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ABSTRACT

Puuska, Samir
Command and Control: Monitoring, defending and exploiting critical infrastructure
Jyväskylä: University of Jyväskylä, 2021, 50p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 407)
ISBN 978-951-39-8755-8 (PDF)

For securing critical infrastructure, this thesis aims to develop a common operating picture sys-
tem, establish methods for detecting targeted cyberattacks, and investigate exploits against ma-
chine learning -based decision making. A design-science research framework is used, in which
the validity is assessed through practical applicability of the solution artifact, and through an
iterative requirements–evaluation cycle in close cooperation with key stakeholders.

The included studies address three topics: i) common operating picture systems, with empha-
sis on modeling and analysis methods, ii) neural network -based detection of encrypted mal-
ware command and control channels, and iii) one-pixel attacks targeting a neural network -based
computer-aided cancer diagnosis. The studies made extensive use of raw data obtained through
stakeholder collaboration. In addition, malware network traffic data generated through cyber-
training activities on cyber-range environments, and tools used in targeted APT-malware attacks
were utilized. A tissue sample -based tool, utilizing neural network technology, for computer-
aided diagnosis of breast cancer, and associated digitized light microscope samples were used in
vulnerability research.

The main results include ascertaining the applicability of the design-science research frame-
work to the individual problem fields, and noting the necessity of raw data and stakeholder co-
operation. Considering the results by topic, the required modeling and analysis methods could
be implemented as a part of a common operating picture system, suitable neural network archi-
tectures with validation methods were created in malware traffic detection studies, and a method
for producing hostile samples could be found in the study concerning one-pixel attacks.

The practical results of the common operating picture -study include an VN TEAS report, pro-
duced to support state-level decision making, in which the results of the studies were utilized
extensively. With regard to cyberattack detection methods, their suitability for SUNBURST-
backdoor detection was established. With regard to the one-pixel attack, the feasibility of the
attack was demonstrated and the first publication considering the attack in a computer-aided di-
agnostic setting was produced.

Keywords: critical infrastructure protection, mathematical modeling, advanced persistent threat,
intrusion detection, neural networks, one-pixel attack, computer-aided diagnosis



T I IV I STELMÄ

Puuska, Samir
Kriittinen infrastruktuuri: tilannekuva, puolustus ja vihamielinen vaikuttaminen
Jyväskylä: Jyväskylän yliopisto, 2021, 50s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 407)
ISBN 978-951-39-8755-8 (PDF)

Kriittisen infrastruktuurin turvaamiseksi pyritään kehittämään tilannekuvajärjestelmä, luomaan
kohdistettujen verkkohyökkäyksien havainnontimenetelmiä sekä tutkimaan vihamielistä vaikut-
tamista koneoppimismenetelmäpohjaiseen päätöksentekoon. Tähän tarkoitukseen käytetään ke-
hittämistutkimuksellista (design-science research) kehikkoa, jonka puitteissa validiteettiä arvioi-
daan sekä ratkaisuartefaktin käytännön soveltuvuuden, että iteratiivisen vaatimusmäärittely–eva-
luaatiosyklin kautta läheisessä yhteistyössä keskeisten sidosryhmien kanssa.

Osatutkimukset käsittelevät kolmea aihepiiriä: yhdistetyn tilannekuvan järjestelmäämallinnus-
ja analyysimenetelmineen, haittaohjelmien salattujen komentokanavien neuroverkkopohjaista
paljastamista sekä vihamielistä yhden kuvapisteen erheytyshyökkäystä neuroverkkopohjaiseen
syövän tietokoneavusteisen diagnoosin työkaluun. Osatutkimuksissa hyödynnettiin laajasti si-
dosryhmäyhteistyön kautta hankittua raakadataa, kyberharjoitustoiminnan ja -ympäristön avulla
tuotettua haittaohjelmien verkkoliikennedataa, kohdistetuissa APT-ryhmien haittaohjelmahyök-
käyksissä käytettyjä kyberoperaatiotyökaluja sekä kudosnäytepohjaista rintasyövän tietokonea-
vusteisen diagnoosin neuroverkkoteknologiaa hyödyntävää työkalua ja digitalisoituja valomik-
roskooppinäytteitä.

Tutkimuksen päätuloksina voidaan osaltaan pitää valitun kehikon sovelluskelpoisuutta osa-
tutkimusten ongelmakenttiin, sekä tutkimusten osoittamaa raakadatan ja sidosryhmäyhteistyön
välttämättömyyttä. Tilannekuvajärjestelmänosatutkimuksissa kyettiin toteuttamaan vaaditutmal-
linnus- ja analyysimenetelmät, havainnointimenetelmien osuudessa luotiin soveltuvat neuroverk-
koarkkitehtuurit validointimenetelmineen sekä erheytyksen osatutkimuksessa löytämään mene-
telmä vihamielisten näytteiden tuottamiseksi.

Tutkimuksen käytännöllisinä tuloksina voidaan tilannekuvajärjestelmän osalta pitää valtiolli-
sen päätöksenteon tueksi tuotettua VN TEAS -raporttia, jossa osatutkimusten tuloksia hyödyn-
nettiin laajasti. Verkkohyökkäyksien havainnointimenetelmien osalta voidaan todeta niiden so-
veltuvuus SUNBURST-takaoven havainnointiin. Erheytyshyökkäyksen osalta voidaan tuloksiksi
lukea käyttökelpoisuuden osoitus sekä aiemmin julkaisematon kuvaus hyökkäystyypin kohdista-
misesta tietokoneavusteisen diagnoosin sovellutuksiin.
Avainsanat: kriittinen infrastruktuuri, matemaattinen mallinus, APT-uhka, kyberhyökkäysten
havaitseminen, neuroverkot, yhden pikselin hyökkäys, tietokoneavusteinen diagnoosi
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1 INTRODUCTION

The modern world is dependent on ubiquitous availability of computing resources. This demand
arises from virtually any industrialized human activity, which requires vast computational pow-
ers to operate on the global scale. Even social activity and normal human interactions are now
intertwined with computational platforms that facilitate communication, analyze behavior, and
alter social and physical environments. As these technologies have been advancing, so has our
reliance on them. Automation, in various forms, now controls the most essential systems respon-
sible for vital societal functions.

Critical infrastructure, the systems that form the basis structure for vital societal functions [17,
48], is evolving and growing. In the future, critical infrastructure will encompass ever-increasing
number of technological solutions humans have created as answers to questions like global com-
munication, food security, and climate change [62]. Sometimes this development is fast: in a
relatively short time span the COVID-19 pandemic has created a world where telecommuting
could become the “new normal” [10]. It is no wonder, then, that understanding the nature of
this formidable environment, protecting it from threats, and understanding its weaknesses are
essential. Even though old threats seem to never die, the modern digital ecosystem has created
new ways for malicious endeavors [28]. It is no longer enough to understand ordinary faults that
all systems develop, we now have to actively defend ourselves against, at times, well-resourced
and determined adversaries [9]. The ever-increasing complexity and expanding threat landscape
compel us to research and develop solutions that allow us to monitor, defend, and understand
exploits against critical infrastructure, which automation now controls [62].

Cybersecurity and critical infrastructure protection are vast fields. Although they have recently
received much attention both in and outside of academic circles, the complexity of the modern
cyberphysical world has perhaps more gaps than well-researched areas. This is especially true
for viewpoints considering various attacks and attack surfaces. There are factors that materially
complicate research of the cyber domain and critical infrastructure. Gaining access to data and
experts is difficult. Further complications arise due to the open nature of science, which proves
to be problematic when dealing with potentially sensitive details on critical infrastructure, or
complex cyberattacks against systems in production.

The threat, and increasingly the potential, of the modern cyber environment has not gone un-
noticed at the nation-state level. Intelligence agencies, military organizations, and other groups
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around the world have been developing and using their cyber capabilities, in sometimes plainly
visible ways, for conducting their operations. This trend is likely to continue [61]. At the same
time, many countries and organizations have found out that their ability to withstand cyber at-
tacks leaves much to be desired. Advanced adversaries do not necessarily benefit from scientific
research on critical infrastructure exploitation, as they are independently resourced for discover-
ing that capability. By addressing attacks and their mitigation in scientific research, the defending
organizations and general public gain understanding of what they are facing, and have a chance
of detecting and foiling these attacks.

The increasing amount of data the modern world produces has long since eclipsed the natural
human capability for processing it. Instead, we have created technologies that can do processing,
analysis, and even decision making for us. Raw data is useless without a way to interpret the
numbers and characters in a context that allows us to benefit from them. Statistical inference
as a method for problem solving is not new; historical records show examples of this centuries
before the Common Era. What has changed is the scale on which we can collect raw data and
perform these calculations. Along the centuries we also have devised new methods and refined
old ones in furthering the endeavor to achieve human-like thinking using machines. Naturally,
these solutions have found their way into cybersecurity and critical infrastructure protection. The
role of artificial intelligence and machine learning in these fields is complex. On one hand, they
can be used to detect many forms of misuse ranging from financial fraud to network intrusions.
On the other hand, they are increasingly used to mount advanced attacks against both automated
systems and humans [104].

1.1 Research questions and methodology

The aim of this thesis is to consider critical infrastructure from several viewpoints, rather than
focus on one narrow section. This thesis and the included articles address critical infrastructure
from three different thematic categories: monitoring, defending, and exploitation. Figure 1 illus-
trates how the included scientific publications are grouped into the categories and sub-categories
of each theme. The first theme explores challenges in monitoring critical infrastructure, and
means for processing and presenting data in a fashion that allows a human operator tomake infer-
ences on the current and future state of the infrastructure as a whole. The second theme explores
the role of artificial intelligence (AI) and artificial neural networks in detecting advanced malware
attacks often directed against computer networks vital for the operation of critical infrastructure.
The third theme explores healthcare, a critical infrastructure field currently enjoying increases in
AI automation, from the viewpoint of exploitation.

Each of the themes and the corresponding publications have their own sets of specialized re-
search questions. Despite their differing viewpoints, there are certain high-level questions that
are shared between the three categories.

1. From one of the viewpoints, what salient problems does critical infrastructure have?
2. What are the real-life requirements for a suitable solution?
3. How do we acquire raw data from real systems?
4. How can we construct a functional prototype artifact?
5. Does the constructed prototype achieve the required real-life effect or performance?

10



Figure 1: The three thematic categories and their sub-categories addressed in this thesis. Square brackets
indicate papers that include elements from respective sub-topics.
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No research should be an island. The work in this thesis was carried out as part of several larger
research projects. This is also reflected in the framing of each individual paper’s goals and focus,
as the exact requirements are often products of prior research conducted by other members of
the research team, or are otherwise not a part of this thesis.

In applied research, the end target is to create solutions that have a high chance of working
under real-life situations. To this end, the research methodology and the methods must reflect
this goal [60]. The solution tends naturally towards producing a prototype, as that prototype
can then be iteratively improved for example via user testing, field experimentation, or various
collaborative means. This sort of approach is known as design-science research (DSR), or alterna-
tively as constructive researchmethodology [26, 47]. DSR is a solution-focused, participatory, and
iterative methodology, as opposed to the more observational and problem-focused approaches
associated with traditional science [11]. Design science is focused on the artificial, and DSR is a
methodology that produces artifacts, i.e. artificial things that are synthesized by human beings,
and discussed in terms of functions or goals [92]. A prototype, as an artifact, creates means for
exploration of the problem, development, and finally evaluation of the proposed solution [11,
70]. Traditional statistical tests, trials, and other such methods are used in conjunction with it-
erative processes that take into account how stakeholders, the intended users of the results, see
the proposed solutions and their viability. The stakeholders may even be the original proposers
of the main problem, which is then formulated as a series of research questions by the research
team. This iterative approach, when successful, extends the validity of the research beyond what
traditional statistical tests and research designs could provide. Ideally, there is then just a short
leap into operationalization to production. The DSR methodology relies heavily on using data
and subject-matter experts to drive design and in selecting the requirements [11]. All the papers
included in this thesis rely on expert interviews, user tests, raw data produced by real systems,
or a combination thereof. The central theoretical foundation and main challenges of each three
thematic categories are presented in Chapter 2. The detailed account of aims, data, methods and
results of each publication are presented in Chapter 3. Discussion of the results and conclusions
are presented in Chapter 4.

1.2 Publications and author’s contribution

The author’s contribution to the included articles varies. Paper P1: The author is responsible for
the original idea for the proposed model, gathering and collecting the test data, formalizing the
model, as well as being the main writer of the article. Paper P2: The author is responsible for
developing the idea and major parts of the software for the proposed simulator and middleware,
in conjunction with the other authors. The author further participated in gathering, analyzing,
and refining the data required for running the simulations. The author developed the geographic
information system view, for visualization in the COP system. All named authors participated in
the writing process. Article P3: The author is responsible for designing and developing the data
collection middleware solution, the analysis methods, and some of the server-side user interface
code. The author also chiefly participated in statistical analyses, as well as contributed most of
the article’s text. This article has appeared as a part of another dissertation, without overlapping
contribution between authors [102]. Paper P4: The author is responsible for developing the idea
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and concept, as well as creating the reporting tool and for collecting and analyzing the data. The
author also contributed text to the article, in conjunction with the other authors. Paper P5: The
author contributed the central concept, and participated in data collection, analysis study design,
as well as writing. Paper P6: The author contributed to the overall design of the study, feature
engineering and evaluation, data collection and analysis, and writing. Paper P7: The author con-
tributed the main concept, study design and most of the text, as well as participated in selecting
suitable statistical methods and distributions. Paper P8: The author contributed to the literary re-
view and writing. Paper P9: The author is responsible for conceptualization, methodology, data
processing, software, and participated in writing the original draft.
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2 THEORET ICAL FOUNDATION

In this chapter the relevant theoretical foundations are presented in brief detail. The chapter does
not attempt to address these subjects comprehensively: The goal is to present central concepts,
case examples, and challenges in these relatively disjoint topics, enabling the reader to consider
the included articles in context.

2.1 Critical infrastructure and situational awareness

Critical infrastructure (CI) refers to systems that form the basis structure for vital societal func-
tions [48]. The European Council, for example, highlights health, safety, security, economy, and
social well-being as examples of functions that should be considered vital [17].

2.1.1 Common operating picture

Critical infrastructure is a complex environment, with complex relationships. The task of main-
taining situational awareness (SA) about the state is one of the prominent research areas of the
field [14]. By definition, CI is critical, and there is massive incentive to holistically monitor its
functionality, and predict the extent and impact of current and future failures in real time. Both
governmental and private-sector actors are interested in monitoring their own assets, as well as
the state of other systems they are dependent on. In order to effectively disseminate and utilize in-
formation, each actor is required to share details of their system in a controlled way. This sharing
can be incentivized by making information sharing mutually beneficial [103].

A platform to share information, along with suitable analysis functionality and visualization
techniques provide a so-called common operating picture (COP) solution. Although military in
origin, COP in CI context refers to a platformwhere all the sectors are represented together using
data fusion and visualization tools [103]. CI spans every infrastructure sector, and the breadth of
devices and systems that must be integrated grows large. Some systems, such as those connected
directly to the Internet, are very easy to monitor remotely by their nature, others may require a
human-in-the-loop approach. Research areas include data collection and fusion elements, a task
complicated by the diversity of CI components [48].
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The analysis capability of a COP system is tied to the task of maintaining the situational aware-
ness of human operators. As proposed by Endsley, SA includes three levels of comprehension,
consisting of understanding current elements, their relation to each other, and the future devel-
opments of the system as a whole [14]. Consequently, the analysis capability should provide
suitable information on each of the SA levels in a way that assists the operator in maintaining SA.
As maintaining SA is an ongoing effort, the underlying model must be capable of operating in
real time, and provide continuous output and forecasts as the situation evolves, while tolerating
disruptions in data delivery.

2.1.2 Modeling interdependencies, predicting cascading failures

One of the challenges associated with CI is recognizing what and where those critical assets
are [48]. When this work was first conducted in 1990s, it was swiftly discovered that the infras-
tructure was highly interconnected: both physically, and via telecommunication systems. Latter
research went on to call CI as interdependent [48]. Rinaldi et al. define interdependent as “highly
interconnected and mutually dependent in complex ways”, as it was discovered that failures on
one part of CImay cause cascading failures impacting other parts of CI [80]. CI is often owned and
controlled by various public and private parties, further complicating the relationship between
its various parts.

Much of the research on CI is focused on studying the interdependencies. This field encom-
passes researching suitable mathematical and technical models, and mapping and observing CI
structure and events as they appear in the real world. Both of these research activities are some-
what hindered by the sensitive nature of these systems, as well as the fragmented ownership land-
scape. There is also a conflict between the open nature of scientific research and publishing, and
the sensitive nature of CI datasets.

Various different modeling approaches have been proposed in academic literature [66]. One of
the particular challenges in creating a CImodel for a COP system is keeping the individual model
relatively simple, allowing the chaining of themodeled components and influences to simulate the
interdependent nature ofCI at scale. Themodel should also provide some estimates onhow severe
an observed failure was, and how it relates to the systems that are dependent on its operation.
Systems like cellular base-stations are dependent on external power, although they may operate
using emergency battery power for several hours. This creates a time-sensitive component to
the model. A COP system receives status updates from some of the infrastructure components
periodically. The model should both use these updates to keep up to date, as well as interpret the
cessation of these updates as a sign of failure. Papers in C 1.1 describe a model based on graphs
and finite state transducers, and then present an application of that model to a real-world use
case.

2.2 Computers, networks, and intrusions

Computers today are rarely used without a network of some kind. This state of affairs brings
innumerable advantages, but in addition it also makes it easier for attackers to operate clandes-
tinely, as the amount of traffic is too vast for humans to manually inspect, and encryption has
become virtually ubiquitous. We firstly present a motivating example of an attack, where the
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methods presented in this thesis would likely have been effective in mitigating the impact. A
short introduction to the basic concepts of neural networks is given, followed by an overview of
network intrusion detection using this type of machine learning approach. Finally, some remarks
concerning the statistical side of the phenomenon are discussed.

2.2.1 SUNBURST: a tool for global espionage

On December 13, 2020, American cybersecurity company FireEye Inc. published details on how
an advanced nation-state -sponsored attacker had compromised numerous high-value targets us-
ing a so-called supply-chain attack [20]. The attacker had installed a malicious backdoor into a
widely used network and infrastructure management platform Orion, developed by SolarWinds
Inc. [8, 94]. Using this trojanized software, the allegedly Russian advanced persistent threat (APT)
group gained access into numerous systems where the management platform was deployed, in-
cluding several used by the United States federal government [9, 61].1 Various cybersecurity
companies, including FireEye, refer to the malicious code as SUNBURST [20]. SUNBURST at-
tempted to conceal many of the malicious connections by mimicking a legitimate update process.
This approach proved to be successful, and SUNBURST was only detected when the attacker had
already used it to exfiltrate documents and other data from the systems.

SUNBURST is the first part of an attack chain. By using multiple stages, the attacker can target
high-value organizations via customized payloads. In several documented cases, SUNBURST
was used to deliver a malware dropper known as TEARDROP. The purpose of TEARDROP is to
deploy yet another payload, a modified Cobalt Strike BEACON [56]. Cobalt Strike is a tool suite
for cyber adversary simulation, developed by Strategic Cyber LLC.2 It has the same capabilities
as advanced malware, and is therefore used in malicious attacks in addition to legitimate use by
red teams. Cobalt Strike BEACON is among the malware samples used in articles P5 and P6.

2.2.2 A short introduction to neural networks

The term “machine learning” was first used in 1959 [87]. Since then, the field has seen the era
of big data and, with it, incredible increase of computational performance. A common problem
in machine learning is to construct a function based on some limited set of example data. The
goal is for the function to generalize from the training examples in such a way that other data also
performs desirably. For example, if one has a set of cat pictures, a machine learningmethod could
be used to create a function that can recognize if cats appear in other pictures as well, perhaps the
instant a user takes one with a smartphone [43].
Artificial neural networks (ANN) and so-called deep learning have become household names

during the last few years, and are known for their apparent applicability to big data problems.
However, artificial neural networks are not new; surprisingly, the concept predates the term “ma-
chine learning”. ANNs are often represented as a kind of a digital counterpart to biological cell-

1The SUNBURST situation is ongoing, and new details are constantly emerging. As the event progresses, this section
may no longer contain the most current information.

2https://www.cobaltstrike.com
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based brains [82].3 They have the ability to generalize a function from a finite set of training
examples, without needing extensive human input to guide the process. This also means that
there is no fundamental requirement to understand intricate theory and mathematics behind the
method, or the phenomenon under study, before using ANNs; the field relies, quite strongly, on
empirical results showing the method ostensibly working, while theoretical guarantees and un-
derstanding lag behind the cutting edge applied research.4 This has not prevented the field from
achieving major successes.

The so-called supervised learning considers how labeled training data can be used to construct a
generalized function that predicts the label for other similar data as well. Consider 𝐹 ∶ ℝ𝑛 → ℝ𝑚,
a function that maps a vector fromℝ𝑛 to a vector inℝ𝑚. We can use this rather abstract notation
to present a problem: if we have a set 𝑇 of ordered pairs (𝑛,𝑚), where 𝑛 ∈ ℝ𝑛 and 𝑚 ∈ ℝ𝑚, can
we construct a function which returns desirable results for some of the points inℝ𝑛, even though
they did not appear in the training set 𝑇? We use inexact terms like “desirable” and “for some of
the points” here for a reason. Inmachine learningwe often lack away of expressing certain subsets
of ℝ𝑛 in mathematical form. Conceivably, we can represent a digital picture of a cat as a vector
in ℝ𝑛, but we immediately run into a problem if we try to mathematically define what subset of
ℝ𝑛 are the vectors containing a cat picture. The output𝑚 ∈ ℝ𝑚 can be defined as a binary, one or
zero, depending on if the input is a cat picture or not. Even with this mathematically ill-defined
problem, it is possible to use ANNs to detect cats, if given a sufficient amount of training data [43].

The mechanics of artificial neural networks are ruled by expedience; they have mathematical
properties thatmake them sufficiently universal, as well as numerically tractable. Artificial neural
networks, in essence, leverage a simple non-linear function, applied repeatedly, to approximate
other functions [25]. The non-linearity causes ANNs to be universal approximators, allowing
them to represent a wide class of functions [29]. The (sigmoid) logistic function,

𝜎(𝑥) = (1 + 𝑒−𝑥)−1 (1)

is an example of such non-linear function [7]. It should be noted, however, that it is not by any
means the only suitable choice [40]. This non-linear activation function is so named to reflect
the terminology used when describing similar behavior in biological neurons. The activation
function does not have any adjustable parameters. Parameters are needed to “fit” the non-linear
function to the function that we are trying to approximate. For that purpose, we introduce two
parameters for scaling and shifting the input, called weight (𝑊) and bias (𝑏) in ANN parlance.
The parameters are applied before the activation function, yielding the form 𝜎(𝑊𝑥 + 𝑏). This
construct is known as a neuron, again a reflection of the nomenclature used in biology.

One neuron does not a neural network make. To approximate complex functions, the neurons
are usually set up in layers, forming a network. One of the more common configurations is a fully
connected network, where the output of each neuron in a layer is passed to every neuron on the
next layer, the first layer acting as input, and the last as output. We now introduce amore concrete
definition for fully connected networks, bringing us closer to the actual numerical approach. We

3While this analogy is useful in a limited way, it also misleadingly suggests that the networks of artificial “cells” share
similar traits comparable to biological brains and their capabilities.

4This philosophy is reflected in this chapter, where some of the mathematical rigor and nuance is sacrificed for read-
ability and brevity.
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expand the definition of function (1) to cover vectors in component-wise fashion; if 𝑥 is a vector,
the function is applied to every component separately. 𝜎(𝑊𝑥 + 𝑏) can now be understood as the
operation on a single layer, where 𝑊 is now a matrix, and 𝑏 a vector [27]. The dimensions of
weight matrix𝑊 are defined by the number of neurons at the previous layer (columns), and the
number of neurons at the current layer (rows). Bias vector 𝑏 matches the number of neurons at
the current layer. Combined, the weight matrices and bias vectors for each layer constitute the
parameters, 𝜃, of the network. It is now possible to see the repeated application of the non-linear
function, for example in the case of a three-layer network

𝐹(𝑥) = 𝜎(𝑊3 𝜎(𝑊2 𝜎(𝑊1𝑥 + 𝑏1) + 𝑏2) + 𝑏3)

of unspecified dimensions.
The goal is to learn “good” parameters for the ANN using a set of training examples. Contin-

uing our example, we have a set of input points in ℝ𝑛, and corresponding target output points
in ℝ𝑚. We now need to adjust the parameters of a network to produce the desired output in ℝ𝑚,
when given a training example ℝ𝑛, for every training example in the set. There are, to be sure,
multiple ways to achieve this goal. However, currently the most popular family of methods are
gradient-based. Gradient-based optimization methods require the use of a cost function, which is
a type of objective function that is minimized in a process called training. There is a choice of cost
functions that are suitable to use with gradientmethods. As an example, consider the well-known
quadratic cost function,

𝐶MSE =
1
𝑁

𝑁
∑
𝑖=1
‖𝑦(𝑥𝑖) − 𝐹𝜃(𝑥𝑖)‖

2
2 (2)

also known as mean squared error (MSE) [5], with 𝐹𝜃 being the parametrized function represent-
ing the ANN model.

Local search optimization algorithms, such as gradient methods, became viable only when
computers became powerful enough to perform the necessary calculations effectively, at scale.
MSE itself predates that time, as do many other methods that use it, again illustrating that central
ideas fueling ANNs span several centuries [46]. Local search works by using the objective func-
tion to measure how “good” the current state is, and then using some means to move to another
solution, until a sufficiently optimal state is found. In other words, the gradient descent method
iteratively minimizes the cost function. As the name implies, the method uses partial derivatives
to guess how parameters should be altered to reduce the cost of the next state [6, 44].

Modern artificial neural networks tend to be large, some language models surpassing 10 bil-
lion parameters [79]. Naive gradient descent requires repeated calculation of the derivative of
the cost function. Unfortunately, the closed-form solutions for derivatives to already massive
𝐹(𝑥) would be intractable, even with today’s computing power. Instead, we use a set of practices
that massively reduce the amount of computations via slight trade-offs to the optimality of the re-
sult. These methods include Taylor approximations, stochastic sample selection, and automatic
differentiation [45, 49, 53, 81, 83]. The cost function is minimized, until a stopping criteria is
reached.

In cases where the input vector is known to be structured in a certain way, it is possible to
create an ANN capable of using that information. The canonical example of such structure are
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images, where pixels are usually related to the ones next to them, creating patterns, such as cats.
Patterns like these are almost exclusivelywhatANNs are supposed to detect and classify, nomatter
where in the picture they are. A convolutional ANN is a specialized network architecture that can
exploit these local dependencies between pixels, while havingmuch fewer parameters than a fully
connected network would have [41]. This position independence is useful in many other tasks,
such as detecting patterns in time-series. The convolutional receptive field can be thought as a
form of regularization, controlling the bias-variance trade-off by limiting the set of functions the
ANN is likely to learn [88].

2.2.3 Intrusion detection: finding network anomalies

Intrusion detection refers to the activity and technologies intended to identify various intrusions
against computers and networks [73]. Intrusion detection systems (IDS) are purposefully built
analysis tools which detect malicious events or activity, and report the “intrusion” for further
analysis. The methods employed by a particular IDS depends on what is the nature of intrusion
the system is set up to detect. For example, an IDS used to detect intrusions at the network
level may use captured network traffic in their analysis. Since these so-called network intrusion
detection systems are not able to see or control the software at the endpoints, they are unable to
perform certain tasks the endpoints can. They cannot communicate with either endpoints, or
alter the data being sent between them.

Cyber attacks come in many forms. The exact approaches: tactics, techniques and procedures
(TTPs), are determined by the goals of the attacker, as well as their skill level. In many cases the
attacker wants to gain access to information stored on various systems, as opposed to destroying
or maliciously altering the records. Cyber attacks often have multiple phases, and require the
attacker to actively control the malicious programs on the target systems. This requires a com-
mand and control (C&C) channel, a covert way for the attacker to relay instructions and receive
data back from compromised systems. Naturally, ubiquitous encryption has not escaped mal-
ware authors. Many malicious C&C channels attempt to hide amongst legitimate web traffic by
mimicking normal browsing, to varying levels of success.

The traffic computers generate when communicating with each other through networks is, in a
sense, very varied. The applications people use every day range from video games and web-based
socialmedia to suites such as theMicrosoftOffice andOutlook, to give examples from this diverse
set. On the other hand, the traffic of these varied programs is often protected using well-known
and standardized protocol suites, such as the Transport Layer Security (TLS), which obscures the
exact nature of the communication with encryption, forcing observers to infer it using metadata.
The modern Internet is encryption heavy. As high as 90% of web browsing is protected by TLS.
The newest version 1.3 is considered unbreakable by even the most well-resourced nation-state
adversaries.

Although modern networks are packet-based, examining encrypted packets separately does
not yield much information. On the other hand, combining all packets into a large pool and ex-
amining its properties does not grantmuch insight either. The usefulmiddle ground is to leverage
the connection-oriented nature of the communication, where applications establish sessions to
exchange data. For example, the Hypertext Transfer Protocol Version 2 (HTTP/2) uses a request–
response model, where one endpoint (client) initiates the connection and sends HTTP requests,
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and the other endpoint (server) receives the HTTP requests and sends back HTTP responses to
the client [1].5 The next step in evolution, the Hypertext Transfer Protocol Version 3 (HTTP/3),
now requires TLS and contains several anti-profiling techniques which seek to prevent applica-
tion fingerprinting and metadata extraction [2, 101]. The adoption of this protocol is likely to
hinder traditional approaches to traffic profiling and metadata collection, even for nation-state
adversaries; an apparent design goal for HTTP/3.

Using encryption does not render network traffic completely unusable from the IDS stand-
point. Network flows contain information that cannot be encrypted. In addition, the flows can
be analyzed using features created by observing how and when the packets are transmitted [59].
Using specialized software, such as Suricata6, it is possible to correlate individual packets and
construct network streams where the packets are likely to be a part of one connection. These can
be presented as time-series, where packet properties, such as the size, are combined with tem-
poral properties, such as the arrival time. The features can then be used as a basis for statistical
analysis and machine learning solutions, including neural networks. Malware does not usually
contain sophisticated algorithms for generating traffic patterns that successfully evade advanced
detection.7 In addition, their functionality almost inescapably requires deviation from expected
traffic patterns. These deviations may occur, for example, when the malware is instructed to ex-
filtrate data. By exploiting these shortcomings a network IDS can detect potentially malicious
deviations from the norm. As the exact nature of the deviation cannot be ascertained by looking
at the metadata, the process is called anomaly detection.

2.2.4 Network traffic as time-series

Network traffic is a man-made phenomenon, meaning we can take as close a look as we want to
the processes, in both computing and statistical sense, that create it. We also know the rationale
behind the design choices for each protocol, as well as the expected behavior under normal and
error-induced conditions. In addition, malware analysis provides insight on how C&C channels
are typically constructed. Using this knowledge is crucial when designing real-world security
solutions.

In a statistical sense, the time-series arising from network traffic patterns are neither station-
ary nor linear (see e.g. [72] for formal definitions). The state of virtually any application is de-
pendent on user input and influenced by factors such as other running programs, time of day,
input data, or even pure randomness [32]. A network connection can remain relatively unused
until the user performs an action, causingmassive deviations from previously observed statistical
properties (non-stationarity). As programs receive inputs from other sources than the network,
only extremely limited predictions about the future behavior can be made using the data that
the program has received (non-linearity). This behavior is completely expected and normal, yet
it massively complicates or even prohibits the use of many traditional methods for time-series
analysis.

5The internal workings of the protocol are more involved, as one connection may contain several bidirectional
streams obscured by TLS-based encryption.

6https://suricata-ids.org/
7These would increase the size of the malware and threat of being detected by various endpoint protection solutions,

such as antivirus applications.
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Based on what we know about the networking protocols and the applications that use them, we
can predict that there exists certain correlations and causations within a time-series, even though
these events are not characteristic to the whole time-series, or correlate with other similar events
within a series. A request usually warrants a swift response, even if it is not connected to other
request-response pairs. If this response is unsolicited, missing, delayed, or unusual in size, it may
signal an anomaly.

Just as using the assumption of stationarity with a non-stationary time-series leads to mixing
of unrelated events, a fully connected neural network learns correlations that are known to be
impossible or irrelevant due to the nature of networking protocols, or the input data. To prevent
this from happening, the functions that the ANN is likely to learn must be restricted to those
that are plausible, by using e.g. a suitable causal receptive field [64], or some another style [52] of
external limiting.

