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Abstract

The Colour Glass Condensate is used as an effective theory to study Quantum
Chromodynamics at high energies in various scattering processes. Several evolu-
tion equations are discussed, in particular the JIMWLK (Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner) equation. This is studied in two equivalent
pictures, namely the Fokker–Planck formalism and the Langevin formalism. From
the latter, we show how BFKL (Balitsky–Fadin–Kuraev–Lipatov) dynamics emerge
in the dilute limit. This is discussed further in Paper [II]. From the Fokker–Planck
formalism, we use the Gaussian Approximation scheme to study several different
types of correlators of fundamental Wilson lines. The 6-point correlators that appear
in the next-to-leading order BK (Balitsky–Kovchegov) equation are calculated –
their numerical implementation is covered in Paper [III]. Finally, the Gaussian
Approximation is extended as a means to derive an evolution equation for the
so-called odderon. Simple correlators are also calculated to see how their parametric
equations are modified. The extended approximation scheme and the numerical
implementation of the odderon are studied further in Paper [I].
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Abstract in Finnish

Kvanttiväridynamiikan ilmiöitä eri sirontaprosesseissa kuvataan värilasikonden-
saatiksi kutsutulla efektiivisellä kenttäteorialla. Tutkimuksen kohteena ovat er-
ilaiset evoluutioyhtälöt, erityisesti JIMWLK (Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner) -yhtälö. JIMWLK-yhtälöä tutkitaan kahdesta eri läh-
estymistavasta, kirjoittaen se joko Fokker–Planck-muotoon tai Langevin-yhtälöksi.
Lähtien yhtälön Langevin-muodosta osoitetaan, että heikon vuorovaikutuksen ra-
jalla siitä voidaan johtaa BFKL (Balitsky–Fadin–Kuraev–Lipatov) -dynamiikka
kuvaava yhtälö. Tätä käsitellään tarkasti artikkelissa [II]. Toisaalta Fokker–Planck-
muotoa käytetään laskemaan fundamentaaliesityksen Wilson viivojen korrelaat-
toreita soveltaen Gaussista approksimaatiota. Väitöskirjassa lasketaan sellaiset
6-pistekorrelaattorit, joita tarvitaan BK (Balitsky–Kovchegov) -evoluutioyhtälön
ratkaisemiseen alinta seuraavassa kertaluvussa. Analyyttiset tulokset ja niiden
numeerinen toteutus on raportoitu artikkelissa [III]. Gaussista approksimaa-
tiota laajentaen johdetaan myös evoluutioyhtälö niin kutsutulle odderonille ja
määritetään, miten odderon-kontribuutio vaikuttaa Wilsonin viivojen korrelaattorei-
den lausekkeisiin. Näin johdetut korrelaattorit ja niiden numeerinen toteutus on
esitetty artikkelissa [I].

– Translated from the English version by Heikki Mäntysaari
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1

Introduction

The understanding of matter at its most fundamental level has long been a pursuit
of humankind. The current state of particle physics requires modern collider
experiments to access unprecedented energy scales, well beyond those of everyday
human experience. These experiments are able to collide various particles and
nuclei at ultrarelativistic speeds, thereby probing the fundamental constituents of
matter. Some examples of such facilities are the LHC (Large Hadron Collider) at
CERN (European Organisation for Nuclear Research), RHIC (Relativistic Heavy Ion
Collider) at BNL (Brookhaven National Laboratory) and HERA (Hadron-Electron
Ring Accelerator) at DESY (German Electron-Synchrotron). In addition, the newly
commissioned EIC (Electron-Ion Collider) at BNL is set to provide invaluable data
for high energy physics, particularly within the scope of the work discussed in this
thesis.

From the theoretical side, the current state of the field is encapsulated within the
Standard Model of particle physics. Quantum chromodynamics (QCD) is the branch
within this theory that deals with the strong nuclear force and is characterised by a
large coupling. It is applicable to all fundamental particles that carry colour charge,
namely quarks and gluons. QCD is of particular importance in understanding the
structure of hadronic and nuclear matter. Prior to QCD, hadronic interactions at
high energies were studied using Regge theory [4–6]. In this formalism, processes
are dominated by the exchange of a so-called Reggeon. The hard scale (due to a
large momentum transfer) in the problem allows for the application of perturbation
theory. The nonperturbative part of the calculation can be factorised out into the
quark and gluon distribution functions. Although we study QCD in this thesis,
Regge theory is alluded to, particularly in Chapters 3 and 6.

Unlike a simpler Abelian theory such as quantum electrodynamics, the self-
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1. Introduction

interacting nature of gluons gives QCD the more complicated structure of a non-
Abelian theory. This is one characteristic that makes QCD calculations far more
complicated than analogous calculations in other branches of the Standard Model.
In certain limiting cases, some technical difficulties may be circumvented by defining
an effective field theory that encapsulates the main facets of QCD relevant to that
specific limit. At the high energies obtained at colliders like the LHC and RHIC, the
quarks and gluons constituting highly boosted hadronic and nuclear matter obtain a
large enough momentum that processes are dominated by so-called small-x physics.
Emission of soft (energetically low) gluons is enhanced, which leads to each nucleus
effectively appearing as a dense medium of gluons from the perspective of the other
nucleus.

An appropriate effective description at small x is the Colour Glass Condensate
(CGC) [7, 8] field theory. This attempts to explain the fundamental interactions
within a nuclear collision, starting from an effective description of the initial colliding
nuclei as this dense gluonic medium. The QCD coupling is small enough in this
context to allow for perturbation theory. Each boosted nucleus is modelled as a
purely classical background colour field with which projectile particles from the other
side of the collision can interact. Beyond understanding the CGC itself, initial-state
effects are important for the study of later stages of a collision, such as the possible
formation of a quark–gluon plasma.

A key tool within the CGC formalism is the renormalisation group equation
(RGE), of which several are discussed in this thesis. In general, one starts by
calculating the quantum corrections to a QCD process, which involve additional
gluon emissions. These corrections contain an integral over the phase space of the
emitted gluons, which generate a large logarithm. By absorbing the large logarithmic
factors in a redefinition of some quantity, one derives an RGE that describes the
evolution of this quantity on some typical scale within the calculation. The solution
of the RGE then involves a resummation of the large logarithms.

