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Abstract: This thesis sets out to compare recent methods in speaker recognition, from a

small amount of data. Speaker recognition aims to distinguish speakers from within audio

data containing speech, the use cases include for example speaker diarization and voice

biometric authentication. The scope is limited to identification, two samples from one or two

distinct previously unknown speakers are provided. With the aim being to identify whether

the two samples are spoken by the same speaker. Additionally, the accuracy of networks

trained on English speech on Finnish speech is also measured. For which a new dataset,

suitable for benchmarking speaker recognition, consisting of Finnish speech was developed

from an existing speech recognition dataset.

The results show that the latest methods perform very well. However, to achieve the best

results it is apparent that more training data is required, than what was used in this thesis.

The methods generalized to Finnish speech, despite being trained with English speech. Ad-

ditionally, interesting observations are made regarding the parameters chosen for training. In

addition to comparing different methods, the effects of different number of speakers used for

training, various sample lengths and data augmentation are also compared.

Keywords: machine learning, speaker recognition, speaker identification, few-shot learning

Suomenkielinen tiivistelmä: Tutkielman tavoitteena on vertailla uusimpia koneoppimiseen

pohjautuvia menetelmiä puhujan tunnistamiseen vähäisellä datan määrällä. Puhujan tun-
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nistamisessa tavoitteena on tunnistaa eri puhujat äänidatasta, sen käyttötarkoituksiin sisältyy

mm. puhujan diarioiminen ja biometrinen tunnistus äänen avulla. Tutkielma rajoittuu puhu-

jan tapaukseen, jossa käytettävissä on kaksi lyhyttä nauhoitetta, joko yhdeltä tai kahdelta,

ennestään tuntemattomalta puhujalta. Joiden pohjalta pyritään tunnistamaan, sisältävätkö

nauhoitteet puhetta samalta puhujalta. Lisäksi tutkielmassa tutkitaan Englanninkielisellä

puheella koulutettujen neuroverkkojen tarkkuutta Suomenkieliseen puheeseen sovellettuna.

Johon kehitetään sopiva datasetti Suomenkielisen puhekorpuksen pohjalta.

Tutkielman tulokset osoittavat uusimpien menetelmien suoriutuvan erinomaisesti. Vaikkakin

parhaiden tuloksien saavuttaminen osoittautui vaativan enemmän koulutusdataa kuin mitä

tutkielmassa käytetään. Menetelmät yleistyvät hyvin myös suomenkieliselle puheelle si-

itä huolimatta, että koulutuksessa käytettiin vain englanninkielistä puhetta. Lisäksi tulok-

sien pohjalta tehdään mielenkiintoisia huomioita vertailuun valittujen muuttujien osalta, joita

käytetään neuroverkkojen koulutuksessa. Vertailussa oli menetelmien lisäksi koulutusdatan

puhujien määrä, puhe esimerkkin pituus ja äänidatan augmentointi.

Avainsanat: koneoppiminen, puhujan tunnistaminen
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Glossary

∑ Summation over the 3rd columns of a tensor.

FC Fully-connected layer.

conv, N 2D convolution with kernel size N.

� Hadamard (element-wise) product.

ASP Attentive Statistics Pooling, a network layer used for aggregat-

ing temporal frames.

BCE Binary cross-entropy, a loss function.

CNN Convolutional neural network, a type of neural network.

DCF Detection cost function.

DCT Discrete cosine transform.

DET Detection error trade-off.

DNN Deep neural network, an artificial neural network consisting of

multiple layers.

EER Equal error rate, an evaluation metric.

FNR False negative rate.

FPR False positive rate.

FRR False rejection rate.

FSL Few-shot learning.

GPU Graphics processing unit.

MAML Model-Agnostic Meta-Learning.

MFCC Mel-frequency cepstral coefficients.

minDCF Minimum detection cost function.

ReLU Rectified Linear Units, a hidden unit in a neural network or an

activation function.

ResNet Residual network, a type of deep convolutional neural network.

ResNetSE34 34-layer Residual network with squeeze and excitation mod-

ules.

RIR Room impulse response.

ROC Receiver operating characteristics.
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SAP Self-Attentive Pooling.

SNN Siamese neural network.

SNR Signal to noise ratio.

STFT Short-time Fourier transform.

TPR True positive rate.

VLAD Vector of Locally Aggregated Descriptors.
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1 Introduction

The intent of this thesis is to investigate recent methods for speaker recognition, particularly

focusing on methods for differentiating previously unknown speakers using single speech

sample. Additional focus of the research is, to measure how these methods perform when

the models are trained using both limited computational capabilities and limited data. The

accuracy of the models trained with English speech is also measured for Finnish speech.

For this a new dataset, suitable for benchmarking speaker recognition, consisting of Finnish

speech was developed ad-hoc in this thesis.

The evaluation of the methods is performed using three distinct datasets. The results indi-

cated that while latest methods achieve excellent results, the methods do appear to require

large amount of training data and time to truly generalize well. The networks trained using

metric learning with angular prototypical loss functions (Chung et al. 2020) showed better

results across the board, than the end-to-end siamese neural network. Though the best meth-

ods trained for this thesis achieved good results with the test sets based on the same dataset

as the training data, the methods struggled to perform with the other datasets. Interestingly

there not much difference was observed in the prediction performance between Finnish and

English speech. A surprising discovery was made regarding the optimal sample length, as

models trained using 2 second samples appeared to perform better than the popular 4 second

sample length.

Speaker recognition is complementary to speech recognition, as the focus is on answering

the question who is speaking rather than what is spoken. It is also an essential component in

voice biometric authentication and speaker diarization, where an audio stream is partitioned

into segments by speaker (Beigi 2011). Recent research findings have shown good results

with deep convolutional neural networks trained using large datasets (Kwon et al. 2020;

Heo et al. 2020; Chung et al. 2020). Because these results were achieved using a dataset

consisting of tens of gigabytes of audio data with hundreds of hours of training using mul-

tiple graphics processing units (GPU), replicating the results would likely also require large

amount of data and computational resources. Thus it was chosen to investigate how these

methods fare with less data and computation time.
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The thesis begins with overview on machine learning in Chapter 2, detailing the relevant

background on machine learning. Chapter 3 describes the problem space and covers signal

representation and the evaluation of speaker recognition methods, while also including a

light literature review of recent articles related to speaker recognition. In Chapter 4 the

implemented methods and experiments are explained in detail. In Chapter 5 the results of

the experiments are presented and analysed. Finally, Chapter 6 presents the conclusions

drawn from the results.
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2 Machine learning

This chapter covers machine learning topics relevant to this thesis, and is largely based on

the Deep Learning textbook by Goodfellow, Bengio, and Courville (2016) with the excep-

tion of the portions covering ResNet and few-shot learning. According to the authors of the

textbook, machine learning (ML) algorithms to can be divided into three key parts: class of

tasks, performance measure and experience. Tasks can include for example classification,

regression, anomaly detection, synthesis and sampling. The choice of a performance mea-

sure is generally task specific. For example for classification we could measure accuracy

(proportion of correct outputs) or error rate.

ML algorithms experience a dataset, which is a collection of examples (or data points).

Goodfellow, Bengio, and Courville (2016) categorize ML algorithms into two classes: su-

pervised or unsupervised. In contrast to unsupervised learning, supervised learning dataset

contains labels (or targets) that annotate the expected result for each example. Traditionally

classification and regression have been considered as supervised learning problems. Regres-

sion is a type of task where the goal is to predict a numerical value from a given input. In this

type of task the learning algorithm should output a function f : Rn→ R. A simple example

would be predicting future values of stock prices based on past values.

In classification, the task is to specify which k categories the input belongs to, which means

the learning algorithms task is to produce a function f : R→ {1, . . . ,k}. A simple example

of this is object recognition, where the task is to identify an object in an image from a list

of known objects. For example we could have a model trained to recognize whether the

input image is a cat, a dog or a chair. A more advanced example of binary classification,

or classification with only two classes, would be open-set speaker identification. In this

task, the input is two audio samples, one featuring the target speaker and the other the test

speaker. The output is an estimate on whether the two are the same. Where the output of f

is a probability distribution over the 2 classes.
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2.1 Deep feedforward networks

Goodfellow, Bengio, and Courville (2016) describes feedforward neural networks as having

the goal of approximating some function f∗. A feedforward network y = f (x;θ) maps input

x to y, learning the value of the parameters (or weights) θ that result in the best approxima-

tion of f∗. The term feedforward indicates the direction the information flows through the

evaluated function from x to the output y, and that there are no feedback connections which

would feed the output of the model back into itself.

Feedforward networks are typically represented by composing multiple functions together,

forming deep feedforward networks where the depth comes from the multiple layers of func-

tions. How the functions are composed together is described by a directed acyclic graph, in

other words the network forms a linear chain of layers. The intermediate layers between the

input layer and the output layer are called hidden layers. Fixed nonlinear functions, called

activation functions, are used to compute the hidden layer values (for example sigmoid 2.5

and ReLU 2.7).

According to Goodfellow, Bengio, and Courville (2016), training a deep feedforward net-

work can be done by the means of iterative gradient-based optimizers, that aim to minimize

the cost function (or loss function). Iterative optimization is chosen, because the use of non-

linear functions prevents the use of closed-form optimization. The authors say, that popular

iterative optimizer choices include stochastic gradient descent (SGD), which is an extension

of gradient descent, and Adam, an adaptive learning rate optimization algorithm. Also ac-

cording to the authors, the choice of an optimizer appears to still be a matter of taste, as no

consensus on optimal optimization algorithm choice has been made. In this thesis we use

AdamW (Loshchilov and Hutter 2019), a recent variant of Adam which decouples the weight

decay from the loss function.

According to Goodfellow, Bengio, and Courville (2016), Negative log-likelihood, or equiv-

alently the cross-entropy (eq. 2.2) between the training data and the model distribution, is

commonly used as the cost function when training neural networks using gradient-based

4



optimization. For discrete variables, this is given by

Ex̃P
(

f (x)
)
= ∑

x
P(x) f (x)a (2.1)

J(θ) =−Ex,ỹ p̃data log pmodel(y|x)

=−∑
x

p̃data(y|x) log pmodel(y|x) (2.2)

where Ex,ỹ p̃data is the expected value (eq. 2.1) of the model with respect to the probability

distribution of the training data p̃data.

In this thesis, the following form of cross-entropy is used

H(x) =− 1
N

N

∑
i=1

logxi, (2.3)

where N is the number of elements in the input vector x and the probability of encountering

each element is presumed to be 1
N .

Output unit is the final layer of the network, the output of which is then passed to the cost

function. Depending on the implementation this can be a part of the cost function, part of the

network or split between both. A fully connected layer (FC, or linear unit) is a simple output

unit without nonlinearity

FC(x) =W T x+b, (2.4)

where W T are the weights of the FC, x is the output of the network and b is a bias constant

(Goodfellow, Bengio, and Courville 2016).

Sigmoid output unit is used when predicting values of a binary variable. The logistic sigmoid

function is defined as

σ(x) =
1

1+ e−x , (2.5)

and the sigmoid output unit is σ(W T x+b). This gives us an Bernoulli distribution, and the

network needs to predict only P(y = 1|x) (Goodfellow, Bengio, and Courville 2016).

