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Abstract. We give an alternative proof for the fact that in n-dimensional Alexandrov spaces
with curvature bounded below there exists a unique optimal transport plan from any purely
(n − 1)-unrectifiable starting measure, and that this plan is induced by an optimal map. Our
proof does not rely on the full optimality of a given plan but rather on the c-monotonicity,
thus we obtain the existence of transport maps for wider class of (possibly non-optimal)
transport plans.

1. Introduction

The problem of optimal mass transportation has a long history, starting from the
work ofMonge [34] in the late 18th century. In the original formulation of the prob-
lem, nowadays called the Monge-formulation, the problem is to find the transport
map T minimizing the transportation cost

∫
Rn

c(x, T (x)) dμ0(x), (1.1)

among all Borel maps T : Rn → R
n transporting a given probability measureμ0 to

another given probability measure μ1, that is, T�μ0 = μ1. In the original problem
of Monge, the cost function c(x, y) was the Euclidean distance. Later, other cost
functions have been considered, in particular much of the study has involved the
distance squared cost, c(x, y) = |x − y|2, which is the cost studied also in this
paper.

In the Monge-formulation (1.1) of the optimal mass transportation problem the
class of admissible maps T that send μ0 to μ1 is in most cases not closed in any
suitable topology. To overcome this problem, Kantorovich [26,27] considered a
larger class of optimal transports, namely, measures π on R

n × R
n such that the

first marginal of π isμ0 and the second isμ1. Such measures π are called transport
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plans. Kantorovich’s relaxation leads to the so-called Kantorovich-formulation of
the problem,

inf
π

∫
Rn×Rn

c(x, y) dπ(x, y). (1.2)

Due to the closedness of the admissible transport plans and the lower semi-
continuity of the cost, minimizers exist in the Kantorovich-formulation under very
mild assumptions on the underlying space and the cost c.

For the quadratic cost in the Euclidean space, it was shown independently
by Brenier [9] and Smith and Knott [42] that having μ0 absolutely continuous
with respect to the Lebesgue measure guarantees that the optimal transport plans
(minimizer of (1.2)) are unique and given by a transport map.Moreover, the optimal
transport map is given by a gradient of a convex function.

The results of Brenier and of Smith and Knott have been generalized in many
ways. The most important directions of generalization have been: going from the
underlying space Rn to other metric spaces, considering other cost functions, and
relaxing the assumption of the starting measure being absolutely continuous with
respect to the reference measure (here the Lebesgue measure). In this paper, we
study the direction of relaxing the absolute continuity in a more general metric
space setting, the Alexandrov spaces. We note that one should be able to generalize
our proof for more general costs, such as the distance to a power p ∈ (1,∞). In
order to keep the presentation simpler, we concentrate here on the distance squared
cost.

The existence of optimal transportation maps in Alexandrov spaces with cur-
vature bounded below for starting measures that are absolutely continuous with
respect to the reference Hausdorff measure was proven by Bertrand [6]. Later
Bertrand improved this result [7] by relaxing the assumption on the starting mea-
sure to give zero measure to c − c-hypersurfaces. Here we provide an alternative
proof for the result of Bertrand under the slightly stronger assumption on the start-
ing measure of pure (n− 1)-unrectifiability (see Definition 2.1 for the definition of
pure (n − 1)-unrectifiability).

Theorem 1.1. Let (X, d) be an n-dimensional Alexandrov space with curvature
bounded below. Then for any pair of measures μ0, μ1 ∈ P2(X) such that μ0 is
purely (n − 1)-unrectifiable, every c-monotone plan π from μ0 to μ1 is induced
by a map.

In particular, there exists a unique optimal transport plan from μ0 to μ1 and
this transport plan is induced by a map.

Remark 1.2. (1) The uniqueness of the optimal transport plan follows from the fact
that Opt(μ0, μ1) is a convex subset of the set of c-monotone plans.

(2) While the motivation for the above formulation of Theorem 1.1 arises from the
optimal mass transportation theory, it could be restated in the spirit of regularity
of monotone operators, cf. [46,48].

The contribution of this paper is to provide a different approach to showing
the existence and uniqueness of optimal transport maps than what was used by
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Bertrand in [6,7]. In [6], Bertrand used the local (1 + ε)-biLipschitz maps to R
n

on the regular set of X , and the general existence of Kantorovich potentials and
their Lipschitzness. Since the singular set of X is at most (n− 1)-dimensional, and
the Rademacher’s theorem on R

n can be restated in X via the biLipschitz maps,
Bertrand concluded that the optimal transport is concentrated on a graph that is
given by applying the exponential map to the gradient of the Kantorovich potential.
In [7], Bertrand considered the problem in boundaryless Alexandrov spaces. He
used Perelman’s DC calculus to translate the problem to differentiability of convex
functions on Euclidean spaces. Then the result follows from the characterization
of nondifferentiability points of convex functions due to Zajíček [47].

