
107

PROCESS WINDOW
Code Work, Code Aesthetics, Code Poetics

Sandy Baldwin

The Process Window contains general information about the state of the
process, with a summary of its current threads and their states.

The odd thing about innovative literature is that no literature is innova-
tive. The familiar but unsolvable paradox of Ezra Pound’s rallying cry to
“Make it new!” was exactly what made modernist aesthetics so persua-
sive and productive for the last century of literature. The “new”-ness of
poetic innovation comes about against the background of tradition. From
this view of the paradox, all novelty re-figures the past. Even if we feel
ourselves well beyond modernism, the deep thrill of the new remains in its
claim on the future, where each innovation opens a temporal difference
within the continuities of literary history. Making it new seems to liven the
present with the future. If we are to take Niklas Luhmann seriously, this
paradox underlies “art as a social system” (Luhmann 2000, 199–201).
The paradox of innovation is that the need to produce new-ness as part of
society’s self-maintenance is exactly matched by systemic resistance to
re-defining the whole, i.e. no innovation can create something actually
innovative enough to displace the system. The systematicity of literature,
as an institution, is built on this paradox of an innovation that is never more
than a repetition.

Integrating literature and information processing in terms of Luhmann’s
unified systems theory is one possible answer to the paradox. Shannon
and Weaver’s Mathematical Theory of Communication already invoked
a concept of literature as exemplifying information density. Luhmann’s
theory of functional differentiation assumes that society is composed of
closed subsystems. Within this theory, making it new is a dynamic main-
taining the openness of sub-systems to the environment; for social sys-



108

tems to accommodate openness, they must internally copy and reflect the
distinction between system and environment. Luhmann recognizes that
innovative literature assumes this function within the artistic system. One
implication is that the auto-telic language focus of contemporary poetries
is less a response to a postmodern loss of reference (or something similar)
than a self-referential code within a language increasingly employed as an
instrumental tool for exchange and commerce. Innovative literature is a
meta-code ensuring the stability of the system – in this case, literature –
through pure self-reference. This is evident in the popular role of litera-
ture: it must produce results that are declared important but are not taken
seriously. In this way, the system maintains stability.1

The proximity of literature to the root association of poetry as poiesis
or “making” suggests a more dynamic role than internal self-maintenance.
As a regulative meta-code, however, the poetic principle is found today in
information processes of coding and re-coding. According to Vilém Fluss-
er’s media analysis, every techno-image means a text, i.e., every screen
or page is text – markup or op code – written to bring about an image. In
response, we produce more writing to explain these techno-images. Tech-
no-images are programs for bringing about texts. Critical texts are plug-
ins, continuing the program under the guise of explanation. As a result, we
now need to balance the materiality of inscription, and material acts of
making or poiesis in specific storage media, with the transcoding of text
and image, arriving at something like a poetic materiality of transcription.
Instead of the “marking” implied by inscription, we are dealing with pro-
grams saturated by code without being marked. As a result, the ancient
relation of material and form no longer holds: the artist once sought forms
within matter; today, the artist channels raw material into machines to
create forms through software. Digital media are so many modular devic-
es for directing and forming flows of matter. (Flusser 2002)

The question remains whether the meta-code of innovative literature
involves external reference as well as self-reference. No doubt, Luhmann’s
description is accurate enough, though it does little to explain why literary
innovation remains so compelling despite all paradoxes. That is: it works
well as a description of “art as a social system” but less well as an account
of literature itself. The insistence on systematicity does not solve but merely
shifts the paradox of innovative literature. Rather than take this as a fail-
ure of Luhmann’s rather grandiose theory, it points out the asystematicity
of literary innovation. Luhmann’s theory offers a displaced version of lit-



109

erary aesthetics within the rigorous sociological rubric of systems theory.
Literature becomes a provisional closure, the institutional site for the intro-
duction and assimilation of innovation. In this account, innovative literature
is a medium, a meta-code for observing the dynamics of social systems.
Unsurprisingly, this returns us to the paradoxical non-closure of system
innovation. The poetic point of systems theory is that innovative literature
– as making, poiesis – does more than simply thematize the integration of
newness into the system: it is what creates the dynamism of the system in
the first place.