The softmax output unit can be used to represents a probability distribution over a discrete

variable with N possible values, which makes it a common output for classifiers. This can

be seen as a generalization of the sigmoid function. The softmax (or softargmax) function is
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defined as

softmax(x)i =
exi

∑N
j=1 ex j

, (2.6)

where N is the number of elements in x. Like with sigmoid, the softmax output unit follows

a linear unit (eq. 2.4) softmax(W T x+b)i. Which gives us a categorical distribution (also

known as multinoulli distribution) (Goodfellow, Bengio, and Courville 2016).

Feedforward neural networks use hidden units for the output of hidden layers. All of the

previously described output units are also suitable for use as hidden units. Rectified Linear

Units (ReLU) are a common type of hidden unit. The ReLU activation function is defined as

δ (z) = max(0,z), (2.7)

which is typically combined on top of a linear unit (eq. 2.4) resulting in δ (W T x+b).

2.2 Convolutional neural networks

Goodfellow, Bengio, and Courville (2016) describe convolutional neural networks (CNN)

as neural networks that use convolution in place of general matrix multiplication in at least

one of their layers. Additionally the authors describe a typical convolutional layer consisting

of three stages: convolution, detector and pooling. According to the authors, in machine

learning libraries the convolution operation is generally implemented using a related function

called cross-correlation. A look into the documentation1 of the PyTorch library used in this

thesis confirms this claim, thus only the relevant definitions of cross-correlation are detailed

here.

The discrete cross-correlation for one-dimensional input I : N→ Rn and kernel K : N→ Rn

is defined as

(I ∗K)(i) = ∑
m

I(i+m)K(m), (2.8)

where I and K are discrete functions defined on integer values of i. When the input I : N2→

Rn and kernel K : N2→ Rn are two-dimensional, the definition is

(I ∗K)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n). (2.9)

1https://pytorch.org/docs/1.7.1/generated/torch.nn.Conv2d.html
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The second stage of a CNN, that Goodfellow, Bengio, and Courville (2016) called the de-

tector stage, simply consists of passing each linear activation function through a nonlinear

activation function such as ReLU. In the third stage, a pooling function is used. Pooling

refers to the act of reducing output of the network using a summary statistic of nearby val-

ues. Generally, this means we take either the maximum (referred to as max pooling), or

the average of the nearby values. What nearby values mean here varies depending on the

method. For example it could mean using a kernel of some size to pool maximum values

within the kernel, or taking a weighted average of an entire dimension of the output tensor.

Recently, convolutional networks have been shown to be performant at feature extraction

in speaker recognition tasks, outperforming previous approaches using vector quantization,

gaussian mixture model-universal background model (GMM-UBM), i- and x-vector-based

methods (Nagrani, Chung, Xie, et al. 2020). Palanisamy, Singhania, and Yao (2020) even

show, that transfer learning using CNN models, such as ResNet and DenseNet pre-trained

for image classification, also perform well on spectrogram based audio classification tasks.

Further Ding et al. (2020) propose an architecture search approach for automated search of

suitable CNN architectures for speaker recognition tasks. Thus presently, CNNs appear to be

a safe choice for implementing speaker recognition. Though other approaches have also been

tried as an alternative to a CNN, as there have also been attempts at using capsule networks

at different stages for speaker recognition (Anand et al. 2019; Hajavi and Etemad 2020).

Building upon CNN, He et al. (2016) present a residual learning framework and describe

a type of deep convolutional network that they name residual networks (ResNet). Resid-

ual networks have proven to be performant, and have since become largely ubiquitous in

recent publications utilizing convolutional networks (Xie et al. 2019; Nagrani, Chung, Xie,

et al. 2020; Heo et al. 2020). He et al. (2016) construct residual networks by chaining mul-

tiple residual network blocks back to back, while gradually increasing the dimension of the

convolution layer output. An example of the overall ResNet architecture can be seen in Fig-

ure 1b. The key idea introduced by the authors is the shortcut connection (see Figure 1a),

that is used to add the original input x into the output of the layers inside the block F(x).

7



x

conv

conv
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(a) Residual network block.

conv

max pool
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conv

conv

conv

conv

conv

avg pool

FC

(b)
Minimal example of a 6-layer resid-

ual network.

Figure 1: General overview on the residual neural network architecture. Each residual net-

work block has convolutional two layers, thus the example 1b has three blocks.

Residual networks have been further extended with the squeeze-and-excitation (SE) blocks

proposed by Hu et al. (2020). This is shown by the authors to improve ResNet performance,

and it has been adopted by recent ResNet implementations. The standard SE block S(x), as

described in Figure 2, is placed within the regular ResNet block as an additional step before

the addition. The SE block introduces an tunable hyperparameter for reduction ratio r, which

allows for tuning of the capacity and computational cost of the SE blocks. The output of

function composition (S ◦F)(x) is combined with the output of F(x) using element-wise

multiplication (the Hadamard product �), before adding the residual to original input x.
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)
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Figure 2: Residual network block with the squeeze and excitation extension. Where C×H×

W is a 3-D tensor with dimensions representing height H, width W and channels C.

Further variants of ResNet have been developed, in this thesis we chose two 34-layer variants

commonly used in recent publications on speaker recognition (Xie et al. 2019; Nagrani,

Chung, Xie, et al. 2020; Chung et al. 2020; Heo et al. 2020). Of these, the thin-ResNet-34

uses reduced amount of channels in the residual blocks to reduce computational cost, and has

been shown to perform better than larger ResNets. Additionally the fast-ResNet-34 based on

the thin variant was considered. In fast-ResNet-34, the input dimensions are smaller and

the convolution strides have been tweaked, resulting even further reduction in computational

cost (Chung et al. 2020).

2.3 Few-shot learning

In few-shot learning (FSL), the aim is to learn to generalize from only a few examples. It is

common to refer to specific FSL problems using the term k-way n-shot learning, where k is

the number of classes and n the number of examples in each class (see Figure 3). For exam-

ple, one-shot learning can be written as k-way 1-shot learning. (Yaqing Wang et al. 2020).

According to Hospedales et al. (2020), the aim of meta learning is often simply described

9



2-shot

Query set

Support set

3-way

Figure 3: Example of input data for a single 3-way 2-shot learning step, illustrating the

terminology used. In this figure ways correspond to speakers and shots to speech samples.

as learning to learn. However, for the needs of this thesis it is simply useful to know, that

meta-learning is a larger paradigm that can also be applied for few-shot learning problems.

Li, Sun, et al. (2020) reviews recent few-shot meta learning methods.

Siamese neural network (SNN), or twin neural network, is one the earliest neural network

architectures applied to FSL. Originally, Bromley et al. (1993) developed the SNN for signa-

ture verification. Conceptually, an SNN consists of two sub-networks sharing weights, with

the intent of extracting the features of the input (see Figure 4). The extracted features are

then compared and a distance measure is obtained. When using the model to classify inputs

there is no strict requirement for running each input through the network at the same time,

thus it is possible to pre-compute the outputs of the sub-networks. Adding additional twins

is also possible by adjusting the distance measurement to handle the additional inputs.
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weigths Distance measure

Figure 4: Overview of the siamese neural network architecture.

Distance measure generally consists of reducing the outputs of the sub-networks into one

similarity metric, which is further reduced into single probability measure (ex. by adding

a fully connected layer). Popular distance metrics include cosine similarity (eq. 2.10) and

Euclidean distance (eq. 2.11). Alternatively, the distance measure could also itself be an

deep neural network (DNN), as shown by Hajavi and Etemad (2020) in their paper applying

a capsule networks (CapsNet) for learning the distance measure. In this thesis, we use a basic

learning distance measure with a fully connected layer (eq. 2.12).

cos(a,b) =
a ·b
‖a‖‖b‖

(2.10)

d(a,b) = ‖a−b‖2 =

√
(a−b)2 (2.11)

fcdist(a,b) = FC(|a−b|) (2.12)

Prototypical networks proposed by Snell, Swersky, and Zemel (2017) are an example of

a more recent method for FSL, like SNN they are also metric based and utilize a distance

measure for classification. The key idea being, that each class can be represented by the

mean of its examples. The authors note, that training prototypical networks using higher

number of classes than during test-time is not only possible but beneficial.

11



3 Speaker recognition

Speaker recognition focuses on answering the question who is speaking. Common appli-

cations of speaker recognition include voice authentication and speaker diarization. Beigi

(2011) divides speaker recognition tasks into identification, verification (or authentication),

classification, segmentation, tracking and detection. Speaker identification is further divided

into either closed-set or open-set problems. Additionally speaker recognition, particularly

speaker verification, can be dependent on the content of the speech. In this case, it is called

text-dependent. In this thesis, the focus is on text-independent open-set speaker identifica-

tion, an overview of which is show in Figure 5. This chapter is mostly based on Fundamen-

tals of Speaker Recognition by Beigi (2011).

In open-set speaker identification, the test speaker is verified against one or more target

speakers, if verification fails the test speaker is rejected. Whereas closed-set identification

matches a test speaker to the closest match among known speakers. Closed-set identification

would require a machine learning model to be specifically trained for a known set of speak-

ers. Whereas open-set identification requires a model trained to measure the similarity of

arbitrary speakers, which is a few-shot learning problem.

Test speaker Target speaker

Signal representation

Feature extraction

Speaker verification

accept or reject test speaker utterance

utterance utt
era

nc
e

Figure 5: General overview on the open-set speaker identification process.

Speaker verification (or speaker authentication) refers to matching a test speaker to a known
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speaker, and can be considered a special case of open-set identification where there is only

one target speaker. The key difference to open-set identification is that a speaker verification

model could be trained to specifically recognize a single known speaker.

Speaker classification focuses classifying speakers to different classes such as gender or age.

Speaker segmentation is concerned on identifying the sections of an audio stream in which

each distinct speaker is speaking. Speaker detection refers to detecting one or more speakers

in an audio stream. Speaker tracking is an extension of speaker detection, where the segments

of each distinct speaker are also identified.

3.1 Signal representation

For using speech signal as an input to a neural network, it is first necessary to choose the

representation of the audio signal. Beigi (2011) describes the signal representation of speech

from first principles, but here we start directly with the first common representation. The

speech waveform, obtained by sampling the amplitude of the source audio signal at a chosen

frequency, is a discrete two-dimensional representation of the audio signal amplitude with

respect to time (as seen in Figure 6a). Ravanelli and Bengio (2018) and Jung et al. (2020)

show, that even raw waveform can successfully be applied as the input of a neural network.

The waveform can be pre-processed using various signal processing techniques. However,

we only do pre-emphasis (see Figure 6b) in this thesis. Pre-emphasis is commonly used

to improve speech feature extraction, by amplifying the magnitude of higher frequencies.

Equation 3.1 shows pre-emphasis as implemented by Heo et al. (2020) and Zeghidour et

al. (2018) using a first-order high-pass filter. Which is implemented as a convolution layer

with one-dimensional cross-correlation (eq. 2.8) on input I : N→Rn with stride of 1. Where

the kernel K : N→ Rn of size 2 is initialized with weights [−0.97,1].