2.3 Model fooling attacks and medical images

Machine learningmethods are increasingly used in amedical setting, where they perform various
kinds of computer assisted diagnosis (CAD) tasks, initial assessments, early detections of diseases,
or augment and aid the work of a diagnostician by providing smarter tools that can highlight
possible problems or just speed up the work flow. As machine learning solutions become integral
parts of healthcare systems at national scale, they can be classified as critical infrastructure along
with the rest of the essential healthcare system.

2.3.1 On cancer

Cancer is a group of diseases characterized by abnormal cell growth that leads to various dis-
orders [42]. Normally the cells forming a tissue function and replicate under various rules and
safeguards which allow the tissue to perform its function [42]. However, external or spontaneous
factors may alter cell’s DNA. If these alterations are inherited when the cell divides, and the mu-
tation breaks the cells capability to be regulated or regulate itself normally, the result may be a
neoplasm (tumor). Generally, if the neoplasm exhibits characteristics know as the “hallmarks of
cancer”, it has the capability to alter surrounding tissue in formidable ways, and even spread to
secondary locations (metastasize) [23, 24]. As expected, the originating tissue, location, and the
specific mutations of the neoplasm in question heavily influence how the disease is first detected,
how it progresses, and what treatments are available. The various forms of cancer have different
incidence rates (CIR), and these rates may vary depending on age, sex, and other factors. The
importance of originating tissue is reflected in the nomenclature, as various tumors are named
based on that tissue. Cancers with high CIR are of special interest, as systematic approach in
detection and treatment has a large potential effect on outcomes. For example, according to 2020
OECD report, the expected incidence of breast cancer among women is 29%, and it accounts for
17% of female cancer deaths [63].

Cancer, in its many forms, continues to be the second leading cause of mortality in the EU,
accounting for 26% of all deaths [63]. As the COVID-19 pandemic will temporarily skew the per-
centages, it will also challenges the healthcare system to continue effectively diagnosing and treat-
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ing cancer diseases while responding to the pandemic. Increasing throughput by using machine
learning solutions may help the healthcare system to respond to massively increased workloads.

2.3.2 Machine learning in cancer detection

When suspecting that a tissue may contain neoplastic growth, one of the ways to determine its
properties is to actually extract a piece of that tissue and look at it with a microscope [99]. Vari-
ous histological techniques may be employed for making important cellular features visible [55].
One of the fundamental features for classification of tumors is cellular differentiation and anapla-
sia [42]. Malignant tumors tend to lose both morphological and functional similarity to the
originating tissue, making cells visibly different from their healthy counterparts. These changes
include changes in size and shape, abnormal looking cell division, changes in cell nucleus that
cause excessive staining during histological analysis, and the lack of orientation between cells as
expected of the tissue type in question. Figure 2 is a picture of a tissue samples exhibiting infiltra-
tive ductal carcinoma, a form of breast cancer.

Figure 2: WSI showing several breast resections with infiltrative ductal carcinoma. Figure courtesy of Al-Janabi
et al. [31], distributed under the terms of the Creative Commons Attribution License.

Digital photography allows pathologists to use computers for analyzing the histological sam-
ples. Whole slide images (WSI) refer to high-resolution digitized images of glass slides used in
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light microscopy [67]. These images may contain multiple layers of differing zoom and focus
levels.

WSI enable computers to process images, using various technologies such as traditional image
manipulation, computer vision, and machine learning approaches. Machine learning models
have been successfully used in cancer detection in the histological domain [38, 107]. The super-
vised models leverage hand annotated datasets to learn various metrics for tissue classification,
such as mitosis, i.e. cell division count, and different kinds of abnormalities professionals have
detected in the cells on the digitized full slide microscope image [38]. Although machine learn-
ing methods cannot fully replace the diagnostic decision making of a human professional, they
can be used to perform computer assisted diagnosis [38]. Other tasks include finding regions of
interest (ROI), by e.g. highlighting parts of images that are classified as abnormal [38].

2.3.3 Model fooling

Machine learning models are not perfect. They incorporate various biases and errors that stem
from the entire spectrum of model creation. Usually just by selecting any machine learning tech-
nique, such as neural networks, we will introduce certain kinds of behaviors that will lead to
unpredictable results in the problem domain. This is further enforced by the way the hyperpa-
rameters are tuned, the data is sampled, processed, and turned into features. These fragilities in
machine learning models are exploitable. An attacker may use them to manipulate the machine
learning solution into performing actions that lead to undesired results or loss of confidence in
the solution itself.

Machine learning classifiers take an input, such as an image, and attempt to correctly sort it
into one of the predefined classes. The aforementioned cat detector is a neural network classifier
with two classes: cat and no-cat. We train it by procuring as many pictures of things both cat
and no-cat as needed, until we deem it adequate. As expected, the model will in all likelihood
fail to correctly classify certain cat-containing images, especially if they are markedly different
from what was used in training. Cat orientation, lightning, framing, and other variables will, as
expected, affect the accuracy of the model and predictions [4]. There are, however, other ways by
which classification errors may happen.

Model fooling refers to the activity of taking a correctly classified sample, and altering it in
a way which makes the model misclassify it with high confidence [69]. As altering may mean
just swapping the sample image with another, we usually place additional constraints on how the
sample may be altered. One of the most interesting choices for this restriction is to allow the
manipulation of only one pixel of the sample, a so-called one-pixel attack [97, 98]. A human
observer may fail to see any difference between the original and altered image. Vargas and Su
suggest that the existence of one-pixel weaknesses are largely related to receptive fields [105]. Even
though many problems are semi-discrete, minimizing a continuous function is far easier than a
discrete one [44]. This may lead to unexpected behavior when an ANN is faced with samples
containing values outside expected ranges of the legitimate input data. As it stands, the exact
causes behind one-pixel attacks remains relatively unexplored.

Although this attack is usually demonstrated using pictures, it is just as applicable to many
other problem domains. Misclassifying cats is usually harmless. In a more critical setting the
cost of a misclassification can be significantly higher. For example, malicious altering of physical
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objects, such as road signs, have the potential to disrupt self-driving cars that rely on machine
learning [18]. Manipulating machine learning models in a medical setting is of interest to many
adversaries. Attacks can range from insurance fraud, forging drug trial results, to other forms of
relatively local misuse [19]. However when machine learning methods become commonplace,
the healthcare system may ultimately be dependent on their correct operation. This exposes a
new type of attack surface. At the time of writing there are no publicly known attacks against
medical machine learning specifically. Unfortunately, when these misuses are revealed, they have
usually been long ongoing.
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3 RESEARCH CONTRIBUTION

This chapter presents the research contributions in chronological order, grouped by the thematic
categories. First, papers concerning critical infrastructure are presented. Second, papers con-
cerning machine learning and network intrusion detection are presented. Finally, the paper con-
cerning medical images and model fooling is discussed. For each of the included articles, a short
summary of the main elements is presented, along with the primary results. The chapter uses
the term “method” broadly to describe the DSR approach, which may include several types of
scientific inquiry. A short mention of the impact is also presented.

3.1 C1: Critical infrastructure and situational awareness

P1: Modelling and Real-time Analysis of Critical Infrastructure using Discrete Event Systems on
Graphs

Aim. The objective of this study was to create a mathematical model for interdependencies and
cascading faults in critical infrastructure. In addition, methods for quantitatively measuring the
current and future state of CI after incidents were considered. The general design goal was to
create a model that can include thousands of components, and still be fast enough for real-time
applications.
Method. Critical infrastructure consists of systems and dependencies between them. After con-
sidering the nature and type of these dependencies, a graph theoretic approach was selected to
model interdependencies [50, 80, 106]. For individual components, the approach taken was to
leverage finite-state transducers for representing one CI component, such as an electrical trans-
former station. The states represent the operational status of the component, for example OK,
Fail, and Pre-Fail. The transducers are connected to each other via a directed graph which rep-
resents the dependencies between separate components. When a component changes state, the
symbol emitted by the respective transducer is broadcasted to every connected transducer, which
changes their state accordingly. Thismay trigger further transitions, modeling a cascading failure.
For assessing the impact of a particular event, each state in every transducer was equipped with a
“badness” score. The criticality of each transducer was determined by a graph centrality measure
that estimates how many components depend on that particular transducer, and how “central”
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they are in terms of dependent components and their subsequent importance, as indicated by the
centrality measure. Several metrics were defined to estimate the impact of an event: downstream
weighted impact sum, a graph-centrality aware impact measure for events, and upstream risk, a
measure that estimates how much risk is incurred by the failures in components that any partic-
ular component depends on. The performance of the model was evaluated with both simulated
and real-world data from the open topographic database offered by the National Land Survey of
Finland.
Results. The benchmark results indicate that the developed methods are capable of real-time
performance at scales required for large infrastructures. The model was used in several research
articles and technical reports, such as one commissioned by the PrimeMinister’s Office of Finland
(VN TEAS) [30].

P2: Integrated Platform for Critical Infrastructure Analysis and Common Operating Picture Solu-
tions

Aim. Theobjective of this study was to develop a framework for modeling, simulation, and analy-
sis of critical infrastructure. The goal of the frameworkwas the capability of assessing how various
fault conditions and mitigation methods affect the severity of incidents via simulations. Specif-
ically, human-in-the-loop decision making and SA considerations were included in the frame-
work. This work was related to work commissioned by the Prime Minister’s Office (VN TEAS),
which included tasks to assess e.g. the effect of weatherproofing measures to storm resistance.
The main goal of the framework was the suitability for this simulation task.
Method. The approach was to create a large-scale simulation model including 2G/3G/4G net-
works and electricity distribution networks. The simulation area was based on a real coastal area
of Finland 50 kmwest of the capital Helsinki. Themodel included data from various sources, such
as field measurements, open data, and expert interviews. The final model included an electricity
distribution network, a multi-operator mobile communications network, building data from the
Real estate, building, and spatial information database of the Digital and Population Data Ser-
vices Agency, as well as 3D terrain models. Additional data was generously provided by Caruna
Ltd. and other stakeholders.

The COP platform contained various visualization tools, as well as the modeling and analysis
tools from P1. Using the analysis methods, the COP system could provide priority lists contain-
ing those infrastructure components that should be repaired first to maximize recovery. The
simulator enters the list to a simulated repair queue. This models the human-in-the-loop behav-
ior, where a human operator responds to faults using SA provided by the COP. The design is
modular, and various parameters or alternative analysis methods can be benchmarked with little
effort. Requirements were collected via expert interviews, consisting of personnel from different
stakeholders, such as several utility operators, mobile network operators and various emergency
service providers.
Results. The overall structure of the framework is presented in Figure 2 of P2. Three scenarios
were run using the simulation and COP tools, one describing the area as it existed in 2016, and
the second using predictions on how the area would be weatherproofed in 2030. The third sce-
nario was a hybrid scenario consisting both the storm and a targeted cyberattack against remote
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controllable medium voltage grid entities. The work was used as a part of the aforementioned
VN TEAS report [30], where the scenario results are presented in detail.

P3: Nationwide critical infrastructure monitoring using a common operating picture framework

Aim. The objective of this study was to present both a theoretical foundation and practical solu-
tions for creating a common operating picture system for monitoring large-scale infrastructures.
The study consisted, in part, of assessing our prior work in larger context, as well as present a
way to measure the SA using tests. The article was written at the end of a larger research project,
TEKES Digital Security of Critical Infrastructures (Disci).
Summary of contents. The article describes the Situational Awareness of Critical Infrastructure
and Networks (SACIN) framework, developed during the Disci project. The Joint Directors of
Laboratories (JDL) data fusion model was used as a basis structure for the system [95]. The ar-
ticle details the theoretical framework, data collection and fusion, analysis methods, software
architecture, and user interface design choices. The requirements for the system were based on
expert interviews and other work conducted earlier in the research project [34, 51, 84, 85, 103].
The article details how the prior work can be structured using the JDL model, and developed us-
ing a situational awareness -oriented design process [15]. As the ultimate goal of a COP system
is to provide SA, user tests are necessary in evaluating if there is an actual SA gained by using
the system. The testing was conducted in two iterations, the first being [84], and the second one
described here.
Method. Thearticle details a set of visualizationmethods, including interactive andnon-interactive
variants. The following procedure was used to test if an inexperienced user could be familiarized
with the system with little or no prior knowledge. A set of situational awareness measures were
collected by having subjects (𝑁 = 13) complete trials. The participants were male graduate stu-
dents attending a General Staff Officer course at the National Defence University (FIN). The test
consisted of two 20-minute scenarios, one with an interactive interface, and one with non-active
interface. The collected metrics, Situation Awareness Rating Technique (SART) [100], Situation
Awareness Global Assessment Technique (SAGAT) [13], and System Usability Scale (SUS) [3]
were compared. A detailed account of the statistical tests and results can be found in P3.
Results. Thetest results for SAdifferences between the two interface variantsweremixed. Overall,
the results support the conclusion that the system is able to increase operator SA. The article con-
cludes that the JDL model is applicable to this problem domain. As the artifacts were developed
using a situational awareness -oriented design process, the article concludes that the process can
be used to identify SA requirements and translate them into designs that provide SA. Mica Ends-
ley included the article in her meta-analysis on objective and subjective situation awareness [16].

P4: Blue Team Communication and Reporting for Enhancing Situational Awareness from White
Team Perspective in Cyber Security Exercises

Aim. Theobjective of this studywas to observe communication patterns during live cybersecurity
exercises. Live cybersecurity exercises are dynamic in nature, requiring the exercise control (often
known as the white team, WT) to have high levels of SA. The teams that practice defending cyber
environments (blue team, BT) react to injects, i.e. pre-prepared events in the cyber range. When
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observing an inject, e.g. malicious access to a system, BTs have to coordinate their response with
each other via in-game communication tools, such as e-mail. WTneeds to knowhowBTs respond
and communicate for steering and pacing the exercise to fulfill the desired learning goals. In
addition, after-action analysis of communication patterns may reveal critical flaws in real-life
procedures or responses, as BTs are generally tasked to use them in exercises as well.
Data. Cybersecurity exercises are an important way to train the operators of various critical in-
frastructure fields to respond complex cyber attacks. Finland’s National Cyber Security Exercise
(kansallinen kyberturvallisuusharjoitus, KYHA) is an annual live training exercise, held since
2013. In 2017, the 4-day exercise was conducted by using Realistic Global Cyber Environment
(RGCE), a cyber range developed by JAMK University of Applied Sciences Institute of Informa-
tion Technology [33]. The exercise was attended by more than 100 individuals, forming 7 coop-
erating BTs [57]. The teams were given various common methods of communication. The study
focused on e-mail communication, as it was preferred by the BTs. Due to confidentiality issues,
the team names and e-mail counts (𝑁 > 20000, including various attacks) could not be reported
in detail.
Method. The e-mail headers were extracted from in-game mail servers, and analyzed and visual-
ized using Cytoscape8. Patterns were analyzed using graphs, where nodes are BTs and the edges
show communication. Using timing information from e-mail headers, the communication pat-
terns could be replayed, and correlated with various injects.
Results. After-action analysis of communication patterns revealed that for some teams the sce-
nario was too light and did not provide adequate workload. HadWT been aware of this, the num-
ber or intensity of injects could have been adjusted. The patterns also revealed several omissions
in communication made by training teams. Both findings suggest that communication pattern
analysis is a beneficial tool for improving exercise outcomes. The paper also describes a custom
reporting software tool that was created to facilitate communication between exercise control and
training teams.

3.2 C2: Machine learning and network intrusion detection

P5: Anomaly-Based Network Intrusion Detection Using Wavelets and Adversarial Autoencoders

Aim. Theobjective of this study was to apply artificial intelligence and deep learning using ANNs
to network traffic for detecting TLS-encrypted C&C channels used by APT-malware. The context
for this workwas a research project conducted for the Scientific Advisory Board for Defence (MA-
TINE). The goal of the project was to research the applicability of artificial intelligence and deep
learning using neural networks to IDS problem domain. This creates an obvious delimitation, as
no other forms of detection were considered. Another delimitation was the choice of restricting
the research to encrypted TLS traffic, as modern malware C&C channels and legitimate traffic in
general use it. This delimitation was further warranted by the use of TLS in recent APT attacks.
Data. In 2018, the KYHA exercise was organized by The Ministry of Defence, The Security Com-
mittee, and JAMK University of Applied Sciences [58]. The exercise was conducted on The Re-
alistic Global Cyber Environment (RGCE) cyber range [33]. We received permission to use the

8https://cytoscape.org
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raw exercise data in this research. The KYHA18 dataset contains 729,998 TLS traffic flows, of
which 665 flows are malicious. Malicious flows were generated by Meterpreter9, Empire10, and
CobaltStrike11 during the exercise. Benign flows contain both human and auto-generated web
browsing traffic, such as authentication portal logins, automatic software updates, e-mail using
TLS, and other common benign activity. The suitability of the dataset for IDS development is
high due to human-generated traffic, although the scientific value is somewhat diminished by its
confidentiality, as it is not approved for public release.
Method. The general approach was to transform TLS sessions into time-series, consisting of
packet timing and size information. Haar wavelets [22] were used to convert the time-series into
an image, that is then processed by a model based on neural networks. The wavelet approach was
selected due to the non-stationary and non-linear nature of the input data. A neural network ar-
chitecture based on adversarial autoencoders (AAE) was developed, and it was adapted to process
decomposition results [52]. The AAE variant (TLS-AAE) created in the study was capable of clus-
tering the results based on a similarity measure. The trained TLS-AAE outputs an anomaly score,
quantifying how similar it thinks the input was with training data. The TLS-AAE was compared
to traditional autoencoder. Following the RSD methodology, a working pipeline to process live
network data was constructed to evaluate real-world suitability. The pipeline collects raw network
data, and processes it into form suitable for TLS-AAE.
Results. Based on the findings, the combination of wavelet decomposition and adversarial au-
toencoders can detect anomalies, i.e. a selection of APT-tool traffic, with relatively good true
positive rate (TPR 95%), although false positive rate (FPR 36%) remained characteristically ele-
vated. The model performed better in comparison to traditional autoencoders. Furthermore, the
requirement for real-time processing capability was satisfied. The methods detailed in the paper
were tested using the Cobalt Strike BEACON payload that was used as a part of the SUNBURST
attacks. The methods were successful in detecting the Cobalt Strike BEACON’s command and
control traffic.

P6: Network Anomaly Detection based on WaveNet

Aim. The objective of this study was to improve the results obtained in P5. The study focuses
on the same type of TLS-encrypted command and control traffic. In addition, the goal was to
include publicly available datasets to increase transparency, replication potential, and to allow
comparison to other studies.
Data. The Intrusion Detection Evaluation Dataset (CIC-IDS2017) created by the Canadian In-
stitute for Cybersecurity is one of the few modern publicly available labeled dataset containing
full packet captures [90]. The dataset is fairly extensive, containing 1,425,742 flows, of which
1,107,695 were labeled benign, and 318,047 non-benign. However, the dataset did not contain
virtually any TLS-based attacks. The benign 307,771 TLS flows could still be used. By generating
additional malicious traffic using Empire and Cobalt Strike in the RGCE [33] environment, this
dataset could be augmented to suit our evaluation purposes. The self-generated dataset included
15,124 benign flows (used to confirm that the environment is similar enough to CIC-IDS2017)

9https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
10https://www.powershellempire.com/
11https://www.cobaltstrike.com
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and 7,991 malicious flows. This dataset was created after the publication of paper P5, and was
used only in P6. In addition, the KYHA18 dataset, described above, was used.
Method. Instead of transforming the time-series, we decided to use an architecture that could
directly accommodate inputs of varying length, simplifying the process. Time-series were ex-
panded to include packet direction, time difference to next received packet, time difference to
next transmitted packet, and packet size. The final network included elements from WaveNet,
Parallel WaveNet, and PixelCNN++ [64, 65, 86]. This customization was needed, as the original
WaveNet did not have support for multiple features per time-step. As a bonus, this network archi-
tecture can provide insight onwhere in the packet timing sequence the anomaly occurs. Themain
hypothesis behind the selection was that the specialized temporal convolution in the WaveNet ar-
chitecture could also work well with time-series data from networks. The network was tested
using both KYHA18 and CIC-IDS2017 datasets. To allow comparison, the same datasets were
used to benchmark TLS-AAE from P5.
Results. The overall results indicate that this approach outperforms the one presented in P5;
TLS-AAE only scored 80% AUC whereas the new model got 91.61% AUC on the same KYHA18
dataset. Results of evaluation using CIC-IDS2017 dataset were markedly better, but this could be
attributable to the lesser complexity of the data in the set. We utilized the data processing pipeline
from the previous paper as the basis for a similar approach for assessing real-world performance
with this solution. The methods were also successful in detecting the Cobalt Strike BEACON
used in the SUNBURST attacks.

P7: Statistical Evaluation of Artificial Intelligence -Based Intrusion Detection System

Aim. Theobjective of this studywas to provide a “sanity-checking” framework for neural network
-based anomaly detection architectures. A neural network detecting anomalies must be sensitive
to variations in certain patterns that are likely to vary between legitimate traffic and malicious
C&C channels. In addition, the network should be resistant against fluctuations that are known
not to correlate with malicious traffic. Failure to detect the changes in these patterns is taken as
a sign that a neural network architecture cannot adequately measure useful characteristics of the
traffic.
Method. The test consists of defining a statistical distribution that can output time-series with
known statistical properties regarding correlations. The types of correlations are modeled after
features we have discovered likely altering between malicious and non-malicious traffic: packet
size, packet direction, and packet timing. The network from P6 was trained with time-series
samples drawn from the distribution. We then specify alteration to the original distribution, and
draw “anomalous” samples from it. These “anomalous” samples are mixed with samples from the
original to form ten sets where the percentage of “anomalies” is gradually increased from 10% to
100%. Each dataset is then evaluated using the network, and the mean anomaly score is recorded.
We specify three types of alterations that test the sensitivity of the network.
Results. Based on the test results, the network was both able to detect altered time-series, as
well as react in a stable fashion when the ratio between anomalous samples to normal samples is
increased. The results suggest that the network architecture is sensitive to intended alterations,
and the anomaly score behaves in a stable manner.

30



3.3 C3: Model fooling and medical images

P8: Model Fooling Attacks Against Medical Imaging: A Short Survey

Aim. The objective of this study was to conduct a short survey into model fooling attacks against
medical machine learning systems. The aim was to map what types of attacks, if any, were suc-
cessfully deployed against the models.
Method. This survey branched from the work the authors did for assessing the feasibility and
novelty of article P9. A non-systematic literature review approach was selected due to the small
pool of relevant publications.
Results. The survey revealed that the medical domain is relatively unexplored when it comes to
attacks against machine learning classifiers. Only a few papers mentioning attack types in the
medical context were found.

P9: One-pixel attack deceives automatic detection of breast cancer

Aim. Theobjective of this studywas to create a practical one-pixel attack against a state-of-the-art
machine learning classifier in a medical CAD setting. The goal of the attack was to construct a
one-pixel perturbation which would flip a high-confidence classification of an input image to the
other category, also with high confidence.
Data. Weused a dataset from amachine learning competition, known as the Tumor Proliferation
Assessment Challenge 2016 (TUPAC16) [54, 108]. The TUPAC16 dataset consists of 500 whole
slide lightmicroscopy images with known tumor proliferation scores, ground-truth labels, as well
as region-of-interest data for 148 images. The chosen state-of-the-art classifier was IBMCODAIT
Center forOpen-sourceData&AITechnologies’ breast cancermitosis detector [12]. Thedetector
was chosen, as it achieved a high ranking with the TUPAC16 challenge data, and was released as
open-source software.12
Method. The classifier is based on learning the morphological differences between healthy cells
and possibly neoplastic variants. To find an image that can be suitably perturbed, a method based
on differential evolution (DE), following the approach of Su et al. [96, 97], was used to alter candi-
date images, until the target perturbation was reached. The DEwas used to search for two images.
Starting with images containing abnormal mitosis, reach one where the classifier fails to detect
this with high confidence. And conversely, starting with images containing normal mitosis, reach
one where the classifier misclassifies it as abnormal with high confidence.
Results. Successful one-pixel attacks towards both directions were discovered (see paper for final
images). Paper P9 is, as far as the author can ascertain, the first publication presenting a one-pixel
attack against a machine learning model used in medical CAD classification.

12https://developer.ibm.com/technologies/artificial-intelligence/models/max-breast-cancer-mitosis-detector/
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4 DI SCUSS ION

The aim of this thesis was to consider critical infrastructure from several viewpoints, rather than
focus on one narrow section. This thesis and the included articles address critical infrastructure
from three different thematic categories: monitoring, defending, and exploitation.

Using design-science research methodology, the individual papers address specific problems
primarily via developing an artifact in association with relevant stakeholders. In the framework
of DSR, an instantiation of the artifact (e.g. a prototype, model, or method) demonstrates the
feasibility of the product and the design process [26, 47]. This is contingent on rigorous evaluation
of the design artifact, and a demonstration of its practical utility [70, 71]. This requirement is
reflected in the central research questions, repeated below:

1. From one of the viewpoints, what salient problems does critical infrastructure have?
2. What are the real-life requirements for a suitable solution?
3. How do we acquire raw data from real systems?
4. How can we construct a functional prototype artifact?
5. Does the constructed prototype achieve the required real-life effect or performance?

4.1 C1: Critical infrastructure and situational awareness

One of the central questions surrounding critical infrastructure is how to maintain situational
awareness over all the infrastructure sectors. Large-scale faults in CI are evolving situations,
where active measures are taken to mitigate and restore the capability. For example, during a
storm various field units are deployed to respond and prevent further damage. This presents
three challenges: i) what must the operators who monitor the infrastructure be able to see for
maintaining adequate SA for coordinating a response, ii) what components must be fixed first to
restore as much capability as possible, or what must be protected to prevent massive cascading
faults, and iii) how can this interaction be simulated and used as both a CI analysis tool, and as
an event generator for training exercises, testing, and development, in order to facilitate the first
two items.

Paper P1 investigated the suitability of a graph-based mathematical model for cascading-fault
analysis. In comparison to the methods presented in the literature, the model was purpose-built
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for large-scale real-time models with thousands of dependencies and assets [66]. The combina-
tion of finite-state transducers modeling infrastructure components, directed graph interdepen-
dency modeling, and centrality measure -based analysis functions provided promising results
when implemented as part of the simulator tool described in paper P2. Based on the data from
real systems, received partly from various stakeholders, the relatively simple model formalism
allowed constructing models based on a relatively small amount of information on the depen-
dencies and internal operation of various components. This proved to be a requirement, as more
detailed data was either proprietary, or unavailable. In addition, the model was deemed suitable
for use in a technical report, where the goal was to assess how the telecommunication network and
the electric grid would behave in different crises, and what impact foreseen future development
would have [30]. Based on the findings, the report concluded that a weather-resilient electricity
distribution network and battery backup systems are crucial in ensuring resiliency. Factors like
the ability to reach emergency services via cell phones were considered. The approach was fur-
ther refined by the author to include so-called entropy measures, that assign a time-dependent
probability distribution to each transducer state [34]. This allows the model to account for the
passage of time and its effects on analysis results, if no events concerning a particular component
are received, for example due to damaged data networks.

Paper P2 addresses the questions of CI simulation and analysis, while also considering how a
common operating picture visualization system would improve SA, and how the simulator could
be used to run scenarios for UX and user testing or training. Another goal for the paper was to
provide a peer-reviewed basis formethods used in [30]. Overall, the solution provided reasonable
results. Although direct comparison to a known gold-standard scenario was not possible, the
proposed solution shows potential. More stakeholders should be included in the future to gather
data spanning more CI sectors. Further validation could include comparison of simulator output
to real data, although many stakeholders indicated that their systems do not currently collect
suitable consolidated logs even from their own infrastructure components.

Paper P3 presented a scenario-based SA test using volunteer personnel (𝑁 = 13), which re-
turned mixed results. It is likely that the scenario was not challenging or detailed enough for
distinguishing the arguably small difference between the two UX variants under examination.
For this reason, the statistical results should be considered exploratory rather than confirmatory.
The COP system requires status data from source CI components, and while connecting these
components directly to the system would be the simplest approach, the risks of creating such a
network outweigh the benefits. Furthermore, the information sharing must be transparent and
fully controlled by the CI owner. An approach involving a middle-ware component called agent
was deployed, as well as a platform for CI stakeholders to self-register their assets into the system.
Based on expert interviews, the CI stakeholders were interested in sharing data between each
other only if the integration method was flexible and customizable. This again reflects one of the
design goals of P1, which can operate using extremely simplistic status data, and does not require
CI operators to share sensitive details of their system.

Results in P4 indicate that omissions in communication happen during incidents. Although
the study considers a cybersecurity exercise, the participants were from companies that run CI.
Deploying communication pattern analysis as a feature for a COP platform could improve after-
action analysis also in real-world context.
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Theoverall goal was to conduct research that had a clear practical use case inmind. In combina-
tion, the papers in C1 address the central research questions. Expert interviews and stakeholder
data were both crucial elements in constructing the requirements, as well as in evaluating the
feasibility and suitability of the resulting artifacts. The use of authentic data was paramount in
achieving sufficient validity in the complex CI environment. The obtained results have already
been applied to practical problems and decision making via [30]. Expert interviews and models
based on real data improve the validity of the results. However, the lack of data access prevents
running rigorous quantitative studies. Future work should focus on remedying this limitation,
ideally by coordinating the effort with several CI stakeholders. Comparing the results with those
in scientific literature remains difficult, as the approaches and goals are varied. Critical infras-
tructure has a major national element, and results obtained in other countries are not necessarily
universally applicable. As it stands, traditional research designs and assessments of validity can
rarely be deployed in research of this type.

4.2 C2: Machine learning and network intrusion detection

There are no free lunches in machine learning: prior assumptions are an inherent part of a work-
ing machine learning model [109, 110]. A central challenge in applying machine learning to
intrusion detection is to select a suitable way to transform inputs and use a method that sup-
ports detection of features that are known to contain relevant components. This requires that the
specifics of the problem domain must be carefully considered.

Most machine learning models and consequently also neural networks do not accept inputs of
varying length. However, TLS connections can be extremely short, or very long-lived. Two dif-
ferent approaches were taken to address this. In paper P5 Haar wavelet decomposition was used
to transform packet timing and size information to an image. After a brief exploratory analysis
on malware traffic, we concluded that the best approach was to aggregate the flows using a time
window. Paper P6 uses a neural network architecture capable of handling time-series of varying
length. The latter approach benefits from being more fine-grained, although it still had a fixed
maximum length.

The selection of training data wasmotivated by several factors, and evolved during the research
project. In addition to considering the malware traffic, care must be taken to consider also the
non-malicious traffic. If the non-malicious traffic is not varied or realistic enough, the validity
of detection results remains low. As with all anomaly detection methods, data fusion and en-
richment would drastically improve the performance in comparison of using just one detection
method.

Selecting the type and architecture for the neural network has important consequences for
time-series data. Papers P5 and P6 take different approach to this problem. The goal, however,
remains the same: leverage a regularization method to prevent overfitting by exploiting what is
known about the input data and the phenomenon in general.

The wavelet decomposition and adversarial autoencoder -based approach in paper P5 used a
continuous distribution for regularization. This approach yielded promising results, although the
false positive rate remained high. Due to the complex nature of the network architecture, it proved
to be challenging to track down the source for this, although we theorize that the dataset included
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numerous non-malicious outliers. The use of wavelet decomposition to provide additional reg-
ularization proved to be novel, but capable of representing the nature of TLS flows. Overall, the
architecture derived mixed results, despite the autoencoder paradigm’s apparent applicability to
the problem domain.

The enhanced time-series and multi-feature WaveNet approach in paper P6 used causal con-
volution for regularization. This approach was markedly different from the one taken in P5. The
decision to use an architecture that could directly accommodate inputs of varying length simpli-
fied the process, and removed one confounding factor.

The overall focus of the research was on assessing the suitability of neural networks for network
anomaly detection. APT actors form the most insidious threat towards CI. In addition, advanced
anomaly detection toolsmay require extra labor and expertise to be used effectively, limiting them
mostly to protecting high-value targets such as CI. Focusing on the APT malware is therefore
the priority choice. The benefits of encryption far outweighs the downsides of not being able
to inspect traffic in transit.13 As encryption is now basically a hard requirement for Internet-
worthy remote management, IDS solutions must work under this constraint. As both methods
require a significant amount of preprocessing, the taskmust be automated in a sufficiently scalable
fashion. The data pipeline was constructed using open-source components, including Suricata
IDS, TensorFlow framework, Kafka message bus, and Spark framework. This approach supports
parallelization and scaling, and is capable of processing mirrored traffic in real time. In addition,
the trained ANN models operate well within real-time constraints, and multiple instances of the
same model can be deployed to increase parallelism. Considering production deployments is
necessary even at the research stage, as it is an essential part of the viability assessment of the
artifacts. Using well-known open-source frameworks increases compatibility and credibility.