The following essay attempts to underline the role of this poetic in terms
of recent debates about the work of computer code in literary texts. Code
appears in the text as a kind of residue or catalyst of machinic processes.
The text is “contaminated” by code. In light of the topic of “ergodic poet-
ry,” I want to ask what this residue amounts to: what is the work of code-
work, and how does it relate to other practices of poetry, especially digital
poetry? There is no doubt about the fact of this remainder but intense
debate about its reading. The debate takes shape around the question of
reference: is the fascination with code simply a kind of reflex to an in-
creasingly technological society (codework as aesthetic ideology)? Or is
code an external reference to machinic systems and states outside of but
“touching” the textual system (code as hermeneutic)? Does codework
“instantiate a genuinely ‘performative’ textuality, a textuality which ‘does’
something, which alters the behavior of a system” (in John Cayley’s crit-
ical paraphrase)? My goal is less to arrive at this or that solution than to
emphasize the poetic at work, showing that each position displaces but
does not do away with the paradox of innovative literature. My starting
point is the rallying cry for “electronic space as a space of poeisis” in
Loss Pequeño Glazier’s recent Digital Poetics: The Making of E-Poet-
ries (5). For the odd thing about innovative literature is that all literature is
innovative. Any given poem will be innovative in purely conventional ways,
readable for its experimentation and for its relation to a reasonably stable
tradition of experiment. On the other hand, innovation must always remain
open and possible. Glazier’s central claim bears close attention: it will be
through the over-reaching of poetry as the exemplification of digital me-
dia, particularly within the current interest in programmable poetry and
codework as literature, where innovation shines through as a cultural process
within and against literary tradition.



110

[…] a poem is a large (or small) machine made of words. – William
Carlos Williams

[…] a computer is nothing but a means for a memory to get from
one state to another. – Dr. Jaochim Weyl, opening remarks to the
Macy Conference on Self-Organizing Systems

Unreadability of this world / All things doubled – Paul Celan

Must we admit that code is written for the computer, no more and no less?
True enough, digital code is compiled into machine instructions to execute
on a microprocessor, and the fact that humans can write and read code is
purely to ensure that the code be “well-formed” and compilable. Code is
“machine-readable,” and its appearance for us is a supplement to proc-
esses occurring on certain microswitches, invisibly printed below the wave-
length of visible light. At the same time, this supplement is more or less a
window into the black box. As Florian Cramer puts it in his recent essay
“Digital Code and Literary Text,” “the namespace of executable instruc-
tion code and nonexecutable code is flat” (Cramer 2001). Simply put, this
means that the same set of symbols are used in executable code and
human-readable text, but Cramer’s point lies in the consequences: one
cannot tell by looking whether a piece of code is executable or not. In fact,
every code is “potentially executable depending on whether there’s other
code […] capable to process it as machine instructions” (Cramer 2001).
Since Cramer extends his definition of code to all text – as coded and
subject to algorithms, whether implicit (e.g., grammar) or more explicit
(e.g., procedural poetry) – the result is that there is no way within the
terms of this argument to distinguish between a given text and executable
machine instructions. Every text is the instructions for a possible machine.
If all language is formalized and coded, it is equally true that there is no
way to circumscribe and stabilize the context of forms and codes. Code
purports to be readable by humans and machines, and this presumption
accounts for the fascination of the concept “code,” offering a herme-
neutic of something beyond codes, something machinic and post-human.
Cramer echoes Flusser’s analyses, where code is defined by “the possi-
bility to losslessly translate information from one sign system to the
other, forth and back, so that the visible, audible or tactile represen-
tation of the information becomes arbitrary” (Cramer 2001, emphasis
in original). As a result, Cramer arrives at a radical, anti-material position:
there is no such thing as “digital media,” despite the many appliances we



111

all now own. There is only digital information with this or that “arbitrary”
material instantiation. The essential translatability of a given code out-
weighs its internal structure: if code is the extended mapping and binding
of tokens against a domain, it must already contain the possibility of re-
mapping against other token-domain bindings. This definition of informa-
tion determines its qualification as code. Digital code becomes a medium
when materialized as an image, a text, a computer, and so on. Code is
independent of its hardware. Here Cramer exactly up-ends Friedrich Kit-
tler’s influential “media materialism.” If Kittler reduces everything to hard-
ware and voltage differentials, Cramer expands software algorithms to
concepts that computer programs exemplify without ever exhausting (Kit-
tler 1990).

