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Abstract

Huhta, Laura
Jet production in deep inelastic scattering at small Bjorken x
Master’s thesis
Department of Physics, University of Jyväskylä, 2021, 58 pages.

High energy collisions enable studies of very dense systems of gluons, which lead
to a type of matter known as color glass condensate (CGC). In this gluon saturation
regime, non-linear effects such as gluon recombination become important. Clear
observations of saturated gluonic matter have not yet been achieved, therefore these
observations are a major goal of future collider experiments such as the Electron-Ion
Collider (EIC) at Brookhaven National Laboratory (BNL).

In this thesis, we study jet production in the virtual photon-proton (γ∗-p) and
virtual photon-nucleus (γ∗-A) subprocesses of deep inelastic scattering (DIS) in the
dipole picture. We find that the jet production cross section in γ∗-A processes
is suppressed at small x when compared to the scaled γ∗-p cross section. This
suppression results from enhanced non-linear dynamics in heavy nuclei as compared
to the proton. The nuclear suppression is found to depend on photon polarization.
Also, nuclear enhancement known as the Cronin effect is observed at Bjorken x ≈
10−2 and is seen to diminish with decreasing x, suggesting enhancement to be visible
at the EIC at a specific kinematic range. Two MV model based parametrizations
used to calculate initial conditions for the small-x evolutions of the dipole amplitudes
are compared and a slight difference between the models is seen. This suggests that
EIC data could be used to constrain the dipole amplitude towards a best-suited
model.

Keywords: jet production, gluon saturation, dipole picture, deep inelastic scat-
tering
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Tiivistelmä

Huhta, Laura
Jettituotto syvässä epäelastisessa sironnassa pienen Bjorken x:n alueessa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2021, 58 sivua

Korkeaenergiset törmäykset mahdollistavat tutkimuksen hyvin tiheissä gluoni-
systeemeissä, joissa aine on värilasikondensaatiksi (CGC) kutsutussa olomuodossa.
Tällaisessa tiheän gluoniaineen alueessa epälineaariset ilmiöt kuten gluonirekom-
binaatio ovat merkittäviä. Saturoituneesta gluonisesta aineesta ei olla vielä tehty
varmoja havaintoja, ja tämä onkin tulevien kiihdytinkokeiden, kuten Brookhavenin
kansalliseen laboratorioon (BNL) rakennettavan Elektroni-ionikiihdyttimen (EIC),
yksi päätavoitteista.

Tässä työssä tutkitaan dipolikuvassa jettituottoa prosesseissa, joissa virtuaali-
nen fotoni siroaa protonista (γ∗-p) tai ytimestä (γ∗-A), ja jotka ovat syvän epäe-
lastisen sironnan (DIS) aliprosesseja. Huomataan, että pienessä x:n alueessa jetti-
tuottovaikutusala γ∗-A-prosesseissa kokee suppressiota verrattuna skaalattuun γ∗-p-
vaikutusalaan. Tämä ydinsuppressio johtuu lisääntyneestä epälineaarisesta dynamii-
kasta raskaissa ytimissä verrattuna protoniin. Työssä nähdään, että ydinsuppressio
riippuu fotonin polarisaatiosta. Lisäksi alueessa, jossa Bjorken x ≈ 10−2, havaitaan
Cronin-ilmiö, jolloin suppression sijaan γ∗-A-prosessin jettituotto kasvaa suhteessa
γ∗-p-prosessiin. Ilmiö heikentyy ja lopulta katoaa kun x pienenee. Tämän pohjalta
voidaan odottaa, että EIC:ssä havaittaisiin Cronin-ilmiötä tietyllä kinemaattisella
alueella. Työssä verrataan kahta eri parametrisaatiota MV-mallille, jota käytetään
dipoliamplitudien laskemisessa, ja niiden välillä nähdään pientä eroavaisuutta. Jet-
tituottomittaukset EIC:ssä voivat siis edistää sopivan dipoliamplitudimallin määrit-
tämistä.

Avainsanat: jettituotto, gluonisaturaatio, dipolikuva, syvä epäelastinen sironta
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1 Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions, describing
the behavior of quark and gluon fields. The theory of QCD was first formulated
in the 1970’s, and today it is considered one of the cornerstones of our Standard
Model. High energy collisions are abundant with QCD effects, some of which cannot
be detected in lower energy experiments. An especially interesting area of study in
this high energy regime has been that of very dense systems of quarks and gluons,
in which the coupling constant is small. When we observe the partons in a hadron
at high energy, we see an increase in the gluon density of the nucleus, due to gluon
splitting. However, at some point a limit to the growth, a saturation point, has to be
reached. This occurs when the gluon density is high enough for gluon recombination,
a nonlinear process, to become just as relevant as the process of gluon splitting.
These nonlinear dynamics have been theorized to be visible at high gluon densities,
which is equivalent to small momentum fraction x, as data from HERA has shown. [1]

In this thesis, we focus on deep inelastic scattering (DIS), a process which en-
ables the probing of hadron constituents, much like Rutherford’s gold foil exper-
iments probed the nuclear structure of atoms. A benefit of studying DIS is that
the projectile lepton has no substructure, so that when the scattered lepton is mea-
sured, we can obtain all information on the kinematics of the event. This cannot be
done, for example, in proton-proton collisions, in which the momenta of all the con-
stituent partons are unknown. DIS measurements are of great historical significance
as they led physicists to first clear evidence of the internal structure of hadronic
matter. Experiments performed at the Hadron-Electron Ring Accelerator (HERA)
at the Deutsches Elektronen-Synchrotron (DESY) have provided very precise mea-
surements of the internal structure of the proton by colliding electrons and positrons
with protons. [1] The accelerator experiment finished its measurements in 2007, and,
after that, data for the study of QCD dynamics has been provided by particle accel-
erators such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory (BNL) and the Large Hadron Collider (LHC) at CERN.

While existing accelerator experiments continue to provide important data for
QCD studies, new experiments are needed to investigate the field further. As previ-
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ous experiments have not yet been successful in clearly observing nonlinear effects
in nuclei, their study will be a major goal in some upcoming future collider ex-
periments. These include the Electron-Ion Collider (EIC) [2] planned to be built
at BNL and the Large Hadron-electron Collider (LHeC) [3] to be built at CERN,
both admitting a wide range of kinematics, high luminosities, high energies and, at
the EIC, polarized beams. These experiments are expected to provide important
data in the areas of gluon saturation, the dense gluon matter known as color glass
condensate (CGC), parton distibution in hadrons and confinement physics.

Our goal in this work is to calculate the cross sections for jet production in DIS
involving photons and both target protons and gold nuclei. This will allow us to
calculate nuclear suppression ratios, which provide a way to study how nonlinear
QCD dynamics affect the partonic structure of a nucleus at high energy. We consider
semi-inclusive DIS processes, because by this we do not limit the final product as
much as in exclusive processes, but instead consider any final hadronic states along
with a quark (jet) with some specific transverse momentum. The kinematic region
and the interacting hadrons (protons and gold nuclei) chosen for our study have been
chosen with the EIC in mind, as these kinematic ranges and specific target hadrons
will be utilized in the experiment. By comparing two different parametrization
models for the initial condition input of the Balitsky-Kovchegov (BK) evolution
equation, we also aim to study the model uncertainty of our jet production cross
sections.

The structure of this thesis is as follows. First, in Chapter 2, we will present the
basic kinematics of the DIS process as well as the dipole model, and discuss gluon
saturation effects. After that, in Chapter 3, we present an analytic calculation of
the cross sections for inclusive one- and two-jet production in photon-proton and
photon-nucleus interactions. The photon-proton cross section calculation closely
follows that done in Ref. [4] for exclusive processes. In Chapter 4, we consider
future experimental setups which are designed to study DIS and gluon saturation
at wider kinematical ranges than have yet been possible. Finally, in Chapter 5,
we present the results of our numerical calculations, including cross sections and
nuclear suppression ratios for varying kinematic ranges. Also, by comparing two
different parametrization models we make a quantified approximation of the model
uncertainty of our results.

On units and notation: In this thesis, we adopt the commonly used system of
natural units. This means that the speed of light, the reduced Planck’s constant
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and the Boltzmann constant are equated to unity: c = ~ = kB = 1. This allows us
to conveniently work in the following units:

[mass] = [length]−1 = [time]−1 = [energy] = GeV. (1)

We use bold font to refer to a 2D vector, while plain font is used to refer to
four-vectors. We will utilize the light cone coordinate system, which means that in
addition to the usual four-component vectors x = (x0, x1, x2, x3), we will also use
vectors of the form x = (x+, x−,x⊥). The components of these vectors are defined
here as

x± = 1√
2

(x0 ± x3), (x⊥)1 = x1, (x⊥)2 = x2, (2)

where we refer to the x+ coordinate as the light cone time coordinate. (One could
just as well choose the x− coordinate as the time coordinate.) The normalization
of the light cone vectors can differ depending on the reference used. [5] The metric
tensor gµν for light cone coordinates has the non-zero elements

g+− = g−+ = 1, g11 = g22 = −1. (3)

The dot product of two vectors in the light cone coordinates, a and b, thus gives

a · b = aµbµ = a+b− + a−b+ − a⊥ · b⊥. (4)



11

2 Deep inelastic scattering at high energy

2.1 Deep inelastic scattering

Deep inelastic scattering (DIS) is a lepton-hadron scattering process that provides
a way to probe the insides of hadrons as well as enables the testing of the theory
of perturbative quantum chromodynamics (pQCD). The first DIS experiments able
to probe the constituent substructure of hadrons were carried out at the Stanford
Linear Accelerator Center (SLAC) in 1968, and it was these experiments which led
physicists to first clear evidence of pointlike partons we now know as quarks. Today,
DIS processes are studied to provide precise tests of perturbative QCD theory such
as determining momentum distributions of partons in hadrons in order to predict
cross sections in high energy hadron collisions. [6]

The DIS process of a lepton scattering from a hadron is dominated by the ex-
change of a virtual photon, with small corrections arising from multiphoton ex-
changes. Also, instead of an exchanged photon, the exchange of a Z0 boson is a
possibility in these interactions, this exchange becoming relevant at values of virtu-
ality Q2 ∼ M2

Z , where −Q2 is the squared four-momentum transfer and MZ is the
mass of the Z0 boson. The exchanged photon acts as a probe of the proton structure,
and this ability to probe tiny structures is the reason why the scattering is referred
to as deep. In order to probe the smallest constituents of the hadron and resolve
individual quarks, the photon exchanged in the DIS process requires a large virtu-
ality Q2, which in turn corresponds to the photon’s wavelength being very small,
as compared to the size of the hadron. The emission of a photon from a lepton is
a well-known phenomenon which can be calculated using quantum electrodynamics
(QED), while the photon-hadron interaction is a more complicated process. There-
fore, while experimentally DIS is studied by colliding leptons and hadrons, we focus
our study on the interaction between the exchanged virtual photon and the target
hadron.