One famous example of an RGE is the DGLAP (Dokshitzer–Gribov–Altarelli–
Parisi) equations [9–12], which resum the large logarithms into quark and gluon
distribution functions, thereby governing their evolution as a function of the energy
Q2 of the probe of the distributions. A more relevant type of RGE for the work
discussed in this thesis is the class of equations that govern evolution in rapidity, or
Bjorken-x. Some examples of such equations are the BFKL (Balitsky–Fadin–Kuraev–
Lipatov) equation [13–17], the BK (Balitsky–Kovchegov) equation [18, 19] and the
JIMWLK (Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner) equation
[7, 8, 20–23]. The objects being evolved in such RGE equations are Wilson line
correlators. These are expectation values of products of path-ordered exponentials
that correspond to the QCD interaction between a projectile and a highly boosted
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nucleus. It is important to study the behaviour of these correlators on different
energy scales in order to understand the behaviour of cross sections of various
processes.

This document is structured as follows. Some theoretical background is provided
in Chapters 2 to 8 to explain the work contained in Papers [I], [II] and [III] that
follow. In Chapter 2, the key concepts of the CGC are discussed, including the
Colour Dipole model [24–28], in the context of Deep Inelastic Scattering (DIS). In
Chapter 3, we provide further explanation of the various RGEs mentioned above,
particularly the DGLAP, BFKL and BK equations. The following two chapters are
dedicated to the JIMWLK equation, first formulated as a Fokker–Planck equation
in Chapter 4 and then as a mathematically equivalent Langevin equation in Chapter
5. Chapter 6 explores the the Langevin JIMWLK equation further, by going to
the limiting case of a dilute nucleus – this is related directly to Paper [II]. Then,
a truncation scheme called the Gaussian Approximation (GA) [49, 83, 96–101] is
introduced in Chapter 7. We discuss the calculation of correlators of six Wilson
lines, as studied in Paper [III]. Finally, Chapter 8 covers an extension to this
approximation scheme. We show how this is used to derive an evolution equation for
a parity-odd object called the odderon, as studied in Paper [I]. A brief conclusion
and future prospects are provided in Chapter 9, before Papers [I], [II] and [III] are
presented.
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2

The Colour Glass Condensate

In this chapter, we introduce the Colour Glass Condensate (CGC) effective field
theory that describes a highly boosted nucleus as a dense gluonic medium. The term
colour in the CGC refers to the charge of QCD, which leads to critical non-Abelian
effects. Glass refers to the dynamical behaviour of the medium on different time
scales – this is explained further in Section 2.5. Condensate1 refers to the saturation
seen at very high energies, where high gluon occupation numbers dominate the
medium. Several reviews of the CGC are available, which contain more details than
provided here – for example, see [29–34].

We begin with an overview of the basic tools of QCD in Section 2.1 and physics
on the light cone in Section 2.2. In Section 2.3, we introduce the process of deep
inelastic scattering (DIS), which provides a simple concrete context for the ideas that
follow in subsequent sections. Within the DIS framework, we explore the parton
model in Section 2.4 and the transverse structure of the nucleus in Section 2.5.
Section 2.6 deals with how exactly a probe interacts with this nucleus, as described
by Wilson lines. Finally, we conclude the chapter with a discussion of the DIS cross
section in Section 2.7.

2.1 Quantum chromodynamics

QCD is a non-Abelian Yang–Mills gauge theory with symmetry Lie group SU(Nc).
There are Nc = 3 colours in nature, but this parameter is left general throughout

1Despite the more common use of the term “condensate” in reference to a phase transition, no
such transition exists in the context of the CGC.
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2. The Colour Glass Condensate

this thesis. The QCD Lagrangian density is

LQCD :=

Nf∑
f=1

(
ψ̄f
)
i
(iγµD

µ
ij −mfδij) (ψf )j −

1

4
F µν
a F a

µν , (2.1)

with fundamental indices 1 ≤ i, j ≤ Nc and adjoint indices 1 ≤ a ≤ N2
c − 1. The

summation is over all quark flavours f , of which there are Nf = 6 in nature. The
fermionic and antifermionic fields are denoted by ψf and ψ̄f := ψ†fγ

0, respectively.
They have flavour f , spin 1/2, mass mf and transform under the fundamental
representation of SU(Nc). The γ’s are the Dirac matrices.

The covariant derivative in Eq. (2.1) is defined as

Dµ := ∂µ − igAaµta, (2.2)

where ∂µ := ∂/∂xµ. The strong coupling in this definition is denoted by g and is
often written as αs = g2/(4π). The group generators ta are traceless Hermitian
matrices in the Lie algebra su(Nc). We use a lower case ta for the fundamental
representation and an upper case T a for the adjoint representation. The gauge
fields Aaµ represent massless gluons with spin 1, which transform under the adjoint
representation. For a fundamental SU(Nc) matrix U , we write Ũab = 2tr

(
taUtbU−1

)
so that any such matrix with a tilde and two colour indices is understood henceforth
to be in the adjoint representation. The field strength tensor in Eq. (2.1) is

F a
µν := ∂µAaν − ∂νAaµ + gfabcAbµAcν , (2.3)

where fabc = 2itr
(
ta
[
tb, tc

])
are the antisymmetric structure constants. The sym-

metric structure constants dabc = 2itr
(
ta
{
tb, tc

})
are also needed, particularly in

Chapter 7 where colour multiplets are discussed.

Several colour factors appear throughout this thesis, which we define as follows.
For any representation R of dimension dR, we write

tr
(
taRt

b
R
)
R = αRδ

ab and CRdR := tr (taRt
a
R)R (2.4)

=⇒ αRdA = CRdR. (2.5)

By convention, αF = 1/2 and αA = Nc for the fundamental and adjoint rep-
resentations, respectively. Using dF = Nc and dA = N2

c − 1 leads to the
Casimirs CF = (N2

c − 1)/(2Nc) and CA = Nc. We also make use of the factor
Cd = (N2

c − 4)/Nc, which follows from a contraction of the symmetric structure
constants: Cdδab := dacddbcd.