(I ∗K)(i) = ∑
m

I(i+m)K(m)

= I(i)K(0)+ I(i+1)K(1)

= I(i+1)−0.97I(i). (3.1)

Spectrogram is a three dimensional signal representation, exposing the frequency and the
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Figure 6: Various signal representations of the same audio sample, and coincidentally the

process of computing the MFCC.

amplitude with respect to time. A power spectrogram can be obtained by taking the square

of the short-time Fourier transform (STFT) of the waveform (as seen in Figure 6c and Fig-

ure 6d). The STFT is computed by sampling the waveform using a moving window function

(such as Hann or Hamming window).

The mel spectrogram (as seen in Figure 6e), is a spectrogram where the frequencies are

scaled to the mel scale, which is a perceptual scale developed in the late 1930s that has

stuck around to this day. Mel-frequency cepstral coefficients (MFCC, see Figure 6f) is an-

other commonly used representation, that can be obtained by applying the discrete cosine

transform (DCT) on the mel spectrogram.

3.2 Evaluation

The performance of a speaker recognition system is commonly reported using equal error

rate (EER), this practice originates from biometrics applications. EER is the intersection

point of false negative rate (FNR, or FRR) and false positive rate (FPR, or FAR), in other

words it is the point where the chance of chance of false positives and false negatives is

equal. TPR, FPR and FNR can be inferred once the amount of real positive and negative

labels (P and N) is known, and the number of true positive and false negative predictions
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(T P and FN) have been measured.

T PR =
T P
P

FPR =
FN
N

FNR = 1−T PR.

The Receiver Operating Characteristics curve (ROC curve), as seen in Figure 7, can be ob-

tained by plotting FPR and true positive rate (TPR, or TAR) while varying the threshold at

which a prediction is classified as positive or negative. (Beigi 2011; Mohri, Rostamizadeh,

and Talwalkar 2018).

In the experiments of this thesis, an approximation of the EER (eq. 3.3) is computed by

finding the index of the threshold θ nearest to the intersection point of FNR and FPR, then

taking the arithmetic mean of FNR and FPR as follows

θ = argmin |FNR−FPR| (3.2)

EER =
FNR(θ)+FPR(θ)

2
. (3.3)
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Figure 7: Example ROC curve, where EER is 10%. The reference line signifies where the

ROC curve would land on in the case of random guess.

The minimum detection cost function (minDCF) was chosen as an additional evaluation met-

ric, as it has been preferred over EER in speaker recognition challenges since 1997. It is
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based on the Detection Error Trade-Off (DET) curve, constructed from the same data as the

ROC curve. (Beigi 2011). Sadjadi et al. (2020) defines the minDCF metric for the NIST

2020 CTS Speaker Recognition Challenge (NIST SRC), similar metric has also been used

in earlier challenges. Nagrani, Chung, Huh, et al. (2020) also use this metric for VoxCeleb

Speaker Recognition Challenge (VoxSRC) 2020. The minDCF (eq. 3.4) metric used is cal-

culated for each trial using one test dataset. Thus it differs from the metric used in the NIST

challenge, where evaluation is further divided into multiple trials and partitions.

The method used for computing the minDCF in this thesis is defined as follows

CDet(θ) =CmissPtargetPmiss(θ)+C f a(1−Ptarget)Pf a(θ)

CDe f ault = min

CmissPtarget

C f a(1−Ptarget)

minDCF =
CDet(argminCDet)

CDe f ault
, (3.4)

where, Pmiss represents the FNR points on the ROC curve, and Pf a represents the FPR points.

The DCF control parameters Cmiss, C f a and Ptarget can be used to tune the measurement

for different scenarios. Cmiss is the cost of a missed detection (false rejection), C f a is the

cost of a false-alarm (false positive). While Ptarget is the a priori probability that the test

speaker is the target speaker. The values used for the DCF control parameters in this thesis

are Cmiss = 1, C f a = 1 and Ptarget = 0.05, matching the values used by both the NIST SRC

and VoxSRC. The parameters can also be adjusted to measure performance in different use

cases, for example access control for which values such as C f a = 10 and Ptarget = 0.99 could

be used. (Vestman 2020; Sadjadi et al. 2020).

3.3 Recent work in speaker recognition

A light literature review was performed to gain an overview on the state of research on

speaker recognition, mainly by searching for articles published between 2019–2020. This

was done by searching with various keywords such as “few shot learning”, “one shot learn-

ing”, “speaker recognition” and “siamese neural network” from the Google Scholar search

engine. Initially, 82 articles were found and sorted by subject, of which relevant articles
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were selected. This process was also repeated over the course of this thesis, ending with 260

articles.

Most of the articles found focused on utilizing image and video data. Common topics among

these were classification, object detection, object tracking and segmentation. A small amount

of articles on natural language processing utilizing FSL and SNN were also found, but these

were not considered relevant to this thesis. As enough articles covering specifically audio

data were found, the articles utilizing other types of data were not inspected more closely.

The review uncovered 70 articles focused on audio data, of which 18 were specifically on

speaker verification.

From the articles found, Shimada, Koyama, and Inoue (2020) and Yu Wang et al. (2020)

utilized FSL methods for sound event detection. While Zhang and Duan (2017), Zhang,

Pardo, and Duan (2019), Manocha et al. (2018), and Keren et al. (2018) made use of SNN

and FSL methods for audio search. For more unique use cases, Mimilakis, Bryan, and

Smaragdis (2020) utilized SNN for style transfer and Chen, Smith, and Yang (2020) utilized

SNN for assessing loop compatibility in music production. Finally, Rozenberg, Aronowitz,

and Hoory (2020), Li, Jiang, Li, et al. (2020), Chung et al. (2020), Ravanelli and Bengio

(2018), Hajavi and Etemad (2020), Snyder et al. (2019), and Okabe, Koshinaka, and Shinoda

(2018) did speaker recognition using SNN and FSL methods.

The following datasets were found to be used in the articles:

• VoxCeleb: a large-scale speaker identification dataset Nagrani, Chung, and Zisserman

(2017). Used by Mishra (2020), Okabe, Koshinaka, and Shinoda (2018), Snyder et

al. (2019), Chung et al. (2020), and Hajavi and Etemad (2020).

• TUT 2016: TUT database for acoustic scene classification and sound event detec-

tion Mesaros, Heittola, and Virtanen (2016) and Stowell et al. (2015). Used by Ma-

nocha et al. (2018), Pons, Serra, and Serra (2019), and Shimada, Koyama, and Inoue

(2020).

• Librispeech: an ASR corpus based on public domain audio books Panayotov et al. (2015).

Used by Keren et al. (2018), Ravanelli and Bengio (2018), and Li, Jiang, Li, et

al. (2020).
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• VoxCeleb2: Deep speaker recognition Chung, Nagrani, and Zisserman (2018). Used

by Rozenberg, Aronowitz, and Hoory (2020) and Snyder et al. (2019).

• Vocalsketch: Vocally imitating audio concepts Cartwright and Pardo (2015). Used by

Zhang and Duan (2017) and Zhang, Pardo, and Duan (2019).

• RAVDESS: Ryerson Audio-Visual Database of Emotional Speech and Song Living-

stone and Russo (2018). Used by Feng and Chaspari (2020).

• eNTERFACE05: audio-visual emotion database Martin et al. (2006). Used by Feng

and Chaspari (2020).

• CREMA-D: Crowd-sourced emotional multimodal actors dataset Cao et al. (2014).

Used by Feng and Chaspari (2020).

• DAPS: Device and Produced Speech dataset Mysore (2015). Used by Mimilakis,

Bryan, and Smaragdis (2020).

• Spoken Wikipedia Corpora Köhn, Stegen, and Baumann (2016). Used by Yu Wang

et al. (2020).

• VOICES: Voices Obscured in Complex Environmental Settings Richey et al. (2018).

From the datasets encountered in the articles, a few potential datasets (see 1) that could be

utilized in this thesis were chosen. From these, LibriSpeech and VoxCeleb datasets were

chosen, in particular LibriSpeech (Panayotov et al. 2015) was chosen for training the models

implemented in this thesis. Due to the authors having made available subsets of the dataset,

with more reasonable size of 100 hours of speech from 251 speakers, weighing only 6.3

gigabytes on disk. VoxCeleb1 (Nagrani, Chung, and Zisserman 2017) was chosen for use

in testing, as it was commonly used in articles on speaker recognition and would enable

comparing the results to other research.

The neural networks implemented in the articles on speaker recognition were also lightly

analysed, by comparing the key sections of the networks. Table 2 shows the structure some

of the SNN implementations found. While Table 3 shows some of the non-SNN networks

found. Finally, Table 4 lists some of the non-FSL networks found in the articles. In the

tables, question mark signifies that information was not found in the article, while a dash

signifies that the method was not used in the network.
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# of Speakers Samples Description

VoxCeleb1 1251 145265 utterances from YouTube

VoxCeleb2 6112 1128246 utterances from YouTube

LibriSpeech 2484 148688 audiobooks from LibriVox

VOiCES 200 999168 acoustically challenging conditions

RAVDESS 24 7356 emotional, 2 statements 1 song

CREMA-D 91 7442 emotional, 12 sentences

Table 1: Datasets that were identified to be potentially relevant for this thesis.

Audio repr. Network Distance measure Optimizer Aggregation Loss Dataset

Hajavi and Etemad (2020) ? thin-ResNet34 Cosine similarity Adam GhostVLAD Triplet loss (variation) VoxCeleb1

Rozenberg, Aronowitz, and Hoory (2020) ? X-vector DNN Cosine similarity ? ? ? VoxCeleb2

Nagrani, Chung, Xie, et al. (2020) Spectrogram thin-ResNet34 Cosine similarity Adam GhostVLAD Softmax + Contrastive loss VoxCeleb1/2

Table 2: Prior-art on SNNs in speaker recognition

Audio repr. Network Distance measure Optimizer Aggregation Loss Dataset

Li, Jiang, Li, et al. (2020) MFCC 2D-CNN Euclidean distance SGD ? binary cross entropy LibriSpeech

Kye et al. (2020) MFB ResNet34 Cosine similarity SGD TAP Normalized softmax VoxCeleb1/2

Anand et al. (2019) Spectrogram CapsNet ? ? – Prototypical loss VoxCeleb1/VCTK

Table 3: Prior-art non-SNN networks in speaker recognition

Audio repr. Network Optimizer Aggregation Loss Dataset

Xie et al. (2019) STFT Thin-ResNet34 Adam GhostVLAD softmax? VoxCeleb2

Li, Jiang, Wu, et al. (2020) MFCC GMM-based MDN ? ? ? LibriSpeech

Snyder et al. (2019) MFCC X-vector DNN ? ? ? VoxCeleb1/2

Ravanelli and Bengio (2018) Raw audio SincNet RMSprop – softmax? LibriSpeech

Table 4: Prior-art non-FSL in speaker recognition
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4 Implementation and experiments

The experiments performed in this thesis, consisted of training multiple speaker recognition

models and evaluating their performance. Initially, the experiments were set to compare:

• overall architectures, such as Siamese networks (see Figure 4), Model-Agnostic Meta-

Learning (MAML) (Finn, Abbeel, and Levine 2017) or prototypical networks.

• trunk architectures (thin-ResNet (see Section 4.1), fast-ResNet or other).