Considering the scattering of a high-energy charged lepton off a hadron target
in a target rest frame (TRF), such as in Fig. 1, we label the incoming and outgoing
lepton four-momenta by kµ and k′µ, respectively. The momentum of the target
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Figure 1. A Feynman diagram of deep inelastic scattering between an initial
lepton l and a target proton p in the rest frame of the proton. The scattering is
mediated by a virtual photon.

hadron is labeled P µ and the momentum transfer qµ = kµ − k′µ. We can write this
process as l(k) + p(P ) → l(k′) + X(PX), where we have chosen the target to be a
proton, p, and where X signifies any hadronized final state of momentum PX . The
standard, Lorentz invariant deep inelastic variables for a target proton are defined
as follows: [6]

Q2 ≡ −q2 = −(k − k′)2,

W 2 = (P + q)2,

2Mν = W 2 +Q2 −M2,

x ≡ Q2

2P · q = Q2

2Mν
,

(5)

where the dimensionless variable x is the Bjorken scaling variable,M2 = P 2 signifies
the target mass squared, ν ≡ (P · q)/M and W 2 is the squared invariant mass of
the hadron state X. In the case of virtual photons, which are off-shell, the photon
virtuality Q2 is non-zero. In the rest frame of the target, ν = E − E ′, where E, E ′

are the energies of the incoming and outgoing leptons, and therefore in this frame
ν can be regarded as a Lorentz invariant generalization for energy transfer from the
lepton to the proton.

In the target rest frame, the model of the target hadron consisting of partons is
not applicable. In order to develop a parton model picture of DIS, in which the target
hadron is composed of valence quarks, sea quarks and gluons, we consider an infinite
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Figure 2. A Feynman diagram of deep inelastic scattering between an initial
lepton l and a target proton p in the infinite momentum frame (IMF). The
parton model is valid in the IMF, and the constituent quarks and gluons of the
proton are pictured.

momentum frame (IMF) in which the proton moves very fast in the z-direction, P µ ≈
(P, 0, 0, P ), with P � M . In the IMF, we can view the target proton as a stream
of partons moving parallel with the proton, with each individual parton carrying a
fraction ξ of the proton’s momentum, see Fig. 2. In this frame, for large Q2, inelastic
scattering is dominated by two-step processes: the first step is an elastic scattering
of a lepton off a quark in the proton, and the second step is a fragmentation process
which converts the recoil quark and the rest of the remaining proton constituents
into hadrons, denoted by X. For Q2 � M2, the fraction of proton momentum, ξ,
carried by the struck parton is equal to Bjorken x. An important benefit of working
in an infinite momentum frame is that the time taken for the DIS process to occur is
much shorter than the time required for any internal processes to take place inside
the target hadron. [6]

If we consider the target proton or nucleus in the IMF at small x, at very high
energies, we see the target becoming highly Lorentz contracted in the direction of
motion, forming a thin "pancake". In this regime, the target is expected to mostly
consist of small-x, soft, gluons, as small values of x have been shown to correlate
with high gluon densities in HERA structure function measurements [1]. The high
density of soft gluons enables us to treat the target as a color field. This type of
matter is called the color glass condensate (CGC), which we discuss further in Sec.



14

Figure 3. The forward scattering amplitude for DIS in TRF. The virtual
photon first splits into a quark-antiquark dipole, which then interacts with the
proton (red). The interaction is symbolized by the grey oval. The constant
transverse position of the quarks is indicated with x⊥.

2.3.
We now consider the scattering of a virtual photon from this CGC color field, in a

frame where the target momentum is low. The photon can split into a color charged
quark-antiquark pair, remain as a photon or split into a lepton pair. However, only
the quark-antiquark pair can interact with the color field via strong interaction,
while the photon and the lepton pair cannot. This leads us to the dipole picture
of DIS, where the dominant process is that of a virtual photon fluctuating into a
color-neutral quark-antiquark pair, which then interacts with the color field of the
target hadron. The forward scattering amplitude for the DIS process in the dipole
model is pictured in Fig. 3. By the optical theorem, calculating the imaginary part
of the forward scattering amplitude gives us the total cross section for the scattering.

For the dipole picture to be valid, the lifetime of the dipole fluctuation must
be longer than the time of interaction with the proton. This can be shown by
considering the coherence length of the virtual photon into the longitudinal plus
direction, x+ ≈ 2q+/Q2, and noticing that this is much larger than the size of the
nucleus. [5] Therefore, when the virtual photon fluctuates into a qq̄ pair, the typical
lifetime of the fluctuation is much longer than the nuclear diameter. Thus, the
virtual photon has time to first fluctuate into a dipole, which can then interact with
the target.

Because we consider scattering at high energy, we can approximate the transverse
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positions of the partons to be constant as they interact with the target, due to their
transverse momentum being much smaller than the momentum in the direction of
motion. This is known as the eikonal approximation, and this approximation can
be justified by noticing that, while traversing through the target, the transverse
distance x⊥ between the quark and antiquark can only vary by an amount [5]

∆x⊥ ≈ R
k⊥
E
. (6)

Here, E is the dipole energy in target rest frame, R is the longitudinal size of the
target and k⊥ is the relative transverse momentum of the qq̄ pair obtained from the
scattering. We can recognise the term k⊥/E as the relative transverse velocity of the
quark with respect to the antiquark, and multiplying this by the longitudinal size of
the target gives us an approximation of the change in the transverse separation of
the dipole. From Eq. (6), we can see that at large energies, and therefore at small x,
the change in dipole size is very small. Because the size of the dipole effectively does
not change during high-energy scattering, working in transverse coordinate space is
a common and convenient choice when calculating DIS cross sections. [5]

2.2 Kinematics

Generally, inclusive DIS considers processes with any possible final states. In this
thesis, we are interested in a final product of one or two quarks (experimentally
measured as particles or jets) of some specific transverse momentum along with
other final hadrons of any type. This type of process where a specific hadron as
well as the scattered lepton are detected is known as semi-inclusive DIS (SIDIS).
In semi-inclusive DIS, the longitudinal momentum taken from the target is marked
by xp. To express this in terms of the Bjorken x and other kinematical factors,
we consider the initial proton and photon momenta, P µ and qµ, in the previously
described light cone coordinates:

P µ =
(
m2
p

2P− , P
−,0

)
,

qµ =
(
q+,
−Q2

2q+ ,0
)
.

(7)

The frame here has been chosen such that the proton and photon have no transverse
momentum. Also, as we are now focused on high energy processes, we consider the
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high energy limit where q+ and P− are both large. Now, for the total photon-proton
scattering energy W we have

W 2 = (P + q)2 ≈ 2(P · q) ≈ 2P−q+, (8)

where the first approximation is that both P 2 = m2
p and q2 are much smaller than

the total energy W of the process, and the second approximation is that q+ and P−

are much larger than q− and P+.
We require the dipole, represented by the four-vector pµ, to be on-shell so that

p2 = M2
qq̄, where Mqq̄ is the invariant mass of the quark-antiquark dipole. From this

and Eq. (4), since the dipole has no transverse momentum, we obtain

p− =
M2

qq̄

2p+ . (9)

We know that both + and − components of momentum are separately conserved in
the process and that xp is the fraction of momentum taken from the target, thus,
momentum conservation and Eq. (9) lead to

q− + P− = (1− xp)P− + p−

= (1− xp)P− +
M2

qq̄

2p+ ,
(10)

and therefore we have for xp that

xp =
M2

qq̄

2p+P−
− q−

P−
. (11)

Using this and Eq. (7) we can express xp as

xp =
M2

qq̄

2p+P−
− −Q2

2P−q+ ≈
M2

qq̄

W 2 + Q2

W 2 , (12)

where in the final step we use the fact that q+ = p+ as well as our earlier approxi-
mation (8) for W 2. So, finally, we have for the fraction of longitudinal momentum
taken from the target

xp ≈
Q2 +M2

qq̄

W 2 ≈ x+
M2

qq̄

W 2 , (13)

where x is the Bjorken x variable defined in Eq. (5) and where we have assumed
W 2 � Q2,M2.
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We define the longitudinal momentum fraction zi (i = 0, 1) for the quark and
antiquark with respect to the virtual photon as zi ≡ k+

i

q+ , where q+ denotes the
light cone longitudinal momentum of the incoming photon and k+

i that of the quark
or antiquark before interaction. The invariant mass of the dipole pair, M2

qq̄, can
be expressed in terms of this momentum fraction zi and the initial momenta ki

of the quarks, which becomes useful when comparing calculations to experimental
results. We can write the momenta ki of the quarks in light cone coordinates as
ki = (k+

i , k
−
i ,ki⊥), and we know that k+

i is large, since q+ is large. Furthermore, we
work at a scale of large energies which allows us to ignore the mass term, so that
finally we have, writing k+

i = q+zi, that k−i = k2
i⊥/(2q+zi).

Now, we can calculate for the invariant mass,

M2
qq̄ = (k0 + k1)2 = 2k0 · k1 = 2

(
k+

0 k
−
1 + k−0 k

+
1 − k0⊥ · k1⊥

)
= 2

(k2
1⊥z0

2z1
+ k2

0⊥z1

2z0
− k0⊥ · k1⊥

)
= k2

0⊥

(
1 + z1

z0

)
+ k2

1⊥

(
1 + z0

z1

)
− (k0⊥ + k1⊥)2 .

(14)

Finally, we get the following form for the invariant mass of the dipole,

M2
qq̄ = k2

0⊥
z0

+ k2
1⊥
z1
− (k0⊥ + k1⊥)2 . (15)

The final term in Eq. (15) is equal to zero before scattering as the quarks are
back-to-back, and even after interacting with the target the term is presumed to be
smaller than the two other terms. Also, it should be noted that, in this thesis, the
other of the quarks is integrated over in order to let its final state be undetermined
when we study one-jet production.

Another useful variable when considering experimental results is particle rapidity
y. Experimentally, one can measure rapidity as well as the center-of-mass energy
squared W 2. Therefore, it is useful for us to express the momentum fraction zi as a
function of these variables. We know that for massless particles, the energy, E, and
the z component of momentum, kz, are [7]

E = kT cosh(y), kz = kT sinh(y). (16)
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We can then express the momentum fraction zi as

zi = k+
i

q+ = 1√
2q+

(k0
i + k3

i ) = 1√
2q+

kiT (cosh yi + sinh yi)

= 1√
2q+

kiT e
yi = 2EpkiT

W 2 eyi ,

(17)

where in the final equality we have used the fact that W 2 ≈ 2P−q+ = 2
√

2Epq+,
where Ep is the energy of the target. Thus, we have expressed zi as a function of
particle rapidity yi, target energy Ep, and particle transverse momentum kiT , all
experimentally measurable quantities.