In this paper, we translate a contradiction argument (Lemma 2.11) from the
Euclidean space (which uses just monotonicity in certain geometric configurations)
to the space X via the (1 + ε)-biLipschitz charts. In order to use the contradiction
argument, we need to get all the used distances to be comparable. For this we use
the fact that the directions of geodesics are well-defined in the biLipschitz charts
(Theorem 2.7) and thus we can contract along the geodesics without changing
the geometric configuration too much. Finally, the geometric configurations that
result in the contradiction via cyclical monotonicity are given by the pure (n − 1)-
unrectifiability (Lemma 2.2). Let us briefly describe the contradiction argument in
the Euclidean case X = R

2 under the assumption that the starting measure μ0 is
absolutely continuous with respect to the Lebesgue measure. Suppose towards a
contradiction that we have an optimal transport π transportingμ0 toμ1 so that π is
not induced by a map. Then, after some discretizations, we find a positive measure
set A of points where π transports measure to two different directions that are
roughly some directions v1 and v2. Then, since A has positive μ0-measure and μ0
is absolutely continuous, in a Lebesgue point X of A there is another point y nearby
roughly in the direction v1 − v2 from x . But now, the lines from x to the direction
v1 and from y to the direction v2 cross. Such crossing violates the optimality of
π because by interchanging the endpoints of the transports corresponding to the
intersecting lines, we would decrease the cost of π .

To the best of our knowledge, in the context of optimal transportation this
contradiction argument was first used by Champion, De Pascale and Juutinen [16]
to prove the existence of optimal maps for the ∞-transportation distance. Similar
ideawas also used byChampion andDe Pascale [14] to solve theMonge problem in
R
d . The limits of the contradiction argumentwere later pushed further byChampion

and De Pascale [15] and by Jylhä [25].
Let us comment also on the history of the sufficient assumptions on μ0. The

assumption of pure (n − 1)-unrectifiability was shown by McCann [33] to be suf-
ficient for the existence of optimal maps in the case of Riemannian manifolds. A
sharper condition based on the characterization by Zajíček [47] of the set of non-
differentiability points of convex functions was first used in the Euclidean context
by Gangbo and McCann [20] when they showed that having an initial measure that
gives zero mass to c − c -hypersurfaces is sufficient to give the existence of opti-
mal maps. It was then shown by Gigli [21] that even in the Riemannian manifold
context the sharp requirement for the starting measure to have optimal maps for
any target measure is indeed that it gives zero measure to c − c -hypersurfaces.



T. Rajala, T. Schultz

It still remains open whether zero measure of c − c -hypersurfaces also gives a
full characterization in the case of Alexandrov spaces. One of the directions, the
sufficiency, was obtained by Bertrand [7].

The existence of optimal maps has been studied in wider classes of metric
measure spaces that satisfy some form of Ricci curvature lower bounds or weak
versions of measure contraction property. These classes includeCD(K , N )-spaces
that were introduced by Lott and Villani [32], and by Sturm [43,44], MCP(K , N )-
spaces (see Ohta [35]), and RCD(K , N ) spaces that were first introduced in the
case N = ∞ by Ambrosio, Gigli and Savaré [3] and then for general N by Gigli
[23] (see also the improvements and later work by Ambrosio, Gigli, Mondino and
Rajala [1], Erbar, Kuwada and Sturm [18] and Ambrosio, Mondino and Savaré [4]).
All of these classes contain Alexandrov spaces with curvature lower bounds, see
Petrunin [37].

It was first shown byGigli [22], that in nonbranchingCD(K , N )-spaces you do
have the existence of optimal maps provided that the starting measure is absolutely
continuous with respect to the reference measure. In all the subsequent work, the
assumption has been the same for the starting measure, and it would be interesting
to see if it can be relaxed also in the more general context of metric measure spaces
with Ricci curvature lower bounds.

Also a metric version of Brenier’s theorem was studied by Ambrosio, Gigli
and Savaré [2]. They did not obtain the existence of optimal maps, but showed
that at least the transportation distance is given by the Kantorovich potential.
Later, Ambrosio and Rajala [5] showed that under sufficiently strong nonbranching
assumptions one can conclude the existence of optimal maps.

Rajala and Sturm [39] noticed that strong CD(K ,∞) spaces, and hence
RCD(K ,∞) spaces are at least essentially nonbranching, and that this weaker
form of nonbranching is sufficient for carrying out Gigli’s proof. This result was
later improved by Gigli, Rajala and Sturm [24]. Essential nonbranching was then
studied together with the measure contraction property MCP(K , N ) by Cavalletti
and Mondino [13] (see also Cavalletti and Huesmann [12] where the case of non-
branching and a weaker version of MCP(K , N ) was considered), and finally it
was shown by Kell [29] that under a weak type measure contraction property, the
essential nonbranching characterizes the uniqueness of optimal transports and that
the unique optimal transport is given by a map for absolutely continuous starting
measures. The role of nonbranching and measure contraction type properties was
also studied by De Pascale and Rigot [17] in connection with their sollution of
the Monge problem in the Heisenberg group. See also the work of Bianchini and
Cavalletti [8] on the Monge problem in nonbranching geodesic spaces.

