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Abstract: A Costas loop is one of the classical phase-locked loop based circuits, which
demodulates data and recovers carrier from the input signal. The Costas loop is essentially
a nonlinear control system and its nonlinear analysis is a challenging task. In this article for a
modified QPSK Costas loop we analyze the hold-in, pull-in and lock-in ranges. New procedure
for estimation of the lock-in range is considered and compared with previously known approach.
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1. INTRODUCTION

The Costas loop is a modification of the phase-locked loop
circuit (Viterbi, 1966; Matrosov et al., 2013; Best, 2007;
Kolumban, 2015; Best, 2018; Ladvánszky, 2018), which de-
modulates data and recovers carrier from the input signal.
Here we study a modified QPSK Costas loop for 4-phase-
shift keying (PSK) demodulation (4 phases are used for
modulation) based on the folding operation Ladvánszky
and Covács (2018). Phase-shift keying (is a digital modula-
tion process which conveys data by changing (modulating)
the phase of a reference signal (the carrier wave), the
modulation occurs by varying the phase of sine and cosine
inputs at a precise time.

The Costas loop is essentially a nonlinear control system
and its nonlinear analysis is a challenging task. We derive a
mathematical nonlinear model (so-called baseband model)
of the modified QPSK Costas loop and analyze the hold-in,
pull-in and lock-in ranges by using a combination of clas-
sical linear methods, phase-plane analysis and numerical
methods.

2. MATHEMATICAL MODEL

Consider the modification of the Quadrature-Phase Shift
Keying Costas loop proposed in (Ladvánszky and Covács,
2018) (see Fig. 1). It is convenient to consider input QPSK
signal in the following form
√
2 sin(θref(t) +

n(t)π
4 ), θref(t) = ωreft, n(t) ∈ {1, 3, 5, 7}.

� We acknowledge support from Russian Science Foundation project
19-41-02002 .

Here θ̇ref(t) = ωref denotes carrier frequency and n(t)
corresponds to digital data (two bits per symbol), θref(t)
is a reference phase 1 .

The input signal is multiplied by inphase and quadrature
phase VCO outputs

√
2 cos(θvco(t)) and

√
2 sin(θvco(t)),

with θvco(t) being the phase of VCO. The resulting signals
are

vI(t) = sin(θref(t) +
n(t)π

4 − θvco(t))+

+ sin(θref(t) +
n(t)π

4 + θvco(t)),

vQ(t) = cos(θref(t) +
n(t)π

4 − θvco(t))−
− cos(θref(t) +

n(t)π
4 + θvco(t))

Here, from an engineering point of view, the high-

frequency terms cos(θref(t)+θvco(t)+
n(t)π

4 ) and sin(θref(t)+

θvco(t) +
n(t)π

4 ) are removed by low-pass filters LPF 1 and

LPF 2 2 . Thus, the signals Q(t) and I(t) on the upper and
lower branches can be approximated as

Q(t) ≈ sin(θe(t) +
n(t)π

4 ), I(t) ≈ cos(θe(t) +
n(t)π

4 ),

θe(t) = θref(t)− θvco(t).
(1)

Blocks which take absolute values have the following
outputs:

1 Coefficient
√
2 is can be omited or replaced by another coefficient,

representing signal power.
2 While this is reasonable from a practical point of view, its use
in the analysis of Costas loop requires further consideration (see,
e.g., (Piqueira and Monteiro, 2003)). The application of averaging
methods allows one to justify the Assumption and obtain the
conditions under which it can be used (see, e.g., (Kuznetsov et al.,
2017a)).
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2 is can be omited or replaced by another coefficient,

representing signal power.
2 While this is reasonable from a practical point of view, its use
in the analysis of Costas loop requires further consideration (see,
e.g., (Piqueira and Monteiro, 2003)). The application of averaging
methods allows one to justify the Assumption and obtain the
conditions under which it can be used (see, e.g., (Kuznetsov et al.,
2017a)).
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Fig. 1. Modified QPSK Costas loop proposed in (Ladvánszky and Covács, 2018).

