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Let H be the first Heisenberg group, and let k ∈ C∞(H \ {0}) be a kernel which is 
either odd or horizontally odd, and satisfies

|∇n
Hk(p)| � Cn‖p‖−1−n, p ∈ H \ {0}, n � 0.

The simplest examples include certain Riesz-type kernels first considered by 
Chousionis and Mattila, and the horizontally odd kernel k(p) = ∇H log ‖p‖. We 
prove that convolution with k, as above, yields an L2-bounded operator on regular 
curves in H. This extends a theorem of G. David to the Heisenberg group.
As a corollary of our main result, we infer that all 3-dimensional horizontally odd 
kernels yield L2 bounded operators on Lipschitz flags in H. This is needed for solving 
sub-elliptic boundary value problems on domains bounded by Lipschitz flags via the 
method of layer potentials. The details are contained in a separate paper. Finally, 
our technique yields new results on certain non-negative kernels, introduced by 
Chousionis and Li.
© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Soit H le groupe de Heisenberg, et soit k ∈ C∞(H \ {0}) un noyau impair ou 
horizontalement impair et vérifiant la propriété :

|∇n
Hk(p)| � Cn‖p‖−1−n, p ∈ H \ {0}, n � 0.

Les exemples les plus simples comprennent les noyaux de type Riesz étudiés d’abord 
par Chousionis et Mattila, et le noyau horizontalement impair k(p) = ∇H log ‖p‖. 
Nous démontrons que la convolution de k, comme ci-dessus, définit un opérateur 
borné sur L2 sur les courbes régulières. Ce résultat généralise un théorème de 
G. David au groupe de Heisenberg.
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Comme corollaire de notre résultat principal, nous déduisons que tous les noyaux 
horizontalement impairs de dimension 3 définissent des opérateurs bornés sur L2 sur 
certaines surfaces lipschitziennes, que nous appelons «drapeaux», dans le groupe de 
Heisenberg. Cela permet de résoudre par potentiel de simple et double couche des 
problèmes aux limites sous-elliptiques sur les domaines bornés par des drapeaux 
lipschitziens. Les détails se trouvent dans un autre article. Finalement, notre 
méthode donne des nouveaux résultats concernant certains noyaux non négatifs, 
introduits par Chousionis et Li.
© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This paper concerns the L2 boundedness of certain singular integral operators (SIOs) on regular curves 
in the Heisenberg group (H, d) = (R3, ·, d). For a brief introduction to the space (H, d), see Section 3.2. We 

http://creativecommons.org/licenses/by/4.0/
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recall that a closed set E in a metric space (X, d) is s-regular, for s � 0, if there exists a constant C � 1
such that

C−1rs � Hs(E ∩B(x, r)) � Crs, x ∈ E, 0 < r � diam(E).

Definition 1.1. A closed set γ in a metric space (X, d) is a regular curve if γ is a 1-regular set, and also the 
Lipschitz image of a closed subinterval of R.

The study of SIOs on regular curves in Rn has a long history. Calderón [3] in 1977 proved that the Cauchy 
transform Cf(z) = f ∗ 1

z defines an operator bounded on L2(Γ), whenever Γ ⊂ C is the graph of Lipschitz 
function with small Lipschitz constant. Coifman, McIntosh, and Meyer [15] removed the “small constant” 
assumption in 1982. Coifman, David, and Meyer [14] then proved the same with the Cauchy kernel “ 1

z ” 
replaced by any smooth −1-homogeneous odd function k : Rn \ {0} → C. David [18] extended the results 
to all regular curves γ ⊂ Rn, see also [19]. The results in [18,19] imply that if γ ⊂ Rn is a regular curve, 
μ := H1|γ , and k is as above, then the sublinear operator

T ∗
k,μf(x) := sup

ε>0

∣∣∣∣∣∣∣
ˆ

{y:|x−y|>ε}

k(x− y)f(y) dμ(y)

∣∣∣∣∣∣∣ , f ∈ Cc(Rn), (1.2)

called the maximal SIO induced by (k, μ), extends to a bounded operator on Lp(μ), for any 1 < p < ∞. 
In the sequel, we will abbreviate the Lp(μ) boundedness of T ∗

k,μ, 1 < p < ∞, by writing that k is a 
Calderón-Zygmund (CZ) kernel for μ.

1.1. Singular integrals on regular curves in H

What are the natural kernels in H? In Rn, the oddness assumption is prevalent, so one might also study 
odd kernels in H. In fact, Chousionis and Mattila [8] first considered the odd −1-homogeneous Riesz-type 
kernels

kx(x, y, t) = x

‖(x, y, t)‖2 , ky(x, y, t) = y

‖(x, y, t)‖2 , kt(x, y, t) = t

‖(x, y, t)‖3 .

Here, and in the introduction, ‖(x, y, t)‖ = ((x2 + y2)2 + 16t2)1/4 is the Korányi norm of (x, y, t) ∈ H. 
Chousonis and Mattila showed in [8, Corollary 4.4] that K = (kx, ky, kt) is not a CZ kernel for 1-dimensional 
self-similar measures on H, unless they are supported on horizontal lines (see Definition 3.36). In contrast, 
our main result, Theorem 1.5, will yield the positive result that K is a CZ kernel for H1 restricted to any 
regular curve in H.

In Rn, the oddness hypothesis is not only a matter of technical convenience. It stems from the existence of 
“useful” odd kernels, obtained by differentiating (negative) powers of the Euclidean norm | · |. In particular, 
the (n − 1)-dimensional Riesz kernel ∇|x|2−n is of key importance in the theory of partial differential 
equations, see [26,39,47,65], and the removability problem for Lipschitz harmonic functions, see [22,53,54]. 
In the Heisenberg group, a similar role is played by the “H-Riesz kernel” k(p) = ∇H‖p‖−2n, see [9,4,29], 
where ∇H = (X1, . . . , X2n) is the horizontal gradient as defined in Section 3.2. See [29] for up-to-date results 
and open questions regarding the H-Riesz kernel.

In contrast to Rn, the horizontal derivatives of (negative) powers of the Korányi norm do not yield odd 
kernels, but horizontally odd kernels:

k(−x,−y, t) = −k(x, y, t), (x, y, t) ∈ H \ {0}. (1.3)
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Condition (1.3) is not weaker than oddness, but simply incomparable: for example, it forces k to vanish on 
the t-axis. Theorem 1.5 will apply for instance to the −1-homogeneous horizontally odd kernel

∇H log ‖(x, y, t)‖ =
(
x(x2 + y2) − 4ty

‖(x, y, t)‖4 ,
y(x2 + y2) + 4tx

‖(x, y, t)‖4

)
.

Another motivation to study horizontally odd kernels stems from applications to Lipschitz flags in H, see 
Section 1.3 for further discussion.

After this motivation, here are our standing kernel assumptions:

Definition 1.4 (Good kernels). A function k : H \ {0} → C is a good kernel if

1. k ∈ C∞(H \ {0}), and for every n � 0 there exists a constant Cn > 0 such that

|∇n
Hk(p)| � Cn‖p‖−n−1, p ∈ H \ {0}.

2. k is either odd, or horizontally odd in the sense (1.3),

In (1), the notation ∇n
H refers to any concatenation of the X and Y vector fields (see Definition 3.34) of 

length at most n. Here is, then, the main result of the paper:

Theorem 1.5. Good kernels are CZ kernels for regular curves in H.

The property of a good kernel “k being a CZ kernel for a regular curve γ” means the same as before: 
the maximal SIO induced by (k, H1|γ) defines an operator bounded on Lp(H1|γ), for 1 < p < ∞. See 
Definition 2.16 for a more formal treatment.

Remark 1.6. Our good kernels are not assumed to be −1-homogeneous, so the theorem is superficially 
stronger than the original result of David [18] mentioned in the first section. However, the inhomogeneous 
variant is well-known for odd smooth kernels in Rn. The proof is, for example, outlined in a sequence of 
exercises at the end of [20, Part II]. A different proof (assuming only C2-regularity from k) is also contained 
in [63].

In the next two subsections, we will explain some further results.

1.2. Non-negative kernels

SIOs on regular curves in H were first studied by Chousionis and Li in [6]. The kernels k : H \ {0} →
C considered in [6] are not “good” in the sense of Definition 1.4. Instead, they are non-negative −1-
homogeneous kernels of the form

kα(x, y, t) =
(
√

|t|/‖p‖)α
‖p‖ , p = (x, y, t) ∈ H \ {0}, α � 1.

Chousionis and Li proved that kα with α � 8 is a CZ kernel for regular curves γ ⊂ H, and with Zimmerman 
they found a generalisation of this result to arbitrary Carnot groups [10]. Conversely, they also showed in 
[6] that if E ⊂ H is 1-regular, and k2 is a CZ kernel for E, then E is contained on a regular curve. It may 
sound astounding that non-negative kernels could ever be CZ kernels. A heuristic explanation comes from 
noting that kα vanishes identically on the plane {(x, y, t) : t = 0}. Consequently, if � ⊂ H is a horizontal line, 
then the (maximal) SIO induced by (kα, H1|�) is the zero operator. In contrast, our good kernels restricted 



34 K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113
to horizontal lines are odd, and the induced SIOs on horizontal lines behave like the Hilbert transform (at 
least when the kernels are −1-homogeneous).

Our technique also applies to the kernels kα by Chousionis-Li:

Theorem 1.7. The kernels kα are CZ kernels for regular curves in H for α � 4.

Recall that Chousionis and Li [6] proved this for α � 8. It would be very interesting to know (as also 
Chousionis and Li point out) if the result persists for α � 2; then we could infer that k2 is a CZ kernel for a 
1-regular set E ⊂ H if and only if E is contained on a regular curve. We close the section with another open 
question. While our technique applies to the kernels kα, our main result, Theorem 1.5 does not. So, we ask 
for a class of kernels which simultaneously contains odd and horizontally odd kernels, and the non-negative 
kernels of Chousionis-Li. Here is one suggestion (caveat emptor !):

Question 1. Let k : H \ {0} → C be a smooth −1-homogeneous function which is a CZ kernel for horizontal 
lines, with uniform constants. Is k then a CZ kernel for regular curves?

After the first version of this paper was posted on the arXiv, Chousionis, Li, and Zimmerman [7] es-
tablished the following partial result in all Carnot groups: whenever a 1-dimensional standard kernel (see 
Definition 2.1) is a CZ kernel for all horizontal lines, with uniform constants, then it is also a CZ kernel 
for regular C1,α-curves for α > 0. Very recently, Zimmerman [66] studied the analogue of this question in 
Banach spaces.

1.3. SIOs on Lipschitz flags

The L2-boundedness of 1-codimensional SIOs on Lipschitz surfaces is a key component in the method 
of layer potentials. This is a powerful technique for solving boundary value problems (BVPs) associated 
to elliptic and parabolic partial differential operators (PDOs) in domains with non-smooth boundaries, see 
[26,39,47,65]. The method has not been equally successful in solving BVPs for sub-elliptic PDOs, such as 
the Kohn-Laplacian 
H = X2 + Y 2. One key missing piece is the L2-boundedness of 1-codimensional SIOs 
on non-smooth surfaces in Heisenberg groups (for smooth surfaces, layer potentials were already employed 
by Jerison [40,41] in the 80s). Here, we make progress on Lipschitz flags in H. In the joint work [57] with 
Villa, the result, Theorem 1.8 below, is used to implement the method of layer potentials for 
H in domains 
bounded by Lipschitz flags.

A Lipschitz flag is a subset of H of the form F = {(A(y), y, t) : y, t ∈ R}, where A : R → R is Lipschitz. 
In Section 7, we derive the following result as a corollary of the “1-dimensional” main theorems discussed 
above:

Theorem 1.8. Let K ∈ C∞(H \ {0}) be a horizontally odd kernel satisfying

|∇n
HK(p)| � Cn‖p‖−3−n, p ∈ H, n � 0,

for some constants Cn > 0. Then K is a CZ kernel for Lipschitz flags in H.

In other words, the maximal SIO induced by (K, H3|F ) is bounded on Lp(H3|F ), 1 < p < ∞, whenever 
F ⊂ H is a Lipschitz flag. A slightly more general version of the result above will be needed, and proven in 
Theorem 7.8, for the purpose of the application in [57]. For the kernel K(p) = ∇H‖p‖−2, Theorem 1.8 is a 
corollary of the main result in [29].
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1.4. Overview of proofs in Rn

Before giving an outline of the proof of Theorem 1.5 in Section 1.5, we discuss proof strategies in Rn, 
concerning the action of odd kernels on regular curves. David’s approach in [18] was to reduce the problem 
on regular curves to the one on Lipschitz graphs: the main ideas were that regular curves have big pieces 
of Lipschitz graphs (BPLG), and that CZ kernels for Lipschitz graphs are also CZ kernels for 1-regular sets 
with BPLG. A second “reduction” proof of this type is due to Semmes [60] from 1990. He introduced the 
notion of sets which admit corona decompositions by Lipschitz graphs (CDLG), and showed that CZ kernels 
for Lipschitz graphs are CZ kernels for 1-regular sets admitting CDLG.

An alternative strategy was found by Jones [43,44]. He introduced the notion of β-numbers: given a set 
K ⊂ Rn, and a ball B(x, r) centred on K, the β-number βK(B(x, r)) measures the deviation of K ∩B(x, r)
from the best-approximating line. Jones proved in [44] that the β-numbers on regular curves in γ ⊂ C

satisfy the following square function estimate:

R̂

0

ˆ

B(x0,R)

βγ(B(x, r))2 dH1|γ(x) dr
r

� R, B(x0, R) ⊂ C. (1.9)

The case of Lipschitz graphs was already contained in [43], where Jones deduced the L2-boundedness of C
on Lipschitz graphs from the geometric condition (1.9). The square function estimate (1.9) is also valid for 
regular curves in Rn, as shown by Okikiolu [56].

More recently, Tolsa [63] introduced the notion of α-numbers. These are, roughly speaking, measure-
theoretic versions of Jones’ β-numbers. Tolsa showed that odd m-dimensional C2-smooth kernels in Rn are 
CZ kernels for any m-regular measure μ on Rn whose α-numbers satisfy a square function estimate analogous 
to (1.9). This improves on the result of David [19], since only C2-regularity of the kernel is required (and 
−m-homogeneity is not assumed). Moreover, as in Jones’ argument, the proof deduces the L2-boundedness 
of SIOs directly from bounds on a square function involving the α-numbers, without passing via Lipschitz 
graphs.

Investigating the connections between Lipschitz graphs, sets with BPLG, or admitting CDLG, square 
function estimates involving α’s, β’s, or other geometric quantities, and the L2-boundedness of SIOs, is 
known as the theory of uniform rectifiability. For more information, see [16,17,64].

1.5. The proof of Theorem 1.5: an outline

Above, we mentioned two approaches for studying SIOs on regular curves in Rn: either reduce matters 
to the special case of Lipschitz graphs via “big piece” or “corona” methods, or take a more direct route via 
geometric square functions (α-numbers or β-numbers). In this paper, we take the former approach(es), as 
the latter appears to be difficult to execute for two separate reasons:

• The oddness of kernels in Rn is critical in quasiorthogonality arguments, see [63], and horizontal oddness 
seems to be a poor substitute in this regard.

• Analogues of Jones’ β-numbers have been extensively studied in H, see [30,46,49,50,48]. A surprising 
example of Juillet [46] shows that the L2-integral of the β-numbers appearing in (1.9) need not be 
bounded by H1(γ), for rectifiable curves γ ⊂ B(x0, R). Instead, Li and Schul [49] proved a version of 
(1.9) where the exponent “2” is replaced by “4”. We do not know how to use this – weaker – information 
to prove Theorem 1.5 in H, even for odd kernels.

We then discuss the former approach. Heisenberg analogues of Lipschitz graphs are known as intrinsic 
Lipschitz graphs (iLGs), and they were introduced by Franchi, Serapioni, and Serra Cassano [32] in 2006. 
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Their rectifiability properties, both qualitative and quantitative, have been investigated vigorously in recent 
years, see [5,13,28,33,51,52,24,58]. However, many of these papers have focused on 1-co-dimensional iLGs, 
whereas the objects relevant here are the 1-dimensional iLGs over horizontal subgroups of H, see Section 3.3. 
The first objective en route to Theorem 1.5 is to establish the result in the special case of 1-dimensional 
iLGs in H:

Theorem 1.10. Weakly good kernels are CZ kernels for iLGs over horizontal subgroups in H.

A function k : H \ {z = (x, y) = 0} → C is a weakly good kernel if k ∈ C∞(H \ {z = 0}), k is either odd 
or horizontally odd, and for every n � 0 there exists a constant Cn > 0 such that

|∇n
Hk(p)| � Cn|z|−n−1, p = (z, t) ∈ H \ {z = 0}. (1.11)

In other words, weakly good kernels do not necessarily decay in the t-variable; as a consequence, they may 
not be “standard kernels” in H (see Definition 2.1). However, they are standard kernels when restricted 
to any iLG over a horizontal subgroup in H. Weakly good kernels arise in a natural way from the kernels 
appearing in Theorem 1.8, see Lemma 7.12, and indeed, a slightly stronger version of Theorem 1.10 can be 
used to prove Theorem 1.8 about Lipschitz flags in H.

Theorem 1.10 is the main news of the paper. Once it has been established, we still need to complete 
David’s approach in [18], and prove the following statements:

Theorem 1.12. Regular curves in H have big pieces of intrinsic Lipschitz graphs (BPiLG) over horizontal 
subgroups.

“Theorem”. Let (X, d) be a proper metric space, let G be a family of m-regular sets in (X, d), and let K be 
an m-dimensional standard kernel on X which is a CZ kernel for all G ∈ G, uniformly. Then K is a CZ 
kernel for any m-regular set B ⊂ X which has “big pieces” of sets in G.

For a more precise statement, see Theorem 6.3. The proof is a straightforward adaptation of [20, Propo-
sition 3.2] to proper metric spaces, and we claim very little originality: the main point is to check that 
the Besicovitch covering theorem is not used in an essential way. Regarding Theorem 1.12, we follow an 
approach of David and Semmes [23], by showing, first, that regular curves have big horizontal projections
(BHP), and satisfy the weak geometric lemma for Jones’ β-numbers. Then, a combination of these properties 
yields BPiLG. These arguments are quite well-known, and have even been adapted to 1-co-dimensional iLGs 
in Hn, see [5,28]. Only verifying the BHP property for regular curves produces a minor “new” problem. The 
details are contained in Section 6.2.

So, the heart of the matter is Theorem 1.10, whose proof indeed takes up most of the paper. The problem 
quickly reduces to a question concerning certain 1-dimensional SIOs on R. More precisely, after repeating 
a decomposition due to Coifman, David, and Meyer [14], one is led to consider (variants of) the standard 
kernel

KB(x, y) = κ(x− y) exp
(

2πi
[
B2(x)−B2(y)−1

2 [B1(x)+B1(y)](x−y)
(x−y)2

])
, (1.13)

where κ ∈ C∞(R \ {0}) is an odd −1-dimensional kernel, and B = (B1, B2) : R → R2 is a tame map. This 
simply means that B1 is Lipschitz, and Ḃ2 = B1. Tame maps are thoroughly investigated in Section 3.1. 
The kernel KB is not antisymmetric, but we nevertheless manage to prove in Theorem 4.17 that KB is 
a CZ kernel on R. In doing so, we adapt arguments of Christ [12] and Hofmann [38]. Unfortunately, this 
is not quantitative enough: to apply the kernels KB in the context of Theorem 1.10, we need to know 
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that the CZ constant of KB, denoted ‖KB‖C.Z., depends polynomially on the “tameness constant” of B. 
A similar problem for Lipschitz functions (and graphs) already appears in David’s work [18,20], but the 
solution is easier there: it is based on the “big piece theorem” stated below Theorem 1.12, plus the simple – 
and ingenious – observation that “L-Lipschitz graphs have big pieces of 9

10L-Lipschitz graphs”, see [20, p. 
66]. We were not able to prove an analogue of this property for tame maps, see Question 2.

Instead, we found a weaker substitute: tame maps admit “corona decompositions” by tame maps with a 
smaller constant. More precise statements can be found in Section 3.1.1. We mentioned in Section 1.4 that 
Semmes [60] used corona decompositions (by Lipschitz graphs) to reduce SIO problems on regular curves to 
SIO problems on Lipschitz graphs. Applying his mechanism, and the tame-corona decomposition mentioned 
above, we can finally infer the polynomial dependence of ‖KB‖C.Z. on the “tameness” of B. We refer to 
Section 5 for details.

It is a natural question whether this approach could be adapted to study SIOs on regular curves in higher-
dimensional Heisenberg groups Hn, n > 1. In that case, the complementary subgroups of 1-dimensional 
horizontal subgroups are no longer commutative. Therefore the tameness condition (3.1) involves additional 
nonlinear terms, and the case n > 1 requires a separate treatment. Following our approach, one crucial step 
towards such a generalisation is a “tame-corona decomposition” in higher dimensions. Such a decomposition 
was in fact obtained in [25], after the present paper first appeared (for the higher dimensional tameness 
condition, see [25, Definition 2.5]). However, this is not the only missing piece: one will also need to study 
the higher dimensional analogues of the kernels mentioned in (1.13).

We have now summarised the proof of Theorem 1.5, and explained most of the structure of the paper. 
Let us add that in Section 2, we merely collect standard preliminaries on Calderón-Zygmund theory. In 
Section 3, we introduce tame maps, the Heisenberg group, and intrinsic Lipschitz graphs, and prove the 
corona decomposition for tame maps. In Section 4, we reduce the proof of Theorem 1.10 to the study of 
the kernel KB – or, as it really turns out, KA,B – and establish “qualitatively” that KA,B is a CZ kernel 
on R. The quantitative version is the main content of Section 5, and this section concludes the proof of 
Theorem 1.10. In Section 6, we prove the “BPiLG” Theorem 1.12 and use it to deduce Theorem 1.5 from 
Theorem 1.10. In this final “from graphs to curves” upgrade, it is very useful to know that good kernels are 
standard kernels in H. This explains why weak goodness works for Theorem 1.10, but not for (the proof of) 
Theorem 1.5. In Section 7 we use a version of Theorem 1.10 to deduce Theorem 1.8 about Lipschitz flags.

The proof of Theorem 1.7 (concerning the non-negative kernels kα) is easier than the proof of Theorem 1.5. 
The case of intrinsic Lipschitz graphs is contained in Section 4.7. The case of general regular curves is, again, 
reduced to this case with the BPiLG machinery, see Section 6.3 for the final details.
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in function and mapping theory on Euclidean and metric measure spaces” at IM PAN, Warsaw. We would 
like thank all the organisers, in particular Tomasz Adamowicz, and the staff at IM PAN, for their support 
and hospitality during our stay in Warsaw.

2. Preliminaries on singular integral operators

2.1. Standard kernels

We define standard kernels and Calderón-Zygmund operators, and recall some of their standard proper-
ties.

Definition 2.1. Let (X, d) be a metric space, write 
 := {(x, x) : x ∈ X}, and let k > 0. A k-dimensional 
standard kernel (k-SK) on X is a Borel function

K : X ×X \ 
 → C
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for which there exist constants C > 0 and α ∈ (0, 1] such that the following holds:

1. |K(x, y)| � C
d(x,y)k , for all (x, y) ∈ X ×X \ 
,

2. max {|K(x, y) −K(x′, y)|, |K(y, x) −K(y, x′)|} � C d(x,x′)α
d(x,y)k+α ,

whenever x, x′, y ∈ X and d(x, x′) � d(x, y)/2. The smallest constant “C” above will be denoted by 
‖K‖α,strong.

A standard kernel (SK), without reference to the dimension, will mean a 1-SK.

For the purpose of this paper, X will often be the real line R or the Heisenberg group H (Definition 3.31). 
An important class of SKs, for this paper, are those induced by good kernels k : H \ {0} → C, recall 
Definition 1.4. Setting K(p, q) := k(q−1 · p), one obtains an SK on H satisfying Definition 2.1(1)-(2) with 
α = 1

2 :

Proposition 2.2. If k : H \ {0} → C is a good kernel, then K : H×H \ 
 → [0, +∞), defined by K(p, q) :=
k(q−1 · p), is an SK on (H, d) with α = 1/2.

Proof. The bound (1) is immediate from the good kernel assumption. The Hölder continuity (2) can be 
proven by arguments similar to [9, Proposition 3.11] and [4, Lemma 2.1]. The exponent α = 1

2 arises when 
verifying the Hölder continuity of q �→ K(q−1 · p). �

A weakly good kernel k ∈ C∞(H \ {z = 0}), satisfying (1.11), need not induce an SK on H by the 
formula K(p, q) = k(q−1 · p). However, it will turn out that if Γ ⊂ H is an intrinsic Lipschitz graph over 
a horizontal subgroup, then K is an SK on (Γ, d). We record some preliminary details here, but the matter 
will only be concluded in Section 4.

Example 2.3. Let A : R → R be an M -Lipschitz function, and let B = (B1, B2) : R → R2 be an N -tame 
function (here we just need to know that B1 is N -Lipschitz, and Ḃ2 = B1; see Section 3.1), where M, N � 1. 
Let k : R ×R \ 
 → C be an SK, and let q : R → R be one of the functions

q(s) := s2 or q(s) := s|s|.

Then, the kernel Kk,A,B(x, y) :=

k(x, y)eA,B(x, y) := k(x, y) exp
(

2πi
[
A(x)−A(y)

x−y + B2(x)−B2(y)−1
2 [B1(x)+B1(y)](x−y)
q(x−y)

])
is an SK, with ‖Kk,A,B‖α,strong � ‖k‖α,strong max{M, N}. To see this, fix x, x′, y ∈ R with |x − x′| �
|x − y|/2, and write

|Kk,A,B(x, y) −Kk,A,B(x′, y)| � |k(x, y) − k(x′, y)| + |k(x′, y)||eA,B(x, y) − eA,B(x′, y)|,

and use the SK estimates for k. The problem then reduces to estimating |eA,B(x, y) − eA,B(x′, y)|, which 
further reduces (using that t �→ e2πit is 2π-Lipschitz) at finding upper bounds for

a(x, x′, y) :=
∣∣∣∣A(x′) −A(y)

x′ − y
− A(x) −A(y)

x− y

∣∣∣∣
and
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b(x, x′, y) :=
∣∣∣B2(x′)−B2(y)− 1

2 [B1(x′)+B1(y)](x′−y)
q(x′−y) − B2(x)−B2(y)− 1

2 [B1(x)+B1(y)](x−y)
q(x−y)

∣∣∣ .
We leave it to the reader to check that a(x, x′, y) � M |x′ − x|/|x − y|. To see that also |b(x, x′, y)| �
N |x′ − x|/|x − y|, we first infer from the tameness of B that B2 ∈ C1(R), and Ḃ2 = B1, see Remark 3.2. 
Therefore, for x �= y,

B2(x) −B2(y) − 1
2 [B1(x) + B1(y)](x− y)
q(x− y) =

yˆ

x

B1(x) + B1(y) − 2B1(s)
2q(x− y) ds. (2.4)

The tameness of B also implies that B1 is N -Lipschitz, so a little computation shows that the x and y
derivatives of the right hand side are � N/|x − y| almost everywhere. Now it follows from the fundamental 
theorem of calculus that b(x, x′, y) � N |x − x′|/|x − y|, as claimed.

The same argument also works for bounding |Kk,A,B(y, x) −Kk,A,B,(y, x′)| � |x − x′|/|x − y|.

2.2. Generalised standard kernels and CZOs

In Section 5, we will encounter kernels which are not quite SKs in the sense above, but satisfy the 
following relaxed conditions:

Definition 2.5. Let (X, d) be a proper metric space. A Borel function K : X×X \ 
 → C is a k-dimensional 
generalised standard kernel (k-GSK) if the “size” condition in Definition 2.1(1) holds with constant C � 1, 
and moreover K satisfies the following two inequalities for all Radon measures μ on X, for all f ∈ L1

loc(μ), 
and for all closed balls B ⊂ X:

ˆ

X \ 2B

|K(x, y) −K(x0, y)||f(y)| dμ(y) � CMμ,kf(x0), x, x0 ∈ B, (2.6)

and
ˆ

X \ 2B

|K(y, x) −K(y, x0)||f(y)| dμ(y) � CMμ,kf(x0), x, x0 ∈ B. (2.7)

Here Mμ,k is the “radial” maximal function of order k:

Mμ,kf(x) := sup
r>0

1
rk

ˆ

B(x,r)

|f(y)| dμ(y), x ∈ X.

The best constant “C” here will be denoted ‖K‖.

On first sight, it may appear odd that the constant “C” needs to be independent of the choice of the 
Radon measure μ on X. However, Proposition 2.8 below shows that any k-SK K : X × X \ 
 → C is a 
k-GSK, with

‖K‖ �α ‖K‖α,strong.

Proposition 2.8. Let (X, d) be a proper metric space, let k > 0, and let K : X × X \ 
 → C be a k-SK. 
Then (2.6)-(2.7) hold with a constant C �α,k ‖K‖α,strong.
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Proof. By symmetry, we only need to verify (2.6). Fix B, μ, f , and x, x0 ∈ B as in Definition 2.5. Then,
ˆ

X\2B

|K(x, y) −K(x0, y)||f(y)| dμ(y) � ‖K‖α,strong
ˆ

X\B(x0,r)

d(x, x0)α

d(x0, y)k+α
|f(y)| dμ(y).

We used B(x0, r) ⊂ 2B and the Hölder estimate for K. The latter is a priori only valid for y ∈ X \ 2B with 
d(x, x0) � d(x0, y)/2, but if d(x0, y)/2 < d(x, x0), then d(x, x0) ∼ d(x, y) ∼ d(x0, y) ∼ r, and we can apply 
the size bounds |K(x, y)| � ‖K‖α,strongd(x, y)−k and |K(x0, y)| � ‖K‖α,strongd(x0, y)−k. Decomposing 
X \ B(x0, r) into dyadic annuli, we further estimate

ˆ

X\B(x0,r)

d(x, x0)α

d(x0, y)k+α
|f(y)| dμ(y) � 2k

∞∑
j=0

1
2jα

1
(2(j+1)r)k

ˆ

B(x0,2j+1r)

|f(y)| dμ(y),

from where (2.6) follows. �
The main point about GSKs vs. SKs is that GSKs are stable under “sharp” truncations:

Lemma 2.9. Let K : X ×X \ 
 → C be a k-GSK, and let D : X ×X → [0, ∞) be a 1
2 -Lipschitz function in 

the metric dX×X ((x, y), (x′, y′)) = max {d(x, x′), d(y, y′)}. Then, the kernel KD, defined by

KD(x, y) := K(x, y)1{d(x,y)�D(x,y)}(x, y),

is a k-GSK with ‖KD‖ � ‖K‖.