• amount of training data (half of LibriSpeech-100, LibriSpeech-100, LibriSpeech-360,

LibriSpeech-500, VoxCeleb1).

• augmented training data with different methods (Gaussian noise, MUSAN corpus (Sny-

der, Chen, and Povey 2015), room impulse response (RIR) noise, SpecAugment (Park

et al. 2019)).

• various audio representations (see Figure 6) with different parameters.

However, this narrowed down to comparing SNN and prototypical networks using thin-

ResNet trained on LibriSpeech-100 with and without augmentation with mel spectrogram

input. Additionally, a subset of The Parliament of Finland (2017) was constructed ad hoc as

a test set to measure performance of the models on speech in the Finnish language. The test

set is further detailed in Section 4.3.1. The code written for implementing the experiments

in this thesis has been made available as a public Git repository1, including the scripts used

for constructing the Finnish dataset.

It should be noted, that the experiments were not entirely rigorous, as there were some

changes to the training setup changed over time. Not only were most models trained only

once, the development of the implementation was continued during experimentation. Changes

include change in impulse response data used for augmentation, as it was found to be incor-

rect. Also the 1cycle maximum learning rate parameter was increased as an attempt to shake

out not-a-number (NaN) errors during training. There were also likely other changes that

went unnoticed.

For implementing the experiments, PyTorch (Paszke et al. 2019) was chosen for it’s apparent

1https://github.com/vjoki/fsl-experi

20

https://github.com/vjoki/fsl-experi


popularity among other researches in the field of speaker recognition. To further simplify the

code and speed up development, PyTorch Lightning 2 framework was selected. Other alter-

natives were also considered, but PyTorch Lightning was chosen due to various advanced

features being available out of the box.

To increase robustness against noise, random data augmentation is applied to the data during

training. For this purpose, the Audiomentations3 Python library was utilized to implement

the following augmentations

• gaussian noise with random signal-to-noise ratio (SNR) from range of 0.2–0.5, with

probability of 0.5,

• convolve the audio with random impulse responses from RIRs noise set (Ko et al. 2017),

with probability of 0.3,

• adding random background noise from the RIRs noise set, with probability of 0.3,

• adding random short noises from the RIRs noise set using maximum SNR of 80 deci-

bels, with probability of 0.3.

The implementations for ResNet, AngularProto and SoftmaxProto were borrowed, with mi-

nor modifications, from the unofficial Git repository4 for the articles by Chung et al. (2020)

and Heo et al. (2020). Additionally, a third party5 implementation for CapsNet was bor-

rowed, to implement a network based on the work of Hajavi and Etemad (2020), but in the

end was not included in the experiments.

4.1 ResNetSE34

All of the models trained for this thesis share the same implementation of the 34-layer resid-

ual network with squeeze and excitation blocks (ResNetSE34) as the encoder layer, and the

preprocessing layer for transforming the waveform into a spectrogram.

The preprocessing layer also used by Chung et al. (2020), with small additions, was used for

2https://github.com/PyTorchLightning/pytorch-lightning
3https://github.com/iver56/audiomentations
4https://github.com/clovaai/voxceleb_trainer/
5https://github.com/adambielski/CapsNet-pytorch
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the implementation. The layer consists of

• applying pre-emphasis to the input signal (eq. 3.1), with the gradient calculation of the

learning pre-emphasis layer disabled,

• transforming the signal into a mel spectrogram with 512 fast Fourier transform (FFT)

frequency bins, using Hamming windowing with window length of 400 samples and

hop length of 160 samples,

• transforming the spectrogram into logarithmic scale,

• applying 1-D instance normalization to the spectrogram.

Additionally, plain spectrogram, MFCC transforms and SpecAugment (Park et al. 2019)

were implemented, but ultimately not explored in the experiments due to time constraints.

For the experiments, ResNetSE34V2 (or thin ResNet-34) (Heo et al. 2020) was used, but the

implementation of ResNetSE34L (or fast ResNet-34) (Chung et al. 2020) was also provided.

The ResNet implementations use the SE-ResNet module proposed by Hu et al. (2020).

ResNetSE34V2 consists of 8.0 million parameters. It differs from the original ResNet-34,

in addition to the SE blocks, in that the channel counts in the residual blocks are halved and

the first convolutional layer has stride 1. (Heo et al. 2020). The convolutional layers are

initialized using the method described by He et al. (2015), for which uniform distribution

is used for 1D layers and normal distribution for the 2D layers. Batch normalization layers

have their weights initialized to 1, and bias to 0.

conv, 3×3, 32,

stride 1

Layer 1, P = 32,C = 32

3× block

Layer 2, P = 32,C = 64

1× block, X = (2,2)

3× block

Layer 3, P = 64,C = 128

1× block, X = (2,2)

5× block

Layer 4, P = 128,C = 256

1× block, X = (2,2)

2× block

aggregation

B×1×M×L

ReLU, BatchNorm,

B×32×M×L B×32×M×L

B×64×M/2×L/2

B×128×M/4×L/4B×256×M/8×L/8B×N

Figure 8: ResNetSE34V2 overview, parameter output features N. M is the mels count, L is

the length of the input sequence and B is the batch size. The value of Y is dependent on the

aggregation used. The structure of a block is detailed in Figure 9, while aggregation methods

are shown in Figure 10.
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conv, 3×3, stride=X

BatchNorm

conv, 3×3

BatchNorm

Average pooling

FC

FC

Sigmoid�

+

B×P×M×L

ReLU, B×C×M×L

B×C×M×L

B×C

ReLU, B×C/8

B×C

B×C×M×L

B×C×1×1

B×C×M×L
(a)

conv, 1×1, stride=X

B×P×M×L

B×C×M×L

B×C×M×L

(b) If X! = 1 or P! = C, conv,

else pass through.

Figure 9: ResNetSE34 block, the input parameters are input channels P, output channels C

and stride X . If no stride X specified X = 1. (a) is the squeeze and excitation block with

reduction rate r = 8. (b) Convolution is applied if X is not 1 or the amount of input channels

P is not the same as the amount of output channels C.

Self-Attentive Pooling (SAP) (Cai, Chen, and Li 2018) and Attentive Statistics Pooling

(ASP) (Okabe, Koshinaka, and Shinoda 2018) are used to aggregate (or pool) the temporal

frame-level features into a speaker embedding. These could be considered as more advanced

extensions to the ideas of pooling described in Chapter 2.2. ASP differs from SAP, by adding

an extra step to the process after the attention model as follows

σ̃(x,w, µ̃) =
√
(∑x2�w)− µ̃2 (4.1)
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where ∑ signifies column-wise summation along the 3rd column. Figure 10 contains more

detailed overview of these methods, which appear curiously similar to the ResNet block in

Figure 9.

Additionally, NetVLAD (Arandjelovic et al. 2018), inspired by Vector of Locally Aggre-

gated Descriptors (VLAD) image representation and GhostVLAD (Zhong, Arandjelovi, and

Zisserman 2019), which builds upon NetVLAD, pooling layers were implemented. With the

help of multiple third party implementations found online6,7,8, but these were not thoroughly

experimented with. Other methods were also noted but not implemented, such as Cross At-

tentive Pooling (CAP) (Kye, Kwon, and Chung 2021), and the method proposed by Kye,

Chung, and Kim (2021).

conv 1D, 1

conv 1D, 1

softmax, dim = 2

�

∑

FC

B× (256 ·M)×L

B× (256 ·M)×L
ReLU, BatchNorm, B×128×L

B× (256 ·M)×L

B× (256 ·M)×L

B× (256 ·M)×L

B× (256 ·M)

B×N

(a) Self-Attentive Pooling (SAP).

conv 1D, 1

conv 1D, 1

softmax, dim = 2

�

∑

σ̃(x,w, µ̃)

FC

B× (256 ·M)×L

ReLU, BatchNorm, B×128×L

B× (256 ·M)×L

B× (256 ·M)×L

B× (256 ·M)×L

µ̃ , B× (256 ·M)

x, B× (256 ·M)×L

w

B× (256 ·M)

B×N

(b) Attentive Statistics Pooling (ASP).

Figure 10: Description of SAP and ASP aggregation layers from Figure 8.

4.2 Training

Training of the models was performed using the free notebook instances on Google Colabo-

ratory (or Colab), with either a Nvidia K80 GPU with 12GB of VRAM or a Nvidia T4 GPU

with 16GB of VRAM. This posed some significant limits on the experiments, due to the

6https://github.com/lyakaap/NetVLAD-pytorch/
7https://github.com/sitzikbs/netVLAD/
8https://github.com/Nanne/pytorch-NetVlad/
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variable runtime limits and difficulty of reliably obtaining a graphics processing unit (GPU)

instance. The claimed maximum lifetime of a free Colab runtime is 12 hours, but in practice

the lifetimes were found to be quite variable.

For training the models, AdamW optimizer (Loshchilov and Hutter 2019) was used with

learning rate scheduling according to the 1cycle learning rate policy (Smith and Topin 2018)

based on the validation loss.

The train-clean-100 subset, containing approximately 100 hours of audio, of Libri-

Speech dataset was used for training the models. The train-clean-100 set consists of

25 minutes of audio from each of the 251 speakers, of which 125 are female and 126 are

male (Panayotov et al. 2015). The 100 hour subset was chosen over the larger subsets, as

it was small enough to be used on a free Colab instance, and because the one of the initial

focuses of this thesis was to investigate learning from low amount of data. The dev-clean

set included in the LibriSpeech corpus was used for cross-validation.

As the PyTorch Lightning library was chosen as the framework for the implementation, only

the training, validation and testing steps of the training process had to be implemented. This

included feeding of the data to the model, handling of the loss function and the reshaping of

the data being passed. An overview of the training algorithm can be seen in Algorithm 1.

To speed up the training of the models and to allow for larger batch sizes, the PyTorch imple-

mentation of automatic mixed precision (AMP) training based on the work of Micikevicius

et al. (2018) was utilized. AMP makes use of half-precision floats (FP16) when appropriate,

instead of simply using single-precision format (FP32) everywhere. This is done by casting

the operations to mixed precision for forward propagation, and scaling the loss gradients.

The optimizer is skipped, if gradients contain inf or NaN values, otherwise gradients are

unscaled before they are passed to the optimizer.
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Algorithm 1 Basic overview of the training algorithm.
for epoch← 0, epoch < max epoch do

for batch← training data do

data, labels← batch

out put←model.forward(data) . Forward propagation

loss← L(out put, labels)

∇loss← loss.backward(model) . Backpropagation

optimizer(∇loss,model) . Update model parameters

end for

validation() . Cross-validation

end for

The training algorithm runs until a specific count of epochs has been reached, for most of

the experiments this count was set to 50. During each epoch, the entire training dataset was

iterated over in randomized batches. The batch size chosen for the experiments generally

amounted to 64 samples per batch. As the size of the batched data varied based on the loss

function and the sample size used, the actual batch size used was different. The choice of

maximum epoch count was made based on the limits on available computation time, likewise

batch size was chosen based on the amount of VRAM available on the GPU.