IDS development rests on the availability of quality data. There are obvious practical and legal
limitations preventing data collection from production networks.14 While there are ways to au-
tomatically generate traffic, the interactions between users and cloud-enabled products are too
complex to simulate. By using traffic from live cybersecurity exercises, we can capture full flows
generated over four days by over a hundred people, as was the case in [58]. Independently creat-
ing traffic at this scale is unattainable to even large research groups, suggesting that cyber ranges
like the RGCE [33] are instrumental in obtaining realistic raw data. As the attacks in live exer-
cises are complex and directed towards systems that are in use, validity is further increased in
comparison to test setups where a dummy target is created separately just to record the attack.
Future research should focus on how to further take advantage of large-scale exercises, by e.g.
increasing the variety of desktop programs and web services available to the users. Expanding
the selection to contain entertainment, social media, and mobile applications will result in more
varied traffic, as even the most demanding exercise contains low-intensity periods, and users are
naturally drawn to these applications.

In general, there are numerous threats to validity in any research [89]. Although these are
all too rarely mentioned in ANN studies, they play an extremely important role in this field as
well.15 Considering construct validity, the trend is to talk about “malicious” and “benign” data
13There are ways to allow middleboxes to decrypt and re-encrypt traffic, but these solutions are phased out as modern

countermeasures against malicious interception prevent their function.
14Some of these limitations would also apply to IDSs in production.
15Failure to consider validity will result in what is elsewhere affectionately known as p-hacking [21].
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points. These labels are assigned depending on if the data was generated by some malware or via
harmless means such as web browsing. When talking about the actual measurements, the raw
capture, or time-series constructed from TLS-encrypted flows, it is apparent that the measure
does not fully reflect the construct of “maliciousness”, as it is not directly tied to any effect of
such sort. Conceivably, two identical packets or time-series could be labeled as both malicious
and benign, depending on how the packet was created. Considering this inherent limitation, the
time-series -based approach has a fair face-validity, in comparison to forms of measurements
containing packet or payload -level details.16 This assessment is based on what is know about
APT malware and their C&C channels, as well as the the tactics, techniques and procedures of
APT groups (see Chapter 2.2.1). Consequently, this transforms the meaning of “malicious” into
“APT-like behavior” for the purposes of this research.

Broadly speaking, the goal of IDS ANN is to transform the input, and provide a score quan-
tifying how “malicious” the input was. This transformation is learned primarily from the input
data, but it is also influenced by the selected neural network architecture, and training procedures.
Ideally, these are perfectly tailored to prevent the network from learning anything that is not di-
rectly related to the construct presented above. In practice, the network is selected based on what
is considered to be the salient properties of the measurement, and general processing style that
supports the construct, again based on what is known about APT actors. Although papers P5
and P6 take a different approach, both have properties that make them sensitive to types of vari-
ations presumed to be related to the construct above; the first having automatic clustering, and
the second a causal convolution.

The statistical properties of the network data are complex. When combined with the fact that
neural networks are hard to analyze, the test results, although promising, do not necessarily indi-
cate that the networks are learning anything related to the construct above. This may happen, for
example, if the input data still has non-construct -related differences between classes, and despite
regularization the ANNs exploited it. To assess internal validity, a statistical testing method was
devised (P7). The test consisted of defining a statistical distribution that can output a time-series
with known statistical properties regarding correlations. The types of correlations are modeled
after those we theorize are related to the construct above. A properly working IDS ANN should
then be able to learn these correlations, while being insensitive to other forms of alterations. We
then altered the input data by changing key correlations theorized to relate to the construct above,
and observed the ANN output to see how sensitive the output is to thesemodifications. Although
time constraints prevented running extensive test batteries and creating more sophisticated tests,
we conclude that this procedure, in part, confirms that the network behaves as desired.

Thoroughly assessing external validity and generalizability would require additional datasets.
In the studies, external validity is enhanced by using real or realistic environments and data: the
generated traffic is what malware would generate on the systems that were its intended targets.
This is also true for benign software. Considering ecological validity, recent APT campaigns,
such as the one with SUNBURST, have deployed malware that would have been detected by the
methods presented. This suggests that research utilizing open-source and commercial hacking
tools is valuable against some of the TTPs used by APT groups. Continuous development would

16For a particular attack, these measures may have exceptional validity. In general, however, modern attacks have the
payload obscured by encryption, and the attack is unrelated to low-level packet properties.
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require continuous assessment of emerging APT tools. Automated procedures could be utilized
to analyze packet captures as they are published on platforms like VirusTotal.17

A visualization tool was created to help development, and for assessing how the anomaly score
reporting could be visualized in UI.18 In addition, as a part of a report toMATINE, statements on
the merits of project results were received from the Ministry of Defence, and the Finnish Defence
Forces C5 Agency’s Cyber Division. Both statements consider the results promising, with the
FDFC5A recommending further research [37].

Perhaps surprisingly, AI practitioners sometimes face similar problems as psychologists do,
when selecting research designs, choosing methods, and interpreting the results [91].19 As usual
in science, we must proceed with caution and carefully consider why we ended up with the re-
sult we did. As it stands, comparison to scientific literature remains challenging, as there are no
commonly accepted testing and validation procedures, or benchmark datasets for modern APT
threats. Moreover, using statistical methods for validity assessments is not common practice. In
summary, however, all central research questions were explored in the context of this research
theme, although to fully assess the prototype artifact, further research would be needed in collab-
oration with a CI network stakeholder.

4.3 C3: Model fooling and medical images

The third viewpoint of this thesis considers attacks against critical infrastructure. In particular,
the goal was to find a novel exploit against emerging systems that are currently candidates forwide
deployment in a relatively short time-frame. Studying them has the potential to impact the secu-
rity of these deployments by informing the stakeholders about plausible ways to abuse this new
infrastructure, and allowing them to create safeguards against malicious use. After consideration,
machine learning in a medical setting was selected as target CI due to novelty and potential im-
pact. This was followed by a brief survey into the current state of attacks against machine learning
classifiers in medicine (P8), which revealed that this area is largely unexplored.

The results obtained in paper P9 were not surprising, as similar results have been obtained in
other problem domains [68, 105]. The practicality of the exploit is underscored by executing it
via HTTP-API of a containerized application, a typical way modern Internet-facing web appli-
cations are deployed to cloud infrastructure. Consequently, this attack could be directed against
an exposed API endpoint of a production application. Considering validity, a successful attack
demonstrates that the hypothesis of the existence of such flaws was warranted. This further sug-
gests that in general these flaws may prove to be common.

In comparison to previous themes, the produced artifact is considerably simpler. However,
it demonstrates that a particular class of attack is feasible and straightforward to execute in the
medical context as well. Although there was no direct collaboration with stakeholders during the
studies, the system under attack was trained with real pathological data. Furthermore, the team
responsible for the TUPAC16 challenge generously granted us access to the full dataset, including

17https://www.virustotal.com
18https://www.defmin.fi/files/4752/1245_MATINE-Tutkimusseminaari-JAMK.pdf
19Consequently, by learning from their successes and mistakes, AI as a field of science may yet avoid repeating the

same statistical errors the field of psychology made in the beginning of the last century.

37



the ground truth. This collaboration allowed us to fully use the real data. As the literature suggests
that vulnerabilities like these are likely to appear in any machine learning model of this type, the
result does not indicate any particular flaw in this particular model or IBM CODAIT’s general
approach. Rather, it suggests that finding similar flaws in any suchmodel is likely. Future research
should focus on finding a suitable standardized test battery of perturbation types that could be
run against any model. In line with previous themes, collaboration with commercial vendors of
medical machine learning analysis software would yield results on the vulnerability of production
systems, as well as solutions for hardening them against attacks of this nature. In conclusion,
however, all central research questions were addressed in context of this research theme, albeit
briefly.

4.4 Conclusion

This thesis considered three perspectives. Together, the studies illustrate how vast the field of CI is,
and how diverse the problems are. However, there is a common theme to be seen here: the use of
authentic data was paramount in achieving sufficient validity, and cooperation with stakeholders
provided the needed insight on what the requirements and viable solutions really are.

Constructing a prototype artifact was successful in all three areas. Through that lens, the prob-
lems became tractable. The prototypes proved invaluable in demonstrating the solutions to the
stakeholders, considering and evaluating the viability of the chosen approach, and just plainly
seeing the solution really working. Although not without flaws, approach using the DSR method-
ology and prototype artifacts proved to be innovative, productive, and comprehensive. Continu-
ous and strong national and international cooperation with our friends in industry, government,
and academia is necessary for tackling the challenges of CI, as the whole is indeed greater than
the sum of its parts. Just like critical infrastructure is.
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YHTEENVETO (SUMMARY IN F INNISH)

Kriittinen infrastruktuuri muodostaa modernin yhteiskunnan kivijalan. Tähän infrastruktuuriin
kohdistuu kuitenkinmonia uhkia, joista tärkeimpiä ovat luonnonvoimat, ihmisten virheet ja ereh-
dykset sekä tahallinen haitanteko, kuten kyberhyökkäykset.

Väitöskirjassa on kolme näkökulmaa. Ensimmäinen niistä käsittelee kriittisen infrastruktuu-
rin matemaattista mallintamista, keskinäisriippuvuuksia ja tilannetietoisuutta. Osatutkimuksissa
tarkasteltiin vikaantumisketjujen mallinnusta, sekä ennusteiden tuottamista mallintamisen avul-
la. Tutkimustuloksia hyödynnettiin Valtioneuvoston kanslialle tuotetussa selvitysraportissa, jossa
arvioitiin erilasten vikatilanteiden, kuten myrskyjen ja kyberhyökkäysten vaikutusta sähkö- ja te-
leverkon toimintaan. Lisäksi raportissa arvioitiin sähköverkon maakaapeloinnin vaikutusta ver-
kon sietokykyyn ja kestävyyteen.

Toinen näkökulma käsittelee kyberhyökkäyksiä. Osatutkimuksissa hyökkäyksiä pyrittiin ha-
vainnoimaan tietoverkoista koneoppimisen ja neuroverkkojen avulla. Tutkimuksissa keskityttiin
kehittyneiden nk. APT-toimijoiden hyökkäyksien paljastamiseen, sekä salattujen hattaohjelma-
komentokanavien tunnistamiseen. Tällaisiin hyökkäyksiin lukeutuu muun muassa Solar Winds
-tapauksessa käytetyt haittaohjelmat.

Väitöskirjan kolmannes näkökulma käsitelee kriittisen infrastruktuurin haavoittuvuuksia. Osa-
tutkimukset käsittelevät terveydenhuollossa yhä yleistyviä automatisoituja diagnoosinaputyöka-
luja. Tutkimuksissa kehitettiin keino erheyttää neuroverkkoa, jota käytetään apuna syövän diag-
nosoinnissa. Kehitetyssä hyökkäyksessä solunäytteestä otettua kuvaa muokataan vain yhden ku-
vapisteen osalta siten, että neuroverkko tulkitsee terveen kudoksen virheellisesti sairaaksi tai toi-
sin päin.

Osatutkimusten tuloksissa korostuu yhteistyönmerkitys akateemisenmaailman, viranomaista-
hojen ja infrastruktuurin omistavien yritysten ja yhteisöjen välillä. Yhteistyön kautta tutkimuk-
sessa voidaan vastata relevantteihin kysymyksiin käyttäen reaalimaailman dataa ja asiantunte-
musta.
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Abstract—Critical infrastructure (CI) systems form an inter-
dependent network where failures in one system may quickly
affect the state of other linked systems. Real-time modelling
and analysis of CI systems gives valuable time-critical insight on
the situational status during incidents and standard operation.
Obtaining real-time quantitative measurements about the state of
CI systems is necessary for situational awareness (SA) purposes.
In this paper we present a general framework for real-time
critical infrastructure modelling and analysis using discrete event
systems (DES) on graphs. Our model augments standard graph-
theoretic analysis with elements from automata theory to achieve
model which captures interdependencies in CI. The framework
was tested on various graphs with differing sizes and degree
distributions. The resulting framework was implemented, and
benchmarks indicate that it is suitable for real-time SA analysis.

I. INTRODUCTION

Critical infrastructure forms a complex system where faults

may quickly affect other systems and cause cascading failure

chains. Real-time awareness of CI status and performance is a

necessity for both everyday use, as well as for efficient incident

response and disaster mitigation.

The research described in this paper is part of a larger

project, called Digital Security of Critical Infrastructures

(DiSCI). DiSCI project aims to find solutions for estimating

and minimising threats facing the CI at national level. During

the DiSCI project, the Situational Awareness of Critical In-

frastructure and Networks (SACIN) framework was developed

for evaluate CI monitoring concepts [1]. In the framework, the

JDL data fusion model [2] was used for CI system integration.

The research described in this paper covers the JDL levels 2

and 3 in the SACIN framework. Levels 2 and 3 are responsible

for situation analysis and future risk estimation [1].

This paper continues with a summary of related work on

section II. The model and its sub-parts are defined in section

III. Section IV discusses the proposed analysis methods and

risk estimation. The framework benchmarks are presented

in section V. Finally, the conclusions and future work are

discussed in section VI.

II. RELATED WORK

Modelling and analysis of critical infrastructure is a notable

field of contemporary research. It encompasses methods gath-

ered from various different fields of science, including system

dynamics, economic theory, and network theory, among oth-

ers. [3]. Graphs have been previously used to model CI and

its interdependencies. One notable graph-based approaches

include the multi-graph system proposed by Svensen et al.

[4], [5]. Graph centrality measures have also been studied in

the context of critical infrastructure analysis [6].

Many of the current CI models do not especially address

real-time requirements. In this paper, we present a model and

and analysis framework where the real-time requirements have

been taken into account. Our proposed model does not rely on

extensive knowledge on the internal operation of CI systems or

material flows and is therefore able to function with relatively

modest amount of data.

III. MODELLING CRITICAL INFRASTRUCTURE

Critical infrastructure consists of multiple interconnected

systems. It is shaped by both the CI actors as well as the

dependencies between them [7]. Modelling these systems

as graphs captures these interdependencies in a way which

enables quantitative analysis with existing and well established

mathematical tools.

Critical infrastructure systems and actors are usually mon-

itored closely for malfunctions and other deviations in their

operational status. The monitoring is usually done by some

automated system that is supervised by a human operator.

When the operational state of some CI actor decreases we

expect that it sends a notification to the dependent actors, and

possibly to a centralised system. This fact, and the knowledge

about dependency relations allows us to model CI as a set of

communicating systems. Not all critical infrastructure systems

are monitored. We can, however, indirectly observe their

possible state by monitoring systems connected to them.

A. Critical Infrastructure Graph

We construct a graph that models the dependencies

found between CI actors. The model assumes at least
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partial knowledge of dependencies between CI systems.

Definition 1 (Critical infrastructure dependency graph):
A directed graph G = (V,E), where each vertex v ∈ V
represents CI actor and each edge1 e ∈ E a dependency

relation between two actors. The graph is loop-free (no edges

connecting vertex to itself), but assumed cyclic and discon-

nected.

In critical infrastructure system, events represent a change

of capability in health of one CI actor. Events have indirect

and sometimes delayed effect on all dependent systems. The

delay is modelled as critical time, which determines how

long a system can function without the actors which provide

resources or services before its own capability or health drops.

For example, some GSM base stations can operate three hours

with battery power if power line goes down [8]. On the other

hand, some systems such as diesel generators may start to

offer a service (electricity) if they detect or sense that the

main provider is malfunctioning.

Combining the concept of critical time and communication

on state change allows modelling a critical infrastructure actors

from a viewpoint that focuses on how systems react with

respect to systems they rely on. The events emitted by an actor

are propagated via paths in the dependency graph. Events may

trigger delayed effects on systems, which model e.g. resource

depletion.

B. Actor State Machines

Each vertex v ∈ V is augmented with a state machine,

which indicates the operational status of the corresponding CI

actor. This models the health and capability states and transi-

tions between them. The states should reflect clear reductions

to ability to provide services outside.

We use automata-based approach for its intuitiveness, sim-

plicity, and performance. Critical infrastructure is modelled as

a set of interacting automata, where states change according

to the output of other automata. More specifically, we base

the model on Mealy machines, where the output alphabet

represents outgoing message [9].

The Actor State Machine (ASM) is also augmented

with support for delayed transitions, which model

the critical time. This is achieved by assigning timed

transitions to ordinary transitions, which are triggered if

no other transition has taken place before the countdown.

Definition 2 (Actor state machine): The actor state machine

is 8-tuple ASM = (Q,Σi,Σo, T, O,D, S, q0), where

Q is a finite set of (capability) states;

Σi is a finite set of input events (alphabet);

Σo is a finite set of output events (alphabet);

T : Q× Σi → Q is the transition function;

O : Q× Σi → Σo is the output function;

D : Q × Σi → Q × R
+ is a delayed state transition

function;

1In this paper we use arc, edge, and dependency interchangeably.

S : Q → [0, 1] is a status function.

q0 is the initial state.

The injective function S maps each state Q to some distinct

real value between 0 and 1, which represents the relative

”badness” of the state compared to other states. The badness

is not formally defined and depends on the system an ASM

attempts to model. The mapping is used to construct a state

ordering which ensures that the model selects the worst-case

scenario when conflicting input is entered. This can occur

if, for example, two timed events trigger at the same time.

This function is also used later in the analysis section. The

value zero is the most undesirable state and one indicates full

functionality.

A simple non-trivial ASM could contain three states Q =
{OK, PRE-FAIL, FAIL}, shortened OK, PF and F. State OK

means that the actor is capable of offering resources to

the dependent systems. PRE-FAIL indicates that the actor

is functioning correctly and able to deliver resources to its

dependants, but one or more of its own dependencies are

not functional, indicating possible upcoming failure in short

timespan. FAIL means that the actor is incapable of producing

necessary resources to sustain the actors which depend on it.

This simple automaton is illustrated in figure 1. The set of

input and output events of this simple actor are Σ = {OK,

PRE-FAIL, FAIL}, which allows chaining when Σi is Σo for

some other automata. A simple automaton might also contain

one timed transition, such as (OK,PF ) → (F, 10), if the

actor will transition from pre-fail to failed state after ten time

units.

OKstart

PFF

PF/PF

OK/OK

F/F

PF/PF

OK/OK

F/F

Fig. 1. Example actor state machine transitions and events. Edges indicate
input / output, respectively.

C. Critical Infrastructure System

We model the CI system as a set of actor state machines

that communicate with each other via events. These

actors correspond to the nodes in critical infrastructure

dependency graph, that may communicate via unidirectional

first-in first-out channels, which correspond to the

edges of the dependency graph, including direction.
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Definition 3 (Critical infrastructure system): Critical in-

frastructure system is a 3-tuple CIS = (G,Σ, q0) where

G = (V,E) is a critical infrastructure dependency graph;

V = {ASM1,ASM2, . . . ,ASMn} is a finite set of

vertices;

E ⊆ V × V is a finite set of directed edges (communi-

cation channels);

ΣCIS = Σo1 ∪ Σo2 ∪ . . . ∪ Σon is a finite set of events

formed by union over all ASM input alphabets;

This system forms a discrete event system, where the state

space is discrete and can be only altered via asynchronous

discrete events. Events in this system may arise at any time.

Any event σ ∈ ΣCIS may cause a state transition in some

ASM. This state transition is propagated to dependant ACMs

(representing CI actors) which, in turn, will cause them to

change state.

IV. ANALYSIS

The goal of the analysis is to assess the situation and health

of the CI as a whole, and to quantify the impact of each

discrete event on the infrastructure at its current state. Since

the dependencies are modelled as a graph, we can use existing

centrality measures to rank actors using their topological place

in the infrastructure graph.

Traditional centrality measures typically consider the graphs

topology in order to calculate nodes centrality. This is not

enough in settings where nodes have changing attributes that

affect the whole network. These effects may be permanent or

temporary, and the timespan may vary. Static, pre-calculated

centrality measures must be augmented with real-time data to

respond changes in the network. Often the relative or absolute

importance of a node cannot be calculated from a purely

topological perspective.

Calculating centrality measures for all nodes is usually com-

putationally expensive and can not be done in real time, except

for very small graphs. The time complexity of many centrality

measures is O(|V ||E|), number of vertices times number of

edges [10]. By calculating the centrality (e.g betweenness

centrality) for all nodes during initialisation phase, it’s possible

to use faster algorithms to scale the centrality in real-time, and

avoiding costly centrality measure recalculations.

A. Updating the Actor State Machines

Updating actor state machines by traversing the graph can be

done in O(|V |+ |E|) time complexity by expanding breadth-

first traversal, as shown in algorithm 1. Because critical

infrastructure dependency graphs are, in most cases, relatively

sparse, and therefore |E| is typically much smaller than |V |2.

The update algorithm is run every time a new event arrives,

or any ASM changes state due to a delayed transition. The

source s is the node where some event σ causes a state

change. The output event e ∈ Σo is available for child

nodes via .symbol attribute. The sym[] is a list containing

all symbols (events) that parent nodes have produced. If a

node has two direct parents, it will get two possibly different

symbols. This conflict is resolved by UpdateLevel. The

function tries every symbol in sym[] and sets the ASM to

a state that has lowest output given by the status function S.

The nodes store the old value of function S, as it is used later

in analysis. The update algorithm considers only symbols that

are available from parents at the time when one search depth

level has been traversed. This means that back edges to upper

levels are not used. Since most of the events do not propagate

instantly through many layers of systems, this approach gives

a large advantage over methods based on iterating the graph

until the ASMs converge. It should be noted that events can

still travel the graph in cycles, in some cases indefinitely, if

they trigger timed transitions on their child nodes.

Algorithm 1: ASM update algorithm

input : A graph G and source vertex s
Result: Updated graph G
begin

depth← 0;
for each vertex v ∈ G do

color[v] ← WHITE;
d[v] ← ∞ ;
sym[] ← NIL;

color[s] ← GREY;
d[s] ← 0 ;
Q← ∅;
P← ∅;
ENQUEUE(Q, s);
ENQUEUE(P, s);
while Q �= ∅ do

u ← DEQUEUE(Q);
for each v ∈ child[u] do

if (color[v] = WHITE) then
color[v] ← GREY;
d[v] ← d[u]+1;
ENQUEUE(Q, v);
if d[v] > depth then

UpdateLevel();
depth+1;

v.sym[] ← u.symbol;
ENQUEUE(P, v);

else if (color[v] = GREY) then
if d[u] < d[v] then

v.sym[] ← u.getSymbol;

color[u] ← BLACK;

UpdateLevel();

Function UpdateLevel

begin
while P �= ∅ do

u ← DEQUEUE(P );
test each s ∈ u.sym[] and set ASMu to state with
lowest value given by function S;

B. Calculating Event Impact and Actor risk.

The impact of an event on the CI system depends on

what systems it affects. We measure this effect by using
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Downstream Weighted Impact Sum (DWIS). DWIS attempts

to quantify the impact with pre-calculated centrality value and

status value function assigned to each ASM.

DWIS is defined as

DWIS(v) =
∑

Ai∈T(v)

ΔS(Ai) · Ci (1)

where v is the starting node, T (v) is the set of all nodes

reachable from v, ΔS(Ai) is the difference of ASM status

value function before and after the state transition, and Ci

is the (normalised) centrality of the node i. DWIS can be

calculated in O(|V | + |E|), since it requires only one pass

through each affected node.

Each actor typically requires that all of the systems it

relies on are operational at least with minimal capacity. If

the systems suffer a reduction in capability or performance, it

poses a threat for any system that requires those services or

resources, because a low value of S might indicate that a total

failure happens soon. We measure this threat with Upstream
Risk (UR). UR attempts to quantify how much the performance

of all the systems that are required by some specific actor is

reduced.

UR is defined as

UR(v) =
S1 + S2 + . . .+ Sn

N
,S1...n ∈ T ᵀ(v) (2)

Where S is the ASM status value function, T ᵀ(v) is the set

of all nodes reachable from v in the transpose (reversed edge

directions) of CI graph, and N is the number of members in

the set. The transpose can be calculated during initialisation

phase.

V. ASSESSING THE PERFORMANCE USING SIMULATED

DATA

The proposed modelling and analysis tools were tested using

different graphs generated with R using igraph package [11],

[12]. The model and analysis framework was implemented

using Java with GraphStream library [13].

Three types of random graphs were considered: totally ran-

dom graphs generated with the Erdős-Rényi model, scale-free

graphs generated with the Barabási-Albert model and small-

world graphs generated with the Watts-Strogatz model. All

graphs were generated in four different sizes, with node counts

being 10, 100, 1000, and 10000. The Erdős-Rényi random

graphs has a connection probability p = 0.5. The scale-free

graphs were created with linear preferential attachment and

zero appeal of one, giving the probability that a new vertex

is connected to an old vertex i the probability P (i) ∼ ki + 1,

where ki is the out-degree of i. It should be noted that

our graphs are the transpose of the original Barabási-Albert.

The small-world graphs were first created as one-dimensional

lattice graphs with every 2-degree neighbourhood fully con-

nected. Then the edges were rewired with probability p = 0.05
and arbitrarily directed. The transposes of all graphs were

also calculated. The small-world and scale-free graph types

TABLE I
RUNNING TIME IN MILLISECONDS

node count 10 100 1000 10000
random 231 1168 111915 N/A

small-world 175 285 816 12655
scale-free 138 171 561 5238

were chosen, because they are known to approximate real CI

systems. [14]

Lastly, a graph depicting the power grid of Åland Island

was constructed using the topographic database offered by

the National Land Survey of Finland [15]. The graph has

812 nodes and 832 edges, with average degree distribution

of 2.049. The map of the area is shown in Figure 3 and the

resulting graph is displayed in Figure 2.

The benchmarks were run by randomly selecting a node

from the graph. The node was fed a seed event that causes

a state transition in all connected ASMs. The graph was

updated and both DWIS and UR were calculated. This was

repeated 1000 times for each graph and graph sizes. The

results of generated graphs are illustrated on table I and

edge counts on table II. Åland island benchmark took 1726

milliseconds. As expected, running time increases when edge

counts grow larger. The software was unable to process totally

random graph with 10000 nodes. The benchmarks were run

on standard business laptop with Intel(R) Core(TM) i5-2520M

CPU and 8GB of ram.

Fig. 2. Graph constructed from Åland island power grid
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Fig. 3. Åland island power grid on map

TABLE II
NUMBER OF EDGES IN BENCHMARK GRAPHS

node count 10 100 1000 10000
random 50 4977 499378 N/A

small-world 20 200 2000 20000
scale-free 9 99 999 9999

Even though the interdependent nature of critical infras-

tructure is well established in literature, the empirical findings

suggest that large scale failures that permeate many CI sectors

are rare [16]. In real world single incidents do not usually

cause failures that affect most of the network in a fashion

these tests do. Therefore, in practice, the framework should

perform faster when used with real-world data.

VI. CONCLUSIONS

In this paper we have presented a novel approach for CI

modelling and analysis by combining graphs and customised

finite state machines to produce a discrete event system.

Analysis tools capable of real time operation were developed

for assessing the possibility for implementing the framework

as a part of CI monitoring solution. The framework was tested

using several networks with varying size and topology. The

results suggest that the framework is fast enough for real-time

analysis.

A. Future Work

Our ongoing research focuses on both improving the event

impact estimation and creating a more suitable centrality

measures for critical infrastructure graphs. A centrality mea-

sure that uses domain-specific and tweakable parameters will

deliver better results than purely topological approach. In

the future the prospect of using approximations of centrality

measures should be evaluated, as well as the possibility for

on-the-fly topology changes.

The prospects of using real data and networks should be

evaluated. For this purpose, a large-scale dataset(s) that span

across multiple critical infrastructure sectors and covers both

normal operation as well as faults of different type needs to

be assembled.

REFERENCES
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Abstract—In this paper, we present a software framework for
modeling, simulation, and analysis of critical infrastructure (CI).
Our concept fuses together a state-of-the-art telecommunications
and electricity distribution system simulator (CI simulator),
and a Common Operating Picture visualization system (COP
system). The development process included expert interviews,
which were conducted to define a comprehensive set of end-user
requirements from different critical infrastructure stakeholders
benefitting from a common situational picture. Using the obtained
results, we enhanced the CI simulator to model more precisely
interdependencies in communication and electricity distribution
networks in normal and abnormal situations. In addition, the
simulator was extended with near future prediction capabilities
using the current situation and networks’ operating conditions.
The simulator also provides a real-time data stream to the COP
system, whose core analysis and visualization functions were
specified according to the end-user requirements collected from
the interviews.

I. INTRODUCTION

Modern society is becoming more and more digitalized and

we are more dependent on communications and electricity in

our daily life [1]. Electricity distribution and communications

networks are two core critical infrastructure networks that form

the base for the operation of modern society. Therefore, it is

highly important to ensure that those networks stay operational

in all situations, and that the recovery of the networks is

as fast as possible. Co-operation and information sharing

among the stakeholders is essential for offering reliable crit-

ical infrastructure services, fast recovery, and fault detection

and mitigation. The high level situational awareness (SA) is

mutually important for the operators of the critical networks,

authorities, service providers, and end-users to understand

what the provided information means and how to use it

for proactive and reactive recovery operations in catastrophe

situations.

A. Related Work

In our previous papers [2]–[5], we have presented our

interdependency analysis process and a corresponding tool

called NPT (Network Planning Tool) developed for redun-

dancy analysis of commercial 2G/3G/4G networks in rural

and urban areas. The tool was developed with real storm

data from severe storms that have hit Southern and Northern

parts of Finland in order to understand interdependencies

between electricity distribution and mobile networks. In those

papers, we were merely focusing on mobile network recovery

techniques that could be used for improving resiliency of

remote control of MV (medium voltage) grid entities.

In this paper, we extend the scope to assess impacts of a

hybrid catastrophe to energy and communication networks as

well as to citizens in present and future scenarios. The novelty

is to connect a critical infrastructure network simulator with

common operating picture system and be able to create near

future forecasts.

II. RESEARCH PROCESS

The main objectives were a) to create a large-scale sim-

ulation model including both networks at infrastructure and

operational levels, b) to utilize field measurements for model

construction, c) to provide a reliable and accurate snapshot of

critical networks for different stakeholders about current and

forthcoming situations, and d) to support decision-making of

critical infrastructure stakeholders by presenting information

in a more comprehensive ways [6].

Fig. 1 illustrates a scenario-based process that was used

to achieve those goals. During the COP (Common Operating

Picture) requirement phase, a large-scale and realistic threat

scenario was specified at the target area. Based on recent

public events, our catastrophe scenario included both natural

(storm) and man-made (cyber-attack) threats. In our scenario,

a severe storm damages electricity distribution and mobile

networks entities. After the peak of the storm, a cyber-attack is

attempted to cause damage in network entities and to disrupt

communication and energy services.

The scenario was used to analyze technical impact, recovery,

and information requirements for situational picture during

and after the catastrophe when visibility and control over

infrastructure components is reduced. In the context of the

scenario, expert interviews spanning various organizations
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were conducted in order to gather information about inter-

actions between different stakeholders, system requirements

for situational picture as well as details about stakeholders’

procedures, and technical methods used in large-scale disrup-

tions (Section III). In addition, a review of future grid and

communication technologies was conducted in order to model

electricity distribution and communication networks also in

the year 2030. Based on the interviews, technology reviews,

and existing scientific knowledge on SA-design [7], a set of

requirements for COP systems was defined.

Fig. 1. The research process: Based on the set scenario, requirements
are gathered and combined with existing design principles for situational
awareness applications. Simulation scenarios are then validated and tested.
This process creates the final simulation model.

During the COP design and implementation stage, a de-

tailed infrastructure model of the target area was created

(Section IV). The model includes components from electricity

distribution network, mobile networks of multiple operators,

and buildings including identified critical facilities such as

hospitals and water treatment plants. Required simulation and

analysis algorithms were developed to cover the present and

future scenarios.

The COP testing and validation stage included correcting

errors in CI models, and adjusting algorithms and parameters

to enable more realistic simulations. The testing and validation

was performed with two models, one reflecting the current

(2016) infrastructure, and the other based on the prediction

for year 2030 where e.g. underground power lines are more

prevalent, mobile networks are more converged, and network

automation allows more fine-grained error diagnostics and

control.