Proof. By symmetry, it suffices to verify (2.6). Fix B ⊂ X, x, x0 ∈ B, and a Radon measure μ on X. We 
claim that there are two, roughly dyadic, annuli A1, A2 centred at x0 such that either

KD(x, y) = K(x, y) and KD(x0, y) = K(x0, y), (2.10)

or

KD(x, y) = KD(x0, y) = 0 (2.11)

for all y ∈ (2B)c with y /∈ [A1 ∪A2]. The lemma follows from this, and the computation
ˆ

(2B)c

|KD(x, y) −KD(x0, y)||f(y)| dμ(y)

�
ˆ

(2B)c

|K(x, y) −K(x0, y)||f(y)| dμ(y)

+ ‖K‖
ˆ

(2B)c∩[A1∪A2]

|f(y)|
d(x0, y)k

dμ(y) � ‖K‖Mμ,kf(x0).

The points y ∈ (2B)c such that both (2.10) and (2.11) fail are contained in the union of

B1 := {y ∈ (2B)c : D(x0, y) � d(x0, y) and d(x, y) < D(x, y)}

and
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B2 := {y ∈ (2B)c : D(x, y) � d(x, y) and d(x0, y) < D(x0, y)}.

We will next show that

B1 ⊂ {y ∈ (2B)c : r1 � d(x0, y) � 100r1} =: A1 (2.12)

with r1 := inf{d(x0, y) : y ∈ B1}. To this end, fix ε ∈ (0, 1) and pick y1 ∈ B1 ⊂ (2B)c such that

r := d(x0, y1) ∈ [r1, (1 + ε) r1].

Consider now any y ∈ (2B)c with

d(x0, y) > 100r,

and note that d(x, y) � d(x0, y) −d(x0, x) � 100r−2d(x0, y1) = 98r, because d(x0, x) � 2d(x0, y1). We claim 
that then d(x, y) � D(x, y), so that y /∈ B1. Indeed, using that D is 1

2 -Lipschitz, and d(x0, x) � 2d(x0, y1), 
we have

D(x, y) � D(x0, y1) + d(x0, x)
2 + d(y1, y)

2
y1∈B1
� r + 2r

2 + r + d(x0, y)
2

� d(x, y)
98 + d(x, y)

98 + d(x, y)
196 + d(x0, y)

2

� 5d(x, y)
196 + d(x, y) + d(x0, x)

2

� 5d(x, y)
196 + d(x, y)

2 + r

�
(

105
196

)
d(x, y) < d(x, y).

We deduce that the points y ∈ B1 must satisfy d(x0, y) � 100r = 100(1 + ε)r1, and letting ε → 0, we have 
established (2.12). A symmetric argument yields that

B2 ⊆ {y ∈ (2B)c : r2 � d(x, y) � 100r2} =: A′
2 (2.13)

with r2 := inf{d(x, y) : y ∈ B2}. Since r2 � dist(x, (2B)c) � d(x0, x)/2, it is easy to see that A′
2 ⊂ A2, 

where A2 is a slightly fatter annulus around x0 with radius comparable to r2. This completes the proof. �
Definition 2.14 (Induced operators and Calderón-Zygmund operators). Let (X, d) be a proper metric space, 
let k > 0, and let K : X × X \ 
 → C be a bounded k-GSK. Let μ be a Borel regular measure on X
satisfying

μ(B(x, r)) � Crk, x ∈ X, r > 0, (2.15)

for some constant C � 1. We associate to K and μ the following operator Tμ:

Tμf(x) :=
ˆ

K(x, y)f(y) dμ(y), f ∈
⋃

1<p<∞
Lp(μ), x ∈ X.

It is easy to see, using Hölder’s inequality, (2.15), and the “size” bound in Definition 2.1(1), that if 1 < p < ∞
and f ∈ Lp(μ), then the integral defining Tμf(x) is absolutely convergent. We say that Tμ is the operator 
induced by (K, μ).
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A Calderón-Zygmund operator (CZO) is an operator Tμ induced by (K, μ), as above, which also happens 
to be bounded on L2(μ). For a CZO Tμ, we write

‖Tμ‖C.Z. := ‖Tμ‖L2(μ)→L2(μ) + ‖K‖.

Definition 2.16 (ε-SIOs and CZ kernels). Let K : X ×X \ 
 → C be a k-GSK, not necessarily bounded, 
and let μ be a Borel measure on X satisfying (2.15). For ε > 0, we define Tμ,ε to be the operator induced 
by (Kε, μ), where

Kε(x, y) := K(x, y)1{d(x,y)>ε}(x, y), (x, y) ∈ X ×X \ 
.

The operator Tμ,ε is called the ε-SIO induced by (K, μ). We also define the maximal SIO

T ∗
μf(x) := sup

ε>0
|Tμ,εf(x)|, f ∈

⋃
1<p<∞

Lp(μ), x ∈ X.

If the ε-SIOs are uniformly bounded on L2(μ),

sup
ε>0

‖Tμ,ε‖L2(μ)→L2(μ) < ∞, (2.17)

we say that K is a Calderón-Zygmund kernel (CZ kernel) for μ, and we write

‖K‖C.Z.(μ) := sup
ε>0

‖Tμ,ε‖L2(μ)→L2(μ) + ‖K‖.

If K is a k-SK with exponent α ∈ (0, 1], and not just a k-GSK, we also use the notation

‖K‖C.Z.(μ),α := sup
ε>0

‖Tμ,ε‖L2(μ)→L2(μ) + ‖K‖α,strong.

Remark 2.18. In the introduction – notably the statements of the main theorems – we used the terminological 
convention that K is a CZ kernel for μ if ‖T ∗

μ‖Lp(μ)→Lp(μ) < ∞ for all 1 < p < ∞. There is no serious 
conflict: if μ is a measure on a proper metric space (X, d) satisfying the growth condition (2.15), and 
K : X × X \ 
 → C is a k-SK, then the condition (2.17) implies that ‖T ∗

μ‖Lp(μ)→Lp(μ) < ∞ for all 
1 < p < ∞, see [55, Theorem 1.1]. In particular, all of this is true for kernels of the form (p, q) �→ k(q−1 · p), 
where k : H \ {0} → C is a good kernel, and for H1 measures restricted to regular curves in H.

The reason why we chose to define “CZ kernels” as in Definition 2.16 is that we, sometimes, want to apply 
the definition to GSKs: the maximal SIO characterisation above may well remain valid in this generality, 
but at least we have not seen it written down.

For a big part of this paper, we will only be concerned with CZOs, ε-SIOs, and maximal SIOs induced by 
GSKs on R, and the measure μ = L1. We will drop the sub-index “L1” in this situation, and write T, Tε, T ∗

in place of TL1 , Tε,L1 , T ∗
L1 . Also, on R, we will only consider CZ kernels for L1, and write ‖K‖C.Z. :=

‖K‖C.Z.(L1).
We will now gather some basic facts about the case X = R (although many of these statements have 

generalisations to metric spaces, see for example [55]).

Proposition 2.19. Let T be a CZO on R. Then T is bounded L1(R) → L1,∞(R) with norm

‖T‖L1→L1,∞ � ‖T‖C.Z..
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Proof. Applying (2.7) with f ≡ 1 yields Hörmander’s condition
ˆ

(2B)c

|K(x, y) −K(x, y0)| dx � ‖T‖C.Z., y, y0 ∈ I.

It follows that ‖T‖L1→L1,∞ � ‖T‖C.Z., see for example [36, Exercise 8.2.4]. �
Lemma 2.20 (Cotlar’s inequality). Let K : R ×R \ 
 → C be a bounded GSK, and let T be the CZO induced 
by K. Then, there exists an absolute constant C � 1 such that

T ∗f(x) � C[M(|Tf |)(x) + ‖T‖C.Z.Mf(x)], f ∈ L2(R), x ∈ R. (2.21)

Here M is the (non-centred) Hardy-Littlewood maximal function on R.

For a proof, see for instance [45, p. 56].

Theorem 2.22 (T1 theorem). Let T be an operator induced by a bounded SK K : R × R \ 
 → C. Then, 
T is a CZO if and only if T1, T t1 ∈ BMO, and T satisfies the weak boundedness property (WBP). In this 
case,

‖T‖L2→L2 �α ‖T1‖BMO + ‖T t1‖BMO + ‖T‖WBP + ‖K‖α,strong. (2.23)

For a proof, see [36, Theorem 8.3.3], or the original reference [21].

Definition 2.24 (Definitions of T1, T t1, and WBP). Under the assumptions of the T1 theorem, the condition 
T1 ∈ BMO means that there exists a constant C � 1 with the following property. If ϕ ∈ C∞(R) is a “smooth 
H1-atom” supported on a ball B0, i.e. satisfies

sptϕ ⊂ B0,

ˆ

B0

ϕ = 0, and ‖ϕ‖L∞ � |B0|−1, (2.25)

and b ∈ C∞(R) satisfies 12B0 � b � 13B0 , then

|〈T (b), ϕ〉| � C. (2.26)

The best constant “C”, as above, is the definition of the quantity “‖T1‖BMO” in (2.23). The condition T t1 ∈
BMO means, by definition, that (2.26) holds with 〈T (ϕ), b〉 on the left hand side. Finally, the WBP means 
that if ϕ, ψ are smooth non-negative functions supported on B(0, 1) ⊂ R, with max{‖ϕ‖C5 , ‖ψ‖C5} � 1, 
then

|〈T (ϕx,r), ψx,r〉| � Cr−1, x ∈ R, r > 0. (2.27)

Here fx,r(y) := r−1 ·f((y−x)/r). The best constant “C” in (2.27) is the definition of the quantity “‖T‖WBP” 
in (2.23).

2.2.1. Verifying the T1 testing conditions in practise
Let K : R × R \ 
 → C be an SK, not necessarily bounded, let ε > 0, and let ϕ ∈ C∞(R) be a fixed, 

even, bump function satisfying 1B(0,1/2) � ϕ � 1B(0,1). Writing ψε := 1 − ϕε, we define the smooth ε-SIO
T̃ε to be the operator induced by the bounded SK
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K̃ε(x, y) := ψε(x− y)K(x, y).

We also define the formal adjoint T̃ t
ε by replacing K(x, y) by K(y, x) in the definition above. We record 

the standard fact that ‖K̃ε‖α,strong �ϕ ‖K‖α,strong, where the constants do not depend on ε > 0. Now, 
assume that we can prove the following for some constant C � 1: if B0 is a ball, and b ∈ C∞(R) satisfies 
12B0 � b � 13B0 , then

 

B0

|T̃ε(b)| � C and
 

B0

|T̃ t
ε (b)| � C. (2.28)

We claim that

max{‖T̃ε1‖BMO, ‖T̃ t
ε 1‖BMO} � C and ‖T̃ε‖WBP � C + ‖K‖.

The first inequality is immediate from the definitions. To infer the second, fix x0 ∈ R, r > 0, write 
B0 := B(x0, r), and find b as above (2.28). Then, since sptϕx,r ⊂ B0 (as in (2.27)), we may write

|T̃ε(ϕx0,r)(x)| = |T̃ε[bϕx0,r](x)|

� |ϕx0,r(x) · T̃ε(b)(x)| +

∣∣∣∣∣∣∣
ˆ

B(x0,r)

b(y)[ϕx0,r(y) − ϕx0,r(x)]Kε(x, y) dy

∣∣∣∣∣∣∣ . (2.29)

Here,

|〈ϕx0,r · T̃ε(b), ψx0,r〉| �
1
r2

ˆ

B0

|T̃ε(b)| � Cr−1

by (2.26). But since |[ϕx0,r(y) −ϕx0,r(x)]Kε(x, y)| � r−2‖K‖, and b|B0 ≡ 1, the second term on line (2.29) is 
bounded, for every x ∈ B0, by |B0|r−2‖K‖ ∼ r−1‖K‖. It follows that the WBP (2.27) holds with constant 
at most � C + ‖K‖, as claimed.

We have established the following corollary of the T1 theorem:

Corollary 2.30. Let K : R × R \ 
 → C be an SK, and assume that the testing conditions (2.28) hold for 
some C � 1, uniformly for ε > 0. Then ‖K‖C.Z. �α C + ‖K‖α,strong.

Proof. Theorem 2.22 gives the uniform bound ‖T̃ε‖L2→L2 �α C + ‖K‖α,strong. This implies (2.17) (for 
μ = L1) with roughly the same constants, since |[Tε − T̃ε]f | � ‖K‖Mf . �
3. Intrinsic Lipschitz graphs and tame maps

3.1. Tame maps

We say that a map (φ1, φ2) : E → R2, defined on E ⊂ R, is L-tame if∣∣∣∣φ2(x) − φ2(y)
x− y

− φ1(x)
∣∣∣∣+ ∣∣∣∣φ2(x) − φ2(y)

x− y
− φ1(y)

∣∣∣∣ � L|x− y|, x, y ∈ E, x �= y. (3.1)

Remark 3.2. We make a few hopefully clarifying remarks about the definition of tameness. First, condition 
(3.1) is implied (with twice the constant) by a “1-sided” version of itself:
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∣∣∣∣φ2(x) − φ2(y)
x− y

− φ1(x)
∣∣∣∣ � L|x− y|, x, y ∈ E, x �= y. (3.3)

Indeed, just apply the inequality above to both (x, y) and (y, x) to arrive at (3.1). Second, (3.1) implies 
that φ1 is L-Lipschitz (by the triangle inequality). Third, assume that E contains an open interval I. Then 
(3.1) clearly implies that φ̇2 exists on I, and φ̇2 = φ1. Conversely, assume that φ = (φ1, φ2) : I → R2, where 
I ⊂ R is an open interval, φ1 is L-Lipschitz, and φ̇2 = φ1. Then (3.3) is satisfied, because, for x < y,

|[φ2(x) − φ2(y)] − φ1(x)(x− y)| �
yˆ

x

|φ1(s) − φ1(x)| ds � L|x− y|2. (3.4)

So, (3.1) and (3.3) are essentially short ways of writing that φ̇2 = φ1 for a ∼ L-Lipschitz function φ1 without 
actually mentioning the derivative of φ2. We also note for future reference that the class of L-tame maps is 
preserved under the following operations:

1. Pre-composing with a translation in R.
2. Adding a map of the form La,b(x) := (a, ax + b), with a, b ∈ R.

In fact, the second point is just a special case of the fact that adding an L1-tame map to an L2-tame map 
produces an (L1 + L2)-tame map: note that La,b is 0-tame for any a, b ∈ R.

The next lemma observes that tameness is preserved under parabolic rescaling:

Lemma 3.5. Let B = (B1, B2) : E → R2 be L-tame, where E ⊂ R, and let r > 0. Then, the map Br : r−1 ·
E → R2, defined by

Br(x) := (Br
1(x), Br

2(x)) :=
( 1
rB1(rx), 1

r2B2(rx)
)

is also L-tame.

Proof. For x, y ∈ R, x �= y, fixed, we note that∣∣∣∣Br
2(x) −Br

2(y)
x− y

−Br
1(x)

∣∣∣∣ = 1
r

∣∣∣∣B2(rx) −B2(ry)
(rx− ry) −B1(rx)

∣∣∣∣ � L

r
|rx− ry| = L|x− y|,

as desired. �
We then record an extension result:

Proposition 3.6. An L-tame map defined on E ⊂ R extends to an 18L-tame map defined on R.

Proof. Let φ = (φ1, φ2) : E → R2 be L-tame. By assumption, φ1 is Lipschitz, and also φ2 is locally Lipschitz 
by (3.1). So, extending φ1, φ2 to continuous maps on Ē is no problem, and then (3.1) remains valid on Ē. 
So, we may assume that E is closed to begin with, and we write

R \ E =
⋃
I∈I

I,

where I are the components of R \ E. We will extend φ to each interval in I individually. There are at 
most two unbounded intervals I ∈ I. Both of them have an endpoint in E, and we define φ1 on I to be the 
constant attained at the endpoint, say x. Then, we define
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φ2(y) :=
yˆ

x

φ1(s) ds, y ∈ I.

Evidently φ1 remains L-Lipschitz, and we will worry about condition (3.1) later. Next, fix an interval 
I = [x, y] with x, y ∈ E, x < y, and (x, y) ∈ I. Assume for minor notational convenience that

φ1(x) = φ2(x) = x = 0. (3.7)

This can be achieved by applying the operations (1)-(2) described above. To understand the problem we are 
now facing, consider any extension of φ = (φ1, φ2) to I, denoted by φI = (φI

1, φ
I
2). Then, if φI is supposed 

to be tame, we should have φ̇I
2 = φI

1, and this forces

φ2(y) = φI
2(y) =

yˆ

0

φI
1(s) ds. (3.8)

So, φI
1 needs to be chosen so that (3.8) holds – and on the other hand φI

1 needs to be a ∼ L-Lipschitz extension 
of φ1. In fact, we claim that φI

1 can be taken 7L-Lipschitz. Let us first attempt the linear extension

φ̃I
1(s) := φ1(y)s

y
, s ∈ I.

This is an L-Lipschitz extension of φ1, but

yˆ

0

φ̃I
1(s) ds = φ1(y)y

2 , (3.9)

which may not agree with φ2(y), i.e. the left hand side of (3.8). However, we are not too far off the mark. 
Recalling (3.7), and then using the tameness assumption (3.1), we have∣∣∣∣φ2(y) −

φ1(y)y
2

∣∣∣∣ � |y|
∣∣∣∣φ2(y) − φ2(0)

y − 0 − φ1(0)
∣∣∣∣+ |y||φ1(y) − φ1(0)|

2 � 3L|y|2
2 . (3.10)

Now, to fix the discrepancy between (3.9) and (3.8), we choose a 6L-Lipschitz function ηI : [0, y] → R

satisfying

ηI(0) = 0 = ηI(y) and
yˆ

0

ηI(s) ds = φ2(y) −
φ1(y)y

2 . (3.11)

For example, one can take ηI = cη0, where |c| � 1, and

η0(s) =
{

6Ls, s ∈ [0, y
2 ],

6L(y − s), s ∈ [ y2 , y],
(3.12)

because

yˆ
η0(s) ds = 3L|y|2

2 ,
0



K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113 47
which coincides with the upper bound in (3.10). Finally, we set

φI
1 := φ̃I

1 + ηI ,

which is a 7L-Lipschitz extension of φ1 (by the first point in (3.11)), and we define φI
2 in the only possible 

way:

φI
2(s) :=

sˆ

0

φI
1(r) dr, s ∈ I.

This function extends φ2 by a combination of (3.9) and the second point in (3.11).
It remains to check that the tameness condition (3.1) is satisfied on R, with constant 18L; in fact, we 

check the 1-sided condition (3.3) with constant 9L. Pick distinct x, y ∈ R. If x, y ∈ E, there is nothing to 
prove. The same is true if x, y are contained on (the closure of) a common interval in I, because φ̇2 = φ1
on these intervals, and recalling the estimate (3.4). So, assume that x ∈ E and y ∈ I ∈ I with x < y, say. 
Let x1 ∈ E ∩ [x, y) be the left endpoint of I. Then, use the triangle inequality multiple times:

|[φ2(x) − φ2(y)] − φ1(x)(x− y)| � |[φ2(x) − φ2(x1)] − φ1(x)(x− x1)|
+ |[φ2(x1) − φ2(y)] − φ1(x1)(x1 − y)|
+ |[φ1(x1) − φ1(x)](x1 − y)|

� L|x− x1|2 + 7L|x1 − y|2 + L|x− x1||x1 − y|
� 9L|x− y|2.

This completes the proof. �
3.1.1. Corona decomposition for tame maps

In this section, we prove the first main result of this paper, a corona decomposition for maps that are 
tame in the sense of (3.1). We start with the following rather obvious definition:

Definition 3.13 (Tame-linear and tame-affine maps). A map φ = (φ1, φ2) : R → R2 is called tame-linear 
(or affine) if φ1 : R → R is linear (or affine) and φ̇2 = φ1. A tame-linear map is L-tame-linear if φ1 is 
L-Lipschitz.

It would be nice to know the answer to the following question:

Question 2. Does there exist a constant δ > 0 with the following property? Let φ : [0, 1] → R2 be 1-tame. 
Then there exist a tame-linear map L : R → R2 and a (1 − δ)-tame map φδ : [0, 1] → R2 such that

|{x ∈ [0, 1] : φ(x) = [φδ + L](x)}| � δ.

In other words: do 1-tame maps have big pieces of (1 − δ)-tame maps (up to subtracting a tame-linear 
map)? Since we were not able to answer this question, we show something slightly weaker, namely that 1-
tame maps admit a “corona decomposition” with η-tame maps, for any η > 0. To formulate the statement, 
we recall some terminology.

Definition 3.14 (Dyadic intervals and trees). We write “D” for the standard dyadic intervals of R. For j ∈ Z, 
we further write Dj ⊂ D for the dyadic intervals Q of length |Q| = 2−j . A collection T ⊂ D is called a tree
if



48 K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113
(T1) T contains a “top interval” Q(T ), that is, a unique maximal element.
(T2) T is “coherent”: if Q ∈ T , then Q′ ∈ T for all Q ⊂ Q′ ⊂ Q(T ).
(T3) If Q ∈ T , then either both, or neither, of the children of Q lie in T .

Now we are prepared to formulate the statement of the corona decomposition:

Theorem 3.15. For every η ∈ (0, 1), there exists a constant C � 1 such that the following holds. Let 
φ : R → R2 be 1-tame. Then, there exists a decomposition D = B∪̇G with the following properties. First, the 
intervals in B satisfy a Carleson packing condition:

∑
Q∈B
Q⊂Q0

|Q| � C|Q0|, Q0 ∈ D. (3.16)

Second, the intervals in G can be decomposed into a “forest” F of disjoint trees T ,

G =
⋃

T ∈F
T , (3.17)

whose top intervals satisfy a Carleson packing condition:

∑
T ∈F

Q(T )⊂Q0

|Q(T )| � C|Q0|, Q0 ∈ D. (3.18)

For every T ∈ F there exists a 2-tame-linear map LT : R → R2 and an η-tame map ψT : R → R2 such that 
ψT + LT approximates φ well at the resolution of the intervals in T :

dπ(φ(s), [ψT + LT ](s)) � η|Q|, s ∈ 2Q, Q ∈ T . (3.19)

In (3.19), dπ refers to the parabolic metric on R2:

dπ((x, s), (y, t)) := max{|x− y|,
√

|s− t|}, (x, s), (y, t) ∈ R2,

and 2Q is the interval with the same midpoint but twice the length of Q. The proof of Theorem 3.15 uses, 
as a black box, the corona decomposition for R-valued Lipschitz functions on R. This statement looks very 
similar to the one of Theorem 3.15:

Theorem 3.20. For every η ∈ (0, 1), there exists a constant C � 1 such that the following holds. Let φ : R → R

be 1-Lipschitz. Then, there exists a decomposition D = B∪̇G with the properties (3.16), (3.17), (3.18), and 
such that the following holds. For every T ∈ F there exists a 2-Lipschitz linear function LT : R → R and 
an η-Lipschitz function ψT : R → R such that

|φ(s) − (ψT + LT )(s)| � η|Q|, s ∈ 2Q, Q ∈ T . (3.21)

This statement follows, after a moment’s thought, from the corona decomposition in [17, p.61, (3.33)]. 
We give the details in Appendix A. Before proving Theorem 3.15, we record version of Theorem 3.15 for 
N -tame maps with N � 1. The main point here is that the Carleson packing constants do not depend on 
“N”, which only makes an appearance in the “quality of approximation” in (3.23).
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Corollary 3.22 (Corona for N -tame maps). For every η ∈ (0, 1), there exists a constant C � 1 such that 
the following holds. Let φ : R → R2 be N -tame, N � 1. Then, there exists a decomposition D = B∪̇G with 
the properties (3.16), (3.17), (3.18), and such that the following holds. For every T ∈ F , there exists a 
2N -tame-linear map L : R → R2 and an (ηN)-tame map ψT : R → R2 such that

dπ(φ(s), [ψT + LT ](s)) � (ηN)|Q|, s ∈ 2Q, Q ∈ T . (3.23)

Proof. The map φ̃ := N−1φ : R → R2 is 1-tame, so Theorem 3.15 applies to it verbatim. This yields the 
desired decomposition D = B∪̇G and, for each T ∈ F , a 2-tame-linear map L̃T : R → R2, and an η-tame 
map ψ̃T : R → R2, such that (3.19) holds for φ̃, ψ̃T , L̃T . Now, we define the (ηN)-tame map ψT := Nψ̃T , 
and the 2N -tame-linear map LT := N L̃T . Then,

dπ(φ(s), [ψT + LT ](s)) � Ndπ(φ̃(s), [ψ̃T + L̃T ](s)) � (ηN)|Q|

for s ∈ 2Q with Q ∈ T . In the first inequality, we used N � 1 to infer that 
√
N � N . �

There is also a similar version of Theorem 3.20 for M -Lipschitz functions, M � 1, but we omit stating 
this explicitly. We then turn to the proof of Theorem 3.15.

Proof of Theorem 3.15. Write φ = (φ1, φ2), where now φ1 : R → R is 1-Lipschitz. We apply the Lipschitz 
corona decomposition, Theorem 3.20, to φ1 with the parameter δ := min{η2/5, η/17} > 0. The result is a 
decomposition D = B ∪ G of the type desired in the statement Theorem 3.15, accompanied with the trees 
T ∈ F , and corresponding δ-Lipschitz functions φT : R → R and linear 2-Lipschitz maps LT : R → R with 
the property that

|φ1(s) − [φT + LT ](s)| � δ|Q|, s ∈ 2Q, Q ∈ T . (3.24)

Fix a tree T ∈ F , and consider the top interval Q(T ) = [x, y]. Based on the existence of the function φT , 
we would now like to produce an η-tame function ψT : [x, y] → R2 satisfying (3.19). The tame-linear part 
will be defined in the obvious way: LT = (LT , PT ) : R → R2, where

PT (s) :=
sˆ

x

LT (r) dr, s ∈ R.

To define ψT , probably the first idea to try is to set ψ1 := φT , and define

ψ2(s) := φ2(x) +
sˆ

x

ψ1(r) dr = φ2(x) +
sˆ

x

φT (r) dr, s ∈ R. (3.25)

The good news are that ψ̇2 = ψ1, and ψ2(x) = φ2(x), so at least (3.19) is satisfied for s = x (recalling that 
(3.24) holds, and noting that φ2(x) = ψ2(x) +PT (x)). The bad news is that there is no a priori reason why 
|[ψ2 + PT ](s) − φ2(s)| would be small for any s ∈ (x, y]. To fix this, we in fact need to modify φT slightly
before defining ψ1 and ψ2 exactly as above.

Let S(T ) be the collection of minimal intervals in T (possibly an empty collection). Also, write

E := Q(T ) \
⋃

S∈S(T )

S

for the set of points in Q(T ) in “infinite branches” of T . Observe that, by (3.24), we have
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φ1(s) = [φT + LT ](s), s ∈ E.

Now, for S ∈ S(T ) fixed, we will slightly modify the restriction of φT to 1
2S, which is the interval with the 

same centre but half the length as S. The geometric feature of 1
2S needed in the future is that if Q ∈ T

with |Q| < |S|, then

2Q ∩ 1
2S = ∅. (3.26)

This is clear, because |Q| < |S| forces Q ∩ S = ∅ by the minimality of S ∈ S(T ).
While modifying φT , we want to maintain the property that φT is 17δ-Lipschitz, and that (3.24) holds 

with “δ” replaced by “5δ”. However, in addition, we want to arrange that
ˆ

S

φ1(s) ds =
ˆ

S

[φT + LT ](s) ds. (3.27)

The idea is the same as the one already seen during the proof of Proposition 3.6: we want to find a 16δ-
Lipschitz function ηS : 1

2S → R with the properties that

ηS |∂[ 12S] = 0 and
ˆ

1
2S

ηS(s) ds =
ˆ

S

φ1(s) − [φT + LT ](s) ds.

This is easily done, using the “triangle” function familiar from (3.12), and observing that∣∣∣∣∣∣
ˆ

S

φ1(s) − [φT + LT ](s) ds

∣∣∣∣∣∣ � δ|S|2

by (3.24). Now, if we replace φT by φT + ηS on S, we find that the “new” φT is 17δ-Lipschitz, and (3.27)
holds. Moreover, since ‖ηS‖L∞(S) � 4δ|S|, there is some hope that (3.24) remains valid with “δ” replaced 
by “5δ”. To prove this carefully, fix Q ∈ T and s ∈ 2Q. During the procedure above, we only modified φT
on sets of the form 1

2S, with S ∈ S(T ). So, if s /∈ 1
2S for any S ∈ S(T ), then (3.24) is certainly valid, with 

original constant. So, assume that s ∈ 1
2S for some S ∈ S(T ). Then s ∈ 2Q ∩ 1

2S, so (3.26) forces |S| � |Q|. 
Consequently,

‖ηS‖L∞ � 4δ|S| � 4δ|Q|.

Since the “original” φT only differs from the “new” φT on 1
2S by the function ηS, we see that

|φ1(s) − [φT + LT ](s)| � δ|Q| + 4δ|Q| = 5δ|Q|,

as desired.
Now, assume that similar modifications to φT have been performed inside all intervals S ∈ S(T ), and in 

particular (3.27) holds for all S ∈ S(T ). We infer the following corollary: if s ∈ Q(T ), and either

s ∈ E or s ∈ ∂S with S ∈ S(T ),

then
sˆ
φ1(s) ds =

sˆ
[φT + LT ](s) ds. (3.28)
x x
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Recall that x is the left endpoint of Q(T ). Now, with the fine-tuned definition of φT , we proceed as planned, 
setting ψ1 := φT and defining ψ2 as in (3.25). Since the map ψ = (ψ1, ψ2) : Q(T ) → R is now 17δ-tame, 
and 17δ � η by definition, it remains to check that (3.19) holds for all s ∈ 2Q for Q ∈ T . This amounts to 
checking that

|φ2(s) − [ψ2 + PT ](s)| � η2|Q|2, s ∈ 2Q ∈ T . (3.29)

First, consider s ∈ E. Then, since φ̇2 = φ1, we have

φ2(s) = φ2(x) +
sˆ

x

φ1(s) ds
(3.28)= φ2(x) +

sˆ

x

[φT + LT ](s) ds = ψ2(s) + PT (s). (3.30)

So, the difference in (3.29) is zero, as it should be. Next, fix some Q ∈ T , and consider s ∈ 2Q. Then, there 
exists a point

s1 ∈ Q ∩

⎡⎣E ∪
⋃

S∈S(T )

∂S

⎤⎦
satisfying |s − s1| � |Q|. Then φ2(s1) = ψ2(s1) + PT (s1), repeating the computation on line (3.30). Conse-
quently,

|φ2(s) − [ψ2 + PT ](s)| = |φ2(s) − φ2(s1) − ([ψ2 + PT ](s) − [ψ2 + PT ](s1))|

=

∣∣∣∣∣∣
sˆ

s1

φ1(r) dr −
sˆ

s1

[φT + LT ](r) dr

∣∣∣∣∣∣
�
ˆ

I

|φ1(r) − [φT + LT ](r)| dr � 5δ|Q|2,

noting in the last inequality that the interval I between s1 and s satisfies I ⊂ 2Q, so (3.24) (with “5δ” in 
place of “δ”) holds for all points in I. We conclude from this estimate and (3.24) that

dπ(φ(s), [ψ + LT ](s)) � max{5δ|Q|,
√

5δ|Q|} � η|Q|, s ∈ 2Q, Q ∈ T ,

recalling that 
√

5δ � η. The proof is complete. �
Tame maps will now go away for a moment, but they will return in Section 3.3, where we relate them to 

intrinsic Lipschitz functions on the Heisenberg group.