2.3 Gluon saturation

Since at high energy we have a large value for the center-of-mass energy W of the
photon-nucleon system, then, according to Eqs. (5) and (13), the value of x is
small. We know from studies performed at small values of x that gluon densities in
protons appear to grow as x decreases. This has been shown most notably in the H1
and ZEUS experiments conducted at HERA, where precision measurements of the
proton structure functions were performed. [1] From these, through QCD analysis,
the parton distribution functions could then be determined.

When its virtuality Q2 is increased, the virtual DIS photon starts to see a larger
amount of sea quarks and antiquarks, which originate from gluon splitting (g → qq̄),
suggesting a larger amount of gluons present as well. The evolution of gluon density
with Q2 is described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equations. [8–11] With decreasing x and at a fixed scale Q2, gluon splitting
processes (g → gg) increase the gluon density at a rate which is linearly propor-
tional to gluon density ρ. In this linear regime, at relatively low gluon densities the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [12, 13] predicts the gluon split-
ting mechanism to fill up the space in the hadron with small momentum fraction
gluons. [14] At higher densities, the gluons in the hadron begin to overlap with each
other as more and more of them are formed via splitting. At a high enough density,
gluon fusion (gg → g) effects become relevant, as this fusion is proportional to ρ2.
At a certain point, the effect of this nonlinear gluon fusion process becomes enough
to compensate for the gluon splitting and a point of saturation is reached at a sat-
uration scale Qs. At gluon transverse momenta lower than this scale, saturation
effects are noticeable.
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In this work, we consider protons and heavy nuclei of mass number A as our
target hadrons. We know that, at high energies, the Lorentz contraction of the
nucleus causes there to be ∼ A1/3 overlapping nucleons. This means that if we
probe both a heavy nucleus and a proton, we should see nonlinear effects caused
by gluon fusion taking place already at larger xp in the nucleus than in the proton.
This is to say that the saturation scale Qs of the nucleus is larger than that of the
proton when both are probed at the same xp.

At the saturation scale, the dilute, unsaturated, confined quarks and gluons in
the hadron are separated from the saturated soft gluon matter. This type of matter
state is referred to as the color glass condensate (CGC) [15], which is based on a
classical effective theory formulated by McLerran and Venugopalan [16–18]. In the
CGC picture, the number of soft gluons in the target at small xp is in fact so large
that the target hadron can as well be described using classical gluon fields rather
than Fock states with a finite amount of gluons. [19] The fast partons in the hadron,
such as the valence quarks, are treated as sources for these classical color fields,
which represent the soft, small-x gluons in the hadron. [15]

At the limit of an infinite boost, the target field can be considered a shock wave
field due to Lorentz contraction. Now, when the incoming virtual photon interacts
infinitely fast with the infinitely thin target shock wave color field, the transverse
position of partons stays the same and only an eikonal phase is picked up by the
incoming photon wave function. [4] This eikonal phase can be described by a quantity
known as a Wilson line [20]. Wilson lines serve the purpose of acting as the relevant
degrees of freedom for high-energy scattering. [21]

Generally, the Wilson line in the fundamental representation is the path-ordered
exponential of a gauge field along a line,

UF = P exp
(
ig
∫
C
Aµdzµ

)
, (18)

where P denotes path-ordering of the operators in the integral, C is an arbitrary
(not necessarily closed) contour, and Aµ = ∑

a t
aAaµ is a gauge field, where the ta

are the SU(3) generators in the fundamental representation. [22] In this work, we
have the integration variable z such that the integration bounds are from z = −∞
to z = ∞, Aµ is the gluon field of the target, we choose a light cone gauge such
that A+ = 0, and we set x− = 0 since we can approximate the particle to propagate
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along x+. From these, we get a form for the Wilson line such that [5]

UF (x⊥) = P exp
(
ig
∫ ∞
−∞

A−(z+,x⊥)dz+
)
. (19)

When a quark, represented by the state |qα〉 where α denotes the color index of
the quark before interaction, scatters off a target, or rather, propagates through the
dense gluon field at fixed transverse position, it gains a phase which is represented
by a Wilson line. This can be written as [4]

|qα〉
scattering−−−−−→ UFαβ |qβ〉 , (20)

where β represents the color index of the quark after the scattering. The process is
similar for antiquark states, with the only difference being that the Wilson line is
replaced by its Hermitian conjugate U †Fβα. In our calculations, the dipole amplitude
N can be defined using these Wilson lines, as

N01 = 1− Tr
(
UF (x0)U †F (x1)

)
. (21)

Gluon fusion is a necessary mechanism to limit the gluon density growth. If the
density was allowed to grow indefinitely, the cross section for DIS processes would
also grow indefinitely and this would violate the Froissart bound, a consequence
of the unitarity of the S-matrix which states a strict, well-established upper limit
behavior for the growth of cross sections. [14] In order to limit the linear evolution
of the gluons, a nonlinear evolution equation, such as the Balitsky-Kovchegov (BK)
equation, is needed. [23, 24] The BK equation describes the energy or Bjorken x

dependence of the dipole scattering amplitude. While the BK equation is nonlinear
in the saturation regime, it can be reduced to the linear BFKL equation when the
nonlinear term is disregarded. The BK equation is only valid for QCD in the large-Nc

limit, however, a generalization of the BK equation known as the Jalilian-Marian-
Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation is valid beyond this
limit. [15,25–28] The JIMWLK equation describes the rapidity or x evolution of the
probability distribution of the Wilson lines.

Higher order corrections have been determined for the BK-JIMWLK equations,
however, they prove to be of a complicated structure and are very difficult to im-
plement numerically. It has been shown that if we solely consider running coupling
corrections to the BK equation, we have an equation which describes most of the
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Model Q2
s0 [GeV2] Q2

s [GeV2] C2 ec σ0/2 [mb]
MV 0.104 0.139 14.5 1 18.81
MVe 0.060 0.238 7.2 18.9 16.36

Table 1. Parameters from fits to HERA data for two different initial condition
models, for data at x < 0.01 and Q2 < 50 GeV2. The parameters in this table
are from Ref. [34].

higher order effects. [29–31] This running coupling BK equation (rcBK) has been
shown to successfully describe data from multiple experiments including data on
single [32] and double inclusive [33] spectra in p-p and d-Au collisions at RHIC,
where saturation effects are theorized to play a large role.

The rcBK equation requires an input dipole amplitude at an initial x, here chosen
to be x0 = 0.01, and the dipole amplitudes at x < x0 are then obtained as solutions
of the rcBK evolution equation. As an input of the rcBK equation in photon-proton
cross sections in Ref. [34], the parametrization of the dipole amplitude N p is based
on the McLerran-Venugopalan model [35]:

N p(r, x = x0) = 1− exp
[

r2Q2
s0

4 ln
(

1
|r|ΛQCD

+ ec · e
)]

. (22)

The parameter Qs0 controls the saturation scale at x0, and ec is a factor added to
allow the constant inside the logarithm (which works as an infrared cutoff) to differ
from e. Also required for the running coupling BK equation is the strong coupling
constant α as a function of the transverse separation |r| = r. A form of the function
used in Refs. [29] and [34] is

αs(r) = 12π

(33− 2Nf ) log
(

4C2

r2Λ2
QCD

) , (23)

where C2 is an additional fit parameter included to obtain an evolution compatible
with data.

The model parameters have been determined by performing a fit to the HERA
structure function data at small x, resulting in different parametrization models
depending on initial conditions. [29, 34] We use the model MVe in most of this
thesis, where ec is left as a free parameter for the fitting. We also make a comparison
between results given by MVe and MV models where, in the latter, ec is set to unity
before fitting. The parameters for the two different models are listed in Table 1.
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Also listed is the saturation scale, Q2
s, which can be calculated as the solution of

N (r2 = 2/Q2
s) = 1 − e−1/2. Also, the values of the transverse area of the proton,

σ0/2, are listed, obtained by similar fitting as the other parameters. The value of
ΛQCD has been fixed to 0.241 GeV. In this work, the quark mass is set to m = 0.14
GeV, and only the three lightest quarks are considered.
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3 Cross sections

3.1 Photon-proton cross sections

The process considered in this section is that of a virtual photon γ∗ splitting into
a quark q and antiquark q̄, as per the dipole picture discussed in Sec. 2.1, which
then interact with a proton p (or nucleus A). The process results in a final quark q
and antiquark q̄ along with any combination of hadrons X, written as γ∗ + p(A)→
q+ q̄+X. The leading order diagram of the dipole splitting and interaction process
is illustrated in Fig. 4. Our goal is to obtain an expression for the inclusive cross
section of a single jet, which in this calculation corresponds to one of the quarks
in the dipole. To do this, we first find an expression for the inclusive dijet cross
section, and subsequently obtain an expression for the single jet case by integrating
over the other quark’s momentum. We follow similar steps in our calculations as
those performed in Ref. [4], where cross sections were calculated for exclusive dijet
processes in which the target proton stayed intact.

The first step in calculating the cross sections is to form the state of the virtual
photon, for both longitudinally and transversely polarized photons. We can write
the state of the incoming virtual photon in the mixed space representation at leading
order as [4]

|γ∗〉 =
∑

qq̄ states
δα0α1Ψ(z0, z1,x0,x1) |qα0 q̄α1〉mixed . (24)

The longitudinal momentum fraction of the quark and antiquark are denoted re-
spectively by z0 and z1, defined as zi = k+

i

q+ = p+
i

q+ , and xi denotes the transverse
position of the (anti)quark. The four-momentum of the incoming photon is denoted
by qµ, ki is the momentum of the incoming (anti)quark and pi is the momentum of
the outgoing (anti)quark. The color indices of the quark and antiquark before the
interaction are denoted by αi, while the color indices after interaction are denoted by
βi. The mixed space representation used here specifies the longitudinal momentum
and transverse position of the quark and antiquark. This representation is useful in
the case of interactions at a high-energy limit, since the longitudinal momentum is
not modified in the scattering process, and neither are the transverse positions of
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Figure 4. The leading order diagram of the splitting of a virtual photon into
a dipole, which then interacts with the proton color field (gray area denotes
the interaction). Since we consider inclusive jet production, the proton does
not necessarily remain a proton after the interaction, since the final state can
include any combination of hadrons.

the partons xi. [19]
From a vacuum state |0〉, we obtain the qq̄ state by acting on it with the quark

and antiquark creation operators b† and d†,

|qα0 q̄α1〉mixed = b†(x0, z0, α0, h0)d†(x1, z1, α1, h1) |0〉 , (25)

where hi = ±1/2 denotes helicity. When the quark state |qα〉 scatters off a target
color field, it gains a phase, as discussed in Sec. 2.3, which is represented by a
Wilson line, resulting in the state UFαβ |qβ〉. For the antiquark state |q̄α〉, we use
the Hermitian conjugate of the Wilson line to obtain, after scattering, U †Fβα |q̄β〉.