6



2.2. Light cone coordinates

One defining feature of QCD is asymptotic freedom, which refers to the energy-
dependent behaviour of the strong coupling

αs

(∣∣q2
∣∣) =

αs(µ
2)

1 + αs(µ2)
12π

[11Nc − 2Nf ] ln
[
|q2|
µ2

] , ∣∣q2
∣∣� µ2. (2.6)

A probe defines the energy q – this is explained in the following section in the
context of DIS. The fixed energy µ is a renormalisation scale used to define the
QCD cutoff

ln ΛQCD(µ2) = lnµ2 − 12π

(11Nc − 2Nf)αs(µ2)
. (2.7)

For sufficiently high energies (which correspond to short length scales), αs is small
enough to act as an expansion parameter in perturbation theory. Beyond ΛQCD,
however, αs becomes large and perturbation theory breaks down. In this case,
quarks and gluons remain confined to colour-neutral bound states, whose internal
structure is not accessible to the probe.

2.2 Light cone coordinates

Since the physics of a process is independent of the coordinate system chosen
for a calculation, there is freedom to choose a convenient system based on the
particular problem at hand. A natural choice for relativistic collisions is the light
cone coordinate system, defined by the transformation

T :=


1√
2

0 0 1√
2

0 1 0 0
0 0 1 0
1√
2

0 0 − 1√
2

 . (2.8)

The light cone metric is found using g′ = T>gT . With the standard Minkowski
metric g = diag(1,−1,−1,−1), this gives

g′ =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 . (2.9)

The light cone components of a Minkowski 4-vector x = (x+,x, x−) are

x± :=
1√
2

(x0 ± x3) and x := (x1, x2), (2.10)

7



2. The Colour Glass Condensate

so that the coordinate x±-axes lie along the light cone, as shown in Fig. 2.2.

In the light cone system, a boost in the x3-direction is given by x→ Λ′x, where

Λ′ := diag(eY , 1, 1, e−Y ). (2.11)

This is written in terms of the rapidity Y := ln
(
1/
√

1− v2
)
, where v is the relative

speed between the two frames. The vectors along the two light cone axes are
eigenvectors of the boost, i.e. x± → e±Y x±. This allows for an interpretation of
a light cone “time”, despite the mixing of components t = x0 and z = x3 in the
transformation. Since the x+-component increases by a factor eY when boosted, it
can be interpreted as the light cone time that undergoes a Lorentz dilation. Similarly,
the x−-component decreases by a factor e−Y and is therefore interpreted as a spatial
component that undergoes a Lorentz contraction.

2.3 Deep inelastic scattering

In order to discuss the CGC in a concrete way, we now introduce the process of
DIS. Generically, this is a collision between any leptonic projectile with a nuclear
or hadronic target. In particular, we consider the interaction of an electron e with
a proton p, as shown in Fig. 2.1. The electron projectile emits a virtual photon
γ∗. Given sufficiently large momentum, the photon is able to probe the internal
structure of the proton target. As mentioned in Section 2.2, the collision axis is
taken as the boost direction x3. In the full relativistic limit, the photon’s trajectory
is aligned with the x+-axis and the target’s trajectory with the x−-axis, as shown
in Fig. 2.2. The formalism developed here for DIS can be extended to many other
photon-mediated processes in a relativist collision. In the case of a collision between
two of the same nuclei, either may be taken as the projectile. If the colliding nuclei
are different, the lighter of the two is typically considered in place of the leptonic
projectile.

Due to the large boost in the ep collision considered, the target appears to
be highly Lorentz contracted from the viewpoint of the probe. When 1/αs � 1,
the target field becomes perturbatively strong in the coupling and may be treated
purely classically. The smallness in the coupling is what leads to the high gluon
occupation numbers that form the “condensate” in the CGC acronym. To lowest
order in perturbation theory, the strong interaction with the target occurs when
the photon splits into a dipole consisting of a quark and an antiquark, as shown
in Fig. 2.3. The typical lifetime of the dipole is much longer than the diameter of
the target. The quark and antiquark may then interact with the target through
an exchange of gluons. At high energies, the transverse separation between the

8



2.4. The parton model

e

p

γ∗

Figure 2.1. An example of a DIS process in which an electron e emits a virtual photon
γ∗ that interacts with a proton p.

quark and antiquark remains essentially fixed [35, 36]. This makes the transverse
coordinate plane a convenient space for calculations in the dipole.

An elastic scattering (one in which the incoming and outgoing particles are the
same) between the dipole and the target is shown in Fig. 2.3. In this case, the quark
and the antiquark individually carry colour but together constitute a colour-neutral
object. There is therefore no overall colour transfer between the target and the
dipole. The same is true of other quantum numbers, such as spin and flavour – these
are conserved within the dipole throughout the interaction. This fact is due to the
incoming and outgoing photons being colour-neutral.

2.4 The parton model

The internal structure of the proton consists of an ever-changing number of quarks
and gluons, called partons. This is due to continuous production and annihilation as
the partons interact with each other. The time scales for these interactions, however,
are much larger than the time scales relevant for DIS. This means that the target
effectively appears to the dipole as a collection of noninteracting partons.

The appearance of the target from the viewpoint of the photon depends on two
variables. The virtuality Q2 := −q2 is defined in terms of the square of the photon’s
spacelike momentum q2 < 0. The second variable is the so-called Bjorken-x

xBj :=
−q2

2P · q
, (2.12)

where P is the target’s momentum. In doing the full DIS calculation, xBj can be
interpreted as the fraction of the interacting parton’s momentum over the total

9



2. The Colour Glass Condensate

x0

x3

x+x−

γ∗ target

Figure 2.2. A two-dimensional coordinate plane showing the Minkowski axes x0 and
x3 and the light cone axes x+ and x−. The photon’s trajectory is aligned along the
x+-axis and the target’s trajectory is aligned along the x−-axis. In the full relativistic
limit, the two trajectories align exactly with the light cone axes.

target momentum. In processes other than DIS, an analogous x is used with the
same interpretation. The two variables xBj and x are the same to leading order
in the parton model, so we use them interchangeably. The Q2 and xBj set the
transverse and longitudinal scales, respectively, in the interaction.

The cross section for the ep collision can be calculated using standard QFT
techniques – see [37–39], for example. The result in the proton’s rest frame is

dσ

d3p′
=

α2
EM

EE ′W 4
LµνW

µν , (2.13)

where αEM is the electromagnetic coupling, E and E ′ are the energies of the incoming
and outgoing electrons, respectively, and p′ is the outgoing electron’s 3-momentum.
The contributions to the cross section from the electron and the proton factorise
into the leptonic tensor Lµν and hadronic tensor Wµν , respectively. The hadronic
tensor is the part of the cross section that contains the physics of interest to us. It
can be shown that W µν may be written in terms of two structure functions W1 and
W2 as [29]

W µν = −W1(x,Q2)

(
gµν − qµqν

q2

)
+
W2(x,Q2)

m2

(
P µ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
.

