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Abstract: This study investigated the impact of Nordic walking on bone properties in postmenopausal
women with pre-diabetes and non-alcohol fatty liver disease (NAFLD). A total of 63 eligible women
randomly participated in the Nordic walking training (AEx, n = 33), or maintained their daily
lifestyle (Con, n = 30) during intervention. Bone mineral content (BMC) and density (BMD) of whole
body (WB), total femur (TF), femoral neck (FN), and lumbar spine (L2-4) were assessed by dual-
energy X-ray absorptiometry. Serum osteocalcin, pentosidine, receptor activator of nuclear factor
kappa-B ligand (RANKL) levels were analyzed by ELISA assay. After an 8.6-month intervention,
the AEx group maintained their BMCTF, BMDTF, BMCL2−4, and BMDL2−4, and increased their
BMCFN (p = 0.016), while the Con group decreased their BMCTF (p = 0.008), BMDTF (p = 0.001),
and BMDL2−4 (p = 0.002). However, no significant group × time interaction was observed, except
for BMDL2−4 (p = 0.013). Decreased pentosidine was correlated with increased BMCWB(r = −0.352,
p = 0.019). The intervention has no significant effect on osteocalcin and RANKL. Changing of bone
mass was associated with changing of pentosidine, but not with osteocalcin and RANKL. Our results
suggest that Nordic walking is effective in preventing bone loss among postmenopausal women
with pre-diabetes and NAFLD.

Keywords: Nordic walking; postmenopausal women; fatty liver disease; bone markers; bone min-
eral density

1. Introduction

Type 2 diabetes (T2DM) is a widely prevalent chronic disease that affects bone health.
Individuals with T2DM are known to have a higher risk for fractures with no change in
or higher bone mineral density (BMD) than normal individuals [1]. In addition, studies
have shown that non-alcoholic fatty liver disease (NAFLD) is related to decreased BMD
in adults [2,3] and that NAFLD is negatively associated with BMD in postmenopausal
women [4]. Diabetes, NAFLD, and osteoporosis metabolically alter the biology. Approx-
imately one- to two-thirds of diabetic patients have NAFLD [5], and both diseases are
known to be related to insulin resistance and bone metabolism. However, no studies have
assessed bone properties in patients with comorbidities; hence, it is important to assess
how bone properties would change after exercise intervention.
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In humans, bone and glucose metabolism may share similar signaling pathways [6].
Early studies have shown that biomarkers such as osteocalcin (OC), glucose, and adipokines
change with age but in a non-commensurate manner [7]. OC is a marker of bone formation
and a bone matrix protein that is exclusively produced by osteoblasts and odontoblasts.
OC plays a significant role as an endogenous insulin sensitizer [8]. The circulating levels of
OC are known to increase with improved glycemic control in type 2 diabetes [8]. Receptor
activator of nuclear factor kappa-B ligand (RANKL) is a marker of bone resorption and
is accompanied by osteoprotegerin. Recent evidence has shown that RANKL is crucially
implicated in the pathogenesis of T2DM [9]. In postmenopausal women with T2DM,
the presence of NAFLD and clinically significant fibrosis was strongly associated with low
RANKL levels [10]. In addition, pentosidine, a well-known advanced glycation end prod-
uct (AGE), is an important surrogate marker for total AGE production. There is a negative
correlation between serum pentosidine concentration and bone strength [11]. It has been re-
ported that serum or urine levels of pentosidine positively correlate with fracture incidence
and prevalence in T2DM [12]. Although the abovementioned biomarkers link both bone
and glucose metabolism, the means by which those biomarkers are associated with bone
properties in postmenopausal women with prediabetes and NAFLD are largely unknown.

Regular physical exercise has been recommended as an effective and safe non-
pharmacological strategy to counter the aging-induced loss of BMD [13]. Nordic walking
involves striding with the use of specially designed sticks and is a safe and relatively
easy-to-learn form of fitness exercise. It is considered to be effective in patients with
different chronic diseases [14], such as cardiovascular disease [15], aging [16], or women
with breast cancer [17]. The movement sequences of Nordic walking make this phys-
ical activity suitable to support body posture and strengthen the muscles of the spine,
shoulders, and hips [18]. Thus, we hypothesized that Nordic walking could be an ideal
modality of exercise for postmenopausal women with pre-diabetes and NAFLD. It could
help improve their BMD and bone turnover markers. To test our hypothesis, we evaluated
the effects of an 8.6-month Nordic walking program on BMD by using dual-energy X-ray
densitometry and biomarkers. This was considered to be associated with both bone and
glucose metabolism in postmenopausal women with pre-diabetes and NAFLD.