We obtain for the outgoing state after the scattering, still in mixed space repre-
sentation,

Ŝ |γ∗〉 =
∑

qq̄ states
δα0α1

[
UF (x0)α0β0U

†
F (x1)β1α1

]
Ψqq̄(z0, z1,x0,x1) |qβ0 q̄β1〉mixed

=
∑

qq̄ states

[
UF (x0)U †F (x1)

]
β0β1

Ψqq̄(z0, z1,x0,x1) |qβ0 q̄β1〉mixed ,
(26)

where Ŝ is the S-operator which depends on the classical gluon field. [5] In the
massless quark case, the function Ψqq̄(z0, z1,x0,x1) is written explicitly as [4]

Ψqq̄(z0, z1,x0,x1, h0, h1) =(2π)22eef
√
z0z1δ(z0 + z1 − 1)

× ΦLO
T,L(z0, z1,x0,x1, (h0), λ)δh0,−h1 ,

(27)

where eef is the electric charge of the quark f , and the longitudinal (L) and trans-



25

verse (T) functions Φ are written as

ΦLO
L (z0, z1,x0,x1) = −2z0z1QK0

(
Q
√
z0z1x2

01

)
, (28)

ΦLO
T (z0, z1,x0,x1, h0, λ) =i[z1 − z0 − 2h0λ]ελ · x01

x2
01

Q
√
z0z1x2

01

×K1

(
Q
√
z0z1x2

01

)
.

(29)

Here, the notations xij = xi−xj and xij = |xij| have been used, λ = ±1 signifies the
helicity of the transverse photon, and K0 and K1 are modified Bessel functions of
the second kind. Here, ελ is the transverse polarization vector for transverse gauge
bosons of helicity λ which satisfies the relation [19]

∑
λ=±1

εi∗λ ε
j
λ = δij. (30)

The mixed space states can alternatively be written in momentum space repre-
sentation with the use of a Fourier transform. For the outgoing state, this reads

Ŝ |γ∗〉 =
∑

qq̄ states

∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1
[
UF (x0)U †F (x1)

]
β0β1

×Ψqq̄(z0, z1,x0,x1) |qβ0 q̄β1〉mom .

(31)

Here, pi signifies the transverse momentum of the quarks after interaction. The
S-matrix of the process is, in the CGC effective theory, given by the overlap of the
incoming and outgoing states. [4] The S-matrix for this process is

Sqq̄←γ = 〈q̄β1(p1, z1, h1)qβ0(p0, z0, h0)|Ŝ|γ∗〉 . (32)

Plugging in the mixed space representations of the incoming and outgoing states,
we obtain an explicit form for the S-matrix of the process:

Sqq̄←γ =
∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1
[
UF (x0)U †F (x1)

]
β0β1

Ψqq̄(z0, z1,x0,x1).
(33)

From the explicit form (33) of the S-matrix, the forward scattering amplitude
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Mqq̄←γ for the process can be shown to be [4]

2π(2q+)δ(k+
0 + k+

1 − q+)Mqq̄←γ =
∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1

×
([
UF (x0)U †F (x1)

]
β0β1
− δβ0β1

)
Ψqq̄(z0, z1,x0,x1).

(34)

Using Eq. (34) for the forward scattering amplitude , we get the following form for
the dijet cross section:

(2π)62p+
0 2p+

1
dσdijet

dp+
0 dp+

1 d2p0d2p1
=
∑
βihif

2π(2q+)δ(k+
0 + k+

1 − q+)〈|Mqq̄←γ|2〉C . (35)

Here, 〈...〉C stands for averaging over the target color configurations. This has to be
done, as the specific color configuration of the target is unknown.

To obtain an expression for the square of forward scattering amplitude, we first
insert Eq. (27) into Eq. (34) to get

Mqq̄←γ = (2π)eef
√
z0z1

∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1

×
([
UF (x0)U †F (x1)

]
β0β1
− δβ0β1

)
ΦLO

T,L(x0,x1, z0, z1, (h0), λ)δh0,−h1 .
(36)

Then, multiplying Eq. (36) with its complex conjugate we get for the amplitude
squared:

|Mqq̄←γ|2 = (2π)2(eef )2z0z1

∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1

×
([
UF (x0)U †F (x1)

]
β0β1
− δβ0β1

)
ΦLO

T,L(x0,x1, z0, z1, (h0), λ)δh0,−h1

×
∫ d2x′0

2π

∫ d2x′1
2π e+ip0·x′

0e+ip1·x′
1

×
([
UF (x′0)U †F (x′1)

]
β0β1
− δβ0β1

)∗
ΦLO

T,L(x′0,x′1, z0, z1, (h0), λ)∗δh0,−h1 .

(37)

Plugging Eq. (37) into Eq. (35), but ignoring the averaging over the target color
configuration for now, we can see that the inclusive cross section equation before
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color averaging becomes

∑
βihif

(2q+)2πδ(k+
0 + k+

1 − q+)|Mqq̄←γ|2 =
∑

f

e2
f

 4(2π)4z0z1δ(z0 + z1 − 1)

× αem

∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1

∫ d2x′0
2π

∫ d2x′1
2π e+ip0·x′

0e+ip1·x′
1

×
∑
βi

([
UF (x0)U †F (x1)

]
β0β1
− δβ0β1

)([
UF (x′0)U †F (x′1)

]
β0β1
− δβ0β1

)∗
×
∑
hi

δh0,−h1ΦLO
T,L(x0,x1, z0, z1, (h0), λ)ΦLO

T,L(x′0,x′1, z0, z1, (h0), λ)∗,

(38)

where the fine structure constant αem = e2/(4π), where e is the elementary charge.
We can calculate the Φ-terms separately for transverse and longitudinal polarization
contributions. For a longitudinally polarized photon, from Eq. (28) we straightfor-
wardly obtain

∑
h0,h1

δh0,−h1ΦLO
L (x0,x1, z0, z1)ΦLO

L (x′0,x′1, z0, z1)∗

= 8z2
0z

2
1Q

2K0

(
Q
√
z0z1x2

01

)
K0

(
Q
√
z0z1x2

1′0′

)
.

(39)

For a transversely polarized photon, we use Eq. (29) to obtain

∑
h0,h1

δh0,−h1ΦLO
T (x0,x1, z0, z1, h0, λ)ΦLO

T (x′0,x′1, z0, z1, h0, λ)∗

= 4[z2
0 + z2

1 ]
(
ελ · x01

x2
01

)(
ε∗λ · x1′0′

x2
1′0′

)

×
[
Q
√
z0z1x2

01K1

(
Q
√
z0z1x2

01

)] [
Q
√
z0z1x2

1′0′K1

(
Q
√
z0z1x2

1′0′

)]
.

(40)

We can now average Eq. (40) over λ to remove the λ-dependency, with the help of
the property (30) of polarization vectors:

1
2
∑
λ=±1

(ελε∗λ) 4[z2
0 + z2

1 ] x01 · x1′0′

x2
01x

2
1′0′

[
Q
√
z0z1x2

01K1

(
Q
√
z0z1x2

01

)]

×
[
Q
√
z0z1x2

1′0′K1

(
Q
√
z0z1x2

1′0′

)]
= 2[z2

0 + z2
1 ]x01 · x1′0′

x2
01x

2
1′0′

[
Q
√
z0z1x2

01K1

(
Q
√
z0z1x2

01

)]
×
[
Q
√
z0z1x2

1′0′K1

(
Q
√
z0z1x2

1′0′

)]
.

(41)
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Next, we assess the terms which include Wilson lines. The sum over β0 and β1

of the Wilson line factors is written as

∑
βi

([
UF (x0)U †F (x1)

]
β0β1
− δβ0β1

)([
UF (x′0)U †F (x′1)

]
β0β1
− δβ0β1

)∗
=
∑
βi

([
UF (x0)U †F (x1)

]
β0β1

[
UF (x′1)U †F (x′0)

]
β1β0
− δβ0β1

[
UF (x0)U †F (x1)

]
β0β1

−δβ0β1

[
UF (x′1)U †F (x′0)

]
β1β0

+ δβ0β1

)
= Nc

( 1
Nc

Tr
(
UF (x0)U †F (x1)UF (x′1)U †F (x′0)

)
− 1
Nc

Tr
(
UF (x0)U †F (x1)

)
− 1
Nc

Tr
(
UF (x′1)U †F (x′0)

)
+ 1.

)

(42)

Noticing that the only color-dependence in Eq. (38) comes from the Wilson line
terms, the color configuration averaging 〈...〉C has to be done only for the terms
in Eq. (42). We use the notation S01 to denote the usual dipole operator in the
fundamental representation,

S01 =
〈 1
Nc

Tr
(
UF (x0)U †F (x1)

)〉
C

. (43)

We can also write this in terms of the dipole amplitude N01, as S01 = 1−N01. Thus,
we have for the inclusive dijet cross section

(2π)6p+
0 p

+
1

dσdijet

dp+
0 dp+

1 d2p0d2p1
= αem(2π)4

∑
f

e2
f

 z0z1δ(z0 + z1 − 1)

×
∫ d2x0

2π

∫ d2x1

2π e−ip0·x0e−ip1·x1

∫ d2x′0
2π

∫ d2x′1
2π e+ip0·x′

0e+ip1·x′
1

×Nc

(〈 1
Nc

Tr
(
UF (x0)U †F (x1)UF (x′1)U †F (x0)

)〉
C

− S01 − S01′ + 1
)

×
∑
hi

δh0,−h1ΦLO
T,L(x0,x1, z0, z1, (h0), λ)ΦLO

T,L(x′0,x′1, z0, z1, (h0), λ)∗,

(44)

with the ΦLO
T,L-terms as in Eqs. (39) and (41). A very similar expression was also

reached in Ref. [4], just with a slight difference in the third line containing the
Wilson line terms, arising from the fact that the calculation in Ref. [4] is done
for exclusive processes while our process is inclusive. Thus, we have managed to
effectively reproduce the equation in Ref. [4] for the dijet cross section.