(2.14)

At this stage, W1 and W2 are two unknown scalar functions that depend on
both x and Q2 and have the dimension of mass. They can be written in terms of
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x+ = 01 �1

�(x+)

�⇤q

q̄

Figure 2.3. Elastic scattering between the virtual photon and the target in which the
photon splits into a quark–antiquark pair, called a dipole. The dipole then interacts
through gluon exchange with the target. Light cone time runs from right to left. Due to
Lorentz contraction, the target is effectively localised where it is placed at x+ = 0.

dimensionless functions F1 and F2 as

F1(x,Q2) := mW1(x,Q2), (2.15)

F2(x,Q2) :=
Q2

2mx
W2(x,Q2), (2.16)

where m is the mass of the proton. These dimensionless functions are typically
calculated in the infinite momentum frame for convenience, i.e. a frame in which
the proton is moving ultrarelativistically. For a full exposition using light cone
perturbation theory, see [29]. After the full calculation, F1 and F2 actually turn
out to be independent of Q2. This means that the hadronic part of the DIS cross
section can be expressed entirely in terms of two dimensionless functions that depend
solely on x – a fact known as Bjorken scaling. A famous experimental plot of this
phenomenon is shown in Fig. 2.4. The function F2 is plotted against Q2 for various
fixed values of x. The other structure function F1 can be obtained from F2 through
the Callan–Gross relation F2(x) = 2xF1(x) [40].

2.5 Transverse structure of the target

We now look more closely at the internal structure of the target. In the Glauber
model, a nucleus is described as a large dilute homogeneous collection of A � 1
nucleons. Since correlations between nucleons are suppressed by powers of A, we
assume that the nucleons do not interact with each other. In the setup shown in
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Figure 2.4. Data from the ZEUS collaboration at HERA for the F2 structure func-
tion for neutral current positron–proton DIS, demonstrating Bjorken scaling [41]. The
structure function F2 is plotted against Q2 for various fixed x. The triangular points
are data from various fixed target experiments: the NMC and BCDMS experiments at
CERN and the E665 experiment at Fermilab. The solid lines are from a ZEUS NLO
QCD fit. The scaling at very small x is not as good as that at large x – this is a sign
that higher-order corrections to the parton model become increasingly important with
decreasing x. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature The European Physical Journal C – Particles and Fields, Mea-
surement of the neutral current cross section and F2 structure function for deep inelastic
e+p scattering at HERA, Chekanov, S. et al. c© (2001).
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2.5. Transverse structure of the target

Fig. 2.2, the target is highly Lorentz contracted in the x+-direction. In the full
relativistic limit, it becomes entirely independent of x+. This is the behaviour to
which the term “glass” in the CGC refers: at low x, the target evolves slowly enough
that it is effectively independent of light cone time x+, whereas at high x, the time
dependence cannot be neglected.

The phase diagram for the transverse structure of the target is shown in Fig. 2.5
in the Y –lnQ2 plane. The partons are point particles in reality, but their measured
size depends on the resolution of the experimental probe. Since a photon with larger
Q2 and smaller wavelength has a better resolution, the apparent partonic size in the
transverse plane is proportional to 1/Q2. This is seen along the horizontal axis in
Fig. 2.5: as Q2 decreases, the partons appear smaller. Along the vertical axis, larger
rapidities correspond to smaller x and more available energy for gluon emission. For
fixed small to moderate Q2, increasing Y therefore corresponds to more partons in
the target.

In the top left of the phase diagram, the target becomes densely populated with
apparently large partons. Their overlapping wave functions result in recombination
effects that eventually lead to saturation. This is a direct consequence of QCD
being a non-Abelian theory, since this means that gluons may self-interact. In
this region of phase space, BFKL evolution is no longer able to accurately predict
evolution in rapidity. Instead, evolution becomes nonlinear, as governed by the BK
and JIMWLK equations. The various evolution equations along the Y and Q2 axes
in Fig. 2.5 are discussed in the next chapter.

From the experimental perspective, there are several observables that may
provide signs of saturation within a collision. Two recent examples of the many
instances where saturation is believed to be relevant include inclusive production
(where only the produced particles are measured and the rest are summed over in
the final state) of D mesons at forward rapidity [42] and exclusive production (no
other particles produced) of J/Ψ and Υ mesons in ultra-peripheral collisions [43].
In [44], possible signs of saturation have been detected in di-hadron correlations in
proton–lead collisions, after the subtraction of hydrodynamic effects. These are just
a few examples of the many processes that potentially show signatures of saturation.

The effective colour charge density of the target in the transverse plane can
be described by the McLerran–Venugopalan (MV) model [45–47]. In this model,
typical colour charge density fluctuations are characterised by a hard momentum
scale µ2 ∼ Λ2

QCDA
1/3. This hard scale corresponds to small values of the coupling

αs, which suppress quantum corrections and allow for the target to be treated as a
purely classical field governed by the Yang–Mills equations of motion.
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Y

ln Q2

DGLAP

BFKL

BK/JIMWLK

Figure 2.5. Phase diagram showing the transverse structure of the target as a function
of rapidity Y and virtuality Q2. Also shown are the directions and regions of applicabil-
ity of the DGLAP, BFKL and BK equations discussed in Chapter 3 and the JIMWLK
equation discussed in Chapters 4 and 5.

2.6 Wilson lines

Now that we have an idea of the target structure, we explore the exact nature of
its interaction with the photon probe. This section is a summary of the discussion
provided in the review [30]. The optical theorem states that the total cross section
is given by the difference between the interacting piece and the noninteracting piece
of the imaginary part of the forward elastic scattering amplitude2. In order to
calculate the nontrivial part of the amplitude, we need to find expressions for the
fermionic propagators (the dipole) in the presence of a background field (the target).
Such propagators have been calculated in detail in [19, 48] and elsewhere. Here, we
quote a result from [30] which encapsulates everything needed for the remainder
of our discussion. The propagator for the simplified case of a massless scalar in a

2This can be deduced from the unitarity of the scattering matrix, which we write as S = 1− iT ,
so that unitarity implies −i(T † − T ) = T †T .
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background field A is given by

−i
D2[A]

(x, y) =

∫ ∞
0

ds

∫ x

y

[dz] exp

{
−
∫ s

0

dκ
ż2(κ)

4

}
P exp

{
−ig

∫ x

y

dzµAµ(z)

}
,

(2.17)

where the path integral is taken over trajectories z (parametrized by κ) that connect
x (at κ = 0) to y (at κ = s).