The existence of optimal transport maps inCD(K , N ) spaces without any extra
assumption on nonbranching is still an open problem. An intermediate definition
between CD(K , N ) and essentially nonbranching CD(K , N ), called very strict
CD(K , N ), was studied by Schultz [40]. He showed that in these spaces one still
has optimal transport maps even if the space could be highly branching and the
optimal plans non-unique. It is also worth noting that if one drops the assumption
of essential nonbranching for MCP(K , N ), then optimal transport maps need not
exist. This is seen from the examples by Ketterer and Rajala [30].
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The paper is organized as follows. In Sect. 2 we recall basic things about rec-
tifiability, Alexandrov spaces and optimal mass transportation. While doing this,
we also present a few facts that easily follow from well-known results: purely
n − 1-unrectifiable measures have mass in all directions (Lemma 2.2), the singu-
lar set in an Alexandrov space is (n − 1)-rectifiable (Theorem 2.5), gradients of
geodesics exist in charts in Alexandrov spaces (Theorem 2.7) and the failure of
cyclical monotonicity persists after small perturbations (Lemma 2.11). In Sect. 3
we then put these things together and prove Theorem 1.1.

2. Preliminaries

In this paper (X, d) always refers to a complete and locally compact length space.
By a length space we mean a metric space where the distance between any two
points x and y is equal to the infimum of lengths of curves connecting x and y.
By the Hopf-Rinow-Cohn-Vossen Theorem, our spaces (X, d) are then geodesic,
proper and, in particular, separable. A space is called geodesic, if any two points
in the space can be connected by a geodesic. By a geodesic we mean a constant
speed length minimizing curve γ : [0, 1] → X . Notice that we parametrize all the
geodesics by the unit interval.We denote the space of geodesics of X byGeo(X) and
equip it with the supremum-distance. By a (geodesic) triangle �(x, y, z) we mean
points x, y, z ∈ X and any choice of geodesics [x, y], [y, z] and [x, z] pairwise
connecting them.

2.1. Rectifiability

For our Theorem 1.1 the starting measure μ0 is diffused enough if it is purely
n − 1-unrectifiable. Let us recall this notion.

Definition 2.1. A set A ⊂ X is called (countably) k-rectifiable if there exist
Lipschitz maps fi : Ei → X from Borel sets Ei ⊂ R

k for i ∈ N, such that
A ⊂ ⋃

i∈N fi (Ei ).
Ameasureμ is called purely k-unrectifiable, ifμ(A) = 0 for every k-rectifiable

set A.

The property of purely unrectifiable measures that we use is that they have mass
in all directions. This is made precise using (one-sided) cones that are defined as
follows. Given x ∈ R

n , θ ∈n−1, α > 0 and r > 0, we denote the open cone at x in
direction θ with opening angle α, by

C(x, θ, α) := {
y ∈ R

n : 〈y − x, θ〉 > cos(α)|y − x |} .

Lemma 2.2. Letμ be a purely (n−1)-unrectifiable measure onRn and let E ⊂ R
n

withμ(E) > 0. Thenatμ-almost every x ∈ E wehaveC(x, θ, α)∩B(x, r)∩E 	= ∅
for all θ ∈n−1, α > 0 and r > 0.
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Proof. Suppose that there is a subset E0 ⊂ E with μ(E0) > 0 such that the
conclusion fails, i.e. for every x ∈ E0 there exist θx ∈n−1, αx > 0 and rx > 0 such
that C(x, θx , αx ) ∩ B(x, rx ) ∩ E = ∅. Since

C(x, θ, α) ∩ B(x, r) ⊂ C(x, θ, α′) ∩ B(x, r ′)

if α′ ≥ α and r ′ ≥ r , there exist r > 0 and α > 0 such that the subset

{x ∈ E0 : C(x, θx , α) ∩ B(x, r) ∩ E = ∅}
has positiveμ-measure. By considering a countable dense set of directions {θi }i∈N,
we have that there exists one fixed direction θi such that the set

E1 := {x ∈ E0 : C(x, θi , α/2) ∩ B(x, r) ∩ E = ∅}
has positive μ-measure. But now, for evey x ∈ R

n , the set E1 ∩ B(x, r/2) is
contained in a Lipschitz graph and hence E1 is an (n − 1)-rectifiable set, giving a
contradiction with the pure (n − 1)-unrectifiability of μ. 
�

2.2. Alexandrov spaces

Let us recall some basics about Alexandrov spaces. Unless we provide another
source, all the following definitions and results can be found in [10].

Alexandrov spaces generalize sectional curvature bounds by means of com-
parison to constant curvature model spaces. Alexandrov spaces can be defined for
instance by comparing geodesic triangles of a metric space to the corresponding
ones in a model space. Let us next give precise definitions.

For each k ∈ R, let Mk be a simply connected surface with constant sectional
curvature equal to k, that is, for negative k, Mk is a scaled hyperbolic plane, for
k = 0, Mk is the Euclidean plane, and for positive k, Mk is a (round) sphere. Let
us denote the distance between two points x, y ∈ Mk by |x − y|.

Let k ∈ R. For a triplet x, y, z ∈ X , let x̃, ỹ, z̃ ∈ Mk be points so that the
triangles �(x, y, z) and �(x̃, ỹ, z̃) have the same side lengths, that is, d(x, y) =
|x̃ − ỹ|, d(y, z) = |ỹ − z̃|, d(x, z) = |x̃ − z̃|. We call the triangle �(x̃, ỹ, z̃) a
comparison triangle for �(x, y, z). For a triangle �(x, y, z) in X we denote by
�̃k(y, x, z) the comparison angle at x̃ in the comparison triangle �(x̃, ỹ, z̃) in Mk .