To get a step closer to the inclusive one-jet cross section, we integrate Eq. (44)
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over the transverse momentum of the other jet, d2p0. This gives us a function
proportional to δ(2)(x0 − x′0), and therefore the cross section becomes of the form

(2π)6p+
0 p

+
1

dσ
dp+

0 dp+
1 d2p1

= αem(2π)5

∑
f

e2
f

 z0z1δ(z0 + z1 − 1)

×
∫ d2x0

2π

∫ d2x1

2π

∫ d2x′1
2π e−ip1·(x1−x′

1)

×Nc

(〈 1
Nc

Tr
(
UF (x0)U †F (x1)UF (x′1)U †F (x0)

)〉
C

− S01 − S01′ + 1
)

×
∑
hi

δh0,−h1ΦLO
T,L(x0,x1, z0, z1, (h0), λ)ΦLO

T,L(x0,x′1, z0, z1, (h0), λ)∗.

(45)

We notice that now our trace of four Wilson lines actually reduces to a two-line
trace due to the cyclic property of traces and the unitarity of the Wilson lines:
〈 1
Nc

Tr
(
UF (x0)U †F (x1)UF (x′1)U †F (x0)

)〉
C

=
〈 1
Nc

Tr
(
U †F (x1)UF (x′1)

)〉
C

= S11′ .

(46)
Thus, the terms on the third line of Eq. (45) can be written as

S11′ − S01− S01′ + 1 = (1− S01) + (1− S01′)− (1− S11′) = N01 +N01′ −N11′ . (47)

We change our variables to simplify notation, defining the new variables ε2 =
z0z1Q

2, r = x01 = (x0 − x1), r′ = x0′1′ = (x′0 − x′1), b = (x0 + x1)/2 and b′ =
(x′0 + x′1)/2. Here, r and b are the qq̄ dipole transverse separation vector and the
dipole impact parameter, respectively, with r′ and b′ as their counterparts in the
complex conjugate of the amplitude. These changes to the variables result in a cross
section of the form

p+
0 p

+
1

dσL
dp+

0 dp+
1 d2p1

= αem
Nc

(2π)4

∑
f

e2
f

 z0z1δ(z0 + z1 − 1)

×
∫

d2r
∫

d2r′e+ip1·(r−r′)
∫

d2b (N01(r,b) +N01′(r′,b)−N11′(r− r′,b))

× 8z0z1ε
2K0 (ε|r|)K0 (ε|r′|) ,

(48)
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for longitudinally polarized photons, and of the form

p+
0 p

+
1

dσT
dp+

0 dp+
1 d2p1

= αem
Nc

(2π)4

∑
f

e2
f

 z0z1δ(z0 + z1 − 1)

×
∫

d2r
∫

d2r′e+ip1·(r−r′)
∫

d2b (N01(r,b) +N01′(r′,b)−N11′(r− r′,b))

× 2[z2
0 + z2

1 ] r · r′

r2r′2
ε|r|K1 (ε|r|) ε|r′|K1 (ε|r′|) ,

(49)

for transversely polarized photons.
Once applying the variable changes zi = p+

i /q
+ and integrating over z0, as well

as denoting r = |r|, we obtain expressions for the one-jet inclusive cross section for
both longitudinally (L) and transversely (T ) polarized photons:

dσL
d2p1

= αemNc

(2π)4

∑
f

e2
f

∫ d2rd2r′dz1e
+ip1·(r−r′)

× 8(z1(1− z1))ε2K0 (εr)K0 (εr′)

×
∫

d2b (N01(r,b) +N01′(r′,b)−N11′(r− r′,b)) ,

(50)

dσT
d2p1

= αemNc

(2π)4

∑
f

e2
f

∫ d2rd2r′dz1e
+ip1·(r−r′)

× 2
[
z2

1 + (1− z1)2
] r · r′

r2r′2
ε2rK1 (εr) r′K1 (εr′)

×
∫

d2b (N01(r,b) +N01′(r′,b)−N11′(r− r′,b)) .

(51)

To make the calculations simpler, we will assume that the impact parameter
dependence of the dipole amplitude factorizes and we can replace

∫
d2b→ σ0/2, (52)

where the term σ0/2 is the transverse area of the proton. [34] This factorization
for the dipole amplitude calculations neglects the geometric details of the proton,
and while it is useful in the case of the photon-proton interactions, it will, however,
not be applicable in photon-nucleus calculations, where the geometry of the nucleus
must be considered more carefully.

Starting with Eq. (50) for the one-jet inclusive cross section for longitudinally
polarized photons, we can solve parts of the equation analytically to ease numerical
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calculations. We see that, in the longitudinal case, for the first two dipole amplitude
terms the only angular dependence can be found in the exponential term. The angle
θr (θr′) is the angle between p1 and r (r′). Thus, we only have to perform the angular
integration over the exponential term as follows:

∫ 2π

0
dθrdθr′ eip1r cos θr−ip1r′ cos θr′ = (2π)2J0(p1r)J0(p1r

′), (53)

where J0 is the Bessel function of the first kind and p1 = |p1|. However, we see
that although the first two dipole amplitudes are not angularly dependent, the third
one, N (r− r′), is. This means that the previously described angular integration
does not apply to this term, and therefore this amplitude term has to be integrated
numerically over the angles along with the exponential term.

We could yet further simplify the equation by noticing that the r integral can be
analytically calculated in the second term, as can the r′ integral in the first term.
This is because ∫

rdr K0 (εr) J0(p1r) = 1
p2

1 + ε2
, (54)

where the result of the integral is essentially the wave function of the longitudinal
photon in momentum space. Performing the r integral analytically is tested in our
numerical analysis, but the effect on our results is minimal at least in the kinematic
region and with integration method used.

3.2 Inclusion of quark mass

We want to include the quark mass mf (where f symbolizes a specific flavor) in
our calculations. This is achieved in the case of the longitudinally polarized photon
through the substitution [4]

ε2 −→ ε2f = z0z1Q
2 +m2

f . (55)

This substitution can be directly plugged into Eq. (50) to include the quark mass
in the longitudinal cross section. In the transverse polarization case, there is an
additional term that appears in the cross section when accounting for the quark
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mass. [4] The change is

2
[
z2

1 + (1− z1)2
] r · r′

r2r′2
ε2rK1 (εr) r′K1 (εr′)

−→ 2
[
z2

1 + (1−z1)2
]r · r′

r2r′2
ε2frK1 (εfr) r′K1 (εfr′) +m2

fK0 (εfr)K0 (εfr′) .
(56)

With the replacement for the impact parameter integral (52), the angular inte-
gration (53) and inclusion of the quark mass (55), the longitudinal cross section for
one-jet production (50) becomes

dσL
d2p1

=αemNc

(2π)4

∑
f

e2
f

σ0

∫
rdr r′dr′ dz14(z1(1− z1))ε2fK0 (εfr)K0 (εfr′)

×
[
(2π)2J0(p1r)J0(p1r

′) (N (r) +N (r′)))

−
∫ 2π

0
dθrdθr′ eip1·(r−r′)N (r− r′)

]
,

(57)

where ε2f is now as shown in Eq. (55). The lower indices for the N terms have been
dropped. We see that evaluating the term N (r− r′) requires the angle between r
and r′, denoted by θrr′ = θr− θr′ , and for the evaluation of the exponential term the
angle between p1 and r− r′ is required. This means we keep the angular integration
variables for the numerical calculation. Explicitly written, the equation used in the
numerical integration is of the form

dσL
d2p1

=αemNc

(2π)4

∑
f

e2
f

σ0

∫
rdr r′dr′ dz14(z1(1− z1))ε2fK0 (εfr)K0 (εfr′)

×
[
(2π)2J0(p1r)J0(p1r

′) (N (r) +N (r′))

−
∫ 2π

0
dθrdθr′ eip1r cos(θr)−ip1r′ cos(θr′ )N (

√
r2 + r′2 − (2rr′ cos(θrr′)))

]
.

(58)

Repeating the same process for the transverse cross section (51), we obtain a
slightly different form of equation, as there are more terms dependent on the angles
θr and θr′ . Using Eq. (52) for the impact parameter integral and Eq. (56) for
inclusion of the mass term, we have the following form for the transverse cross
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section:

dσT
d2p1

= αemNc

(2π)4

∑
f

e2
f

σ0

∫
rdr r′dr′

∫ 2π

0
dθrdθr′ dz1e

ip1r cos(θr)−ip1r′ cos(θr′ )

×
{[
z2

1 + (1− z1)2
]

cos(θrr′)ε2fK1 (εfr)K1 (εfr′) +m2
fK0 (εfr)K0 (εfr′)

}

×
(
N (r) +N (r′)−N (

√
r2 + r′2 − (2rr′ cos(θrr′)))

)
.

(59)

Eqs. (58) and (59) are the ones we use in our numerical analysis in Sec. 5.

3.3 From photon-proton to photon-nucleus interactions

Now that we have equations for jet production cross sections in photon-proton inter-
actions, we want to obtain equations for photon-nucleus interactions. In the previous
section, we used the replacement (52) to handle the b integral, since we assumed the
impact parameter b to factorize in photon-proton interactions; this replacement thus
took care of the impact parameter dependence of the dipole amplitude. However, in
the case of photon-nucleus interactions we must take into account the geometry and
b-dependent density of the nucleus, which requires handling the impact parameter
as an integration parameter.

To compare the photon-proton and photon-nucleus cross sections, we define a
nuclear suppression ratio RpA such that

RpA = σγA
Aσγp

. (60)

This is a ratio between the photon-nucleus cross section σγA and the photon-proton
cross section σγp scaled by the mass number A of the nucleus. The ratio is a good
indicator of suppression effects in the nucleus, since in the case of no suppression,
this ratio should be equal to one.