| sin(θe(t) +
n(t)π

4
)sign cos(θe(t) +

n(t)π

4
)| =

= | sin(θe(t) +
n(t)π

4
)| = |Q(t)|,

| cos(θe(t) +
n(t)π

4
)sign sin(θe(t) +

n(t)π

4
)| =

= | cos(θe(t) +
n(t)π

4
)| = |I(t)|,

(2)

These signals are shifted by − cos(π4 ) and combined by Re
Im block to complex signal

| cos(θe(t) + π
4 )| − cos(π4 ) + j(| sin(θe(t) + π

4 )| − sin(π4 )).
(3)

Then absolute value of complex signal is centered

KPDve(θe(t)) =
√

2−
√
2(| sin(θe(t) + π

4 )|+ | cos(θe(t) + π
4 )|)−

√
2−

√
2

2
,

(4)

Here amplitude of (4) is Kpd =

√
2−

√
2

2 and ve(θe) is
normalized phase detector characteristic with unit ampli-
tude 3 . Note, that (4) is π

2 –periodic, thus independent of
modulated data n(t). This allows to track changing ref-
erence frequency during the data demodulation. The PD
characteristics (4) can be approximated with triangular
waveform (see Fig. 2):

ve(θe) ≈




4

π
θe −

π

2
n,

if
π

2
n ≤ θe(t) ≤

π

2
n+

π

4
,

− 4

π
θe + 2− π

2
n,

if
π

2
n+

π

4
≤ θe(t) ≤

π

2
(n+ 1),

(5)

3 Alternatively Atomatic Gain Controll (AGC) circuits can be used
to keep desired signal centered. AGC allows to make the loop less
sensitive to variations of input signal amplitudes and does not change
the mathematical model.

0

0

-1

1

Fig. 2. Phase detector characteristic

where n ∈ Z.

The relationship between the input ve(θe(t)) and the
output vf (t) for the Loop filter with transfer function

H(s) =
1 + τ2s

τ1s
, τ1 > 0, τ2 > 0, (6)

is

ẋ(t) =
1

τ1
KPDve(θe(t)),

vf (t) = x(t) +
τ2
τ1

KPDve(θe(t)),
(7)

where x(t) is the filter state.

The control signal vf (t) adjusts the VCO frequency:

θ̇vco(t) = ωvco(t) = ωfree
vco +Kvcovf (t), (8)

where ωfree
vco is the VCO free-running frequency and Kvco >

0 is the VCO gain. Nonlinear VCO models can be similarly
considered, see, e.g. (Margaris, 2004; Suarez, 2009; Bonnin
et al., 2014; Bianchi et al., 2016). The frequency of the
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input signal (also called as a reference frequency) is usually
assumed to be constant (see, e.g. (Gardner, 1966)):

θ̇ref(t) = ωref(t) ≡ ωref . (9)

The difference between the reference frequency and the
VCO free-running frequency is denoted as ωfree

e :

ωfree
e ≡ ωref − ωfree

vco . (10)

Combining equations (7)–(10) one obtains a nonlinear
baseband model (nonlinear mathematical model in the
signal’s phase space, i.e. in the state space: the filter’s state
x and the difference between the signal’s phases θe):

ẋ(t) =
1

τ1
KPDve(θe(t)),

θ̇e = ωfree
e −Kvco

(
x(t) +

τ2
τ1

KPDve(θe(t))

)
.

(11)

Further without loss of generality we consider KPD = 1
(x and Kvco can be re-scaled: x → KPDx, KPDKVCO →
KVCO). Initial state of the loop consists of θe(0) (initial
phase shift of the VCO signal with respect to the reference
signal) and x(0) (initial state of the Loop filter).

Note, that (11) is not changed under the transformation(
ωfree
e , x(t), θe(t)) →

(
− ωfree

e ,−x(t),−θe(t)). (12)

This allows to study system (11) for ωfree
e > 0 only and

introduce the concept of frequency deviation (or frequency
offset):

|ωfree
e | = |ωref − ωfree

vco |. (13)

Frequency deviation is used to define stability ranges of
the circuit (pull-in, hold-in, and lock-in).