3.2. The Heisenberg group

Definition 3.31 (Heisenberg group, dilations, and distance). The Heisenberg group H is the group (R3, ·)
with

(x, y, t) · (x′, y′, t′) := (x + x′, y + y′, t + t′ + 1
2 (xy′ − x′y)), (x, y, t), (x′, y′, t′) ∈ R3.

The Heisenberg dilations (δλ)λ>0 are the group automorphisms

δλ : H → H, δλ(x, y, t) = (λx, λy, λ2t).
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Given α ∈ R, a function h : H \ {0} → C is called α-homogeneous with respect to the dilations above if 
h(δr(p)) = rαh(p) for all p ∈ H \ {0} and r > 0. We define the Heisenberg metric d : H → H → [0, +∞)
by setting d(p, q) := ‖q−1 · p‖, where

‖(x, y, t)‖ := max{
√
x2 + y2,

√
|t|}. (3.32)

Remark 3.33. In the introduction, we used the notation “‖ · ‖” for the Korányi norm ‖(x, y, t)‖ = ((x2 +
y2)2 + 16t2)1/4, which is a quantity comparable to the “max-norm” in (3.32). From now on, ‖ · ‖ always 
refers to the quantity in (3.32).

Definition 3.34 (Horizontal gradient). Let Ω ⊂ H be an open set. The horizontal gradient of a C1 function 
u : Ω → R is defined by

∇Hu = (Xu, Y u),

where

X := ∂x − y
2∂t and Y := ∂y + x

2∂t.

Definition 3.35 (Homogeneous subgroups). A subgroup of H is homogeneous if it is closed under dilations. 
Homogeneous subgroups of H are either contained in the xy-plane, in which case they are called horizontal, 
or they contain the t-axis, in which case they are said to be vertical.

Definition 3.36 (Horizontal lines). A left translates of a non-trivial horizontal subgroup V ⊂ H is called a 
horizontal line in H.

Definition 3.37 (Projections and components). Let W ⊂ H be a vertical subgroup of topological dimension 2. 
We associate to W the unique horizontal subgroup L ⊂ W , and the complementary horizontal subgroup V . 
The choice of V is somewhat arbitrary, but we declare here V to be the Euclidean orthogonal complement 
of L in the xy-plane. We write T for the t-axis. Then, every point p ∈ H has a unique “coordinate” 
decomposition

p = v · w = v · l · t,

where w = l · t = t · l ∈ W with l ∈ L and t ∈ T , and v ∈ V . This decomposition gives rise to the vertical 
projections πW : H → W and πT : H → T , given by p �→ w and p �→ t, and the horizontal projections
πV : H → V and πL : H → L, given by p �→ v and p �→ l, respectively. The horizontal projections are 1-
Lipschitz group homomorphisms, while πW and πT are neither Lipschitz maps nor group homomorphisms. 
Nevertheless, πT and πW satisfy

‖πT (p)‖ � ‖πW (p)‖ � C‖p‖, p ∈ H (3.38)

for some absolute constant C � 1. If φ : X → W is a map, where X is any set, we define the first and second 
components of φ to be the functions φ1 = πL ◦ φ : X → L and φ2 = πT ◦ φ : X → T .

Remark 3.39. If W = L × T is a vertical subgroup with complementary subgroup V , we will write in 
coordinates W = {y · t : y ∈ L and t ∈ V} ∼= {(y, t) : y, t ∈ R} = R2. Similarly, V will be identified with 
R. Under these identifications, the components φ1 : V → L and φ2 : V → T of any map φ : V → W can be 
seen as functions R → R, and in particular the derivative notation “φ̇j” should be understood in this sense.
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3.3. Intrinsic Lipschitz graphs

We define intrinsic Lipschitz functions and graphs over horizontal subgroups in H. On the one hand, this is 
just a special case of a definition of Franchi, Serapioni, and Serra Cassano [32]. On the other hand, intrinsic 
Lipschitz functions over horizontal subgroups have nicer properties than those over vertical subgroups, 
essentially because πV is a group homomorphism. Higher dimensional intrinsic Lipschitz graphs will only 
be mentioned in passing in this paper, in Section 7.

Definition 3.40 (Intrinsic L-Lipschitz graphs and functions). For W , V as in Definition 3.37, and α > 0, we 
define the cone

CV (α) := {p ∈ H : ‖πV (p)‖ � α‖πW (p)‖}.

A set Γ ⊂ H is called an intrinsic L-Lipschitz graph over V , or simply an intrinsic Lipschitz graph, if there 
exists L > 0 such that

(p · CV (α)) ∩ Γ = {p}, for all p ∈ Γ and all α <
1
L
. (3.41)

Let φ : E → W be a map, where E ⊂ V . The function φ is called intrinsic L-Lipschitz if Γ(φ) := {v · φ(v) :
v ∈ E} is an intrinsic L-Lipschitz graph. The map v �→ Φ(v) := v · φ(v) is called the graph map of φ.

Proposition 3.42. A set Γ ⊂ H is an intrinsic Lipschitz graph over a horizontal subgroup V if and only if 
the horizontal projection πV restricted to Γ is injective with metric Lipschitz inverse ΦΓ : πV (Γ) → Γ.

Proof. Let Γ ⊂ H be an intrinsic L-Lipschitz graph over V . If p, q ∈ Γ then

‖πV (q)−1 · πV (p)‖ = ‖πV (q−1 · p)‖
(3.41)
� 1

L‖πW (q−1 · p)‖, (3.43)

which implies by the triangle inequality that ‖q−1 · p‖ � (1 + L)‖πV (q)−1 · πV (p)‖. Consequently, the 
projection πV restricted to Γ is bilipschitz, so the map ΦΓ : πV (Γ) → Γ, given by the relation πV (ΦΓ(v)) = v, 
is well-defined and (1 + L)-Lipschitz

Conversely, assume that Γ ⊂ H is a set such that the horizontal projection πV restricted to Γ is injective 
with L-Lipschitz inverse Φ. Then, if p = Φ(v), q = Φ(v′) ∈ Γ, we have

‖πW (Φ(v′)−1 · Φ(v))‖
(3.38)
� C‖Φ(v′)−1 · Φ(v)‖ � CL‖(v′)−1 · v‖ = CL‖πV (q−1 · p)‖,

which shows that Γ is an intrinsic CL-Lipschitz graph over V . �
Remark 3.44. We record that every intrinsic L-Lipschitz graph Γ ⊂ H can be parametrised by an intrinsic 
L-Lipschitz function defined on E := πV (Γ) ⊂ V . Simply, let ΦΓ : E → Γ be the map defined in Proposi-
tion 3.42, and let

φΓ(v) := πW (ΦΓ(v)). (3.45)

Then ΦΓ(v) = πV (ΦΓ(v)) · πW (ΦΓ(v)) = v · φΓ(v) for v ∈ E, so indeed Γ = Γ(φ). Thus, Γ is parametrised 
by φ, and φ is intrinsic L-Lipschitz by definition.

Lemma 3.46. Let φ : E → W be an intrinsic L-Lipschitz function, with E ⊂ V . Then the first component φ1, 
recall Definition 3.37, is L-Lipschitz. Consequently, under the identification from Remark 3.39, the function 
φ1 : R → R is Euclidean Lipschitz.
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Proof. Indeed, recall from (3.45) that φ(v) = πW (Φ(v)), where Φ: E → Γ is the graph map of Γ(φ). 
Consequently φ1 = πL ◦ Φ. Then, using the fact that πL is a group homomorphism, we infer that

‖φ1(v′)−1 · φ1(v)‖ = ‖πL(Φ(v′))−1 · πL(Φ(v))‖
� ‖πW (Φ(v′)−1 · Φ(v))‖
(3.43)
� L‖πV (Φ(v′))−1 · πV (Φ(v))‖ = L‖(v′)−1 · v‖

for all v, v′ ∈ E. �
We conclude this section with an area formula for intrinsic Lipschitz graphs over horizontal subgroups.

Proposition 3.47. Let φ = (φ1, φ2) : I ⊂ V → W be an intrinsic Lipschitz map defined on an interval I ⊂ V , 
and let Φ be its graph map. Then, Φ(I) is a 1-regular subset of (H, d) and

H1(Φ(A)) =
ˆ

A

(
1 + φ̇1(v)2

)1/2
dv, A ⊂ I Borel. (3.48)

Proof. By Proposition 3.42, the map Φ : I → (H, d) is a Lipschitz curve, and Φ is in fact bi-Lipschitz onto 
its image since horizontal projections are Lipschitz. As Φ is injective, the length with respect to the metric 
d of a subcurve Φ([a, b]), [a, b] ⊂ I, agrees with H1(Φ([a, b])), see for instance [2, Theorem 2.6.2.]. Moreover,

length|·|(π(Φ([a, b]))) � lengthd(Φ([a, b])) � lengthcc(Φ([a, b])), (3.49)

where the left-hand side denotes the Euclidean length of the image of Φ([a, b]) under the projection π :
H → R2, (x, y, t) �→ (x, y), and dcc is the standard sub-Riemannian distance on H, see [1]. Since π ◦ Φ is 
(Euclidean) Lipschitz, the left-hand side of (3.49) equals

bˆ

a

|(π ◦ Φ)′(v)| dv,

and the same is true for the right-hand side, cf. e.g. [37]. Using

|(π ◦ Φ)′(v)| =
(
|πV (Φ(v))′|2 + |πL(Φ(v))′|2

)1/2 =
(
1 + φ̇1(v)2

)1/2
,

we have thus established (3.48) for A = [a, b]. The case of Borel sets A ⊂ I follows by approximation. �
3.3.1. Connection between tame maps and intrinsic Lipschitz graphs

In this section, let W = {(0, y, t) : y, t ∈ R}, L = {(0, y, 0) : y ∈ R}, and V = {(x, 0, 0) : x ∈ R}. As we 
discussed in Remark 3.39, we will identify W ∼= R2 and V ∼= R ∼= L. With these identifications, we have 
the following relationship between intrinsic Lipschitz functions and tame maps.

Proposition 3.50. Let E ⊂ V . If φ = (φ1, φ2) : E → W is intrinsic L-Lipschitz, then (φ1, −φ2) : E → R2 is 
2L2-tame.

Proof. A formula for the vertical projection πW is

πW (x, y, t) = (y, t− xy ), (x, y, t) ∈ H,
2



K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113 55
while πV (x, y, t) = x. The graph map of φ is given by

Φ(v) = v · φ(v) = (v, φ1(v), φ2(v)+φ1(v)v
2 ), v ∼= (v, 0, 0) ∈ E,

and consequently Φ(v1)−1 · Φ(v2) =(
v2 − v1, φ1(v2) − φ1(v1), φ2(v2) − φ2(v1) + φ1(v1) + φ1(v2)

2 (v2 − v1)
)
. (3.51)

Since φ : E → W is intrinsic L-Lipschitz, Φ(E) is an intrinsic L-Lipschitz graph, which means that

‖πW (Φ(v1)−1 · Φ(v2))‖ � L‖πV (Φ(v1)−1 · Φ(v2))‖, v1, v2 ∈ E.

Spelling out the last condition, one finds that

|φ1(v2) − φ1(v1)| � L|v2 − v1|, v1, v2 ∈ E, (3.52)

and ∣∣∣∣φ2(v2) − φ2(v1)
v2 − v1

+ φ1(v1)
∣∣∣∣ � L2|v2 − v1|, v1, v2 ∈ E, v1 �= v2. (3.53)

But (3.53) is exactly the 1-sided tameness condition (3.3) for the map (φ1, −φ2). �
Remark 3.54. Recall from Remark 3.2 that the first component of an L-tame functions is automatically 
L-Lipschitz. Thus, if conditions (3.52)-(3.53) hold for some L < 1/2, then actually (3.52) holds with the 
better constant “2L2”! On the other hand, assume that (3.52)-(3.53) hold for some L � 1, and E contains 
an open interval I. Then φ̇2(v) = −φ1(v) for v ∈ I which implies, by the calculation in (3.4), that (3.53)
actually holds with constant “L” for v1, v2 ∈ I.

In conclusion, if E is an interval, the best constants in the inequalities (3.52) and (3.53) are actually 
within a multiple of “2” from each other.

Thanks to the connection between tame maps and intrinsic Lipschitz functions, Proposition 3.6 (extension 
of tame maps) implies an extension result for intrinsic Lipschitz graphs over horizontal subgroups.

Proposition 3.55. Let φ : E → W be an intrinsic L-Lipschitz function. Then there exists an intrinsic 
L′-Lipschitz function φ̃ : V → W for L′ � max{L, L2} such that φ̃|E = φ.

Proof. Since φ = (φ1, φ2) is intrinsic L-Lipschitz by assumption, the map (φ1, −φ2) is 2L2-tame according 
to Proposition 3.50. The extension result from Proposition 3.6 then allows us to find a 36L2-tame map 
(φ̃1, −φ̃2) : R → R2 with (φ̃1, −φ̃2)|E = (φ1, −φ2). Thus, φ̃ = (φ̃1, φ̃2) satisfies the conditions (3.52) and 
(3.53) for all v1, v2 ∈ R, v1 �= v2, with “L” replaced by L′ = max{6L, 36L2}. �
4. The exponential kernel appears

4.1. Weakly good kernels on intrinsic Lipschitz graphs

We fix a weakly good kernel k : H \{z = 0} → C, and gradually start proving that it is a CZ kernel for (H1

restricted to) any intrinsic Lipschitz graph over a horizontal subgroup in H. We fix a horizontal subgroup 
V with complementary vertical subgroup W , and an intrinsic L-Lipschitz function φ = (φ1, φ2) : V → W , 



56 K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113
for L � 1. We assume with no loss of generality that V ∼= {(x, 0, 0) : x ∈ R} ∼= R and W ∼= {(0, y, t) :
y, t ∈ R} ∼= R2. The first point of this section is to show how Theorem 1.10 can be reduced to a statement 
involving only Lipschitz functions, tame maps, and standard kernels on R, see Theorem 4.3 below.

Let Φ be the graph map of φ, and let Γ = Φ(V ) ⊂ H be the intrinsic graph of φ. Write μ := H1|Γ. Since 
k is only assumed to be weakly good, we cannot hope that the function K(p, q) := k(q−1 · p), defined for 
q−1 · p ∈ H \ {z = 0}, would extend to an SK in H. However, it turns out that the restriction of K to 
Γ × Γ \ 
 is an SK with α = 1, and indeed a CZ kernel for μ. This is what is meant by the statement of 
Theorem 1.10.

In place of K, we plan to study the parametric kernel KΦ(w, v) := K(Φ(w), Φ(v)) on R ×R \ {w = v}. 
Theorem 4.3 below will imply that KΦ is a CZ kernel for L1 in R, with ‖KΦ‖C.Z.,1 �k,L 1. Let us briefly 
argue why this implies Theorem 1.10. First, since Φ: R → (Γ, d) is (1 + L)-bilipschitz by Proposition 3.42, 
it follows easily that

‖K‖1,strong �L ‖KΦ‖1,strong �k,L 1,

where the left hand side is the standard kernel constant in the metric space (Γ, d). We then relate the ε-SIOs 
Tμ,ε induced by (K, μ) to the ε-SIOs Tε induced by (KΦ, L1). The area formula, Proposition 3.47, implies 
that

Tμ,εg(Φ(w)) =
ˆ

{v∈R: d(Φ(v),Φ(w))>ε}

K(Φ(w),Φ(v))g(Φ(v))
(
1 + φ̇1(v)2

)1/2
dv (4.1)

for all w ∈ R and g ∈ L2(μ). Here d(Φ(v), Φ(w)) ∼L |w − v| for all w, v ∈ R, and

1 � J(v) :=
(
1 + φ̇1(v)2

)1/2 �
(
1 + L2)1/2 for a.e. v ∈ R.

It follows easily that

|Tμ,εg(Φ(w)) − Tε(J · [g ◦ Φ])(w)| �k,L M(g ◦ Φ)(w), w ∈ R, g ∈ L2(μ), ε > 0.

Therefore, using the area formula again,

sup
ε>0

‖Tμ,ε‖L2(μ)→L2(μ) � sup
ε>0

CL‖Tε‖L2(R)→L2(R) + Ck,L. (4.2)

So, Theorem 1.10 has now been reduced to proving that KΦ is a CZ kernel on R. We establish the following 
slightly stronger result for future purposes:

Theorem 4.3. Let KΦ : R ×R \ 
 → C be the kernel KΦ(w, v) := k(Φ(v)−1 ·Φ(w)), where k ∈ C∞(H \ {z =
0}) is a weakly good kernel, and Φ is the graph map of an intrinsic Lipschitz function φ : V → W . Also, let 
A0 : R → R be Lipschitz, let B0 = (B1, B2) : R → R2 be tame, and define the quantities

DA0(w, v) := A0(w)−A0(v)
w−v and DB0(w, v) := B2(w)−B2(v)−1

2 [B1(w)+B1(v)](w−v)
(w−v)2 (4.4)

for w, v ∈ R with w �= v. Then

KΦ,A0 := KΦDA0 and KΦ,B0 := KΦDB0

are SKs and CZ kernels on R, with constants depending only on the weak goodness constants of k, the 
intrinsic Lipschitz constant of φ, and the Lipschitz and tameness constants of A0 and B0.
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Remark 4.5. Note that KΦ = KΦDA0 with A0(x) = x. The reader is encouraged to ignore the factors 
DA0 and DB0 completely; the additional generality will bring no extra challenges, but will be useful in an 
application. Why are there no extra difficulties? The proof of Theorem 4.3, even without the factors DA0

and DB0 , is based on decomposing the kernel KΦ into a sum of the form

KΦ(w, v) =
∑
n

κn(w − v)
mn∏
i=1

Dn
Ai

nn∏
i=1

Dn
Bi
, (4.6)

where Dn
Ai

and Dn
Bj

are factors of the kind appearing in (4.4), and κn is an odd standard kernel on R. 
So, if KΦ is multiplied by DA0 or DB0 , the decomposition (4.6) will turn up looking the same, with two 
additional factors, and its treatment will not change noticeably. The same argument would even extend to 
show that KΦDA1 · · ·DAm

DB1 · · ·DBn
is a CZ kernel for any m, n � 0, and for any factors of the form DAi

and DBi
as in (4.4).

We then start the proof of Theorem 4.3 for an intrinsic L-Lipschitz function φ by defining an auxiliary 
function

κ(u; θ1, θ2) := χ(θ1, θ2)k(u, u · (2Lθ1), q(u) · (4L2θ2)), u �= 0, (θ1, θ2) ∈ R2,

where q is the “quadratic” function

q(u) :=
{
u2, if k is horizontally odd,
u|u|, if k is odd,

(4.7)

and χ ∈ C∞
c (R2) satisfies 1[−1,1]2 � χ � 1[−2,2]2 . Recalling (3.51), we may re-write the kernel KΦ as follows:

KΦ(w, v) = k
(
w − v, φ1(w) − φ1(v), φ2(w) − φ2(v) + φ1(v)+φ1(w)

2 (w − v)
)
,

= κ

(
w − v; φ1(w) − φ1(v)

(2L)(w − v) ,
φ2(w) − φ2(v) + 1

2 [φ1(v) + φ1(w)](w − v)
(4L2)q(w − v)

)
. (4.8)

To justify passing to the line (4.8), we need to recall that here φ1 is L-Lipschitz by (3.52), and (φ1, −φ2) : R →
R2 is a 2L2-tame function by Proposition 3.50, so the terms

θ1(w, v) := φ1(w) − φ1(v)
(2L)(w − v) and θ2(w, v) :=

φ2(w) − φ2(v) + 1
2 [φ1(v) + φ1(w)](w − v)

4L2 q(w − v)

are bounded by 1 in absolute value. This means that

χ(θ1(w, v), θ2(w, v)) ≡ 1, w, v ∈ R.

Now, for u �= 0 fixed, (θ1, θ2) �→ κ(u; θ1, θ2) is a smooth function whose support is a compact subset of 
(−π, π) × (−π, π), so we may expand it as a Fourier series:

κ(u; θ1, θ2) =
∑
n∈Z2

κn(u)e2πi(θ1,θ2)·n, (4.9)

where

κn(u) =
π̂ π̂

κ(u; θ1, θ2)e−2πi(θ1,θ2)·n dθ1 dθ2.
−π −π
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Let cn be the best constant “c” in the inequalities

|κn(u)| � c

|u| and |κ′
n(u)| � c

|u|2 , u ∈ R \ {0}.

Combining (4.8) and (4.9), we obtain KΦ(w, v) =

∑
n∈Z2

κn(w − v) exp
(

2πi
[
φ1(w)−φ1(v)
(2L)(w−v) ,

φ2(w)−φ2(v)+1
2 [φ1(v)+φ1(w)](w−v)

4L2 q(w−v)

]
· n
)

=:
∑
n∈Z2

cn ·Kn(w, v),

where Kn(w, v) is the expression on the line above divided by cn. We will verify below that the coefficients 
cn are finite, even exhibit rapid decay as |n| → ∞. We record that

KΦDA0 =
∑
n∈Z2

cn · (KnDA0) and KΦDB0 =
∑
n∈Z2

cn · (KnDB0). (4.10)

The kernels Kn may not look better than KΦ, but they are. They are products of the “convolution type” 
kernels c−1

n · κn on R with ‖c−1
n · κn‖1,strong � 1, and an “oscillating L∞-factor”, which will require further 

treatment.

Lemma 4.11. The kernel κn is an odd SK on R, and

cn �L,N (1 + |n|)−N , N ∈ N. (4.12)

Proof. This is where the weak goodness of the kernel k gets used. The oddness of κn follows by noting that 
κ(u; θ1, θ2) is an odd function of u:

κ(−u; θ1, θ2) = χ(θ1, θ2)k(−u,−u · (2Lθ1), q(−u) · (4L2θ2)) = −κ(u; θ1, θ2),

using the assumption that k is either horizontally odd, or odd, and recalling from (4.7) the definition 
of the quadratic function q. The estimate (4.12) follows by straightforward computation from the decay 
|∇n

Hk(p)| �n |z|−n−1 assumed of the weakly good kernel k ∈ C∞(H \ {z = 0}), but let us give some details. 
For the case n = 0, one checks from the definition of κ that |κ(u; θ1, θ2)| � |u|−1 (hence |κ0(u)| � |u|−1), 
and

|∂uκ(u; θ1, θ2)| � |∇k(u, u · (2Lθ1), q(u) · (4L2θ2))| · |(1, 2Lθ1, u · 8L2θ2)|

�L |∂xk(u, u · (2Lθ1), q(u) · (4L2θ2))|

+ |∂yk(u, u · (2Lθ1), q(u) · (4L2θ2))|

+ |u||∂tk(u, u · (2Lθ1), q(u) · (4L2θ2))|, u �= 0, (θ1, θ2) ∈ sptχ.

Using the relations ∂x = X+ y
2∂t, ∂y = Y − x

2∂t, and ∂t = XY −Y X, one may infer from the weak goodness 
of k that |∂uκ(u; θ1, θ2)| �L |u|−2 for all (θ1, θ2) ∈ sptχ and u �= 0.

In general, fix 0 �= n = (n1, n2) ∈ Z2, N ∈ N, and assume first that |n2| > |n1|. Then, for u �= 0 and 
θ1 ∈ [−π, π] fixed, integrating by parts N times, and recalling that θ2 �→ κ(u; θ1, θ2) is compactly supported 
in (−π, π), we find
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π̂

−π

κ(u; θ1, θ2)e−2πiθ2n2 dθ2 = 1
(2πin2)N

π̂

−π

∂N
θ2 [θ2 �→ κ(u; θ1, θ2)]e−2πiθ2n2 dθ2. (4.13)

To estimate the right hand side of (4.13), put absolute values inside, recall κ(u; θ1, θ2) = χ(θ1, θ2)k(u, u ·
(2Lθ1), q(u) · (4L2θ2)), use the Leibniz rule, and observe the estimate

|∂N
θ2 [θ2 �→ k(u, u · (2Lθ1), q(u) · (4L2θ2))]|

= |(4L2)q(u)|N |(∂N
t k)(u, u · (2Lθ1), q(u) · (4L2θ2))| �N

|(4L)2q(u)|N
|u|2N+1 = (2L)2N

|u| .

Here we used that |q(u)| = |u|2, |(u, u · (2Lθ1))| � |u|, and that ∂N
t = [X, Y ]N is a horizontal derivative of 

order 2N . It now follows that

|κn(u)| �
π̂

−π

∣∣∣∣∣∣
π̂

−π

κ(u; θ1, θ2)e−2πiθ2n2 dθ2

∣∣∣∣∣∣ dθ1 �L,N
1

|n2|N |u| �
1

|n|N |u| .

A similar, but rather tedious, computation yields |κ′
n(u)| �L,N |u|−2|n|−N .

Finally, if |n1| > |n2|, once considers ∂N
θ1

instead of the partial derivative with respect to θ2, and argues 
similarly as before, observing that

∂N
y =

[
Y − x

2∂t
]N =

N∑
m=0

(
N

m

)
Y m

(
−x

2
)N−m [XY − Y X]N−m.

So, we have verified (4.12). �
Due to the rapid decay of the coefficients cn, and the decomposition (4.10), Theorem 4.3 will follow once 

we show that

‖KnDA0‖C.Z.,1 = O(poly(|n|)) and ‖KnDB0‖C.Z.,1 = O(poly(|n|)).

This is the content of the next proposition, whose proof will combine techniques developed by Christ [12], 
David [19], Hofmann [38], and Semmes [61]:

Theorem 4.14. There exists a constant C � 1 such that the following holds. Let M, N � 1. Let A : R → R be 
M -Lipschitz, let B : R → R2 be N -tame, let q : R → R be one of the two functions q(s) := s2 or q(s) := |s|s, 
and let κ ∈ C1(R \ {0}) be an odd function satisfying |∂jκ(u)| � |u|−1−j for j ∈ {0, 1}. Then, the kernel

KA,B(w, v) := κ(w − v) exp
(

2πi
[
A(w)−A(v)

w−v + B2(w)−B2(v)−1
2 [B1(v)+B1(w)](w−v)
q(w−v)

])
(4.15)

is a CZ kernel for L1 with

‖KA,B‖C.Z.,1 � C max{M,N}C . (4.16)

The same remains true of the kernels KA,BDA0 and KA,BDB0 , but then the multiplicative constant (“the 
first C”) in (4.16) may also depend on the Lipschitz and tameness constants of A0, B0.

Theorem 4.14 will be proven in Section 5, in more general form, see Theorem 5.5. The letter “κ” will 
from now on refer to an odd SK on R, such as in Theorem 4.14, and the auxiliary function “κ(u; θ1, θ2)” 
will not be seen again.
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Proof of Theorem 4.3 assuming Theorem 4.14. From (4.10), we infer that

‖KΦDA0‖C.Z.,1 �
∑
n∈Z2

cn · ‖KnDA0‖C.Z.,1 and ‖KΦDB0‖C.Z.,1 �
∑
n∈Z2

cn · ‖KnDB0‖C.Z.,1.

To avoid repetition and long display lines, we restrict attention to the case KΦDA0 , and we even assume 
that DA0 ≡ 1. By the rapid decay of the coefficients cn, it suffices to show that there exists a constant 
C � 1 such that, for every n = (n1, n2) ∈ Z2, the kernel

Kn(w, v) = κn(w − v)
cn

exp
(

2πi
[
φ1(w)−φ1(v)
(2L)(w−v) ,

φ2(w)−φ2(v)+1
2 [φ1(v)+φ1(w)](w−v)

4L2 q(w−v)

]
· n
)

is a CZ kernel for L1 with

‖Kn‖C.Z.,1 � C(1 + |n|)C .

This follows from Theorem 4.14 applied with κ = κn/cn,

A := n1

2Lφ1 and B := n2

4L2 (φ1,−φ2),

observing that A is n1
2 -Lipschitz, and B is n2

2 -tame by the comment below (4.8). This completes the proof 
of Theorem 4.3. �
4.2. Calderón commutators appear

Let A : R → R be Lipschitz, let B : R → R2 be tame, let κ ∈ C1(R \ {0}) be an odd function satisfying 
|∂jκ(u)| � |u|−1−j for j ∈ {0, 1}, and consider the SK

KA,B(x, y) := κ(x− y) exp
(

2πi
[
A(x)−A(y)

x−y + B2(x)−B2(y)−1
2 [B1(x)+B1(y)](x−y)
q(x−y)

])
,

familiar from Example 2.3.

Theorem 4.17. Let A : R → R be a 1-Lipschitz function, and let B : R → R2 be a 1-tame map. Then 
‖KA,B‖C.Z.,1 � C for some absolute constant C � 1. The same remains true for KA,BDA0 and KA,BDB0 , 
allowing C also to depend on the Lipschitz and tameness constants of A0, B0.

Theorem 4.14 does not immediately, or even easily, follow from Theorem 4.17, because we are interested 
in the polynomial dependence on M and N . The sharper result will be derived “by induction” in Section 5, 
and the main result of this section, stated above, will cover the base case of that induction.

We will show the CZ properties of KA,BDA0 and KA,BDB0 by decomposing the kernel into a sum of 
(even) simpler ones, resembling Calderón commutators, then proving separately that they are CZ kernels, 
and finally summing up the results. In fact, using that e2πix =

∑
n�0(2πix)n/n!, we first write

KA,B(x, y) =
∑
n�0

(2πi)n

n! Sn(x, y),

where

Sn(x, y) := κ(x− y)
[
A(x)−A(y)

x−y + B2(x)−B2(y)−1
2 [B1(x)+B1(y)](x−y)
q(x−y)

]n
. (4.18)
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Then, the terms Sn are further decomposed as follows:

Sn(x, y) =
n∑

m=0

(
n

m

)
κ(x− y)

[
A(x)−A(y)

x−y

]m [
B2(x)−B2(y)−1

2 [B1(x)+B1(y)](x−y)
q(x−y)

]n−m

.