Definition 2.3. (Alexandrov space)We say that (X, d) is anAlexandrov space (with
curvature bounded below by k) if there exists k ∈ R so that for each point p ∈ X
there exists a neighbourhoodU of p for which the following holds. If�(x, y, z) ⊂
U , �(x̃, ỹ, z̃) its comparison triangle in Mk , and w ∈ [x, y], w̃ ∈ [x̃, ỹ] with
d(x, w) = |x̃ − w̃|, then d(w, z) ≥ |w̃ − z̃|.

An Alexandrov space might have infinite (Hausdorff) dimension. In this paper
we study only finite dimensional Alexandrov spaces. Recall that in an Alexandrov
space every open nonempty set has the same dimension, so the dimension of an
Alexandrov space is always well defined. Moreover, the dimension is either an
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integer or infinity. From now on, the space (X, d) is assumed to be an n-dimensional
Alexandrov space with curvature bounded below by k ∈ R with n ∈ N.

We will use the fact that our purely (n − 1)-unrectifiable starting measures μ0
live on the regular set of the space, that has nice charts. Let us recall the notion of
regular and singular points.

Definition 2.4. A point p ∈ X is called regular, if the space of directions 	p at p
is isometric to the standard sphere n−1, or equivalently, if the Gromov-Hausdorff
tangent at p is the EuclideanRn . A point p ∈ X that is not regular is called singular.
The set of regular points of X is denoted by Reg(X) and the set of singular points
by Sing(X).

The following result is from [36] (see also [11]). It implies that our starting
measures μ0 give zero measure to the singular set.

Theorem 2.5. The set Sing(X) is (n − 1)-rectifiable.

Proof. Notice that [36, Theorem A] states that Sing(X) has Hausdorff dimension
at most n − 1. However, the proof easily gives the stronger conclusion of (n − 1)-
rectifiability. Namely, observe that in the proof of [36, TheoremA]Otsu and Shioya
show that Sing(X) is contained in Lipschitz images from subsets of the spaces of
directions	p for countably many points p ∈ X . Since the points p are only needed
to locally form amaximal ε-discrete net in X , they can be chosen to be regular points
of X . Thus, Sing(X) is contained in countably many Lipschitz images from subsets
of n−1 and is therefore (n − 1)-rectifiable. 
�

Let us then recall a well-known consequence of the nonbranching prop-
erty of Alexandrov spaces. For its proof, we need the notion of an angle. Let
α, β : [0, 1] → X be two constant speed geodesics emanating from the same point
p = α(0) = β(0). Let us denote by θk(t, s) := �̃k(α(t), p, β(s)) the angle at p̃ of
the comparison triangle�( p̃, α̃(t), β̃(s)) inMk of�(p, α(t), β(s)). In Alexandrov
spaces the angle

�(α, β) := lim
t,s↘0

θk(t, s)

is well-defined for every pair of geodesics α, β emanating from the same point.
Moreover, by Alexandrov convexity (see for instance [41, Sect. 2.2]) the quantity
θk(t, s) is monotone non-increasing in both variables t and s.

Lemma 2.6. Let γ1, γ2 : [0, 1] → X be be two constant speed geodesics with
γ1(0) = γ2(0) and γ1(1) 	= γ2(1). Then

lim
t↘0

d(γ1(t), γ2(t))

t
> 0.

Proof. We may assume �(γ1) ≥ �(γ2). If �(γ1) > �(γ2), then by triangle inequal-
ity d(γ1(t), γ2(t)) ≥ t (�(γ1) − �(γ2)), giving the claim. If �(γ1) = �(γ2), then
θk(1, 1) = �̃k(γ1(1), x, γ2(1)) > 0. Then by Alexandrov convexity, �(γ1, γ2) ≥
θk(1, 1) > 0, and thus by the cosine law

d(γ1(t), γ2(t))

t
→ �(γ1)

√
2 − 2 cos(�(γ1, γ2)) > 0,
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as t → 0. 
�
Our aim is to arrive at a contradictionwith cyclical monotonicity at a small scale

near a regular point. We will transfer the Euclidean argument to the Alexandrov
space X using the following standard charts ϕ. Since we need the existence of
directions of geodesics in these charts, we write the existence down explicitly
inside the following theorem.

Theorem 2.7. For every p ∈ Reg(X) and every ε > 0 there exist a neighborhood
U of p and a (1 + ε)-biLipschitz map ϕ : U → R

n with ϕ(U ) open so that for
every constant speed geodesic γ : [0, 1] → U the limit

lim
t↘0

ϕ(γ (t)) − ϕ(γ (0))

d(γ (t), γ (0))

exists.

Proof. Werecall (see [36] or [10, Theorem10.8.4]) that the local (1+ε)-biLipschitz
chart ϕ : U → R

n can be obtained as

ϕ(x) = (d(a1, x), d(a2, x), . . . , d(an, x)),

where (ai , bi )ni=1 is a δ-strainer for p, for some δ > 0. Now, the first variation
formula (see [36, Theorem 3.5] or [10, Theorem 4.5.6, Corollary 4.5.7]) implies
that

lim
t↘0

d(ai , γ (t)) − d(ai , γ (0))

d(γ (t), γ (0))
= − cos(α),

where α = �(γ, β), with β a geodesic from γ (0) to ai . Thus, the required limit
exists for each i . 
�

2.3. Optimal mass transportation

In this section we recall a few basic things in optimal mass transportation.
The Monge–Kantorovich formulation of optimal mass transportation problem

(with quadratic cost) is to investigate for two Borel probability measures μ0 and
μ1 the following infimum

inf
∫
X×X

d2(x, y) dπ(x, y),

where the infimum is taken over all Borel probability measures π ∈ P(X × X)

which has μ0 and μ1 as a marginals, that is, π(A× X) = μ0(A) and π(X × A) =
μ1(A) for all Borel sets A ∈ B(X). In order to guarantee that the above infimum
is finite, it is standard to assume the measures μ0 and μ1 to have finite second
moments. The set of all Borel probabilitymeasures in X with finite secondmoments
is denoted by P2(X).