3. LOCAL STABILITY ANALYSIS

For a nonlinear baseband model (11) one can consider con-
ditions of complete synchronization 4 , i.e. the frequency
error is zero and the phase difference θe(t) is constant:

θ̇e(t) ≡ 0, θe(t) ≡ θeq.

For the second equation of (11) the above equations
implies that the loop filter state is also constant:

x(t) ≡ xeq, ẋ(t) ≡ 0.

Thus, the locked states of the baseband model are given by
the equilibria of the system (11). Equilibria can be found
from the relations

1

τ1
ve(θeq) = 0,

ωfree
e −Kvcoxeq = 0.

For any ωfree
e the equilibria

(
θseq, xeq

)
=

(
π

2
n+

π

4
,
ωfree
e

Kvco

)
, n ∈ Z,

are stable. The remaining equilibria

(
θueq, xeq

)
=

(
π

2
n− π

4
,
ωfree
e

Kvco

)
, n ∈ Z,

4 If necessary conditions for the averaging are satisfied (i.e. consid-
ered frequencies are sufficiently large) then complete synchronization
for the mathematical model in the signal’s phase space implies almost
complete synchronization for the mathematical model in the signal
space (Mitropolsky, 1967, p.88),(Kudrewicz and Wasowicz, 2007).

are unstable (saddle equilibria) 5 Since stable equilibria
exists independently of ωfree

e , the hold-in range is infinite.

4. THE LOCK-IN RANGE

Frequency deviations for which the baseband model (11)
achieves a locked state for any arbitrary initial state (x(0),
θe(0)) correspond to the pull-in range [0, ωp) (see, e.g.,
(Kuznetsov et al., 2015; Leonov et al., 2015)). For the
model (11) it can be shown using Lyapunov functions, that
its pull-in range is infinite (Alexandrov et al., 2015).

However, VCO frequency ωvco(t) may be slowly tuned to
the carrier frequency ωref , and the phase error θe(t) may
substantially increase during the acquisition process. To
describe this effect rigorously, the notion of cycle slipping
is used (see, e.g., (Ascheid and Meyr, 1982; Ershova and
Leonov, 1983)): if lim supt→+∞ |θe(0)− θe(t)| ≥ π then it
is said that cycle slipping occurs.

Definition 1. (Kuznetsov et al., 2015; Leonov et al., 2015;
Best et al., 2016) The lock-in range is a largest interval
of frequency deviations

∣∣ωfree
e

∣∣ ∈ [0, ωl) inside the pull-in

range, such that after an abrupt change of ωfree
e within

the lock-in range the PLL reacquires lock, if it is not in-
terrupted, without cycle slipping. The frequency deviation
ωl is called a lock-in frequency.

Consider a practical way to estimate ωl for the model (11)
(Leonov et al., 2015; Kuznetsov et al., 2017b). Without
loss of generality we fix ωfree

vco and vary ωref . First, we set
frequency deviation

∣∣ωfree
e

∣∣ = 0 and wait until the model
reaches the locked state (since the pull-in range is infinite,
the loop will lock eventually). Then we choose a sufficiently
small frequency step ∆ω > 0. At the kth step we abruptly
change the carrier frequency by (−1)k(2k+1)∆ω (i.e. the
carrier frequency becomes ωref = ωfree

vco + (−1)k(k+ 1)∆ω)
and observe whether the corresponding transient process
converges to a locked state without cycle slipping. We stop
the procedure at k = N when cycle slipping is detected
during transient process. The desired frequency deviation
ωl is approximated as N∆ω < ωl ≤ (N + 1)∆ω.

Although in practice unstable equilibria of mathematical
model (11) cannot be maintained, the lock-in definition
admits unstable equilibria as a starting point for synchro-
nization. To take this into account, at every step of the
lock-in estimate one may start integration from vicinity of
unstable equilibria (saddle) instead of stable one. Compar-
ison of both approaches is shown in Fig. 4.

Note, that the transformation x → x/τ1 does not affect
the cycle slipping property of trajectories. Therefore, the
lock-in range of (11) is a function of two parameters:

ωl = ωl(Kvco, τ1, τ2) = ωl(Kvco/τ1, τ2). (14)

Thus, the estimate for model (11) described above can be
compared with the lock-in range estimate in (Aleksandrov
et al., 2016a,b) (see Fig. 3).