Each batch starts with forward propagation, where the training data in the batch is passed

through the model. The resulting output is then further passed to the loss function, along

with the labels containing the expected values. Backpropagation is performed using the loss

scalar, computing the gradients with respect to the model parameters. The gradients are then

utilized for updating the model parameters, with the chosen optimization algorithm. After

each batch cross-validation is performed to monitor how well the model generalizes.
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4.2.1 Loss functions

The PyTorch implementation9 of binary cross entropy (BCE) with a sigmoid (eq. 4.3) layer

is used in all the validation and test phases, but it is also utilized as the training loss of the

simple SNN model. The rationale for including sigmoid (eq. 2.5) in the loss function is

explained to be due to increased numerical stability.

BCE(x,y) = H
(
ym logxm +(1− ym) log(1− xm)

)
=− 1

M

M

∑
m=1

(
ym logxm +(1− ym) log(1− xm)

)
(4.2)

LBCE = BCE(σ(x),y)

= BCE
(

1
1+ e−x ,y

)
, (4.3)

where x represents the output of the model for a given training example, y the associated

label value, M is the amount of training examples.

The implementation of angular prototypical loss (AngularProto) by Chung et al. (2020) was

adapted in the implementation used in this thesis. Cosine similarity (eq. 2.10) is used as

the similarity metric. The angular prototypical loss is almost identical to prototypical loss

proposed by Snell, Swersky, and Zemel (2017), the key difference being the use of cosine

similarity instead of Euclidean distance.

ci =
1

M−1

M

∑
m=2

xi,m (4.4)

S j,k = w · cos(x j,1,ck)+b

= w
x j,1 · ck∥∥x j,1

∥∥‖ck‖
+b (4.5)

LAP = H(softmax(S j))

=− 1
N

N

∑
j=1

logsoftmax(S j) j

=− 1
N

N

∑
j=1

log
eS j, j

∑N
k=1 eS j,k

, (4.6)

9https://pytorch.org/docs/1.7.1/generated/torch.nn.BCEWithLogitsLoss.

html
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where N is the number of speakers (or ways) in the batch, M is the number of utterances (or

shots) for each speaker, x is an N by M matrix of model outputs. 32-way 2-shot (thus N = 32,

M = 2) batches were used for training all the models using AngularProto in the experiments.

(Chung et al. 2020; Heo et al. 2020).

Heo et al. (2020) combine AngularProto with softmax loss, which is used in the experi-

ments under the name SoftmaxProto. The combination is achieved by obtaining both soft-

max loss (eq. 4.7) and angular prototypical loss (eq. 4.6), and adding the resulting losses

together. Additionally, before passing the model output to the cross-entropy loss function,

it is passed through a fully connected layer as shown in Figure 11. Softmax loss is also

often referred to as cross-entropy loss, which is somewhat misleading as it is actually the

combination of softmax function (eq. 2.6) and cross-entropy (eq. 2.3).

Lsoftmax = H(softmax(x))

=− 1
N

N

∑
i=1

logsoftmax(x)i

=− 1
N

N

∑
i=1

log
exi

∑N
j=1 ex j

, (4.7)

where N is the number of speakers in the training set.

FC

Lso f tmax LAP

+

loss

B×N
B×N

B×M

1
1

1

Figure 11: The combination of cross-entropy loss and AngularProto. B is the batch size, N

is the number of features per utterance, and M is the number of speakers in the training set.
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4.3 Evaluation

The evaluation of the trained models consisted of running speaker verification tasks on the

test data, and measuring the performance of the models using the metrics described in Sec-

tion 3.2. The test data consists of lists of labeled pairs of audio samples from a single speaker,

where the label signified whether the speakers in the two samples were the same. The speak-

ers in the test datasets should not appear in any of the training or validation datasets.

For evaluating the model performance, the same method us used for prediction as in valida-

tion during training. Which means doing forward propagation on batches from the test (or

validation) dataset. However, depending on the model, evaluation differs slightly from train-

ing. For example, when measuring target and test speaker distance using a model trained

BCE with sigmoid (eq.4.3), one needs to remember to apply sigmoid to the model output.

Whereas measuring speaker distance with a model trained using AngularProto and Soft-

maxProto requires passing each of the two inputs through the model. Then normalizing the

output vectors x and y by taking the Euclidean norm along dimension 1. Finally, obtaining

the result by taking the Euclidean distance (see eq. 2.11) of the normalized outputs.

The test data lists for LibriSpeech and Eduskunta sets were generated by randomly selecting

test pairs from the dataset. The lists used were also made available in the same Git reposi-

tory10 as the implementation. For the VoxCeleb1 dataset, the tests were done using the test

list published by the authors. The same generated lists were used for each test. During test-

ing, 3 positive and 3 negative pairs were removed from the Eduskunta set test list, as the

samples used were preventing test runs using full sample length. More details on the test sets

used can be seen in Table 5.

Test set Total utterances # of speakers # of test pairs Positive/negative split

LibriSpeech test-other (Panayotov et al. 2015) 3029 33 2883 1673/1210

Librispeech test-clean (Panayotov et al. 2015) 2707 40 2611 1523/1088

VoxCeleb1 test (Nagrani, Chung, and Zisserman 2017) 4874 40 37720 18860/18860

Eduskunta (Section 4.3.1) 13680 171 13640 6837/6797

Table 5: Description of the datasets and test pair lists used.

10https://github.com/vjoki/fsl-experi/
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4.3.1 Plenary Sessions of the Parliament of Finland dataset

To compare how speaker recognition models trained on English speech perform on other

languages, a dataset consisting of Finnish speech suitable for speaker verification was con-

structed ad hoc. For this purpose, audio data in the waveform audio file format (WAVE, or

WAV) and annotation files in the ELAN annotation format (EAF) from the dataset by The

Parliament of Finland (2017) were utilized. Specifically, the test set was constructed using

the audio of the plenary sessions of 2016.

As the original data is chunked in large WAV files, with per word aligned transcriptions. It

was necessary to extract suitably long utterances, by grouping the annotations. The grouping

was performed by terminating on the end of the sentence, if utterance duration was greater

than 3 seconds or when utterance reached duration greater than 20, but less than 25 seconds.

This process was achieved by first programmatically editing the annotation files, and then

splitting the WAV file based on the timestamps associated with the annotations.

To further reduce the size of the test set, 80 samples were selected from each speaker. Speak-

ers with less samples were excluded from the test set. Additionally, it was required to manu-

ally tweak the results as some speakers ended up with multiple speaker ids, but this could be

easily fixed in further iterations. The resulting dataset consists of speech from 171 speakers

and 13680 utterances.

Further caveats include the dataset not being verified in any way for overlapping speech,

misaligned timestamps, incorrect grouping of speakers. Additionally, there may be some

Finland Swedish speech in some utterances. The full process was documented and scripts

published in the same public Git repository11 as the implementation of the experiments.

11https://github.com/vjoki/fsl-experi/
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5 Results

In this chapter, the results of the evaluation described in Section 4.3 are presented. Sec-

tion 5.1 covers the reference models used and their results, while Section 5.2 focuses on

the models trained for this thesis. Complete lists of all the results can be found in the Ap-

pendix A.

The results show that, for speaker recognition, an SNN trained using BCE loss does not

generalize as well as a ResNet trained using 32-way 2-shot metric learning using prototypical

loss. Additionally, the SNN did not benefit as much from data augmentation. Also it was

discovered that training using 2 second sample length resulted in better performance than

training with 4 second samples. Surprisingly the models performed as well on the Eduskunta

test set consisting of Finnish speech, as they did on the English speech of the VoxCeleb1 test

set.

Though same labeled lists of sample pairs were used for the tests, it is possible that adverse

effects from randomness to each test run was not completely eliminated, as the 4 or 2 second

section of an audio sample was chosen randomly each time. However, the same random

number generator seeds were used each time to mitigate this, and no noticeable variance

between test runs was observed in the EER (eq. 3.3) and minDCF (eq. 3.4) metrics.

Accuracy measures how close to the expected values the model predictions are, and it is

one of the possible evaluation metrics. While the accuracy of the model was not used for

evaluation, it was observed that it was necessary to use the EER threshold (eq. 3.2) for

computing the accuracy. One possible cause for this could be the class imbalance in the

training (and validation) data, the results of the trained models are slightly shifted from the

expected output range of [0,1]. Thus, to get a usable measure of the model accuracy, it was

necessary to find a usable threshold value for each model. Using the EER threshold resulted

in approximately accuracy+EER = 1.
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5.1 Reference benchmarks

Unofficial pre-trained models1, based on fast ResNet-34 (Chung et al. 2020), and H / ASP (Heo

et al. 2020), based on the thin ResNet-34, were tested for reference. The models have been

trained on the VoxCeleb2 training set consisting of 1092009 utterances from 5994 distinct

speakers, with sample length of 2 seconds. However, the mel scale used to construct the mel

spectrogram for the models differs, for fast ResNet-34 40 mels were used while H / ASP

model was trained with 64 mels. The fast ResNet-34 model by Chung et al. (2020) uses

SAP encoder (see Figure 10a), and was trained using the angular prototypical loss function.

While the H / ASP model by Heo et al. (2020) uses ASP encoder (see Figure 10b), and was

trained using the softmax prototypical loss function with online data augmentation.

Table 6 shows the results of benchmarks performed in this thesis using the pre-trained mod-

els, giving a reference point for comparison to the models specifically implemented and

trained for this thesis. Here one can see, that H / ASP shows excellent results on the Libri-

Speech and VoxCeleb1 datasets, with the fast ResNet-34 model slightly behind. Further, the

models are tested on the Finnish Eduskunta dataset, showing some increase in the error rate,

but still quite good results.

Fast ResNet-34 H / ASP

Test set EER minDCF EER minDCF

LibriSpeech test-other 2.40% 0.1288 0.83% 0.0317

LibriSpeech test-clean 2.85% 0.0814 0.85% 0.0404

VoxCeleb1 test 2.18% 0.1690 1.18% 0.0865

Eduskunta test 6.36% 0.2356 5.86% 0.1214

Table 6: Reference benchmark results.

1https://github.com/clovaai/voxceleb_trainer/
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5.2 Benchmarks

The results of the benchmarks performed on the models trained for this thesis are described

in this section. Tables 7 and 8 list the parameters used for training each model, which are

described further in Section 4.2. The models are primarily grouped by loss function used in

training (see Section 4.2.1).

Test model Training

Encoder Training loss Speakers Epoch Aug. Epochs Steps

GhostVLAD BCE 251 8

ASP BCE 251 43 49 21810

SAP BCE 251 34 39 17360

SAP BCE 251 47 49 21810

SAP BCE 100 18 49 15222

SAP BCE 50 31 49 13040

SAP BCE 251 22 X 29 12910

SAP BCE 251 24 X 29 12910

SAP AngularProto 251 15 49 20290

SAP AngularProto 251 21 49 20140

SAP AngularProto 251 29 X 29 12010

ASP AngularProto 251 30 49 20430

ASP AngularProto 100 126 144 21600

ASP AngularProto 50 120 499 28940

ASP AngularProto 251 47 X 49 19850

GhostVLAD AngularProto 251 36 49 20340

SAP SoftmaxProto 251 49 49 20090

ASP SoftmaxProto 251 40 49 20290

ASP SoftmaxProto 100 124 124 19840

ASP SoftmaxProto 50 105 349 20240

ASP SoftmaxProto 251 49 X 49 20430

Table 7: Training parameters for models using mel spectrogram of 64 mels with sample

length of 4 secs.
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Test model Training

Encoder Training loss Mels Speakers Epoch Sample Aug. Epochs Steps

SAP BCE 64 251 47 2s 49 21810

SAP BCE 64 251 33 2s X1 49 10880

SAP BCE 64 251 27 2s X1 49 10930

ASP2 AngularProto 64 251 43 2s X 49 9997

ASP AngularProto 64 251 49 3s X 49 20140

ASP3 AngularProto 64 251 41 2s X 49 19990

ASP AngularProto 64 251 48 2s X 49 20140

ASP SoftmaxProto 64 251 44 2s X 49 20040

Table 8: Training parameters for models using different sample lengths. 1. Model using

GPU optimized augmentations. 2. 32-way 4-shot. 3. Using the fast-ResNet34 network.