In Section 2.2, it was noted that a boost in the x3-direction modifies the light
cone vector components by x± → e±Y x±. This means that the corresponding com-
ponents of the target field strength tensor get enhanced and suppressed accordingly.
Additionally, the target is Lorentz contracted in the x+-direction and effectively
independent of x− due to time dilation. Working in the light cone gauge A+ = 0,
the gauge field is written as Aµ(z) = gµ+δ(z

+)β(z), where β(z) is a function that
describes the transverse structure of the target. Due to the delta function at x+ = 0,
any projectile traversing the x+-axis propagates freely, except where it momentarily
encounters the target. The momentum carried by the dipole is large enough that
this localised interaction with the target at x+ = 0 is insufficient to deflect the quark
and the antiquark in the transverse plane. Instead, they propagate straight through
the target field. They do, however, undergo a phase rotation in colour space and
the interaction between the dipole and the target is said to eikonalise.

The eikonal approximation allows us to deform the path integral in Eq. (2.17) as

P exp

{
−ig

∫ x

y

dzµAµ(z)

}
→ P exp

{
−ig

∫ x+

y+
dz+A−(x+,x, 0)

}
. (2.18)

Depending on the integration limits, we get the quark Wilson line

Ux := P exp

{
−ig

∫ ∞
−∞

dz+A−(z+,x, 0)

}
=: , (2.19)

or the corresponding antiquark Wilson line

U †x := P exp

{
ig

∫ ∞
−∞

dz+A−(z+,x, 0)

}
=: . (2.20)
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2. The Colour Glass Condensate

We have introduced a diagrammatic notation in the spirit of [49] that is used
throughout this thesis. The notation for the Wilson lines is a shorthand for multiple
gluon exchange between the projectile and the target:

Ux = = · · · . (2.21)

The thin horizontal lines represent the projectile, the thick horizontal line at the
bottom represents the target and the blue vertical line represents the background
gauge field A−(z+,x, 0). An interaction between the target and the projectile is
denoted by a green arrowhead along the projectile’s line at the point where it meets
the background field at x+ = 0. Since the light cone time axis runs from right to
left, as shown in Fig. 2.3, a Wilson line is represented by an arrowhead pointing left
and the Hermitian conjugate Wilson line is represented by an arrowhead pointing
right (since an antiquark is thought of as a quark propagating backwards in light
cone time).

With this new diagrammatic notation, the interaction shown in Fig. 2.3 may
be recast as Fig. 2.6. The Ux and U †y, respectively, replace the propagators of
the eikonal quark and antiquark traversing the x+-axis. The quark and antiquark
split from the virtual photon at x+ → −∞, have transverse positions x and y,
respectively, and then recombine into a photon at x+ →∞. In reality, the dipole
would form from the photon at some finite time before x− = 0 and recombine into
a photon at some finite time after x− = 0. Both Ux and U †y are elements of the
SU(Nc) Lie group; they transform under the fundamental and antifundamental
representations, respectively. The non-Abelian nature of QCD manifests in the path
ordering in Eqs. (2.19) and (2.20), since the order of interactions along the path of
integration must be preserved to ensure that the noncommuting generators are kept
ordered.

In subsequent chapters, we also consider gluon interactions with the target.
The corresponding Wilson line is in the adjoint representation of SU(Nc) and is
denoted by a diamond instead of an arrowhead (since it is just a real number without
direction):

Ũab
z = 2tr

(
taUzt

bU †z
)

=: (2.22)
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x+ = 0∞ −∞

γ∗
Ux

U†y

target initial statefinal state

background field

Figure 2.6. The interaction shown in Fig. 2.3 recast in the new diagrammatic notation
for the Wilson lines, introduced in Eqs. (2.19) and (2.20). The vertical blue line repre-
sents the target background field. Following the notation of [49], the target’s initial and
final states are denoted by grey endpoints on the target line at the bottom.

Note that
[
Ũ †z

]ab
=
[
Ũz

]
ba

=
[
Ũ−1
z

]
ab
.

2.7 DIS cross section

We now return to the subject of the DIS cross section from Section 2.3. One
advantage of the dipole picture as shown in Fig. 2.6 is that the cross section
factorises into two parts [50]:

σγ
∗A(x,Q2) =

∫
r

∫ 1

0

dα
∣∣ψγ∗→qq̄(α, r2, Q2)

∣∣2 σqq̄A(r, Y ). (2.23)

The photon wave function factor
∣∣ψγ∗→qq̄∣∣2 corresponds to the first part of the

interaction, in which the photon splits into a dipole. It depends on three variables.
The first of these is the longitudinal momentum fraction α of either the quark or
the antiquark, which is integrated from 0 to 1. The second variable is the transverse
dipole size r := |x− y|; we use the shorthand

∫
r

:=
∫∞

0
d2r. The third variable is

the virtuality Q2 defined in Section 2.4. The wave function contains the entire QED
part of the photon–target interaction, and is not discussed further in this thesis.
Some examples of how it is calculated may be found in [51–53].

Instead, we focus on the second factor σqq̄A in Eq. (2.23), which contains the QCD
part of the photon–target interaction. This corresponds to the dipole interaction
with the target, which depends on the transverse size r of the dipole and the
rapidity Y . Notice that neither factor in σγ∗A depends on the exact coordinates
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2. The Colour Glass Condensate

of the quark and the antiquark – only the transverse separation between the two
appears. A pedagogical explanation of the calculation of σqq̄A may be found in
[29]. One calculates the diagram in Fig. 2.6 using the fermionic propagator in a
background field, which is similar to Eq. (2.17). This leads to the factor Ux for the
quark and the factor U †y for the antiquark, as noted in the diagram. The product of
these two Wilson lines is traced over due to the contraction of colour indices at the
photon–dipole vertex. This ensures that there is a zero net colour exchange between
the dipole and the target. A normalisation Nc is included with the factor tr

(
UxU

†
y

)
,

which can be calculated by setting both Wilson lines in the trace to 1.