5. CONCLUSION

In this paper a modified QPSK Costas loop is studied.
It is shown that the lock-in range estimation, taking into
5 Here and further upper index ‘s’ denotes stable equilibria, and
upper index ‘u’ denotes unstable equilibria.
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input signal (also called as a reference frequency) is usually
assumed to be constant (see, e.g. (Gardner, 1966)):

θ̇ref(t) = ωref(t) ≡ ωref . (9)

The difference between the reference frequency and the
VCO free-running frequency is denoted as ωfree

e :

ωfree
e ≡ ωref − ωfree

vco . (10)

Combining equations (7)–(10) one obtains a nonlinear
baseband model (nonlinear mathematical model in the
signal’s phase space, i.e. in the state space: the filter’s state
x and the difference between the signal’s phases θe):

ẋ(t) =
1

τ1
KPDve(θe(t)),

θ̇e = ωfree
e −Kvco

(
x(t) +

τ2
τ1

KPDve(θe(t))

)
.

(11)

Further without loss of generality we consider KPD = 1
(x and Kvco can be re-scaled: x → KPDx, KPDKVCO →
KVCO). Initial state of the loop consists of θe(0) (initial
phase shift of the VCO signal with respect to the reference
signal) and x(0) (initial state of the Loop filter).

Note, that (11) is not changed under the transformation(
ωfree
e , x(t), θe(t)) →

(
− ωfree

e ,−x(t),−θe(t)). (12)

This allows to study system (11) for ωfree
e > 0 only and

introduce the concept of frequency deviation (or frequency
offset):

|ωfree
e | = |ωref − ωfree

vco |. (13)

Frequency deviation is used to define stability ranges of
the circuit (pull-in, hold-in, and lock-in).

3. LOCAL STABILITY ANALYSIS

For a nonlinear baseband model (11) one can consider con-
ditions of complete synchronization 4 , i.e. the frequency
error is zero and the phase difference θe(t) is constant:

θ̇e(t) ≡ 0, θe(t) ≡ θeq.

For the second equation of (11) the above equations
implies that the loop filter state is also constant:

x(t) ≡ xeq, ẋ(t) ≡ 0.

Thus, the locked states of the baseband model are given by
the equilibria of the system (11). Equilibria can be found
from the relations

1

τ1
ve(θeq) = 0,

ωfree
e −Kvcoxeq = 0.

For any ωfree
e the equilibria

(
θseq, xeq

)
=

(
π

2
n+

π

4
,
ωfree
e

Kvco

)
, n ∈ Z,

are stable. The remaining equilibria

(
θueq, xeq

)
=

(
π

2
n− π

4
,
ωfree
e

Kvco

)
, n ∈ Z,

4 If necessary conditions for the averaging are satisfied (i.e. consid-
ered frequencies are sufficiently large) then complete synchronization
for the mathematical model in the signal’s phase space implies almost
complete synchronization for the mathematical model in the signal
space (Mitropolsky, 1967, p.88),(Kudrewicz and Wasowicz, 2007).

are unstable (saddle equilibria) 5 Since stable equilibria
exists independently of ωfree

e , the hold-in range is infinite.

4. THE LOCK-IN RANGE

Frequency deviations for which the baseband model (11)
achieves a locked state for any arbitrary initial state (x(0),
θe(0)) correspond to the pull-in range [0, ωp) (see, e.g.,
(Kuznetsov et al., 2015; Leonov et al., 2015)). For the
model (11) it can be shown using Lyapunov functions, that
its pull-in range is infinite (Alexandrov et al., 2015).

However, VCO frequency ωvco(t) may be slowly tuned to
the carrier frequency ωref , and the phase error θe(t) may
substantially increase during the acquisition process. To
describe this effect rigorously, the notion of cycle slipping
is used (see, e.g., (Ascheid and Meyr, 1982; Ershova and
Leonov, 1983)): if lim supt→+∞ |θe(0)− θe(t)| ≥ π then it
is said that cycle slipping occurs.