An admissible measure that minimizes the above infimum is called an optimal
(transport) plan, and the set of optimal plans between μ0 and μ1 is denoted by
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Opt(μ0, μ1). We say that an optimal plan π is induced by a map, if there exists a
Borel measurable function T : X → X so that π = (id × T )#μ0. Such a map is
called an optimal (transport) map. While optimal plans exist under fairly general
assumptions [45], the existence of optimal maps is not true in general.

Optimality of a given transport plan depends only on the c-cyclicalmonotonicity
of the support of the plan. Let us recall this notion.

Definition 2.8. (cyclical monotonicity) A set � ⊂ X × X is called c-cyclically
monotone, if for all finite sets of points {(xi , yi )}Ni=1 ⊂ � the inequality

N∑
i=1

d2(xi , yi ) ≤
N∑
i=1

d2(xσ(i), yi ) (2.1)

holds for all permutations σ ∈ SN of {1, . . . , N }.
If (2.1) is required to hold only in the case of N = 2 (i.e. for pairs of points),

then the set � is called c-monotone.

A characterization of optimality using c-cyclical monotonicity of the support that
is sufficient for us is the following result proven in [38] which holds for continuous
cost functions.

Lemma 2.9. ([38, Theorem B]) Let X be a Polish space and μ0, μ1 ∈ P2(X).
Then a transport plan π between μ0 and μ1 is optimal if and only if its support is
c-cyclically monotone set.

In the following lemma we recall a well-known fact which allows us to localize
the problem.

Lemma 2.10. Let (X, d) be a complete and separable geodesic metric space, and
let � ⊂ X × X be a c-monotone set. Then, the set

�t :={(γ (0), γ (t)) ∈ X × X : γ ∈ Geo(X) with (γ (0), γ (1)) ∈ �}
is c-monotone for all t ∈ [0, 1].
Proof. For a given pair of points (γ 1

0 , γ 1
t ), (γ 2

0 , γ 2
t ) ∈ �t , the set {(γ 1

0 , γ 1
1 ), (γ 2

0 ,

γ 2
1 )} is c-cyclically monotone. Thus, the claim follows from the same statement for

c-cyclically monotone sets which is turn can be deduced from the result of Lisini in
[31] aboutWasserstein geodesics and their lifts to the space of probability measures
on geodesics of X , see [19]. 
�

In order to arrive at a contradiction withmonotonicity, wewill use the following
lemma.

Lemma 2.11. For each C > 1 there exists δ > 0 so that

1

2
|y1 + y2|2 < (1 − δ)(|y1|2 + |y2|2)

for all

y1, y2 ∈ K :=
{
(y1, y2) ∈ R

2n : |y2| = 1 and |y2 − y1| ∈
[
1

C
,C

]}
.



T. Rajala, T. Schultz

Proof. Let us first observe that for y1, y2 ∈ R
n , with y1 	= y2 we have

0 < |y1 − y2|2 = |y1|2 − 2〈y1, y2〉 + |y2|2

and thus

|y1 + y2|2 = |y1|2 + 2〈y1, y2〉 + |y2|2 < 2(|y1|2 + |y2|2). (2.2)

The quantitative claim then follows by compactness of K : first of all notice that
K ⊂ B̄(0, 2 + C) and thus K is bounded. The set K is also closed and hence it is
compact. The function

(y1, y2) �→ |y1 + y2|2
|y1|2 + |y2|2

is continuous as a function K → R. Therefore, the maximum of the above function
is achieved in K . By (2.2), this maximum is strictly less than two and hence there
exists δ > 0 as in the claim. 
�

3. Proof of Theorem 1.1

In order to prove the uniqueness of optimal transport plans it suffices to show that
any optimal transport plan is induced by a map. Indeed, if there were two different
optimal plans π1 and π2, then their convex combination 1

2 (π1 + π2) would also be
optimal and not given by a map. We will prove Theorem 1.1 by assuming that there
exists a c-monotone plan that is not induced by a map, then localizing to a chart
and using an Euclidean argument to find a contradiction.
Step 1: initial uniform bounds and measurable selections
Let μ0, μ1 ∈ P2(X) with μ0 purely (n − 1)-unrectifiable. Let π be a c-monotone
plan from μ0 to μ1. Towards a contradiction, we assume that π is not induced by a
map, that is, there does not exist a Borel map T : X → X so that π = (id, T )�μ0.
Consider the set

A:={x ∈ X : there exist y1, y2 ∈ X such that (x, y1), (x, y2) ∈ spt(π)}.
Since A is a projection of a Borel set

{(x, y, z, w) ∈ spt(π) × spt(π) : d(x, z) = 0, d(y, w) > 0},
it is a Souslin set and thusμ0-measurable. (Actually, as a projection of a σ -compact
set, A is Borel.) We will show that A has positive μ0 measure.