The assessment of simulation results included a feedback

loop between simulation model development, analysis of sim-

ulation results, and COP system development stages, as shown

in Fig. 1. Real storm data from the target area was used to

analyze the effects on the critical infrastructure in 2016 and

2030 scenarios. Examples of simulation results are presented

in Section VI.

III. EXPERT INTERVIEWS

The conducted expert interviews covered different criti-

cal infrastructure stakeholders such as two major distribu-

tion system operators (DSOs), two mobile network operators

(MNOs), and rescue service providers (rescue department,

fire department and police). The interviewed persons were

selected so that they were involved in the decision-making

or field operations in the analyzed area. The interviews were

conducted to assess the current state-of-the-art and the future

insight of (C)OP systems in Finland. The interviewed persons

were also asked what type of information they require or

would like to obtain from other stakeholders as well as

what data they are willing to share with their partners or

customers. The interviews indicated that the most important

requirements are the sharing of meaningful and up-to-date

information, automated priority assignments, and accurate near

future forecasts. In Finland, critical infrastructure is operated

mainly by private or semi-private stakeholders, so a common

data sharing platform is needed for efficient data sharing in

catastrophe situations and for encouraging openness between

CI actors. Based on the interviews, a set of requirements

and use cases for both the CI simulator as well as the COP

concept system were derived. In Table I, examples of general

requirements for COP system are presented.

IV. INFRASTRUCTURE SIMULATION

A detailed model of a coastal area of Finland was created.

The area is located roughly 50 km west from Helsinki. The

critical infrastructure models for years 2016 and 2030 were

created and parametrized based on the interviews, technology

reviews, open data sources, and field measurements. The

critical infrastructure model included the structure of electric-

ity distribution network with overhead and ground cablings,

mobile communication networks of several operators, build-

ings with residential information, and 3D terrain model with

clutter information. The model was designed to conform to

the previously presented requirements, and it included the

main CI components and their interdependencies. In addition

to the dependency model, history data from a large-scale

storm was used to model the fault and recovery events in the

electricity distribution network. Fig. 2 illustrates how various

data sources are used in the CI simulator and what outputs

are available for the COP system and for post-processing. The

state of the critical infrastructure is affected by fault events

generated from scenario parameters. Based on the cascading

faults, the simulator updates the networks’ state and makes

near future forecasts indicating what is going to happen in

the next 2, 4 or 6 hours if nothing is done. This information

is sent to COP system, which analyzes and visualizes the

incoming data and returns priority lists indicating the most
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TABLE I
GENERAL REQUIREMENTS

No. Requirement

1 Technical format is not important. It’s essential, that the information is managed, analyzed, and aids decision making process.
2 Producing data for COP system is a joint effort. Every actor independently answers the production and validity of their respective fields.
3 Information must be preprocessed, analyzed, and understandable. It must have relevance for both sender and recipients.
4 Information should be presented clearly and visually.
5 Unnecessary technical details should be omitted. Information must be useful for experts from other fields.
6 COP system should be dynamic, and customisable to each infrastructure sector / user. Both high and low -level visualizations should be available.
7 System should have a map display, where multiple layers can be visualized separately and together. Clicking should provide extended details.
8 Data transfer should be automatic. Manual transfer causes unnecessary errors.
9 Terms and classifications should be consistent.

10 The use of a COP system should be included into the organization’s processes such that it doesn’t cause extra burden during incidents.
11 Organizations should be able to choose what kind of information they require and send.
12 COP system should be able to function using mobile networks and be portable.
13 COP system should enable information exchange between organizations and organizational levels.
14 COP system should be suitable for official and governmental use.
15 Information sharing should be possible between official and governmental organizations.
16 For maximal effectiveness, all infrastructure sectors should be represented in the COP system.
17 Information shared through COP system should contain a tag of original sender organization.
18 Not all information needs to be relevant to every user.
19 COP system should have capability for generating predictions for future development.
20 COP system should be capable of creating new information by combining incoming data.
21 COP system should dynamically prioritize systems and targets. These estimates should be manually adjustable.
22 Temporal dimension should be represented, containing information on general evolution of the situation (history and future).
23 Repair estimates should be available, and contain reason for fault.
24 System should be able to answer what, where, and why an incident has happened and what is the impact and repair estimate.

critical entities to be repaired in order to restrict the disaster

area or to speed up the recovery.

V. ANALYSIS AND VISUALISATION

COP system is responsible for situation analysis and vi-

sualization. A set of analysis methods were implemented to

be tested with the developed CI simulator and data sets. The

model utilizes a graph-based approach for interdependency

modelling and analysis. It estimates the impact of each infras-

tructure event, and suggests which devices should be repaired

to gain largest increase in operational capability. The analysis

framework utilized a set of methods previously published

in [8]. The algorithms utilize directed graphs, where nodes

represent CI components and edges dependency relations be-

tween them. Each node contains a weight factor that indicates

its criticality. Criticality is based on several variables; how

many components depend on a particular node, what are the

priorities of the dependent components, and how redundant

the topology is.

1) A general status display for each infrastructure sector,

where a traffic-light-style ring is used to give a fast

overlook on key subsections of each respective CI sector.

Each ring is customizable for user’s demands.

2) A list of events that the COP system has received is

displayed, as well as their estimated impact on the whole

system.

3) Another list is used to display what components should

be prioritized (i.e. those that should be repaired first), as

suggested by the analysis component.

4) A map display shows where the components are physi-

cally located, as well as their current operational status.

The map display also shows coverage of both mobile

networks (per operator, or coverage type), as well as areas

without electricity. It shows the priority of buildings, according

to their usage type, such that e.g. hospitals and emergency

service targets are of higher priority than ordinary residential

buildings.

A strict demarcation between the CI simulator and analysis

component was drawn to build a distributed CI/COP system

such that the analysis component considers fault events gen-

erated by the simulator as if they were originated from actual

critical infrastructure systems. The output of the simulator

is sent as JSON (JavaScript Object Notation) based status

messages to the prototype COP system. In the same manner,

suggestions for recovery actions generated by the analysis al-

gorithms are sent back to the CI simulator as JSON messages.

This interaction models Human-in-the-loop behavior, where a

decision made by a human operator assigns a repair priority to

a particular target. The simulator can then mark components

to be repaired based on prioritized suggestions provided by

the COP system.

VI. SIMULATION RESULTS

Connecting the COP system to the CI simulator pro-

vides possibilities to analyze modified infrastructures, alter-

native technologies, new critical infrastructure services, and

future scenarios. Furthermore, simulations allow to study

the impact of e.g., weather-proof energy distribution, energy

self-sufficient households, mobile base station batteries, re-

mote control of energy substations, end-users’ and services’

telecommunication requirements, or co-operation of mobile

operators in various kinds of fault situations. Such changes

have impact on interdependent infrastructures as well as on
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Fig. 2. Simulation structure and connections to COP system.

infrastructure users’ ability to operate. As the use of remote

operations and dependence on mobile services like real-time

video transmission increase, telecommunications become more

and more critical. With the proposed system, advanced fea-

tures of COP can be integrated to infrastructure level events.

For example, the CI simulator predicts in 2030 scenarios

future mobile network coverage by taking into account the

remaining battery lifetime (assuming no generators provided).

The prediction of the forthcoming coverage can be shown

at the CI or COP level, which offers proactive recovery

capabilities to the current systems that experts are using for

situational picture. Also, the infrastructure component repairs

can be prioritized at the COP level and then fed back to

the critical infrastructure management systems, thus providing

higher level analysis covering several infrastructures contrary

to infrastructures that prioritize their repairs independently of

each other. This prioritization can be done in real-time during

the disturbance.

Fig. 3 illustrates a summary of a storm scenario in 2016

(dashed) and 2030 (solid) electricity and telecommunication

infrastructures as the storm progresses (x-axis). In 2030,

the majority of overhead cables are replaced by weather-

proof underground cables reducing the impact of the storm

on electricity distribution. This can be observed from the

percentage of operational secondary substations in 2030 (solid

blue). Also, mobile base stations (red) benefit from secured

electricity supply. The percentage of households with elec-

tricity (orange) in 2030 is high, because most people live in

cities or towns where weather-proof underground cables are

deployed. Although many base stations are down, emergency

calls (purple) work throughout the storm. During a catastrophe

situation, such pictures summarize temporal development over

multiple infrastructure sectors.

The proposed CI/COP system supports decision-making

during the disturbance by producing views at different levels
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Fig. 3. Impact of storm on energy distribution, mobile communications and
households as a function of time. Simulation scenarios of years 2016 and
2030.

and purposes. As an example of overviews, Fig. 4 and Fig. 5

are presented. Fig. 4 shows an overall picture of outages

in electricity distribution network and their impacts on the

area residents in year 2016 scenario. Buildings with and

without electricity are illustrated using green and grey colors,

respectively. The picture indicates that the impact of the

storm is severe in rural areas. Only the urban regions, where

underground cables are deployed, can maintain electricity

distribution.

Fig. 5 shows a hybrid catastrophe situation in 2030 where

a storm and cyber-attack have hit the electricity distribu-

tion grid and the cascading impacts can also be seen in

telecommunication networks. The graph presents the number

of non-operational base stations (brown), base stations without
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Fig. 4. Buildings with (green) and without (grey) electricity during a storm.

electricity (blue) and base stations on backup batteries (red).

The profile shows two peaks, where the first one is caused

by the storm and the latter one by the cyber-attack. The

importance of base station batteries is seen clearly.
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Fig. 5. Impact of storm and cyber-attack on mobile base stations in 2030
scenario.

Fig. 6 shows an example of more detailed view where

situational picture is formed by combining data from sev-

eral infrastructure networks and other sources. Buildings and

electricity distribution network are shown on a map. Critical

sites are presented with priority colors from green to red

(the most critical) from the rescue services’ viewpoint. This

criticality changes dynamically according to the situation. The

beige color shows areas without electricity, which means that

generators are likely needed at the critical sites in these areas.

The lilac color shows the areas where data communication is

not possible. Either a dedicated terminal is needed or rescue

operations must to be coordinated by using voice calls only.

The figure shows also the buildings where residents without

electricity and data cannot be notified by any online services

VII. CONCLUSIONS

The outcome of our work was an interconnected CI/COP

system, which enabled us to assess interdependencies in criti-

cal infrastructure networks in realistic large-scale catastrophes.

Additionally, the simulator was designed to be used as a fault

and recovery event generator for COP systems, which allows

the evaluation of different visualization techniques, analysis

methods, and operating protocols in a controlled environment.

Our emphasis was to provide meaningful information for

decision-makers and to support proactive recovery actions with

the aid of near future forecasts and dynamically changing

prioritization lists. The implemented prototype helped us to

assess existing and forthcoming interconnected critical infras-

tructure networks from decision-makers’ viewpoint and to

discover ways to speed up recovery or limit faulted areas with

adequate resources. It is common that extensive repairs might
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Fig. 6. Regions without electricity (beige) and data services (lilac) in a situation awareness view.

be required in rural areas before normal operational capability

can be restored.

The presented framework forms a two-level interactive tool,

which combines the operative network level with a high-level

decision-making layer. This solution extends the traditional

simulation and analysis approaches in two ways: firstly, by

providing estimations of future outcomes, and secondly by

combining network automation and human decision-making

processes for a holistic assessment of resiliency of inter-

connected critical infrastructures. In addition, this framework

allows rapid prototyping of COP solutions, such as analysis

methods, user interface concepts, and execution of compre-

hensive user tests in a controlled and repeatable environment.

It can also be used to simulate, how CI failures behave during

large-scale incidents, such as storms or cyber-attacks, or any

combination of these.
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a b s t r a c t 

This paper describes the efforts involved in designing a common operating picture system 

for monitoring large-scale critical infrastructures. The design leverages the Joint Directors 

of Laboratories (JDL) data fusion model to enable the integration of different critical infras- 

tructure systems with their dependency relations. The resulting Situational Awareness of 

Critical Infrastructure and Networks (SACIN) framework offers a platform that provides a 

common operating picture of a critical infrastructure. A generic data collection component 

customized to each source system generates events and facilitates JDL level 0 integration. 

An analysis component collects events and data to produce meaningful information about 

the current state and future impact estimates in accordance with JDL levels 1 to 3. A bro- 

kered architecture supports level 4 control by various components and a JDL level 5 user in- 

terface is offered via a web application. Interviews of infrastructure subject matter experts 

were conducted to obtain the situational awareness requirements. By applying key situa- 

tional awareness oriented design principles to the situational awareness requirements, a 

user interface was created for organizing information based on operator situational aware- 

ness needs and supporting key cognitive mechanisms that transform data into high levels 

of situational awareness. Situational awareness measures were used to assess operator per- 

formance during critical infrastructure tasks – a “freeze-probe” recall approach (Situational 

Awareness Global Assessment Technique (SAGAT)), a post-trial subjective rating approach 

(Situational Awareness Rating Technique (SART)) and the System Usability Scale (SUS). The 

results indicate that the supply of attentional resources (SART supply) and overall SAGAT 

score best predict the performance levels of operators. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Modern society relies on critical infrastructure systems that 
provide essential services. In order to effectively respond to 
failures and attacks on critical infrastructure at the national 

∗ Corresponding author. 
E-mail address: samir.puuska@mil.fi (S. Puuska). 

scale, it is vital to have situational awareness (SA) of all the 
infrastructure sectors. 

The Situational Awareness of Critical Infrastructure and 

Networks (SACIN) framework described in this paper was 
developed for monitoring a diverse critical infrastructure 
environment. The SACIN framework incorporates data col- 
lection, fusion and integration steps that refine individual 
event streams into an operating picture. SACIN gathers in- 
formation from various industrial systems via specific agent- 

https://doi.org/10.1016/j.ijcip.2017.11.005 
1874-5482/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1 – High-level view of the SACIN information loop. 

Fig. 2 – Goal hierarchy for a critical infrastructure 
monitoring operator [38] . 

based client-server interactions, processes and analyzes the 
gathered data, and displays the results in the form of a com- 
mon operating picture (COP) [43] . 

Fig. 1 shows a high-level information loop corresponding to 
an operator controlling a critical infrastructure system such 

as a local electric grid. The source system is integrated with 

SACIN using a customizable middleware component called an 

agent. The agent processes messages and delivers essential 
information to SACIN. The SACIN analysis component uses 
events from multiple sources to create a model of the current 
state of the infrastructure. The operator is then presented with 

a view of the state of the critical infrastructure that supports 
comprehensive situational awareness. 

This paper describes the efforts involved in designing the 
SACIN common operating picture system for large-scale crit- 
ical infrastructure monitoring. It defines the system require- 
ments and describes the main concepts and system architec- 
ture. The implementation is presented with a special focus 
on operator usability and performance evaluation. The Situa- 
tional Awareness Global Assessment Technique (SAGAT), Sit- 
uational Awareness Rating Technique (SART) and System Us- 
ability Scale (SUS) are applied and compared in order to evalu- 
ate operator performance of critical infrastructure monitoring 
tasks. 

2. Related work 

Critical infrastructure protection has become a major research 

topic in the past decade. As a result, a number of critical in- 
frastructure modeling and simulation techniques have been 

developed. Ouyang [31] has conducted an extensive review 

of critical infrastructure modeling techniques. Examples of 
critical infrastructure modeling and simulation methods are 
presented in [5,6,10,19,28,29] . The research covers approaches 
that engage diverse perspectives such as ontological model- 
ing, mathematical approaches, interdependencies and critical 
infrastructure services. 

Despite the large body of research in critical infrastruc- 
ture modeling and analysis, most of the approaches focus on 

small-scale systems with detailed views of the systems and 

are not designed for situational awareness purposes. Such 

a perspective is inadequate for providing a common operat- 
ing picture of a large and complex critical infrastructure. The 
model presented in this paper attempts to address this issue 
by considering the ability to model a large number of systems. 
Since a common operating picture system has to operate in 

real time, the model must take into account the computa- 
tional complexity of the update and analysis procedures, an 

aspect that is largely overlooked in the research literature. 

Table 1 – Distinctive information blocks used in the final situational awareness requirements [38] . 

Situational awareness level Incident System or service 

Level 1: Perception Short description Location 
Time of occurrence Purpose 
Location Contact information 

Resource requirements 

Level 2: Comprehension Magnitude Operational status 
Reason for incident Security status 
Relation to others Priority and criticality 
Whom to contact System and service dependencies 
Reliability 

Level 3: Projection Duration (or estimation) Sufficiency of critical resources 
Trend 
Effect 
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Table 2 – Situational awareness requirements for a critical infrastructure monitoring operator [38] . 

Always relevant Ongoing incidents 
Current services and systems in the environment 
Affected services and systems 

1.1 Identify incidents Priority order of incidents 
Possible future incidents 

1.2 Monitor resource Validity of incidents 
management Service and system changes due to incidents 

2. Analyze incidents and Contact information of relevant decision-makers 
communicate internally Possible future incidents 

Results from monitoring tasks 

3.1 Determine to whom Communication agreements 
the information should be Match between incidents and organizations 
communicated Types of contacts 

Need for further collaboration 

3.2 Determine the incidents Communication agreements 
worth mentioning Match between incidents and organizations 

Priority order of incidents 
Possible future incidents 

An agent-based solution for interconnecting entities is a 
promising option for implementing the monitoring task [9] . 
In this work, an agent-based modeling and simulation frame- 
work is used to capture critical infrastructure interdependen- 
cies. Rinaldi et al. [36] have presented a taxonomy of critical 
infrastructure interdependencies that covers the types of in- 
terdependencies, infrastructure environments, coupling and 

response behavior, infrastructure characteristics, types of fail- 
ures and states of operations. 

Altwood et al. [2] have presented a critical infrastructure 
response framework for smart cities. They recognize the im- 
portance of the Internet of Things (IoT) as an information 

source; sensor-actuator networks create the base network and 

information pertaining to a smart city is aggregated. Alcaraz 
and Lopez [1] have proposed a wide-area situational aware- 
ness framework for enabling situational awareness and threat 
analysis in distributed systems with a low human presence. 
Kopylec et al. [24] have developed a visualization engine for 
cascading incidents and expressing relations between physi- 
cal and cyber entities. Most complex critical infrastructure en- 
vironments incorporate multiple actors and teams; thus, the 
principal goal is to provide adequate situational awareness. 
Koskinen-Kannisto [25] has discussed the challenges to imple- 
menting effective situational awareness in collaborative envi- 
ronments with significant information sharing. 

In the context of service-oriented architectures [18] , some 
techniques have focused on multi-sector solutions that deal 
with situational awareness in adaptive coordination and ser- 
vice specifications [49,50] . Bagheri and Ghorbani [5] have pre- 
sented a service-oriented architecture for critical infrastruc- 
tures where services are placed in a dynamic layered model. 
Tolone et al. [44] have developed an agent-based approach 

within a brokered architecture to handle the daunting task of 
identifying vulnerabilities in interdependent infrastructures. 
Liu and Xi [28] have presented a technique based on cop- 
ula theory that provides an algorithmic solution; they also 
consider physical, cyber, geographical and logical dependen- 
cies. Wang et al. [47] view critical infrastructures as com- 

Fig. 3 – JDL data fusion model (adapted from [20,41] ). 

plex systems with self-organizing characteristics. Zimmer- 
man [51] and Zimmerman and Restrepo [52] have proposed 

an approach for cataloging critical dependencies for analyz- 
ing cascading effects in infrastructure sectors and reducing 
the negative consequences. 

Jones and Endsley [21] have compared several measures 
(i.e., the SAGAT real-time probe measure, SART measure and 

NASA TLX workload measure) to evaluate the performance 
of an air sovereignty team in low- and high-workload tasks 
using the North American Aerospace Defense (NORAD) Re- 
gional Sector Air Operations Center simulator. Endsley and 

colleagues [16] have also compared the SAGAT and SART mea- 
sures when assessing fighter pilot situational awareness. In 

other work, Endsley and colleagues [17] have compared the 
sensitivity and validity of SAGAT and SART when evaluating 
the situational awareness of air traffic controllers. 

3. Information requirements for situational 
awareness 

Situational awareness oriented design provides a means 
to develop optimized systems and software for situational 
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Fig. 4 – High-level representation of the main system 

components. 

awareness and decision making applications [7,12,14,15] . Sit- 
uational awareness oriented design is a three-phase method- 
ology, which starts with task analysis to identify operator in- 
formation requirements, followed by a design phase that cre- 
ates a user-centered system based on the collected require- 
ments. Finally, the system is tested using the target user group 

with the help of situational awareness measurement ques- 
tionnaires and procedures. This process is repeated until the 
system meets the stipulated requirements. Situational aware- 
ness based design ensures that key information needed for 
situational awareness is passed to the complete operating pic- 
ture system and is presented to operators in a manner that 
enhances their situational awareness measurably. 

3.1. Situational awareness requirements for critical 
infrastructure applications 

The situational awareness oriented design process was per- 
formed in two cycles, where the results from interviews and 

user tests were used to refine all the layers of the SACIN frame- 
work. Goal-directed task analysis, an essential part of the sit- 
uational awareness oriented design process, was conducted 

during the research project. Goal-directed task analysis is a 
method for identifying the pieces of information that opera- 
tors need to perform their tasks. It involves a series of semi- 
structured interviews [12] of subject matter experts who have 
extensive knowledge of operator tasks to create the basis for 

the situational awareness requirements. Goal-directed task 
analysis is used to discover the information that operators 
need to achieve the goals defined in the goal hierarchy [12] . 

Seven infrastructure sectors were covered in the research: 
(i)Power; (ii) water; (iii) information and telecommunications; 
(iv) banking and finance; (v) transportation; (vi) chemicals; and 

(vii) emergency services. The results of the interviews were 
used to create a goal hierarchy. The hierarchy comprises one 
major goal and three sub-goals, two of which have minor goals 
as shown in Fig. 2 . The major goal for a critical infrastructure 
monitoring operator is to increase the situational awareness 
of the critical infrastructure. This high-level goal is divided 

into three main goals: (i) Monitor the environment; (ii) analyze 
incidents and communicate internally; and (iii) communicate 
externally [38] . 

After constructing the goal hierarchy and analyzing the 
interview data further, two distinctive blocks of information 

were identified. Table 1 describes the blocks; every mention 

of incidents and services or systems in the final requirements 
can be replaced with these blocks. The first type is incident- 
related information. This includes all the information that 
should be gathered during an incident. An incident in this 
case refers to a situation in which some fault, natural event 
or deliberate attack causes a warning or a fault in the tar- 
get system [45] . The other type of distinctive information is 
system-related, which refers to system status, its purpose and 

service dependencies. Although the blocks contain the infor- 
mation needed for decision making, not everything needs to 
be present at all times. 

Table 2 presents the complete situational awareness re- 
quirements. The requirements for the monitoring goal include 
ongoing incidents, services and systems affected by the inci- 
dents, their priority and possible future incidents. These re- 
quirements were all verified in the interviews: an operator 
needs to be aware of all the incidents and service status in 

the monitored environment in order to coordinate repairs and 

communicate the situation efficiently. 
The situational awareness requirements for the second 

main goal include the elements needed in the monitoring 
task. However, an operator is also responsible for communi- 
cating with other individuals to create a common and shared 

situational awareness. The operator may also analyze an inci- 
dent with other individuals. 

The requirements related to external communications 
share similarities with the other two main goals. How- 
ever, in the case of external communications, an operator 
must determine more carefully to whom he should forward 

Table 3 – Key architectural components and their purpose. 

Agent Middleware component responsible for collecting data from the source systems; also 
handles connections to the SACIN back-end. 

Registrar Database component responsible for storing information about agents and the 
relationships between agents. 

Analyzer Component responsible for analyzing the impact of an event on the entire critical 
infrastructure system; includes a model of the critical infrastructure. 

View Component responsible for visualizing the critical infrastructure and the results 
provided by the analysis component. 
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Fig. 5 – System architecture with the JDL data fusion model. 

Fig. 6 – Display layout. 

information; this requires the operator to know the commu- 
nication agreements between organizations and be able to 
evaluate the types of contacts. Additionally, an operator may 
have to evaluate if further collaboration is required between 

organizations. 

4. System architecture 

The system architecture was designed to satisfy the require- 
ments presented in the previous section. In order to con- 
struct an efficient architecture for the framework, the Joint Di- 
rectors of Laboratories (JDL) data fusion model, a conceptual 
model suitable for information collection and data process- 
ing was selected. The model provides a conceptual framework 
for combining procedures and algorithms that refine sensor 
data in order to improve situational awareness. The original 
JDL sensor fusion model was presented in 1988 and enhanced 

in 1999 [41] . It has five levels, each of which refines and com- 
bines the available data from the previous levels to support 
advanced analyses and predictions. Fig. 3 shows the five lev- 
els of the JDL data fusion model. 

Data fusion is often understood as a means to improve the 
prediction quality of ordinary physical sensors. As such, it is 
also suitable for cyber-physical sensors [20] , which collect in- 
formation from diverse sources that may not be accurate or 
reliable. Indeed, the notions of sensor fusion and noisy data 
form a natural analog. The sensors in a cyber-physical setting 
could, for example, be intrusion detection systems, or they 
could be host health monitoring products or network flow an- 
alyzers, or systems that log virtually any process. The outputs 
of these sensors can be combined and refined using, for ex- 
ample, vulnerability databases such as MITRE’s Common Vul- 
nerabilities and Exposures for further analyses. 

The sensors in Fig. 3 correspond to various critical infras- 
tructure information sources, such as intrusion detection sys- 
tems, supervisory control and data acquisition (SCADA) sys- 
tems and log files. The level 0 fusion process converts raw 

input data into a common format. Level 1 combines the pre- 
processed data and identifies objects such as systems, attacks 
and hardware malfunctions. The level 2 fusion process creates 
a system-level perspective from the current situation whereas 
the level 3 process predicts the future state of the system. The 
level 4 process manages the sensors and allows fusion process 
refinement. Level 5 serves as the interface between a human 

operator and the system. 
The main components in the system architecture are the 

agents, registrar, analyzer and view. The components, in ac- 
cordance with the JDL model, handle data collection, database 
management, analysis and user-interface-related tasks. Addi- 
tionally, a common message bus is utilized to provide cross- 
component communications. The communications channel, 
which connects all the components to each other, can store 
events and messages independently. 

Fig. 4 presents a high-level representation of the main 

system components and their relationships to each another. 
Table 3 lists the components and their purpose. Each com- 
ponent defines an interface that other components are able 
to use via the message bus. The registrar component re- 
quires a database in order to manage dependency information 

and user accounts. The analyzer component also requires a 
database for data fusion. 

4.1. JDL levels 0 and 1: Data collection 

Critical infrastructure source systems produce data and logs 
that must be translated into events for the common operating 
picture system. A system-specific component in JDL level 0 is 
required to collect, filter and transmit information from the 
source system to the common operating picture system. Since 
raw data cannot usually be collected and integrated due to vol- 
ume, legal or security constraints, processing and integration 

are required for data collection at an early level. For example, 
log files for audit purposes may contain confidential user de- 
tails and cannot be sent directly to an external system. Not 
only does this pose a security threat, but it is also not possi- 
ble to configure the common operating picture system with 

knowledge about the minute details of every system that has 
to be integrated. 

An agent-based client-server architecture, in which each 

source system is integrated via custom middleware/software, 
is a suitable solution for JDL level 0 integration. An agent col- 
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Fig. 7 – Overview display. 

lects information from a source system and generates events 
that can be processed at a central location. Source system ex- 
perts assist in customizing agents for their systems. Thus, di- 
verse critical infrastructure source systems can be integrated 

without losing the system-specific knowledge provided by 
source system experts and without requiring full data capture. 

SACIN agents comprise middleware/software and library 
components that facilitate centralized event logging and anal- 
ysis. They enable critical infrastructure operators to interface 
source systems with the SACIN server. While a SACIN agent 
provides an interface for reporting and logging, it does not 
gather information about or analyze out-of-the-box events. 
Domain experts are required to articulate the logic for extract- 
ing essential data from their systems and interfacing with the 
agents. This approach enables the domain experts to define 
exactly what is sent to the SACIN system. 

A SACIN agent is operated via a plug-in component (e.g., 
a vendor-specific intrusion detection log parser) that handles 

the interfacing between the source system and agent inter- 
face. Ideally, the plug-in should be developed by a domain 

expert who understands when the system is operating nor- 
mally. The plug-in should be tailored to gather information 

from the system and analyze the current situation. When an 

anomaly is detected, the plug-in uses the interface provided 

by the agent to send a message to SACIN. 
An agent generates events based on the data it receives 

from a source system. The events contain mandatory and op- 
tional key-value pairs that permit future extensions. Proper 
timing of the events is extremely important in a real-time sit- 
uational awareness system. Because the system time could be 
inaccurate or incorrectly set, the SACIN agent incorporates a 
time service for external clock synchronization. The current 
implementation uses a Network Time Protocol (NTP) service 
to determine the time difference between a target system and 

the server. The time synchronization process runs as a sep- 
arate thread every five minutes. This relatively short update 
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Fig. 8 – Status circle presented in the overview display. 

interval is expected to mitigate fluctuation problems arising 
from unstable real-time clocks or sudden changes to the sys- 
tem time. 

The agent middleware is written in Java and the Spring 
Framework [32] . The Apache Camel integration frame- 
work [4] and Apache Active MQ [3] implement communi- 
cations with the SACIN server. The program is distributed 

as a single Java archive (JAR) that contains all the required 

dependencies. 
The system architecture was tested using real-world data 

from intrusion detection system logs and a SCADA system 

snapshot. Custom agents for intrusion detection and SCADA 

systems enable the system to process event and dependency 

data from diverse sources to create a common operating pic- 
ture and, thus, support situational awareness [26] . 

4.2. JDL levels 2 and 3: Modeling and analysis 

The core task of the common operating picture system is 
to analyze agent-generated event streams and construct the 
common operating picture. In order to satisfy the require- 
ments for JDL levels 2 and 3, an appropriate model of a critical 
infrastructure that is capable of handling a large amount of 
information is necessary. Due to the complexity and size of a 
critical infrastructure, the model must be highly specific to sit- 
uational awareness tasks and only essential knowledge about 
the operational status of the systems should be considered. 
For these reasons, it was decided to omit all domain-specific 
details (e.g., electricity flows and other technical aspects) in 

order to simplify the model and make it suitable for national- 
scale deployment – running a heavy, detailed model at the na- 
tional scale is computationally prohibitive. 

The model requirements were outlined as described in 

Section 3 . The model must present interdependencies, provide 
impact estimates of incoming events and deliver estimates 
of future status. The following list details the model require- 
ments as defined by Puuska [33] : 

• The location of each system must be provided; this could 

be specified in terms of geographical coordinates or via 
some other practical approach. 

Fig. 9 – Filtering option. 



international journal of critical infrastructure protection 20 (2018) 28–47 35 

• Every system must have an operational status; each sys- 
tem must have a tag that conveys its current or best known 

status. 
• Each system must have a criticality or priority value; a met- 

ric should be used to rank systems based on their relative 
importance in the critical infrastructure. 

• Dependencies between systems must be, at least partially, 
known; if the proper operation of a system is dependent on 

some other system, then this relationship must be mod- 
eled. 

• The sufficiency of critical resources must be modeled; if a 
resource (e.g., backup power) is stored in a system, then the 
depletion process must be modeled. 

The following information is needed to estimate the criti- 
cal infrastructure status and future developments [33] : 

• The location of each event must be specified; this could be 
specified in terms of geographical coordinates or via some 
other practical approach. 

• Magnitudes must be quantifiable at the system and critical 
infrastructure levels. 

• Relations between incidents and systems must be speci- 
fied. 

• Durations must be quantifiable at the system and critical 
infrastructure levels. 

A dependency-heavy formalism was selected to handle the 
interconnectedness of critical infrastructures. Critical infras- 
tructures can be modeled as a dependency graph, where the 
nodes represent critical infrastructure entities and the edges 
represent dependency relationships between them. The oper- 
ational status of an entity was modeled by combining graphs 
and finite state machines. Each node is associated with a finite 
state machine, which represents the state (health, capability, 
etc.) of the entity in question. Interested readers are referred 

to [34] for details about this approach. 
As time passes, it is increasingly likely that the current sta- 

tus of an entity would not reflect the latest sensor reading; 
moreover, the uncertainty about the state of the sensor in- 
creases. The probabilities of previously observed or known be- 
havior of the entity can be used to make predictions about the 
current state. A probability distribution may obtained by ob- 
serving the operation of the sensor over a long period of time 
or it could be specified by the sensor operator [22,23] . 