2. Materials and Methods
2.1. Study Design and Participants

The present study is a part of a large interventional study that was published ear-
lier [19,20]. In brief, the participants aged 50–65 years with an impaired fasting glucose
level (IFG; between 5.6 and 6.9 mmol/L) or impaired glucose tolerance (IGT; between 7.8
to 11.0 mmol/L 2 h after the intake of 75 g glucose) and NAFLD (hepatic fat content > 5%)
were considered eligible. In addition, women with serum follicle-stimulating hormone
levels greater than 30 IU/L and last menstruation more than 6 months prior but within
10 years were included in this study. After eligibility was confirmed, the participants were
randomly assigned (1:1:1:1) to 4 groups: aerobic exercise (AEx; n = 29), diet intervention
(Diet; n = 28), aerobic exercise plus diet intervention (AED; n = 29), or no intervention (NI;
n = 29). An intervention was carried out for an on average of 8.6 months (from 6 months to
11 months). For the purpose of this report, we focused on the effects of aerobic exercise
on bone properties in postmenopausal women. Thus, we only included postmenopausal
women and pooled the groups AEx and AED to form the AEx group (n = 33) and the
groups Diet and NI to form the Con group (n = 30). Hence, we could increase the sample
size, and the effects of the diet were comparable in both groups.

The protocol of study was approved by the Ethics Committee of Shanghai Institute of
Nutrition (No. 2013-003, 6 January 2013). This study conformed to the principles laid down
in the world medical association Declaration of Helsinki for medical research involving
human participants. Informed consent was obtained from all individual participants
included in the study.
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2.2. Exercise Intervention

During the 8.6-month intervention, all participants took part in supervised exercise
sessions that were conducted 2–3 times per week in a community park that was close to
their homes. Exercise sessions consisted of a 5 min warm-up and 5 min cool-down period
(such as stretching and group exercises), and supervised progressive Nordic walking.
The intensity and duration of exercises were increased from 60% to 75% of the maximum
oxygen uptake (estimated from fitness tests) and from 30 to 60 min per session. The exercise
intensity was monitored using a heart rate monitor (M5, Suunto, Vantaa, Finland).

2.3. Background Information

Background information regarding lifestyle as well as medical history was collected
using questionnaires. Daily physical activity was recorded in an activity diary [19]. In ad-
dition, food records were collected to estimate the participant’s energy intake and intake of
different nutrients during the study. The collected information was evaluated by exercise
and nutrition experts.

2.4. Anthropometric and Bone Measurements

Height was determined using a wall-fixed measuring device, and body weight was
determined using a calibrated scale, from which BMI was calculated. Dual-energy X-ray
absorptiometry (DXA Prodigy, GE Lunar Corp., Madison, WI, USA) was used to assess
whole-body lean mass and fat mass, as well as bone mineral content (BMC) and areal BMD
of the whole body (WB), total femur (TF), femoral neck (FN), and lumbar spine (L2-4).
The coefficient of variation for repeated measurements ranged from 0.9% to 1.3% for BMC
and BMD.

2.5. Clinical and Laboratory Measurements

Venous blood samples were taken in standardized fasting conditions between 7:00 a.m.
and 8:00 a.m. Plasma samples were used to assess glucose, insulin, total cholesterol, high-
density lipoprotein, low-density lipoprotein, triglycerides, and glycated hemoglobin A1c
levels as explained previously [19]. The homeostasis model assessment of insulin resistance
index was calculated using the formula: (fasting insulin concentration × fasting glucose
concentration)/22.5 [21]. Glucose tolerance tests were performed after overnight fasting,
and at 30 min, and 2 h after the intake of 75 g glucose for the assessment of serum insulin
and glucose.

The serum concentration of OC as a bone formation marker was assessed by ELISA
using Human Osteocalcin Quantikine ELISA kit (produced by R&D Systems, Minneapolis,
MN, USA; assay sensitivity 0.898 ng/mL). RANKL was assessed using the Human TNFSF11
ELISA kit (Abcam, Cambridge, MA, USA, assay sensitivity 10 pg/mL). Pentosidine was
assessed using the Human Pentosidine ELISA Kit (CUSABIO Technology LLC, Houston,
TX, USA; assay sensitivity 7.81 pmol/mL).