Motivated by this decomposition, we define the standard kernels

Cm,n(x, y) := κ(x− y)
[
A(x)−A(y)

x−y

]m [
B2(x)−B2(y)−1

2 [B1(x)+B1(y)](x−y)
q(x−y)

]n
. (4.19)

Note that the definition also depends on κ, and the choice of the function q (determined by the good kernel 
k), but we suppress these dependencies from the notation.

Example 4.20. It is easy to check that if K : R × R \ 
 → C is an SK, A : R → R is M -Lipschitz, and 
B = (B1, B2) : R → R2 is N -tame, then both

KA(x, y) = K(x, y)
[
A(x) −A(y)

x− y

]
and

KB(x, y) = K(x, y)
[
B2(x) −B2(y) − 1

2 [B1(x) + B1(y)](x− y)
q(x− y)

]
are SKs with

‖KA‖α,strong � (1 + M)‖K‖α,strong and ‖KB‖α,strong � (1 + N)‖K‖α,strong.

For the second inequality, use the expansion (2.4), which reduces matters to the Lipschitz constant of B1 (i.e. 
N). It follows, by iteration, that if A is 1-Lipschitz and B is 1-tame, the kernel Cm,n satisfies ‖Cm,n‖1,strong �
Cm+n+1 for some absolute constant C � 1. With the same argument, also ‖Cm,nDA0‖1,strong �A0 Cm+n+1

and ‖Cm,nDB0‖1,strong �B0 Cm+n+1

The proof of the following theorem will occupy most of this section.

Theorem 4.21. Let A : R → R be 1-Lipschitz, let B = (B1, B2) : R → R2 be 1-tame, and let m, n � 0. Then 
‖Cm,n‖C.Z.,1 � Cm+n+1, where C � 1 is an absolute constant. Up to a multiplicative constant, the same 
remains true for the kernels Cm,nDA0 and Cm,nDB0 .

It follows immediately from Theorem 4.21 that Sn is a also a CZ kernel with

‖Sn‖C.Z.,1 � Cn+1
n∑

m=0

(
n

m

)
� (2C)n+1,

and finally that KA,B is a CZ kernel with

‖KA,B‖C.Z.,1 �
∑
n�0

(2π)n

n! ‖Sn‖C.Z. < ∞.

The generalisations KA,BDA0 and KA,BDB0 can be handled similarly. So, Theorem 4.17 follows from 
Theorem 4.21. We start with a few preparations to prove the latter.
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4.3. Reminder on β-numbers

Let A : R → R be a Lipschitz function. For x ∈ R, s > 0, we define

βA(B(x, s)) := inf
a,b∈R

sup
{
|A(y) − [ay + b]|

s
: y ∈ B(x, s)

}
. (4.22)

The β-numbers satisfy the following Carleson packing condition:

rˆ

0

1
r

ˆ

B(x,r)

βA(B(y, s))2 dy ds

s
� Lip(A)2, x ∈ R, r > 0. (4.23)

This is a special case of Jones’ traveling salesman theorem [44], but the case for Lipschitz graphs in R2 is 
much simpler, see the book of Garnett-Marshall, [34, Chapter X, Lemma 2.4]. The quadratic dependence on 
Lip(A) follows from the Lip(A) = 1 case by scaling (noting that βcA(B(x, s)) = cβA(B(x, s))). The following 
standard lemma shows that the β-number in (4.22) also controls deviations from affine maps defined via 
averaging the gradient:

Lemma 4.24. Let ϕ ∈ C∞(R) be a standard bump function:
ˆ

ϕ = 1, ϕ � 0 and sptϕ ⊂ B(0, 1), and ϕ(−z) ≡ ϕ(z). (4.25)

For s > 0, let ϕs(x) := s−1 · ϕ(x/s). For a Lipschitz function A : R → R, x ∈ R, and s > 0, define the 
linear map

y �→ Lx,s(y) := Ps(A′)(x)y,

where Ps(A′)(x) := (A′ ∗ ϕs)(x). Then,

|A(x) −A(y) − Lx,s(x− y)|
s

�ϕ βA(B(x, s)), y ∈ B(x, s).

Proof. To simplify notation, assume, without loss of generality, that x = 0 = A(x). Let y �→ ay + b be the 
best approximating affine map associated to the number βA(B(0, s)), that is,

|A(y) − (ay + b)| � s · βA(B(0, s)), y ∈ B(0, s).

Applying this with y = 0 gives |b| � s · βA(B(0, s)). Further,

|A(y) − L0,s(y)| � |A(y) − (ay + b)| + |b| + |ay − L0,s(y)|

� 2s · βA(B(0, s)) + s ·
∣∣∣∣ˆ ϕs(z)[A′(z) − a] dz

∣∣∣∣ . (4.26)

To treat the last term, integrate by parts:∣∣∣∣ˆ ϕs(z)[A′(z) − a] dz
∣∣∣∣ � ˆ

|ϕ̇s(z)||A(z) − (az + b)| dz

� 1
s2

ˆ

B(0,s)

s · βA(B(0, s)) dz = 2βA(B(0, s)).

Plugging this last estimate to (4.26) completes the proof. �
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4.4. Boundedness of the Calderón commutators

In this section, we prove Theorem 4.21. To avoid a notational mess, we carry out the proof in full detail 
for the kernels Cm,n, and then comment on the small addenda regarding the kernels Cm,nDA0 and Cm,nDB0

afterwards, in Remark 4.58. To a large extent, the proof of Theorem 4.21 uses arguments in [12] and [38], 
but the details look a little different, and the inhomogeneity of κ causes mild trouble, so we do not attempt 
to cut corners. Fix a 1-Lipschitz function A : R → R, a 1-tame map B = (B1, B2) : R → R2, and m, n � 0. 
We abbreviate Cm,n(x, y) :=

K(x, y) := κ(x− y)
[
A(x) −A(y)

x− y

]m [
B2(x) −B2(y) − 1

2 [B1(x) + B1(y)](x− y)
q(x− y)

]n
.

Recall, once more, that q : R → R is one of the functions q(s) = s2 or q(s) = |s|s, and κ ∈ C1(R \ {0}) is 
an odd function with |∂jκ(u)| � |u|−1−j for j ∈ {0, 1} and u �= 0. The case n = 0 is the case of “standard” 
Calderón commutators of index m associated to the kernel κ, and it is well-known that ‖Cm,0‖C.Z.,1 � Cm+1, 
see for example [20, p. 53]. So, we only consider the case n � 1 in the following.

Remark 4.27. For n � 1, the kernel K looks a little like the kernel of the standard Calderón commutator, 
but there is a difference worth pointing out (besides the obvious one that κ(u) is not necessarily 1/u). 
Consider the case m = 0 and q(s) = s2. Then,

K(y, x) = κ(y − x)
[
B2(y) −B2(x) − 1

2 [B1(y) + B1(x)](y − x)
(y − x)2

]n
= (−1)n+1K(x, y), (4.28)

so K is antisymmetric only when n is even. The kernels of standard Calderón commutators (i.e. the kernels 
K above with n = 0, m � 0, κ(u) = 1/u) are always antisymmetric.

Proof of Theorem 4.21 for n � 1. We plan to verify the T1 testing conditions (2.28). In principle, this means 
that we need to consider smooth truncations of the form Kε(x, y) = ψε(x − y)K(x, y). But since ψε · κ is a 
kernel of the same type as κ (with constants independent of ε), we may simply absorb ψε to κ and assume 
that the kernel κ is supported away from the origin to begin with: κ|[−ε,ε] ≡ 0 for some ε > 0.

To verify the testing conditions (2.28), let B0 = B(x0, R) ⊂ R be a ball, and let b ∈ C∞(R) with 
12B0 � b � 13B0 . After performing the changes of variables x �→ Rx′ and y �→ Ry′, using Lemma 3.5, 
and noting that u �→ Rκ(Ru) is a kernel of the same type as κ, we may reduce to the case R = 1. Then, 
pre-composing A, B with a translation, we may also take x0 = 0. So, we claim that whenever b ∈ C∞(R)
with 1B(0,2) � b � 1B(0,3), then

ˆ

B(0,1)

|T (b)| � C(m + 1) and
ˆ

B(0,1)

|T t(b)| � C(m + 1). (4.29)

It is not a typo that the right hand sides do not depend on n; the reason is clear after Section 4.5. The kernel 
of the adjoint T t is Kt(x, y) = K(y, x) = (−1)n+1K(x, y) by (4.28), so it suffices to prove the first estimate 
in (4.29). At this point, we already observe that, in proving (4.29), we may assume that the function B1
appearing in the kernel of T satisfies

B1(0) = 0 and sptB1 ⊂ B(0, 10). (4.30)

In fact, the value of the kernel K(x, y) remains unchanged if replace B by B − L, where L(x) =
(B1(0), B1(0)x) is a 0-tame-affine map. Next, already using that B1(0) = 0, it is easy to show that there 
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exists a 1-Lipschitz function B̃1 with spt B̃1 ⊂ B(0, 10) which agrees with B1 on B(0, 3). Since only the 
values of B1 on B(0, 3) appear in (4.29), we may replace B1 by B̃1 without changing the value of (4.29). 
We will only use the tameness condition Ḃ2(z) = B1(z) for z ∈ B(0, 3) (see (4.34)), and this now remains 
valid with B̃1 instead. Alternatively, we could redefine B2 on R so that Ḃ2 = B̃1 on R, and hence acquire 
a new 1-tame function B̃ : R → R2 satisfying (4.30), but this is a little overkill.

To prove (4.29), we start roughly as in the proof of [12, Theorem 10, p. 58], and fix an auxiliary function 
η ∈ C∞(R) satisfying

spt η ⊂ [ 14 , 1] and
∞̂

0

η(s) ds
s

= 1. (4.31)

Then, for x, y ∈ R with x �= y fixed, we note that

∞̂

0

η

(
|x− y|

s

)
ds

s

s 
→r−1|x−y|=
∞̂

0

η(r) dr
r

= 1.

In particular, for x ∈ B(0, 1) (as in (4.29)) fixed, we may write

T (b)(x) =
ˆ

K(x, y)b(y)

⎡⎣ ∞̂

0

η

(
|x− y|

s

)
ds

s

⎤⎦ dy

=
∞̂

0

ˆ
η

(
|x− y|

s

)
K(x, y)b(y) dy ds

s
.

Let us point out that the integrals above are absolutely convergent, because, first, a necessary condition 
for η(|x − y|/s)K(x, y) �= 0 is ε/2 � |x − y| < s, so the integral over s � ε/2 contributes zero. Second, if 
s > 16, then s−1|x − y| < 1

4 for all pairs x ∈ B(0, 1) and y ∈ spt b ⊂ B(0, 3), so the integral over s > 16 also 
contributes zero. Also, the integration over s ∈ (1, 16) only yields an absolute constant, so we have reduced 
(4.29) to showing

ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

ˆ
η

(
|x− y|

s

)
K(x, y)b(y) dy ds

s

∣∣∣∣∣∣ dx � C(m + 1). (4.32)

Finally, since spt[1 −b] ⊂ R \ B(0, 2), we have |x −y| � 1 for all x ∈ B(0, 1) and y ∈ spt[1 −b]. Consequently 
η(|x − y|/s) = 0 whenever s ∈ (0, 1], x ∈ B(0, 1), and y ∈ spt[1 − b], and it follows that

ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

ˆ
η

(
|x− y|

s

)
K(x, y)[1 − b](y) dy ds

s

∣∣∣∣∣∣ dx = 0.

Therefore, (4.32) reduces further to proving that

ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

ˆ
η

(
|x− y|

s

)
K(x, y) dy ds

s

∣∣∣∣∣∣ dx � C(m + 1). (4.33)

To prove (4.33), fix x ∈ B(0, 1). Recall the exponents m, n � 0 from the definition of the kernel K, 
and remember that we only consider n � 1, as the case n = 0 corresponds to the “standard” Calderón 
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commutators already treated in the literature. The case n � 2 turns out to be easy, see the Section 4.5, so 
the case n = 1 contains the main news.

4.5. The case n � 2

In this case, we make the following rather crude estimate for (4.33):

(4.33) �
ˆ

B(0,1)

1ˆ

0

1
s

ˆ

{y: s4�|x−y|�s}

∣∣∣∣B2(x) −B2(y) − 1
2 [B1(x) + B1(y)](x− y)
q(x− y)

∣∣∣∣2 dy
ds

s
dx

To proceed, we first use the tameness condition Ḃ2 = B1 to write

B2(x) −B2(y) − 1
2 [B1(x) + B1(y)](x− y)
q(x− y) =

yˆ

x

B1(x) + B1(y) − 2B1(r)
2q(x− y) dr. (4.34)

It is easy to check that the right hand side on (4.34) vanishes if B1 is affine. In particular,

∣∣∣ yˆ

x

B1(x) + B1(y) − 2B1(r)
2q(x− y) dr

∣∣∣
�

y 

x

|B1(x) −Bx,s(x)| + |B1(y) −Bx,s(y)| + 2|B1(r) −Bx,s(r)|
2|x− y| ds, (4.35)

where Bx,s(y) = ay + b is an affine map minimising the β-number (introduced in (4.22)) of B1 in B(x, s). 
Therefore, we have ∣∣∣∣B2(x) −B2(y) − 1

2 [B1(x) + B1(y)](x− y)
q(x− y)

∣∣∣∣ � βB1(B(x, s)) (4.36)

for x ∈ B(0, 1) and s4 � |x − y| � s, and consequently

(4.33) � B2 :=
ˆ

B(0,1)

1ˆ

0

βB1(B(x, s))2 ds

s
dx � 1, (4.37)

by Jones’ estimate (4.23).

4.6. The case n = 1

We then consider the case n = 1 and m � 0. We write

Km(x, y) := κ(x− y)
[
A(x)−A(y)

x−y

]m B2(x)−B2(y)− 1
2 [B1(x)+B1(y)](x−y)
q(x−y) . (4.38)

Let ϕ ∈ C∞(R) be a “standard bump function” as in (4.25). Then, as in Lemma 4.24, we consider the linear 
maps

Lx,s(y) := (A′ ∗ ϕs)(x)y =: Ps(A′)(x)y, s ∈ (0, 1]. (4.39)
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The plan is to reduce the treatment of the kernel (4.38) to the case m = 0. To accomplish this, assume that 
initially m � 1. Then, for x ∈ B(0, 1) and s ∈ (0, 1) fixed, we write

[
A(x) −A(y)

x− y

]m
=
[
A(x) −A(y)

x− y

]m−1 [
A(x) −A(y) − Lx,s(x− y)

x− y

]
(4.40)

+
[
A(x) −A(y)

x− y

]m−1

Ps(A′)(x).

Here, for y ∈ B(x, s) \ {x},∣∣∣∣∣
[
A(x) −A(y)

x− y

]m−1 [
A(x) −A(y) − Lx,s(x− y)

x− y

]∣∣∣∣∣ � βA(B(x, s)) (4.41)

by Lemma 4.24. We plug this information into (4.33), and use the triangle inequality, to obtain two terms 
(4.33)1 and (4.33)2. For (4.33)1, we combine (4.36) and (4.41) to infer that

(4.33)1 �
ˆ

B(0,1)

1ˆ

0

βA(B(x, s))βB1(B(x, s)) ds
s

dx � 1, (4.42)

by Cauchy-Schwarz, and Jones’ estimate (4.23). Let us then consider

(4.33)2 =
ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

Ps(A′)(x)
ˆ

η

(
|x− y|

s

)
Km−1(x, y) dy

ds

s

∣∣∣∣∣∣ dx. (4.43)

If still m − 1 � 0, we repeat the same procedure as in (4.40), separating one power of (A(x) −A(y))/(x −
y) from Km−1, adding and subtracting Lx,s(x − y), and then repeating the estimates (4.41)-(4.42). This 
operation yields two terms, one “error” term dominated, as before, by � 1 (also using that ‖Ps(A′)‖L∞ � 1), 
and then the “main” term

ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

Ps(A′)(x)2
ˆ

η

(
|x− y|

s

)
Km−2(x, y) dy

ds

s

∣∣∣∣∣∣ dx. (4.44)

Comparing (4.43) and (4.44), we note that if j � 1, we can reduce the study of Kj to the study of Kj−1 at 
the cost of

1. committing an additive error of magnitude � 1, and
2. replacing Ps(A′)(x)j by Ps(A′)(x)j+1 in (4.44).

After repeating these steps m times, we see that (4.33) is bounded by � m plus

ˆ

B(0,1)

∣∣∣∣∣
1ˆ

0

Ps(A′)(x)m
ˆ

η

(
|x− y|

s

)
κ(x− y)

⎛⎝ yˆ

x

B1(x) + B1(y) − 2B1(r)
2q(x− y) dr

⎞⎠ dy
ds

s

∣∣∣∣∣ dx. (4.45)

Here we already plugged in (4.34). This term will be treated by applying the following proposition:
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Proposition 4.46. Let {Fs}s∈(0,∞) be a family of C1-functions Fs : R → R satisfying

‖Fs‖L∞ + ‖F ′
s‖L∞ � CF , s ∈ (0,∞),

where CF � 1 is a constant independent of s ∈ (0, ∞). Assume also that (s, x) �→ Fs(x) is Borel. Let 
ϕ ∈ C∞

c (R) satisfy 
´
ϕ = 1, and write ϕs(x) := 1

sϕ(x/s). Further, let {ψs}s>0 ⊂ C1(R \ {0}) be a family 
of functions which satisfy the following requirements for some Cψ > 0 and α ∈ (0, 1]:

1. sptψs ⊂ B(0, Cψs),
2. ‖ψs(x)‖L∞(R) � Cψ/s and |ψ′

s(x)| � Cψ/s
2 for x ∈ R \ {0}, and

3. |ψ̂s(ξ)| � Cψ min{|sξ|α, |sξ|−α} for ξ ∈ R.

For f ∈ L1
loc(R), define Ps(f) := f ∗ϕs and Qs(f) := f ∗ψs. Finally, let a ∈ L∞(R), and define the operator

(Tf)(x) :=
∞̂

0

Fs(Ps(a)(x)) ·Qs(f)(x) ds
s
, f ∈ C∞

c (R).

Then T extends to a bounded operator on L2 with ‖T‖L2→L2 � C(‖a‖L∞ , CF , ϕ, Cψ).

This is a stronger variant of [12, Proposition 9]. Notably, ψs need not be of the form ψs(x) = 1
sψ(xs ), 

and ψs is even allowed to have a jump discontinuity at 0. We postpone the proof to Appendix B. Using this 
proposition, we will show that (4.45) � m + 1. The proof is based on re-writing (4.45) in a form to which 
Proposition 4.46 can be applied.

Lemma 4.47. For m � 0, we have

(4.45) =
ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

Ps(A′)(x)m(B′
1 ∗ Ψs)(x) ds

s

∣∣∣∣∣∣ dx,
where

Ψs(z) = 1
2
z|z|
q(z)

∞̂

|z|/s

η(t)κ(st)
[
1 − 2|z|

st

]
dt

t
, s > 0, z �= 0. (4.48)

Proof. Recalling the expression of (4.45), we need to prove that

ˆ
η

(
|x− y|

s

)
κ(x− y)

⎛⎝ xˆ

y

B1(x) + B1(y) − 2B1(r)
2q(x− y) dr

⎞⎠ dy = (B′
1 ∗ Ψs)(x). (4.49)

We have also changed the sign of the integral compared to the expression in (4.45), which is convenient 
for the following computation, but irrelevant for the statement of the lemma since (4.45) anyway involves 
absolute values. To prove (4.49), we make the change-of-variables r �→ uy + (1 − u)x in the r-integration, 
and then use Fubini’s theorem, to find the following expression for the left-hand side

1ˆ ˆ
η

(
|x− y|

s

)
(x− y)κ(x− y)B1(x) + B1(y) − 2B1(uy + (1 − u)x)

2q(x− y) dy du
0
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= 1
2

1ˆ

0

[ˆ
η

(
|x− y|

s

)
(x− y)κ(x− y)B1(x) −B1(uy + (1 − u)x)

q(x− y) dy (4.50)

+
ˆ

η

(
|x− y|

s

)
(x− y)κ(x− y)B1(y) −B1(uy + (1 − u)x)

q(x− y) dy

]
du. (4.51)

Before proceeding, we need to develop independently the two y-integrals in (4.50)-(4.51). We have

B1(x) −B1(uy + (1 − u)x)
x− y

= u

1ˆ

0

B′
1(x + (y − x)u(1 − r)) dr (4.52)

and

B1(y) −B1(uy + (1 − u)x)
x− y

= (u− 1)
1ˆ

0

B′
1(x + (y − x)[u + r(1 − u)]) dr. (4.53)

Therefore, plugging (4.52) into (4.50) and (4.53) into (4.51), respectively, and performing several changes 
of variables, we obtain

ˆ
η

(
|x− y|

s

)
κ(x− y)(x− y)B1(x) −B1(uy + (1 − u)x)

q(x− y) dy (4.54)

= u

1ˆ

0

ˆ
η

(
|x− y|

s

)
κ(x− y)B

′
1(x + (y − x)u(1 − r))
q(x− y)/(x− y)2 dy dr

=
1ˆ

0

ˆ
η

(
|z|

su(1 − r)

)
κ

(
|z|

u(1 − r)

)
B′

1(x− z) dz

q(z)/(z|z|)
1

1 − r
dr

=
ˆ

B′
1(x− z)

1ˆ

0

η

(
|z|
sur

)
1
r
κ

(
|z|
ur

)
dr

dz

q(z)/(z|z|)

=
ˆ

B′
1(x− z) z|z|

q(z)

∞̂

|z|/(su)

η(t)κ(st) dt
t
dz,

and
ˆ

η

(
|x− y|

s

)
κ(x− y)(x− y)B1(y) −B1(uy + (1 − u)x)

q(x− y) dy (4.55)

= −
ˆ

B′
1(x− z) z|z|

q(z)

|z|/(su)ˆ

|z|/s

η(t)κ(ts) dt
t
dz.

Both quantities (4.54) and (4.55) depend on u ∈ [0, 1], but observe from (4.50)–(4.51) that we are next 
allowed to “integrate out” this u-dependence:

ˆ
η

(
|x− y|

s

)
κ(x− y)

⎛⎝ xˆ
B1(x) + B1(y) − 2B1(r)

2q(x− y) dr

⎞⎠ dy
y
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= 1
2

1ˆ

0

ˆ
B′

1(x− z) z|z|
q(z)

⎡⎢⎣ ∞̂

|z|/s

[1[|z|/(su),∞)(t) − 1[|z|/s,|z|/(su)](t)]η(t)κ(st) dt
t

⎤⎥⎦ dz du

= 1
2

ˆ
B′

1(x− z) z|z|
q(z)

∞̂

|z|/s

η(t)κ(st)

⎡⎣ 1ˆ

0

1[|z|/(su),∞)(t) − 1[|z|/s,|z|/(su)](t) du

⎤⎦ dt

t
dz

= 1
2

ˆ
B′

1(x− z) z|z|
q(z)

∞̂

|z|/s

η(t)κ(st)
[
1 − 2|z|

st

]
dt

t
dz = B′

1 ∗ Ψs(x),

where Ψs is the function appearing in (4.48). This completes the proof of (4.49). �
We then record as a separate lemma that the family {Ψs}s>0 satisfies the hypotheses of Proposition 4.46:

Lemma 4.56. For s > 0, the function Ψs belongs to C1(R \{0}), has zero mean, is supported in B(0, s), and 
satisfies

‖Ψs‖L∞(R) � 1
s , |Ψ′

s(z)| � 1
s2 for z �= 0,

and

|Ψ̂s(ξ)| � min{|sξ|, |sξ|−1}, ξ ∈ R. (4.57)

Proof. Let us recall for reading convenience that

Ψs(z) = 1
2
z|z|
q(z)

∞̂

|z|/s

η(t)κ(st)
[
1 − 2|z|

st

]
dt

t
, s > 0, z �= 0.

The support condition sptΨs ⊂ B(0, s) is immediate from spt η ⊂ [0, 1]. Before discussing the mean-zero 
property, let us infer from spt η ⊂ [ 14 , 1] and |k(st)| � (st)−1 that

|Ψs(z)| �
1
2s

1ˆ

1/4

∣∣∣∣1 − 2|z|
ts

∣∣∣∣ dtt2 � 1 + |z|/s
s

� 1
s
, z ∈ B(0, s),

so indeed ‖Ψs‖L∞ � 1/s, and in particular Ψs ∈ L1(R). If q(z) = z2, then Ψs is odd, so the zero-mean 
property is clear. However, if q(z) = z|z|, the function Ψs is even, and the zero-mean property is a little 
surprising – given how little we know about κ. We give two arguments to justify it. First, one may apply 
(4.49) with B1(x) = x:

ˆ
Ψs(z) dz = (1 ∗ Ψs)(0) =

ˆ
η

(
|z|
s

)
κ(z)
2q(z)

⎛⎝ zˆ

0

z − 2r dr

⎞⎠ dz = 0,

since 
´ z

0 z − 2r dr = 0. A more direct proof (in the case q(z) = z|z|) is the following:

2
ˆ

Ψs(z) dz =
∞̂ ∞̂

η(t)κ(st)
[
1 − 2z

st

]
dt

t
dz =

∞̂⎛⎝ ∞̂

η(zu)κ(szu) dz

⎞⎠[
1 − 2

su

]
du

u

0 z/s 1/s 0
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=
∞̂

1/s

⎛⎝ ∞̂

0

η(x)κ(sx) dx

⎞⎠[
1 − 2

su

]
du

u2 = c(s, κ)
∞̂

1/s

[
1 − 2

su

]
du

u2 = 0.

Now, combining the support and zero-mean properties of Ψs with |e2πit − 1| � |t|, we may infer the first 
part of (4.57):

|Ψ̂s(ξ)| � ‖Ψs‖L∞(R)

ˆ

B(0,s)

|e−2πiξz − 1| dz � |sξ|.

The derivative estimate |Ψ′
s(z)| � s−2 for z �= 0 follows easily by differentiating under the integral sign, plus 

using spt η ⊂ [ 14 , 1] and |κ(z)| � |z|−1. We omit the details.
It remains to establish the “large scale” Fourier decay |Ψ̂s(ξ)| � |sξ|−1. Using Fubini’s theorem, we 

compute explicitly

Ψ̂s(ξ) = 1
2

∞̂

0

η(t)κ(st)

⎛⎜⎝ ˆ

|z|�st

e−2πizξ z|z|
q(z)

[
1 − 2|z|

st

]
dz

⎞⎟⎠ dt

t
.

To evaluate the expression in brackets, first change variables z �→ xst to find⎛⎜⎝ ˆ

|z|�st

e−2πizξ z|z|
q(z)

[
1 − 2|z|

st

]
dz

⎞⎟⎠ = st

ˆ

|x|�1

e−2πix(ξst) x|x|
q(x) (1 − 2|x|) dx.

The right hand side is the Fourier transform, evaluated at ξst, of a certain piecewise affine function supported 
in B(0, 1). The function is not continuous, but can be written as a sum of two functions of the form 
1[a,b] · (cx + d), with [a, b] ⊂ B(0, 1). One may easily verify that the Fourier transform F of any such 
function satisfies |F(ξ)| �a,b,c,d |ξ|−1. So, using once more that spt η ⊂ [ 14 , 1], and |κ(st)| � |st|−1, we find 
that

|Ψ̂s(ξ)| �
1

s|ξ|

1ˆ

1/4

dt

t2
∼ 1

s|ξ| .

This completes the proof of the lemma. �
Having established these properties of Ψs, we infer from Lemma 4.47 that

(4.45) =
ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

Ps(A′)(x)m ·Qs(B′
1)(x) ds

s

∣∣∣∣∣∣ dx =: (m + 1)
ˆ

B(0,1)

|TmB′
1(x)| dx,

where Qs(B′
1) := B′

1 ∗ Ψs. Lemma 4.56 shows that the operator Tm defined by this equation is of the type 
treated in Proposition 4.46 for any functions Fs ∈ C∞(R) satisfying

Fs(t) := F (t) :=
{

1
m+1 t

m, for |t| � 1,
0, for |t| > 2,

for s ∈ (0, 1], Fs ≡ 0 for s > 1, and a = A′ ∈ L∞(R) (noting that |Ps(a)| � 1). Hence Proposition 4.46 is 
applicable, and, after an application of Cauchy-Schwarz, it yields
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(4.45) � (m + 1)

⎛⎜⎝ ˆ

B(0,1)

|TmB′
1(x)|2 dx

⎞⎟⎠
1/2

� (m + 1)‖B′
1‖2 � m + 1.

In the last estimate, recall that ‖B′
1‖L∞ � 1, and we arranged in (4.30) that sptB1 ⊂ B(0, 10). This 

completes the proof of the first estimate in (4.29), and consequently the proof of the theorem, except for 
the small modifications needed to treat the kernels Cm,nDA0 and Cm,nDB0 . We record these in the next 
remark. �
Remark 4.58. We finally explain the minor changes needed to treat the kernels Cm,nDA0 and Cm,nDB0 . For 
Cm,nDB0 , they are quite non-existent. This kernel is Cm,n multiplied by another factor of the type

B̃2(x)−B̃2(y)−1
2 [B̃1(x)+B̃1(y)](x−y)
q(x−y) ,

but the tame map “B̃” is allowed to be different from the map “B” appearing in the kernel Cm,n. In the 
case n = 0 one has

(Cm,0DB0)(x, y) = κ(x− y)
[
A(x)−A(y)

x−y

]m B̃2(x)−B̃2(y)−1
2 [B̃1(x)+B̃1(y)](x−y)
q(x−y) ,

and the proof already presented for Cm,1 works verbatim. If n � 1, then taking absolute values inside at 
(4.33), and applying Cauchy-Schwarz brings one into the situation of Section 4.5. The proof can then be 
completed via β-number estimates for B1 and B̃1.