The proposed model was tested using real-world data, 
which included a dataset gathered during a large-scale storm. 
The telecommunications network and electric grid of the 
coastal area of Finland were modeled using the graph model. 
The results indicated that the model satisfies the stipulated 

requirements [33] . 

4.3. JDL level 4: Message transport, feedback and 
database components 

The JDL data fusion model shown in Fig. 3 requires all the 
data fusion processes to work together. The inter-component 
communications channel is a key feature that facilitates op- 
eration in a distributed environment and in a national-scale 

implementation. As shown in Fig. 4 , a suitable communica- 
tions channel can be implemented via a common message 
bus. The common message bus must handle large numbers 
of messages from multiple sources and route messages to one 
or more destinations. Additionally, it must support distributed 

deployment across multiple servers for scalability and fault 
tolerance. Fig. 5 shows the architecture of the common op- 
erating picture system, which adheres to the JDL model and 

accommodates all the data fusion sub-processes. 
A brokered architecture is a suitable solution for the dis- 

tributed environment. Brokering can be viewed as a cloud 

service in which a group of servers collectively offer mes- 
sage transfer services. Services such as broadcasting and bi- 
directional messaging can be offered with little overhead. 
Additionally, because most of the communications between 

components are of the “fire-and-forget” type, the architecture 
readily scales to handle all the communications between di- 
verse system components. 

The main task of the registrar ( Fig. 4 ) is to register agents 
with the common operating picture system. The registrar also 
provides user authentication and authorization services for 
the entire system. Source system experts register agents and 

define their dependencies. When an agent is registered, it is 
assigned a unique identifier in order to associate events with 

the source system. The registrar also provides a means for sys- 
tem experts to enter and maintain their agent information (in- 
cluding dependencies) in other systems. 

4.4. JDL level 5: View and user interface 

A view component handles data presentation via a user inter- 
face. It is a key part of the chain that transforms raw data to 
human operator situational awareness. 

The SACIN user interface is implemented via a web appli- 
cation that executes on computers in a control center, com- 
puter workstations, laptops or mobile phones. Access via a 
web browser makes the user interface customizable and elim- 
inates the need for software to be installed on an end-user 
device. 

The implemented user interface provides four distinct 
views, each displaying event data received from the SACIN 

analysis component. Fig. 6 shows the display layout. The lay- 
out presents the most relevant information in the middle por- 
tion of the display, where an operator looks at most of the time. 
The other displays could be removed and all the data could be 
presented in tabs on a single display. 

Each of the four views serves a different purpose: (i) Display 
a general overview of the monitored environment; (ii) display 
the geographical distribution of events; (iii) display the logi- 
cal relationships between actors; and (iv) display the tempo- 
ral distribution of events. Individual visual elements include 
status circles, a timeline, raw event log, geographical map 

and logical map. Because the displayed data is diverse, mul- 
tiple display monitors are required instead of a single mon- 
itor [48] . Interactions are implemented using JavaScript; ten 

open-source libraries were used to create the various views. 
The SACIN user interface was originally developed by Rum- 

mukainen et al. [37] . The original version has been enhanced 

to provide a better logical display and to improve usability. 
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Fig. 10 – Timeline for visualizing the event stream. 

Fig. 11 – Event log for tracking all the data retrieved from SACIN. 

4.4.1. Overview display 
The overview display is designed to enable an operator to 
quickly check that all the systems in the monitored critical 
infrastructure are working as they should. The display deliv- 
ers information that satisfies the goal-directed task analysis 
requirement 1.2: monitor resource management (see Fig. 2 ). 
The display layout shown in Fig. 7 has twelve status circles. 
The critical infrastructure categorization of Lewis [27] was en- 
gaged to develop the overview display sectors. An extra sec- 
tor was added for entities that do not belong to the other 
categories. 

Support for global situational awareness is vital. As a result, 
the display provides an overview of the situation across an op- 
erator’s goals at all times (with detailed information about the 
current goals) and enables efficient and timely goal switching 
and projection (situational awareness oriented design princi- 
ples 4 and 5, as described in [12] ). Critical information that in- 
dicates that the goal should be switched is rendered salient 
by implementing situational awareness oriented design prin- 
ciple 6, as described in [12] . 

Each critical infrastructure sector icon has a status circle 
around it. The individual status circle shown in Fig. 8 is par- 

titioned into six segments that represent U.S. federal agency 
incident categories [45] . Thus, a human operator can obtain 

an overall understanding of the types of events occurring in 

the various industry sectors. This is especially important for 
operators who are just beginning their shifts because they 
may not have prior knowledge about the state of the critical 
infrastructure. 

Visual cues convey information about important events 
in the critical infrastructure. The classic traffic light analog 
is used to display whether or not critical infrastructure sys- 
tems are working adequately, if they are having some diffi- 
culties or if their services are severely degraded. Gray-scale 
industry icons are also used to enable operators to identify 
industries easily, without interfering with the event colors in 

the status circle. Although the incident category names are 
not displayed in the user interface to conserve display space, 
category names are revealed when an operator hovers over a 
segment with a mouse. 

An operator may not always wish to monitor the entire crit- 
ical infrastructure. In such a situation, an operator can use the 
filtering option illustrated in Fig. 9 to click on industry icons 
and select the specific systems to be monitored. In the exam- 
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Fig. 12 – Map display. 

Fig. 13 – Logical display. 

ple, the emergency services icon (rightmost icon in the middle 
row of Fig. 7 ) has been clicked and the operator can select the 
systems of interest. 

4.4.2. Temporal display 
Operators need to monitor events that have occurred and their 
temporal characteristics. For this reason, one of the displays is 
dedicated to a timeline and event log, which are illustrated in 

Figs. 10 and 11 , respectively. This enables an operator to have a 

temporal perspective of the critical infrastructure and to link 
events, even when there are no indications of connections 
between the events in the other displays or external sources. 
The temporal display provides the information needed to sat- 
isfy the goal-directed task analysis goals 1.1 and 2 (see Fig. 2 ) 
and to handle major decisions associated with these goals. 

When the user interface receives new events, the timeline 
displays a new sequence line for every new critical infrastruc- 
ture entity. Each entity is placed on a separate line to pre- 
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Table 4 – Correlations between SUS and the situational awareness measures. 

SART SART SART SART SAGAT SAGAT SAGAT SAGAT Performance 
understanding supply demand level 1 level 2 level 3 

SUS 
Pearson correlation 0.128 0.144 0.173 0.056 0.053 0.043 −0 . 107 0.032 0.288 
Sig. (Two-tailed) 0.533 0.484 0.397 0.785 0.796 0.835 0.604 0.877 0.153 

Table 5 – Overall correlations between SART, SAGAT and performance. 

SART SART SART SART Performance 
understanding supply demand 

SAGAT Pearson correlation 0.345 0.257 0.227 −0.181 0.314 
Sig. (Two-tailed) 0.084 0.206 0.265 0.375 0.119 

SAGAT Pearson correlation 0.248 0.160 0.138 −0.176 0.320 
Level 1 Sig. (Two-tailed) 0.223 0.436 0.502 0.390 0.111 
SAGAT Pearson correlation 0.378 0.353 0.058 −0.283 0.138 
Level 2 Sig. (Two-tailed) 0.057 0.077 0.777 0.160 0.503 
SAGAT Pearson correlation 0.062 −0.157 0.348 0.015 0.051 
Level 3 Sig. (Two-tailed) 0.763 0.444 0.082 0.941 0.803 
Performance Pearson correlation 0.415 ∗ 0.011 0.397 ∗ −0.419 ∗ 1 

Sig. (Two-tailed) 0.035 0.958 0.044 0.033 

∗Correlation is significant at the 0.05 level (two-tailed test). 

Fig. 14 – SAGAT scores at each freeze in the first scenario. 
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Fig. 15 – SAGAT scores at each freeze in the second scenario. 

vent confusion. The timeline uses a slightly different traffic 
light color analog for events, replacing the color green with 

light blue. This is intended to increase the ability of an oper- 
ator to spot warnings and alerts as and when they occur. The 
timeline is also scalable and helps prevent information over- 
load. For example, as shown Fig. 10 , events that occur close 
to each other are grouped together and are labeled with the 
number of events. The color of the group element corresponds 
to the most severe event it contains. The operator can then 

zoom in, pan or follow the current time on the timeline as 
desired. 

New events are also displayed immediately in the common 

event log next to the timeline. The event log displays all the 
raw data of the event and also has hide and check buttons 
to promote operator interaction. An event may also be high- 
lighted by clicking on a specific row, which displays the event 
in the other views. This enables the operator to link multiple 
monitors [48] . 

4.4.3. Map display 
One aspect of situational awareness in the critical infrastruc- 
ture context is awareness of the geographical distribution of 
events and entities. The idea was to implement a map inter- 
face that would be easy to learn and operate. Thus, a common 

interface type that resembles popular map interfaces such as 
Google Maps was employed. This display provides the infor- 

mation needed for goal-directed task analysis goal 1.1 (see 
Fig. 2 ). Fig. 12 shows the map display in which events and ac- 
tors are presented using different symbols. 

New events are displayed as markers on the map; a marker 
can be clicked to show more information about the event. 
The traffic light analog is used to indicate event severity. En- 
tities are displayed with blue markers. After new events are 
displayed on the map, they are also highlighted, as shown in 

Fig. 12 . An operator is free to choose the types of markers dis- 
played on the map. In the example, the operator has hidden 

all the markers except for the error markers. 
The map interface also has a clustering feature that is in- 

tended to prevent information overload (situational aware- 
ness oriented design principle 46 [12] ). Events are grouped 

based on their severity and an operator has the option to zoom 

in on an event to view the distribution of events. Also, al- 
though it is not shown in Fig. 12 , the map interface can dis- 
play areal events. Specifically, a colored area is displayed on 

the map that works in the same way as an event marker. 

4.4.4. Logical map display 
A key goal of SACIN is to support the analysis of dependencies 
between critical infrastructure systems [43] , a feature that fa- 
cilitates risk analysis. For this reason, one of the displays sup- 
ports the visualization of the logical dependencies between 

critical infrastructure entities. This display presents system 
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Fig. 16 – SART survey results. 

dependencies in the form of a directed graph, enabling an op- 
erator to identify critical paths and estimate the amount of 
time it would take for negative events to propagate. 

Fig. 13 shows the logical display with a directed graph 

implementation that enables an operator to evaluate event 
impacts across the monitored critical infrastructure environ- 
ment. Systems and events are displayed as user-defined sym- 
bols, triangles and color-coded stars, respectively. The arrows 
in the graph illustrate service dependencies; the entity at the 
pointed end of an arrow is the dependent entity and the value 
near the arrow indicates how long the dependent entity can 

function normally without the service. The display presents 
level 2 information directly and provides assistance for level 3 
projections (situational awareness oriented design principles 
2 and 3 [12] ). 

Two variants of the logical display have been implemented: 
(i) Non-interactive interface; and (ii) interactive interface. This 
has made it possible to evaluate the impact of interactivity on 

system usability and situational awareness. The interactivity 
supported by the logical display enables an operator to create 
new nodes and dependencies, facilitating the incorporation 

of physical and abstract concepts in the critical infrastructure 
environment. 

5. Evaluation and results 

This section describes the evaluation methodology and the 
results. 

5.1. Evaluation methods 

Six methods were used to evaluate the SACIN user in- 
terface: (i) Situation Awareness Global Assessment Tech- 
nique (SAGAT) [11] ; (ii) Situation Awareness Rating Technique 
(SART) [42] ; (iii) System Usability Scale (SUS) [8] ; (iv) visual 
walkthrough [30] ; (v) informal walkthrough [35] ; and (vi) eye- 
tracking. 

The user evaluations involved two iterations. The first it- 
eration is described in [37] . The second iteration, which is de- 
scribed in detail in this paper, involved SAGAT, SART and SUS 
testing. In addition, objective performance measures were col- 
lected. Since all the participants in the first iteration had ex- 
perience in monitoring critical infrastructure environments, 
the second iteration focused on evaluating whether an inex- 
perienced user could become acquainted with the monitoring 
system with little or no prior knowledge. 

A total of thirteen individuals participated in the second it- 
eration. The mean age of the participants was 36.7 years (SD = 

1.50). The voluntary participants were male graduate students 
who were attending the General Staff Officer Course at Na- 
tional Defence University (Helsinki, Finland). Prior to the eval- 
uation, all the participants received instructions on SAGAT, 
SART and SUS. 

Two 20-minute scenarios were employed. The system was 
evaluated with two interfaces, the non-interactive interface 
and the interactive interface, as mentioned in the discussion 

of the map display. The scenarios represented common situ- 
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Fig. 17 – SART survey results. 

ations that operators would face in their daily work. The first 
scenario involved the loss of power in the “environment” area, 
which required operator action. The second scenario did not 
focus on a specific incident, but on normal operator activities. 

In each scenario, the participants had to monitor a spe- 
cific entity and evaluate the threats it faced. The performance 
of the participants was measured via the described test bat- 
teries. Each participant was instructed to notify a supervisor 
(seated behind him) if the monitored entity was perceived to 
be threatened. 

5.1.1. SAGAT 
The Situation Awareness Global Assessment Technique 
(SAGAT) [11] was used to evaluate the level of situational 
awareness provided by the user interface. The evaluation re- 
quired the same scenarios to be presented to all the partici- 
pants. Answers were scored based on the scenario outcomes. 

SAGAT uses queries designed to assess the actual par- 
ticipant situational awareness, including level 1 (perception 

of the elements), level 2 (comprehension of their meaning) 
and level 3 (projection of future status). In the SAGAT tests, 
the situational awareness requirements for a critical infras- 
tructure operator [38] were used to generate questions for 
SAGAT freezes during the scenarios. Three SAGAT freezes 
were inserted at random times during each scenario and the 

responses were recorded manually (i.e., using a pencil and 

paper). 

5.1.2. SART 
The Situation Awareness Rating Technique (SART) [42] was 
used to evaluate the subjective level of situational awareness. 
The SART surveys comprised ten statements that were eval- 
uated on a seven-point scale. The surveys were administered 

after each scenario. A total of 26 SART surveys were completed 

– one survey by each participant for each scenario. 

5.1.3. SUS 
The ten-point System Usability Scale (SUS) is designed to eval- 
uate system usability [8] . In the research, SUS was used to 
evaluate the ease of use of the system implementation. SUS 
surveys were filled out alongside the SART survey; thus, there 
were also 26 completed SUS surveys. 

5.2. User evaluation results 

The Student’s t -test and Pearson correlation were used in the 
statistical analysis. Performance was scored on a scale from 

1 (worst) to 3 (best). The mean value with standard error for 
performance was 2.50 ± 0.11 (with standard deviation (SD) = 

0.58). 
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5.2.1. SAGAT results 
The SAGAT questions were divided into three groups accord- 
ing to the level of situational awareness they represented. The 
SAGAT scores (total and specific levels) were expressed as per- 
centages of the highest possible score (42, 36, 10 and 88 for lev- 
els 1, 2, 3 and total, respectively). Thus, the scale for each score 
ranged from 0 to 100. 

In the evaluation, the mean total SAGAT score with stan- 
dard error was 59.3 ± 1.89 (SD = 9.7), with the scores rang- 
ing from 40.0 to 82.1. The mean scores with standard errors 
were 57.1 ± 2.93 (SD = 15.0) for level 1 situational awareness, 
66.6 ± 1.96 (SD = 10.0) for level 2 and 53.2 ± 4.36 (SD = 22.2) 
for level 3. Notably, the SAGAT scores for level 2 were signifi- 
cantly higher than the scores for levels 1 and 3 ( p < 0 . 01 ). This 
is because the situational awareness oriented design princi- 
ples are focused on user interfaces that can provide high levels 
of situational awareness to operators. As such, level 1 would 

not provide an operator with a high level of situational aware- 
ness [13] . 

5.2.2. SART results 
The overall SART score for situational awareness was com- 
puted using the formula 

SA = U − (D − S ) 

where U is the understanding of the situation provided; D is 
the amount of demand on attentional resources; and S is the 
supply of attentional resources (perceived workload). 

The scales for U , D and S ranged from 4 to 28, 3 to 21 and 3 to 
21, respectively. Thus, the overall score for SART ranged from 

−14 to 46. The mean overall SART score with standard error 
was 22.0 ± 1.12 (SD = 5.7), with the scores ranging from 12 to 
33. The mean scores with standard errors were 12.73 ± 0.62 (SD 

= 3.2) for understanding, 20.69 ± 0.51 (SD = 2.6) for supply and 

11.38 ± 0.61 (SD = 3.1) for demand. 

5.2.3. SUS results 
The scale for SUS scores ranged from 0 to 100. A score above 
68 is usually considered to be above average [40] . In the 
evaluation, the mean score with standard error for SUS was 
77.4 ± 2.39 (SD = 12.2), which is greater than the average score 
mentioned above. The scores ranged from a minimum of 52.5 
to a maximum of 95. 

5.2.4. Correlations between situational awareness measures 
and SUS 
A Pearson correlation matrix was computed to directly com- 
pare the measures employed in the study. Table 4 presents the 
correlations between SUS and the various situational aware- 
ness measures. The results reveal that no significant correla- 
tion exists between SUS and SART, SUS and SAGAT, and SUS 
and performance. For example, the correlation between SUS 
and performance was determined to be (0.288, p = 0 . 153 ), 
which implies that no correlation exists. 

Table 5 presents the overall correlations between SART, 
SAGAT and performance. Previous studies have shown that 
SART scores do not correlate with SAGAT scores [16] , which 

was also mostly the case in this research. However, weak cor- 
relations may exist between SAGAT and SART (0.345, p = 

0 . 084) , SAGAT level 2 and SART (0.378, p = 0 . 057 ), SAGAT level 2 
and SART understanding (0.353, p = 0 . 077 ), and SAGAT level 3 
and SART supply (0.348, p = 0 . 082 ). Some significant, albeit 
moderate, correlations exist between performance and vari- 
ous SART categories: overall (0.415, p = 0 . 035 ), supply (0.397, 
p = 0 . 044 ) and demand ( −0.419, p = 0 . 033 ). A weak correlation 

between SAGAT and SART was also observed in [46] , but it was 
deemed to be non-significant in [16,21] . 

In summary, the SUS, SART and SAGAT scores do not have 
significant correlations with each other. This is an important 
finding because the SUS score attempts to represent the us- 
ability of the evaluated system. However, if the SUS score does 
not correlate with the SAGAT and SART scores, then an opera- 
tor may believe that the system has good usability although it 
does not necessarily provide the required situational aware- 
ness. Thus, the results indicate that, when designing a user 
interface for a monitoring system, the interface should not be 
evaluated solely on the basis of situational awareness or us- 
ability. Instead, both aspects must be taken into account in or- 
der to design a system that offers good situational awareness 
and usability. Salmon et al. [39] suggest that, in order to fully 
assess situational awareness, a battery of compatible, but dif- 
ferent, measures, including SART and SAGAT, should be em- 
ployed. Since SUS does not correlate with the other measures 
in this research, it is necessary to add SUS to the battery of 
measures. 

5.2.5. Impacts of scenarios and interfaces 
The mean values with standard error for performance were 
2.31 ± 0.18 (SD = 0.63) for the non-interactive interface and 

2.69 ± 0.13 (SD = 0.48) for the interactive interface. The perfor- 
mance with the non-interactive interface appears to be better 
than the performance with the interactive interface, although 

the difference is not significant ( p = 0 . 054 ). 
The SAGAT scores presented in Figs. 14 and 15 show the 

development of the situational awareness goal in the evalua- 
tion scenarios. As noted above, the participants in the evalua- 
tion employed non-interactive and interactive interfaces. Each 

score corresponds to the total percentage of correct answers 
to SAGAT queries at a simulation freeze. The trend line repre- 
sents the total SAGAT score, which comprises the three levels 
of situational awareness. 

The SAGAT scores between the alternatives are inconclu- 
sive. In the second scenario, the interactive interface appears 
to provide better situational awareness toward the end of the 
scenario, but the only statistically significant difference is at 
freeze 2 ( p = 0 . 027 ). 

Fig. 16 shows the SART survey results. The participants 
above the line y = x scored better with the interactive in- 
terface. A Pearson correlation of 0.705 ( p = 0 . 007 ) exists 
between the results. The red linear regression line ( R 2 = 

0 . 497 ) demonstrates that the interactive interface gives better 
results ( p = 0 . 17 ), especially when the participants have low 

situational awareness. 
Fig. 17 presents some additional SART survey results. The 

results indicate that the participants believed that their sit- 
uational awareness increased by an average of 3.29 points 
when they switched from the non-interactive interface to the 
interactive interface. Also, the participants felt that their sit- 
uational awareness fell by an average of 3.33 points when 
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Table 6 – Correlations between situational awareness measures and SUS for the two user interfaces. 

Interface SUS SART SART SART SART Performance 
understanding supply demand 

Non-interactive interface 
SUS Pearson correlation 1 0.133 0.092 0.153 −0.055 0.299 

Sig. (Two-tailed) 0.666 0.764 0.617 0.858 0.321 
SAGAT Pearson correlation −0.161 0.230 0.330 0.200 −0.045 −0.110 

Sig. (Two-tailed) 0.600 0.449 0.272 0.512 0.883 0.720 
SAGAT Pearson correlation −0.177 0.073 0.237 0.165 0.156 0.010 
Level 1 Sig. (Two-tailed) 0.564 0.812 0.435 0.590 0.611 0.974 
SAGAT Pearson correlation −0.253 0.191 0.310 −0.177 −0.307 −0.196 
Level 2 Sig. (Two-tailed) 0.404 0.531 0.302 0.564 0.307 0.522 
SAGAT Pearson correlation 0.115 0.315 0.116 0.505 −0.077 0.109 
Level 3 Sig. (Two-tailed) 0.709 0.294 0.705 0.078 0.802 0.723 
Performance Pearson correlation 0.299 0.437 −0.306 0.592 ∗ −0.493 1 

Sig. (Two-tailed) 0.321 0.135 0.309 0.033 0.087 
Interactive interface 
SUS Pearson correlation 1 −0.025 0.117 0.116 0.290 0.124 

Sig. (Two-tailed) 0.936 0.704 0.707 0.336 0.687 
SAGAT Pearson correlation 0.175 0.376 0.149 0.175 −0.291 0.682 ∗

Sig. (Two-tailed) 0.567 0.205 0.627 0.568 0.335 0.010 
SAGAT Pearson correlation 0.196 0.365 0.065 0.042 −0.489 0.585 ∗

Level 1 Sig. (Two-tailed) 0.521 0.221 0.832 0.892 0.090 0.036 
SAGAT Pearson correlation −0.138 0.513 0.328 0.270 −0.203 0.364 
Level 2 Sig. (Two-tailed) 0.652 0.073 0.274 0.372 0.505 0.221 
SAGAT Pearson correlation −0.098 −0.340 −0.371 0.111 0.150 −0.033 
Level 3 Sig. (Two-tailed) 0.751 0.256 0.212 0.718 0.624 0.915 
Performance Pearson correlation 0.124 0.222 0.082 −0.030 −0.284 1 

Sig. (Two-tailed) 0.687 0.466 0.790 0.923 −0.284 

∗Correlation is significant at the 0.05 level (two-tailed test). 

Fig. 18 – SUS survey results. 
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Fig. 19 – Scatter plot of the SUS survey results. 

switching from the non-interactive interface to the interactive 
interface. 

The mean values of the overall SART scores with standard 

errors were 20.23 ± 1.68 for the non-interactive interface and 

23.54 ± 1.33 for the interactive system. The overall SART re- 
sults between the two interfaces have a statistically signifi- 
cant difference ( p = 0 . 017 ). This means that the participants 
felt more confident about their situational awareness when 

interacting with the logical display. As seen in Fig. 17 , the par- 
ticipants tended to have better overall SART scores with the 
interactive interface, especially if they had low scores with the 
non-interactive interface. The results imply that the partic- 
ipants felt more confident when using the interactive inter- 
face. In a real-world scenario, this can be beneficial as well as 
harmful. This is because the correlation between SART and 

performance in the case of the interactive interface is not sig- 
nificant ( p = 0 . 466 ); this will be discussed below in the context 
of the results presented in Table 6 . Figs. 16 and 17 also show 

the impact of the interface evaluation order. 
The mean values of the overall SUS scores with standard 

errors were 74.81. ± 3.77 for the non-interactive interface and 

80.00 ± 2.91 for the interactive interface. Although the inter- 
active interface scored better, no statistically significant dif- 
ference exists between the two interfaces ( p = 0 . 125 ). 

Fig. 18 shows the SUS survey results. As in the case of the 
SART results, when the participants moved from the interac- 
tive interface to the non-interactive interface, their SUS scores 

fell by an average of 4.1. On the other hand, when the partic- 
ipants moved from the non-interactive interface to the inter- 
active interface, their SUS scores increased by an average of 
6.1. 

Fig. 19 shows a scatter plot of the SART survey results. Par- 
ticipants above the line scored better with the interactive in- 
terface than the non-interactive interface. The difference in 

the mean values is not statistically significant ( p = 0 . 125 ). 
The results, which are supported by feedback provided by 

the participants, suggest that the SUS results are similar to the 
SART results. In particular, the participants with relatively low 

overall scores tended to score better with the interactive in- 
terface than the non-interactive interface compared with the 
participants with relatively high overall scores. However, it is 
notable that a relatively large statistical dispersion exists in 

the SUS scores. Figs. 18 and 19 also show the impact of the 
interface evaluation order. 

Table 6 presents the interface-specific correlations. In the 
case of the non-interactive interface, the only significant 
correlation exists between the supply of attentional resources 
(SART supply) and performance (0.592, p = 0 . 033 ). This result 
is quite intuitive – the greater the attentional resources that 
remain, the better the performance. 

In the case of the interactive interface, significant correla- 
tions exist between the SAGAT level 1 score and performance 
(0.585, p = 0 . 036 ), and between the overall SAGAT score and 

performance (0.682, p = 0 . 010 ). The first correlation could be 
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due to the nature of the performance measure, which is based 

on the perception of different elements and is measured by 
the SAGAT level 1 score. The second correlation has also been 

observed by Salmon et al. [39] . 
In retrospect, it was noted earlier in this paper that the 

measurement scale for performance might be too coarse. This 
fact, coupled with the relatively small sample size, could ex- 
plain why the correlations, especially with regard to perfor- 
mance, fluctuate so much between the two interfaces. 

This research also examined the differences in the mean 

values for the two scenarios. However, no statistically signifi- 
cant differences were observed. Most notably, the participants 
had better SAGAT level 3 scores in the first scenario ( p = 0 . 077 ), 
which could be because they had to be more focused during 
an unpredictable disaster situation. 

6. Conclusions 

This paper has described a set of requirements, framework 
and test implementation of a monitoring system for national- 
scale critical infrastructure. The brokered agent based archi- 
tecture is scalable and efficiently integrates diverse critical 
infrastructure systems. Moreover, the critical infrastruc- 
ture monitoring system is implemented using open source 
technology. 

The situational awareness oriented design process was 
used to identify the situational awareness requirements, 
which were translated into a system design that provides 
high levels of situational awareness. Novel modeling and anal- 
ysis methods targeted for large-scale critical infrastructure 
systems were developed to satisfy the situational awareness 
requirements. The approach eliminates the need to collect 
minute details about every system and sub-system and is, 
therefore, capable of handling critical infrastructure interde- 
pendency networks spanning tens of thousands of nodes. The 
implemented system also estimates the impacts of events and 

provides estimates of future status. 
An important component of the paper is the final 

situational awareness oriented design step that involved 

objective (SAGAT) and subjective (SART) measurements of sit- 
uational awareness performed during “human-in-the-loop”
simulations. The evaluations also incorporated SUS in the test 
battery to evaluate system usability. The measurement meth- 
ods view the situational awareness construct differently and 

essentially measured different elements of participant aware- 
ness during the evaluations. SAGAT, which is a probe-recall 
approach, measured the extent to which participants were 
aware of pre-defined elements in the environment, their un- 
derstanding of the properties of the elements in relation to 
the tasks being performed and the potential future states 
of the elements. SART measured participant self-awareness 
during the task performance based on understanding, sup- 
ply and demand ratings without reference to the different ele- 
ments in the environment. Mixed results were obtained in the 
evaluations, but it is important to note that good SUS results 
do not necessarily imply good situational awareness. The find- 
ings from this study – as well as previous research – suggest 
that situational awareness cannot be fully measured by a sin- 

gle metric. Therefore, it is appropriate to employ a battery of 
different, but compatible, measures. 
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Abstract. Cyber security exercises allow individuals and organisations
to train and test their skills in complex cyber attack situations. In or-
der to effectively organise and conduct such exercise, the exercise control
team must have accurate situational awareness of the exercise teams.
In this paper, the communication patterns collected during a large-scale
cyber exercise, and their possible use in improving Situational awareness
of exercise control team were analysed. Communication patterns were
analysed using graph visualisation and time-series based methods. In
addition, suitability of a new reporting tool was analysed. The report-
ing tool was developed for improving situational awareness and exercise
control flow. The tool was used for real-time reporting and communi-
cation in various exercise related tasks. Based on the results, it can be
stated that the communication patterns can be effectively used to infer
performance of exercise teams and improve situational awareness of ex-
ercise control team in a complex large-scale cyber security exercise. In
addition, the developed model and state-of-the-art reporting tool enable
real-time analysis for achieving a better situational awareness for the
exercise control of the cyber security exercise.

Keywords: Cyber Security · Exercise · Training · Situational Awareness
· Communication.

1 Introduction

Cyber security is an ongoing process where both organisations and individu-
als are training, working, and learning continually. Cyber security exercises are
an excellent way to train and simultaneously test an organisation’s or individ-
ual’s capabilities under stressful cyber-attack situations. The exercise can be
conducted in both public and private sectors. The cyber security strategy of
the European Union notices the importance of national and international cy-
ber security exercises [8]. Finland’s security strategy for society states several
times the importance of regular exercises for improving the resilience against
threats [23], whereas Finland’s cyber security strategy states that cyber threats
are evolving extremely rapidly, and therefore cyber security exercises should be
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conducted regularly for improving preparedness and cyber resilience [22]. Hand-
book for information technology and cyber security exercises [26] lists following
exercise types: unannounced live exercises, initiation exercises, staff exercises,
decision exercises, management exercises, cooperation exercises and Red Team
- Blue Team exercises. The exercise type indicates the primary function of the
exercise.

Cyber security exercises are usually organised using various teams with dif-
ferent tasks or missions. These teams are formed based on exercise type, training
goals, and available resources and personnel. Blue Team (BT) is a group of peo-
ple defending their information technology assets against cyber threats. They
also report the observations to (simulated) management, create their own situ-
ational awareness and maintain their own security posture under cyber-attack.
BT is very often modelled after a real organisation, team, or branch. There can
be one or many BTs in the exercise that can represent different aspects of the
real world. BTs often aim to role-play their normal organisational practices and
procedures. Red Team (RT) is a group of people simulating the threat actors
in the exercise by making real cyber-attacks against Blue Teams. White Team
(WT) is responsible for controlling the exercise, making observations, collecting
the data and handling the situational awareness of the exercise [5, 26, 13, 25].

Sometimes the exercise control team is also called EXCON which has sim-
ilar functions as WT. In that sense, the situational awareness of the WT is
extremely important for controlling the exercise and for making the required
decisions during the exercise. The communication patterns of the BTs are an
important source for understanding what is happening in the exercises from
the BT’s perspective, and how they are communicating with the co-operation
organisations under cyber-attack.

One of the most classical definitions of situational (or situation) awareness is
as follows: ”Situation awareness is the perception of the elements in the environ-

ment within a volume of time and space, the comprehension of their meaning,

and the projection of their status in the near future” [7]. In this study, the term
situational awareness (SA) is used. At the first level of SA there is the percep-
tion (observations and sensor information), the second level is the comprehension
(understanding the current situation) and the third level is the projection (pre-
diction of future events based on the information of earlier states and decision
makers’ pre-learned history). It is stated that with erroneous SA even the trained
decision makers will make incorrect decisions [7]. In the cyber security the ob-
jective of SA is to know what is (and will be) the security level of organisation’s
assets in the networked systems [9].

Cyber security exercises enable a comprehensive platform for studying situa-
tional awareness in cyber security and behaviour or efficiency of individuals and
teams under cyber-attack. In the study [6] a methodology is proposed for adjust-
ment of situation awareness measurement experiments within the context of a
cyber security exercise. The author of [10] states that cyber security exercises can
be used as an empirical study of situation awareness in cyber security. Also, the
paper [5] deploys cyber security exercise data for profiling the attacker. Accord-
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ing to the authors of the studies [4, 3], training and exercises have an important
role for improving the competencies in the defence of the cyber security assets
and for achieving the required level of preparedness especially in the resilience
of critical infrastructure.