5.2.1 Binary cross-entropy

This section contains the results for the SNN model trained using binary cross-entropy loss.

This model was not able to effectively generalize, showing significantly worse performance

in the VoxCeleb1 and Eduskunta tests.

The results of the variant using SAP in the ResNet trained using 251, 100 and 50 speakers are

shown in Table 11. Contrary to expectations, the model trained on 251 speakers performed

significantly worse with the full sample than the other models, with no clear indication as

to why this happened. An additional model was trained using the same parameters, but the

behaviour did not change significantly. It may be possible to achieve better results, with

larger number of speakers in the training set. The SAP network was also trained using 251

speakers with data augmentation (see Table 12). While the expectation was that augmenta-

tion would improve the performance across the board, Figure 12 shows that this was not the

case. Performance increased noticeably only for the test-other and VoxCeleb1 sets, but for

test-clean set the performance decreased. The cause for this is not clear, but may be due to

test-clean being the most similar to the training set.
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The results of the variant using ASP in the ResNet are shown in Table 9. The ASP model

shows similar performance to the nonaugmented SAP model, without issues with the full

length samples. This network was also trained with 2 second sample length and GPU ac-

celerated data augmentation, resulting in better performance in all tests (shown in Table 10).

Also, unlike the nonaugmented model, the best results were achieved in the test-clean set

instead of the weaker test-other set.

Results (4s) Results (2s) Results (full)

Test set EER minDCF EER minDCF EER minDCF

LibriSpeech test-other 17.10% 1.0 17.10% 1.0 14.39% 0.9178

LibriSpeech test-clean 21.14% 1.0 21.14% 1.0 16.35% 1.0

VoxCeleb1 test 32.87% 1.0 32.87% 1.0 30.17% 1.0

Eduskunta test 32.13% 1.0 32.69% 1.0 28.04% 1.0

Table 9: Tests results for SNN ASP BCE 64 mels, trained on 251 speakers with sample

length 4 seconds.

Results (4s) Results (2s) Results (full)

Test set EER minDCF EER minDCF EER minDCF

LibriSpeech test-other 12.97% 0.9444 12.14% 0.9137 10.09% 0.7964

LibriSpeech test-clean 13.87% 0.6811 14.36% 0.8085 9.65% 0.4637

VoxCeleb1 test 28.64% 0.9999 30.74% 0.9998 27.88% 0.9996

Eduskunta test 27.57% 1.0 29.72% 1.0 24.69% 0.9999

Table 10: Tests results for SNN ASP BCE 64 mels using GPU accelerated data augmentation

with 251 speakers with sample length of 2 seconds.
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Results (4s) Results (2s) Results (full)

Test set Speakers EER minDCF EER minDCF EER minDCF

LibriSpeech test-other

251 17.10% 0.9851 17.10% 0.9851 44.18% 1.0

100 23.65% 1.0 23.55% 1.0 21.82% 1.0

50 30.25% 1.0 29.65% 1.0 26.78% 1.0

LibriSpeech test-clean

251 16.28% 0.9509 16.28% 0.9509 44.03% 1.0

100 33.28% 1.0 31.17% 1.0 28.84% 1.0

50 36.95% 1.0 36.74% 1.0 38.42% 1.0

VoxCeleb1 test

251 32.44% 0.9999 32.44% 0.9999 46.44% 1.0

100 36.00% 1.0 36.69% 1.0 33.10% 1.0

50 39.60% 1.0 39.85% 1.0 37.84% 1.0

Eduskunta test

251 28.39% 0.9994 28.63% 0.9997 45.15% 1.0

100 37.68% 0.9999 37.87% 1.0 33.94% 1.0

50 41.75% 0.9999 41.84% 1.0 40.55% 1.0

Table 11: Comparison of test results for SNN SAP BCE 64 mels models trained using re-

duced number of speakers with sample length 4 seconds.

Results (4s) Results (2s) Results (full)

Test set EER minDCF EER minDCF EER minDCF

LibriSpeech test-other 13.39% 0.9916 14.29% 0.9824 9.43% 0.8530

LibriSpeech test-clean 22.33% 0.9810 22.41% 0.9934 17.54% 0.9866

VoxCeleb1 test 29.13% 0.9998 29.38% 0.9995 25.32% 0.9994

Eduskunta test 29.77% 0.9990 30.63% 0.9997 25.17% 0.9991

Table 12: Tests results for SNN SAP BCE 64 mels using data augmentation with 251 speak-

ers, sample length 4 seconds.
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Figure 12: Comparison of the effect of augmentation on SNN SAP model with 4 seconds

samples.

5.2.2 AngularProto

This section details the results for the angular prototypical loss, also used in the Fast ResNet-

34 reference model. The results of the variant using ASP in the ResNet trained using 251, 100

and 50 speakers are shown in Table 13. Interestingly, the model trained with 100 speakers

shows performance on par to the model trained with 251 speakers for the LibriSpeech sets,

in fact outperforming it on the test-clean set. Performance on the harder VoxCeleb1 and

Eduskunta tests is poor, and comparable to the augmented BCE ASP model. The SAP variant

trained with 251 speakers performed worse than the ASP model in the hard tests, and slightly

better on the easier LibriSpeech tests (see Table 14).

Table 15 lists the results for SAP and ASP models trained with 251 speakers with data aug-

mentation and sample length of 4 seconds. Figure 13 shows augmentation significantly

increases performance on the hard VoxCeleb1 and Eduskunta sets with all the results going

under EER of 23%, indicating that generalization of the AngularProto model benefits no-

ticeably from data augmentation. This is further supported by how the performance does not

depend on augmentation for the test-clean set, that has been split from the training set.

It was found that training using 2 second sample length gives better results (see Figure 14).

Sample lengths of 1 and 3 seconds were also attempted, but training with 1 second samples
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did not result in a usable model.

Results (4s) Results (2s) Results (full)

Test set Speakers EER minDCF EER minDCF EER minDCF

LibriSpeech test-other

251 9.09% 0.4452 8.36% 0.4658 6.52% 0.3870

100 8.84% 0.5753 8.67% 0.5832 6.94% 0.4803

50 14.78% 0.7937 13.80% 0.7669 11.58% 0.6602

LibriSpeech test-clean

251 9.27% 0.6999 8.92% 0.7652 6.78% 0.5898

100 8.38% 0.7395 8.81% 0.7280 4.87% 0.6419

50 14.06% 0.8641 14.44% 0.8622 9.38% 0.6107

VoxCeleb1 test

251 30.78% 0.9967 30.95% 0.9970 28.36% 0.9876

100 32.66% 0.9945 32.43% 0.9968 29.01% 0.9850

50 32.93% 0.9984 33.09% 0.9990 29.05% 0.9871

Eduskunta test

251 26.01% 1.0 26.01% 0.9991 21.29% 0.9999

100 28.01% 0.9993 27.82% 0.9987 22.36% 0.9999

50 28.99% 0.9996 28.84% 0.9996 24.89% 0.9985

Table 13: Comparison of test results for ASP AngularProto 64 mels models trained using

reduced number of speakers with sample length of 4 seconds.

Results (4s) Results (2s) Results (full)

Test set EER minDCF EER minDCF EER minDCF

LibriSpeech test-other 6.69% 0.5297 7.01% 0.5425 5.27% 0.3977

LibriSpeech test-clean 8.73% 0.7632 7.81% 0.7092 5.52% 0.5623

VoxCeleb1 test 32.37% 0.9944 31.98% 0.9983 30.83% 0.9983

Eduskunta test 28.13% 0.9997 27.83% 1.0 22.44% 0.9999

Table 14: Tests results for SAP AngularProto 64 mels with sample length of 4 seconds.
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Results (4s) Results (2s) Results (full)

Test set Encoder EER minDCF EER minDCF EER minDCF

LibriSpeech test-other
SAP 5.38% 0.3485 4.62% 0.2671 2.57% 0.1601

ASP 5.03% 0.3551 5.27% 0.3284 2.39% 0.1846

LibriSpeech test-clean
SAP 9.92% 0.6915 10.22% 0.7253 6.51% 0.4975

ASP 9.11% 0.7202 9.38% 0.6853 6.24% 0.5347

VoxCeleb1 test
SAP 22.75% 0.9598 22.90% 0.9496 16.98% 0.8310

ASP 22.25% 0.9559 22.55% 0.9544 16.18% 0.7938

Eduskunta test
SAP 21.92% 1.0 21.91% 0.9990 17.02% 0.9999

ASP 21.85% 0.9895 21.94% 0.9988 16.95% 0.9877

Table 15: Tests results for AngularProto 64 mels using data augmentation with sample length

of 4 seconds.
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Figure 13: Comparison of the effect of augmentation on AngularProto model with 4 second

sample length.
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Figure 14: Comparison of the effect of sample length on AngularProto ASP model using

data augmentation with the full sample.

5.2.3 SoftmaxProto

This section details the results for the softmax prototypical loss, a direct extension of Angu-

larProto also used in the H / ASP reference model. During training the of the models, it was

observed that SoftmaxProto is noticeably more sensitive to higher learning rates, requiring

extra care to avoid NaNs.

Table 16 shows the results for the ASP and SAP variants trained with 251 speakers, using

sample length of 4 seconds. The results on the hard VoxCeleb1 and Eduskunta sets are

slightly better here than the equivalent for AngularProto.

The results of the variation using ASP in the ResNet trained with 251, 100 and 50 speakers

are shown in Table 17. The results are more or less as could be expected, with the full sample

length and more speakers giving better results linearly. Performance is slightly better than

AngularProto.

Table 18 lists the results for the ASP variant trained with data augmentation. As with Angu-

larProto, data augmentation increases performance significantly (see Figure 15). However,

for test-clean set augmentation seemed to decrease performance by 31%. Like before, the

results are slightly better than AngularProto.
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Results (4s) Results (2s) Results (full)

Test set Encoder EER minDCF EER minDCF EER minDCF

LibriSpeech test-other
SAP 8.50% 0.4917 8.60% 0.4933 7.18% 0.5094

ASP 7.18% 0.5414 6.21% 0.5745 5.06% 0.4923

LibriSpeech test-clean
SAP 7.62% 0.6139 7.62% 0.6525 4.87% 0.5292

ASP 6.32% 0.5350 6.32% 0.5466 5.32% 0.3443

VoxCeleb1 test
SAP 29.78% 0.9968 29.80% 0.9986 26.16% 0.9888

ASP 29.64% 0.9948 29.55% 0.9941 26.86% 0.9696

Eduskunta test
SAP 25.13% 0.9999 25.28% 1.0 18.71% 1.0

ASP 25.34% 0.9960 24.94% 0.9994 21.21% 0.9996

Table 16: Tests results for SoftmaxProto with sample length of 4 seconds.