For that we will first show that there exists a Borel selection T : p1(spt(π)) →
X of spt(π), where p1 : X×X → X is the projection to the first coordinate. Define

(spt(π))x :={y ∈ X : (x, y) ∈ spt(π)}.
Then (spt(π))x = ({x} × X) ∩ spt(π) and thus it is closed. Furthermore, as a
proper space, X is also σ -compact, and thus so is (spt(π))x . Hence, by the Arsenin-
Kunugui Theorem [28, Theorem 35.46] there exists a Borel selection of spt(π), in
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other words, there exists a Borel map T : p1(spt(π)) → X with p1(spt(π)) Borel
so that T (x) ∈ (spt(π))x for all x ∈ p1(spt(π)).

Suppose now that μ0(A) = 0. We will show that in this case π would be
induced by the map T . Indeed, for E ⊂ X × X we have that

(id, T )#μ0(E) = μ0((id, T )−1(E) \ A) = μ0(p1(E ∩ Graph(T )))

= π((p1(E ∩ Graph(T )) × X) ∩ spt(π))

= π((E ∩ spt(π)) \ (A × X)) = π(E ∩ spt(π)) = π(E).

Thus μ0(A) > 0.
Since X is geodesic, for all x ∈ A there exist γ 1

x , γ 2
x ∈ Geo(X) such that

γ 1
x (0) = x = γ 2

x (0), γ 1
x (1) 	= γ 2

x (1), and (γ i
x (0), γ

i
x (1)) ∈ spt(π) for i ∈ {1, 2}.

We will need to choose the geodesics γ 1
x and γ 2

x in a measurable way. We will also
make the selection so that

d(x, γ 1
x (1)) ≤ d(x, γ 2

x (1)) 	= 0. (3.1)

By now, we have a Borel selection T of spt(π). Since p1(spt(π)) is a Borel set,
we can extend T to a Borel map T : X → X . Consider now the set spt(π) \
Graph(T). Since T is a Borel map, the graph of T is a Borel set and thus the set
spt(π) \ Graph(T) is a Borel set. Since X \ T (x) is σ -compact by the properness
and separability of X , we have that (spt(π) \Graph(T))x is σ -compact as a closed
subset of X \ T (x). Thus again by the Arsenin-Kunugui Theorem there exists a
Borel selection S : p1(spt(π) \ Graph(T)) → X that we can further extend to a
Borel map S : X → X for which we have that T (x) = S(x) for x /∈ A, and
T (x) 	= S(x) for x ∈ A.

To have (3.1) we will define two auxiliary maps T̃ 1, T̃ 2 : X → X × X as

T̃ 1(x):=
{

(x, T (x)), x ∈ h−1(−∞, 0)
x, S(x)), x ∈ h−1(0,∞),

where h(x):=d(x, T (x)) − d(x, S(x)), and similarly

T̃ 2(x):=
{

(x, S(x)), x ∈ h−1(−∞, 0)
x, T (x)), x ∈ h−1(0,∞).

The maps T̃ 1 and T̃ 2 are Borel maps since T, S and h are Borel maps.
It remains to select the geodesics between points x and T i (x). For that, we

consider the set

G:={(x, y, γ ) ∈ X × X × Geo(X) : γ (0) = x, γ (1) = y}.
The set G is Borel as the preimage of zero under the Borel map

(x, y, γ ) �→ sup{d(x, γ (0)), d(y, γ (1))}.
Furthermore, we have by the Arzelà-Ascoli Theorem that

G(x,y):={γ ∈ Geo(X) : γ (0) = x, γ (1) = y}.
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is compact. Thus, by the Arsenin-Kunugui Theorem there exists a Borel selection
F : X × X → G(x,y). With this we may finally define T 1, T 2 : X → Geo(X) as

T 1:=F ◦ T̃ 1 and

T 2:=F ◦ T̃ 2.

From now on, we will denote γ 1
x = T 1(x) and γ 2

x = T 2(x) for all x ∈ A. Notice
that γ 1

x and γ 2
x satisfy (3.1).

By Lemma 2.6, we have for all x ∈ A that

lim
t↘0

d(γ 1
x (t), γ 2

x (t))

d(x, γ 2
x (t))

∈ (0,∞).

Thus, we may write A as a countable union of sets

Ai :=
{
x ∈ A : d(x, γ 2

x (1)) ∈ [1/ i, i] and
d(γ 1

x (t), γ 2
x (t))

d(x, γ 2(t))
∈ [1/ i, i] for all t ≤ 1

i

}
,

and therefore there exists k ∈ N so that μ0(Ak) > 0. Notice that the sets Ai are
measurable, since we can write Ai as the intersection of

{
x ∈ A : d(x, γ 2

x (1)) ∈ [1/ i, i]
}

and

⋂
t≤ 1

i
t∈Q

{
x ∈ X : d(γ 1

x (t), γ 2
x (t))

d(x, γ 2
x (t))

∈ [1/ i, i]
}

.