Situational awareness is important for all involved teams in the exercise.
However, WT is required to have an understanding of the SA of the BTs in
exercise in order to effectively adjust and steer the exercise towards fulfilling the
desired learning and testing goals. Traditional monitoring of technical details
of the exercise environment supplemented with the analysis of communication
patterns provides an extensive view into Blue Team behaviour.

This study presents the study of Blue Team communication patterns and
based on that the implementation of the state-of-the–art reporting tool for en-
hancing the SA of the White Team during the complex and hectic cyber security
exercise. First the Finland’s national cyber security exercise is introduced, the
event timelines are are studied, and analysis is made. In addition, the reporting
tool is developed and studied to produce incident reports for enhancing the SA
of the White Team. Finally, the conclusions are done, and future research ideas
are found and introduced.

2 Finland’s National Cyber Security Exercise

Finland’s national cyber security exercise has been conducted annually since
2013 and every year, the Cyber Range of Finland’s national cyber exercise has
been Realistic Global Cyber Environment (RGCE) developed by JAMK Univer-
sity of Applied Sciences Institute of Information Technology [18].

Finland’s national cyber security exercise of 2017 was executed from 8th of
May to 11th of May and it was commanded by the Ministry of Defence with The
Security Committee. The RGCE Cyber Range and the overall implementation
was conducted by JAMK University of Applied Sciences. There were more than
100 individuals participating in the exercise forming several co-operating Blue
Teams communicating with each other according to their operational tasks. The
aim of the exercise was to practice co-operation between security organisations
and security network organisations in Finland during cyber-attacks or incidents
for verifying the performance of the participant organisations and ensuring their
further development [18].

As described in the aim of the exercise, the Blue Teams of the exercise were
formed from different security authorities of Finland. All of them were acting,
communicating and co-operating according to their real operational tasks during
the realistic cyber attacks of several simulated threat actors. Some of the Blue
Teams mainly defend their own assets whereas some Blue Teams have highly
co-operational role and act and communicate actively in accordance with that
role.
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2.1 RGCE Cyber Range

RGCE is a fully operational Cyber Range that mimics the structures, services
and traffic of the real Internet. It allows the usage of real IP addresses and
global GeoIP information with realistic end user traffic patterns automatically
generated by botnet based special software. RGCE is a closed environment,
which allows usage of real attacks or malware. [14, 12]

3 Event Timelines

Cyber security exercises consist of several components forming the core which
the White Team uses to direct the overall flow. A typical exercise contains a
background story that sets the general tone and mindset for the trainees. Sev-
eral threat actors are created to portray real-world counterparts, such as hac-
tivist groups and more advanced organisations. Based on these actors and their
modus operandi, various attack scenarios are prepared. The scenarios may in-
clude technical exploitations, denial-of-service attacks, social engineering, and
advanced directed cyber operations.

3.1 Injects

Injects are pre-prepared actions in the Cyber Range. They are modelled after the
threat actor’s simulated campaigns. For example, a malicious group may want
to use a denial-of-service (DoS) or a distributed denial-of-service (DDoS) attack
to mask a more advanced exploit, targeted at one team. This could be achieved
by two injects, one for each type of attack. The schedule for injects is drafted
at the planning stage. However, due to the live nature of cyber exercises, White
Team may choose to adjust their timing, targets or their potential execution,
depending on the Blue Team response. Adjusting overlapping incidents and in-
jects to support learning goals and desired stress levels is crucial for a successful
exercise.

For the studied exercise, dozens of injects were prepared to simulate the cy-
ber attack campaigns of threat actors. There were several realistic threat actors
modelled and simulated in the exercise and the injects were prepared to sim-
ulate the behaviour of those threat actors. The attack campaigns varied from
volumetric DoS/DDoS campaigns to targeted advanced persistent threat (APT)
attacks including for example realistic behaviour of threat actors in social media.

Figure 1 illustrates the duration of the injects during the cyber security
exercise. When WT decides to activate an inject, the actual time is recorded, as
well as the moment when the inject in question is marked as ’executed’, i.e. it
does not require any further work from any of the teams. Figure 1 shows, that
the approximate workload is relatively evenly distributed inside each exercise
day, first and last being less intensive. This was the desired goal in the planning
stage.
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Fig. 1: Inject timing, durations (lower), and cumulative sum (upper) during the
Exercise.

3.2 Communication Methods

Blue Teams were given various common methods for communicating between
groups and internally. Each team had corporate email-accounts, two kinds of
direct messaging options, and VOIP phones. Overall, the teams preferred e-mail
over other forms of communication. Therefore, this study focuses on e-mails, and
data fusion between other systems is considered as future work.

4 Analysis

Although figure 1 illustrates the approximate amount of desired work, it does
not tell how the exercise teams actually react to the injects. In some cases the
exercise teams may miss the inject entirely or fail to take appropriate measures.
Direct monitoring or questionnaires disturb the flow of the exercise and require
extra personnel.

E-mail patterns were analysed to see what communication patterns teams
use during incidents. The mail headers were extracted from mail servers and
analysed and visualised using Cytoscape software [24].

4.1 Team Communication Patterns

BTs in the exercise played several different roles. For example, one BT formed a
common networking and service platform, which includes physical networks, as
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well as workstations and intranet services, and another BT was a cyber security
service organisation offering services to all other teams.

During the exercise tens of thousands of emails were sent and received, also
including an e-mail-based Denial of Service -attack, as well as general spam, and
e-mails from automated reporting systems. BTs also forwarded information to
each other using large mailing lists. Some teams included their own address into
these lists, and therefore received many copies of their own mails. White Team
also answered to requests and inquiries that were directed to higher levels of
organisations not occupied in the exercise.

Figure 2 illustrates all used message paths between parties. Red nodes repre-
sent attacker-controlled domains, coloured ones are the Blue Teams. Edge colour
indicates the sending party. The graph shows that Teams two and five never
communicated directly, even though they should have.

Ha c ke r
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n il
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Fig. 2: The complete communication graph between domains.
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The mailing patterns mostly reflect the nature and purpose of each team.
Blue Team one, which was responsible for the core services, communicated with
all other organisations actively. Their mails informed the organisations that were
using their services about various disruptions, estimated repair times, and de-
tected threats. Blue Team two was noticeably less active. They sent only a few
notices of service disruptions, and mainly co-operated with Blue Team one, even
though they were kept up to date by other teams. Blue Team three mostly co-
operated with Blue Team five, which was expected. Blue Team six communicated
actively with every other team, delivering threat intelligence and analysis ser-
vices. Blue Teams four and one were also targeted by external Denial of Service
and phishing campaigns. This may have affected their capability to send and
receive mails.

In figure 3a, a typical set of service requests and responses is made. They
indicate that the teams still have control over their infrastructure, and are able
to take defensive measures. Figure 3b illustrates a phishing attempt, which later
evolved into a spamming attack. Grey nodes represent mailboxes belonging to
non-playing teams, while red nodes are controlled by threat actor (RT). In figure
3c Blue Team six has detected an unusually intensive port scanning originating
from the Internet. The team informs others, and it can be seen that one team
asks for more details.

tweets

WT

email

tickets

(a) Generic communica-
tion during the exercise.

tweets

WT

tickets

email

(b) Communication un-
der spam and phishing at-
tacks.

tweets

WT

tickets

email

(c) Communication under
port scanning attack.

Fig. 3: Example of communication patterns.

Although the analysis of communication patterns revealed some omissions
and errors that teams made, it does not have enough information for White
Team to form a robust SA. Also, the analysis of communication pattern is not
conducted in the real time and more real time reporting tool is required for
improving the situational awareness of White Team. It can be concluded, that
a special real time reporting system is required for obtaining data and under-
standing the Blue Team behaviour during the complex cyber security exercise.
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5 Reporting Tool for Improving White Team SA

Situational awareness is required as a basis for decision making. OODA loop
(Observation-Orientation-Decision-Action) is a classical model for decision mak-
ing [21, 15]. Another similar decision-making loop is introduced in four stages of
an adaptive security architecture (Predict-Prevent-Detect-Respond) [17]. When
reflected to both of those loops and earlier introduced definition of SA, SA is
an extremely important element of decision making. When considering different
data from different sources or sensors, there is a requirement for data fusion
or multi-sensor data fusion, which is a process of synthesising overlapping and
scattered data from the different sensors or sources to the user for achieving
comprehensive SA of focused events [11, 2].

In the cyber security exercises, the Blue Team reporting tool for gathering
the SA is required in two functions. First the Blue Teams report (automatically
from sensors or manually) their observations to the tool and forms their SA
based on data fusion. Secondly, White Team is able to monitor what the Blue
Teams are reporting and what mitigation actions they are executing [16].

The developed Reporting Tools was tested in the cyber security exercise in
the industrial domain [20]. Industrial cyber security exercise is piloted in the
project of the European Regional Development Fund/Leverage from the EU
2014-2020, called JYVSECTEC Center and managed by JAMK University of
Applied Sciences Institute of Information Technology.

5.1 Reporting Process and Software Tool

A specialised reporting process and a supporting state-of-the-art software tool
for Blue Teams was developed with the aim that the new system would lower
the barrier for reporting. The previous systems failed to encourage the teams
or reporting actionable information. Although the teams did use earlier tools to
report events, the messages were short, uninformative, and untimely. In addi-
tion, the earlier platform was cumbersome, which further discouraged reporting.
Reporting is seen in Blue Teams as an unnecessary artificial chore that hinders
their ability under the cyber-attacks or incidents.

The goal of development was to construct a reporting tool and process that
would be unobtrusive and quick to use. Comprehensive reporting was encouraged
by providing a template which contained necessary headings and hints what to
put under them. GUI with muted colours was opted to use instead of the console-
based solutions.

5.2 Reporting Format

For helping the trainees during the complex exercise scenarios, the reporting
format is kept relatively simple; it borrows elements from military-style situation
report structure. Table 1 presents the main elements of the format. In addition
to the presented elements, each report has a time-stamp and title.
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Table 1: Report template fields, translations, and purpose.
Field
(in Finnish)

Field
(translated in English)

Purpose

Havainnon laatu Type of observation What is being reported? Error condi-
tion, support request, malicious pro-
gram, etc.

Tapahtuma Incident What has happened?

Seuraukset Consequences What impact will this incident cause?
What further measures will be likely
taken to mitigate the impact?

Tarkennukset Further information Additional details about the incident or
of the overall situation.

Paikka Place Place, if relevant

A formal language was constructed for describing the reporting format in or-
der to construct domain specific language (DSL). This domain specific language
(DSL) allows the reports to be both human and machine readable. DSL is also
expandable; other message types can be added in the future. The DSL was also
equipped with syntax highlighting in the tool. As the DSL is verified using a
formal language parser, the program can also notify user if values are missing or
invalid.

The main view is illustrated in figure 4a By default, the user sees two win-
dows, one of which lists all reports made by his/her team, the other window is
for creating a new report. By clicking the reports, they can be opened into a new
window and examined separately. The screen-shot shows one additional window
that the user has opened.

Figure 4b is a screen-shot of the reporting screen. For keeping the tool sim-
ple during the complex and hectic exercise, there are only two buttons and one
syntax indicator present in the editor. The button labelled Tilanneilmoitus (Sit-
uation report) will fill the editor with the report template. The indicator states if
the document does not conform to our DSL specification. The reporting window
is a text editor with additional syntax highlighting features.

The tool was implemented using Java programming language and JavaFX
UI framework, making the tool cross-platform ready [19]. The program utilises
a message bus for synchronising messages between team members and deliver-
ing a copy of each message to White Team. Our implementation used Apache
ActiveMQ message bus for communication [1].

6 Conclusion

Monitoring Blue Team communication provides further insight into both exercise
status and team behaviour. As the analysis suggests, communication monitoring
can be a useful tool in measuring Blue Team performance during the cyber secu-
rity exercise. The analysis revealed several omissions made by the Blue Teams.
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(a) Main view of the application. The
list shows past reports, and the top
window shows one of them in full de-
tail. The report editor is in the back-
ground.

(b) Report editor with the report tem-
plate loaded.

Fig. 4: Screen shots of reporting tool.

In addition, although the overall inject timing was successful, some teams might
have benefited from intense workload.

When planning the injects, it could be useful to consider which teams are
affected, and who is responsible for keeping them informed. By implementing
real-time communication monitoring, the White Team can efficiently tell if the
teams are acting correctly.

By using e-mail graphs in conjunction with other monitoring mechanisms,
real-time mail visualisation aids White Team to build a more robust situational
awareness over the exercise. This allows more fine tuned and accurate control,
as well as more comprehensive results from the exercise.

However, the special reporting system is required to reliably monitor the Blue
Team behaviour in real-time during the cyber security exercise. This requires
additional timely reports from the Blue Teams, and a convenient, non-intrusive
way for writing and delivering them. A specialised report format and state-of-
the-art software tool was developed for achieving this goal. The tool was tested
in the cyber security exercises within the industrial domain. It will also be used
in the future exercises with improvements suggested in the initial tests.

Future work in the communication monitoring includes automating the mes-
sage parsing and visualisation process so, that it is readily available to White
Team during the exercise. This includes the development of a better visualisa-
tion system for monitoring purposes. In the future graphics will be designed to
visualise multi-edged graphs efficiently for SA purposes. Future work with the
reporting system will be more visualised SA of Blue Team behaviour for certain
exercise inject and improvements of BT SA used for BTs’ tactical leading and
decision making.
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Abstract. The number of intrusions and attacks against data networks
and networked systems increases constantly, while encryption has made it
more difficult to inspect network traffic and classify it as malicious. In this
paper, an anomaly-based intrusion detection system using Haar wavelet
transforms in combination with an adversarial autoencoder was devel-
oped for detecting malicious TLS-encrypted Internet traffic. Data con-
taining legitimate, as well as advanced malicious traffic was collected
from a large-scale cyber exercise and used in the analysis. Based on the
findings and domain expertise, a set of features for distinguishing modern
malware from packet timing analysis were chosen and evaluated. Perfor-
mance of the adversarial autoencoder was compared with a traditional
autoencoder. The results indicate that the adversarial model performs
better than the traditional autoencoder. In addition, a machine learning
pipeline capable of analyzing traffic in near real time was developed for
data analysis.

Keywords: Adversarial Autoencoder · Intrusion Detection · Anomaly
Detection · Haar Wavelets.

1 Introduction

The Internet is becoming more secure as encryption becomes more ubiquitous
and new standards are adopted. Web pages and other related assets that make
up modern web applications are more often transferred using Transport Layer
Security (TLS). In addition to providing security to end users, it also allows
malicious actors to leverage encryption for evading detection. Therefore, it is
extremely important to know the situation of your own valuable assets in the
network. For accomplishing that task, one must maintain good visibility into the
network, despite of increasing encryption.

Artificial intelligence (AI) and its applications for cyber security are active
and growing research fields. Pham et al. compared various machine learning tech-
niques commonly used for intrusion detection [20], while Dhingra et al. outlined
several different application areas and challenges for AI in the enterprise infor-
mation security landscape [6]. Hendler et al. used neural networks for detecting
malicious PowerShell commands [9]. Various novel approaches, such as neural im-
mune detectors, Short-Term Memory Recurrent Neural Networks, and Stacked
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Auto-Encoders (SAE) have also been studied for attack detection [13, 14, 25].
Intrusion detection systems (IDS) can be divided into anomaly-based detection
(anomaly detection) and signature-based detection (misuse detection). Anomaly
detection has capability to detect unknown attack patterns; however, anomaly
detection usually generates a large amount of false positive indications [19].

Modern intrusions and malware are tasked from the Internet by malicious
actors using so-called command and control (C2) channels. Modern malware uti-
lizes various techniques, such as encryption and steganography, for avoiding the
detection of communication with a C2 server. TLS is an extremely good way of
hiding the command and control traffic because it has become almost ubiqui-
tous, and the recent efforts at hardening TLS infrastructure, such as certificate
preloading or easily obtainable free legitimate certificates, have made certificate
bumping and other deep inspection methods unreliable. This paper focuses on
malware that utilizes TLS for evasion.

This paper presents an anomaly detection -based IDS that leverage Haar
wavelet transforms and Adversarial Autoencoders (AA). First, the reasoning
about selected features and methods is presented. Next, the implemented solu-
tion and validation results are shown. Finally, future research topics are given
along with a discussion.

2 Feature Engineering and Selection

Feature selection is the key element in anomaly detection, determining the max-
imal effectiveness of the detection capability. Chandola et al. [4], and Sommer et
al. [22] both listed several challenges in applying machine learning to anomaly
detection. One of the challenges they mentioned is how to select features that
actually vary between legitimate and malicious traffic, and defining an effec-
tive boundary between them. They also noted that when a malicious actor is
involved, the adversary is able to adapt.

Due to the increasing ratio of encrypted traffic, the features cannot utilize the
payload of the network packets. In the Internet Protocol (IP) packets, the fields
cannot be encrypted and are available for feature engineering. Packet timings,
and TLS connection parameters, such as handshake parameter negotiation, are
also available.

Networks and Internet traffic are not static in volume or content. They expe-
rience considerable variance depending on many factors such as workday cycles,
scheduled software updates, or changes in workforce structure. More formally,
time series based on our features are non-stationary.

The aim of feature selection is to use as much feature engineering as possible
to filter out variances in data that are known to be irrelevant. In addition, the
features used must not be readily attacker controlled or circumvented.

2.1 TLS Fingerprints

In the TLS handshake the client and server agree what cryptographic suites
they will use. The client sends its preferred suites in preferred order in a package
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dubbed ”ClientHello” [21]. The order, number, and types of these suites vary
considerably between web browsers, desktop applications and other programs,
thus forming a sort of fingerprint.

Common malware and various APT-simulation tools, such as CobaltStrike1,
Empire2, and Meterpreter3, were analysed. It was discovered that their TLS
handshakes were either unique or different than legitimate programs. Specific
versions of Firefox browsers used in Kali Linux4, a well known penetration test-
ing tool collection, was also detected. This is in line with previous research;
for example, Husák et al. obtained similar results when fingerprinting applica-
tions [10]. Although preliminary look into this feature gave extremely positive
results, it is also something that the adversary may choose to change, as e.g. TOR
meek5 does. The feature is still useful in a limited manner, it groups applications
reliably and only the most sophisticated adversary can tailor the malware traffic
to look like the one a particular target organization is using. It should be noted
that e.g. PowerShell environment, often used for running malicious code, does
not allow the scripts to select preferred suites. We did not use TLS fingerprints
in the neural network input data.

The malware used in this research was tasked to beacon to the C2 server
from several hours to days. After that the malware was used to perform various
malicious activities, such as listing processes, transferring files, taking screen-
shots, and for further lateral movement on the internal networks. First infection
was achieved using either phishing e-mails, or custom-made zero-day exploits.

2.2 Network Flows and Time Series

Network flows form a natural time series, especially when considering those made
with Transmission Control Protocol (TCP). Depending on the application, these
flows will vary with respect to duration, number of packets transmitted and
received, and periodicity, among other characterizing statistics. As previously
stated, these time series are non-stationary. This is partly due to the inherent
nature of TCP flows, as well as the aim to keep once-negotiated tunnels up for
subsequent data transfer, rather than renegotiate. This is also true for TLS,
which in virtually any application, runs on top of TCP.

There are several well-know legitimate use cases for TLS encrypted connec-
tions. The most ubiquitous one is the World Wide Web; virtually every major
web application is accessible or mandates the use of TLS. Virtual Private Net-
works (VPN) may also be deployed on top of TLS. Compared to the web brows-
ing, these connections can be longer-lived, and their activity is more varying.
The third major category is desktop applications, which use TLS to connect
securely to their back-ends which may reside either on an internal network or
the Internet.
1 https://www.cobaltstrike.com/
2 https://www.powershellempire.com/
3 https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
4 https://www.kali.org/
5 https://trac.torproject.org/projects/tor/wiki/doc/meek
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As for malware, TLS provides a practical channel for communicating with
Command and Control (C2) servers. It blends in easily with legitimate network
traffic, and in many deployments is permitted through firewalls. However, these
connections are not usually similar to the legitimate use cases. In the analyzed
malware and APT tools, the connections were very short-lived when there were
no instructions available for them in their C2 server. When they are tasked to
e.g. transfer files or take screenshots, the connections looked different. Based
on these observations it was concluded that an aggregation of TLS connections
using the IP address or Server Name Indication (SNI) record, the result will
form a descriptive time series usable for anomaly detection. This series can be
constructed from packet timings and sizes made into an impulse signal, where
received packets have negative values, sent packets positive values and where the
impulse values are the packet sizes.

2.3 Analysis using Haar Wavelets

There are many options for characterizing a time series. It is important to use
a representation that retains the essential features for the classification task at
hand without overfitting the data. By considering overfitting also at this stage,
the input to the classification algorithm can be made less noisy. Due to the
non-stationary nature of our data, the methods at our disposal are somewhat
limited. The differing lengths of the series also needs to be addressed.

There are two main categories for mathematical time series representations,
data-adaptive and non data-adaptive [15]. Haar wavelets [8], a non data-adaptive
representation, was chosen. The transform contains both time and frequency
elements, and is therefore advantageous for data which is both non-stationary
and sparse [5, 3].

Figure 1 illustrates the result of decomposition as it is used in this study.
The image represents eight of the lowest frequency coefficient layers from the
wavelet transformation result. Brighter areas represent higher coefficient values
and the black areas have coefficients values very close to zero. The number
of coefficient samples doubles on each layer when more layers are taken. The
new layers represent higher and higher frequencies. The solution is designed to
examine the long, low frequency traffic patterns so it is safe to discard the high
frequency layers. In this study, only the eight coefficient layers that represent
the lowest frequencies are kept.

2.4 Adversarial Autoencoders

The wavelet transform provides a starting point for anomaly detection. How-
ever, the comparison of the decomposition results is a non-trivial task. There
are no obvious ways to assign probabilities to real-valued time series or their
transformations in this dataset.

Autoencoders are constructed using artificial neural networks that attempt
to reconstruct their input using a relatively small hidden (latent) layer, in a
fashion similar to the Principal Component Analysis. Adversarial autoencoders
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(a) Legitimate web browser traffic to
an authentication portal.

(b) Malicious traffic caused by a
CobaltStrike beacon.

Fig. 1: Wavelet decomposition, illustrated here with scalograms, for both legiti-
mate and malicious TLS traffic samples.

have several desired properties for anomaly detection, especially in our use case.
Adversarial autoencoders (AA) combine ideas from traditional autoencoders and
generative adversarial networks, turning autoencoders into generative models.
AAs are suitable for unsupervised learning, or they can also be used in supervised
or semi-supervised fashion [17, 7]. Their advantage over traditional AAs is the
ability to influence what distribution the hidden layer should approximate. This
allows the model to learn additional variance that is not present in the training
data, making it less likely overfitted. Adversarial autoencoders use generative
adversarial neural networks for regulating the distribution of the autoencoder’s
latent space (the latent). The encoder of the network is trained to fool the
discriminator by generating vectors similar to the chosen distribution, while the
discriminator is trained to determine if the sample is generated or from the
chosen distribution. Meanwhile, the decoder is trained to reconstruct the input
data from the latent space. [17] The reconstruction loss and generation loss
are optimized for each batch using separate optimizers, hence the calculated
gradients are applied in turns.

Figure 2 shows the general architecture of the neural network design devel-
oped during this research. It is based on the architecture proposed by Makhzani
et al. [17]. The AA variant in this study (TLS-AAE) is trained unsupervised, and
regularized with a continuous distribution. This allows the TLS-AA to better re-
construct input variants not present in the training dataset, resulting in a lower
reconstruction error than a traditional autoencoder. Although the reconstruc-
tion of the new variants is beneficial for reducing the number of false positives,
the network might learn to reconstruct anomalies as well. To counter the un-
wanted variants, a one-hot categorical distribution was imposed into softmax
of the latent, dividing the latent space into clusters of continuous distributions.
The amount of clusters can be set using a parameter, that is 20 in this study.
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Fig. 2: The general architecture of the neural network design used in this research.
The encoder’s outputs latent z and label y are enforced to match the selected
distributions by establishing a two-player adversarial min-max game between the
discriminator and the generator/encoder. [17]. The circles represent adversarial
loss, while Xr represents the reconstruction.

The number of clusters does not determine or depend on the labels or classes the
network can predict. The TLS-AAE, trained in an unsupervised fashion, uses
the classes as a way to utilize the latent space more efficiently.

By utilizing the discrete variable y, the TLS-AAE can output what it con-
siders the best cluster for each input. The clusters are used in a cost function;
the cost function is added to the cluster variable (logits l), and it penalizes small
Euclidean distances between any two points belonging to different clusters. If the
distance between cluster boundaries is over a chosen threshold, it is set to zero.
Since the TLS-AAE uses a Gaussian distribution as the continuous distribution,
the cluster threshold is set to the length of three standard deviations to ensure
that the probability of outlier variants between clusters is minimized. Equation
1 is the cost function, where C is a set containing point sets for each cluster,
and dmin is the desired minimum distance between any two clusters.

L(C, dmin) =
1

|C|
∑

x∈Ci

∑

y∈Cj , i �=j

max {0, dmin − ||x− y||2} (1)
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By utilizing several different optimization targets the latent space can be
constructed to approximate what the authors believe are reasonable assump-
tions about the nature of TLS connections. This reasoning stems from the idea
that the TLS traffic can be divided into several categories depending on the ap-
plication responsible for generating it; web browsing, music streaming services,
and malware should form distinct clusters. The anomaly detection is done by
calculating the squared Euclidean distance between the input and output image.
Squared error magnifies larger errors while disregards small ones.

3 Analysis Pipeline

The TLS-AAE was implemented as a part of an analysis pipeline for evaluat-
ing real-world performance and suitability. The implementation was made using
open source software frameworks. The pipeline works in any network where the
traffic can be mirrored for the analysis system for inspection. Figure 3 illustrates
the architecture of the pipeline. The line consists of two main components, the
preprocessing pipeline and the machine learning model.

3.1 Data processing

In the start of the pipeline, a slightly modified version of Suricata IDS soft-
ware [23] was used for constructing network flows from the individual mirrored
packets. The modification to Suricata software was made for collecting individual
packet timings for each flow.

The main pipeline functionality was implemented using Apache Kafka [1] as
a message queue. Suricata was configured to send the flows to one of the Kafka
topics. From there, the flows are consumed using Apache Spark [2] platform
running a custom preprocessing and feature extraction script. The extracted
features are then sent back to Kafka, and delivered to the machine learning
algorithm. In the final step of the pipeline the TLS-AAE returns the anomaly
scores back to Kafka, after predicting the anomaly score.

The Apache Spark platform was used for extracting the needed features from
flows. It was used for flow filtering, flow aggregation, and wavelet calculation by
writing a custom script. The script filters all the flows that are not TLS traffic
and aggregates the flows using a time window. The aggregation joins flows in a
specified time window using source IP, destination IP, destination port and JA3
hash6. The JA3 hash is used in aggregation to separate different applications on
a host.

The flows include the timing and size information for every packet. Packet
timings are reduced from microseconds to seconds in accuracy to reduce unnec-
essary computational complexity. The packet timings and sizes are made into
an impulse signal, where the received packets have negative values, sent packets
positive values, the impulse values being the packet sizes. The signal is zero-
padded from both ends so that the length of the signal is power of two and the

6 https://github.com/salesforce/ja3
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minimum length is reached. The minimum length of the signal depends on how
many layers from the wavelet transformation are needed.

The wavelet transform is calculated for the signal using the Haar mother
wavelet. Only the last N layers of the transform result are maintained so that
all the results are of the same size regardless of the original signal length. The
wavelet result is then transformed to an X x Y matrix. The transformation is
made so that the results are easy to visualize. Absolute values are taken from the
coefficients and the matrix values are normalized per matrix. The matrix is made
in a way that each detail coefficient value populates equal amount of elements
in the matrix. Figure 1 shows the matrix transformation visualized as an image.
The color in the image represents the element value. The lower squares in the
image represent the higher frequencies and the position from the left represents
in which time the frequency has happened in the signal.

The results are sent back to Kafka where the machine learning algorithm can
consume it and produce the anomaly score as the result.

Kafka

Topics

Suricata

Mirrored traffic

Network

Suricata flows

Spark cluster

Feature vectors

ML model
Anomaly scores

Fig. 3: Architecture of the implemented IDS solution

3.2 Dataset

A relevant and modern dataset is required for training, testing, and evaluating
a IDS solution. Although some public datasets, such as the DARPA intrusion
detection evaluation dataset [16] exists, they tend to be dated and not suitable
for modern research. They lack both up-to-date cyber attacks, and modern traffic
profile.

Since 2013 the Finnish national cyber security exercise has been conducted
using the RGCE Cyber Range. In 2018 the exercise was organized by The Min-
istry of Defence, The Security Committee, and JAMK University of Applied
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Sciences. The exercise is a large-scale live cyber security exercise, with more
than 100 individuals from different national security authorities exercising co-
operation during the cyber incidents. [18]

The data set used in this study was created from network traffic captured
during the exercise. The whole traffic capture, at full packet level, consists of
over 100,000,000 network flows from which a subset of 56,408,665 flows were
captured from a place where anomaly traffic was present. This subset was used
to create the training and testing data sets. The data set contains 729,998 flows
that are TLS traffic, of which 665 flows are malicious.

The flows contain both human and auto-generated web browsing traffic, au-
thentication portal logins, automatic updates of software, e-mail protocols that
use TLS, and other common benign activity. Malicious flows were generated by
Meterpreter, Empire, or CobaltStrike.

3.3 RGCE Cyber Range

The Realistic Global Cyber Environment (RGCE) is a holistic cyber range suit-
able for various tasks such as training, exercises, research and development.
RGCE mimics the structure and traffic of real Internet. For example, ISP tiers
are emulated using real hardware and structure. Network distances and laten-
cies reflect those in real world, up to including packet losses. The network traffic
of RGCE Cyber Range is generated according to a realistic end user traffic
model, which augments the traffic generated by humans. RGCE includes indus-
try specific organization environments, with complex deployments. For example,
financial organization, electricity company and Internet service providers all have
realistic AD infrastructure, SCADA systems, and other specialized production
assets. [12, 11]

4 Results

The evaluation of the performance was made by using the receiver operating
characteristic (ROC) curve by plotting the true positive rate (TPR) to y-axis
and false positive rate (FPR) to x-axis [24]. Overall, the following characteristics
were considered: TPR, FPR, and accuracy [24, 19].

For evaluation of TLS-AAE, the prediction results were compared against a
traditional autoencoder. The performance characteristics are listed in Table 1
and ROC curves are plotted in Figure 4.

Method TPR FPR Accuracy

TLS-AAE 95% 36% 65%
Plain autoencoder 97% 47% 55%

Table 1: Performance characteristics
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(a) Traditional autoencoder

(b) TLS-AAE

Fig. 4: Receiver operating characteristic curves for both plain autoencoder and
the TLS-AAE. Best thresholds are based on the best ratio.

The results indicate that the TLS-AAE achieves similar TPR as the plain
counterpart. However, the FPR is considerably lower, resulting in better accu-
racy. The input image of the autoencoder is 128x128 pixels and the grayscale
values vary between 0 and 255 integers. Both autoencoders have two dense lay-
ers of 2048 units in both encoder and decoder. The bottleneck of the adversarial
autoencoder consists of 10 dimensional latent and 20 dimensional cluster lin-
early activated variables. For consistency, the traditional autoencoders latent is
30 dimensional. The output of the decoder uses sigmoid activation to map the
decoded values between 0 and 1.
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5 Discussion

Based on the findings, the Haar wavelet transform seems to provide adequate
representation on the nature of the TLS connections in the dataset, allowing
categorization. Time window aggregation of distinct but related TLS flows cap-
tures malicious programs that infrequently poll the C2 server, opening a new
TLS connection each time.

Considering that the connections were encrypted and only the size and timing
information was available for analysis, the unsupervised TLS-AAE was able to
construct a relatively representative latent space. Even though the dataset is
relatively extensive in size, the variance of the flows is constricted. The relatively
high false positive rate is partly explained by non-malicious outliers. The number
of false positives can be drastically lowered by augmenting the results with other
means of traffic analysis, such as IP / domain reputation.

The modified Suricata IDS, Spark, Kafka, and TensorFlow – in combination –
proved to be a working base for an IDS solution. As Suricata can either process
live mirrored traffic or replay an existing packet capture, developing models using
the platform is relatively straightforward process.