Cramer adds that it is the fact that one “cannot tell from any piece of
code whether it is machine-executable or not,” which provide the “princi-
ple condition” of “codework.” As coined by Alan Sondheim, codework is
a flexible designation for a range of artistic practices. Sondheim allows the
term codework to cover “just about anything that combines tokens and
syntax to represent a domain,” but in practice, the work is characterized
by the appearance of computer code as part of the text (Sondheim 2001).
The contrast is significant: between a broadening of concept to include
almost all uses of language and a restriction of practice to works which
thematize the definition. Codeworkers explicitly set their work in opposi-
tion to writing practices that produce complex multimedia surfaces that
conceal or hide the code involved beneath layers of image and text, claim-
ing instead to make code manifest. One way or another, codework is a
matter of appearances, of visible residues or catalysts for processes fun-
damental to the text.

Cayley’s recent essay “The Code is not the Text” supplies the critical
response to Cramer, showing that the too easy critical assimilation of the
display and thematization of code to a “revelation of underlying, perhaps
even concealed, structures of control” involves a kind of category mistake
(Cayley 2002). The appearance of readable structures of technological
control is a mere appearance. And yet, I am interested in defending code-
work beyond its critical takedown. In its overreaching insistence that some-
thing is transcribed, codework names a new poetic moment of innovation
and invention. It only names this moment, identifying the momentum of
invention within code, but exactly this naming is enough. The insistence
that something is transcribed, even in the face of code as fiction or simu-



112

lacrum, makes evident what was contained and shared within the concept
of code all along. In what follows, I discuss Cramer and Cayley as oppos-
ing poetic strategies around the paradox of code. Indeed, these arguments
are tightly intertwined. Cramer describes the inspiration for his essay in an
abstract Cayley wrote for the German “p0es1s” conference. What inter-
ested Cramer was Cayley’s insistence that one may consider the poetics
of digital code in terms of the poetics of literary text without subscribing to
the new metaphysics of Friedrich Kittler’s “radical post-human reduction-
ism.” In turn, Cayley’s essay, which grew out of his “p0es1s” presenta-
tion, is in part a critique of Cramer’s own reductionism. This circularity
indicates the complex of issues involved.

Cayley’s stated aim is to “disallow a willful confusion of code and text”
(2002a). He does not oppose the possible relation of code and text, only a
reductive identification of the two. There is no absolute separation, but
there are protocols or modes of address to be respected. Cayley’s ap-
proach analyzes metacritical readings that then draw critical implications;
he raises questions of how we move from meta-critical statements to par-
ticular examples and practices. It is not that one cannot move from criti-
cism to practice, but rather that such a movement must be supported by “a
set of relationships – relationships constituted by artistic practice – be-
tween a newly problematized linguistic materiality and represented con-
tent” (Cayley 2002a). For Cayley, these relationships characterize innova-
tive literature. Cayley’s initial examples, moving from the critical reduction
of narratives of code as concept to the reality of digital code itself, situate
the critique of codework in the broader context of critical understanding of
media technology. He focuses on the referential mix-up between things
represented or thematized in language and the things themselves. Nothing
could be more commendable and pragmatic as critical practice, especially
coming from a poet and thinker who seamlessly combines theoretical in-
sight with poetic invention.

Cayley’s argument targets the claim that something is transcribed or
contaminated in codework. This insistence “brackets” questions of the
“address of specific code segments and texts” (Cayley 2002a). That is,
playful integration of code into text overrides possible algorithms or proce-
dures involved in the code. Cayley continues that this bracketing leads to a
simplification of the “range of positions of address,” so that one is left with
a generic notion of code and text – “flat namespace” means nothing else
(Cayley 2002a). The flattening of distinctions is a way of extracting an



113

effect of “contamination” by simplification and a way of bracketing rigor-
ously distinct levels and interrelations between texts into a kind of “literal
topography” of shared symbols. By contrast, Cayley would enforce the
gaps between levels, where materially identical symbols are processed
differently according to their means of addressing. As a kind of rhetorical
counter-measure, Cayley provides a list acknowledging these many lev-
els: “machine codes, tokenized codes, low-level languages, high-level lan-
guages, scripting languages, macro languages, markup languages, Operat-
ing Systems and their scripting language, the Human Computer Interface,
the procedural descriptions of software manuals, and a very large number
of texts addressed to entirely human concerns” (Cayley 2002a). He adds
a footnote indicating the complexity of the HCI as an entire set of levels
on its own. Clearly, there seems a marked distinction between scripting
language and markup, on the one hand, and assembly code and word
processing text, on the other.