2.6. Data Analysis

All analyses were performed using IBM SPSS statistics for Windows, version 25.0 (IBM
Corp, Armonk, NY, USA). The Shapiro–Wilk test was used to check all data for normality.
If data were not normally distributed, they were transformed by natural logarithm before
further analysis. Descriptive statistics were used to present the data as means and 95%
confidence intervals (95% CIs) unless otherwise stated. Student’s t-test was used to compare
the differences at the baseline. Paired t-tests were used to analyze the changes with time in
variables within groups.

Analysis of covariance for repeated measures (group × time) was used to assess the ef-
fects of the interventions by adjusting the corresponding baseline data, “years menopausal”,
and intervention duration as the covariates. Measures of effect size in the analysis of co-
variance for repeated measures were shown in partial η2.
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Pearson correlation was used to assess the relationship between bone biomarkers and
BMC/BMD at the baseline and post-intervention in the whole samples. Partial correlation
coefficients, adjusted for “years menopausal” and intervention duration, were used to
evaluate the changes of bone biomarkers with the changes of BMC/BMD from pre-to-post
intervention in the whole samples. All tests were two-tailed, and a 5% probability level
was considered significant.

3. Results
3.1. Baseline Participant Characteristics

The physical and clinical characteristics of the participants at baseline are summarized
in Table 1. No significant difference was observed in any variable among the differ-
ent groups.

Table 1. Baseline characteristics of the exercise and control group.

Exercise Group (n = 33) Control Group (n = 30)

Age (years) 59.8 (58.5, 61.1) 59.7 (58.2, 61.1)
Height (m) 159.6 (157.6, 161.7) 157 (154.5, 159.5)
Weight (kg) 67.1 (64, 70.2) 63.8 (59.5, 68.1)

BMI (kg/m2) 26.4 (25.2, 27.6) 25.8 (24.4, 27.2)
Age at menopause (years) 49.1 (47.2, 51.0) 51 (49.4, 52.6)

Years post-menopausal (years) 10.6 (8.4, 12.9) 8.7 (6.8, 10.5)
FPG (mmol/L) 5.61 (5.39, 5.83) 5.55 (5.3, 5.81)

2hPG (mmol/L) 8.08 (7.47, 8.7) 8.20 (7.68, 8.72)
HbA1c (%) 6.12 (6, 6.24) 6.21 (6.09, 6.33)

FSH (nmol/L) 50.9 (41.5, 60.4) 50.1 (42.6, 57.5)
Osteocalcin (ng/mL) 236.4 (208.3, 264.4) 225 (189.8, 260.2)
Pentosidine (ng/mL) 13.7 (7.9, 19.4) 11.5 (6.1, 17.0)

RANKL (pg/mL) 46.4 (30.9, 62.0) 42.7 (32.6, 52.8)
Calcium intake (mg) 580.7 (452.2, 709.1) 666.2 (560.5, 771.9)

Physical activity (h/week) 2.45 (1.8, 3.1) 2.45 (1.83, 3.07)
Whole body T-score −0.13 (−0.47, 0.22) −0.20 (−0.54, 0.14)
Total femur T-score −0.07 (−0.45, 0.31) −0.20 (−0.61, 0.20)

Femoral neck T-score −0.62 (−0.97, −0.26) −0.54 (−0.93, −0.15)
Lumbar spine T-score −0.13 (−0.65, 0.38) −0.15 (−0.72, 0.42)

Note 1: Data are expressed as mean (95% confidence interval). Note 2: BMI, body mass index; FPG, fasting plasma
glucose; 2hPG, 2-h plasma glucose; FSH, follicle-stimulating hormone; RANKL, Receptor Activator of Nuclear
Factor-κ B Ligand. Note 3: Student’s t-test was used to evaluate the differences between groups at the baseline.

3.2. Change in BMC and BMD after the Intervention

Comparisons of BMC and BMD at the different bone sites before and after intervention
are shown in Table 2. After the 8.6-month intervention, the results showed a significant
effect of group × time interaction (p = 0.013, partial η2 = 0.106) on the BMDL2-4. BMDL2-4
levels were significantly lower in the CON group, while the AEx group preserved their
earlier levels. Controlling for body weight and duration of the intervention, the results
remained the same. No significant group × time interaction was observed in the other
BMDs and BMCs. However, BMCFN was increased after intervention within the AEx
group (p = 0.016, paired t-tests). In contrast, the CON group showed a decrease in their
BMCTF (p = 0.008), BMDTF (p = 0.001) and BMDL2-4 (p = 0.002) values after intervention,
respectively (paired t-tests).
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Table 2. Pre- and post-intervention values of bone properties for the exercise and control groups.