6 Conclusion and Future Work

In this study Haar wavelet transforms and adversarial autoencoders were applied
for constructing an anomaly detection based network intrusion detection system.
For evaluation, a data pipeline based on open source software, including Suricata
IDS, TensorFlow framework, Kafka message bus, and Spark framework, was
constructed.

Network data from Finnish national cyber security exercise was used for the
evaluation of the proposed model. The data was also used for finding and engi-
neering suitable features for encrypted TLS connections. The test data included
various attack vectors made by malware and exploitation frameworks.

Future work includes a more thorough statistical analysis on the TLS-AAE’s
latent space and its structure. Possible avenues of expansion are combining the
current model with a more sophisticated predictor network. The wavelet trans-
form and its applicability for TLS traffic analysis should be also further studied.
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Institute of Information Technology, JAMK University of Applied Sciences,
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antti.mäkelä}@jamk.fi

Abstract. Increasing amount of attacks and intrusions against net-
worked systems and data networks requires sensor capability. Data in
modern networks, including the Internet, is often encrypted, making clas-
sical traffic analysis complicated. In this study, we detect anomalies from
encrypted network traffic by developing an anomaly based network intru-
sion detection system applying neural networks based on the WaveNet
architecture. Implementation was tested using dataset collected from a
large annual national cyber security exercise. Dataset included both le-
gitimate and malicious traffic containing modern, complex attacks and
intrusions. The performance results indicated that our model is suitable
for detecting encrypted malicious traffic from the datasets.

Keywords: Intrusion Detection · Anomaly Detection · WaveNet · Con-
volutional Neural Networks

1 Introduction

Intrusion detection systems (IDS) are divided into two categories: anomaly-based
detection (anomaly detection) and signature-based detection (misuse detection).
Anomaly-based-detection can be applied without pre-recorded signatures for un-
known attack patterns and even for encrypted network traffic, however the weak-
ness for anomaly detection is the high amount of false positive detections [3, 13].

Machine learning techniques have recently been applied successfully to net-
work anomaly detection and classification [6]. Bitton and Shabtai in [1] have
studied machine learning based IDS for Remote Desktop Protocols (RPD). Dif-
ferent machine learning techniques have been applied, e.g. Wiewel and Yang used
Variational Autoencoder in their study [28], Chen et al. used Convolutional Au-
toencoder [2] while Long Short-Term Memory (LSTM) and Gated Recurrent
Unit methods are used in the paper [6]. Paper [23] presents technique for in-
creasing detection accuracy with feedback.

In our earlier study [19], we used Haar wavelet transforms and Adversarial
Autoencoders (AA) [10] for implementing unsupervised network anomaly de-
tection based IDS. Our earlier model, described in [19], had reasonable good
operational characteristics; in this study we strived to improve it using alterna-
tive modeling approach. As argument of efficiency, numerical results are com-
pared with the earlier results using the same dataset from Finland’s National
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Cyber Security Exercise [12]. Performance characteristics are also accomplished
using publicly available reference intrusion detection evaluation dataset (CI-
CIDS2017) [27].

Our study presents state-of-the-art network anomaly detection based intru-
sion detection system that exploits deep learning method WaveNet [15]. First, in
section 2, this paper describes implemented anomaly detection method includ-
ing feature extraction and analysis method. Then, in section 3, we introduce
experimental results for the performance characteristics of our model and finally
there are conclusions with found future research topics.

2 Anomaly Detection Method

2.1 Dataset

According to Nevavuori and Kokkonen [14], a network anomaly detection data
set must (i) include network traffic data and (ii) host activity data, (iii) multiple
scenarios, (iv) be representative of real-world circumstances, and (v) the format
of the data must be usable.

Since many publicly available datasets already exist [20], we decided to utilize
them in this research. Although notable public datasets, such as the KDD99 [25]
and DARPA datasets [7–9] exist and are used in many existing network intrusion
detection research, they are very old, and many researches have directed a lot of
criticism against them [11, 24]. The main problem is that datasets do not include
modern threat and attack patterns with required statistical characteristics nor
sophisticated and modern architectures [14, 26, 4, 22]. In many datasets the raw
data is already processed into network flows losing the information of individual
packet timings. Fortunately, in addition to the processed flow data, some datasets
include the raw packet captures.

The Intrusion Detection Evaluation Dataset (CICIDS2017) by the Canadian
Institute for Cybersecurity [27] is one of the more modern publicly available
datasets. Although the dataset was created with a traffic generator, it was mod-
eled after modern real-world network traffic. It includes benign HTTPS network
traffic and therefore is suitable for research concerning encrypted communica-
tion. Unfortunately, the dataset does not include many TLS based attacks, which
form a sizable amount of modern malware control channels.

We decided to use the benign traffic from the CICIDS2017 dataset as clean
traffic during the model development and testing, but because the anomalous
traffic in the dataset was not large enough, more anomalous traffic was required.
We generated additional anomalous traffic in our own environment using Empire
PowerShell post-exploitation agent 1 and Cobalt Strike 2; both are adversary sim-
ulation frameworks that use real-world malware characteristics. A small amount
of benign traffic was also generated in the environment. The benign traffic was

1 https://www.powershellempire.com/
2 https://www.cobaltstrike.com/
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generated by controlling Windows virtual machine using a scripted bot that op-
erated normal GUI software with virtual mouse and keyboard aided by computer
vision. This data was used in the evaluation to make sure that the environments
are compatible enough so that our generated benign traffic is not classified as
anomalous with the model that is trained with the CICIDS2017 benign data.

In addition to the CICIDS2017 dataset and the self-generated dataset, the
final model was also tested with the Finland’s National Cyber Security Exercise
dataset (FNCSE2018), also used in our previous publication [19]. This dataset
was used to get comparable results to our previous research. RGCE Cyber Range
(Realistic Global Cyber Environment) is used for research and development or
training and exercises. In the RGCE Cyber Range main structures and services
of the real Internet are modeled with the realistic user traffic patterns of users.
RGCE offers tailored organization environments with real assets [5]. Finland’s
National Cyber Security Exercise is conducted annually in the RGCE Cyber
Range. Network data from the real Cyber Security Exercise conducted in the
RGCE Cyber Range includes realistic complex environment and legitimate net-
work traffic mixed with modern attack patterns for testing the capabilities of
Intrusion Detection System capability. [12] In this study we were authorized to
use the traffic captures from Finland’s National Cyber Security Exercise of 2018.

2.2 Feature Extraction

Our research focused on finding the anomalies based on packet timing patterns.
This choice was made to accommodate encrypted command and control chan-
nels modern malware use. Traditional deep inspection techniques and statistical
analyses that utilize payloads are incompatible with modern security landscape,
made e.g. decrypting proxies obsolete due to various certificate pinning features.
In this project we used a modified version of Suricata IDS software [18] to pro-
cess the raw packet capture files into parsed network data. The modification in
the software allowed the packet timings information to be extracted from packet
capture files along with the parsed data.

The CICIDS2017 dataset includes the raw packet captures in addition to la-
beled processed flow data. Since the processed flow data does not include packet
timings, the raw data had to be reprocessed to flow data with the modified
Suricata software. The processed flows were then labeled by joining the flows to
the CICIDS2017 flow labels by matching flow timestamps, IP addresses and net-
work ports. The result was labeled flows from the CICIDS2017 dataset including
packet timings. Because our system used different software for packet capture to
network flow conversion from the one used in CICDS2017, the resulting flows did
not match exactly, resulting in lost flows. Only the flows that matched correctly
between Suricata processed flows and CICDS2017 labeled flows were retained
in the dataset. Based on the flow label, the dataset was then split to anomaly
and benign flows. All the flows that did not have benign label were treated as
anomalies. The final processed CICDS2017 dataset included 1,425,742 flows, of
which 1,107,695 were labeled as benign flows, and 318,047 flows were labeled as
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non-benign flows. From the 1,107,695 benign flows, 307,771 were TLS flows. Orig-
inally the Suricata processed CICIDS2017 packet capture files included 1,956,363
flows, so 530,621 flows did not find matching flow in the CICIDS2017 flow label
files. This can be almost certainly accounted on the poor quality of the flow
label files in CICIDS2017 dataset. The files include a duplicate entry for most
of the flows and the flow timestamps are recorded in a minute accuracy with an
ambiguous 12-hour clock format.

The FNCSE2018 dataset and our self generated datasets were processed in
the same way. The labels were assigned by hand based on known origin and
destination addresses of the attacks. The FNCSE2018 dataset included 715,158
benign TLS flows, and 653 non-benign TLS flows. The self generated dataset
included 15,124 benign flows and 7,991 non benign flows.

The resulting flows were then further processed by calculating timing differ-
ences between packets. The final features for one packet in a flow were: packet
direction, time difference to next received packet, time difference to next trans-
mitted packet and packet size. The timing differences varied from microseconds
to minutes with most of the differences being very small. Because our model
required quantization of the input data, the timing differences were scaled with
the common logarithm to better utilize the reduced quantization precision. The
packet sizes were scaled in similar way for the same reason. This choice is war-
ranted, because in network traffic large delays are often the result of an unrelated
problem, and not an inherent feature of the protocol in question. Although many
protocols, including malware command channels, may use delays and timers,
there usually is no reason to keep using the same flow. Packet sizes follow the
same scaling principle, the maximum size being the MTU of the path. Small
packet sizes and the variation therein are are likely to be indicative of the in-
trinsic properties of the protocol, unlike the variation near the MTU. This is
especially apparent in many malware communication protocols, which often use
fixed size binary messages. The aforementioned adversary simulation frameworks
also exhibit this phenomenon.

2.3 Multi-feature WaveNet

The network traffic was analyzed with a deep neural network model based on the
WaveNet [15] architecture, illustrated in the Figure 2. WaveNet was chosen as
a basis for our model for its capability to directly interface with variable length
sequential data. This enables us to feed complete and unreduced sequences to
the model. We utilized this trait to predict network traffic connections of varying
length packet by packet.

The primary task of the model is to predict the next sample by using prior
samples. The core network structure consists of a variation of the WaveNet ar-
chitecture configured for multiple features. The modified WaveNet is extended
to utilize two-dimensional dilated causal convolutions; input data is arranged
into a two-dimensional lattice, discrete time steps forming the first dimension
and individual sample features along the other dimension. Dilated convolutions
expand the receptive field of the network exponentially [29], giving the model a
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potential to observe long term temporal dependencies. Dilation of convolutions
is only performed along the time axis of the data, as the receptive fields are ex-
ceedingly large and thus not optimal for the relatively small fixed length feature
axis. The causality aspect of the convolutions is used to assert an ordered time-
dependency on the input data: predicted samples may only depend on preceding
input samples. We implemented the causality by padding the beginning of the
sequence by the filter size in the first layer and by (filter size−1)×dilation rate in
the subsequent layers, effectively shifting the convolution operations. The causal
layer stack is visualized in Figure 1.

Fig. 1: Visualization of the models two-dimensional dilated causal layers and the
first causal layer.

The input variables are quantized to n bins, continuous and discrete variables
alike, matching the practice used in WaveNet [15] as well as PixelRNN [16]. As
the length of the input data varies with each example, a special end of sequence
value is used to represent sequence termination. The network utilizes a dis-
cretized mixture of logistic distributions, as described in PixelCNN++ [21] and
Parallel WaveNet [17]. We found this to perform slightly better when compared
to a more classical soft-max layer.

The individual residual layers follow closely the structure present in WaveNet.
Unlike the WaveNet architecture, we included a dropout layer before each dilated
convolution layer as shown in Figure 2. Applying dropout inside each residual
layer has been previously explored in PixelCNN++ [21] and Wide Residual
Networks [30].

To distinguish anomalous data from benign data, an anomaly score is quan-
tified from the network outputs with a single forward pass, effectively avoiding
the downside of slow sampling of the WaveNet model. In our approach, we com-
puted the training loss contributions for each sample in the input sequence. The
overall anomaly score of the whole sequence was the mean of these loss values,
with samples past the end of sequence marker masked out to account for different
length of sequences.
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Fig. 2: The architecture is similar to the original WaveNet [15], with the exception
of a dropout layer between all dilation layers and exclusive weights between
residual and skip connections.

3 Experimental Results

For the numerical results, we created receiver operating characteristic (ROC)
curves by plotting the true positive rate (TPR) to y-axis and false positive rate
(FPR) to x-axis. As a comparable score we also calculated the area under curve
(AUC) from the ROC.

Training Dataset Evaluation Dataset AUC

CICIDS2017 CICIDS2017 97.11%
CICIDS2017 Our TLS anomalies 99.48%
CICIDS2017 CICIDS2017 + Our TLS anomalies 96.81%
FNCSE2018 FNCSE2018 91.61%

Table 1: Area under curve scores for four different evaluation dataset combina-
tions.

In order to model an anomaly detector we split the clean data from CI-
CIDS2017 and FNCSE2018 datasets into training and evaluation parts using
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80/20 ratio. We took 256 first packets from each flow and trained a model with
9 dilation layers (receptive field of 256), vertical filter size of 3 and horizontal
2, 128 filters each layer for ∼ 15 epochs while evaluating the model using the
evaluation part of the dataset to keep the model from over-fitting. During and
after the training we ran an evaluation where we included the anomaly data to
validate the anomaly detection capability of the model. Since the CICIDS2017
dataset lacks TLS anomalies we ran the evaluation three times to validate the
model against the included CICIDS2017 anomalies, our TLS anomalies and a
mixture of both. The resulting AUC scores are listed in Table 1. The FNCSE2018
training and evaluation datasets include only TLS encrypted connections.

(a) CICIDS2017 Anomalies (b) Our TLS Anomalies

(c) CICIDS2017 and TLS Anomalies (d) FNCSE2018

Fig. 3: Receiver operating characteristic curves on the four datasets we used to
evaluate the model.

From the results in Figure 3 we concluded that the model is capable of detect-
ing anomalies in both datasets, while also retaining the capability of detecting
anomalous connection with TLS encryption. The model also performs signifi-
cantly better than our earlier model [19], which had 80% AUC whereas the new
model got 91.61% AUC on the same dataset.
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4 Conclusion

In this study we applied the WaveNet and PixelCNN models for constructing an
IDS based on anomaly detection. For the feature extraction and data process-
ing, an open source software -based data pipeline was constructed. We utilized
network data from Finland’s National Cyber Security Exercise as well as public
reference dataset CICIDS2017. The combined dataset was relatively extensive,
although further efforts should be made to include a more diverse selection of
applications and web browsing activities.

Results suggest that the machine learning model is suitable for detecting
malicious command and control channels from TLS encrypted connections. The
model is able to circumvent issues arising from samples of various lengths, and
quantize timing and packet size differences into ranges suitable for neural net-
works.

Future work includes a conditioned WaveNet, variational or adversarial en-
coder to self-condition the WaveNet, and further testing on possible anomaly
scores. Furthermore, visualization methods of found network anomalies should
be studied for achieving better situational awareness in operative environments.
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19. Puuska, S., Kokkonen, T., Alatalo, J., Heilimo, E.: Anomaly-Based Network In-
trusion Detection Using Wavelets and Adversarial Autoencoders. In: Lanet, J.L.,
Toma, C. (eds.) Innovative Security Solutions for Information Technology and
Communications. pp. 234–246. Springer International Publishing, Cham (2019)

20. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A Survey of
Network-based Intrusion Detection Data Sets. Computers & Security 86, 147 –
167 (2019). https://doi.org/10.1016/j.cose.2019.06.005

21. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: PixelCNN++: Improving
the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modi-
fications. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017 (2017), https://openreview.net/references/
pdf?id=rJuJ1cP l

22. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward devel-
oping a systematic approach to generate benchmark datasets for in-
trusion detection. Computers and Security 31(3), 357–374 (may 2012).
https://doi.org/10.1016/j.cose.2011.12.012

23. Siddiqui, M.A., Stokes, J.W., Seifert, C., Argyle, E., McCann, R., Neil, J., Car-
roll, J.: Detecting Cyber Attacks Using Anomaly Detection with Explanations
and Expert Feedback. In: ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 2872–2876 (May 2019).
https://doi.org/10.1109/ICASSP.2019.8683212

24. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A Detailed Analysis of the
KDD CUP 99 Data Set. In: Proceedings of the Second IEEE International Con-
ference on Computational Intelligence for Security and Defense Applications. pp.
53–58. CISDA’09, IEEE Press, Piscataway, NJ, USA (2009), http://dl.acm.org/
citation.cfm?id=1736481.1736489

25. The University of California Irvine (UCI): KDD Cup 1999 Data. http://
kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, accessed: 29 April 2019

26. Umer, M.F., Sher, M., Bi, Y.: Flow-based intrusion detection: Tech-
niques and challenges. Computers and Security 70, 238–254 (2017).
https://doi.org/10.1016/j.cose.2017.05.009

27. University of New Brunswick, Canadian Institute for Cybersecurity: Intrusion De-
tection Evaluation Dataset (CICIDS2017). https://www.unb.ca/cic/datasets/ids-
2017.html, accessed: 30 April 2019

28. Wiewel, F., Yang, B.: Continual Learning for Anomaly Detection with Varia-
tional Autoencoder. In: ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 3837–3841 (May 2019).
https://doi.org/10.1109/ICASSP.2019.8682702

29. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions.
CoRR abs/1511.07122 (2016), https://arxiv.org/pdf/1511.07122.pdf

30. Zagoruyko, S., Komodakis, N.: Wide Residual Networks. In: Richard C. Wil-
son, E.R.H., Smith, W.A.P. (eds.) Proceedings of the British Machine Vi-
sion Conference (BMVC). pp. 87.1–87.12. BMVA Press (September 2016).
https://doi.org/10.5244/C.30.87



 

 

 
 
 

P7 
 
 

STATISTICAL EVALUATION OF ARTIFICIAL  
INTELLIGENCE -BASED INTRUSION DETECTION SYSTEM 

 
 
 

by 
 

S. Puuska, T. Kokkonen, P. Mutka, J. Alatalo, E. Heilimo & A. Mäkelä 2020 
 
 

In: Rocha Á., Adeli H., Reis L., Costanzo S., Orovic I., Moreira F. (eds)  
Trends and Innovations in Information Systems and Technologies 
WorldCIST 2020. Advances in Intelligent Systems and Computing, 

 vol 1160 pp. 464–470. Springer, Cham.  
 

https://doi.org/10.1007/978-3-030-45691-7_43 
 
 

Reproduced with kind permission by Springer. 
 

https://doi.org/10.1007/978-3-030-45691-7_43


     
    
    
    
     

 

PLEASE NOTE! THIS IS PARALLEL PUBLISHED VERSION /  
SELF-ARCHIVED VERSION OF THE OF THE ORIGINAL ARTICLE 
 
This is an electronic reprint of the original article.  
This version may differ from the original in pagination and typographic detail. 
 
Author(s): Puuska, S., Kokkonen, T., Mutka, P., Alatalo, J., Heilimo, E. & Mäkelä, A. 
 
Title: Statistical Evaluation of Artificial Intelligence -Based Intrusion Detection System 
 
Year: 2020 
  
Version: final draft 
 
 
Please cite the original version: 
 
Puuska, S., Kokkonen, T., Mutka, P., Alatalo, J., Heilimo, E. & Mäkelä, A. (2020) Statistical Evaluation of 
Artificial Intelligence -Based Intrusion Detection System. In Rocha Á., Adeli H., Reis L., Costanzo S., Orovic 
I., Moreira F. (eds.) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. 
Advances in Intelligent Systems and Computing, vol 1160. Springer, Cham.  
 
DOI: https://doi.org/10.1007/978-3-030-45691-7_43 
 
URL: https://link.springer.com/chapter/10.1007%2F978-3-030-45691-7_43 
 
 
 



Statistical Evaluation of Artificial Intelligence
-based Intrusion Detection System

Samir Puuska, Tero Kokkonen, Petri Mutka, Janne Alatalo, Eppu Heilimo, and
Antti Mäkelä
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Abstract. Training neural networks with captured real-world network
data may fail to ascertain whether or not the network architecture is
capable of learning the types of correlations expected to be present in
real data.
In this paper we outline a statistical model aimed at assessing the learn-
ing capability of neural network-based intrusion detection system. We
explore the possibility of using data from statistical simulations to ascer-
tain that the network is capable of learning so called precursor patterns.
These patterns seek to assess if the network can learn likely statistical
properties, and detect when a given input does not have those properties
and is anomalous.
We train a neural network using synthetic data and create several test
datasets where the key statistical properties are altered. Based on our
findings, the network is capable of detecting the anomalous data with
high probability.

Keywords: Statistical Analysis, Intrusion Detection, Anomaly Detec-
tion, Network Traffic Modeling, Autoregressive Neural Networks

1 Introduction

Neural networks are being increasingly used as a part of Intrusion Detection
Systems, in various configurations. These networks are often trained in ways that
include both legitimate and malicious recorded network traffic. Traditionally, a
training set is used to train the network, while another set of samples is used to
assess the suitability of the proposed architecture. However, further assessment
of the network architecture depends on knowing what statistical properties the
network can learn, and how it will react if these properties change.

In this paper, we present a way to estimate if a network has the capability
of learning certain desired features. Our analysis approach is to ascertain that
the network can learn precursor patterns, i.e. patterns that are necessary but
not sufficient conditions for learning more complex patterns of the same type.
The goal is to supplement traditional sample-based learning with synthetic data
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variants that have predictable and desirable statistical properties. This synthetic
data can then be used both to increase the dataset and to address known biases
that often arise when collecting real-world data traffic.

Certain real-life phenomena, such as network traffic, can be considered to
have known intrinsic properties due to their artificial nature. In communication
protocols, for example, certain hard limits must be observed for achieving any
successful communication. Although protocols are sometimes abused for mali-
cious purposes, there are still limits as to how extensive the effect can realistically
be. On other occasions, there are limits on how much any given feature can be
expected to correlate with anomalies. However, a combination of these weakly-
correlated features may, if they form a specific pattern, signal for an anomaly.
In artificial systems, it is sometimes possible to distinguish correlation from cau-
sation, and therefore make more intelligent predictions by considering only the
direction that is actually feasible.

Based on their basis of analysis, there are two classes of Intrusion Detection
Systems (IDS): anomaly-based detection (anomaly detection) and signature-
based detection (misuse detection). Anomaly-based detection functions with-
out earlier gathered signatures and are effective even for zero-day attacks and
encrypted network traffic. There are various machine learning techniques imple-
mented for classifying anomalies from network traffic but still, some flaws exist;
a high amount of false alarms and low throughput [2, 6, 5].

In our earlier studies, we implemented two anomaly-detection based IDSs
that utilized deep learning. Our first model was based on wavelet transforms
and Adversarial Autoencoders [8]. That model was improved with a WaveNet [7]
based solution [4]. In this paper, we perform a statistical experiment for deter-
mining the performance of a WaveNet based IDS system.

2 Method

We begin by outlining a statistical model which complies with our research
goals. As stated, the idea is to construct a statistical distribution which contains
so-called precursor or proto-elements of the actual phenomenon. The aim here
is to ascertain that the network is capable of learning simpler versions of the
relationships expected to be present in the real data.

Network protocols have a certain degree of predictability. As previously
stated, we can state certain hard limits for the features we have selected. Our
model is designed to work with the Transport Layer Security (TLS) protocols,
as encrypted HTTP traffic is a common communication channel for malware.

We can identify various types of noise that usually occurs in the networks.
The model should be resistant to this type of noise, as we know it arises due
to the nature of data networks and is likely not associated with the type of
anomalies we are interested in.

Based on this reasoning we have constructed a model that incorporates three
distributions modeling i) packet size, ii) packet direction, and iii) packet timings.
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One packet is modeled using these three features. The packet structure is illus-
trated in Figure 1. A connection consists of 250 packets (vectors), where timings
are expressed using time differences to the next packet.

d
L
t ...

d
L
t

d
L
t

d
L
t

x1 x2 x3 xmax

Fig. 1: Visual description of a single connection. Each packet consists of a vector
that contains three elements: packet direction, packet size, and time difference
to the next packet.

2.1 Packet size and direction

Based on the findings by Castro et al. [1], we model the packet size using the
Beta distribution (α = 0.0888, β = 0.0967). We enforce two strict cut off points:
the minimum (15) and maximum (1500). This reflects the packet size constraints
that networking protocols impose on packet size.

Packet direction is determined using the packet size. This models the real-
world phenomenon where the requests are usually smaller than the responses.
In the model packet direction, there is a binary value determined by packet size
L; packets smaller than 30 are outgoing and larger than 1200 are incoming. If
the size is 30 < L < 1200, the direction is decided randomly.

2.2 Packet timing

Various separate processes affect packet timing: the nature of the protocol or data
transfer type determines how fast packets are expected to be sent or received.
For example, fetching an HTML page via HTTP creates a burst of packets going
back and forth; however, malware that polls a Command and Control server at
late intervals (for example hourly) may send just one packet and get one in
response. However, a considerable amount of variance is expected when systems
are under a high load or there is a network issue. Therefore, not all anomalies
in the timing patterns are malicious in nature.

Since we do not need to model the traffic explicitly, we use a packet train
model [3] inspired composite Gaussian distribution model for creating packet
timings. Originally, the packet train model was designed for categorizing real-
life network traffic, not for generating synthetic network data.
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For the relevant parts, the packet train model is characterized by the following
parameters; mean inter-train arrival time, mean inter-car arrival time, mean
train-size. We capture the similar behavior by combining two normal probability
density functions in range x ∈ [a, b] as:

f(x) ≡ f(x;μ1, μ2, σ1, σ2, w1, w2, a, b) =⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < a

R√
2π

[
w1

σ2
1
exp

(
− (x−μ1)

2

2σ2
1

)
+ w2

σ2
2
exp

(
− (x−μ2)

2

2σ2
2

)]
if a ≤ x ≤ b

0 if x > b

, (1)

where R is normalization constant that is calculated from normalization condi-
tion for total probability. In (1), μ1 and μ2 are mean values for sub-distributions
( μ1 < μ2) , and σ1 and σ2 are relevant variances. Sub-distributions have relative
weights w1 and w2.

We chose to use a semi-analytical probabilistic model since it is easier to
parameterize and understand than more generic Markov models. Our model
captures the most relevant properties of the train packet model; roughly mean
inter-train arrival time ∝ μ2, mean inter-car arrival time ∝ μ1, and mean train
size ∝ w1/w2. Corresponding cumulative distribution function can be expressed
with complementary error functions and solved numerically for generating ran-
dom number samples with desired statistical properties.

2.3 Scoring

Since our neural network is trained by minimizing the mean of minibatches dis-
cretized logistic mixture negative log-likelihoods [9], we can detect the anomalous
connections by observing the mean negative log-likelihood of the feature vectors
in a single sample. Moreover, we introduce the different types of anomalies in
varying quantities to the dataset to evaluate the neural network’s sensitivity and
behavior.

2.4 Tests

We trained the neural network using data formed by previously described clean
distributions. The size of the training set was 160000 samples. We reserved an
additional 40000 unseen samples for the evaluation.

The test procedure consists of generating samples where the parameters are
drawn from a different distribution than the training data. These ”anomalous”
samples are mixed with the evaluation data to form ten sets where the percentage
is increased from 10% to 100%. Each of these datasets is evaluated using the
neural network and the changes in the mean anomaly score are observed in
Table 1, which describes the three types of alterations made to the samples. The
alterations were chosen because they represent different correlations; namely,
the directionality is determined between two features inside one packet, whereas
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the change in timing distribution is spread out between packets and does not
correlate with other features inside a particular vector. This approach is expected
to test the network’s capability to detect both kinds of correlations.

Test Description

Direction This test swaps the directionality decision criteria. Small
packages are now incoming and large outgoing. The area
where the directionality is randomly determined stays the
same.

Time This test replaces the bimodal distribution on packet timing
with unimodal Gaussian distribution μ = 50, σ = 80. The
cut-off points remain the same.

Combined The test combines both alterations to the dataset.

Table 1: Descriptions of the alterations.

3 Results

The results indicate that the network learned to detect anomalous data in all
three datasets. The results are illustrated in Figure 2. As the figure indicates,
the anomaly score keeps increasing with the percentage of ”anomalous” data.

Packet direction seems to have an almost linear increase in the anomaly score,
whereas changes in time distribution result in a sudden jump, after which the
score keeps increasing relatively modestly. The combined data exhibits both the
starting jump and the linear increase. This is a desired outcome, as it indicates
that the anomaly score reflects the change in data in a stable fashion.

In summary, the network was able to learn the properties outlined in the
previous sections. The results indicate that the network can detect correlation
inside the vector, as well as between vectors. This outcome supports the no-
tion that a neural network structured in this fashion learns useful relationships
between the features.

4 Discussion

When constructing a machine learning solution for anomaly detection, the avail-
able data may not be suitably representative. This situation may arise, for ex-
ample, when collecting or sampling the dataset in a statistically representative
way is impossible for practical reasons. It is not feasible to expect a statisti-
cally representative sample of all possible network flows, even when dealing with
one application. Moreover, the data in networks may exhibit correlations known
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Fig. 2: Plot of test results from each anomaly type. The horizontal axis indicates
the percent of samples that were altered. As expected, the mean anomaly score
on the vertical axis increases with respect to the amount of altered samples in
the test data.

to be unrelated to the type of the anomaly under examination. The statistical
properties of network data may fluctuate due to multiple factors.

By using synthetic data which contains correlations that are known to be
relevant, it is possible to verify whether or not the proposed network structure
is capable of detecting them in general. Moreover, the test may show how the
classifier reacts to the increase in variance. In an ideal case a classifier should be
relatively tolerant to small fluctuations; however, be able to reliably identify the
anomalous samples.

Future work includes refining the statistical procedures, as well as increasing
the complexity of correlations in test data. Further research will be conducted
on how the relationship between increasing variance and data are drawn from
different distributions affects the anomaly score, and how this information may
be used to refine the structure of the neural network classifier.
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A B S T R A C T : 
This study aims to find a list of methods to fool artificial neural networks used 
in medical imaging. We collected a short list of publications related to ma-
chine learning model fooling to see if these methods have been used in the 
medical imaging domain. Specifically, we focused our interest to pathological 
whole slide images used to study human tissues. While useful, machine learn-
ing models such as deep neural networks can be fooled by quite simple at-
tacks involving purposefully engineered images. Such attacks pose a threat to 
many domains, including the one we focused on since there have been some 
studies describing such threats. 
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Introduction 
Artificial Intelligence (AI) based solutions, especially deep learning based on 
neural networks, are widely used in the medical domain. For example, AI is used 
for helping and automatizing cancer diagnosis based on image data. The benefit 
of this approach is to relieve experts to work on more important tasks while 
automated systems can inspect images and give initial recommendations. 

If an attacker can fool the AI processing, ramifications can be devastating. 
Such attacks may result in incorrect treatment procedures, causing extreme 
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circumstances with a worst-case scenario of losing human lives. In addition, 
wrong diagnoses could undermine the public trust in medical professionals. This 
paper presents a short survey of model fooling attacks against neural networks 
in the medical domain. 

Fooling neural networks is an important subject because machine learning 
models are widely used in medicine for automating many processes and for 
helping with diagnosis. For example, Rai et al. proposed a convolutional neural 
network for healthcare assistant 29 while Rastgar-Jazi and Fernando used neural 
networks for detecting heart abnormalities from electrocardiogram (ECG) 
data.30 Similarly, authors of 31 used neural networks for prediction and preven-
tion of heart attacks from ECG data while Murugesan and Sukanesh used neural 
networks for detecting brain tumours in electroencephalograms (EEG) signals.24 
Syam and Marapareddy discussed three different scenarios of classification 
problems, where one is skin lesion (cancer) classification from images.34 As can 
be seen, these machine learning solutions are useful for many medical applica-
tions. 

Effectiveness of neural network based deep learning is based on the used 
algorithm and learning data. If learning dataset is inadequate or contains incor-
rect information, results will be inaccurate. Similarly, if there are known weak-
nesses in the used algorithm, they can be compromised. In that sense, AI com-
ponents can be attacked and fooled to behave incorrectly. As an example of a 
weakness, Afifi and Brown explore how white balance of photography impact 
the performance of deep neural networks,2 while authors of 21 generated ad-
versarial noise for fooling the neural networks. Gu et al. discussed about gradi-
ent shielding method for understanding the vulnerabilities in neural networks.13 
MOEA-APGA is an algorithm for achieving targeted attacks against neural net-
works,9 and another similar algorithm is called DeepFool implemented for com-
puting perturbations that fool neural networks.23 In a medical domain, Chuqui-
cusma et.al. studied about fooling radiologists for lung cancer diagnosis.8 As can 
be seen, many such attack vectors exist. 