We now consider k ∈ N fixed so that μ0(Ak) > 0.
Step 2: localization to a chart
Now we are ready to localize the problem so that we may use properties of the
Euclidean space to arrive to the contradiction. We will need to choose ε > 0
sufficiently small to arrive to a contradiction with c-monotonicity in a (1+ε)-chart
given by Theorem 2.7. We define

ε := δ

100
∈ (0, 1/200),

where δ = δ(2k) ∈ (0, 1/2) is the constant given by Lemma 2.11 for the k fixed
above. Since μ0 is purely (n − 1)-unrectifiable and Sing(X) is (n − 1)-rectifiable
by Theorem 2.5, we have μ0(Ak ∩ Reg(X)) = μ0(Ak). By Theorem 2.7 we can
cover the set Reg(X) with open setsU for which the associated maps ϕ : U → R

n

are (1 + ε)-biLipschitz, and the limit

lim
t↘0

ϕ(γ (t)) − ϕ(γ (0))

d(γ (t), γ (0))

exists for all geodesics γ ⊂ U . Since X is a proper metric space, it is in particular
hereditarily Lindelöf. Therefore, there exists a countable subcover F of such open
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sets U . Hence, there exists U ∈ F for which μ0(U ∩ Ak) > 0. Let ϕ : U → R
n

be as in Theorem 2.7.
Step 3: discretization and choice of points for the contradiction
Next we take a subset of Ak ∩U where the direction of the two selected geodesics
is independent of the point, up to a small error

ε̂:= ε

80k4
> 0. (3.2)

This is done by covering the set Rn by sets {B(yi , ε̂)}i∈N. Then there exist i , j and
t0 > 0 so that the set

B:=
{
x ∈ Ak ∩U : ϕ(γ 1

x (t)) − ϕ(x)

t
∈ B(yi , ε̂),

ϕ(γ 2
x (t)) − ϕ(x)

t
∈ B(y j , ε̂),

ϕ(γ 1
x (t)), ϕ(γ 2

x (t)) ∈ U for all t ≤ t0

}

has positive μ0-measure. Notice that B is seen to be measurable by a similar argu-
ment than Ai . By relabeling, we may assume that i = 1 and j = 2.

Since ϕ is biLipschitz, the measure ϕ#μ0 is purely (n− 1)-unrectifiable on Rn .
Hence, by Lemma 2.2 there exist points x1, x2 ∈ B such that

ϕ(x2) ∈ C

(
ϕ(x1),

y2 − y1
|y2 − y1| , ε̂

)
∩ B(ϕ(x1), r), (3.3)

where r ≤ ε̂ is such that r ≤ t0
2 |y2 − y1|. Now that we have selected the initial

points x1 and x2 for the contradiction argument, we still need to bring the target
points close enough to x1 and x2 by contracting along the geodesics γ 2

x1 and γ 1
x2 .

Since |ϕ(x1) − ϕ(x2)| < r , there exists the desired contraction parameter t ≤ t0
for which

2|ϕ(x2) − ϕ(x1)| = |t y2 − t y1|. (3.4)

We will now use as target points the points γ 2
x1(t) and γ 1

x2(t).
Step 4: verifying the bounds for Lemma 2.11
In the remainder of the proof we verify that the four selected points x2, x1, γ 2

x1(t)
and γ 1

x2(t) give a contradiction with c-monotonicity. Towards this goal we first
check that we may apply Lemma 2.11 with the selected δ.

First of all, we have by the definition of Ak that

|ϕ(γ 2
x1(t)) − ϕ(γ 1

x1(t))|
|ϕ(γ 2

x1(t)) − ϕ(x1)| ∈
[

1

(1 + ε)2k
, (1 + ε)2k

]
.

Since

ε̂ ≤ ε

2(1 + ε)k2
,

we have by the fact that x1 ∈ Ak and ϕ is (1 + ε)-biLipschitz, that

2t ε̂ ≤ ε

(1 + ε)

d(γ 2
x1(t), x1)

k
≤ εd(γ 2

x1(t), γ
1
x1(t))

(1 + ε)
≤ ε|ϕ(γ 2

x1(t)) − ϕ(γ 1
x1(t))|.
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Similarly, since ε̂ ≤ ε
(1+ε)k , we have that

t ε̂ ≤ ε|ϕ(γ 2
x1(t)) − ϕ(x1)|.

Therefore, we have by the fact that x1 ∈ B, the triangle inequality and the choice
of ε and ε̂ that

|t y2 − t y1|
|t y2| ≤ |ϕ(γ 2

x1(t)) − ϕ(γ 1
x1(t))| + 2t ε̂

|ϕ(γ 2
x1(t)) − ϕ(x1)| − t ε̂

≤ (1 + ε)

(1 − ε)

|ϕ(γ 2
x1(t)) − ϕ(γ 1

x1(t))|
|ϕ(γ 2

x1(t)) − ϕ(x1)|
≤ (1 + ε)

(1 − ε)
(1 + ε)2k < 2k.

By similar arguments, we have that

|t y2 − t y1|
|t y2| >

1

2k
.

Thus, by Lemma 2.11 with the δ = δ(2k) already chosen accordingly, we have

1
2 |t (y1 + y2)|2

|t y2|2 < (1 − δ)
(|t y2|2 + |t y1|2)

|t y2|2 ,

that is,

1

2
|t (y1 + y2)|2 < (1 − δ)(|t y2|2 + |t y1|2). (3.5)

Step 5: the contradiction
Wewill thenuse the inequality (3.5) to get to a contradictionwith the c-monotonicity
guaranteed by Lemma 2.10. Let us first estimate the terms on the right-hand side
of (3.5).