Cayley does grant that codework can be understood as a self-referen-
tial practice allowing discussion of code as a sign across a range of dis-
courses. The shell of broken code activates the semioticity of the notion of
“code.” As nothing but shell, this code of code organizes other issues of
“identity, gender, subjectivity, technology, technoscience, and the mutating
and mutable influence they bring to bear on human lives and on human-
human and human-machine relationships” (Cayley 2002a). No doubt, these
issues are important but Cayley’s point is that none deals with the material
specificity of digital code. Cayley’s critique appears decisive: the revela-
tion of the truth of digital media offered by the codework aesthetic proves
empty. What seemed like revelation is in fact a kind of revelation-effect
within the cultural codes of the technoscientific imaginary.

To some degree, Cayley’s arguments against the codework aesthetic
can be turned from a poetic problem into a debate internal to literary histo-
ry – into questions of defining the history and framework for the emer-
gence of digital literature, and, consequently, questions of defining what
will count as digital literature. Cayley, with reference to Glazier’s book,
argues strongly for continuity between innovative poetries and digital po-
etry. These arguments see continuities of poetic method and individual
influence, most particularly in relation to the process-oriented poetry of
John Cage, Jackson Mac Low and others. In this argument, digital poetry
fits within the larger framework of innovative literature. By contrast, the
codeworkers seem relatively uninterested with establishing genealogies.



114

They do not claim alternative genealogies but seek to establish a differ-
ence, a break in literary history. More specifically: the codeworkers are
interested in establishing a literary avant-garde apart from the
L=A=N=G=U=A=G=E aesthetic and tradition that informs Cayley and
Glazier. While Cayley and Glazier, to a greater or lesser degree, see digital
poetry within the larger movement of innovative poetics, the codeworkers
see codework as a new and possibly revolutionary poetics. Or, in a slightly
different formulation, codework may involve a new genre alongside an
emerging field of digital poetry. This solution replaces the question of the
work of code with a question of genre definition. In this case, codework is
concerned with the emergence of digital code, whether functional or not,
while digital poetry becomes a part of “software art,” which requires dig-
ital code in order to operate but typically does not make this code visible.
Software art may involve straightforward textual processes or dazzling
multimedia surfaces, but the aim is to use code to enable artistic produc-
tion, not to display code. The digital poetry of Glazier, Jim Rosenberg, or
Cayley himself, to name only a few from the field that Glazier delineates in
his book, offer exemplary instances of electronic poetry integrating soft-
ware algorithms and techniques to expand the possibility of language art –
all without the explicit presentation of code. With this distinction in place,
one could then proceed with typologies and internal stylistics for each
genre, comfortable with their neat functional differentiation within the ar-
tistic system.

Neither of these solutions are particularly persuasive in overcoming the
critical impasse over codework. The differences in genealogy and genre
prove to be more surface impressions than deep differences. Cramer and
Cayley remain remarkably close on many points, not in the least of which
is their interest in a critical genealogy which includes Fluxus and the pro-
cedural poetics of Cage and Mac Low. Moreover, Cayley is decidedly not
against the presentation of code – he even offers some codework of his
own as evidence for how to do “codework in the strong sense.” The dif-
ference lies neither in literary history nor in genre; these themes are symp-
toms of the more fundamental poetic problem.

Cramer’s conclusion bears close attention. He concludes with the dec-
laration that his hypothesis on the nature of digital code is “perfectly veri-
fied by codework poetry.” He insists on a kind of aesthetic effect literal-
ized in codework: it will “teach us to pay more attention to codes and
control structures coded into all language” (Cramer 2001). Cramer as-



115

serts a force released and become palpable as language in codework po-
etry. The revelation of this force is in some way adequate yet separate
from the force itself – revealed in the medium of language. This force
remains hidden in any workable code – it is only revealed in performance
– and codework extracts it as writing.