Exercise Group Control Group Time by Group

Pre Post p Pre Post p p

Whole-body
BMC (kg) 2.07 (1.98, 2.16) 2.06 (1.96, 2.16) 0.195 2.00 (1.89, 2.11) 1.99 (1.87, 2.10) 0.589 0.216

BMD (g/cm2) 1.07 (1.03, 1.11) 1.07 (1.03, 1.12) 0.961 1.07 (1.03, 1.11) 1.06 (1.02, 1.11) 0.756 0.952

Total-femur
BMC (g) 29.2 (27.5, 30.9) 29.3 (27.6, 31.1) 0.927 28.1 (26.3, 29.9) 27.6 (25.8, 29.3) 0.008 0.587

BMD (g/cm2) 0.96 (0.91, 1.01) 0.96 (0.91, 1.02) 0.074 0.95 (0.89, 1) 0.93 (0.88, 0.98) 0.001 0.183

Femoral neck
BMC (g) 4.02 (3.79, 4.25) 4.06 (3.83, 4.29) 0.016 3.98 (3.7, 4.25) 4.27 (3.93, 4.61) 0.131 0.579

BMD (g/cm2) 0.86 (0.82, 0.91) 0.87 (0.82, 0.92) 0.156 0.87 (0.82, 0.91) 0.86 (0.82, 0.91) 0.606 0.297

Lumbar spine
BMC (g) 46.0 (43.1, 48.8) 45.8 (42.7, 48.9) 0.821 43.8 (40.5, 47.1) 42.7 (39.3, 46.1) 0.141 0.323

BMD (g/cm2) 1.12 (1.06, 1.18) 1.12 (1.06, 1.18) 0.592 1.11 (1.05, 1.18) 1.09 (1.02, 1.15) 0.002 0.013

Note 1: Data are shown as mean (95% confidence interval). Note 2: Bone properties were assessed by dual-energy X-ray absorptiometry.
Note 3: BMC, bone mineral content; BMD, bone mineral density. Note 4: Paired t-tests were used to analyse the changes in variables within
groups. Analysis of covariance for repeated measures (group × time) was used to assess the effects of the interventions by adjusting the
corresponding baseline data, “years menopausal”, and intervention duration as the covariates.

3.3. Change in Bone Turnover Markers after the Intervention

Serum OC, RANKL, and pentosidine levels did not differ significantly between the
AEx and CON groups both at the pre- and post-intervention (Figure 1). After the interven-
tion, both the AEx and CON groups had decreased the levels of OC (p = 0.033 and 0.001,
respectively, paired t-test) and pentosidine (p = 0.035 and 0.015, respectively, paired t-test),
but no significant changes were observed in RANKL.
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Figure 1. Bone turnover markers in AEx and CON pre-and post-intervention. Note: * p < 0.05, ** p < 0.01, paired t-tests
were used to analyze the changes in variables within groups. Data are means ± SD (standard deviation).

3.4. Associations between Biomarkers and BMC/BMD

RANKL displayed a positive correlation with BMCWB (r = 0.398, p = 0.002), BMCTF
(r = 0.396, p = 0.003), BMCFN (r = 0.320, p = 0.022), BMCL2-4 (r = 0.322, p = 0.015), BMDWB
(r = 0.506, p < 0.001), BMDTF (r = 0.454, p < 0.001), BMDFN (r = 0.421, p = 0.001), and BMDL2-4
(r = 0.377, p = 0.004) values in the whole samples at the baseline, while these correlations
disappeared after intervention (all p > 0.05, data are not shown). No significant associations
were found between OC, pentosidine, and BMC/BMD at both pre- and post-intervention
(all p > 0.05). Decreased pentosidine levels were associated with an increase in BMCWB
(r = −0.352, p = 0.019, Figure 2) values. Even after adjusting for “years menopausal” and
intervention duration, the significance remained (r = −0.369, p = 0.032). No correlations
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were observed between changes in OC and RANKL and variations in BMC/BMD at the
different bone sites.
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4. Discussion

In this study, we found that an 8.6-month aerobic exercise program that comprised
Nordic walking chiefly, was able to maintain bone mass and density in patients with
prediabetes and NAFLD. Previous studies have shown that the bone mass of the femur
and lumbar spine decreases by approximately 1% annually at midlife and at an accelerated
rate of 2% annually during the first few years after menopause in women [22,23]. In the
present study, there was a ~0.4% increase in BMDL2-4, and BMDTF was conserved after
8.6 months of the exercise intervention when compared with a 2.6% decrease in the control
group, indicating that the osteogenic effects were significant. This positive adaptation
occurred in regions where a large portion of the postmenopausal women have osteoporosis
or osteopenia.