We then consider the kernel Cm,nDA0 . Again, the argument of Section 4.5 works if n � 2, and the case 
m = 0 can be treated as C1,n. So, the only non-trivial problem involves the kernel

(Cm,1DA0)(x, y) = κ(x− y)
[
A(x)−A(y)

x−y

]m [
A0(x)−A0(y)

x−y

]
B2(x)−B2(y)−1

2 [B1(x)+B1(y)](x−y)
q(x−y)

with m � 1. One starts by repeating the “recursive argument” in the beginning of Section 4.6. After m + 1
steps, as before, matters will have been reduced to bounding an analogue of the term (4.45), which however 
this time reads

ˆ

B(0,1)

∣∣∣∣∣∣
1ˆ

0

Ps(A′)(x)mPs(A′
0)(x)

ˆ
η
(

|x−y|
s

)
κ(x− y)

⎛⎝ yˆ

x

B1(x)+B1(y)−2B1(r)
2q(x−y) dr

⎞⎠ dy
ds

s

∣∣∣∣∣∣ dx.
It looks problematic to apply Proposition 4.46, since only one L∞-function “a” is allowed. In fact, multiple 
L∞-functions are no problem: in Appendix B, we directly prove a version of the proposition which allows 
for an arbitrary number of L∞-functions. With the improved proposition in hand, the term above can be 
handled in a familiar manner.

4.7. Proof of Theorem 1.7 for intrinsic Lipschitz graphs

We interrupt the proof of Theorem 1.5 for a moment in order to establish Theorem 1.7 for intrinsic Lip-
schitz graphs over horizontal subgroups; the case of general regular curves will be completed in Section 6.3. 
Recall that Theorem 1.7 concerned certain non-negative kernels of the form kα(x, y, t) = |t|α/2/‖(x, y, t)‖1+α, 
with α � 4. During Section 4.7, let us again agree that ‖ · ‖ refers to the Korányi norm, so there will be no 
issues with the smoothness of the kernels. It turns out that the proof of Theorem 1.7 (in the case of intrinsic 
Lipschitz graphs) follows closely the arguments we saw just above, in Section 4.5.
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Theorem 4.59. Let α � 4. Then, the kernel kα is a CZ kernel for intrinsic L-Lipschitz graphs over horizontal 
subgroups in H, with ‖kα‖C.Z. only depending on α and L.

Proof. Note that kα(x, y, t) �α k4(x, y, t), so we may assume α = 4. By Proposition 2.2 or [6, Lemma 2.7], 
the kernel kα is an SK on H. Let V be the x-axis, let W be the yt-plane, and let φ : V → W be an intrinsic 
L-Lipschitz function with graph map Φ: V → H. As in (4.8), we insert the explicit formula for the graph 
map in the expression of the kernel (evaluated at arbitrary points of the intrinsic Lipschitz graph Φ(V )):

k4(Φ(x)−1 · Φ(x0)) =
∣∣φ2(x0) − φ2(x) + 1

2 [φ1(x0) + φ1(x)](x0 − x)
∣∣2

‖Φ(x)−1 · Φ(x0)‖5

� 1
|x0 − x|

( |φ2(x0) − φ2(x) + 1
2 [φ1(x0) + φ1(x)](x0 − x)|
|x0 − x|2

)2

for x, x0 ∈ R with x �= x0, using that ‖Φ(x)−1 · Φ(x0)‖ � |x − x0|. Recall from Proposition 3.50) that 
(φ1, −φ2) is a tame map. We have now reduced the proof of Theorem 4.59 to a real variable problem, which 
we solve in the next proposition (which should be applied with (B1, B2) := (φ1, −φ2)). �
Proposition 4.60. Let B = (B1, B2) : R → R2 be N -tame, N � 1. Then the kernel

K(x, y) := 1
|x− y|

( |B2(x) −B2(y) − 1
2 [B1(x) + B1(y)](x− y)|
|x− y|2

)2

satisfies ‖K‖C.Z. � C, for a constant C � 1 that depends only on N .

Proof. We first observe that ‖K‖1,strong � N . Indeed, recalling the familiar kernels Cm,n from (4.19), we 
have K(x, y) = |C0,2(x, y)|. Consequently, the size and Hölder continuity properties of K follow from the 
same properties for C0,2, established in Example 4.20, and the triangle inequality.

To conclude that K is a CZ kernel, we argue as in the proof of Theorem 4.21. Using the same definition 
for ψε as above (2.28), we denote Kε(x, y) := ψε(x − y)K(x, y) and

Tf(x) =
ˆ

Kε(x, y)f(y) dy, f ∈ S.

Since Kε is symmetric, the T1 testing conditions in (2.28) reduce to one condition. Moreover, from this 
point on, we will assume without loss of generality that B is a 1-tame map. This amounts to a harmless 
multiplicative constant in the kernel, and the reductions starting from (4.30) apply verbatim. The proof is 
then concluded as in Section 4.5, recalling that K(x, y) = |C0,2(x, y)|. The point is that the exponent “2” 
spares us from any arguments involving cancellation. �
5. The exponential kernel returns

In Theorem 4.17, we showed that if A : R → R is 1-Lipschitz, and B : R → R2 is 1-tame, then KA,B

is a CZ-kernel. Moreover, if A0 : R → R is Lipschitz, and B0 : R → R2 is tame, then also KA,BDA0 and 
KA,BDB0 are CZ-kernels. In this section, we prove Theorem 4.14, which contained the more precise claim 
that

‖KA,BDA0‖C.Z. �A0 poly(M,N) and ‖KA,BDB0‖C.Z. �B0 poly(M,N)

whenever A : R → R is M -Lipschitz, and B : R → R2 is N -tame. The result will be reduced to the case 
M = 1 = N via the corona decompositions for Lipschitz functions and tame maps from Section 3.1.1. In 



K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113 73
fact, this manner of reasoning works, without extra effort, in slightly higher generality. Let us fix, for the 
entire section, an SK k : R ×R \ 
 → R such that ‖k‖α,strong � 1, α ∈ (0, 1]. We also assume that

k(x, y) = 0, |x− y| � ε, (5.1)

for some fixed ε > 0. Then, let us (re-)define

KA,B(x, y) := k(x, y) exp
(

2πi
[
A(x)−A(y)

x−y + B2(x)−B2(y)−1
2 [B1(x)+B1(y)](x−y)
q(x−y)

])
, (5.2)

where A : R → R is Lipschitz, B : R → R2 is tame, and q : R → R is one of the functions q(s) = s2 or 
q(s) = |s|s. For M, N � 1, and the fixed kernel k as above (5.1), we define

℘k(M,N) := ℘(M,N) := sup{‖KA,B‖C.Z. : A is M -Lipschitz and B is N -tame}.

Thus, Theorem 4.17 implies that ℘k(1, 1) < ∞ for the SKs

k(x, y) = κ(x− y) ·DA0(x, y) and k(x, y) = κ(x− y) ·DB0(x, y). (5.3)

(To be perfectly precise, the kernels first need to be multiplied by inverses of kernel constants, and smoothly 
truncated, to fit into the framework of the section.) From now on, we work abstractly with the a priori
assumption

C0(k) := ℘(1, 1) < ∞. (5.4)

Now, we arrive at the main result of the section:

Theorem 5.5. There exists a constant C1 := C1(k) � 1, depending only on C0(k) in (5.4), and there exists 
a constant C2 := C2(α), depending only on α ∈ (0, 1], such that the following holds. Let M, N � 1. Let 
A : R → R be M -Lipschitz, and let B : R → R2 be N -tame. Then

‖KA,B‖C.Z. � C1 max{M,N}C2 . (5.6)

We already noted above that the assumption (5.4) is valid for the kernels (5.3) relevant for Theorem 4.14. 
So, Theorem 4.14 is a consequence of Theorem 5.5. Theorem 5.5 will be inferred from the following recursive 
statement:

Theorem 5.7. Let M, N ∈ 2N . Then, there exists a constant C = Cα � 1 such that

℘(M,N) � min{CM/2,N , CM,N/2}, (5.8)

where

CM,N := C max{M,N2, ℘(M,N)}.

Let us quickly deduce Theorem 5.5 from Theorem 5.7.

Proof of Theorem 5.5 assuming Theorem 5.7. Let C1 := max{C0(k), 1}, C2 := max{2 log2 C, 2}. Assume 
that we already have (5.6) with these constants “C1” and “C2” for some M = N ∈ 2N , that is, ℘(N, N) �
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C1N
C2 . This is true for M = 1 = N by (5.4). From two applications of (5.8), the inductive hypothesis, and 

noting that 2C2 � C2, we find that

℘(2N, 2N)
(5.8)
� C max{2N,N2, ℘(2N,N)}

(5.8)
� C max{2N,N2, C max{N2, ℘(N,N)}}
� C max{2N,N2, C max{N2, C1N

C2}}
= C2C1N

C2 � C1(2N)C2 .

This completes the proof. �
For the remainder of the section, we will view the Hölder continuity parameter α ∈ (0, 1] as “fixed”, so 

any “absolute constants” are actually allowed to depend on α.

5.1. Proof of Theorem 5.7: getting started

We begin the proof of Theorem 5.7. The argument is based on ideas from Semmes’ paper [60], although 
our setting allows for some simplifications. We fix an M -Lipschitz function A : R → R, and an N -tame map 
B = (B1, B2) : R → R2, with M, N ∈ 2N . Write

Tf(x) :=
ˆ

KA,B(x, y)f(y) dy,

which is well-defined for e.g. f ∈ L2(R) due to (5.1). In the sequel, we abbreviate K(x, y) := KA,B(x, y). 
The plan will be to show that for any dyadic interval Q0 ∈ D, the T1 testing condition

 

Q0

|T (b)| dx � min{CM/2,N , CM,N/2}, (5.9)

familiar from (2.28), holds for all functions b ∈ C∞(R) with 12Q0 � b � 13Q0 . The estimate (5.9)
(and a similar, completely symmetric, estimate for T t) imply by Corollary 2.30 that ‖T‖L2→L2 �
min{CM/2,N , CM,N/2} +‖KA,B‖strong. To conclude from here, recall from Example 2.3 that ‖KA,B‖strong �
max{M, N} � min{CM/2,N , CM,N/2}. So, (5.8) follows.

Fix b ∈ C∞(R), as in (5.9). Now, (5.9) is actually composed of two distinct inequalities: we will mostly 
concentrate on proving the inequality

 

Q0

|T (b)| dx � CM,N/2, (5.10)

that is, the one where the “tameness constant” is reduced by a factor of 2. The argument for the other 
inequality in (5.9) is virtually the same, and we will indicate the small differences in Section 5.4.6. To 
show (5.10), we start by applying the tame corona decomposition, Theorem 3.15 – or more precisely its 
Corollary 3.22 – to the N -tame function B, with parameter η = 1

2 . The result is a decomposition D = B∪̇G, 
as explained in the statement of Theorem 3.15, a collection F of trees T ⊂ D, and for each tree a function of 
the form ΨT = ψT +LT , where ψT is (N/2)-tame, LT is tame-linear, and the good approximation property 
(3.23) holds. To recap:

dπ(B(s),ΨT (s)) � 1N |Q|, s ∈ 2Q, Q ∈ T ∈ F .
2
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Were we proving the second inequality in (5.9), we would, instead, start with the corona decomposition in 
Theorem 3.20 of the M -Lipschitz function A, at level M/2.

To benefit from the decomposition D = B∪̇G, we will now decompose the operator T in an analogous 
manner. For j ∈ Z, we first define the operator Tj by

Tjf(x) :=
ˆ

{y:2−j�|x−y|�2−j+1}

K(x, y)f(y) dy.

Then, we set

TQf := χQTjf, Q ∈ Dj , j ∈ Z,

and write

Tf =
∑
Q∈D

TQf =
∑
Q∈B

TQf +
∑
T ∈F

∑
Q∈T

TQf =:
∑
Q∈B

TQf +
∑
T ∈F

TT f. (5.11)

We begin by disposing of the first sum. Note that for Q ∈ Dj , we have

|TQ(b)(x)| � 1Q(x)
 

B(x,2j+1)

|b(y)| dy � 1Q(x),

using that |K(x, y)| � |x − y|−1 and ‖b‖L∞ � 1. Therefore, for g ∈ L∞(Q0) with ‖g‖L∞(Q0) = 1, we have∣∣∣∣∣∣
ˆ

Q0

⎡⎣∑
Q∈B

TQ(b)

⎤⎦ g

∣∣∣∣∣∣ �
∑
Q∈B
Q⊂Q0

〈|g|〉Q|Q| +
∑
Q∈D
Q⊃Q0

〈|g|〉Q|Q| � |Q0|.

The implicit constants only depend on the Carleson packing constant of the family B. This is better than 
what we need for (5.10).

We then concentrate on the second sum in (5.11). We claim that for individual trees T ∈ F , we have the 
estimate

‖TT ‖L2→L2 � CM,N/2. (5.12)

This will imply that
ˆ

Q0

∑
T ∈F

|TT (b)| dx � CM,N/2|Q0|, (5.13)

as we will next check, and hence complete the proof of (5.10). Assume then for the moment that (5.12)
holds, and write

ˆ

Q0

∑
T ∈F

|TT (b)| dx =
ˆ

Q0

∑
T ∈F0

|TT (b)| dx +
ˆ

Q0

∑
T ∈F \F0

|TT (b)| dx, (5.14)

where F0 = {T ∈ F : Q(T ) ⊂ Q0}. The second term in (5.14) is straightforward to estimate, so we start 
from there. If T ∈ F \ F0 is tree satisfying
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ˆ

Q0

|TT (b)| dx �= 0, (5.15)

then Q0 ⊂ Q(T ), since TT (b) is supported on Q(T ). In addition, there exists Q ∈ T and x ∈ Q0 such that

TQ(b)(x) = 1Q(x)
ˆ

{y:|Q|�|x−y|�2|Q|}

K(x, y)b(y) dy �= 0. (5.16)

Hence x ∈ Q ∩ Q0, so either Q ⊂ Q0, or Q0 ⊂ Q. In the second case, (5.16) forces |Q| � |Q0|, because 
spt b ⊂ 3Q0. In the first case, since Q0 ⊂ Q(T ), there anyway exists a parent Q′ ∈ T of Q such that Q0 ⊂ Q′

and |Q′| ∼ |Q0|. We conclude that whenever (5.15) holds for some T ∈ F \ F0, there exists Q ∈ T with 
Q0 ⊂ Q and |Q| � |Q0|. But since the trees T ∈ F are disjoint, this implies that (5.15) can only occur for 
boundedly many T ∈ F \ F0. Hence, the second sum in (5.14) is bounded by a constant times

ˆ

Q0

|TT b| dx � |Q0|1/2‖TT (b)‖L2(R) � CM,N |Q0|1/2‖b‖L2(Q0) � CM,N |Q0|,

as desired. To estimate the first sum in (5.14), we use the Carleson packing condition for the top intervals 
Q(T ) with T ∈ F0. Recalling that ‖b‖L∞ � 1 and spt b ⊂ 3Q0, and also observing that

TT (b) = 1Q(T )TT (15Q(T )b), T ∈ F ,

we estimate as follows:

ˆ

Q0

∑
T ∈F0

|TT (b)| dx �
∑
T ∈F0

⎛⎜⎝  

Q(T )

|TT (b)|2 dx

⎞⎟⎠
1/2

|Q(T )|

� CM,N

∑
T ∈F0

⎛⎜⎝  

5Q(T )

|b|2 dx

⎞⎟⎠
1/2

|Q(T )|

� CM,N

∑
T ∈F0

5Q(T )∩3Q0 �=∅

|Q(T )| � CM,N |Q0|.

The implicit constants only depend on the Carleson packing constant of the top intervals Q(T ), T ∈ F . We 
have now reduced (5.13) to proving (5.12).

To prove (5.12), fix T ∈ F and f ∈ L2(R), and write j0 for the generation of Q(T ), that is, Q(T ) ∈ Dj0 . 
Note that

TT f(x) =
∑
Q∈T

TQf(x) =
∑
Q∈T
x∈Q

ˆ

{y:|Q|�|x−y|�2|Q|}

K(x, y)f(y) dy

= 1Q(T )(x)
ˆ

{y:h(x)�|x−y|�ρ}

K(x, y)f(y) dy, x ∈ R,

where ρ = 2−j0+1 = 2|Q(T )|, and

h(x) := inf{|Q| : x ∈ Q ∈ T }, for x ∈ Q(T ). (5.17)
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Now, following an idea in [60], we want to “replace” TT by the somewhat regularised operator

T̄T f(x) := 1Q(T )(x)
ˆ

{y:D(x,y)�|x−y|�ρ}

K(x, y)f(y) dy, (5.18)

where

D(x, y) := d(x) + d(y)
4 , (5.19)

and d : R → R is the 1-Lipschitz function

d(x) = inf{|Q| + dist(x,Q) : Q ∈ T }, x ∈ R. (5.20)

By “replacement”, we mean that ‖TT ‖L2→L2 � ‖T̄T ‖L2→L2 + max{M, N}, so it will suffice to prove (5.12)
for T̄T in place of TT . Let us now see carefully how to dominate TT by T̄T .

Lemma 5.21. If x, y ∈ R with x ∈ Q(T ) and |x − y| � h(x), then |x − y| � D(x, y).

Proof. We use the facts that d is 1-Lipschitz, and d(x) � h(x) to estimate as follows:

D(x, y) � d(x) + d(x) + |x− y|
4 � h(x)

2 + |x− y|
4 � 3|x− y|

4 � |x− y|. �
Corollary 5.22. Consider the kernel KD,ρ(x, y) := K(x, y)1{D(x,y)�|x−y|�ρ}(x, y). Then,

|TT f(x)| � sup
δ>0

∣∣∣∣∣∣∣
ˆ

{y:|x−y|�δ}

KD,ρ(x, y)f(y) dy

∣∣∣∣∣∣∣ =: T̄ ∗
T f(x), x ∈ R. (5.23)

Proof. The estimate (5.23) is clear if x /∈ Q(T ), since then TT f(x) = 0, so we assume in the following that 
x ∈ Q(T ). Choose δ := max{h(x), ε} > 0, where ε > 0 was the a priori truncation from (5.1) (in other 
words, K(x, y) = 0 whenever |x − y| < ε). Then, if h(x) � |x − y| � ρ, and K(x, y) �= 0, we also have 
|x − y| � δ, and D(x, y) � |x − y| � ρ by the previous lemma. This shows that

ˆ

{y:h(x)�|x−y|�ρ}

K(x, y)f(y) dy =
ˆ

{y:|x−y|�δ}

KD,ρ(x, y)f(y) dy,

and the claim follows. �
So, at least TT is dominated by T̄ ∗

T . But since D, ρ are 1
2 -Lipschitz functions (ρ being a 0-Lipschitz 

function), we find from Lemma 2.9 that KD,ρ is a GSK with

‖KD,ρ‖ � ‖K‖ � max{M,N}, (5.24)

and hence Cotlar’s inequality (2.21) applies:

T̄ ∗
T f(x) � M(|T̄T f |)(x) + ‖T̄T ‖C.Z.Mf(x), f ∈ L2(R), x ∈ R.

Here ‖T̄T ‖C.Z. = ‖KD,ρ‖ + ‖T̄T ‖L2→L2 by definition. Combining this inequality with (5.23) and (5.24), we 
infer that



78 K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113
‖TT ‖L2→L2 � ‖T̃T ‖L2→L2 + max{M,N},

as desired. Consequently, (5.12) will follow (with a slightly worse constant) once we manage to establish 
that

‖T̃T ‖L2→L2 � CM,N/2. (5.25)

To simplify notation a little bit, we will, from now on, write “TT ” in place of “T̄T ” for the operator associated 
to the D(x, y)-truncation. This should cause no confusion, because there will be no further reference to the 
original operator TT .

5.2. Applying the corona decomposition

To prove (5.25), we recall the functions

ΨT := Ψ = ψT + LT =: ψ + L

associated to the fixed tree T , where ψ = (ψ1, ψ2) : R → R2 is (N/2)-tame, and L = (L, P ) := R → R2 is 
2N -tame-linear. We recall from (3.23) that

dπ(B(s),Ψ(s)) � (N/2)|Q|, s ∈ 11Q, Q ∈ T . (5.26)

To be accurate, (3.23) only gives (5.26) for s ∈ 2Q, but enlarging the constant from “2” (or anything > 1) 
to “11” is a standard trick, see e.g. the argument on [16, p. 20]. Alternatively, one could just prove (3.23)
directly with constant “11”. To establish the good L2-bound for TT , we want to compare it to a suitable 
operator TΨ associated to the kernel

KA,Ψ(x, y) = k(x, y) exp
(

2πi
[
A(x)−A(y)

x−y + ψ2(x)−ψ2(y)−1
2 [ψ1(x)+ψ1(y)](x−y)
q(x−y)

])
. (5.27)

The reader should protest that the right hand side of (5.27) is, in fact, the kernel of KA,ψ instead of KA,Ψ. 
Have we forgotten about the tame-linear part L = (L, P ) altogether? No: recalling that L is linear, and 
Ṗ = L, one easily checks that

P (x) − P (y) − 1
2 [L(x) + L(y)](x− y) ≡ 0.

In other words,

KA,Ψ = KA,ψ. (5.28)

This is crucial: the kernel KA,Ψ approximates KA,B well (using information from the corona decomposition, 
as we will soon see), while KA,ψ is a kernel associated to an (N/2)-tame function ψ. On the other hand, Ψ
can be, at worst, 2N -tame, so without knowing (5.28), the kernel KA,Ψ would be no better than KA,B!

Now, we abbreviate

K̃(x, y) := KA,ψ(x, y) = KA,Ψ(x, y),

and define the operator TΨ with the same D(x, y)-truncation as in the definition of TT :
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TΨf(x) = 1Q(T )(x)
ˆ

{y:D(x,y)�|x−y|�ρ}

K̃(x, y)f(y) dy. (5.29)

To prove (5.25), we will establish that

‖TT ‖L2→L2 � ‖TΨ‖L2→L2 + max{M,N2} � ℘(M,N/2) + max{M,N2}. (5.30)

The second inequality in (5.30) is virtually a consequence of the definition of the number ℘(M, N/2), and 
(5.28), since A is M -Lipschitz, and ψ is (N/2)-tame. A little technicality is the presence of the D(x, y)-
truncation, but we can dispose of it by easy maximal function tricks, as follows. Recalling that D(x, y) =
(d(x) + d(y))/4, we claim that∣∣∣∣∣∣∣TΨf(x) −

ˆ

{y:d(x)/4�|x−y|�ρ}

K̃(x, y)f(y) dy

∣∣∣∣∣∣∣ � Mf(x). (5.31)

Indeed, since D(x, y) � d(x)/4, the left hand side of (5.31) is bounded by

ˆ

{y:d(x)/4�|x−y|<D(x,y)}

|K̃(x, y)||f(y)| dy � 4
d(x)

ˆ

B(x,d(x))

|f(y)| dy � Mf(x).

We used that D(x, y) � d(x)/2 + |x − y|/4, so |x − y| � D(x, y) implies that |x − y| � d(x). Now, it follows 
from (5.31) and Cotlar’s inequality that

‖TΨf‖L2 � ‖T ∗
A,Ψf‖L2 + ‖f‖L2 � ‖TA,Ψf‖L2 + (1 + ‖K̃‖)‖f‖L2 .

Here ‖TA,Ψf‖L2 = ‖TA,ψf‖L2 � ℘(M, N/2)‖f‖L2 by (5.28) and the definition of ℘(M, N/2), while ‖K̃‖ �
max{M, N}. This completes the proof of the second part of (5.30), and the rest of the section is devoted to 
establishing the first part.

5.3. A Whitney decomposition

Recall that d(x) = inf{dist(x, Q) + |Q| : Q ∈ T }, so d is 1-Lipschitz, and well-defined on R. However, the 
set

E := {x ∈ R : d(x) = 0}

is a compact subset of Q(T ). It follows easily from (5.26) that

Ψ(s) = B(s), s ∈ E. (5.32)

In this short section, we perform a Whitney type decomposition of R \ E. Fix x ∈ R \ E. Since 0 < d(x) �
dist(x, Q(T )) + |Q(T )| < ∞, and d is continuous (hence d stays positive in a neighbourhood of x), there 
exists a maximal dyadic interval I � x with

inf
y∈I

d(y) = inf
y∈I

inf
Q∈T

{d(y,Q) + |Q|} � |I|. (5.33)

These intervals are disjoint and cover R \ E, and we will denote them S. We first observe that
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|S| � d(y) � 4|S|, y ∈ S ∈ S. (5.34)

Indeed, the lower bound is immediate from the definition (5.33). To see the upper bound, note that by the 
maximality of S ∈ S there exists y′ in the parent Ŝ of S with d(y′) < |Ŝ| = 2|S|, whence d(y) � d(y′) + |Ŝ| �
4|S|, as claimed. We next observe that

S ∈ S and S ⊂ 11Q(T ) =⇒ dπ(B(s),Ψ(s)) � N |S|, s ∈ S. (5.35)

Indeed, fix x ∈ S and, based on (5.34), find Q ∈ T with d(x, Q) + |Q| � 5|S|. Then, let Q′ ∈ T be the 
minimal ancestor of Q in T with S ⊂ 11Q′ (this exists because S ⊂ 11Q(T )). It is easy to check that 
|Q′| ∼ |S|, and now (5.35) follows from (5.26) applied to s ∈ 11Q′.

5.4. Comparing TT and TΨ

Recall that TT and TΨ are the operators defined in (5.18) and (5.29), respectively. To prove the first 
inequality in (5.30), that is,

‖TT ‖L2→L2 � ‖TΨ‖L2→L2 + max{M,N2},

we fix f, g ∈ L2(R). It suffices to show that∣∣∣∣ˆ (TT f)g −
ˆ

(TΨf)g
∣∣∣∣ � max{M,N2}‖f‖L2‖g‖L2 . (5.36)

Since TT (f) = 1Q(T )TT (f15Q(T )) and TΨ(f) = 1Q(T )TΨ(f15Q(T )), which follows from the upper ρ-
truncation in (5.18) and (5.29) (recall: ρ = 2|Q(T )|), it moreover suffices to prove (5.36) for f, g satisfying

spt f ∪ spt g ⊂ 5Q(T ).

To estimate the difference in (5.36), we introduce the following auxiliary notation. If x ∈ E, we define 
S(x) = {x}, and otherwise S(x) is the unique element in S containing x. If h : R → R is a function, and 
x ∈ R, we then define

h�x(y) := h(y)1{|S(y)|�|S(x)|}(y) and h>x(y) := h(y)1{|S(y)|>|S(x)|}(y).

The functions h�x and h<x are defined similarly, swapping the inequalities. Note that h>x|E ≡ 0 for any 
x ∈ R, and h<x ≡ 0 whenever x ∈ E. With this notation, we have

ˆ
(TT f)(x)g(x) dx =

ˆ
(TT f�x)(x)g(x) dx +

ˆ
(TT f<x)(x)g(x) dx,

where further

ˆ
(TT f<x)(x)g(x) dx =

ˆ
g(x)

⎡⎢⎣ ˆ

{D(x,y)�|x−y|�ρ}

K(x, y)f(y)1{|S(y)|<|S(x)|}(y) dy

⎤⎥⎦ dx

=
ˆ

f(y)

⎡⎢⎣ ˆ

{D(x,y)�|x−y|�ρ}

K(x, y)g(x)1{|S(x)|>S(y)|}(x) dx

⎤⎥⎦ dy

=
ˆ

(T t
T g>y)(y)f(y) dy.
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The same calculation works if “T ” is replaced with “Ψ”. Consequently,

ˆ
(TT f)g −

ˆ
(TΨf)g =

ˆ
[TT f�x − TΨf�x](x)g(x) dx (5.37)

+
ˆ

[T t
T g>y − T t

Ψg>y](y)f(y) dy. (5.38)

We will only estimate the term on line (5.37), since the argument for the second term is virtually the same. 
This is actually a reason why we introduced the “symmetric” D(x, y)-truncation: to make the term on line 
(5.38) look as similar to (5.37) as possible.

5.4.1. Estimate for (5.37)
The plan is to fix x ∈ spt g ⊂ 5Q(T ), and obtain pointwise bounds for the expression [TT f�x−TΨf�x](x), 

which we spell out as follows:

[TT f�x − TΨf�x](x) =
∑
S∈S

|S|�|S(x)|

ˆ

{y∈S:D(x,y)�|x−y|�ρ}

K(x, y)f(y) − K̃(x, y)f(y) dy. (5.39)

But is this also accurate when x ∈ E, that is, when |S(x)| = 0? Then, the a priori correct expression for 
[TT f�x − TΨf�x](x) is actually

∑
S∈S

ˆ

{y∈S:D(x,y)�|x−y|�ρ}

K(x, y)f(y) − K̃(x, y)f(y) dy +
ˆ

E

f(y)[K(x, y) − K̃(x, y)] dy.

However, when x, y ∈ E, as in the second integration, then B(x) = Ψ(x) and B(y) = Ψ(y) by (5.32), so 
K(x, y) = K̃(x, y). Consequently, the second integral contributes nothing, and (5.39) is indeed true even 
when x ∈ E.

We will now write “Ix(S)” for the individual terms in (5.39), with |S| � |S(x)|. Note that intervals S ∈ S
with S ∩ 5Q(T ) = ∅ contribute nothing to (5.39), so they can be discarded. But if S ∩ 5Q(T ) �= ∅, then 
d(y) � dist(y, Q(T )) + |Q(T )| � 3|Q(T )| for some y ∈ S. This implies by (5.34) that |S| � 3|Q(T )|, and 
consequently,

S ⊂ 11Q(T ). (5.40)

In fact this inclusion explains our choice of the constant “11” in (5.26). We proceed to estimate the pieces 
Ix(S) in a manner adapted from [60], eventually proving the following claim: the intervals S ∈ S with 
|S| � |S(x)| and S ⊂ 5Q(T ) can be split into two groups G1(x) and G2(x), where

|Ix(S)| � max{M,N2}|S|
dist(x, S)2 + |S|2

ˆ

S

|f(y)| dy, S ∈ G1(x), (5.41)

and ∑
S∈G2(x)

|Ix(S)| � Mf(x). (5.42)

The estimate (for (5.37)) concerning group G2(x) is straightforward:
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ˆ
|g(x)|

∑
S∈G2(x)

|Ix(S)| dx �
ˆ

|g(x)|Mf(x) dx � ‖g‖L2‖f‖L2 .

Before proceeding with the proofs of (5.41)-(5.42), let us briefly see that the estimate (5.41) leads to 
essentially the same conclusion (up to multiplication by max{M, N2}):

Lemma 5.43. Let 1 < p < ∞, and 1/p + 1/q = 1. Then, for g ∈ Lp and f ∈ Lq, we have

ˆ
|g(x)|

⎡⎣∑
S∈S

|S|
dist(x, S)2 + |S|2

ˆ

S

|f(y)| dy

⎤⎦ dx �p ‖g‖Lp‖f‖Lq . (5.44)

Proof. We start by rewriting and estimating the left hand side as follows:

L.H.S. of (5.44) =
∑
S∈S

[ˆ |S| |g(x)| dx
dist(x, S)2 + |S|2

]⎛⎝ 

S

|f(y)| dy

⎞⎠ |S|

�
(∑

S∈S

[ˆ |S| |g(x)| dx
dist(x, S)2 + |S|2

]p
|S|
)1/p

⎛⎝∑
S∈S

⎛⎝ 

S

|f(y)| dy

⎞⎠q

|S|

⎞⎠1/q

.

