinal modulus depends on the width of the sim-
ulation cell, which here is Ly = 1.5Lx. The constancy of M ′
can be understood as follows: On one hand, larger t increases
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FIG. 2. Ripple trends with infinite line defects. (a) Optimum
ripple wavelength as a function of line defect strength for different t .
(b) Ripple height as a function of elastic thickness. (c) Longitudinal
constant M ′ of the entire simulation cell as a function of line defect
strength. All panels show both numerical simulations (symbols) and
analytical estimates [dashed lines from Eq. (4) for λ, Eq. (5) for H ,
and Eq. (S14) for M ′]. Lx = λ and Ly = 1.5λ in all panels.

rippling height [Eq. (5)] and thereby tends to decrease M ′,
but on the other hand, larger t increases bending stiffness and
thereby tends to increase M ′. Combined, these two tendencies
cancel and M ′ becomes approximately constant. An analytical
calculation gives the estimate M ′/M = (1 − 0.5 λ/Ly) which
becomes 0.67 for the current parameters [Fig. 2(c); SM] [47].

Infinitely long line defects with optimum-wavelength rip-
ples imply that the stress in the x direction vanishes. Any
residual stress would lead to strain that changes the wave-
length, creating a contradiction with the presumption of an
optimum wavelength. This notion implies an intermediate
result: Infinitely long (length � λ) line defects cannot induce
lateral expansion. But what about finite line defects?

To address this question, consider line defects whose
lengths l are around the optimal wavelength, l � λ. Let us
fix S = 0.25 Å with t = 1.0 Å and gradually increase the
length l . Initially, at small l the membrane remains flat, until
at l ≈ 0.7 Å it buckles to form a single bump [Fig. 3(a)]. Sim-
ulations contain fluctuations due to random initial guesses. An
analytical model similar to the one of infinite line defects gives
the scaling lb = 2.1 t2/S ≈ 0.8 nm for the buckling limit, in
fair agreement with numerical simulations (SM) [47]. After
buckling, further lengthening leads to increased ripple height
and the development of alternating up-and-down bumps that
gradually resemble the optimum ripple of the l � λ limit
[Fig. 3(a)].

Yet, unlike infinite line defects, finite line defects can
induce lateral expansion. The expansion is defined as χ =
(Lx − L0

x )/L0
x , which is obtained by minimizing energy with

respect to cell length Lx for a given initial length L0
x . As

the main observation, the membrane expands steadily upon
increasing l until it buckles [Fig. 3(c)]. The expansion is
accurately described by the heuristic model

χ = Sl/LxLy. (6)

The model means that the hidden area of the line defect
(a lε0 = lS) proportionally increases the surface area of the
membrane (LxLy). With l > lb the membrane ripples and loses
its capacity to sustain the compressive stress, rendering the
expansion unpredictable.

These results provide sufficient insight to proceed to realis-
tic random line defect networks [54]. I considered a 100 nm ×

(a)

(b) (c)

FIG. 3. Lateral uniaxial expansion of a 10 nm × 6.6 nm mem-
brane with t = 1.0 Å for line defects with S = 0.25 Å and finite
length l . (a) Development of ripple morphology with increasing l .
The vertical dimension is scaled by a factor of 5 [see (b) for the color
scale]. (b) Ripple height as a function of l . The arrows point at ge-
ometries in (a). The red dashed line shows the ripple height estimate
from Eq. (5) for infinitely long defects. (c) Lateral expansion of the
membrane in the x direction. The red dashed line is the estimate from
Eq. (6). Fluctuations for given l are due to sampling of random initial
guesses.

100 nm membrane with n = 25 and 50 randomly placed
and oriented line defects of various lengths [Fig. 4(a)]. The
corresponding densities (0.25 × 1012 and 0.5 × 1012 cm−2)
are experimentally relevant and large enough for meaningful
statistics but small enough to avoid excessive interactions
between the line defects [32]. The length distribution was
either even (li = lavg) or linear [li = lavg 2i/(n + 1)], where
i = 1, 2, . . . , n and lavg is the average length [Fig. 4(a)]. Such
distributions can be justified by previous models [54].