Results (4s) Results (2s) Results (full)

Test set Speakers EER minDCF EER minDCF EER minDCF

LibriSpeech test-other

251 7.18% 0.5414 6.21% 0.5745 5.06% 0.4923

100 10.82% 0.6650 10.41% 0.6240 8.67% 0.5413

50 14.39% 0.7929 13.80% 0.8060 10.75% 0.5559

LibriSpeech test-clean

251 6.32% 0.5350 6.32% 0.5466 5.32% 0.3443

100 9.84% 0.5625 9.27% 0.5063 6.36% 0.3703

50 13.60% 0.8493 13.33% 0.8361 7.92% 0.5594

VoxCeleb1 test

251 29.64% 0.9948 29.55% 0.9941 26.86% 0.9696

100 31.43% 0.9958 31.36% 0.9963 27.83% 0.9827

50 31.23% 0.9993 31.26% 0.9998 26.76% 0.9545

Eduskunta test

251 25.34% 0.9960 24.94% 0.9994 21.21% 0.9996

100 26.78% 0.9997 26.41% 0.9988 21.97% 0.9982

50 29.16% 0.9991 29.41% 0.9988 23.93% 0.9913

Table 17: Comparison of test results for ASP SoftmaxProto 64 mels models trained using

reduced number of speakers with sample length of 4 seconds.
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Results (4s) Results (2s) Results (full)

Test set Encoder EER minDCF EER minDCF EER minDCF

LibriSpeech test-other ASP 4.62% 0.2861 3.88% 0.3094 1.84% 0.1591

LibriSpeech test-clean ASP 9.19% 0.6982 10.00% 0.7317 6.62% 0.6406

VoxCeleb1 test ASP 22.20% 0.9217 21.89% 0.9201 15.96% 0.8001

Eduskunta test ASP 21.43% 0.9990 21.42% 0.9999 16.51% 0.9996

Table 18: Tests results for SoftmaxProto using 64 mels and data augmentation with sample

length of 4 seconds.
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Figure 15: Comparison of the effect of augmentation on SoftmaxProto model.

5.2.4 Comparison on different number of speakers

Figures 16 and 17 show that the error rate did not always decrease linearly with respect to

number of speakers included in the training set. The linear decrease of SNN model and

ASP SoftmaxProto on the LibriSpeech seems to indicate, that further increasing the number

of speaker would likely significantly improve the performance on the LibriSpeech test set.

While ASP AngularProto seems to reach best performance at 100 speakers, the ASP Soft-

maxProto graph for VoxCeleb1 set seems to contradict this conclusion. Thus, it seems like

more data points would be necessary to make predictions on behaviour with larger amount

of speakers.
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Figure 16: Comparison of EER on LibriSpeech test set for SNNs trained using different

number of speakers from the training set.
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Figure 17: Comparison of EER on VoxCeleb1 test set for SNNs trained using different

number of speakers from the training set.

5.2.5 Summary of the results

The results show, that the examined speaker recognition models trained with English speech

perform nearly as well when tested with Finnish speech. With the Eduskunta test set per-

forming on par with the VoxCeleb1 test set, when tested with the models trained for this

thesis. The best results for each being EER of 16.02% for Eduskunta test set, and EER of
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15.32% for VoxCeleb1 test set. In the reference benchmark, we could see Eduskunta test

performing noticeably worse but still acceptably, achieving only EER of 5.86% as opposed

to VoxCeleb1 test reaching EER of 1.18%.

Additionally, it was clearly visible that the models using AngularProto and SoftmaxProto

loss performed significantly better, than the naive end-to-end SNN models. Further, it can be

hypothesized that achieving better generalization requires either or both longer training time

or more training data, as was shown by the reference benchmark. However, achieving decent

performance with similar data could be achieved quite fast with little training data, as the

best models reached EER of 4.67% on the LibriSpeech test-clean set. Performance, when

training with less data from fewer speakers, did not behave linearly for AngularProto loss.

Only very minor difference was observed when using training data with 100 or 251 speakers

with performance dropping only at 50 speakers. Towards the end of the experiments, it

was noticed that training on 2 second sample length achieved better results on nearly all

benchmarks, than the 4 seconds used for most of the experiments. The cause for this is

not clear, but one possible explanation could be that it is due to the parameters chosen for

transforming the signal to a spectrogram. Further, the sample length used when testing,

appeared to not be tied by the length used in training the model. As using the full sample

length in the benchmarks showed uniformly better results.
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6 Conclusion

In this thesis, machine learning was applied to implement, train and test of multiple neu-

ral networks for speaker recognition task. As ground work for the thesis, a light literature

review was performed and the results were collected in Chapter 3.3. This helped to guide

the decisions made for the implementation and the experiments. Additionally, it was found

that the Plenary Sessions of the Parliament of Finland (The Parliament of Finland 2017)

dataset could easily be transformed into a Finnish language speaker recognition dataset in

Section 4.3.1. Which was then used for testing the models, that were trained for this the-

sis using the LibriSpeech (Panayotov et al. 2015) dataset consisting of English speech. For

training the networks, an additional restriction was in place, in that only small amount of

data and relatively limited computational resources could be used. In this light, the results

were promising and included some interesting observations regarding generalizing on mul-

tiple languages and optimal sample length. Also while each experiment was not performed

a statistically significant amount of times, due to the large scope, the networks that were

trained multiple times with same parameters did indicate that reproducing each result within

a reasonable margin of error ought to be possible.

The experiments documented in Chapter 4 were implemented using Python with the PyTorch

ML library. The implemented networks were trained using free Google Colaboratory note-

book instances, and the resulting models were benchmarked locally on the authors personal

hardware. The training on Colab instances was found to be somewhat inconvenient due to

the time limitations, that were found to vary from time to time.

The results in Chapter 5 show, that while the models trained in this thesis understandably

did not generalize as well as the reference models, they did achieve decent performance on

similar audio data. It is also shown, that the models trained with English speech do appear

to generalize to Finnish speech as well. Other interesting observations made based on the

results also include the sample length of 2 seconds clearly outperforming the other choices.

Future work could further investigate how models trained on Finnish perform on English

data, or how these methods generalize over larger variety of languages. Also it could be
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worthwhile to investigate why 2 second samples appeared to perform best. There is also

likely plenty to discover by simply trying additional neural network architectures, or for

example investigating the effects of tuning the parameters of the various possible audio rep-

resentations.
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Appendices

A Benchmark results

Training parameters Results (4s) Results (2s) Results (full)

Model Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

Fast ResNet-34 SAP AngularProto 5994 2.40% 0.1288 2.09% 0.1036 2.65% 0.1055

H / ASP ASP SoftmaxProto 5994 X 0.83% 0.0317 0.66% 0.0179 0.96% 0.0335

GhostVLAD BCE 251 17.37% 0.9948 17.62% 0.9952 13.15% 0.7830

ASP BCE 251 17.10% 1.0 17.10% 1.0 14.39% 0.9178

SAP BCE 251 16.61% 0.9976 18.03% 1.0 40.81% 1.0

SAP BCE 251 17.10% 0.9851 17.10% 0.9851 44.18% 1.0

SAP BCE 100 23.65% 1.0 23.55% 1.0 21.82% 1.0

SAP BCE 50 30.25% 1.0 29.65% 1.0 26.78% 1.0

SAP BCE 251 X 13.39% 0.9916 14.29% 0.9824 9.43% 0.8530

SAP BCE 251 X 10.41% 0.8186 13.80% 0.9386 9.02% 0.7806

SAP AngularProto 251 8.11% 0.5125 8.92% 0.5321 6.80% 0.4312

SAP AngularProto 251 6.69% 0.5297 7.01% 0.5425 5.27% 0.3977

SAP AngularProto 251 X 5.38% 0.3485 4.62% 0.2671 2.57% 0.1601

ASP AngularProto 251 9.09% 0.4452 8.36% 0.4658 6.52% 0.3870

ASP AngularProto 100 8.84% 0.5753 8.67% 0.5832 6.94% 0.4803

ASP AngularProto 50 14.78% 0.7937 13.80% 0.7669 11.58% 0.6602

ASP AngularProto 251 X 5.03% 0.3551 5.27% 0.3284 2.39% 0.1846

GhostVLAD AngularProto 251 13.88% 0.7846 14.39% 0.7474 12.73% 0.6276

SAP SoftmaxProto 251 8.50% 0.4917 8.60% 0.4933 7.18% 0.5094

ASP SoftmaxProto 251 7.18% 0.5414 6.21% 0.5745 5.06% 0.4923

ASP SoftmaxProto 100 10.82% 0.6650 10.41% 0.6240 8.67% 0.5413

ASP SoftmaxProto 50 14.39% 0.7929 13.80% 0.8060 10.75% 0.5559

ASP SoftmaxProto 251 X 4.62% 0.2861 3.88% 0.3094 1.84% 0.1591

Table 19: Test results on the LibriSpeech test-other set (2883 pairs, 33 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for this

thesis is bolded. Fast ResNet-34 (Chung et al. 2020) and H / ASP (Heo et al. 2020) are

pretrained reference models.
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Training parameters Results (4s) Results (2s) Results (full)

Model Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

Fast ResNet-34 SAP AngularProto 5994 2.85% 0.0814 2.39% 0.0821 2.76% 0.0978

H / ASP ASP SoftmaxProto 5994 X 0.85% 0.0404 0.92% 0.0243 1.19% 0.0657

GhostVLAD BCE 251 20.33% 0.9781 21.68% 0.9630 15.63% 0.8327

ASP BCE 251 21.14% 1.0 21.14% 1.0 16.35% 1.0

SAP BCE 251 18.84% 0.9732 21.95% 0.9993 40.89% 1.0

SAP BCE 251 16.28% 0.9509 16.28% 0.9509 44.03% 1.0

SAP BCE 100 33.28% 1.0 31.17% 1.0 28.84% 1.0

SAP BCE 50 36.95% 1.0 36.74% 1.0 38.42% 1.0

SAP BCE 251 X 22.33% 0.9810 22.41% 0.9934 17.54% 0.9866

SAP BCE 251 X 16.28% 0.9418 19.76% 0.9941 13.60% 0.8718

SAP AngularProto 251 7.16% 0.5301 7.54% 0.5298 4.67% 0.3642

SAP AngularProto 251 8.73% 0.7632 7.81% 0.7092 5.52% 0.5623

SAP AngularProto 251 X 9.92% 0.6915 10.22% 0.7253 6.51% 0.4975

ASP AngularProto 251 9.27% 0.6999 8.92% 0.7652 6.78% 0.5898

ASP AngularProto 100 8.38% 0.7395 8.81% 0.7280 4.87% 0.6419

ASP AngularProto 50 14.06% 0.8641 14.44% 0.8622 9.38% 0.6107

ASP AngularProto 251 X 9.11% 0.7202 9.38% 0.6853 6.24% 0.5347

GhostVLAD AngularProto 251 12.30% 0.7987 11.41% 0.7993 9.65% 0.6993

SAP SoftmaxProto 251 7.62% 0.6139 7.62% 0.6525 4.87% 0.5292

ASP SoftmaxProto 251 6.32% 0.5350 6.32% 0.5466 5.32% 0.3443

ASP SoftmaxProto 100 9.84% 0.5625 9.27% 0.5063 6.36% 0.3703

ASP SoftmaxProto 50 13.60% 0.8493 13.33% 0.8361 7.92% 0.5594

ASP SoftmaxProto 251 X 9.19% 0.6982 10.00% 0.7317 6.62% 0.6406

Table 20: Test results on the LibriSpeech test-clean set (2611 pairs, 40 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for this

thesis is bolded. Fast ResNet-34 (Chung et al. 2020) and H / ASP (Heo et al. 2020) are

pretrained reference models.