Since the intervals in S are disjoint, the second factor is evidently controlled by ‖Mf‖Lq �p ‖f‖Lq . The 
first factor is also dominated by the maximal function, since for S ∈ S fixed,

ˆ |S| |g(x)| dx
dist(x, S)2 + |S|2 �

 

2S

|g(x)| dx +
∑
j�0

1
22j |S|

ˆ

{x:2j |S|�dist(x,S)�2j+1|S|}

|g(x)| dx

�
∑
j�0

2−j

(
inf
y∈S

Mg(y)
)

� inf
y∈S

Mg(y),

and consequently

(∑
S∈S

[ˆ |S| |g(x)| dx
dist(x, S)2 + |S|2

]p
|S|
)1/p

�

⎛⎝∑
S∈S

ˆ

S

[Mg(y)]p dy

⎞⎠1/p

�p ‖g‖Lp ,

as desired. �
This allows us to conclude the estimate for (5.37) (but see Section 5.4.5 for a final “wrap-up” of the 

whole argument). We then begin to verify the estimates (5.41)-(5.42). We fix x ∈ 5Q(T ) and S ∈ S with 
|S| � |S(x)| and S ⊂ 11Q(T ). Since S(x) ∩ 5Q(T ) �= ∅, the argument above (5.40) also yields

S(x) ⊂ 11Q(T ). (5.45)

5.4.2. Case where dist(S(x), S) � 2|S| and {y ∈ S : D(x, y) � |x − y| � ρ} = S

This is the “main case”, and we write

Ix(S) =
ˆ

K(x, y)f(y) − K̃(x, y)f(y) dy

{y∈S:D(x,y)�|x−y|�ρ}
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=
ˆ

S

[K(x, y) −K(x, y0)]f(y) + [K(x, y0) − K̃(x, y)]f(y) dy, (5.46)

where y0 is the midpoint of S. In particular, |y− y0| � |S| � |x − y0|/2. We give pointwise estimates for the 
two differences of the kernels in (5.46). The first difference is easier, as the same kernel “K” appears twice, 
and

|K(x, y) −K(x, y0)| �
max{M,N}|S|

dist(x, S)2 (5.47)

follows from standard estimates for K. We claim a similar estimate also for the second difference in (5.46), 
and we start by writing

|K(x, y) − K̃(x, y0)| � |K(x, y) −K(x, y0)| + |K(x, y0) − K̃(x, y0)|. (5.48)

The first term is the same as (5.47), so let us concentrate on the second one. Recalling the definitions, and 
writing Ψ = ψ + L =: (Ψ1, Ψ2), this term equals

|K(x, y0) − K̃(x, y0)| (5.49)

� 1
|x− y0|

∣∣∣∣∣ exp
(

2πi
[
A(x) −A(y0)

x− y0
+

B2(x) −B2(y0) − 1
2 [B1(x) + B1(y0)](x− y0)
q(x− y0)

])

− exp
(

2πi
[
A(x) −A(y0)

x− y0
+

Ψ2(x) − Ψ2(y0) − 1
2 [Ψ1(x) + Ψ1(y0)](x− y0)
q(x− y0)

]) ∣∣∣∣∣.
To estimate the difference, we just use that t �→ exp(2πit) is 2π-Lipschitz, and |q(s)| = s2. The ensuing 
upper bound for (5.49) is

2π
|x− y0|

(
|B2(x) − Ψ2(x)| + |B2(y0) − Ψ2(y0)|

|x− y0|2
+ |B1(x) − Ψ1(x)| + |B1(y0) − Ψ1(y0)|

2|x− y0|

)
.

To estimate these terms, we plug in the information from the corona decomposition on the quality of 
approximation of B by Ψ. Since x ∈ S(x) ⊂ 11Q(T ) (by (5.45)) and y0 ∈ S ⊂ 11Q(T ), and |S(x)| � |S|, 
we deduce from (5.35) that

|B2(x) − Ψ2(x)| � N2|S(x)|2 � N2|S|2 and |B2(y0) − Ψ2(y0)| � N2|S|2.

For the same reasons,

|B1(x) − Ψ1(x)| � N |S| and |B1(y0) − Ψ1(y0)| � N |S|.

Combining these estimates, and recalling that |x − y0| � dist(S(x), S) � 2|S|, we infer that

|K(x, y0) − K̃(x, y0)| �
N2|S|2

dist(x, S)3 + N |S|
dist(x, S)2 � N2|S|

dist(x, S)2 .

Combining (5.47) and the estimate above, we conclude that

Ix(S) � max{M,N2}|S|
dist(x, S)2 + |S|2

ˆ

S

|f(y)| dy. (5.50)

This matches the estimate in (5.41), so in this case S ∈ G1(x).
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5.4.3. Case where dist(S(x), S) � 2|S|
Recall from (5.34) that d(y) ∼ |S| for all y ∈ S. Therefore, if |x − y| � D(x, y) = (d(x) + d(y))/4, we 

certainly have |x −y| � |S|. Since max{|K(x, y)|, |K̃(x, y)|} � |x −y|−1, and d(x, S) � |S(x)| +dist(S(x), S) �
3|S|, we conclude that

Ix(S) � 1
|S|

ˆ

S

|f(y)|dy � |S|
d(x, S)2 + |S|2

ˆ

S

|f(y)| dy.

This matches the estimate in (5.41), so again S ∈ G1(x).

5.4.4. Case where dist(S(x), S) � 2|S| and {y ∈ S : D(x, y) � |x − y| � ρ} �= S

This case a priori divides into two further sub-cases: either

|x− y0| < D(x, y0) or |x− y0| > ρ (5.51)

for some y0 ∈ S. We assume that the former option holds, and pick y0 ∈ S with |x − y0| < D(x, y0) =
(d(x) + d(y0))/4. Then, using the 1-Lipschitz property of d, we first deduce that

|x− y0| <
d(x) + d(y0)

4 � d(x)
2 + |x− y0|

4 ,

and consequently

d(x) � 3
2 |x− y0| � 3

2 dist(x, S).

Since |S| � dist(x, S), this implies that S ⊂ B(x, 3d(x)). Consequently, also noting that the integration 
in Ix(S) only takes into account such y ∈ R with |x − y| � D(x, y) � d(x), we find from the estimates 
max{|K(x, y)|, |K̃(x, y)|} � |x − y|−1 that

∑
S⊂11Q(T )

infy0∈S [|x−y0|−D(x,y0)]<0

|Ix(S)| � 1
d(x)

ˆ

B(x,3d(x))

|f(y)| dy � Mf(x). (5.52)

This is the estimate desired in (5.42), so we can include all S ∈ S with infy∈S [|x − y| −D(x, y)] < 0 to the 
collection G2(x).

Finally, assume that the second option in (5.51) is realised, and pick y0 ∈ S accordingly. If |S| � ρ/2, then 
infy∈S |x − y| � ρ/2 by the triangle inequality. But even if |S| � ρ/2, we have infy∈S |x − y| = dist(x, S) �
2|S| � ρ by the case assumption. So,

∑
S⊂11Q(T )

supy0∈S |x−y0|>ρ

|Ix(S)| � ρ−1
ˆ

5Q(T )

|f(y)| dy � Mf(x),

which is the same estimate as in (5.52). The proof of this – final – case is complete.

5.4.5. Summary
We have now proven that all the intervals S ∈ S with |S| � |S(x)| and S ⊂ 11Q(T ), for x ∈ 5Q(T ), can 

be split into the groups G1(x) and G2(x) so that (5.41)-(5.42) hold. As we saw directly under (5.41)-(5.42), 
we can then conclude the estimate
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ˆ
|TT f�x − TΨf�x](x)||g(x)| dx �

ˆ
|g(x)|

∑
|S|�|S(x)|

Ix(S) dx � max{M,N2}‖f‖L2‖g‖L2 .

Repeating rather verbatim the same argument, we could also show that
ˆ

|[T t
T g>y − T t

Ψg>y](y)||f(y)| dy � max{M,N2}‖f‖L2‖g‖L2 ,

and consequently the splitting in (5.37) shows that∣∣∣∣ˆ (TT f)g −
ˆ

(TΨf)g
∣∣∣∣ � max{M,N2}‖f‖L2‖g‖L2 .

Since f, g ∈ L2(R) were arbitrary functions, this allows us to conclude the first inequality in (5.30), namely 
that ‖TT ‖L2→L2 � ‖TΨ‖L2→L2 +max{M, N2}. Since we already established the second inequality in (5.30), 
we may then infer (5.25), which then implies (5.12), and finally (5.10) (one of the two inequalities in (5.9)).

5.4.6. The second inequality in (5.9)
As we explained above, we have now established one of the two inequalities claimed in (5.9). We still 

need to establish the second:
 

Q0

|T (b)| dx � CM/2,N . (5.53)

As we noted below (5.10), the first step is to apply Theorem 3.20 to the M -Lipschitz function A at level 
M/2, and then decompose the operator T with respect to the ensuing families of intervals B and {T }T ∈F , 
as in (5.11). For each tree T ∈ F , the corona decomposition yields an (M/2)-Lipschitz function ψT : R → R, 
and a linear map LT : R → R. However, the proof presented above makes no explicit reference to these 
“approximating” functions before the introduction of the kernel KA,Ψ in (5.27). So, the argument is literally 
the same until that point. In proving (5.53), the relevant “approximating” kernel is

K̃(x, y) = k(x, y) exp
(

2πi
[

(ψ+L)(x)−(ψ+L)(y)
x−y + B2(x)−B2(y)−1

2 [B1(x)+B2(y)](x−y)
q(x−y)

])
,

because |A(x) − (ψ + L)(x)| is the quantity controlled by the corona information for x ∈ 2Q and Q ∈ T , 
recall the estimates in Section 5.4.2. As before, the crux of the proof is to prove the analogue of (5.30), 
namely

‖TT ‖L2→L2 � ‖TΨ‖L2→L2 + max{M,N} � ℘(M/2, N) + max{M,N}. (5.54)

Here TT is precisely the same object as in the previous sections, and

TΨf(x) =
ˆ

{y:D(x,y)�|x−y|�ρ}

K̃(x, y)f(y) dy.

The proof of the first inequality in (5.54) is virtually the same as above: the formula of the kernel K̃
only plays a role in Section 5.4.2, and the upper bound for |A(x) − (ψ + L)(x)|, coming from the corona 
decomposition, is exactly of the form applicable in (5.49). So, one can conclude (5.50), in fact with constant 
“max{M, N}” in place of “max{M, N2}”.

The proof of the second inequality in (5.54) contains the only essential, albeit easy, difference in the 
proofs. Namely, recall from the discussion around (5.28) that the equation KA,Ψ = KA,ψ was crucially 
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important. Now, the same is not true, but we have something comparable, and good enough. Namely, if 
L(x) = cx, we have

Kψ+L,B(x, y) = e2πicKψ,B(x, y), x, y ∈ R, x �= y.

Thus, even though ψ + L is not (M/2)-Lipschitz, the L2 → L2 operator norm of

Tψ+L,Bf(x) =
ˆ

Kψ+L,B(x, y)f(y) dy = e2πic
ˆ

Kψ,B(x, y)f(y) dy

is bounded from above by ℘(M/2, N). This fact (in combination with Cotlar’s inequality, as discussed after 
(5.30)) allows us to conclude the second inequality in (5.54). This completes the proof of (5.53), and hence 
the proof of (5.9) and of Theorem 5.7.

6. Regular curves and big pieces of intrinsic Lipschitz graphs

In this section, we prove Theorem 1.5, which states that certain SKs in H are CZ kernels for (Hausdorff 
measures on) regular curves. The plan is to reduce the assertion to its special case concerning intrinsic 
Lipschitz graphs, Theorem 1.10, through the observation that regular curves have big pieces of intrinsic 
Lipschitz graphs (Theorem 6.42). Further, the transition from “intrinsic Lipschitz graphs” to sets with “big 
pieces of intrinsic Lipschitz graphs” is based on an abstract argument, originally due to David [18,19] in 
Rn. We will record a version of this argument in all proper metric spaces (X, d), see Theorem 6.3 below, 
although the case X = H suffices for our application.

6.1. David’s big piece theorem in metric spaces

Definition 6.1 (Regular measures). Let (X, d) be a metric space, and let k > 0. We write Σk for the class 
of k-regular measures on X, that is, Borel regular measures μ on X with the property that there exists a 
finite constant C � 1 such that

C−1rk � μ(B(x, r)) � Crk, x ∈ sptμ, r > 0. (6.2)

The smallest constant C � 1 such that (6.2) holds will be denoted regk(μ), or just reg(μ).

If μ ∈ Σk, then sptμ is a k-regular set and, since the lower bound is required to hold for arbitrarily large 
r > 0, it follows that diam(X, d) � diam(sptμ) = ∞. This is a matter of technical convenience. Anyway, 
our focus will be on 1-regular curves in the metric space X = H, and every such curve is contained in an 
unbounded 1-regular curve.

Theorem 6.3. Let (X, d) be a proper metric space, and let k > 0. Let K : X × X \ 
 → C be a k-GSK, 
and assume that μ ∈ Σk has the following properties. There exist constants 0 < θ < 1, C � 1 and, for each 
1 < p < ∞, a finite constant Ap � 0 such that the following is true. For every closed ball B centred on 
sptμ, there exists a Borel regular measure σ on X, and a compact set E ⊂ B ∩ sptμ, such that

1. σ ∈ Σk with reg(σ) � C,
2. μ(E) � θμ(B),
3. μ(A ∩E) � σ(A) for all A ⊂ X,
4. ‖T ∗

σf‖Lp(σ) � Ap‖f‖Lp(σ) for f ∈ Cc(X).
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Then, there are constants Cp > 0, for 1 < p < ∞, depending only on (k, p, Ap, C, reg(μ), ‖K‖, θ) such that

‖T ∗
μf‖Lp(μ) � Cp‖f‖Lp(μ), f ∈ Cc(X). (6.4)

Theorem 6.3 in Rn is due to David [19, Proposition 4 bis.], see also [20, III.3,Proposition 3.2] and [17, 
Proposition 1.18], and it is based on “good λ inequalities”. The proof of the (X, d) version follows David’s 
proof very closely, and there are no real difficulties. The main differences are:

• David only considers k-SKs K : Rn ×Rn \ 
 → C satisfying

|∇xK(x, y)| + |∇yK(x, y)| � |x− y|−1−k, x �= y.

In contrast, we consider k-GSKs, and associated operators T ∗. In this generality, we do not know if T ∗f

is lower semicontinuous, which causes minor technical trouble in the proof of Lemma 6.25.
• At one point of the original proof, David seems to refer to the Besicovitch covering theorem, which is not 

available in metric spaces. However, it turns out that the 5r-covering theorem suffices, see Lemma 6.8.

Often, when arguments follow [19, Proposition 4 bis.] verbatim, we will omit details.

6.1.1. Proof of Theorem 6.3
The version of the “good λ inequalities” which we use in the proof of Theorem 6.3 is borrowed from [20, 

III, Lemma 3.1]:

Proposition 6.5. Let (X, μ) be a measure space, and let 1 < p < ∞. Let u : X → [0, +∞] be a μ measurable 
function that agrees with an Lp(μ) function outside a set of finite μ measure, and let v : X → [0, +∞] be an 
Lp(μ) function. Assume that there exists a constant 0 < ν < 1 such that, for all ε > 0, there is a constant 
γ > 0 so that, for all λ > 0,

μ({x ∈ X : u(x) > λ + ελ and v(x) � γλ}) � (1 − ν)μ({x ∈ X : u(x) > λ}). (6.6)

Then u ∈ Lp(μ) with ‖u‖Lp(μ) � C(p, ε, ν, γ)‖v‖Lp(μ).

A proof for the case X = R and μ = L1 is included below [18, Lemme 12] (we do not need an explicit 
expression of C(p, ε, ν, γ) for our purposes). The version for an arbitrary measure space (X, μ) is proven in 
the same way (David leaves this as an exercise in [20]).

The proof of Theorem 6.3 follows by applying Proposition 6.5 for given f ∈ Cc(X) and 1 < p < ∞ to the 
functions

u := T ∗
μf and v := Mμ,kf +

(
(Mμ,k|f |

√
p)
) 1√

p , (6.7)

where Mμ,k is the radial maximal function of order k (see Section 2.2). For μ ∈ Σk, we will abbreviate 
Mμ := Mμ,k. In order to employ Proposition 6.5, we want to show that u agrees with an Lp(μ) function 
outside a compact set, namely outside a closed ball B(x∗, 2R), where x∗ ∈ X, and R > 0 is so large 
that sptf ⊆ B(x∗, 2R). Moreover, we have to verify that u and v ∈ Lp(μ) satisfy (6.6). This will yield 
Theorem 6.3 since ‖v‖Lp(μ) � C(p, reg(μ)) ‖f‖Lp(μ). We start with some preliminaries.

Whenever μ ∈ Σk, the triple (sptμ, μ, d) a doubling metric measure space, and Mμ is bounded on Lp(μ)
for 1 < p < ∞. We need a more general version of this result that involves two distinct measures in Σk with 
potentially distinct, even disjoint, supports. David states this in [20, Lemma 2.2, p. 58], and writes that the 
proof is easy, and based on the Besicovitch covering theorem. This tool is not available in our generality, 
but, in fact, the 5r-covering theorem is good enough.



88 K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113
Lemma 6.8. Assume that (X, d) is a proper metric space and k > 0. Let μ, σ ∈ Σk, and 1 < p < ∞. Then, 
there exists a constant 0 < C < ∞, depending only on p and reg(μ), reg(σ), such that

‖Mμf‖Lp(σ) � C‖f‖Lp(μ), f ∈ Lp(μ).

Proof. Lemma 6.8 is proved in the same way as [18, Proposition 4], using Marcinkiewicz interpolation. One 
has to show that Mμ maps L∞(μ) into L∞(σ), which is clear (only using μ ∈ Σk), and that it also maps 
L1(μ) into L1,∞(σ):

σ({x ∈ X : Mμf(x) > λ}) � C

λ
‖f‖L1(μ), f ∈ L1(μ). (6.9)

This follows from the “standard” proof, and only uses that σ ∈ Σk, but to convince the reader that no 
Besicovitch covering theorem is needed, let us record the details. Fix f ∈ L1(μ), and consider the ball 
family

B :=

⎧⎪⎨⎪⎩B(x, r) ⊂ X : x ∈ sptσ and 1
rk

ˆ

B(x,r)

|f | dμ > λ

⎫⎪⎬⎪⎭ .

Since f ∈ L1(μ), the radii of the balls in B are uniformly bounded. Second, B is a cover for the set 
E = {x ∈ sptσ : Mμf(x) > λ}, which has the same σ-measure as the left hand side of (6.9). Using the 
5r-covering theorem, we extract a countable disjoint subfamily B0 := {B(xi, ri)}i∈N ⊂ B with xi ∈ sptσ, 
and

E ⊂
⋃
i∈N

B(xi, 5ri).

Finally,

σ(E) �
∑
i∈N

σ(B(xi, 5ri)) � C
∑
i∈N

rki � C

λ

∑
i∈N

ˆ

B(xi,ri)

|f | dμ � C

λ
‖f‖L1(μ),

as claimed. �
Lemma 6.8 yields a “two-measure statement” for SIOs, Proposition 6.16 below. We follow closely David’s 

proof of [19, Proposition 2] and deduce Proposition 6.16 from two auxiliary lemmas.

Lemma 6.10. Let (X, d) be a proper metric space, k > 0, and let K : X × X \ 
 → C a k-GSK. Assume 
that σ ∈ Σk. Then there exists a constant C > 0, depending only on k, ‖K‖, and reg(σ), such that

T ∗
σf(x0) � C (Mσ(T ∗

σf)) (x0) + CMσf(x0), f ∈ Cc(X), x0 ∈ X. (6.11)

The main point is that we can take x0 ∈ X \ sptσ.

Proof. One first shows that there exists a constant C0 > 0, depending only on k and ‖K‖, such that for all 
ε > 0 and x0 ∈ X, one has

|Tσ,εf(x0)| � T ∗
σf(x) + C0Mσf(x0), x ∈ B(x0, ε/2). (6.12)

This can be done as in the proof of [19, Lemme 4].
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To show (6.11), we fix x0 ∈ X and write d := dist(x0, sptσ). The proof is divided in three cases, exactly 
as the proof of [19, Lemme 3]. First, if ε � 4d, then σ(B(x0, ε/2)) > 0. Integrating (6.12) with respect to 

1
σ(B(x0,ε/2))dσ over B(x0, ε/2) and using the assumption σ ∈ Σk, we find a constant C > 0, depending only 
on C0 in (6.12), k, and reg(σ), such that

|Tσ,εf(x0)| � C (Mσ(T ∗
σf)) (x0) + CMσf(x0). (6.13)

Second, if d/2 � ε < 4d, then by (6.13) for ε = 4d and the size estimate |K(x0, y)| � d(x0, y)−k on the 
annulus B(x0, 4d) \ B(x0, ε) yield again a bound of the form (6.13). Third, if ε < d/2, then Tσ,εf(x0) =
Tσ,d/2f(x0), and we are reduced to the second case. �

The next lemma is a Cotlar-type inequality. Such inequalities are available in very general settings, cf. 
[62, I.7.3, Proposition 2], [45, p.56], [11, p.606], and [55], but we are not aware of one that would be precisely 
in the desired form for our purposes. In particular, we have to deal simultaneously with two measures μ
and σ in a metric space (X, d).

Lemma 6.14. Let (X, d) be a proper metric space, k > 0, and μ ∈ Σk. Let K̄ : X ×X \
 → H be a bounded 
k-GSK, and let T be the operator induced by (K̄, μ). Let σ ∈ Σk with regularity constant C0 � 1, and 
assume, for some 1 < s < ∞, that

A := ‖T‖Ls(μ)→Ls(σ) < ∞.

Then, there exists a constant C = C(A, C0, k, ‖K‖, s)3 such that

T
∗
μf(x) � C

[
Mσ(Tμf)(x) + Mμf(x) + (Mμ|f |s)

1
s (x)

]
, f ∈ Cc(X), x ∈ sptσ. (6.15)

Proof. The proof is verbatim the same as for [19, Lemme 5]. �
Proposition 6.16. Let (X, d) be a proper metric space, k > 0, let K : X ×X \ 
 → C be a k-GSK, and let 
σ ∈ Σk. Assume that, for all 1 < p < ∞, there is a constant Cp � 1 such that

‖T ∗
σf‖Lp(σ) � Cp‖f‖Lp(σ), f ∈ Cc(X). (6.17)

Then for all 1 < p < ∞ and μ ∈ Σk, there is a constant C ′
p � 1 such that for all f ∈ Cc(X),

1. ‖T ∗
σf‖Lp(μ) � C ′

p‖f‖Lp(σ),
2. ‖T ∗

μf‖Lp(σ) � C ′
p‖f‖Lp(μ).

The constants C ′
p depend only on p, Cp, k, ‖K‖, and reg(μ), reg(σ).

Proof. Part (1) is a straightforward consequence Lemmas 6.10 and 6.8.
Part (2) is proved by duality. Fix μ ∈ Σk, 1 < p < ∞, and let q = p/(p − 1). From the first part 

of the lemma, we know that the operators Tσ,ε are uniformly bounded Lq(σ) → Lq(μ). Now we define 
Kt(x, y) := K(y, x), and let T t

μ,ε be the (adjoint) ε-SIO induced by (Kt
ε, μ). Then,

sup
ε>0

‖T t
μ,ε‖Lp(μ)→Lp(σ) � Cp.

3 This constant does not depend on the regularity constant of μ, so the assumption μ ∈ Σk is only made to ensure that T is 
well-defined. It would suffice to assume that μ(B(x, r)) � rk instead.
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As an intermediate step towards (2), we wish to deduce from Lemma 6.14 the corresponding bound for the 
maximal SIO T t,∗

μ . A small technical issue is that K is not necessarily a bounded GSK, as required in the 
hypothesis (to even make sense of T ). To remedy this, fix ε > 0, and note that Kt

ε is a bounded GSK, with 
GSK constants independent of ε, by Lemma 2.9. Consequently, Lemma 6.14, applied with Kt

ε and s := √
p, 

implies that

‖T t,∗
μ,εf‖Lp(σ) � ‖T t

μ,εf‖Lp(σ) + ‖Mμf‖Lp(σ) + ‖(Mμ|f |s)1/s‖Lp(σ) � ‖f‖Lp(μ) (6.18)

for f ∈ Cc(X). Here T t,∗
μ,ε is the maximal SIO associated to Kt

ε , and we also used the Lp(μ) → Lp(σ) and 
Ls(μ) → Ls(σ) boundedness of Mμ from Lemma 6.8, and the Lp(σ) → Lp(σ) boundedness of Mσ. To 
proceed, we note that

T t,∗
μ,εf(x) = sup

δ�ε
|T t

μ,δf(x)|, f ∈ Lp(μ), x ∈ X, ε > 0,

so T t,∗
μ,εf(x) ↗ T t,∗

μ f(x) as ε ↘ 0. Now, (6.18) and monotone convergence yield

‖T t,∗
μ f‖Lp(σ) � ‖f‖Lp(μ), f ∈ Cc(X). (6.19)

This almost looks like (2), except that it concerns T t in place of T . However, applying (6.19) to μ := σ, 
we conclude that also Kt satisfies (6.17). Hence, we can re-run the whole argument with Kt! But since 
(Kt)t = K, this time we end up with (2). �

Let us continue with the proof of Theorem 6.3. Fix μ ∈ Σk as in the statement, fix 1 < p < ∞, and let 
f ∈ Cc(X). Our task is to show that

‖T ∗
μf‖Lp(μ) � Cp‖f‖Lp(μ), f ∈ Cc(X). (6.20)

This will follow from Proposition 6.5 (“good λ inequality”) applied to

u := T ∗
μf and v := Mμf +

(
(Mμ|f |

√
p)
) 1√

p . (6.21)

The rest of the proof consists of explaining how Proposition 6.16 can be used to verify that the assumptions 
of Proposition 6.5 are fulfilled.

Lemma 6.22. Let (X, d) be a proper metric space, k > 0, and let K : X × X \ 
 → C be a k-GSK. Let 
μ ∈ Σk, f ∈ Cc(X) and 1 < p < ∞. Then u := T ∗

μf is a Borel function on (X, d) and it agrees with an 
Lp(μ) function outside a ball, hence outside a set of finite μ measure.

Proof. First we note that

T ∗
μf(x) = sup

ε∈Q∩(0,+∞)
|Tμ,εf(x)|. (6.23)

Indeed, for every ε ∈ (0, +∞), there exists a sequence (εj)j∈N ⊂ Q with εj ↘ ε as j → ∞, and it follows 
that

|Tμ,εf(x) − Tμ,εjf(x)| �
ˆ

ε<d(x,y)�εj

|K(x, y)f(y)| dμ(y) → 0 as j → ∞.

Since Tμ,εf is a Borel function for every ε > 0, we deduce from (6.23) that u is a Borel function.
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Regarding the second claim, if spt f ⊂ B(x0, R), the “size” condition for K alone implies that T ∗
μf(x) �

Mμ,kf(x) for x ∈ X \ B(x0, 2R). Now, the claim follows from the Lp(μ)-boundedness of Mμ,k. �
Lemma 6.24. Let (X, d) be a proper metric space, k > 0, μ ∈ Σk, f ∈ Cc(X), and 1 < p < ∞. Then

v := Mμ,kf +
(
Mμ,k|f |

√
p
) 1√

p ∈ Lp(μ)

with ‖v‖Lp(μ) � C‖f‖Lp(μ), where C depends only on p and reg(μ).

Proof. This follows from the boundedness of Mμ,k on Lp(μ) and L
√
p(μ). �

Lemma 6.25. Assume that (X, d), k > 0, K : X ×X \ 
 → C, and μ ∈ Σk are as in Theorem 6.3. Then 
there exists ν ∈ (0, 1), depending only on reg(μ) and the parameter θ > 0, such that the following holds. Let 
1 < p < ∞, f ∈ Cc(X), and define the functions u and v as in Lemmas 6.22 and 6.24. Then, for all ε > 0, 
there is γ = γ(ε) > 0 such that

μ({x ∈ X : u(x) > λ + ελ and v(x) � γλ}) � (1 − ν)μ({x ∈ X : u(x) > λ}) (6.26)

for λ > 0. The choice of γ is also allowed to depend on p, and the “data” of Theorem 6.3.

Proof. The proof follows [19, p.234ff] closely. The main difference is that T ∗
μf may not be lower semicon-

tinuous when K is only a generalised standard kernel; this causes minor technical issues. Fix ε, λ > 0 and 
abbreviate

Ω := Ωλ := {x ∈ sptμ : u(x) > λ},

and

A := Aλ,ε,γ = {x ∈ sptμ : u(x) > λ + ελ and v(x) � γλ} ⊆ Ω.

Our task is to ensure that μ(A) � (1 − ν)μ(Ω) for some ν = ν(reg(μ), θ) > 0. We may evidently assume 
that μ(Ω) > 0.

We start by constructing a cover for Ω. Since f ∈ Cc(X), it follows from the “size” estimate |K(x, y)| �
d(x, y)−k, and from μ ∈ Σk, that T ∗

μf(x) → 0 as dist(x, spt f) → ∞. Hence Ω is a bounded set. On the 
other hand, for μ almost every x ∈ Ω,

lim
j→∞

μ(B(x, 2−j) ∩ Ω)
μ(B(x, 2−j)) = 1, (6.27)

by Lebesgue differentiation in the doubling metric measure space (sptμ, μ, d). Combining (6.27) and the 
fact that Ω is bounded, it follows that for μ almost every x ∈ Ω, there exists a maximal dyadic radius 
rx = 2−jx �Ω,μ 1, with jx ∈ Z, such that

μ(B(x, rx) ∩ Ω)
μ(B(x, rx))

� 1 − θ

2 . (6.28)

In particular, since the reverse inequality already holds for 2rx, we can find

ax ∈ B(x, 2rx) ∩ Ωc. (6.29)
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We then apply the 5r-covering theorem to find a disjoint family {B(xi, ri)}i∈N ⊂ {B(x, rx) : x ∈ Ω} with 
the property that μ almost all of Ω is contained in⋃

i∈N
B(xi, 5ri).