For a defect network with an even length distribution,
the membrane expands laterally upon increasing lavg until
the buckling threshold lavg > lb [Fig. 4(b)]. After buckling the
membrane ripples to a height that does not change much upon
increasing lavg further. At the full 100 nm scale the ripple
height is ∼10 Å but at the local ∼λ scale it is ∼5 Å, following
Eq. (5). For linear distribution the behavior is similar, only
the transition to a rippled membrane is less sudden. The grad-
ual change occurs because individual line defects buckle at
different lavg. However, already the initial buckling of the
longest defects (lmax = 2lavg > lb) effectively eradicates the
planar stress and destroys the lateral expansion.

The lateral expansion is described accurately for both dis-
tributions by the generalization of Eq. (6),

χ = Sltot(l < lb)/LxLy, (7)

where ltot(l < lb) is the cumulative length of all line defects
below the buckling length lb [Figs. 4(b) and 4(c)]. However,
the membrane can sustain the lateral stress only as far as
all defects remain below the buckling limit. After buckling
the expansion becomes unpredictable. Ultimately, far beyond
the buckling limit, the rippling strengthens and the membrane
predominantly contracts [55].
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FIG. 4. Lateral biaxial expansion of 100 nm × 100 nm mem-
branes (t = 2.0 Å) filled by networks of line defects with S = 0.25
Å. (a) Ripple morphology snapshots with 50 line defects. The net-
works have even (upper) and linear (lower) length distributions and
increasing mean length (shown above). For clarity, the figures on
the right show the networks with top views. (b) Ripple peak-to-peak
(ptp) and standard deviation (std) heights (upper panel) and biaxial
strain (lower panel) as a function of mean defect length for n = 25
and n = 50 line defects with even length distribution. The red dashed
line is the strain estimate from Eq. (7). (c) Same as (b) for linear
length distribution. Arrows point to mean lengths corresponding to
the initial buckling of the longest line defects [Eq. (S22)]; for even
distribution lmax = lavg and for linear distribution lmax = 2lavg.

Thus, 2D materials can expand laterally only when line
defects remain below the buckling limit of Eq. (S22). The
maximum expansion is reached when all defects have the
maximum length lb and it equals

χmax ≈ 2.1 t2σd , (8)

where σd is the defect density. For instance, for t = 1 Å and
σd = 1012 cm−2 the maximum expansion is 0.021%. A rea-
sonable estimate for an optimal defect density can be obtained
by assuming that one line defect occupies a minimum area
of ∼(2lb)2. This assumption yields the theoretical maximum
for the strain as χmax ≈ S2/8t2. For graphene (t = 1.0 Å) and
S = 0.3 Å this implies χmax ≈ 1%.

Finally, I discuss briefly the role of substrates, which were
excluded from the simulations. The transition from flat to
rippled membranes reduces the energy by 0.13 MS3/t2 per
unit length of an infinite line defect (SM) [47]. Assuming that
the defects have an effective width of λ/2, this translates into a
surface energy density of 0.04 M(S/t )4. For M ∼ 20 eV/Å2,
t = 1.0 Å, and S = 0.35 Å the energy density becomes ∼10
meV/Å2—and competes with a typical strength of van der
Waals adhesion [56–58]. Moreover, substrates themselves can
be used for defect and strain engineering [59]. In short, a
very strong adhesion can dominate the membrane mechanics
completely and effectively prevent both rippling and sliding.
A very weak adhesion can allow for both rippling (desorp-
tion) and sliding, so that the rippling and expansion remains
governed by the membrane’s intrinsic dynamics. However,
an intermediate adhesion can suppress rippling but still allow
sliding. For such an adhesion the rippling instability would no
longer limit the maximal intrinsic expansion; the expansion
would still be given by Eq. (6), but its upper limit would be
given by a maximum practical defect density.

To conclude, the onset of rippling dictates the limits of the
lateral expansion of 2D materials. The theoretical maximum
for the lateral expansion of the thinnest (t = 1 Å) materials
is around 1%, local strains being far greater. To diminish the
effect of substrates, the expansion would be best measured
experimentally from suspended 2D material samples or from
customized 3D blisters of 2D materials, such as demonstrated
for graphene by optical forging [7]. The simulations and
analytical models presented here provide a comprehensive
picture of the mechanical behavior of 2D materials with line
defects and reveal different theoretical limits to open avenues
and further advance the design and strain engineering of 2D
materials.
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