Now, Cayley’s target is what he sees as the pseudo-revelation of an
immediacy of code and text. His argument tries to give a technical expla-
nation for the performance of “force” but does not explain away the
performance itself – Cayley, after all, presents a fascinating sample of his
own, a Hypertalk poem/code originally in the earlier essay “Pressing the
‘Reveal Code’ Key.” This “human-readable” text is also “segments of
interpretable, working code” (Cayley 2002a). (Or so he says, as there is
no way to tell from looking whether the code is compilable or not.) Cay-
ley’s point is that his poem adequates code and text, or concept and per-
formance, with no confusion or flattening of levels, creating a codework
that can bring about “changes in the body of literature, the literary corpus,
both its ‘material substrate’ and its ‘codes of representation’” (Cayley
2002a). So, this is “codework in the strong sense.”

Cayley’s careful correlating and enumerating of distinct levels and strata
of meaning reassuringly controls what is revealed, but the paradox of code-
work is that the effect of revelation occurs even without such claims for
precision. The execution of code over-reaches any physical explanation.
For Cramer, the codework practitioners prove their point all the more in
frequently working with “plain ASCII text” rather than hypertext or multi-
media. Not only does codework employ ASCII text with no software or
plug-ins; not only does it employ non-functional or broken code, which
may be extracted and edited from a context where it did once work; but
codework may also employ invented code, fictional constructs presenting
a kind of simulacra of code.2 In fact, this fictionality is central to Sondhe-
im’s definition of codework. Here, Cayley’s question of address and ref-
erence is overreached to the point of absurdity: not only is codework no
longer code but also it may never have been code – it may never have
worked. Cramer drives the point home: “The contradiction between a com-
plex techno-poetical reflection and low-tech communication is only a seem-
ing one; quite on the contrary, the low-tech is crucial to the critical implica-
tion of the codework poetics” (Cramer 2001). But what is the critical
implication of the low-tech?



116

The answer seems to lie in Cramer’s definition of code algorithms,
elaborated across several essays. The empty revelation of code reflects
the execution of an algorithm that exceeds any possible physical perform-
ance. Cramer’s favorite example of an algorithm is La Monte Young’s
Fluxus piece consisting only of the instruction to “Draw a straight line and
follow it” (Cramer 2001). Cramer points out that “the instruction is unam-
biguous enough to be executed by a machine” while at the same time
“thorough execution is physically impossible” (Cramer 2001). For Cramer,
this example generalizes to all algorithms: there are only failed implemen-
tations of algorithms. In any particular execution of a code, the algorithm
remains conceptual and mental. Cramer adds that if “such implications
lurk in code, a formal analysis is not enough” (Cramer 2001). No amount
of formal analysis will adequate the structure of software to its cultural
forms.

Codework addresses this paradox through an “aesthetic extremism”
(Cramer 2001). Cramer’s definition of an algorithm sees no difference
between code executed on the computer or printed in a book, or, for that
matter, “executed in the mind of the reader” (Cramer 2001). The work of
code is in the reader or observer, not in the physical kinetics of this or that
screen or poem. Codework teaches us to “pay attention” or more fre-
quently leads us to “reflection.” The work of reflection completes the
work of codework, and the broken fictionality of codework only increases
this reflexivity. The failure of the algorithm in its contingent materiality is
its success in concept, a success that is experienced and read but in no
way visible in the text. The fictionality of codework is the guarantee of this
experience. In this sense, Cayley is absolutely right: the codework aes-
thetic is literally meta-physical, since it implies a movement beyond any
physical movement.

The aesthetic reflection produced by codework is the concept of the
code algorithm stripped of its contingent materiality. The fictionality of
codework – its innovation – is central here. As fiction, codework lays bare
our fascination with code as external reference, as genuine performance.
It is the performance of this fascination that codework extracts. One is
left with a kind of “hyper-reflection,” in the sense alluded to by Maurice
Merleau-Ponty in his posthumous writing, a blindspot in consciousness
containing the invisible infrastructures of perception. Thus: codework as
hyper-reflection on the reflexivity of all codes, on the inaccessibility and
distance between code and text, and on the conditional opening of exactly
the levels of coding Cayley invokes.