This takes care of the interacting piece of the amplitude. For the noninteracting
piece, we replace all the Wilson lines in the interacting piece by unit matrices
(since there is no interaction with the target field in that case). Then the difference
between the noninteracting and interacting pieces gives Nxy := tr

(
1− UxU

†
y

)
/Nc

and the dipole cross section becomes [30]

σqq̄A(r, Y ) =

∫
b

〈Nxy +Nyx〉 = 2

∫
b

Re 〈Nxy〉 . (2.24)

The integral is over the impact parameter b := (x+ y)/2, which ensures that σqq̄A
scales with the transverse size of the target and vanishes outside of it. Notice
that Eq. (2.24) contains no information about the intrinsic properties of the quark
and the antiquark. This means that their quantum numbers are indeed preserved
throughout the interaction with the target, as stated in Section 2.3.

The angle brackets in Eq. (2.24) denote an average over all configurations of
the background field, thereby encapsulating all information about the target. An
expectation value of a product of Wilson lines is called a correlator, since it signifies
how well the Wilson lines are correlated with one another. In the ubiquitous
McLerran–Venugopalan (MV) model [45, 46, 54], the target average for a Wilson
line operator F [U ] is given by

〈F [U ]〉 =

∫
DρF [U ]W [ρ]∫
DρW [ρ]

, (2.25)

where ρ = ρ(x+,x) is the light cone colour charge density in the target. The
functional W [ρ] is a weight such that∫

DρW [ρ] :=

∫
Dρ exp

{
−
∫
x

∫ ∞
−∞

dx+ tr (ρ2)

µ2

}
, (2.26)

where µ2 = µ2(x+,x) is a measure of the colour charge fluctuations. More about
these expectation values are discussed in the next chapter.
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The operator Nxy is the interacting piece of the dipole operator 3 S
(2)
xy = 1−Nxy

and is represented diagrammatically as

1

Nc

tr
(
UxU

†
y

)
=

1

Nc

, (2.27)

where the trace is denoted by the closed loop. Using the diagrammatic ingredients
introduced up to this point, it is possible to consider more complicated correlators,
such as those found in Chapter 3 onwards. For higher-point correlators, we use the
general notation

S(n)
x1,x2,...,xn−1,xn

:=
1

Nc

tr
(
Ux1U

†
x2
. . . Uxn−1U

†
xn

)
. (2.28)

Since the fundamental Wilson lines are elements of SU(Nc), the dipole correlator〈
S

(2)
xy

〉
takes on values from zero to one. In the total absence of a target, there is

no phase rotation in colour space and so Ux = U †y = 1. This means
〈
S

(2)
xy

〉
= 1 =⇒

〈Nxy〉 = 0 and the dipole cross section in Eq. (2.24) vanishes.

Chapter summary

In this chapter, we have discussed the main ingredients of QCD and the light
cone needed in this thesis. The CGC effective field theory was introduced in the
context of DIS. We have studied the structure of a nuclear target using the parton
model and introduced Wilson lines to account for the interaction of a projectile
with the target in the eikonal limit. Finally, we have given an expression for the
DIS cross section in terms of the dipole correlator. The diagrammatic notation for
Wilson lines used in subsequent chapters has also been introduced.

3Note that Nxy and S(2)
xy are sometimes defined to include the expectation value, whereas we

exclude it.
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3

Evolution Equations

Now that the main ingredients needed to understand the CGC have been introduced,
we turn to the topic of the evolution equations for Wilson line correlators. The
three equations discussed in this chapter are shown on the phase diagram in Fig. 2.5.
The DGLAP equations govern evolution in Q2, along the horizontal axis. The
BFKL equation is a linear equation that governs evolution in Y , along the vertical
axis. For large Y , BFKL evolution breaks down and the BK equation is needed to
more accurately describe evolution. The JIMWLK equation, which is also shown in
Fig. 2.5, is deferred to Chapters 4 and 5.

We begin this chapter with DGLAP evolution in Section 3.1, including a discus-
sion of parton distribution functions and an overview of how to derive the DGLAP
equations. In section 3.2, we study BFKL evolution and the derivation of the
evolution equation, after introducing the Low–Nussinov model for dipole–dipole
scattering. We also discuss some of the problems with BFKL evolution, which lead
to the consideration of nonlinear effects. This takes us to BK evolution in Section
3.3, where we begin with the Glauber–Gribov–Mueller model and Mueller’s dipole
model. These are needed for the derivation of the BK equation at the end of the
section.

3.1 DGLAP evolution

The DGLAP equations are a type of renormalisation group equation describing the
evolution of the quark and gluon distribution functions in the nucleus as a function
of (large) Q2. Their derivation may be found in several textbooks, for example
[37–39, 55, 56]. Here, we outline the derivation provided in [29].
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3. Evolution Equations

3.1.1 Parton distribution functions

Recall the structure functions F1 and F2 introduced in Section 2.4. With light cone
perturbation theory, these can be used to obtain the quark distribution function

qf (x,Q2) =
∑
n

1

x

∫
k

1

2(2π3)

1

Sn

∑
σ=±1

n∏
i=1

∫
dxi
xi

∫
ki

1

2(2π)3

∣∣Ψf
n ({xi,ki} ;x,k, σ)

∣∣2
× (2π)3δ2

(
k +

n∑
j=1

kj

)
δ

(
1− x−

n∑
l=1

xl

)
(3.1)

and the gluon distribution function

g(x,Q2) =
∑
n

1

x

∫
k

1

2(2π3)

1

Sn

∑
λ=±1

n∏
i=1

∫
dxi
xi

∫
ki

1

2(2π)3

∣∣Ψf
n ({xi,ki} ;x,k, λ)

∣∣2
× (2π)3δ2

(
k +

n∑
j=1

kj

)
δ

(
1− x−

n∑
l=1

xl

)
, (3.2)

where λ is the measured gluon’s polarisation. The quark distribution function is
related to the structure functions through

F1(x,Q2) =
1

2

∑
f

Z2
fq

f (x,Q2), (3.3)

F2(x,Q2) =
∑
f

Z2
fxq

f (x,Q2), (3.4)

where Zf is the electric charge in units of the electron charge e of a quark of flavour f .
In the function qf , the proton is assumed to have n spectator partons, in addition to
the one parton with which the photon interacts. The struck parton has momentum
k (in the infinite momentum frame), longitudinal momentum fraction x and helicity
σ. The spectator partons have momenta ki and longitudinal momentum fractions xi.
The light cone wave function for the proton is then written in terms of the partonic
wave functions Ψf

n. The symmetry factor Sn depends on the number of partons n,
where 1 ≤ n <∞.