By the definition of y1 and Ak we have that

|t y1| ≤ |t y1 − ϕ(γ 1
x1(t)) + ϕ(x1)| + |ϕ(γ 1

x1(t)) − ϕ(x1)|
≤ t ε̂ + (1 + ε)d(γx1(t), x1) ≤ tk + (1 + ε)tk ≤ 3tk.

Similarly,

|t y2| ≤ 3tk.

Therefore, we have that

|1
2
t (y1 + y2)|, |1

2
t (y2 − y1)| ≤ 3tk. (3.6)
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Using the definition of the set B, and (3.4), (3.3) and (3.6), we have

1

(1 + ε)2
d2(x2, γ

2
x1 (t))

≤ |ϕ(γ 2
x1 (t)) − ϕ(x2)|2

= |1
2
t (y1 + y2) + (ϕ(γ 2

x1 (t)) − ϕ(x1) − t y2) − (ϕ(x2) − ϕ(x1) − 1

2
t (y2 − y1))|2

≤
(

|1
2
t (y1 + y2)| + |ϕ(γ 2

x1 (t)) − ϕ(x1) − t y2| + |ϕ(x2) − ϕ(x1) − 1

2
t (y2 − y1)|

)2

≤
(

|1
2
t (y1 + y2)| + t ε̂ + 1

2
|t (y2 − y1)|ε̂

)2

≤
(

|1
2
t (y1 + y2)| + (3k + 1)t ε̂

)2

≤ |1
2
t (y1 + y2)|2 + 6tk(3k + 1)t ε̂ + ((3k + 1)t ε̂)2 ≤ |1

2
t (y1 + y2)|2 + 40t2k2ε̂

and similarly

1

(1 + ε)2
d2(x1, γ

2
x2(t)) ≤ |1

2
t (y1 + y2)|2 + 40t2k2ε̂.

Thus, by summing the two terms, using (3.2) and the fact that x1 ∈ Ak ,

1

(1 + ε)2
[d2(x2, γ 2

x1(t)) + d2(x1, γ
1
x2(t))]

≤ 2|1
2
t (y1 + y2)|2 + 80t2k2ε̂

≤ 1

2
|t (y1 + y2)|2 + t2

k2
ε ≤ 1

2
|t (y1 + y2)|2 + εd2(γ 2

x1(t), x1).

(3.7)

Again, by the definition of the set B and the choice of ε̂

|t y1|2 ≤ (
(1 + ε)d(γ 1

x2 (t), x2) + t ε̂
)2 ≤ (

(1 + ε)d(γ 1
x2 (t), x2) + εd(γ 2

x1 (t), x1)
)2

≤ ((1 + ε)2 + 2(1 + ε)ε)d2(γ 1
x2 (t), x2) + (ε2 + 2(1 + ε)ε)d2(γ 2

x1 (t), x1)

≤ (1 + 7ε)d2(γ 1
x2 (t), x2) + 5εd2(γ 2

x1 (t), x1) (3.8)

and

|t y2|2 ≤
(
(1 + ε)d(γ 2

x1(t), x1) + t ε̂
)2

≤ (1 + 2ε)2d2(γ 2
x1(t), x1) ≤ (1 + 8ε)d2(γ 2

x1(t), x1).
(3.9)

Using the inequalities (3.5), (3.8) and (3.9), we get that

1

2
|t (y1 + y2)|2 < (1 − δ)(|t y2|2 + |t y1|2)
≤ (1 − δ)(1 + 13ε)(d2(γ 2

x1(t), x1) + d2(γ 1
x2(t), x2)).

(3.10)
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Hence, by (3.7), (3.10), the fact that δ ≤ 1
2 and the choice of ε, we have that

d2(x2, γ
2
x1(t)) + d2(x1, γ

1
x2(t))

≤ (1 + ε)2
(
1

2
|t (y1 + y2)|2 + εd2(γ 2

x1(t), x1)

)

≤ (1 + ε)2(1 − δ)(1 + 15ε)(d2(γ 2
x1(t), x1) + d2(γ 1

x2(t), x2))

≤ (1 − δ)(1 + 100ε)(d2(γ 2
x1(t), x1) + d2(γ 1

x2(t), x2))

< d2(x2, γ
1
x2(t)) + d2(x1, γ

2
x1(t)).

However, since (x2, γ 1
x2(1)), (x1, γ

2
x1(1)) ∈ spt(π) we have by Lemma 2.10 that

d2(x2, γ
1
x2(t)) + d2(x1, γ

2
x1(t)) ≤ d2(x2, γ

2
x1(t)) + d2(x1, γ

1
x2(t)).

which is a contradiction. Therefore, the plan π is induced by a map.
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[47] Zajíček, Luděk: On the differentiation of convex functions in finite and infinite dimen-
sional spaces, Czechoslovak Math. J. 29(104) (1979), no. 3, 340–348

[48] Zarantonello, E.H.: Dense single-valuedness of monotone operators. Israel J. Math. 15,
158–166 (1973)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Optimal transport maps on Alexandrov spaces revisited
	Abstract.
	1 Introduction
	2 Preliminaries
	2.1 Rectifiability
	2.2 Alexandrov spaces
	2.3 Optimal mass transportation

	3 Proof of Theorem 1.1
	Acknowledgements
	References