From the photon-proton dipole amplitude, denoted by N p(r), we can follow
Ref. [34] in using the optical Glauber model to obtain the dipole amplitude of
a photon-nucleus interaction, NA(r,b). The total quark-antiquark dipole-proton
cross section reads

σpdip = σ0N p(r), (61)

where σ0 is the same parameter that appears in Eq. (52) and r is the size of the
dipole. The amplitude N p(r) (22) is as discussed in Sec. 2.3.
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At the limit of very small dipoles, the dipole-nucleus cross section should solely
be a sum of dipole-proton cross sections, that is, σAdip = Aσpdip. However, at the limit
of large dipoles we should have dσAdip/d2b ≡ 2NA(r,b) ≤ 2. According to Ref. [34],
to satisfy the equations at both limits, the dipole-nucleus scattering amplitude is
written in an exponential form

NA(r,b) =
[
1− exp

(
−ATA(b)

2 σpdip

)]
, (62)

where TA(b) is the Woods-Saxon nuclear density, or transverse thickness function
of the nucleus, obtained by integrating the Woods-Saxon distribution

ρA(b, z) = n

1 + exp
[√

b2+z2−RA

d

] (63)

over the longitudinal distance z. In Eq. (63), the parameters used are d = 0.54 fm,
RA = (1.12A1/3 − 0.86A−1/3) fm and n as given by the normalization to unity as∫

d2b dz ρA(b, z) = 1.
If Eq. (62) is used directly to compute particle production, we run into a problem

at large r as the S-matrix element S = 1 − N approaches a non-zero limit. This
causes the dipole gluon distribution to develop unphysical oscillations, so the cross
section in Eq. (62) has to be expanded. In the exponent of Eq. (62) we therefore
use the expansion suggested in Ref. [34],

σpdip = σ0N p(r) ≈ σ0
r2Q2

s0
4 ln

(
1

|r|ΛQCD
+ ec · e

)
. (64)

Here, as in Eq. (22), Q2
s0 is the initial saturation scale and the constant ec · e works

as an infrared cutoff, e being Euler’s number.
Now, plugging into Eq. (62) the approximation (64), we have

NA(r,b) = 1− exp
[
−ATA(b)σ0

2
r2Q2

s0
4 ln

(
1

|r|ΛQCD
+ ec · e

)]
. (65)

The dipole-nucleus amplitudes can be obtained by solving the rcBK evolution equa-
tion (see Sec. 2.3) by using Eq. (65) as a non-perturbative input at an initial
x = x0 = 0.01. The scattering amplitudes for each b have to be calculated sepa-
rately, since a fully impact parameter dependent BK equation is not yet feasible to
solve. The scattering amplitudes for each b have been calculated [34, 36], and in
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this work these tabulated results are used.
Next, we can calculate the invariant yield dN(b)/d2pT for each impact parameter

b in the same manner as the cross sections were calculated for the proton-photon
interactions, except now the dipole amplitudes N are different and depend on b,
and there is no σ0 term. Then, from this result we can obtain the photon-nucleus
cross section by integrating over it by b,

dσA
d2pT

=
∫

d2b
dN(b)
d2pT

= 2π
∫

db b
dN(b)
d2pT

. (66)

The saturation scaleQ2
s of the nucleus can be calculated as the solution ofN (r2 =

2/Q2
s,b) = 1 − e−1/2. A comparison of the saturation scales of a gold nucleus and

proton at x = 10−2 and x = 10−4 are shown in Fig. 5. The figure depicts how
the saturation scale of the nucleus intersects the proton saturation scale at around
|b| = b ≈ 30 GeV−1 and falls below it at larger b. At the large b scale, the nucleus is
on average less dense than the proton. However, at large b, the scattering amplitude
increases rapidly, and therefore at large energies the nucleus effectively grows rapidly
on the edges. This signifies a large, unphysical increase in gluon density in the
large b scale. Taking the physics of confinement into account in the BK equation
would limit this behavior, but this is not feasible. For the large b scale, the dipole
amplitude parametrization (65) is therefore not reliable, so we choose another way
to handle calculations in this scale. This is done simply by choosing to scale the
cross sections from the proton-photon interactions, assuming the nuclear suppression
factor RpA = 1 for large impact parameters, as suggested in Ref. [34].

We then see that, at small r, the dipole-proton (22) and dipole-nucleus (65)
scattering amplitudes differ only by a factor:

NA(r,b) = ATA(b)σ0

2 N
p(r). (67)

This means that we can now calculate the cross sections also in the region of large
impact parameters, which are chosen to be above b0 = 30 GeV−1. The final equation
for the photon-nucleus jet production cross section reads

dσA
d2pT

= 2π
∫ b0

0
db b

dN(b)
d2pT

+ 2π
∫ ∞
b0

db bATA(b)σ0

2 N
p(r). (68)
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Figure 5. The saturation scale of a gold nucleus (Au, solid lines) and a proton
(p, dashed lines) at x = 10−2 and x = 10−4 as a function of impact parameter b =
|b|, calculated using the MVe parametrization model for the dipole amplitude.
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4 Future experiments

Previous experiments which have provided data for the study of DIS processes and
saturation effects include HERA at DESY, the LHC at CERN and RHIC at BNL.
While at HERA, electrons were collided with protons and this allowed for the di-
rect study of DIS, the LHC and RHIC collide beams of protons and heavy nuclei,
and offer an insight into DIS-like processes through ultraperipheral collisions. The
Electron-Ion Collider (EIC), the world’s first electron-nucleus collider, will be a
new experimental facility in the US, designed to be built at BNL within the next
decade. [2] The focus of the EIC will be on gluon saturation physics, made possi-
ble by colliding electrons with heavy nuclei. This will enable the probing of gluon
densities much higher than those seen in previous experiments.

The EIC is designed to collide highly polarized (70%) high-energy electron beams
with high-energy ion beams ranging from polarized protons to very heavy nuclei.
The layout of the facility is shown in Fig. 6. As compared to the only previously
existing e-p collider, HERA, the EIC with its wide variety of polarized and heavy-ion
beams as well as a significantly larger luminosity (by two to three orders of mag-
nitude) and energy variablility offers wider capabilities to study gluon distributions
and saturation effects. With the use of these properties, the EIC is expected to
shine light on how sea quarks and gluons, including their spins, are distributed in-
side nucleons, as well as assess the boundary between saturation and dilute regimes.
Whereas the e-p collisions at HERA achieved a center-of-mass energy

√
s of about

318 GeV, the EIC is planned to function at energy ranges of
√
s = 30− 145 GeV for

e-p collisions and
√
s = 20− 90 GeV for e-A collisions. [2] Knowing that x ∼ Q2/s,

we can compute for a set value of Q2, say, 5 GeV2, that these energies result in the
corresponding ranges xp ≈ 10−5 for HERA and 10−4 . xp . 10−1 for EIC e-p and
e-A collisions.

Other experimental setups to probe gluon saturation physics have been planned
as well. At CERN, a Large Hadron-electron Collider (LHeC) has been designed as an
extension of the present LHC in order to study DIS at higher energies. [3] In addition
to electron-proton collisions, the LHeC would enable the colliding of lead ions with
electrons, making it possible to study nuclear DIS at CERN. This planned TeV
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Figure 6. The layout of the EIC experiment at BNL. One ion accelera-
tor/storage ring circulates the ions ranging from protons to heavy nuclei (yellow
ring), and separate accelerator (red) and storage (light blue) rings hold the
high-energy electrons. Figure from [37].

energy scale electron-hadron collider would be able to make measurements at much
lower values of Bjorken x than possible in HERA, extending to x = 10−6. It would
also operate at a higher luminosity and produce heavier mass particles for study,
such as the Higgs particle or top quarks. The beams would not be polarized, unlike in
the EIC. In the more distant future, the LHeC has been envisioned to work together
with the High-Luminosity Large Hadron Collider (HL-LHC) [3], an upgrade of the
LHC planned for the end of this decade. Also, a long-term future plan involving a
High-Energy LHC (HE-LHC) and a future circular hadron-hadron, electron-hadron
and electron-positron collider (FCC) complex has been announced. [38]

The center-of-mass energy anticipated at the LHeC is 1.3 TeV before the LHC
update, 1.77 TeV with the HE-LHC and 2.2 or 3.46 TeV with the FCC. At Q2 =
5 GeV2, these energies correspond to minimum momentum fractions xp of size scale
10−6 for the LHeC alone and with the HL-LHC, and even of the scale 10−7 with
the FCC. Predicted coverage of the kinematic plane in lepton-proton scattering of
these experiments and others is presented in Fig. 7, which illustrates well just how
small values of x can be reached by the LHeC and FCC as compared to the other
experiments.
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Figure 7. The kinematic plane coverage in lepton-proton DIS of different fixed
target experiments (SLAC with electrons, NMS and BCDMS with muons) and
electron-proton colliders EIC, HERA, LHeC and FCC-he. Figure from [3].

Polarized beams would also be implemented at the proposed electron-ion collider
facility in China (EicC) [39], where the focus is stated to be on valence and sea-
quark contributions to nucleon structure and effects of nucleus interactions. The
first stage of the EicC will provide center-of-mass energies of

√
s = 12 − 24 GeV,

while the second stage will function at energies of size 35 − 63 GeV. These ranges
permit values of xp down to the scale 10−3 for Q2 = 5 GeV2.
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5 Analysis

5.1 Monte Carlo integration

For the numerical integration, we use the GNU Scientific Library (GSL) which offers
routines for multidimensional Monte Carlo integration [40]. These routines include
algorithms such as VEGAS and MISER, adapted from the traditional Monte Carlo
method, which use importance sampling and stratified sampling techniques. These
algorithms, using a fixed amount of function calls, compute an estimate of a definite,
multidimensional integral

I =
∫ xu

xl

dx
∫ yu

yl

dy · · · f(x, y, · · · ). (69)

The error estimate of a Monte Carlo integration result is given as a statistical es-
timate, calculated from the estimated variance of the mean. This means that it
cannot be taken as a strict error bound, as it may be an underestimate of the actual
error due to the nature of random sampling. The error estimate should decrease
as ∼ 1/

√
N , which means that to reduce the error tenfold one has to increase the

number of sample points by around a hundredfold.
In this work, the VEGAS algorithm is used. This algorithm, formulated by G.

Peter Lepage [41], is based on importance sampling. This means that the points
which are sampled from the probability distribution are concentrated in the regions
which account for the largest contribution to the integral. This differs from the usual
Monte Carlo integration method, where integration points are uniformly distributed
throughout all integration regions.

The general idea of the VEGAS algorithm as explained in Ref. [41] involves di-
viding the integration volume into hypercubes on a rectangular grid. In the first
iteration, random points are uniformly distributed such that the average number
of points in any hypercube region on the grid is the same as in any other region.
Information gained in this first sampling is then used to define a new integration
point density which adjusts the axes of the grid so as to concentrate the hypercubes
in regions where the absolute value of the integrand is the largest. In this man-
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ner, after each iteration the density of points is refined for the next iteration, thus
gradually reducing the estimated error of the integration and obtaining a grid in-
creasingly closer to the optimal one, where sample points are concentrated at those
points where the integrand is largest.

In the GSL integration routine, if the Monte Carlo integral of function f is
sampled with N points distributed according to a probability distribution described
by a function g, an estimate Eg(f ;N) = E(f/g;N) for the integral is obtained. The
general expression for the estimate is

E(f ;N) = V 〈f〉 = V

N

N∑
i

f(xi), (70)

where V is the volume of the integration region. The corresponding variance of the
function over the integration region is Varg(f ;N) = Var(f/g;N).