The dependence of qf on Q2 enters through the renormalisation scale, so that all
momentum integrals in Eq. (3.1) are bound from above by Q. The Bjorken scaling
of the structure functions that was discussed in Section 2.4 follows from taking
the limit Q2 →∞ in the upper limit of the integrals when Q2 is sufficiently large.
This effectively renders the structure functions independent of Q2, as can be seen in
Fig. 2.4 in the previous chapter.
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3.1. DGLAP evolution

3.1.2 How to derive the DGLAP equations

The derivation of the DGLAP equations from the quark and gluon distributions is
now straightforward. In order to obtain the dependence of qf on Q2, we first find
the dependence of the proton wave function Ψf

n on the transverse momentum k
by calculating the QCD corrections to Ψf

n. For example, one type of leading-order
correction to the diagram for qf is any diagram with one added gluon line. By
calculating these corrections, we may write Ψf

n in terms of Ψf
n−1, i.e. the same wave

function but with n − 1 spectator partons (because one gluon has been removed
from Ψf

n).

For large Q2, and assuming the transverse momenta are ordered as

Q2 � k2 � k2
n−1 � · · · � k2

1 ∼ Λ2
QCD, (3.5)

this procedure leads to a contribution to qf that is proportional to αs ln(Q2/Λ2
QCD).

For large Q2, αs � 1 and ln(Q2/Λ2
QCD) � 1. Then the two factors together

give αs ln(Q2/Λ2
QCD) ∼ 1, which can be used as a resummation parameter. The

resummation of this parameter is called the leading logarithmic approximation (LLA).
Diagrams that do not contain a factor αs ln(Q2/Λ2

QCD) – for example, those with
an additional factor αs – may be neglected to LLA accuracy in the calculation. By
including all relevant one-gluon corrections to qf in the LLA, and then differentiating
by Q2, we obtain

Q2∂q
f (x,Q2)

∂Q2
=
αs(Q

2)

2π

∫ 1

x

dz

z
Pqq(z)qf

(x
z
,Q2

)
, (3.6)

where Pqq(z) is the quark–quark splitting function. The splitting function represents
the probability that a quark splits from another, where the measured quark has a
momentum fraction z of the original quark’s momentum. The calculation for the
antiquark distribution function is similar, and the two results can be combined to
give

Q2∂∆ff̄ (x,Q2)

∂Q2
=
αs(Q

2)

2π

∫ 1

x

dz

z
Pqq(z)∆ff̄

(x
z
,Q2

)
, (3.7)

where ∆ff̄ := qf − qf̄ is the so-called flavour nonsinglet distribution function.

In addition to quark–quark splitting in Eq. (3.7), quarks splitting from gluons
within the gluon distribution given in Eq. (3.2) must be accounted for. Since this
type of splitting also modifies the original gluon distribution, repeating the process
for calculating Eq. (3.6) with all relevant splitting functions leads to a matrix
differential equation

Q2 ∂

∂Q2

(
Σ(x,Q2)
g(x,Q2)

)
=
αs(Q

2)

2π

∫ 1

x

dz

z

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)(
Σ(x/z,Q2)
g(x/z,Q2)

)
. (3.8)
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Here, Σ :=
∑

f (qf + qf̄ ) is the so-called flavour singlet distribution function. Notice
that the gluon distribution function does not affect Eq. (3.7), since gluon splitting
necessarily results in equal numbers of quarks and antiquarks.

Eqs. (3.7) and (3.8) constitute the leading order DGLAP equations in the LLA.
Higher orders may be derived by including the next-to-leading order corrections to
the splitting functions; going past the LLA is possible by including contributions
with additional logarithms in the resummation parameter. At small x, factors of
ln(1/x) become important, so that a more appropriate resummation parameter is
αs ln(1/x) ln(Q2/Q2

0), where Q0 is the virtuality at the initial condition. Resumma-
tion of this parameter is called the double logarithmic approximation (DLA).

In principle, the DGLAP equations are solvable analytically since they are linear
differential equations. In practice, however, they are typically solved numerically.
Although the evolution equations may be derived using standard perturbative meth-
ods, their initial conditions require nonperturbative input. As such, measurements
over a range of Q2 are required. DGLAP evolution has been successful in fitting
data from experiments. Fig. 3.1 shows data from the ZEUS detector at HERA
taken for the F2 structure function for neutral current deep inelastic positron–proton
scattering. The structure function is plotted against x for various values of fixed Q2

in the range 22− 150 GeV2 (plots for other Q2 values may be found in [41]).

3.2 BFKL evolution

Now we move on to evolution in rapidity, which is the main subject of this thesis.
At fixed Q2, evolution in rapidity for small to moderate Y can be accounted for by
the BFKL equation. Like the DGLAP equations, this is a type of renormalisation
group equation, but with a different resummation parameter to that of DGLAP.
In the previous section, it was mentioned that factors of αs ln(1/x) ln(Q2/Q2

0) are
resummed in the DLA. If Q2 is now fixed at some (not necessarily large) value, the
factor ln(Q2/Q2

0) in this can be neglected and we need only worry about factors of
αs ln(1/x). Resummation of this parameter is called the LLA in 1/x, as opposed
to the LLA in Q2, which was discussed in reference to the DGLAP equations in
the previous section. A derivation of the BFKL equation can be found in many
textbooks, such as [55, 58, 59]. Here, we outline the calculation provided in [29].
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3.2. BFKL evolution
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Figure 3.1. Data from the ZEUS collaboration at HERA for the F2 structure function
for neutral current positron–proton DIS [41]. The solid lines are a ZEUS NLO QCD
fit that uses the DGLAP equations, demonstrating the success of the fit. The dashed
lines are from the parton distribution and structure function program called CTEQ4D
[57]. Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature The European Physical Journal C – Particles and Fields, Measurement
of the neutral current cross section and F2 structure function for deep inelastic e+p
scattering at HERA, Chekanov, S. et al. c© (2001).
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3. Evolution Equations

3.2.1 The Low–Nussinov model

The BFKL equation has its origins in the Low–Nussinov model [60–62]. This is a
theory that was proposed to explain the so-called pomeron in terms of QCD degrees
of freedom. A pomeron is an exchanged Reggeon (see Chapter 1) with vacuum
quantum numbers, that dominates process at high energies. It was introduced
in Regge theory to account for the flatness of total cross sections in hadronic
interactions around 10 - 20 GeV that was seen experimentally [59].