Definition 1. (Kuznetsov et al., 2015; Leonov et al., 2015;
Best et al., 2016) The lock-in range is a largest interval
of frequency deviations

∣∣ωfree
e

∣∣ ∈ [0, ωl) inside the pull-in

range, such that after an abrupt change of ωfree
e within

the lock-in range the PLL reacquires lock, if it is not in-
terrupted, without cycle slipping. The frequency deviation
ωl is called a lock-in frequency.

Consider a practical way to estimate ωl for the model (11)
(Leonov et al., 2015; Kuznetsov et al., 2017b). Without
loss of generality we fix ωfree

vco and vary ωref . First, we set
frequency deviation

∣∣ωfree
e

∣∣ = 0 and wait until the model
reaches the locked state (since the pull-in range is infinite,
the loop will lock eventually). Then we choose a sufficiently
small frequency step ∆ω > 0. At the kth step we abruptly
change the carrier frequency by (−1)k(2k+1)∆ω (i.e. the
carrier frequency becomes ωref = ωfree

vco + (−1)k(k+ 1)∆ω)
and observe whether the corresponding transient process
converges to a locked state without cycle slipping. We stop
the procedure at k = N when cycle slipping is detected
during transient process. The desired frequency deviation
ωl is approximated as N∆ω < ωl ≤ (N + 1)∆ω.

Although in practice unstable equilibria of mathematical
model (11) cannot be maintained, the lock-in definition
admits unstable equilibria as a starting point for synchro-
nization. To take this into account, at every step of the
lock-in estimate one may start integration from vicinity of
unstable equilibria (saddle) instead of stable one. Compar-
ison of both approaches is shown in Fig. 4.

Note, that the transformation x → x/τ1 does not affect
the cycle slipping property of trajectories. Therefore, the
lock-in range of (11) is a function of two parameters:

ωl = ωl(Kvco, τ1, τ2) = ωl(Kvco/τ1, τ2). (14)

Thus, the estimate for model (11) described above can be
compared with the lock-in range estimate in (Aleksandrov
et al., 2016a,b) (see Fig. 3).

5. CONCLUSION

In this paper a modified QPSK Costas loop is studied.
It is shown that the lock-in range estimation, taking into
5 Here and further upper index ‘s’ denotes stable equilibria, and
upper index ‘u’ denotes unstable equilibria.

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

35



34	 N.V. Kuznetsov  et al. / IFAC PapersOnLine 52-16 (2019) 31–35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Lock-in diagrams for modification of QPSK demodulator and active-PI loop filter. Here diagrams are given for
fixed τ2 = 0.0225. Dashed line and light grey area on both pictures correspond to the estimate (Aleksandrov et al.,
2016b), solid line and dark grey area - to the new estimate.
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Fig. 4. Phase portraits for model (11) (active PI filter) with following parameters: H(s) = 1+sτ2
sτ1

, τ1 = 0.0633,

τ2 = 0.0225, Kvco = 250, ve(θe) defined by formula (5). Black color (thin curves) is for the model with positive
ωfree
e = |ω̃|. Red color (thick curves) is for the model with negative ωfree

e = −|ω̃|. Equilibria are dots, separatrices
pass in and out of the saddles equilibria, local lock-in domains are shaded (upper black horizontal lines are for
ωfree
e > 0, lower red vertical lines are for ωfree

e < 0). Dark red (the thickest) curves start at the black equilibria
after the abrupt change of ωfree

e → −|ω̃|. Left upper and lower subfigures correspond to ωfree
e < ωlock-in and

ωfree
e > ωlock-in, respectively. Right upper and lower subfigures correspond to the approximation of the lock-in

range with respect to all locked states (ωlock-in ≈ 70.77) and to the stable locked states only (ωlock-in ≈ 85.25),
respectively.
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account unstable equilibria, gives much more conservative
results (the lock-in range is much smaller). While in this
article only second-order system is studied, higher order
loop filter may be considered either numerically or using
Lyapunov-like functions and frequency domain criterions
(see, e.g. (Leonov and Kuznetsov, 2014)).
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