If the probability distribution is chosen to be g = |f |/I(|f |), it can be shown
that the variance vanishes and thus the error of the estimate will be zero. However,
it is not possible in practice to sample from the exact distribution g of a function.
Therefore, the algorithm aims to make an approximation of the distribution g. This
is done by passing over the integration region multiple times while histogramming
the function f , with each histogram used to define a sampling distibution for the
next pass of the integration region. This will converge asymptotically towards the
wanted distribution, just as the estimated grid mentioned earlier converges towards
the optimally concentrated grid.

To minimize the number of histogram bins, the probability distribution is ap-
proximated by a separable function, g(x1, x2, ...) = g(x1)g(x2).... This is equivalent
to locating the peaks of the function from the projections of the integrand onto the
coordinates axes. Since the efficiency of the algorithm depends on the validity of
this assumption of a separable function, VEGAS is most efficient when the peaks
of the integrand are well-localized. This corresponds to the optimal grid we wish
to converge towards having its points concentrated at places where the integrand
is largest. Thus, if the integrand can be written in a separable, or at least nearly
separable form, the VEGAS integration efficiency will be higher.

The chi-squared per degree of freedom for the weighted estimate of the integral
can be calculated using a function in GSL. If the value differs significantly from 1, it
signifies that the values from different iterations are inconsistent, and the weighted
error will be underestimated. Further iterations would thus be required for reliable
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results to be obtained. In this work, a chi-squared value differing from 1 by a
maximum of 0.25 was considered satisfactory.

5.2 Results

The jet transverse momentum spectra are calculated numerically for photon-proton
scattering using Eqs. (58) and (59) and for photon-nucleus scattering using Eq.
(68). Both scattering processes are studied at varying values of xp and Q2 and
for photons both longitudinally and transversely polarized. At transverse momenta
higher than about 6 GeV, the results begin to fluctuate and become unreliable,
with large error bounds given by the Monte Carlo integration method. This type of
fluctuation is somewhat expected at large momenta, as we are calculating a Fourier
transform with solely discrete values of the function we are integrating over, that is,
the dipole amplitude. While approaching increasingly large values of momentum,
the results become more sensitive to small scale errors, for instance, the inaccuracies
in the interpolation method as well as numerical fluctuation in the dipole amplitude
values. Thus, the following figures have been cut off at a momentum pT ≈ 6 GeV.

In Fig. 8, we present the differential cross sections for photon-proton and photon-
nucleus scattering for both photon polarizations, at two different values of momen-
tum fraction xp. The photon-proton spectrum in these figures has been scaled by
the mass number of the nucleus and we would expect the two spectra to be quite
near each other for each value of xp, and it does appear that the general shape of
the spectra are very similar for both scattering processes. Using these cross sections
we can calculate nuclear suppression ratios RpA (60).

We observe that for longitudinally polarized photons, the dependence of the cross
section on pT is stronger. This is because the splitting of the longitudinal photon
into a qq̄ dipole, see Eq. (28), is peaked at an even distribution of longitudinal
momentum, z0 = z1 = 0.5, and therefore the dipole size r ∼ 1/Q at large Q2. [42]
For the transversely polarized photon, the structure of the wave function, Eq. (29),
is different, with no such peak at any value of z. When either the quark q or the
antiquark q̄ carries a majority of the photon longitudinal momentum, the momentum
fractions approach zero or one. This limit is not suppressed by the transverse photon
wave function and thus, because the size of the dipole is a Fourier conjugate of the
momentum exchange, large dipole sizes are not suppressed in the case of transverse
polarization. As such, the transverse momentum (pT ) dependence of dipole size is
weaker for transverse photons and therefore the initial pT of quarks originating from
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Figure 8. Differential jet production cross section of (a) longitudinally and (b)
transversely polarized photon-proton (blue) and photon-gold nucleus (black)
scattering at xp = 0.01 and xp = 0.001, at Q2 = 5 GeV2 with the photon-proton
spectrum scaled by the mass number of gold, A = 197. The sudden jump in the
results at high pT in (a) is due to fluctuations in the numerical calculation.
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Figure 9. Differential jet production cross section of (a) longitudinally and (b)
transversely polarized photon-gold nucleus scattering at xp = 0.01 for varying
Q2.
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transverse photons is spread into a wider range than in the longitudinal case. It
should be noted that, in this work, solely an equal division of photon longitudinal
momentum between the quarks was considered. We showed in Sec. 2.2 that the
momentum fraction z is related to rapidity, and therefore it is a variable which can
indeed be measured experimentally.

The differential cross sections of jet production in both longitudinally and trans-
versely polarized photon-gold nucleus scattering at xp = 0.01 are shown in Fig. 9.
For longitudinal photons, we notice that larger Q2 values correspond to smaller cross
sections at small pT . However, at pT & 4 GeV, this is reversed, as larger Q2 now
corresponds to a larger value of the cross section. Similar behavior is also observed
at smaller values of xp, though they are not presented in the figure. For transversely
polarized photons, as shown in Fig. 9b, larger values of Q2 correspond to a smaller
differential cross section at all values of pT .

We know that, at large Q2, the qq̄ dipole which the photon splits into is small
in size, especially so for longitudinal photons as discussed above. Because of the
small size of the dipole, the relative transverse momentum between the quarks of
the dipole is large. This can also be reasoned by considering a large-Q2, zero-pT
photon, from which all energy must transfer into the dipole, which leads to a large
transverse momentum for the quarks. If we now want to produce a small-pT jet
after scattering, which is effectively one particle at this pT scale, this quark must
receive a very large momentum kick from the target to diminish the total, large
momentum already given to the dipole during the splitting from the photon. This is
less probable than receiving a smaller momentum kick, which explains the notable
size difference in cross sections at larger versus smaller Q2 in the longitudinal case,
as seen in Fig. 9a at pT < 3 GeV.

We can also deduce this directly from the expression for the dipole amplitude
N . At small r, we can approximate the dipole to be linear, therefore letting us
approximate N (r) ∼ N (r′) ∼ r2Q2

s, which in momentum space is Q2
s/Q

2. For the
N (r− r′) term, we can approximate N (|r− r′|) ∼ N (

√
2r) ∼ 2Q2

s/Q
2. Therefore,

we see that for very large Q2, N (r)+N (r′)−N (r− r′)→ 0, and this would explain
the behavior at low values of pT � Q, where the cross section is smaller for larger
Q2. This does not hold as strongly for transversely polarized photons, since the size
distribution of dipoles is wider and does not peak as strongly at r ∼ 1/Q. Therefore,
we cannot see the same type of behavior in Fig. 9b as in the longitudinal photon
case, Fig. 9a.
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Figure 10. Nuclear suppression ratio RpA for (a) longitudinally polarized pho-
tons and (b) transversely polarized photons for varying values of xp, at Q2 = 5
GeV2 (solid lines) and Q2 = 20 GeV2 (dashed lines).

The change in Fig. 9a at pT & 4 GeV to a larger Q2 value corresponding to a
larger cross section can be explained by the ε2f term in the cross section Eqs. (58)
and (59), originating from the photon wave function. Since ε2f appears as a factor in
both equations and is linearly dependent on Q2, this term will dominate in large Q2

interactions, but only once we are at high enough values of pT so that the previously
discussed difficulty in producing small-pT jets at large Q2 isn’t dominant. Thus, the
cross section increases with increasing Q2 after 4 GeV.

In Fig. 10, the ratios RpA in the case of longitudinal and transverse photon
polarizations are presented. We note as a general trend that as xp decreases the
nuclear suppression ratio RpA decreases as well, which means that suppression in
photon-nucleus interactions increases with decreasing momentum fraction xp. This
is as expected, since with decreasing xp the saturation scale Qs of the nucleus grows
and, as a result, saturation effects are more pronounced. From these figures, we
see that especially the behavior of RpA at small values of pT is different for the two
polarizations. In the longitudinal case, Fig. 10a, there is a noticable dip in the ratio
at the lower end of pT which does not appear in the transverse case. Furthermore,
in the transverse case, Fig. 10b, at xp = 0.01 there appears to be a peak in RpA at
around the same value. In the total, polarization-summed RpA, shown in Fig. 11,
we see that neither of these behaviors is clearly visible.

The linearization discussion for the dipole amplitudes can also be used to explain
RpA decreasing with pT in the small momentum range in the longitudinal case. The
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Figure 11. Total nuclear suppression
ratio RpA at Q2 = 5 GeV2 (solid lines)
and Q2 = 20 GeV2 (dashed lines) for
varying values of xp. Contributions of
both photon polarizations have been
summed.
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Figure 12. Total nuclear suppression
ratio RpA at xp = 0.01 for varying val-
ues of Q2.

linearization of the amplitudes works better for proton-photon processes than for
the scattering with the nucleus. Only at the dilute limit does the sum of dipole
amplitudes in Eq. (57) approach zero. Nonlinearities in the dipole amplitude N
prevent this, and since the nuclear amplitude is more nonlinear than that of the
proton, the sum of the three amplitude terms goes to zero slower in nucleus interac-
tions than in those involving protons. This is why in Fig. 10a we see that RpA first
decreases with increasing pT before increasing again.

The behavior of RpA with varying Q2 seen in Fig. 12 is quite interesting, since
at pT . 2 GeV the suppression is stronger for smaller Q2, while at momenta above
this, the processes at larger Q2 are more suppressed those at smaller Q2. This can
be explained in a similar manner as the case of small-pT behavior in Fig. 9a. The
nucleus has a larger saturation scale, Qs, than the proton when probed at the same
xp and, in our framework, most of the gluons in the target hadron have values of
transverse momentum of the scale Qs. Again, at large values of Q2, the quarks have
a significantly large transverse momentum given to them by the virtual photon. To
obtain a small-pT jet as a final product from the interaction of a high-pT quark and
the target hadron, the hadron must give a large kick to the quark in order to slow it
down. The size scale of the kick is relative to the target’s saturation scale Qs, so the
kick from a nucleus is generally stronger. Therefore, as it is easier for the nucleus
to give a large enough kick to obtain a small-pT jet than it is for a proton to do the
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same, this results in the growth of nuclear suppression ratio RpA at small pT , and
the effect is more significant the larger the value of Q2, as shown in Fig. 12.