Previous studies have shown that periodic exercise training in 1-year blocks (4–6-
week blocks of high-intensity bone-specific exercise with intermittent moderate-intensity
metabolism-specific exercise for 10–12 weeks) positively affected BMD at the lumbar
spine that was assessed by peripheral quantitative computed tomography in early post-
menopausal women with metabolic syndrome [24]. Skoradal et al. suggested that 30–60 min
of soccer training twice a week for 16 weeks could effectively increase BMD (3.9%) in the
lumbar spine in individuals 55–70 years of age with pre-diabetes [25]. Chien et al. reported
that a 6-month graded treadmill walking program combined with stepping exercises using
a 20 cm-high bench attenuated lumbar spine BMD loss in osteopenic postmenopausal
women [26]. A 12-month walking program in early (≤6 years) postmenopausal women
demonstrated a significant increase in BMD at the lumbar spine [27]. However, some
studies also reported that walking did not increase BMD at the lumbar spine [28,29].

Nordic walking has characteristic diagonal movements with contralateral hand-foot
coordination such that the swing phase is double (one leg and the pole in the opposite
hand). Compared with walking without poles, it has different kinetic variables and involves
stronger upper body movements [30]. Studies have shown that Nordic walking enhances
muscular strength in healthy participants and in the elderly [14]. It is possible that muscle
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tension produces strains in the skeleton, which could induce bone formation [31]. We did
not find significant increases in BMD of the lumbar spine and femur in the exercise group;
however, there was a decrease in BMD in the control group (meaning amount of bone
mass at the measured area of bone sites have changed, with bone becoming less dense).
This indicates that our exercise intervention program could help maintain BMD.

OC is one of the bone turnover markers released during bone remodeling by os-
teoblasts or odontoblasts, which is believed to be associated with an increase in BMD.
Studies have reported that exercise programs comprising football training, 40 min of jog-
ging, and 20 min of gymnastics with wrist weights (0.8 kg on each arm) and strength
training increased serum OC levels compared to controls [25,32,33]. On the contrary,
we found no significant effects of Nordic walking on OC. Shibata et al. and Wochna et al.
also demonstrated that exercise training did not increase OC levels while causing favorable
changes in bone health [34,35].

RANKL was recently identified as an important cytokine that sustains osteoclast
formation and survival [36]. We found that baseline BMC and BMD were associated with
RANKL. However, Nordic walking did not change the serum concentration of RANKL.
This is supported by previous studies in which there was no significant change in the
serum RANKL levels after 8 months of combined exercise intervention in elderly partici-
pants [37,38]. In contrast, in one study among middle-aged men, high intensity (70–75%
maximal heart rate) walking exercise was instructed for 10 weeks, five times per week.
This led to a decrease in the serum concentration of RANKL when compared with moderate-
intensity (50–60% maximal heart rate) exercise [39]. This suggested that RANKL signaling
factors could be dependent on exercise intensity.

AGEs, especially pentosidine, are considered to affect bone metabolism and con-
tribute to bone fragility in patients with T2DM [40]. AGEs significantly inhibit osteoblast
proliferation, differentiation, and mineralization and induce osteoblast apoptosis [41,42].
The formation of bone nodules in human osteoblasts was impaired by pentosidine [43].
In contrast, AGEs led to a decrease in osteoclast-induced bone resorption [44]. In our
study, decreases in pentosidine levels were associated with increases in values of BMC
of the whole body. Although we do not know the causal relationship, this association
indicated that the change of serum pentosidine was correlated with the change of amount
of bone mass. This result agreed with previous studies which have shown that pentosidine
negatively correlated with bone strength [11] and was positively associated with fracture
incidence in T2DM [12].

Our study has some limitations. First, the study only measured BMC/BMD using
DXA. Bone quality in individuals with glucose impairment and NAFLD could be more
important than BMD [45]. Second, the follow-up period was 8.6 months, which may not be
long enough to observe the effects of exercise on BMC/BMD or bone turnover markers
due to large individual variations. Third, all participants were from the same community,
and the behavior of participants in the no-intervention group could have been influenced
by those in the intervention groups, even though we asked them to maintain their existing
lifestyle during the intervention. This is reflected by the observation that the fitness level
of those in the non-intervention group also increased [20].

5. Conclusions

In conclusion, these findings indicate that brisk Nordic walking for 8.6 months is
effective in preventing bone loss in the lumbar spine and femur among postmenopausal
women with pre-diabetes. It could help counteract the impairment of bone metabolism in
patients with comorbidities of prediabetes, such as NAFLD.
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