As a powerful machine learning method, deep learning has also been applied 
to images related to pathology, for example, trying to classify images of cancer 
whole slide images (WSI). Serag et al. present an overview of the application of 
artificial intelligence for pathology and tissue analytics.32 As another example, 
convolutional neural networks have been used for nuclear segmentation, which 
is an important part of tissue cancer grading.18 Deliberately produced wrong 
segmentation could result in wrong diagnoses. Pre-trained convolutional neural 
networks have been compared to training from scratch using the Kimia Path24 
dataset, with results indicating that pre-trained networks are quite competi-
tive.15 Using such pre-trained models creates a possibility of hidden attacks 
trained into the model or abusing known deficiencies of such models. 

In this study, we collected a list of relevant research papers concerning med-
ical imaging and attacks against neural networks. We queried the publicly avail-
able Google Scholar database to identify publications relevant to deep neural 
network fooling, deep neural networks in medical imaging and deep neural 
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networks fooled in that domain. The results of this short survey should be useful 
for anyone trying to understand the vulnerabilities of neural networks in specific 
domains. Moreover, the use of them in medical imaging raises the question of 
reliability and robustness when targeted by such attacks. As can be seen, tar-
geted attack against neural networks in medical domain is a realistic scenario. 
From the attacker perspective, medical domain can be considered as a valuable 
target because of the critical ramifications of possible attack. In addition, there 
are known vulnerabilities with neural networks that are highly used in medical 
domain.  

Below, we present the medical imaging domain and then discuss about ma-
chine learning regarding that domain. Next sections describe the state of fooling 
deep neural networks and how it has been applied to the medical domain. Fi-
nally, we present our concluding thoughts. 

Short Introduction to Whole Slide Images in Cancer Diagnosis 
Quick and affordable laboratory cancer diagnosis methods are of great im-
portance. One of the well-established methods is light microscopy with a stain, 
such as haematoxylin and eosin (H&E). The H&E stain makes various tissue com-
ponents visible, allowing diagnosis based on e.g. their morphological features.14  

The advent of digital pathology and whole-slide imaging (WSI) have provided 
a computerized way to analyse and share the results of light microscopy. By 
digitizing the tissue images, a variety of automated methods can be used to per-
form image analysis, annotation, and workflow improvements. Turning glass 
slides to a digital format requires a slide scanner, which digitizes the slide using 
specialized format that allows e.g. various zoom levels and metadata to be 
stored in one data file. This data can then be easily shared, further processed 
using a variety of tools, and even easily used in teaching in a virtualized micros-
copy environment.1 

Distinguishing between benign and malignant tumours is essential for accu-
rate prognosis. One of the features that separate the two is differentiation and 
anaplasia. In general, benign tumours consist of cells that resemble the tissue 
where they originated from. They retain much of the functionality and morphol-
ogy of their non-transformed counterparts but may invade surrounding tissue. 
Malignant tumours, on the other hand, lose their resemblance to their normal 
counterparts and become undifferentiated (anaplastic). This change results in 
noticeable change in cell morphology, and it is possible to observe this using 
light microscopy and stains. These observable changes include variations in size 
and shape, nuclear abnormalities and atypical mitoses. Assigning a value to this 
differentiation is called grading. The criteria and schemes are dependent on the 
type of tumor.19 

For breast cancer, observing mitoses has been shown to be a good predictor 
for tumour development and prognosis. In order to proliferate, tumour cells 
need to overcome various limitations that prevent ordinary cells from dividing 
indefinitely. These mutations may result in increased cell-cycle activity, and 
even majorly affect the mitosis process itself by causing atypical-looking cell 
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divisions which may be visually observed using light microscopy.27 Figure 1 
shows an example of breast cancer WSI from Al-Janabi et al.4 

Detecting abnormal morphology and quantifying the number of various cell 
features is a good candidate for automatization via machine learning and com-
puter vision methods. WSI with sufficient quality can be automatically anno-
tated. Digital pathology is expected to improve convenience and quality of the 
process. Nam et al. provide an introduction to digital pathology aimed at 
healthcare professionals.25 Furthermore, Komura and Ishikawa made a short re-
view of machine learning methods for histopathological image analysis, listing 
seven whole slide image datasets and 21 hand annotated histopathological da-
tasets.16 

Figure 1: Example of WSI showing several breast resections with infiltrative ductal 
carcinoma.  
Figure courtesy of Al-Janabi et al.,4 distributed under the terms of the Creative Com-
mons Attribution License. 

Fooling Deep Neural Networks 
Deep neural networks and deep learning in general refers to a field of study, 
were complex concepts are learned from simpler representations by creating 
an interconnected network of activation functions and weights.11 Due to their 
nature, these networks may contain flaws which make them susceptible to var-
ious classes of errors. These imperfections may be used maliciously to force the 
network into making an erroneous prediction. There have been several success-
ful attempts at creating methods to fool deep neural networks.  
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One approach is to give an adversarial image as input to the classifier. Ngu-
yen, Yosinski and Clune used an evolutionary algorithm optimization method to 
generate unrecognizable images to the human eye. Those images fooled a neu-
ral network to classify them as an object with high certainty, even though it 
should not have. They describe these images as costly exploits that could be 
used against deep neural networks.26 Moosavi-Dezfooli, Fawzi and Frossard pro-
pose the DeepFool algorithm that efficiently generates adversarial images and 
quantifies the robustness of image classifiers.23 An adversarial image is wrongly 
classified as something else than what the image clearly represents to the hu-
man eye. In the paper, a slight perturbation was added to an image of an animal 
to misclassify a whale as a turtle. Furthermore, it is possible to create adversar-
ial 2D images robust to noise, distortion and affine transformations, and even 
adversarial 3D printed objects (a turtle).6 

Adversarial patches are images that can be placed inside another image to 
fool a neural network classifier. Brown et al. have shown the effectiveness of 
such images.7 It is easy to see that inserting such patches to medical images 
could yield similar results, resulting in a false classification. 

Research has already addressed cases of changing only one pixel of an image 
to cause it to be classified as another object.33 It is remarkable that a change of 
colour in one pixel could fool the neural network. A move towards a more the-
oretical understanding of one pixel-attacks and incorrect mapping to low di-
mensional manifold has also been proposed. This makes it easy to find localized 
areas where one-pixel attacks should be more effective.17 

Backdoored images can be created when attacking the learning stage of a 
neural network. These malign models can be deployed to production, and the 
fault is only revealed when the bad image is given as an input, resulting in wrong 
classification. Outsourced training opens the possibility of creating backdoored 
neural networks that behave badly on input specified by the attacker.12 In a sim-
ilar scheme, called poisoning attack, artificially poisoned data being sent to a 
model gradually change the model to conform to the attacker’s goals. Yang et 
al. used an autoencoder (instead of the more traditional direct gradient 
method) to generate poisoned input data for deep neural networks.37 

The evident vulnerability of neural networks against several types of attacks 
is alarming because these methods are being proposed in several real-world 
domains. See 3 for a survey of adversarial attacks against deep learning in com-
puter vision. The authors not only list several attacks but also include defences. 
They conclude that there is a threat against safety and security critical applica-
tions. 

Figure 2 shows a schematic presentation of the possible attack routes de-
scribed above. In this paper we have identified two parts of the AI process, 
which could be targeted. 
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Figure 2: A schematic picture of AI model fooling.  
The input images could be altered using adversarial images, patches or one-pixel at-
tacks. In addition, the training process itself could be tampered with. 

Fooling Deep Learning in Medical Imaging and Pathology 
Although a rather new concern, the vulnerabilities intrinsic to neural network 
solutions have been identified by the medical community. For evident health 
reasons the accuracy and robustness of methodology in the medical domain is 
very important. Tizhoosh and Pantanowitz list challenges and opportunities re-
lated to artificial intelligence and digital pathology. One of the challenges con-
cerns adversarial attacks and the shakiness of deep decisions made by neural 
networks.36 This fundamental lack of robustness could be one avenue of future 
research.  

Adversarial examples in medical imaging can change the behaviour of classi-
fiers and segmentation, illustrating the lack of robustness in the neural network 
models. Such approach can also be used for model evaluation.28 Vulnerability 
during segmentation could lead to wrong representation of reality during the 
following stages of diagnosis. Again, the less understood and erratic boundaries 
of classification are a concern that enable an attack vector. 

Deep learning networks classifying X-ray images are also vulnerable to at-
tacks.35 Being perhaps the most familiar scenario to the public, X-ray image pro-
cessing is a natural target for automation. However, these kinds of perturbation 
attacks show that the models can be fooled. 

Finlayson et al. successfully use adversarial attacks against medical imaging 
in three domains: fundoscopy, chest X-ray images and dermoscopy. They also 
present a risk model for the machine learning pipeline.10 Patch attacks and pro-
jected gradient descent both seem to work against real world images, reducing 
the reliability of the classifier. However, neural networks can be made robust 
against perturbation attacks by exploiting the structure of the optimization 
task.20 
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Not all uses of these methods are harmful. It is possible to use existing med-
ical imaging data to generate more training data and to tackle uneven class bal-
ance using various methods, including generative adversarial networks.22 The 
methods described above can also be used for beneficial inpainting of missing 
areas in biomedical imaging. Armanious et al. used generative adversarial net-
works to inpaint missing areas or incomplete medical images.5 

The identified fooling methods are listed in Table 1. As can be seen, some of 
the fooling methods have been used in the medical domain. It should be noted 
that training process tampering is probably more difficult to execute in practice. 

Table 1. Fooling methods against deep neural networks and those in the medical  
domain.  

Method References Medical domain 

Adversarial images [26],[23],[6] [28],[35],[10],[22],[5] 
Adversarial patches 
One-pixel attack 

[7] 
[33],[17] 

[10] 

Training process tampering [12],[37]  

Conclusions 
Although modern neural networks have proven useful for detecting cancerous 
cell growth, it is possible to mislead these algorithms. There have been research 
exploits against deep learning methods, even in the field of pathology. Such ex-
ploits include specifically engineered adversarial images, adversarial patches 
put on actual images, one-pixel attacks and attacks focusing on fooling the train-
ing process. The scientific studies this short survey inspected include all those 
attacks. Even medical imaging is not safe from them, which promotes further 
study of the underlying causes and robustness problems stemming from the 
structure of neural networks. The expert opinions from the medical community 
will also broaden the understanding of the effect of these types of attacks. 
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Abstract

In this article we demonstrate that a state-of-the-art machine learning model predicting

whether a whole slide image contains mitosis can be fooled by changing just a single

pixel in the input image. Computer vision and machine learning can be used to auto-

mate various tasks in cancer diagnostic and detection. If an attacker can manipulate

the automated processing, the results can be devastating and in the worst case lead to

wrong diagnostic and treatments. In this research one-pixel attack is demonstrated in a

real-life scenario with a real tumor dataset. The results indicate that a minor one-pixel

modification of a whole slide image under analysis can affect the diagnosis. The attack

poses a threat from the cyber security perspective: the one-pixel method can be used

as an attack vector by a motivated attacker.

Keywords: adversarial examples, cyber security, machine learning, medical imaging,

breast cancer, model safety

1. Introduction

Cancer, in its various forms, is one of the leading causes of death in the western world.

A number of detected cancers of a determined type in a defined population during a

year is expressed as cancer incidence rate (CIR), commonly formed as the number of
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cancers per 100,000 population (U.S. National Cancer Institute at the National Insti-

tutes of Health (NIH), a). According to the U.S. National Cancer Institute at the Na-

tional Institutes of Health, the CIR, based on 2013–2017 statistics in the U.S., is 442.4

per 100,000 men and women per year (U.S. National Cancer Institute at the National

Institutes of Health (NIH), b). The institute stated that “Cancer is among the leading

causes of death worldwide. In 2018, there were 18.1 million new cases. The number of

new cancer cases per year is expected to rise to 29.5 million” (U.S. National Cancer

Institute at the National Institutes of Health (NIH), b).

The high number of new incidences (high CIR) means that cancer and various

cancer-related medical tasks require substantial time and resources. Although cancer is

not one disease, many laboratory diagnostic methods are shared between various types.

These include morphologic methods where microscopy in combination with various

staining methods is used to draw conclusions based on various properties and counts

of cells in a biological sample. In many common types of cancers, early detection is a

key factor in improving the prognosis (van Diest et al., 2004). Since detection plays a

major role in patient outcomes, automating some of this work using techniques such as

machine learning can lead to faster detection, increased throughput, and reduced costs.

From the cyber security standpoint this increased automation means increased at-

tack surface. Disrupting the operation of nation’s critical infrastructure has been an

integral part of nation-state level attacks. The goal of these attacks may simply be to

erode trust in the nation’s capability to provide services to citizens, or in the worst

case, be a part of an armed conflict. Healthcare sector is a major part of critical in-

frastructure, and as such a target for advanced cyber operations. Although cyber opera-

tions against computers, networks, and data required for administering medical care are

prohibited under international law, there has been a steady increase in attacks against

them (Schmitt, 2017). Awareness has an important role in cyber security of the health-

care sector, as stated by Rajamäki et al. (2018): “The highest concern for healthcare

organizations is the employee negligence followed by the fear of a cyber-attack.”

Automated or partly automatized analysis systems are priority targets for cyber

attacks, as a disruption in these systems causes major effects resulting in decreased

capability to diagnose and treat patients, increased expenses, and overall reduction in
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trust towards automated systems. In their study, Spanakis et al. analyzed cyber secu-

rity in the healthcare domain and stated the fact that growth of technology utilized in

healthcare concurrently increases the attack surface and thus the risk of cyber incidents

increases (Spanakis et al., 2020).

In cancer diagnosis, computer vision and machine learning can be used to automate

various tasks (Zhang et al., 2017; Nasief et al., 2019) where e.g. a count of cells

needs to be made from an image (Veta et al., 2016). Although various approaches

for analyzing shapes have been proposed in the literature, one of the newer approaches

is to use an artificial neural network for detecting the desired properties. These tools

aim to make cancer diagnosis less expensive and less time consuming (Khosravi et al.,

2018; Bera et al., 2019; Alom et al., 2019).

Papernot et al. state that models of machine learning are vulnerable to modified

(malicious) inputs and on that account they introduced a black-box attack against deep

neural networks without knowledge of the classifier training data or model (Papernot

et al., 2017). Such attack methods have been introduced in some real world scenar-

ios, for example, Stokes et al. (2018) studied the attack, and furthermore, defence of

malware detection models and image modifications against artificial intelligence (AI)

based computer vision capabilities has been researched in (Kang et al., 2020). When

attacking against computer vision and image based machine learning, pixel modifica-

tion is an evident possibility. Lin et al. tested adversarial attacks by modifying critical

pixels of the image with limitations for the number of modified pixels (Lin et al., 2020).

One-pixel attack is a more advanced method, in which only one pixel of an image is

modified in order to fool the classifier (Su et al., 2019). Additionally, mitigation ca-

pabilities have been developed, Paul et al. (2020) introduce mitigation of adversarial

attacks on medical image systems with the conclusion that its effectiveness can be de-

creased by adding adversarial images in the training set. In addition to this kind of

robust optimization, Xu et al. mention the possibility of gradient masking and attack

detection before forwarding the images to the actual classifier. (Xu et al., 2020)

The healthcare sector can be seen as a valuable target for cyber attackers with dif-

ferent motivations. One possible motivation can be the capability of claiming ransoms.

Modifying the automated diagnosis capability with a cyber attack may affect the treat-
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ment and in the worst case scenario lead to loss of human lives. That also raises the

possibility of targeted attacks against a particular person. In conclusion, such attacks

may lead to global lack of trust in automated diagnosis systems (Sipola et al., 2020).

In this study we attempt to construct images that fool real world state-of-the-art

classifiers. In addition, we explore how to create fake images that appear authentic

also to the human observer. Thirdly, we present a method for altering existing im-

ages to achieve the goal. We opted to use full slide microscopy images, as they are

a major target for automated analysis and digital pathology research, as well as being

readily available for scientific use. Although the proposed methods are presented in a

cyber attack context, the results can be used to improve or assess classifiers outside this

context.

2. Methods and experimental setup

Morphological methods leverage various features of cells in deciding whether they

have neoplastic characteristics. The cells are extracted from the tissue under study,

and visually inspected using microscopy and stains. The so called whole slide images

are high resolution pictures that are often digitized and viewed using computers. This

format also provides a suitable basis for a more automated approach.

In this article we examine classifying methods based on artificial neural networks.

An artificial neural network classifiers are usually trained using samples, i.e. images,

that have a known label in a fashion that allows the trained classifier to recognize also

samples that it has not previously “seen”.

Goodfellow et al. define adversarial examples as samples where an adversary makes

a small but well-chosen perturbation into an input sample causing the artificial neural

network classifier to misclassify that sample with high confidence (Goodfellow et al.,

2015). If an adversary possesses a fast way of generating the adversarial examples,

they can be used to mount various types of attacks against systems that utilize neu-

ral networks for classification tasks. In this article we show that creating adversarial

examples in a context of medical imaging is both feasible and fast. Furthermore, we

show that a particular type of perturbation is sufficient to alter the vast majority of le-
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gitimate input images in a fashion that causes the classifier to misclassify them with

high confidence.

Two attacks were performed: mitosis-to-normal, where the objective is to minimize

the confidence score value, and normal-to-mitosis, where the objective is to maximize

the confidence score value. The former attack type alters an image containing abnormal

mitosis into one where the classifier fails to detect this with high confidence. The latter

converts an image with normal mitosis into one where the classifier misclassifies it

being an abnormal mitosis.

2.1. Attack target

The dataset used in this research is from the Tumor Proliferation Assessment Challenge

2016 (TUPAC16) (Medical Image Analysis Group Eindhoven (IMAG/e), 2016; Veta

et al., 2019). The dataset consists of 500 whole slide light microscopy images with

known tumor proliferation scores, ground truth labels for the training set, as well as

region of interest location data for 148 images.

The dataset was preprocessed by a script from IBM CODAIT Center for Open-

source Data & AI Technologies’ deep-histopath repository,1 which split the whole slide

image into 64-by-64 pixel PNG-format images. The images were marked either ‘mito-

sis’ or ‘normal’ according to the provided labeling.

The chosen classifier was IBM CODAIT’s MAX breast cancer detector (Dusen-

berry and Hu, 2018). This classifier was chosen for its high ranking in the TUPAC16

challenge, and the open source nature of the code. Due to the nature of artificial neu-

ral network -based classifiers, this attack method is likely to work on other TUPAC16

contest entries as well. The obtained results do not suggest a particular failure or error

in the IBM CODAIT’s work or approach.

To simulate a black-box attack situation, the artificial neural network is queried

through a HTTP API. Only the input image and the confidence score of the artificial

neural network model for the input image are known. Inference on the model was

performed by converting the image to a byte string and querying the model API residing

1https://github.com/CODAIT/deep-histopath
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in a Docker container. The response from the API returned a confidence score for the

image. The images were also filtered based on the confidence score provided by the

artificial neural network. A ‘mitosis’ labeled image with confidence score below 0.9

and ‘normal’ labeled image with score above 0.1 are filtered out of the experiment. This

way the attacks focus on the unambiguous cases that should be classified correctly by

the artificial neural network. Computation time was capped at five days. Consequently,

5,343 ‘mitosis’ and 80,725 ‘normal’ labeled images are tested using this method.

2.2. Attack outline

The goal of the attack is to find a method capable of perturbing legitimate input images

in a way that causes the classifier to misclassify them with high confidence. It is usually

in the interest of the attacker to find a perturbation that alters the original image as

little as possible. The so-called one-pixel attack is achieved when the perturbation

that causes a misclassification consists of altering just one pixel in the input image.

To a human observer the difference between the original and altered image might be

indistinguishable. As stated, two attacks are performed: mitosis-to-normal, where the

objective is to minimize the confidence score value and normal-to-mitosis, where the

objective is to maximize the confidence score value.

To carry out a black-box attack the adversary needs to make perturbations to the

original image, and observe how the classifier under attack reacts. Su et al. proposed

a method capable of creating one-pixel perturbations using differential evolution (Su

et al., 2019). Differential evolution is an optimization method (Feoktistov, 2006; Price,

2013) which can be leveraged for iteratively refining the chosen perturbations until the

attacker achieves the desired misclassification confidence. In this study, we used the

implementation of differential evolution in the Scikit-learn library (Pedregosa et al.,

2011).

A color digital image can be presented as a grid of pixels, where each pixel is a mix

of red, green, and blue colors, corresponding to the color sensing cells in human eye.

A one-pixel perturbation can be represented by a vector: x = (x, y, r, g, b), where

x and y are the pixel coordinates and r, g, b are the red, green and blue values of the

color. All these variables are integers. The bounds for coordinates are [0,63] and the
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bounds for color values are [0,255].

The initial population consists of 200 one-pixel perturbation attack vectors, the

vector values are initialized using Latin hypercube sampling, which ensures that each

coordinate and color value is uniformly sampled inside its bounds. A larger initial

population was found to increase attack success only in some rare cases, while it slowed

down attack vector search considerably due to higher computation costs. The mutation

factor was set at 0.5 and the recombination factor at 0.7. Larger mutation factor and

lower recombination factor values were not found to impact the attack success rate in

neither mitosis-to-normal nor normal-to-mitosis attacks. Maximum iterations for the

evolution were set at 100, although in practice the evolution converged on average at

44 iterations in mitosis-to-normal and 39 on normal-to-mitosis attacks.

After the initial population is created, the members of the population are iterated

over. The strategy for creating trial vectors was chosen as ’best1bin’. In the strategy,

two random vectors are chosen to mutate the best performing vector in the popula-

tion, meaning the attack vector that achieved the lowest value from the artificial neural

network output. The parameters from the best vector are mutated using the mutation

factor and the difference of the two random vectors.

A trial vector is created. Random values for each parameter are generated using

binomial distribution; if the random value for the parameter is lower than the recombi-

nation factor value, the mutated value in the parameter is inserted into the trial vector.

If the random value is higher than the recombination factor value, the value from the

best performing vector is carried over into the trial vector. However, one random value

is always replaced with a mutated value, even if the binomial distribution values were

all below the recombination factor value.

After the trial vector is created, its performance is tested by modifying the target

image with the vector’s values. If the trial vector performs better than the original

member of the population, it is replaced with the trial vector. If the trial member

also performs better than the best member of the population, the best member is also

replaced by the trial vector.

When the attack vector population is iterated over, a convergence check is per-

formed. The convergence check compares if the standard deviation of the population’s
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confidence scores is lower than the absolute mean of the population’s confidence scores

multiplied by tolerance factor and the absolute tolerance value is added to the result

multiplication result. If the comparison is true, the algorithm converges and the best

population member is the best attack vector found and its confidence score is the func-

tion’s minimum value.

2.3. Attack success metric

The first criterion for a successful attack is the number of steps in its evolution progress.

Attacks that converged after the iteration of the initial population were found to not alter

the confidence score at all or by very little margin. Thus, a successful attack needs to

iterate the population more than once.

The closer the model’s confidence score is to 1, the more sure the model is that

the image should be labeled ‘mitosis’ and the closer the score is to 0, the image is

to be labeled ‘normal’. To define attacks as successful, mitosis and normal attacks

should reach at least 0.5 score threshold, reducing the neural network’s prediction into

a coin flip. If a mitosis-to-normal attack manages to lower confidence score to 0.05 or

a normal-to-mitosis attack the score to 0.95, the model is fooled to predict the opposite

label with high certainty.

3. Results

The one-pixel attack was performed on 5,343 ‘mitosis’ labeled images and 80,725

‘normal’ labeled images. The attack results were documented in a comma-separated

values (CSV) file, including the name of the images used in the experiment, differential

evolution parameters, original confidence score and the score after the attack. The

confidence score indicates how confident the artificial neural network is that the image

contains mitosis activity. The score varies between [0, 1], where 0 means that the image

is considered normal and 1 means that it is considered to contain mitoses.

3.1. Failures due to early convergence

Attacks where evolution converged immediately after the initial population can be con-

sidered as failed attacks. In mitosis-to-normal attacks, in 1,594 or approximately 30%
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of the attacks the algorithm converged already after the calculation of initial population

function values, while in normal-to-mitosis attacks, 80,520 or 99.7% converged after

the initial population. This is due to the tolerance value set at 0.01 and the standard

deviation of the initial population being too low compared to tolerance value multi-

plied by mean of initial population. Lowering of the tolerance value had no impact on

finding more successful populations. The tolerance value and the convergence check

cause the amount of ‘normal’ labeled images processed to be higher than ‘mitosis’ la-

beled, because more evolution steps were performed on ‘mitosis’ labeled images. If the

evolution converges after the initial population values, in mitosis-to-normal attacks the

attack yields only 0.06 change in confidence score on mean and in normal-to-mitosis

attacks the confidence score change is 0.001 on mean.

3.2. Confidence scores

The changes in the confidence score were noticeable in both attack types. On mitosis-

to-normal attack, 3,407 attacks (91%) out of 3,749 managed to lower the artificial neu-

ral network’s confidence score below 0.5 and 895 attacks (24%) lowered it below 0.05.

On normal-to-mitosis attacks, neural network’s confidence score was raised higher than

0.5 on 173 out of 205 attacks (84%) but none of the attacks managed to cross above the

0.95 score threshold.

When looking at attacks where the differential evolution algorithm did not converge

on the initial population, the median confidence score difference between the original

score and score after attack reaches 0.81. Applying the same filter as in mitosis-to-

normal attacks, the median confidence score difference in normal-to-mitosis attacks

between original images and attacked images reaches 0.27.

Mitosis-to-normal attacks were successful in finding adversarial examples. Figure

1 has its center line at the median value, its box limits extending from 25% to 75%,

its whiskers from the edges of the box to no more than 1.5 times interquartile range,

ending at the farthest point in the interval and its outliers plotted as dots. The figure

shows how the neural network’s confidence score before the attack is on average 0.96,

the maximum score is 0.99 and minimum is 0.90. After attacking the images and

finding adversarial images, artificial neural network’s confidence score median values
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Figure 1: Box plot visualization of mitosis-to-normal attack experiment confidence scores. The majority of

the attacks were successful, lowering the confidence score below 0.5 in 3,407 or approximately 91% of the

attacks. 895 or approximately 24% of the attacks manage to lower the confidence score below 0.05.

Before attack After attack

Maximum 0.99 0.83

Mean 0.96 0.20

Median 0.96 0.14

Standard deviation 0.02 0.18

Minimum 0.99 0.00011

Table 1: Confidence score statistics for mitosis-to-normal attack, where the number of attacks is 3,749.

are 0.1, they also reach a minimum of 0.0001 and a maximum of 0.83. The standard

deviation for the scores is 0.18 and the mean is 0.20. This information is also conveyed

in Table 1.

Normal-to-mitosis attacks were also successful. Before the images are attacked,

neural network’s confidence scores are on average 0.048, where the minimum is 0.0036
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Figure 2: Box plot visualization of normal-to-mitosis attack experiment confidence scores, where 173 or

approximately 84% of attacks manage to raise the artificial neural network’s confidence score above 0.5.

None of the attacks manage to cross above the 0.95 score threshold.

Before attack After attack

Maximum 0.099 0.86

Mean 0.048 0.36

Median 0.048 0.31

Standard deviation 0.025 0.15

Minimum 0.0036 0.14

Table 2: Confidence score statistics for normal-to-mitosis attack, where the number of attacks is 205.

and maximum is 0.099. Figure 2 shows this as box plot, which shares its statistical

characteristics with 1. After attacking the images, neural network’s confidence score

median is 0.31, the scores minimum reaches 0.14 and maximum 0.86. The standard

deviation for the scores is 0.15 and the mean is 0.36. This information is also conveyed

in Table 2.
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Figure 3: An adversarial example that is misclassified as normal even though in reality the source image is

labeled as having mitosis activity. Notice the bright yellow pixel inside the dark area in the middle right part

of the image.

3.3. Adversarial examples

As an example, we showcase two successful attacks. Firstly, Figure 3 shows this ad-

versarial example that deceives the predictor to think that an image containing mitosis

is a normal picture without any signs of disease. In the attacks, the most common pixel

color was pure yellow, meaning RGB values (255, 255, 0), which was used in 2,214

attacks. In 122 attacks the pixel color was pure white, meaning RGB values (255, 255,

255), which was used in 122 attacks. In the rest of the attacks the pixel colors were

yellow with a slightly higher blue value. Secondly, Figure 4 shows an adversarial ex-

ample that deceives the predictor to think that a picture of normal cell activity contains

mitosis. The most common pixel color RGB values was pure yellow (255, 255, 0)

and the second most common was pure white (255, 255, 255) and the third was pure

black (0, 0, 0). There is a larger variety of colors in attack vectors than in mitosis-to-

normal-attacks, but this is most likely explained due to the low amount of successful

attacks.

We provide the evolutionary convergence plots for both of the images. Figure 5

shows the progress of differential evolution for the attacked image shown in Figure 3.

The lowest confidence score already reaches to almost 0.5 during the initial population

attacks and drops down below 0.1 in a few steps. The minimum is reached after 40
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Figure 4: An adversarial example that is misclassified as mitosis even though in reality the source image is

labeled as having no mitosis activity. Notice the yellow-lime dot in the middle of the image.

steps. Figure 6 shows the progress of differential evolution for the image and an adver-

sarial image in Figure 4. The maximum score of the initial population attacks is still

quite low, below 0.4, but the maximum score of the population quickly rises to near

0.8 in 10 steps. The maximum 0.84 score is reached after 30 steps of the differential

evolution algorithm.

4. Discussion

This research demonstrates that one-pixel attacks are successful against artificial neu-

ral network analysis of mitosis images. It shows that a machine learning model can

perform acceptably with the training and testing sets but fails catastrophically when an

adversarial example is used as input. This hilights the need of ensuring the robustness

of these artificial neural network models. While it is evident that the model works as

expected in the common case, data reproduction and transmission errors, as well as

cyber attacks of only one pixel, could produce undesirable results.

It is evident that the attack against mitosis images is the easier one. These im-

ages might be of a more varied nature than the normal tissue images. Because of this,

modifying the mitosis images does not create as considerable a change as when modi-

fying normal tissue images. On the other hand, deceiving the artificial neural network

with modified normal images was more difficult. We speculate that the neural network
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Figure 5: Lowest neural network confidence scores during steps of differential evolution. Example of of an

attack against one image, in this case the same as in Figure 3.

has likely learned to classify images with large black blobs as mitosis, thus the neu-

ral network is not easily fooled to change labels by only modifying one pixel. Larger

modification of the input image would be needed for higher normal-to-mitosis attack

success rate.

This result should not be taken as a discouragement of the use of automated diagno-

sis systems as part of medical imaging. Instead, it shows that the medical models built

using modern artificial neural network technologies can be vulnerable to unexpected

attacks. As with all technology, its limitations should be known in order to correctly

utilize the capabilities it provides.

From the cyber security point of view this should be considered as an alarming

finding because motivated and skilled attackers can execute such attacks quite easily,

if they have access to the medical image repository. This real-life scenario can be con-

sidered possible because there are more and more attacks against healthcare systems
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Figure 6: Highest neural network confidence scores during steps of differential evolution. Example of of an

attack against one image, in this case the same as in Figure 4.

and with such an attack scenario the motivation can be ransoms. Attackers might think

that there is a high probability that ransoms will be paid when a threat of misdiagnosis

of cancer exists.

Attack methods will keep evolving. At the moment, the attack pixel may be some-

what prominent, which makes their detection easy, although such artifacts could be

introduced just before the analysis. In the future, attack-side research ideas could in-

clude blending the attack vector color values as seamlessly to the surrounding pixels as

possible, thus fooling human observers.

Data availability

The whole slide images and labeling for the training dataset are available from the Tu-

mor Proliferation Assessment Challenge 2016 (TUPAC16) website (http://tupac.

tue-image.nl/), which derives the data from the Cancer Genome Atlas by the TCGA
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Research Network (https://www.cancer.gov/tcga), the AMIDA13 dataset and

from two different pathology centers in The Netherlands (Medical Image Analysis

Group Eindhoven (IMAG/e), 2016; Veta et al., 2019; U.S. National Cancer Institute

at the National Institutes of Health (NIH), c; Veta et al., 2015). Restrictions apply to

the TUPAC16 dataset, as the labels are available for registered users only. However,

the data are available upon reasonable request, through collaborative investigations and

with permission of Medical Image Analysis Group Eindhoven (IMAG/e). Furthermore,

the experiment results are available in CSV format in the same repository as the pro-

gramming codes used in the experiment, available from the corresponding author upon

reasonable request.
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