57



Training parameters Results (4s) Results (2s) Results (full)

Model Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

Fast ResNet-34 SAP AngularProto 5994 2.18% 0.1690 2.35% 0.1822 2.39% 0.1699

H / ASP ASP SoftmaxProto 5994 X 1.18% 0.0865 1.35% 0.0933 1.30% 0.0981

GhostVLAD BCE 251 33.15% 0.9996 33.38% 0.9998 30.22% 0.9988

ASP BCE 251 32.87% 1.0 32.87% 1.0 30.17% 1.0

SAP BCE 251 29.18% 0.9997 32.15% 1.0 45.99% 1.0

SAP BCE 251 32.44% 0.9999 32.44% 0.9999 46.44% 1.0

SAP BCE 100 36.00% 1.0 36.69% 1.0 33.10% 1.0

SAP BCE 50 39.60% 1.0 39.85% 1.0 37.84% 1.0

SAP BCE 251 X 29.13% 0.9998 29.38% 0.9995 25.32% 0.9994

SAP BCE 251 X 26.41% 0.9997 29.48% 1.0 25.24% 0.9995

SAP AngularProto 251 31.43% 0.9999 31.37% 1.0 28.94% 0.9943

SAP AngularProto 251 32.37% 0.9944 31.98% 0.9983 30.83% 0.9983

SAP AngularProto 251 X 22.75% 0.9598 22.90% 0.9496 16.98% 0.8310

ASP AngularProto 251 30.78% 0.9967 30.95% 0.9970 28.36% 0.9876

ASP AngularProto 100 32.66% 0.9945 32.43% 0.9968 29.01% 0.9850

ASP AngularProto 50 32.93% 0.9984 33.09% 0.9990 29.05% 0.9871

ASP AngularProto 251 X 22.25% 0.9559 22.55% 0.9544 16.18% 0.7938

GhostVLAD AngularProto 251 32.07% 0.9998 31.99% 0.9995 30.20% 0.9986

SAP SoftmaxProto 251 29.78% 0.9968 29.80% 0.9986 26.16% 0.9888

ASP SoftmaxProto 251 29.64% 0.9948 29.55% 0.9941 26.86% 0.9696

ASP SoftmaxProto 100 31.43% 0.9958 31.36% 0.9963 27.83% 0.9827

ASP SoftmaxProto 50 31.23% 0.9993 31.26% 0.9998 26.76% 0.9545

ASP SoftmaxProto 251 X 22.20% 0.9217 21.89% 0.9201 15.96% 0.8001

Table 21: Test results on the VoxCeleb1 test set (37720 pairs, 40 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for

this thesis is bolded. Fast ResNet-34 (Chung et al. 2020) and H / ASP (Heo et al. 2020) are

pretrained reference models.
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Training parameters Results (4s) Results (2s) Results (full)

Model Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

Fast ResNet-34 SAP AngularProto 5994 6.36% 0.2356 7.17% 0.2565 5.78% 0.2360

H / ASP ASP SoftmaxProto 5994 X 5.86% 0.1214 6.45% 0.1470 5.43% 0.1271

GhostVLAD BCE 251 31.56% 0.9999 31.74% 0.9999 27.41% 0.9995

ASP BCE 251 32.13% 1.0 32.69% 1.0 28.04% 1.0

SAP BCE 251 27.97% 1.0 31.65% 1.0 47.67% 1.0

SAP BCE 251 28.39% 0.9994 28.63% 0.9997 45.15% 1.0

SAP BCE 100 37.68% 0.9999 37.87% 1.0 33.94% 1.0

SAP BCE 50 41.75% 0.9999 41.84% 1.0 40.55% 1.0

SAP BCE 251 X 29.77% 0.9990 30.63% 0.9997 25.17% 0.9991

SAP BCE 251 X 25.29% 0.9999 29.03% 0.9990 23.18% 1.0

SAP AngularProto 251 26.49% 1.0 25.73% 1.0 20.60% 1.0

SAP AngularProto 251 28.13% 0.9997 27.83% 1.0 22.44% 0.9999

SAP AngularProto 251 X 21.92% 1.0 21.91% 0.9990 17.02% 0.9999

ASP AngularProto 251 26.01% 1.0 26.01% 0.9991 21.29% 0.9999

ASP AngularProto 100 28.01% 0.9993 27.82% 0.9987 22.36% 0.9999

ASP AngularProto 50 28.99% 0.9996 28.84% 0.9996 24.89% 0.9985

ASP AngularProto 251 X 21.85% 0.9895 21.94% 0.9988 16.95% 0.9877

GhostVLAD AngularProto 251 31.56% 0.9990 31.58% 0.9997 27.44% 0.9972

SAP SoftmaxProto 251 25.13% 0.9999 25.28% 1.0 18.71% 1.0

ASP SoftmaxProto 251 25.34% 0.9960 24.94% 0.9994 21.21% 0.9996

ASP SoftmaxProto 100 26.78% 0.9997 26.41% 0.9988 21.97% 0.9982

ASP SoftmaxProto 50 29.16% 0.9991 29.41% 0.9988 23.93% 0.9913

ASP SoftmaxProto 251 X 21.43% 0.9990 21.42% 0.9999 16.51% 0.9996

Table 22: Test results on the Eduskunta test set (13640 pairs, 171 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for

this thesis is bolded. Fast ResNet-34 (Chung et al. 2020) and H / ASP (Heo et al. 2020) are

pretrained reference models. Fast ResNet-34 was trained using 40 mel input spectrogram,

all of the other models were trained on 64 mels.
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Training parameters Results (4s) Results (2s) Results (full)

Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

SAP BCE 251 12.14% 0.8702 12.83% 0.9636 10.92% 0.7582

SAP BCE 251 X1 14.64% 0.9886 14.71% 0.9994 11.83% 0.9940

ASP BCE 251 X1 12.97% 0.9444 12.14% 0.9137 10.09% 0.7964

ASP2 AngularProto 251 X 3.47% 0.2382 4.20% 0.2812 2.88% 0.1903

ASP3 AngularProto 251 X 2.08% 0.1409 3.81% 0.2211 2.39% 0.1388

ASP4 AngularProto 251 X 4.23% 0.2806 5.03% 0.2865 3.54% 0.2111

ASP AngularProto 251 X 2.71% 0.1471 3.88% 0.1894 2.64% 0.1557

ASP SoftmaxProto 251 X 1.98% 0.1436 2.64% 0.2062 1.66% 0.1058

Table 23: Test results on the LibriSpeech test-other set (2883 pairs, 33 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for this

thesis is bolded. 1. Model using GPU optimized augmentations. 2. 32-way 4-shot. 3.

Trained on 3 second samples. 4. Uses the fast-ResNet34 network.

Training parameters Results (4s) Results (2s) Results (full)

Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

SAP BCE 251 16.74% 0.9974 16.09% 0.9915 12.49% 0.9554

SAP BCE 251 X1 19.22% 0.9947 19.22% 0.9888 14.79% 0.9019

ASP BCE 251 X1 13.87% 0.6811 14.36% 0.8085 9.65% 0.4637

ASP2 AngularProto 251 X 7.54% 0.6555 8.73% 0.7475 6.36% 0.6739

ASP3 AngularProto 251 X 5.90% 0.5774 8.08% 0.6121 5.25% 0.5621

ASP4 AngularProto 251 X 8.81% 0.5029 9.92% 0.5510 7.08% 0.4790

ASP AngularProto 251 X 6.32% 0.5059 7.16% 0.5525 5.71% 0.5187

ASP SoftmaxProto 251 X 7.16% 0.6139 8.00% 0.6086 5.59% 0.6670

Table 24: Test results on the LibriSpeech test-clean set (2611 pairs, 40 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for this

thesis is bolded. 1. Model using GPU optimized augmentations. 2. 32-way 4-shot. 3.

Trained on 3 second samples. 4. Uses the fast-ResNet34 network.
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Training parameters Results (4s) Results (2s) Results (full)

Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

SAP BCE 251 27.68% 1.0 29.41% 0.9997 27.53% 1.0

SAP BCE 251 X1 30.46% 1.0 31.96% 1.0 30.37% 0.9996

ASP BCE 251 X1 28.64% 0.9999 30.74% 0.9998 27.88% 0.9996

ASP2 AngularProto 251 X 18.36% 0.8699 22.05% 0.9176 17.49% 0.8499

ASP3 AngularProto 251 X 16.95% 0.8109 20.91% 0.8986 15.51% 0.7724

ASP4 AngularProto 251 X 20.12% 0.7881 22.72% 0.8450 18.98% 0.7838

ASP AngularProto 251 X 17.50% 0.7961 20.51% 0.8921 16.58% 0.7624

ASP SoftmaxProto 251 X 16.59% 0.7242 19.50% 0.8344 15.32% 0.6866

Table 25: Test results on the VoxCeleb1 test set (37720 pairs, 40 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for

this thesis is bolded. 1. Model using GPU optimized augmentations. 2. 32-way 4-shot. 3.

Trained on 3 second samples. 4. Uses the fast-ResNet34 network.

Training parameters Results (4s) Results (2s) Results (full)

Encoder Training loss Speakers Aug. EER minDCF EER minDCF EER minDCF

SAP BCE 251 28.05% 1.0 29.97% 1.0 27.28% 1.0

SAP BCE 251 X1 33.17% 1.0 33.26% 1.0 31.13% 1.0

ASP BCE 251 X1 27.57% 1.0 29.72% 1.0 24.69% 0.9999

ASP2 AngularProto 251 X 17.42% 0.9999 21.84% 0.9991 17.42% 0.9999

ASP3 AngularProto 251 X 17.93% 0.9808 21.09% 0.9973 16.58% 0.9875

ASP4 AngularProto 251 X 17.51% 0.9993 20.48% 1.0 16.02% 0.9999

ASP AngularProto 251 X 19.15% 0.9873 21.62% 0.9955 18.33% 0.9807

ASP SoftmaxProto 251 X 17.98% 0.9850 20.62% 0.9873 16.85% 0.9874

Table 26: Test results on the Eduskunta test set (13640 pairs, 171 speakers), with sample

lengths of 4, 2 seconds and the full sample. The best overall result of models trained for

this thesis is bolded. 1. Model using GPU optimized augmentations. 2. 32-way 4-shot. 3.

Trained on 3 second samples. 4. Uses the fast-ResNet34 network.
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