117

There is little point here in dispelling the metaphysical presuppositions
of the codework aesthetic – what is “force” after all? – since both sides of
the argument take it for granted. This aesthetic is central to our notions of
digital poetry. Jim Rosenberg’s hypertext poems, invoked by Glazier as
“one of the most valuable investigations currently underway” in digital
poetry (Glazier 2002, 137), are written in terms of a similarly impossible
conceptuality and contingent materiality. Rosenberg defines hypertext as
a way of representing a network that could be represented by “other means
than using a computer – on paper, for instance” (Rosenberg 1996). At the
same time, Rosenberg takes hypertext as a way of thinking not yet possi-
ble in any given technology. That is, hypertext is an approach to poetry
first and only secondarily a function of technology.

Rosenberg’s poems are “simultaneities”: piles of words, stacked clus-
ters of word “skeins,” following his insight that such juxtaposition is “ the
most basic structural act” (Rosenberg 1996). Mousing over “opens” the
simultaneity to reveal an individual skein, a scatter of words and phrases,
with “vertical” relations indicated by changes in font. The simultaneity is a
poem that emits readable texts. Each text is the outcome of the user’s
mouse interactions with Rosenberg’s programmed relations between skeins.
Appearances are conditioned by the user’s attention via the structure per-
ception-mouseover-poem. The poem is an opening. While it is possible to
speak of particular textual conditions enabling Rosenberg’s work – the
tradition of Mac Low’s simultaneities, the availability of easily program-
mability HyperCard stacks, etc. – none of these adequately accounts for
what happens as individual skeins appear and disappear. The simultaneity
remains in a kind of quasi-space and -time prior to the text. Mousing over
is the real time of the poem. The resulting words are not inscriptions but
transcriptions of the user’s movement and attention, all within the concep-
tual algorithm of the poem. As a “fundamental micromaneuver at the heart
of all abstraction,” the simultaneity produces a minimal possible world, a
phenomenology of momentary objects (Rosenberg 1996). Rosenberg ar-
gues that we should try to think of hypertext as “a medium in which one
thinks ‘natively’” (Rosenberg 1996).3 The paradoxical task is to think of
the technology that would be adequate to “an individual thought” that “is
entirely hypertext” (Rosenberg 1996). Rosenberg writes a poem for tech-
nology not yet available. In this disjunction of grand conceptual apparatus
with its instantiation in digital media, Rosenberg’s work is innovative by
means of its own failure – and this recognition is in no way intended to



118

mean that Rosenberg’s important project is a failure. These poems mark
the structural relation between a poem and itself as an act of innovation.
The poem is innovation’s “mode of disappearance,” as Jean Baudrillard
puts it (1993, 213).4

The poetic code, particularly within the systematicity of literature and
digital media, is not a simple reflection or afterimage of technical functions
but the opposite: the complexity of the concept of “code” is a metaphor for
poetic innovation. The drive towards a poetics of code, focusing on sys-
tems of constraint between natural languages and artificial languages, is
built on the absent point of reference between code and text. It matters
little whether this point pivots around the precision of different levels of
coding or on the translatability of codes (between strong or weak code-
work). The point is rather to read the irreducible poetic invention that
enables systemic cultural reflection, “to read what was never written,” in
Walter Benjamin’s words (1978, 226). “Code as writing” means that the
singularity of poetic invention provides the mediation needed to conceptu-
alize information. Systems theory, and its extension to all information ex-
change, is a metaphoric explanation of what poetic innovation brings about.



119

NOTES

1. Compare Luhmann’s analysis of “the modernity of sciences”
(2002, 61–75).

2. Cayley is explicit that his target is critical discussion of code-
work and not codeworkers themselves, and carefully brackets
several of the most prominent of these writers, showing that
his critique does not apply in every case. At the same time, the
practice of contaminated and invented languages, best charac-
terized by MEZ’s “mezangelle” is clearly the most problematic
codework practice for Cayley.

3. Editor’s note: Rosenberg uses “natively” here metaphorically,
from the technical usage where, for example, code is “native”
to a particular operating system, i.e. system and code are
designed for one another, with no additional or mediating
encoding or compilation required.

4. This concluding chapter of Baudrillard’s Symbolic Exchange
and Death is a valuable contribution to analysis of poetry, often
overlooked for his more well-known essays on simulation.