In Fig. 12, we see that the nuclear suppression factor actually reaches values
above unity at lower values of Q2 in the intermediate pT area. This means that
instead of suppression the results display an enhancement of the photon-nucleus
interactions. This type of effect in which the suppression ratio exceeds unity is
referred to as the Cronin effect [43]. As stated previously, the transverse momentum
that a quark obtains as it scatters from the color field of a nucleus is typically larger
than in the case of it scattering from a proton. Before interaction, the transverse
momentum of the quark is of the order Q. The kick given by the target is likely to
be larger from the nucleus than from the proton, and it is therefore more probable
that a jet or particle in this pT range is produced from the nucleus. This raises the
nuclear suppression ratio above unity at intermediate pT values. We notice that the
peak shifts to higher pT as Q2 increases. The Cronin effect has been observed in
multiple experiments, first at lower fixed target energies [43] and later on at RHIC
d-Au collision experiments [44,45].

At larger values of pT , the nuclear suppression ratio RpA asymptotically ap-
proaches unity, as is expected. As we head towards larger values of transverse
momentum, the transverse separation r becomes increasingly smaller. With de-
creasing r, the coupling becomes weaker, and as the quark and antiquark together
becomes color neutral when r → 0, they are no longer affected by the strong in-
teraction. Therefore, the nonlinear effects in the nucleus diminish. This behavior
continues with increasing pT until the nonlinear effects are effectively nonexistent
and the nuclear suppression effect is no longer noticeable, and so at sufficiently large
pT , RpA = 1. Also, it is to be noted that the dipole amplitudes used in this work
have been calculated using the assumption that at high enough pT we eventually
must have RpA = 1. [34]

At smaller values of xp, the Cronin effect is diminished by the BK evolution
equation. [46] This can be observed in Fig. 11 for those results with xp smaller
than 0.01. This diminishment of initial enhancement is mostly due to linear BFKL
dynamics, which are included in the BK evolution equation. For small enough xp,
the Cronin type enhancement effectively dissappears completely. [46] The reduction,
yet not complete dissappearance of the Cronin effect in forward rapidity deuteron-
gold collisions at RHIC was shown in Ref. [46] to be consistent with the results given
by the BK evolution equation, while the complete dissappearance of the effect for
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proton-nucleus collisions at the LHC was also predicted. This has been shown to,
most likely, be the case, as experiments at the LHC have indicated a very small
magnitude of the Cronin effect, with the data also consistent with a case of zero
enhancement once systematic uncertainties are taken into account. [47]

Since in our calculations we have only taken into account BK evolution, which is
logarithmic in 1/xp, and not DGLAP evolution, which is logarithmic in Q2, we want
to have ln(Q2) � ln(1/xp) to ensure that BK evolution is the dominant one. This
is ensured by the choice to study parameter dependence at values 10−4 ≤ xp ≤ 10−2

and 5 GeV2 ≤ Q2 ≤ 50 GeV2. Ideally, we would have both evolution equations as
the basis of our equations, but their combination is not yet feasible.

As mentioned earlier, we consider collisions in which the photon splits into a
quark and antiquark of equal momentum, z0 = z1 = 0.5. If we were to integrate
over the momentum fractions zi, we would be considering contributions from a
widely spread spectrum of dipole sizes at very small and large zi, especially so for
transversely polarized photons. This means that we would take into account also
those contributions from areas with very large dipole sizes, which are consequently
areas with very small transverse momenta. Without a limit on the dipole size, this
could cause potential problems related to confinement scale physics. This problem
has been solved in some cases by setting a maximum value for the dipole size by
introducing an effective gluon mass to regulate the dipole size. [48]

5.3 Model dependence

The results shown in Sec. 5.2 have all been calculated in the so-called MVe

parametrization for the nonperturbative input of the BK evolution equation, as
described in Sec. 2.3. In order to see if our results are sensitive to the chosen
parametrization model, we repeat similar calculations in the pure MV model to
compare the two. The difference between the two parametrizations is in the initial
condition for the dipole amplitude (22): in the MV model, ec ≡ 1, whereas in the
MVe model, ec is kept as a free parameter. This affects other parameters as well,
which have been obtained from fits to HERA reduced cross section data [34] and
are listed in Table 1. Both models are thus compatible with the experimental data
obtained from HERA.

In Fig. 13, the nuclear suppression ratio RpA is shown for both MV and MVe

models at two different values of xp. We see that there is a very small difference
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Figure 13. Nuclear suppression ratio
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Q2 = 5 GeV2. The fluctuation of the
data at larger pT is due to uncertainty
of our numerical calculation.
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between the ratios at lower xp, while at xp = 0.01 the ratios given by the two
models do differ somewhat. The initial conditions for the MV model were given at
xp = 0.01, and the BK evolution tells how the results change with decreasing xp.
Therefore, the larger difference between the models at xp = 0.01 might be due to
the initial conditions, and at smaller xp, the BK evolution seems to diminish the
difference. At values of pT > 5 GeV, calculations with both models give fluctuating
and therefore quite unreliable results.

In Fig. 14, the ratios RpA given by both models are shown for varying values of
Q2 at xp = 0.01. At the larger values of Q2, the two models seem to give very similar
results. However, at Q2 = 10 GeV2, there is a slight difference in the results, and,
as shown in Fig. 13, an even bigger difference of nearly 10% is seen at Q2 = 5 GeV2.
This suggests that there is some dependence of the results on the model chosen, and
with the models we have used, this is seen especially at low Q2 and at values of xp
near the initial condition.

Results from upcoming experiments on jet production will provide complemen-
tary knowledge on the choice of a suitable theoretical model, as data from structure
function measurements has been used for the parametrization fitting and does not
present such differences between the models. Once experimental results are ob-
tained, one can compare them to both the MV and MVe predictions as well as
results calculated using other models, and then consider which of them corresponds
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to the experimental results the best.

5.4 Relation to other approaches

In Ref. [49], predictions are presented for single inclusive jet photoproduction using
the color dipole formalism, the same framework used in our work, in p-p and p-
Pb collisions. The major difference between our subjects of study is that Ref. [49]
considers real photons generated by the hadron, while in our work we consider
virtual photons emitted by electrons. The study in Ref. [49] considers ultraperipheral
collisions in the LHC, where photon-induced interactions become the dominant ones
[50]. This is because, in these events, the interacting hadrons are far from each other
and thus the range of strong interaction is not enough to counter the photon-induced
interactions. Therefore, the dominant process is one where the ultrarelativistic
hadrons act as a source of real photons. The photon then splits into a dipole and
scatters off the other hadron, similarly as in our work.

Inclusive and diffractive dijet production cross sections in e-p and e-A collisions
at the EIC, using the CGC theory, have been computed in Ref. [51]. These results
suggest that a regime of mean dijet transverse momentum of the size scale ∼ Qs

at the EIC might give interesting results in dijet production studies, as the results
appear to depend on the target’s properties, such as parton structure and saturation
effects. The authors also state that saturation effects are significant in the kinematic
regime considered, which is shown by studying the nuclear modification of the ratio
of diffractive and inclusive events.

In Ref. [52], similarly, dijet production at the future EIC is considered, the main
focus being an assessment of the feasability of measuring gluon distributions through
dijet production. One of the findings of the study is that a more realistic modelling
of the impact parameter dependence of the target nucleus thickness would be useful
in improving the analysis.

In Ref. [53], the dipole picture is used to study the effects of gluon saturation in
the nucleus on the cross section of SIDIS in e-A collisions at small Bjorken x. This
is quite similar to our work, however, the study considers an uneven longitudinal
momentum division between the dipole quarks, while in our work, we consider an
even distribution of momentum. The study suggests that if a hadron or jet with a
large fraction z of the virtual photon momentum is tagged, then working in the limit
z(1− z)Q2 � Q2

s might present new phenomena signalling saturation in the SIDIS
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cross section. A Cronin peak is also seen in the study at this limit at moderate values
of x, and when x decreases, the peak dissappears and is replaced by suppression, as
is the case also in our work.



52

6 Conclusions

We have performed a study of jet production in semi-inclusive deep inelastic scat-
tering using the dipole model formalism at varying values of momentum fraction xp
and photon virtuality Q2. In our calculations, the running coupling BK evolution
of the dipole scattering amplitude takes nonlinear, saturation regime effects into ac-
count, with the MV model as the input. By comparing scattering between a photon
and a proton to that between a photon and a nucleus, we have been able to present
effects of gluon saturation within the nucleus on jet production.

The nuclear suppression ratio RpA gives information on suppression effects in
nuclei, therefore, we have studied these ratios in the case of jet production. Our
findings have shown that suppression effects are visible at lower values of transverse
jet momentum pT , while at higher pT , these effects tend to vanish as the ratio
approaches unity. The dipole amplitude model used in this work is based on the
assumption that the amplitudes approach unity at large pT , and so the chosen model
has an effect on the high-pT behavior of the ratio.

By studying RpA, we have found the expected result that suppression in photon-
nucleus interactions increases as xp decreases. While suppression is seen in the lower
values of pT , Cronin enhancement is observed at intermediate pT values when xp is
large enough, around xp ≈ 10−2. It is expected that at smaller values of xp, that
is, at higher energies, the Cronin effect will diminish by the BK evolution equation.
This diminishing behavior at small xp has been observed in our work, and it has also
been previously shown that, at LHC energies, the Cronin effect is nearly or even
completely dissipated. We expect to see a Cronin peak as well as its dissipation in
the EIC at the anticipated kinematic range of experiments.

A difference between the two polarizations of the photons was seen while com-
paring their corresponding jet production cross sections. We have discussed how
the dependence of the cross sections on transverse momentum is stronger for longi-
tudinally polarized photons than for transversely polarized photons. This serves as
an explanation for why, especially at low pT , the behavior of the cross sections and
ratios RpA differs between the photon polarizations.
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We have compared the differences between two parametrizations for the initial
conditions of perturbative small-x evolution used in calculating the dipole ampli-
tudes, the MV and MVe models, of which the latter was used in all other calculations
in the work. Other parametrizations for the MV model exist as well, although they
were not considered here. A slight difference was found between the RpA results
given by the different parametrization models at low Q2 and high xp. At xp = 0.01
and Q2 = 5 GeV2, the ratio RpA differs the most, by nearly 10%. The initial con-
ditions for the models are in fact given at the point xp = 0.01, so this might be a
reason why the models differ the most at this exact xp. The BK evolution washes
out the effect of the initial condition as we head towards smaller values of xp. The
study of jet production offers us important, complementary information on nuclei
and protons and, according to the results of our work, jet production data from
the future EIC can be used to constrain the dipole amplitude towards a model that
seems to suit the data best.

There exists some uncertainty in our numerical calculations which is especially
notable at values of pT higher than 6 GeV. This could be improved upon by attempt-
ing other integration methods. The fractions of longitudinal momenta zi were set
equal to one another in this work. Another option of study would be to consider the
whole range of momentum fractions by integrating over these variables, however, the
resulting very large dipole sizes may have to be regulated in some way to prevent
problems arising from confinement.
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