We write Bi := B(xi, ri), 5Bi := B(xi, 5ri), and ai := axi
. In order to prove (6.26), it suffices to show that

μ ([Bi ∩ Ω] \ A)
μ(Bi)

>
θ

4 , i ∈ N. (6.30)

This will establish (6.26), because

μ(Ω \ A) �
∑
i

μ([Bi ∩ Ω] \ A) > θ
4

∑
i∈N

μ(Bi) �reg(μ),θ
∑
i∈N

μ(5Bi) � μ(Ω),

and consequently μ(A) � (1 − ν)μ(Ω) for some ν = ν(reg(μ), θ) > 0, as desired.
We then prove that (6.30) holds if γ = γ(ε) > 0 is chosen small enough (recall that A = Aλ,ε,γ). 

For now, let γ > 0 be arbitrary, and fix Bi. Note that (6.30) is clear if ν(x) > γλ for all x ∈ Bi (then 
[Bi ∩ Ω] \ A = Bi ∩ Ω, which has density � 1 − θ/2 � θ/2), so we may assume that there exists a point 
ξi ∈ Bi with

Mμf(ξi) +
(
Mμ|f |

√
p
) 1√

p (ξi) = v(ξi) � γλ. (6.31)

Now, we decompose f = f1 + f2, where f1 = fφ, and φ ∈ Cc(X) satisfies

1B(ξi,10ri) � φ � 1B(ξi,20ri).

Then

u(x) � T ∗
μf1(x) + T ∗

μf2(x), x ∈ Bi, (6.32)

and we will check in a moment that

T ∗
μf2(x) � λ + ελ

2 , x ∈ Bi, (6.33)

if γ = γ(ε) > 0 is small enough. Thus, (6.32)-(6.33) imply that

{x ∈ Bi : T ∗
μf1(x) � ελ

2 } ⊆ Bi \ A,

and the proof of (6.30) has been reduced to showing that

μ({x ∈ Bi ∩ Ω : T ∗
μf1(x) � ελ

2 }) �
θ
4μ(Bi). (6.34)

Before tackling (6.34), we verify (6.33). In fact, (6.33) follows from the chain

T ∗
μf2(x) � T ∗

μf(ai) + CMμf(ξi) � λ + Cγλ, x ∈ Bi, (6.35)

by choosing γ small enough so that Cγ � ε/2. The second inequality in (6.35) follows from the choices of 
ai ∈ Ωc and ξi in (6.31). The first inequality can be obtained by writing Ri := 10ri, and decomposing
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|Tμf2(x)| =
∣∣∣∣ˆ K(x, y)[1 − φ(y)]f(y) dμ(y)

∣∣∣∣
�

∣∣∣∣∣∣∣
ˆ

B(ai,Ri)c

K(ai, y)f(y) dμ(y)

∣∣∣∣∣∣∣+
ˆ

|[φ− 1B(ai,Ri)](y)||K(ai, y)||f(y)| dμ(y)

+
ˆ

B(ξi,Ri)c

|K(ai, y) −K(ξi, y)||f(y)| dμ(y)

+
ˆ

B(ξi,Ri)c

|K(x, y) −K(ξi, y)||f(y)| dμ(y).

The first term is bounded by T ∗
μf(ai), as desired. The three latter ones are bounded by � Mμf(ξi), using 

the GSK bounds of K, and recalling that x, ai, ξi ∈ 2Bi ⊂ B(ξi, Ri/2), and that φ|B(ξi,Ri) = 1. Similar, but 
slightly messier, estimates also work for Tμ,δ, δ > 0, in place of Tμ, so (6.35) has been confirmed.

Finally, we turn to (6.34), which is based on the “big piece” assumption: there exists a measure σ =
σBi

∈ Σk, and a compact set E ⊆ Bi ∩ sptμ with the property that μ(E) � θμ(Bi) and such that

μ
(
{x ∈ E : T ∗

μf1(x) > ελ
2 }
)
� σ

(
{x ∈ X : T ∗

μf1(x) > ελ
2 }
)
. (6.36)

Since μ(Ω ∩ Bi) � (1 − θ/2)μ(Bi), we moreover find that μ(E ∩ Ω) � (θ/2)μ(Bi). We will show that 
γ = γ(ε) > 0 can be chosen small enough so that the assumption (6.31) implies that

μ
(
{x ∈ E : T ∗

μf1(x) > ελ
2 }
)
< θ

4μ(Bi). (6.37)

This of course yields (6.34):

μ({x ∈ Bi ∩ Ω : T ∗
μf1(x) � ελ

2 }) � μ({x ∈ E ∩ Ω : T ∗
μf1(x) � ελ

2 } � θ
4μ(Bi).

To prove (6.37), start by combining (6.36) with Chebyshev’s inequality with s := √
p:

μ
(
{x ∈ E : T ∗

μf1(x) > ελ
2 }
)
� 2sε−sλ−s‖T ∗

μf1‖sLs(σ). (6.38)

To proceed, we plan to apply (6.31). By the hypothesis (4) of Theorem 6.3, ‖T ∗
σg‖Lp(σ) � Ap‖g‖Lp(σ) for 

all g ∈ Cc(X). This is the assumption (6.17) in Proposition 6.16, so part (2) of that proposition yields

‖T ∗
μf1‖sLs(σ) � C ′

s‖f1‖sLs(μ) � rki Mμ(|f |s)(ξi)
(6.31)
� rki γ

sλs. (6.39)

Combining (6.38)-(6.39), we find that

μ
(
{x ∈ E : T ∗

μf1(x) > ελ
2 }
)
�p rki ε

−sγs �reg(μ) ε
−sγsμ(Bi).

Choosing γ > 0 small enough, depending on θ, ε, p, and reg(μ), we conclude the proof of (6.37), and therefore 
the lemma. �

We are now in possession of all ingredients necessary for the proof of Theorem 6.3.

Proof of Theorem 6.3. Lemmas 6.22, 6.24, and 6.25 show that Proposition 6.5 can be applied to the func-
tions u and v as defined in (6.21). This establishes (6.20). �



94 K. Fässler, T. Orponen / J. Math. Pures Appl. 153 (2021) 30–113
6.2. Regular curves and BPiLG

Recall that a closed set E in H is 1-regular if there exists a finite constant C � 1 such that

C−1r � H1(B(p, r) ∩ E) � Cr, for all p ∈ E, 0 < r � diamE. (6.40)

The smallest constant C � 1 such that (6.40) holds will be denoted reg(E).
Recall further that a regular curve in H is a closed 1-regular subset of H which has a Lipschitz parametri-

sation by an interval I ⊂ R. In this section, we will use the letter “γ” for both the set, and the Lipschitz 
map I → γ. A compact regular curve is a regular curve parametrised by a compact interval I ⊂ R.

Definition 6.41 (Big pieces of intrinsic Lipschitz graphs). A closed 1-regular set E ⊂ H has big pieces of 
intrinsic Lipschitz graphs (over horizontal subgroups) (BPiLG) if there exist constants c, L > 0 such that 
for all p ∈ E and all 0 < r � diam(E) there is an intrinsic L-Lipschitz graph Γ ⊂ H over some horizontal 
subgroup such that H1(E ∩ Γ ∩B(p, r)) � cr.

In this section, we prove the following:

Theorem 6.42. Every regular curve in H has BPiLG.

A short proof for the fact that regular curves in Rn have big pieces of 1-dimensional Lipschitz graphs 
can be found in [20, III.4]. It is based on the rising sun lemma, and we did not find a way to adapt it to 
intrinsic Lipschitz graphs. Instead, we follow [23].

The proof of Theorem 6.42 employs a system D of dyadic cubes on a closed 1-regular set E ⊂ H, see [5, 
Section 3.0.1] for a more thorough introduction. These are Borel subsets of E with the following properties:

• D = ∪jDj , j ∈ Z, where each Dj is a partition of E.
• There exist 0 < c0 < C0 < ∞, depending on reg(E), such that diam(Q) � C0�(Q) for Q ∈ Dj , where 

�(Q) := 2−j . For every Q ∈ Dj , there exists a “midpoint” zQ ∈ Q such that E ∩B(zQ, c0�(Q)) ⊂ Q.

With this notation, we write BQ := B(zQ, 2C0�(Q)), so that Q ⊂ BQ (with room to spare). For Q ∈ D, we 
define the horizontal β-number

β(Q) := βE(Q) := inf
�∈L

sup
q∈BQ∩E

dist(q, �)
�(Q) ,

where the infimum is taken over the horizontal lines familiar from Definition 3.36,

L := {p · V : p ∈ H, V is a horizontal subgroup}.

These numbers, notably their summability on horizontal curves, have been investigated extensively, see 
for example [46,49] and the discussion in the introduction. Given a system D of dyadic cubes on a closed 
1-regular set E, we introduce the following subclass of good cubes in D:

Definition 6.43. Let E ⊂ H be a closed 1-regular set with a system D of dyadic cubes. Given 0 < c, ε < 1
and a horizontal subgroup V , we say that Q ∈ D is (c, ε, V )-good if

1. H1(πV (Q)) � cH1(Q),
2. β(Q) � ε.
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Here πV is the horizontal projection introduced in Definition 3.37. Recall also the cones CV (α) from 
Section 3.3. The next lemma shows that (c, ε, V ) good cubes Q ∈ D look like intrinsic Lipschitz graphs over 
V at scale �(Q).

Lemma 6.44. Let E ⊂ H be a closed 1-regular set with a system D of dyadic cubes. Then for all c > 0 and 
M � 2C0 � 1, there exists α, ε > 0, depending only on c and M , such that the following holds. If Q ∈ D is 
a (c, ε, V )-good cube, then

p ∈ Q, q ∈ BQ ∩ E and d(p, q) � �(Q)/M =⇒ p−1 · q /∈ CV (α). (6.45)

Proof. Using rotations around the t-axis, we may, without loss of generality, suppose that V = {(x, 0, 0) :
x ∈ R}. Now, fix c > 0 and M � 2C0. We also fix arbitrary ε, α > 0 at this point, and we fix a cube 
Q ∈ D such that Definition 6.43(2) is satisfied, that is, β(Q) � ε. The plan is to show that if (6.45) fails 
for some p ∈ Q and q ∈ BQ with d(p, q) � �(Q)/M , and if α, ε > 0 are small enough, then Q cannot be 
a (c, ε, V )-good cube, that is, H1(πV (Q)) < cH1(Q). Since the constants in Definition 6.43 are invariant 
under left translations and dilations, we may arrange that

p = 0 ∈ Q ⊂ E and M−1 � d(0, q) � M. (6.46)

We write in coordinates q = (x, y, t), so that

q ∈ CV (α) ⇐⇒ ‖(x, 0, 0)‖ � α
∥∥(0, y, t− xy

2
)∥∥ . (6.47)

If α = αM > 0 is sufficiently small, this implies, together with (6.46), that ‖(0, y, t)‖ ∼M 1. Next we will 
use β(Q) � ε to infer that t is small, and hence q lies close to {(0, y, 0) : y ∈ R}. But since Q lies close to 
the segment [p, q] = [0, q], again by β(Q) � ε, and πV ({(0, y, 0) : y ∈ R}) = {0}, this will eventually show 
that H1(πV (Q)) < cH1(Q).

We turn to the details. Condition (6.47) implies that

|x| � α

(
|y| +

√
|t| +

√
|x||y|√

2

)
. (6.48)

Now we consider two cases. If |x| � |y|, then (6.48) implies

|x| � 2α(|y| +
√

|t|). (6.49)

On the other hand, if |y| � |x|, then (6.48) implies that

|x|
(
1 − α(1 + 1/

√
2)
)
� α

√
|t|

and hence (6.49) holds true also in this case assuming, as we may, that α � 1/2. Combined with the 
assumption that d(q, 0) � M−1, this shows that

|y| +
√

|t| � M−1

(1 + 2α) .

To deduce more precise information about the coordinates of the point q, we use the assumption β(Q) � ε, 
which ensures the existence of a horizontal line � = p0 · V ′ with the property that

dist(q′, �) � 2ε, q′ ∈ BQ ∩E.
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Thus there exist (a, b) ∈ R2, a2 + b2 = 1, p0 = (x0, y0, t0) ∈ H, and s ∈ R, such that

max {d(q, p0 · (as, bs, 0)), d(0, p0)} � 2ε. (6.50)

Triangle inequality, (6.46), (6.50), and left-invariance of the metric d yield

M−1 − 4ε � d(p0 · (as, bs, 0), p0) = |s| � M + 4ε.

Take 4ε < M−1. The estimates (6.50) then also imply that

|as + x| � |x0| + |x0 + as− x| � 4ε and |bs + y| � 4ε.

By what we said before, this yields a non-trivial upper bound for |a| (and lower bound for |b|):

|a|
(
M−1 − 4ε

)
� |a||s| � 4ε + |x|

(6.49),(6.46)
� 4ε + 2αM. (6.51)

Returning to (6.50), we have established that

d(q, p0 · (as, bs, 0)) � 2ε,

with ‖p0‖ � 2ε, M−1 − 4ε � |s| � M + 4ε, and (a, b) can be picked as close to (0, 1) as we like by choosing 
α, ε > 0 small enough. Recall that

{0, q} ⊆ Q ⊆ BQ ∩ E ⊆ N(�, 2ε) ∩BQ ∩ E, (6.52)

where N(�, 2ε) denotes the 2ε-neighbourhood of � in the metric d. It follows from (6.50), (6.51), and (6.52)
that

(x′, y′, t′) ∈ Q =⇒ |x′| � 2ε + 4ε + 2αM
M−1 − 4ε + 2ε.

The right hand side gives an upper bound for H1(πV (Q)) which tends to zero if M is fixed, and α, ε → 0. 
For sufficiently small α, ε > 0, we arrive at H1(πW (Q)) < c, and hence Q is not a (c, ε, V )-good cube. The 
proof is complete. �

The geometry of horizontal lines in H enters the proof of Theorem 6.42 only through Lemma 6.44. With 
this result in hand, intrinsic Lipschitz graphs over horizontal subgroups can be constructed inside regular 
curves by an abstract coding argument, due to Jones [42]. The construction requires to control the “bad” 
cubes of γ that violate the second condition in Definition 6.43. For that purpose we first recall the following 
lemma, which follows from [49, Theorem I], and the observation in [6, Proposition 3.1].

Lemma 6.53 (Weak geometric lemma (WGL)). Let γ ⊂ H be a compact regular curve, and let D be a system 
of dyadic cubes on γ. Then for every ε > 0, we have∑

β(Q)>ε,Q⊆Q0

�(Q) �reg(γ),ε �(Q0), Q0 ∈ D. (6.54)

In general, a closed 1-regular set E ⊂ H satisfying (6.54) is said to satisfy the WGL. This lemma is the 
only spot where we need compact regular curves; quite likely the WGL is true for all regular curves, but it 
has only been stated for compact ones in the literature.
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Theorem 6.55. Let E ⊆ H be a closed 1-regular set satisfying the WGL, let b > 0, and let V ⊂ H be 
a horizontal subgroup. Then there exist L � 1 and N ∈ N, depending only on b, reg(E), and the WGL 
constants of E, such that the following holds: for every Q0 ∈ D, there exist intrinsic L-Lipschitz graphs 
Γ1, . . . , ΓN ⊂ H over V such that

H1

⎛⎝πV

⎛⎝Q0 \
N⋃
j=1

Γj

⎞⎠⎞⎠ � bH1(Q0).

With the geometric result from Lemma 6.44 in hand, the proof of 6.55 only uses the 1-Lipschitz property 
of πV , and an abstract “coding argument”, due to Jones [42], which has been applied to prove variants of 
Theorem 6.55 for k-regular sets in Rd ([23, Theorem 2.11]) and for (2n +1)-regular sets in Hn ([5, Theorem 
3.9] or [28]) satisfying natural analogues of the WGL property. The argument, and the notation, is nearly 
verbatim the same as in the proof of [5, Theorem 3.9], so we refer there for details.

The conclusion of Theorem 6.55 is only meaningful if H1(πV (Q0)) is relatively large. If γ ⊂ H is a regular 
curve, then Lemma 6.57 below ensures that for every Q0 ∈ D, there exists a horizontal subgroup V ⊂ H

such that

H1(πV (Q0)) �reg(γ) �(Q0). (6.56)

The enemy is the possibility Q0 ⊂ γ “wraps tightly around a vertical line”, so that it projects to a set of 
small H1 measure on the xy-plane, and in particular on every horizontal subgroup V . Yet, heuristically, the 
regular curve γ simply cannot resemble a vertical line that much. This eventually gives the existence of V
such that (6.56) holds.

Lemma 6.57. Let γ ⊂ H be a regular curve. Then γ has big horizontal projections, which means the following. 
There exists a constant c �reg(γ) 1 such that such for all p0 ∈ γ and all 0 < r � diam(γ), there is a horizontal 
subgroup V ⊂ H such that

H1(πV (γ ∩B(p0, r))) � cr. (6.58)

Proof of Lemma 6.57. Let γ ⊂ H be a regular curve parametrised by an interval I ⊂ R. Write π : H → R2

for the projection map π(x, y, t) = (x, y). Fix a point p0 ∈ γ, and a radius 0 < r < κ diam(γ) for a suitable 
small absolute constant κ > 0 (if diam(γ) = ∞, there is no restriction for r > 0). Consider then the 
projection γπ := π(γ) ⊂ R2, and write γπ(s) := π(γ(s)) for s ∈ I.

Assume without loss of generality that p0 = γ(0) = 0. Since r < κ diam(γ), there exists another point 
p1 = γ(s1) ∈ γ with ‖p1‖ � r/κ. We choose the smallest parameter s1 > 0 with this property, and we 
restrict attention to considering γ|[0,s1] and γπ|[0,s1]. We claim that if κ > 0 was chosen small enough, 
depending on reg(γ), then there exists a point s ∈ [0, s1] with the property that

|γπ(s)| = r. (6.59)

We only have to exclude the possibility that the projection γπ|[0,s1] stays inside the open disc U(0, r). To 
see this, assume that (6.59) fails for all 0 < s � s1. We assume, for example, that the third component t1
of p1 = γ(s1) is strictly positive. Now comparing the conditions

|π(p1)| = |γπ(s1)| < r and ‖p1‖ � r/κ

in fact shows that 
√
t1 � r/κ, hence
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t1 � r2

κ2 . (6.60)

To proceed, cover the box U(0, r) × [0, t1] ⊂ H with boundedly overlapping balls of radius 2r centred on 
the t-axis or, equivalently, with vertical translates of the box U(0, 2r) × [−4r2, 4r2]. According to (6.60), 
the required number of such boxes is ∼ t1/r

2. Moreover, since γ|[0,s1] is a continuum satisfying |γπ(s)| < r

for all s ∈ [0, s1], and γ(s1) = p1, it must in fact meet � t1/r
2 of the slightly smaller boxes of the type 

U(0, r) × [−r2, r2]. Finally, by the 1-regularity of γ, we have

γ ∩ [U(0, r) × [−r2, r2]] �= ∅ =⇒ H1(γ ∩ [U(0, 2r) × [−4r2, 4r2]]) ∼ r.

Since also 
√
t1 is much larger than r, we on the other hand observe that U(0, 2r) × [0, t1] is covered by the 

single “
√
t1-ball” B√

t1 := U(0, 
√
t1) × [0, t1]. This gives us the two-sided estimate

t1
r

= t1
r2 r � H1(γ ∩ [U(0, 2r) × [0, t1]]) � H1(γ ∩B√

t1) �
√
t1,

hence t1 � r2. This violates (6.60) for κ > 0 small enough, and the proof of (6.59) is complete.
Now, we let s0 ∈ [0, s1] be the first parameter such that (6.59) holds, and we also recall that γ(s) ∈

B(0, r/κ) for all s ∈ [0, s1]. Then

{0, γπ(s0)} ⊆ γπ([0, s0]) ⊆ π(B(0, r/κ)).

Let V be the horizontal subgroup containing γπ(s0). Then, since γ|[0,s0] ⊂ B(0, r/k) is a connected set 
containing p0 = 0 and γ(s0), we have

H1(πV (γ ∩B(0, r/κ))) � H1([0, γπ(s0)]) = r.

This shows that (6.58) holds with c = κ, and the proof is complete. �
We then put the pieces together to prove Theorem 6.42.

Proof of Theorem 6.42. Let γ ⊂ H be a regular curve. Fix p ∈ γ and 0 < r � diam(γ). Start by choosing a 
compact regular curve γ0 ⊂ γ with reg(γ0) � reg(γ), which contains p, and satisfies diam(γ0) � r. Then γ0
satisfies the WGL by Lemma 6.53, and, on the other hand, Lemma 6.57 gives a horizontal subgroup V ⊂ H

such that H1(πV (B(p, r) ∩ γ0)) � cr, where c �reg(γ) 1 (to be precise, use the version (6.56) for a dyadic 
cube Q0 ⊂ B(p, r) ∩γ0 with �(Q0) ∼ r). Finally, apply Theorem 6.55 to γ0, with parameter b = c/2, and use 
the 1-Lipschitz property of πV to deduce that H1(γ0∩Γi) � c/N for some 1 � i � N . Since N only depends 
on the WGL and 1-regularity constants of γ0 (both of which are uniform), the proof is complete. �
6.3. Singular integrals on regular curves

It is now easy to put the pieces together to arrive at the main result, Theorem 1.5, which stated that 
good kernels are CZ kernels for regular curves in H.

Proof of Theorem 1.5. Let γ ⊂ H be a regular curve. Then γ is contained in an unbounded regular curve 
(attach horizontal half-lines if necessary). Since it suffices to prove the boundedness of any SIO on the 
extension, we may assume that diam(γ) = ∞ to begin with. Therefore, μ := H1|γ ∈ Σ1 in the sense of 
Definition 6.1. By Theorem 6.42, moreover, γ has BPiLG. This means that, for every ball B centred on γ, 
there exists an intrinsic Lipschitz graph ΓB with μ(ΓB) � θμ(B) (with reg(ΓB) uniformly bounded). By 
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Proposition 3.55 (extension of intrinsic Lipschitz graphs), we may moreover arrange that Γ is unbounded, 
and σB := H1|ΓB

∈ Σ1 (with reg(σB) uniformly bounded from above).
Now, let k : H \ {0} → C be a good kernel, and write K(p, q) := k(q−1 · p). We already know, by 

Theorem 1.10 and Remark 2.18, that the maximal SIO T ∗
σB

induced by (K, σB) is bounded on Lp(σB), 
1 < p < ∞, with constants independent of the choice of B. Therefore, the hypotheses of Theorem 6.3 are 
met for K and μ, and (6.4) implies that K is a CZ kernel for μ, as claimed in Theorem 1.5. �

The proof of Theorem 1.7 for regular curves can be completed in the same manner, since we already 
established it for intrinsic Lipschitz graphs over horizontal subgroups in Theorem 4.59.

7. Singular integrals on Lipschitz flags

A Lipschitz flag F ⊂ H, or just a flag, is a set of the form F = {(A(y), y, t) : y, t ∈ R}, where A : R → R

is Lipschitz. Flags are, in particular, co-dimension 1 intrinsic Lipschitz graphs in the sense of Franchi, 
Serapioni, and Serra Cassano. Indeed, writing W := {(0, y, t) := y, t ∈ R}, V := {(x, 0, 0) : x ∈ R}, 
and ϕ(0, y, t) := (A(y), 0, 0), then ϕ : W → V is intrinsic Lipschitz according to the definition in [32], 
and F = {w · ϕ(w) : w ∈ W }. In particular, flags are closed 3-regular subset of H. Here, we apply the 
1-dimensional theory to prove the following result about 3-dimensional singular integrals on flags:

Theorem 7.1. Let K ∈ C∞(H \ {0}) be a horizontally odd kernel satisfying

|∇n
HK(p)| � Cn‖p‖−3−n, p ∈ H, n � 0, (7.2)

for some constants Cn > 0. Then K is a CZ kernel for H3 restricted to any Lipschitz flag in H.

There are two key features of flags which we need in the argument. First, since flags are foliated by 
vertical lines, one can apply Fourier analysis in the t-variable. Second, as opposed to more general intrinsic 
Lipschitz graphs, flags admit a – fairly “canonical” – bilipschitz parametrisation by the plane W . In fact, 
fix a flag F = {(A(y), y, t) : y, t ∈ R}. Consider the (horizontal) curve γ ⊂ F given by

γ(y) :=

⎛⎝A(y), y,
yˆ

0

A(r) dr − 1
2yA(y)

⎞⎠ , y ∈ R, (7.3)

and the map Γ: W → F ,

Γ(0, y, t) := γ(y) · (0, 0, t) =

⎛⎝A(y), y, t− 1
2yA(y) +

yˆ

0

A(r) dr

⎞⎠ . (7.4)

In fact, γ is the graph map of the intrinsic Lipschitz function φ : Vy → Wxt,

φ(0, y, 0) :=

⎛⎝A(y), 0,
yˆ

0

A(r) dr

⎞⎠ , y ∈ R,

mapping the horizontal subgroup Vy = {(0, y, 0) : y ∈ R} to the vertical subgroup Wxt = {(x, 0, t) : x, t ∈
R}. So, Γ lifts the foliation of W by horizontal lines to a foliation of F by 1-dimensional intrinsic Lipschitz 
graphs over Vy. Note that Γ is not the usual intrinsic graph map w �→ w · ϕ(w), which is virtually never 
Lipschitz.
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Lemma 7.5. If A is L-Lipschitz, L > 0, then the map Γ: W → F is ∼ (1 + L)-bilipschitz, and one has the 
following area formula for the spherical Hausdorff measure σ = S3|F :

ˆ
f(p) dσ(p) = c

¨
f(Γ(y, t))

√
1 + A′(y)2 dy dt, f ∈ L1(σ), (7.6)

where c > 0 is an absolute constant.

Proof. To see that Γ is bilipschitz with respect to the Heisenberg metric, we first compute

γ(y′)−1 · γ(y) =

⎛⎜⎝A(y) −A(y′), y − y′,

y′ˆ

y

[
A(y) + A(y′) − 2A(r)

2

]
dr

⎞⎟⎠ (7.7)

for y, y′ ∈ R. Since points on the t-axis commute with all other elements of H, this yields

d(Γ(0, y,t), Γ(0, y′, t′)) = ‖Γ(0, y′, t′)−1 · Γ(0, y, t)‖

∼ |A(y) −A(y′)| + |y − y′| +

∣∣∣∣∣∣∣t− t′ +
y′ˆ

y

[
(A(y) −A(r)) + (A(y′) −A(r))

2

]
dr

∣∣∣∣∣∣∣
1
2

for (0, y, t), (0, y′, y′) ∈ W . Using that A is L-Lipschitz, we deduce that

d(Γ(0, y, t),Γ(0, y′, t′)) � (1 + L)d((0, y, t), (0, y′, t′))

and

d((0, y, t), (0, y′, t′)) � |y − y′| +

∣∣∣∣∣∣∣t− t′ +
y′ˆ

y

[
(A(y) −A(r)) + (A(y′) −A(r))

2

]
dr

∣∣∣∣∣∣∣
1
2

+

∣∣∣∣∣∣∣
y′ˆ

y

[
(A(y) −A(r)) + (A(y′) −A(r))

2

]
dr

∣∣∣∣∣∣∣
1
2

� d(Γ(0, y, t),Γ(0, y′, t′)) + L1/2|y − y′| � (1 + L)d(Γ(0, y, t),Γ(0, y′, t′)).

Next, to prove the area formula (7.6), we use that σ equals the Euclidean Hausdorff measure H2|F up to a 
multiplicative constant c by [31, Proposition 2.14 + Corollary 7.7], the surjectivity of the parametrisation 
Γ : W � R2 → F , and the Euclidean area formula

ˆ
f(p) dσ(p) = c

ˆ

F

f(p) dH2(p) = c

¨
f(Γ(y, t))|JΓ(y, t)| dy dt.

Here

|JΓ(y, t)| =
√

det(DΓ)T (y, t)DΓ(y, t) =
√

1 + A′(y)2,

as can be verified by a straightforward computation, so the proof is complete. �
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Arguing as in Section 4, we may use the existence of a bilipschitz parametrisation to reduce the proof 
of Theorem 7.1 to a statement concerning the parametric (standard) kernel KΓ(w, v) := K(Γ(v)−1 · Γ(w)). 
We record this statement separately, since – as in Theorem 4.3 – we want to make a slightly stronger claim.

Theorem 7.8. Let A, B : R → R be Lipschitz functions, and define Γ = ΓA as in (7.4). If K ∈ C∞(H \ {0})
is a horizontally odd kernel satisfying the hypothesis (7.2), then the kernels KΓDB,1 and KΓDB,2 are CZ 
kernels on W , where

DB,1(w, v) := B(x) −B(y)
x− y

and DB,2(w, v) :=
yˆ

x

B(x) + B(y) − 2B(r)
2(x− y)2 dr,

for w = (x, t) and v = (y, s).

Theorem 7.1 follows from Theorem 7.8 by taking B(x) = x, so KΓDB,1 = KΓ.

Proof. The proof is a reduction to Theorem 4.3. Note, first, that the factors DB,1 and DB,2 above are 
exactly of the form

DA0(x, y) := A0(x)−A0(y)
x−y and DB0(x, y) := B2(x)−B2(y)−1

2 [B1(x)+B1(y)](x−y)
(x−y)2

appearing in the statement of Theorem 4.3, with the choices A0 := B and B0 = (B, B2), where B2(y) =´ y

0 B(r) dr. Since B = Ḃ2, we see that B0 is a tame map by definition.
The reduction from the 3-dimensional kernel KΓ(v, w) to 1-dimensional kernels of the form k(Φ−1(y) ·

Φ(x)) (as in Theorem 4.3) is slightly more involved. The idea is to take Fourier transforms in the t-variable, 
which will reduce our question about the single 3-dimensional kernel KΓ to family of questions regarding the 
1-dimensional kernels appearing in (7.11). We learned this trick from the paper [27] of Fabes and Rivière. 
The 1-dimensional questions will eventually be solved by applying Theorem 4.3.

For technical convenience, we assume in the following that K is supported away from the origin to begin 
with; this allows us to ignore standard issues of truncations, and all integrals below will be absolutely 
convergent. The considerations for KΓDB,1 and KΓDB,2 are extremely similar, so we record the full details 
only for the latter. Since DB,2(w, v) only depends on the x and y coordinates of w = (x, t) and v = (y, s), 
we write DB,2(w, v) =: D2(x, y). Then, we set

Rf(w) :=
ˆ

KΓ(w, v)D2(x, y)f(v) dv, f ∈ L2(W ).

By Plancherel,
ˆ

W

|Rf(w)|2 dw =
¨

|Rf(x, t)|2 dt dx =
¨

|R̂f(x, τ)|2 dτ dx,

where R̂f(x, τ) refers to the vertical Fourier transform, that is, the Fourier transform of t �→ Rf(x, t)
evaluated at τ . To show that ‖Rf‖L2(W ) � ‖f‖L2(W ), it will evidently suffice to verify that

ˆ
|R̂f(x, τ)|2 dx �

ˆ
|f̂(x, τ)|2 dx, τ �= 0. (7.9)

For notational convenience, we only consider τ > 0; in the case τ < 0, several absolute values signs need to 
be added. Let us compute an expression for R̂f(x, τ) at x, τ ∈ R:
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R̂f(x, τ) =
ˆ

R

e−2πitτRf(x, t) dt

=
ˆ

e−2πitτ
¨

K(γ(y)−1 · γ(x) · (0, 0, t− s))D2(x, y)f(y, s) dy ds dt

=
¨

f(y, s)D2(x, y)
[ˆ

e−2πitτK(γ(y)−1 · γ(x) · (0, 0, t− s)) dt
]
ds dy

=
¨

f(y, s)D2(x, y)
[ˆ

e−2πi(u+s)τK(γ(y)−1 · γ(x) · (0, 0, u)) du
]
ds dy

=
ˆ

f̂(y, τ)D2(x, y)
[ˆ

e−2πiuτK(γ(y)−1 · γ(x) · (0, 0, u)) du
]
dy, (7.10)

where f̂(y, τ) is the Fourier transform of s �→ f(y, s) evaluated at τ . To proceed modifying the expression 
on line (7.10), we need to introduce auxiliary kernels. For τ > 0 fixed, write

(δτK)(x, y, t) := τ−3K(δτ−1(x, y, t)).

The kernels δτK are horizontally odd, and using the chain rule, one observes that they satisfy the decay 
estimates (7.2) with the same constants “Cn” as K (independently of τ > 0). Motivated by (7.10), we then 
define the final auxiliary kernels

kτ (p) :=
ˆ

e−2πiθ(δτK)(p · (0, 0, θ)) dθ, p ∈ H \ {|z| = 0}. (7.11)

The kernels kτ are horizontally odd and weakly good:

Lemma 7.12. Let K ∈ C∞(H \ {0}) be a horizontally odd kernel satisfying the 3-dimensional decay assump-
tions (7.2) with constants “Cn”. Then, the kernel k ∈ C∞(H \ {|z| = 0}),

k(p) :=
ˆ

e−2πiθK(p · (0, 0, θ)) dθ

is horizontally odd, and satisfies the weak goodness hypothesis

|∇n
Hk(p)| � cn|z|−n−1, p = (z, t) ∈ H \ {|z| = 0},

with constants cn � Cn.

Proof. The horizontal oddness follows from

K((−z, t) · (0, 0, θ)) = K(−z, t + θ) = −K(z, t + θ) = −K((z, t) · (0, 0, θ)).

To obtain the decay estimates (1.11), we note that p · (0, 0, θ) = (0, 0, θ) · p, so there is no problem with 
commuting horizontal derivatives and the θ-integration. We obtain

|∇n
Hk(p)| =

∣∣∣∣ˆ e−2πiθ(∇n
HK)(p · (0, 0, θ)) dθ

∣∣∣∣
� Cn

ˆ
dθ

(|z|4 + (θ + t)2)(n+3)/4

= Cn|z|2
ˆ

du

(|z|4 + |z|4u2)(n+3)/4 = Cn

|z|n+1

(ˆ
du

(1 + |u|2)(n+3)/4

)
.
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The last integral is bounded (for n � 0) by an absolute constant, so the claim follows. �
Now, we may write

ˆ
e−2πiuτK(p · (0, 0, u)) du =

√
τ

ˆ
e−2πiθ(δ√τK)(δ√τ (p) · (0, 0, θ)) dθ = ρ · kρ(δρ(p)),

where ρ :=
√
τ , and hence

(7.10) = ρ

ˆ
f̂(y, τ)D2(x, y)kρ(δρ(γ(y)−1 · γ(x))) dy.

Now, we plug the RHS back into the LHS of (7.9), and change variables in both x and y to find

(7.9) = ρ2
ˆ ∣∣∣∣ˆ f̂(y, τ)D2(x, y)kρ(δρ[γ(y)−1 · γ(x)]) dy

∣∣∣∣2 dx

= 1
ρ

ˆ ∣∣∣∣ˆ f̂
(

y
ρ , τ

)
D2

(
x
ρ ,

y
ρ

)
kρ(δρ[γ(yρ )−1 · γ(xρ )]) dy

∣∣∣∣2 dx. (7.13)

Recalling (7.7), note that

δρ(γ(yρ )−1 · γ(xρ )) =

⎛⎜⎝ρA(xρ ) − ρA(yρ ), x− y, ρ2

y/ρˆ

x/ρ

[
A(xρ ) + A(yρ ) − 2A(r)

2

]
dr

⎞⎟⎠
=

⎛⎝Aρ(x) −Aρ(y), x− y,

yˆ

x

[
Aρ(x) + Aρ(y) − 2Aρ(r)

2

]
dr

⎞⎠ ,

where Aρ(x) := ρ ·A(x/ρ) has Lip(Aρ) = Lip(A). Also,

D2

(
x
ρ ,

y
ρ

)
=

y/ρˆ

x/ρ

B(xρ ) + B(yρ ) − 2B(r)
2(x/ρ− y/ρ)2 dr =

yˆ

x

Bρ(x) + Bρ(y) − 2Bρ(r)
2(x− y)2 dr =: Dρ

2(x, y),

with Bρ(x) = ρ ·B(x/ρ). Therefore, we may re-write

(7.13) = 1
ρ

ˆ ∣∣∣∣ˆ Kρ(x, y)f̂
(

y
ρ , τ

)
dy

∣∣∣∣2 dx, (7.14)

where

Kρ(x, y) := kρ

⎛⎝Aρ(x) −Aρ(y), x− y,

yˆ

x

[
Aρ(x) + Aρ(y) − 2Aρ(r)

2

]
dr

⎞⎠Dρ
2(x, y).

Since the Lipschitz constants of the maps Aρ and Bρ are uniformly bounded in ρ > 0, and also the kernel 
constants of kρ are independent of ρ by Lemma 7.12, we have arrived at a situation where Theorem 4.3 can 
be easily applied: we just need to express Kρ(x, y) in the form

Kρ(x, y) = kρ(Φ−1
ρ (y) · Φρ(x))Dρ

2(x, y),
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where Φρ(x) = (0, y, 0) · φρ(0, y, 0) is the graph map of the intrinsic Lipschitz function φρ(0, y, 0) =
(Aρ(y), 0, ́

y

0 Aρ(r) dr) over Vy. Then, Theorem 4.3 shows that

(7.14) � 1
ρ

ˆ ∣∣∣f̂ (x
ρ , τ

)∣∣∣2 dx =
ˆ

|f̂(x, τ)|2 dx,

as claimed in (7.9). This proves that ‖KΓDB,2‖C.Z. < ∞.
As we already mentioned, proving that ‖KΓDB,1‖C.Z. � 1 is extremely similar. After repeating the 

calculations above, one ends up considering the kernels

Kρ,1(x, y) := kρ

⎛⎝Aρ(x) −Aρ(y), x− y,

yˆ

x

[
Aρ(x) + Aρ(y) − 2Aρ(t)

2

]
dr

⎞⎠Dρ
1(x, y)

for ρ > 0, where Dρ
1(x, y) = (Bρ(x) − Bρ(y))/(x − y). So, Theorem 4.3 can be applied as before. This 

completes the proof of Theorem 7.8. �
Appendix A. On the corona decomposition for Lipschitz functions

Recall that we needed the following statement regarding 1-Lipschitz functions.

Theorem A.1. For every η ∈ (0, 1), there exists a constant C � 1 such that the following holds. Let φ : R → R

be 1-Lipschitz. Then, there exists a decomposition D = B∪̇Q with the properties (3.16), (3.17), and (3.18). 
For every T ∈ F there exists a 2-Lipschitz linear map LT : R → R and an η-Lipschitz map ψT : R → R

such that ψT + LT approximates φ well at the resolution of the intervals in T :

|φ(s) − (ψT + LT )(s)| � η|Q|, s ∈ 2Q, Q ∈ T . (A.2)

This version looks slightly different to the corona decomposition for Lipschitz graphs in David and 
Semmes’ monograph, so we explain here briefly, how to bridge the gap. We start by stating the exact corona 
decomposition in [17, Definition 3.19, p.55 and (3.33), p.61].

Theorem A.3 (Corona decomposition of David-Semmes). For every η > 0, there exists a constant C � 1
such that the following holds. Let φ : R → R be 1-Lipschitz, and write

Φ(x) := (x, φ(x)), x ∈ R.

There exists a decomposition D = B∪̇Q with the properties (3.16), (3.17), and (3.18). For every T ∈ F , 
there exists a possibly rotated η-Lipschitz graph ΓT ⊂ R2 such that

dist(Φ(s),ΓT ) � η|Q|, s ∈ 2Q, Q ∈ T . (A.4)

To deduce Theorem A.1 from this statement, all we need to do is establish (A.2), that is, find an η-
Lipschitz map ψT : R → R, and a 2-Lipschitz linear map LT : R → R, such that (A.2) holds. We start by 
applying Theorem A.3 with a sufficiently small parameter η′ > 0, at least so small that 0 < η′ < η/12. 
Then, fix T ∈ F , and Q ∈ T . Let

ΓT = Rθ({(x, φT (x)) : x ∈ R})

be a rotated η′-Lipschitz graph appearing in (A.4), that is,
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Rθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ),

and φT : R → R is η′-Lipschitz. We first observe that, if η′ > 0 is small enough, then |tan θ| � 2. Namely, 
the case tan θ = 2 and η′ = 0 would imply, by (A.4), that φ|Q is affine with slope in {−2, 2}, contradicting 
the 1-Lipschitz assumption. The case of “small η′” requires a small additional argument, which we leave to 
the reader.

Now, we claim that ΓT can be written as the graph of a function of the form ψT + LT , where ψT is 
η-Lipschitz, and LT (x) = x tan θ. To this end, we note that

ΓT = {(z(x), x sin θ + φT (x) cos θ) : x ∈ R},

where z(x) = x cos θ − φT (x) sin θ. Here,

|z(x) − z(x′)| � [|cos θ| − η′|sin θ|]|x− x′| � 1
4 |x− x′|, (A.5)

taking η′ > 0 small enough, since |cos θ| � 1/
√

5. In particular, the change-of-variables x �→ z(x) is bijective, 
and it now suffices to find a η-Lipschitz ψT : R → R such that

x sin θ + φT (x) cos θ = ψT (z(x)) + z(x) tan θ.

Plugging in the definition of z(x) = x cos θ − φT (x) sin θ, this requirement is equivalent to

ψT (z(x)) =
[
cos θ + sin2 θ

cos θ

]
φT (x) = φT (x)

cos θ .

Finally, ψT is indeed η-Lipschitz:

|ψT (z(x)) − ψT (z(x′))| = 1
cos θ |φT (x) − φT (x′)| � η′

cos θ |x− x′| � η|z(x) − z(x′)|,

using (A.5) in the last estimate, and recalling that cos θ � 1/
√

5 � 1/3, and η′ < η/12.
Now we have re-parametrised ΓT as the graph of the function ψT + LT , as desired, but we still need to 

check that (A.2) holds. This follows easily from (A.4): if s ∈ 2Q, then (A.4) gives us a point s′ ∈ R with

max{|s− s′|, |φ(s) − (ψT + LT )(s′)|} � η′|Q|.

Consequently, using that ψT + LT is 3-Lipschitz, and η′ < η/4,

|φ(s) − [ψT + LT ](s)| � |φ(s) − [ψT + LT ](s′)| + |[ψT + LT ](s) − [ψT + LT ](s′)| � η|Q|.

Appendix B. A Littlewood-Paley proposition

Proposition B.1. Let {Fs}s∈(0,∞) be a family of C1-functions Fs : Rn → R satisfying

‖Fs‖L∞ + ‖∇Fs‖L∞ � CF , s ∈ (0,∞),

where CF � 1 is a constant independent of s ∈ (0, ∞). Assume also that (s, x) �→ Fs(x) is Borel. Let 
ϕ ∈ C∞

c (Rn) satisfy 
´
ϕ = 1, and write ϕs(x) := 1

snϕ(x/s). Further, let {ψs}s>0 ⊂ C1(Rn \ {0}) be a 
family of functions which satisfy the following requirements for some Cψ > 0 and α ∈ (0, 1]:

1. sptψs ⊂ B(0, Cψs),
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2. ‖ψs(x)‖L∞(Rn) � Cψ/s
n and ‖∇ψs‖L∞(Rn \ {0}) � Cψ/s

n+1, and
3. |ψ̂s(ξ)| � Cψ min{|sξ|α, |sξ|−α} for ξ ∈ Rn.

For f ∈ L1
loc(Rn), define Ps(f) := f ∗ ϕs and Qs(f) := f ∗ ψs. Finally, let a1, . . . , am ∈ L∞(Rn), m � 1, 

and define the operator

(Tf)(x) :=
∞̂

0

Fs[Ps(a1)(x) · · ·Ps(am)(x)] ·Qs(f)(x) ds
s
, f ∈ C∞

c (Rn).

Then T extends to a bounded operator on L2 with ‖T‖L2→L2 � C(maxj ‖aj‖L∞ , m, CF , ϕ, Cψ).

The proposition is a variant of [12, Proposition 9, p. 57], but Christ only gives a proof in the special 
case where Qs = Q1

s ◦ Q2
s, where Q1

s, Q
2
s are operators of the same type as Qs, and moreover m = 1, and 

ψs(x) = 1
snψ(x/s) for a fixed zero-mean ψ ∈ C∞(Rn); in our main application, m ∈ {1, 2} and ψs depends 

on s in a more complicated way, and potentially has a jump discontinuity at 0. For these reasons, we give 
all the details. Hofmann also has a variant of the proposition in [38, Lemma 2] in the parabolic setting, but 
the technical setup is, once again, a little different. However, our proof of Proposition B.1 closely follows his. 
We start by constructing a special function; the existence of a function with approximately these properties 
is also used in the proof of [38, Lemma 2], but since no proof is given in [38], we include the details here.

Lemma B.2. Let ε ∈ (0, 1), and define a distribution ℘ := ℘ε on Rn whose Fourier transform lies in 
C∞(Rn \ {0}) and satisfies

℘̂(ξ) =
{
|ξ|ε, for |ξ| � 1,
|ξ|−ε, for |ξ| > 2.

Then ℘ ∈ L1(Rn) with 
´
℘ = 0, and in fact

|℘(x)| �ε min{|x|ε−n, |x|−ε−n}, x �= 0. (B.3)

Proof. The conclusion that 
´
℘ = 0 follows immediately from ℘̂(0) = 0 once we have managed to prove 

that ℘ ∈ L1(Rn). To this end, we cover Rn by three overlapping open sets as follows:

Rn = {|ξ| < 1} ∪ {1
2 < |ξ| < 3} ∪ {|ξ| > 2},

and then choose a smooth partition of unity {ϕ̂1, ̂ϕ2, ̂ϕ3} subordinate to this cover. Here ϕ1, ϕ2, ϕ3 ∈ S(Rn). 
We write

℘̂ =
∑
j

℘̂ϕ̂j = |ξ|εϕ̂1 + ℘̂ϕ̂2 + |ξ|−εϕ̂3 =: ψ̌1 + ψ̌2 + ψ̌3,

where ψ1, ψ2, ψ3 are a priori just tempered distributions. The aim is to show that ψ1, ψ2, ψ3 satisfy, in-
dividually, the assertions we made of ℘. More precisely, we will establish the bounds (B.3) for each ψj , 
which will show that ψj ∈ L1(Rn), and the zero-mean condition then follows automatically from ψ̂j(0) = 0, 
j ∈ {1, 2, 3}.

The bounds (B.3) are clear for ψ2, which is the Fourier transform ℘̂ϕ̌2 ∈ C∞
c (Rn). We then consider 

ψ1 = |̂ξ|ε ∗ ϕ1. Since ϕ1 ∈ S(Rn), we first note that ψ1 ∈ C∞(Rn) by [59, Theorem 7.19(a)]. To establish 
the decay |ψ1(x)| � |x|−n−ε for |x| � 1, we begin by recalling, from [35, Theorem 2.4.6], that the Fourier 
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transform of ξ �→ |ξ|ε is the homogeneous distribution h := h−n−ε with index −n − ε. This distribution is 
defined, for ϕ ∈ S(Rn), by

h(ϕ) = c1

ˆ

|z|�1

ϕ(z)|z|−n−ε dz + c2ϕ(0) + c3

ˆ

|z|<1

[ϕ(z) − ϕ(0)]|z|−n−ε dz,

where c1, c2, c3 ∈ C are constants (depending on ε, n). Therefore, ψ1(x) = (h ∗ ϕ1)(x) = h(ϕ̃1,x), with 
ϕ̃1,x(z) := ϕ1(x − z), and by the definition of h,

|ψ1(x)| �ε

ˆ

|z|�1

|ϕ1(x− z)||z|−n−ε dz + |ϕ1(x)| +
ˆ

|z|<1

|ϕ1(x− z) − ϕ1(x)||z|−n−ε dz.

Since ϕ1 ∈ S(Rn), the two latter terms satisfy �ε,N (1 + |x|)−N for any N � 1. The first term satisfies 
�ε |x|−n−ε, using that ϕ1 ∈ S(Rn), |z|−n−ε ∈ L1({|z| � 1}), and performing a little case chase with annular 
decompositions around x.

We finally come to the piece ψ3, and we start by writing

ψ̌3(ξ) = |ξ|−ε − (1 − ϕ̂3(ξ))|ξ|−ε =: I1(ξ) + I2(ξ).

Here Î1(x) = cε,n|x|ε−n ∈ L1
loc(Rn). On the other hand, spt(1 − ϕ̂3) ⊂ B(0, 3), so Î2 is the convolution of 

cε,n|x|ε−n with a Schwartz function, and hence Î2 ∈ C∞(Rn). So, we conclude that ψ3 ∈ L1
loc(Rn), and 

|ψ3(x)| �ε |x|ε−n for |x| � 1. To complete the proof of the lemma, we claim that |ψ3(x)| �ε,N |x|−N for 
|x| � 1, and for any N � 0. Indeed, note that if N � n/2, then


N ψ̌3 = 
N [ξ �→ ϕ̂3(ξ)|ξ|−ε] ∈ L1(Rn)

using the Leibniz rule, and noting that ϕ̂3 is supported away from the origin. Consequently x �→ |x|2Nψ3(x) ∈
L∞(Rn) for all N � n/2. This implies |ψ3(x)| �ε,N |x|−N for |x| � 1 (for any N � 0). �

Now we are equipped to prove Proposition B.1.

Proof of Proposition B.1. In this proof, the constants in the “�” notation may depend on the data 
maxj ‖aj‖L∞(Rn), m, α ∈ (0, 1], C := Cψ, ϕ, and CF . For s ∈ (0, ∞) fixed, write

Ks(x, y) := Fs[Ps(A)(x)]ψs(x− y),

where Ps(A)(x) := Ps(a1)(x) · · ·Ps(am)(x) and then

K(x, y) :=
∞̂

0

Ks(x, y)
ds

s
.

We begin by verifying that K is an n-SK with ‖K‖n,strong � 1. Fix x �= y, and note that Ks(x, y) �= 0 only 
if s � |x − y|/C. Since ‖Fs(Ps(A))‖L∞(Rn) � 1, it follows from ‖ψs‖L∞ � s−n that

|K(x, y)| �
ˆ

|x−y|/C

ds

sn+1 � 1
|x− y|n .

Second, fix x, x′, y ∈ Rn with |x − x′| � |x − y|/2. Then,
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|K(x′, y) −K(x, y)| �
∞̂

0

|Fs(Ps(A))(x′) − Fs(Ps(A))(x)||ψs(x′ − y)| ds
s

+
∞̂

0

|Fs(Ps(A))(x)||ψs(x′ − y) − ψs(x− y)| ds
s
.

To estimate the first integral, note that ψs(x′ − y) = 0 if s < |x − y|/(2C), so using also ‖F ′
s‖L∞(R) � 1, 

‖ψs‖L∞(R) � s−n, and |Ps(A)(x) − Ps(A)(x′)| � |x − x′|/s, we find

∞̂

0

|Fs[Ps(A)(x′)] − Fs[Ps(A)(x)]||ψs(x′ − y)| ds
s

�
ˆ

|x−y|
2C

|Ps(A)(x′) − Ps(A)(x)| ds

sn+1

� |x− x′|
ˆ

|x−y|
2C

ds

sn+1 ∼ |x− x′|
|x− y|n+1 .

To estimate the second integral, we use |Fs(Ps(A))(x)| � 1, and that the line segment connecting x − y and 
x′−y lies in Rn \ {0},4 so |ψs(x −y) −ψs(x′−y)| � |x −x′|‖∇ψs‖L∞(Rn \ {0}) � |x −x′|/sn+1. Since further

ψs(x′ − y) = 0 = ψs(x− y), s � |x− y|/(2C),

it follows that

|K(x′, y) −K(x, y)| � |x− x′|
|x− y|n+1 .

A similar estimate for |K(y, x′) − K(y, x)| is even easier to obtain, as there is no need to introduce cross 
terms.

Since K is an n-SK, to check that ‖T‖L2→L2 � 1, it suffices to verify the conditions of the T1 theorem, 
and more precisely that

 

B0

|T (b)| � 1 and
 

B0

|T t(b)| � 1 (B.4)

whenever B0 = B(x0, r0) is a ball, and b ∈ C∞(R) satisfies 12B0 � b � 13B0 , recall (2.28). We will ignore 
the standard issues of ε-truncation in this argument. The first estimate in (B.4) easily follows from the fact 
that y �→ Ks(x, y) has zero mean (note that ψ̂s(0) = 0 by assumption (3)) and is supported in B(x, Cs) for 
every s > 0. With this in hand, one starts by fixing x ∈ B(x0, r0) and writing

|T (b)(x)| �
r0/Cˆ

0

∣∣∣∣∣∣∣
ˆ

B(x,Cs)

Ks(x, y)b(y) dy

∣∣∣∣∣∣∣
ds

s
+

∞̂

r0/C

‖ψs‖2‖b‖2
ds

s
. (B.5)

Regarding the first term, note that B(x, Cs) ⊂ 2B0 for x ∈ B0 and 0 < s < r0/C, so b ≡ 1 on the support 
of y �→ Ks(x, y). Hence the first term vanishes by the zero-mean property of y �→ Ks(x, y). To treat the 
second term, note that ‖b‖2 ∼ r

n/2
0 , and

4 This argument is only relevant for n = 1.
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‖ψs‖2 �

⎛⎜⎝ ˆ

B(0,Cs)

1
s2n dy

⎞⎟⎠
1/2

� s−n/2. (B.6)

This implies that ‖T (b)‖L∞(B0) � 1 and yields the first part of (B.4).
We then consider the second estimate in (B.4). One may easily reduce to the case x0 = 0 and r0 = 1: 

indeed, one simply performs a change-of-variables to write
 

B0

|T t(b)| =
 

B(0,1)

|T̃ t(b̃)|,

where b̃(x) := b(r0x + x0) satisfies 1B(0,2) � b̃ � 1B(0,3), and T̃ t is of the same form as T t (see (B.7)
below). It is critical, but easy to check, that the family of functions {x �→ rn0ψr0s(r0x)}s>0 satisfies the same 
conditions (1)-(3) as {ψs}s>0, with the same constants.

The kernel of T t is (x, y) �→ K(y, x), so, for x ∈ B0 := B(0, 1),

T t(b)(x) =
ˆ

K(y, x)b(y) dy =
∞̂

0

ˆ
Ks(y, x)b(y) ds

s
dy

=
∞̂

0

ˆ
Fs[Ps(A)(y)]ψs(y − x)b(y) ds

s
dy

=:
∞̂

0

Qs(Fs[Ps(A)] · b)(x) ds
s
, (B.7)

where Qs refers to convolution with z �→ ψs(−z). We note that∣∣∣∣∣∣
∞̂

1

Qs(Fs[Ps(A)] · b)(x) ds
s

∣∣∣∣∣∣ � 1

by the argument we used for the second term in (B.5). Therefore, the second part of (B.4) follows once we 
manage to show that

ˆ ⎡⎣ 1ˆ

0

Qs(Fs[Ps(A)] · b)(x) ds
s

⎤⎦ g(x) dx � 1 (B.8)

for any g ∈ L∞(R) with spt g ⊂ B0 and ‖g‖L∞ = 1. We note in passing that the value of (B.8) remains 
unchanged if we now replace the function a1, . . . , am by their restrictions to a ball B(0, C0), where C0 =
C0(sptϕ) � 1 is a constant depending only on sptϕ. Hence, we may assume in the sequel that

max
j

‖aj‖L2(Rn) � 1. (B.9)

Next, using Fubini and Plancherel, and setting Bs := Fs[Ps(A)] · b, we re-write

(B.8) =
1ˆ ˆ

ψ̂s(ξ)B̂s(ξ) · ĝ(ξ) dξ
ds

s
. (B.10)
0
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We then factorise ψ̂s(ξ) = ℘̂(sξ) · q̂s(ξ), where ℘ is the special function appearing in Lemma B.2 with 
parameter ε := α/2, and q̂s(ξ) := ψ̂s(ξ)/℘̂(sξ). Note that the function ℘̂ in Lemma B.2 may be chosen so 
that ℘̂ > 0, and then ℘̂(sξ) ∼ min{|sξ|α/2, |sξ|−α/2} for all s > 0 and ξ ∈ R. It follows from our assumption 
|ψ̂s(ξ)| � C min{|sξ|α, |sξ|−α} that

|q̂s(ξ)| � min{|sξ|α/2, |sξ|−α/2}, ξ ∈ Rn, s > 0. (B.11)

We also recall from Lemma B.2 that ℘ ∈ L1(R) with 
´
℘ = 0. Then, continuing from (B.10), and using 

Cauchy-Schwarz and Plancherel, we find

(B.10) �

⎛⎝ 1ˆ

0

ˆ
|(Bs ∗ ℘s)(x)|2 dx ds

s

⎞⎠1/2⎛⎝ 1ˆ

0

ˆ
|q̂s(ξ)ĝ(ξ)|2 dξ

ds

s

⎞⎠1/2

, (B.12)

where ℘s = 1
sn℘( ·

s ) ∈ L1(Rn). The second factor is easily treated with (B.11):

1ˆ

0

ˆ
|q̂s(ξ)ĝ(ξ)|2 dξ

ds

s
�
ˆ ⎡⎣ 1ˆ

0

min{|sξ|α, |sξ|−α} ds

s

⎤⎦ |ĝ(ξ)|2 dξ � ‖g‖2
2 � 1.

We then turn to the first factor in (B.12). It may be worth pointing out what we have gained compared to 
(B.8): at the expense of trading “ψs” to the slightly (not essentially) worse function “℘s”, we have managed 
to replace the L1-norm by an L2-norm. Note that the most simple-minded application of Cauchy-Schwarz in 
(B.8) would not have given the same result, because 

´ ´ 1
0 g(x)2 dx ds/s = ∞. We fix x ∈ Rn, and estimate

|(Bs ∗ ℘s)(x)| �
∣∣∣∣ˆ ℘s(x− z)(Fs[Ps(A)(z)] − Fs[Ps(A)(x)])b(z) dz

∣∣∣∣ (B.13)

+ |Fs[Ps(A)(x)]|
∣∣∣∣ˆ ℘s(x− z)b(z) dz

∣∣∣∣ . (B.14)

If one plugs the term (B.14) back into the first factor in (B.12) and uses |Fs[Ps(A)(x)]| � 1, Plancherel, 
and |℘̂s(ξ)| ∼ min{|sξ|α/2, |sξ|−α/2}, the result is bounded by a constant times

⎛⎝ 1ˆ

0

ˆ
|(℘s ∗ b)(x)|2 dx ds

s

⎞⎠1/2

∼

⎛⎝ˆ ⎡⎣ 1ˆ

0

min{|sξ|α, |sξ|−α} ds

s

⎤⎦ |b̂(ξ)|2 dξ

⎞⎠1/2

∼ ‖b‖2 ∼ 1.

It remains to consider the contribution from (B.13). First, place absolute values inside, and recall that 
spt b ⊂ B(0, 3) to obtain

(B.13) �
ˆ

B(0,3)

|℘s(x− z)||Ps(a1)(z) · · ·Ps(am(z)) − Ps(a1)(x) · · ·Ps(am)(x)| dz.

Then, introducing cross terms, and using that ‖Ps(aj)‖L∞ � ‖aj‖L∞ < ∞, the right hand side is bounded 
by the sum of the terms

ˆ
|℘s(x− z)||Ps(aj)(z) − Ps(aj)(x)| dz, 1 � j � m.
B(0,3)
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Each one of these will be plugged into (B.12) individually. As a result, after applying Cauchy-Schwarz in 
the z-variable, and Plancherel, the contribution of (B.13) to (the first factor in) (B.12) is bounded by the 
maximum (over 1 � j � m) of the quantities

�

⎛⎝ˆ ∞̂

0

ˆ
|℘s(x− z)||Ps(aj)(z) − Ps(aj)(x)|2 dz ds

s
dx

⎞⎠1/2

=

⎛⎝ ∞̂

0

¨
|℘s(u)||Ps(aj)(z) − Ps(aj)(z + u)|2 du dz ds

s

⎞⎠1/2

=

⎛⎝ ∞̂

0

ˆ
|℘s(u)|

ˆ
|ϕ̂(sξ)|2|e2πiuξ − 1|2|âj(ξ)|2 dξ du

ds

s

⎞⎠1/2

�

⎛⎝ ∞̂

0

[ˆ
1
sn |℘(u/s)|

∣∣∣u
s

∣∣∣α/4 du

]
·
[ˆ

|ϕ̂(sξ)|2|âj(ξ)|2|sξ|α/4 dξ
]
ds

s

⎞⎠1/2

u 
→vs=
(ˆ

|℘(v)||v|α/4 dv
)1/2

⎛⎝ˆ
|âj(ξ)|2

∞̂

0

|ϕ̂(sξ)|2|sξ|α/4 ds

s
dξ

⎞⎠1/2

=
(ˆ

|℘(v)||v|α/4 dv
)1/2

⎛⎝ ∞̂

0

|ϕ̂(t)|2|t|α/4 dt

t

⎞⎠1/2

‖aj‖L2(R) � 1.

In the last estimate, we used (B.9), and that |℘(v)| �α min{|v|α/2−n, |v|−α/2−n} by (B.3). This shows that 
the first factor in (B.12) is � 1, and completes the proof. �
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