For concreteness, the scattering between two quark–antiquark bound states,
called quarkonia, is considered. These interacting states may be partons within
colliding nuclei or they may come from the splitting of a virtual photon into a
quark–antiquark pair, as shown in Fig. 2.6. The simplest way to reproduce the
vacuum quantum numbers of an exchanged pomeron between the two quarkonia
is to model the exchanged object as two gluons. Then the relevant diagrams to
calculate for the scattering amplitude at leading order in the LLA (for fixed αs) are
of the kind

x1

x2

l

p1

p2

, (3.9)

where the transverse positions of the upper and lower quarkonia are x1 and x2,
respectively. We use the diagrammatic shorthand

:= + , (3.10)

so that any vertical grey line of this type signifies a sum over all possible gluon
emissions or absorptions. This shorthand applies to both the upper and lower
quarkonia in Eq. (3.9), giving four contributions.

Let us consider the diagram in which a gluon is exchanged between the two
quarks. The quark from the upper quarkonium has momentum p1 and the quark
from the bottom quarkonium has momentum p2, as shown in Eq. (3.9). In the
eikonal approximation, the only large momenta in the problem are p−1 and p+

2 . All
other momenta are much smaller, including momentum l of the exchanged gluon.
The scattering amplitude corresponding to the quark–quark scattering turns out to
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3.2. BFKL evolution

be

M0
qq→qq(l) = −2g2(ta)i′i(t

a)j′jδσ1σ′1δσ2σ′2
s

l2
, (3.11)

where the Kronecker deltas refer to the quark helicities. The cross section obtained
from this is

σqq→qq =
2α2

sCF

Nc

∫
l

1

l4
, (3.12)

which is an energy-independent expression. This is an example of a general rule
that the t-channel exchange of a particle with spin j scales the total cross section
by a factor sj−1, where s is the square of the centre-of-mass energy [4, 63]. Setting
j = 1 for gluons then makes this factor s0 for our case of two-gluon exchange.

Taking into account all four diagrams that contribute to Eq. (3.9), the total
cross section for quarkonium–quarkonium scattering is

σ =

∫
x1x2

∫ 1

0

dz1dz2 |Ψ(x1, z1)|2 |Ψ(x2, z2)|2 σ̂, (3.13)

where

σ̂ :=
2α2

sCF

Nc

∫
l

1

l4
(
2− e−il·x1 − eil·x1

) (
2− e−il·x2 − eil·x2

)
. (3.14)

Here, Ψ is the quarkonium light cone wave function and z1 and z2 are the interacting
quarks’ momentum fractions relative to their corresponding bound state momenta.
The two-gluon exchange in this context is referred to as the soft pomeron, since
it is governed by nonperturbative effects. Overall, the only differences between
Eqs. (3.12) and (3.14) are so-called impact factors of the form 2− e−il·x− eil·x. It is
therefore sufficient to calculate the corrections to quark–quark scattering and then
extend the result to the full quarkonium–quarkonium case.

3.2.2 How to derive the BFKL equation

In order to derive the BFKL equation, we now calculate corrections to the
quarkonium–quarkonium scattering cross section given in Eq. (3.14). A typical
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3. Evolution Equations

contribution that needs to be calculated is of the kind

G(l, l′, Y )

l l

l′ l′

, (3.15)

where the red dashed line separates the direct and complex conjugate amplitudes.
The shaded rectangle labelled G represents all corrections to the total cross section
to leading order in lnαs. Other kinds of corrections, such as quark loops, are beyond
LLA accuracy and may be neglected. The corrections G are a function of the gluon
momenta l and l′, as well as rapidity Y = ln(s |x1| |x2|). The generalisation of
Eq. (3.14) is then

σ̂ =
2α2

sCF

Nc

∫
ll′

1

l2l′2
(
2− e−il·x1 − eil·x1

) (
2− e−il′·x2 − eil′·x2

)
G(l, l′, Y ). (3.16)

The initial condition

G0(l, l′) := G(l, l′, Y = 0) = δ2(l− l′) (3.17)

reproduces Eq. (3.14). Note that an unintegrated gluon distribution φ(x, l2) can be
defined by including the corrections G in one of the quarkonium wave functions.
Using Eqs. (3.13) and (3.16) to achieve this, gives

φ(x, l2) :=
α2

sCF

π

∫
x

∫ 1

0

dz |Ψ(x, z)|2
∫
l′

1

l′2

(
2− e−il′·x − eil′·x

)
G(l, l′, ln(1/x)),

(3.18)

which is the gluon distribution at a particular transverse momentum l. In the LLA,
this is related to the gluon distribution of Eq. (3.2) by

φ(x,Q2) =
∂xg(x,Q2)

∂Q2
. (3.19)

G is calculated by first considering all corrections to the quark–quark scattering
and then extending the result to the full case. There are two types of contributions
that need to be considered, depending on whether the gluon is present in the final
state (real emissions) or is not (virtual emissions). In the case of real emissions, five
diagrams need to be calculated. These corrections sum to a total contribution

Mqq→qqg = 2ig2(tb)i′i(t
c)j′jδσ1σ′1δσ2σ′2

s

l2(k − l)2
ελ∗ · Γabc (3.20)
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3.2. BFKL evolution

to the quark–quark scattering amplitude, where k and ελ∗ are the momentum and
polarisation, respectively, of the added gluon. The factor

Γabc := 2gfabc
[
k − l− (k − l)2

k2
k

]
(3.21)

is the so-called Lipatov vertex [15, 64]. It provides a diagrammatic shorthand for
the five gluon diagrams that constitute it. The cross section for real emission is then

σqq→qqg =
2α3

sCF

π2

∫
kl

1

k2l2(k − l)2

∫ Y

0

dy, (3.22)

where y is the added gluon’s rapidity, integrated over the whole rapidity range
between the two interacting quarks. This result generalises to the quarkonium–
quarkonium case, giving the same expression as Eq. (3.16), but with the replacement

G(l, l′, Y )→ Greal
1 (l, l′, Y ) :=

αsNc

π2
Y

1

(l− l′)2
. (3.23)

Next, we consider the virtual corrections to the quark–quark scattering, in
which case there are several more diagrams to take into account. After a lengthy
calculation, the total contribution to the scattering amplitude is

M1
qq→qq(l) = M0

qq→qq(l)ωg(l)Y, (3.24)

where

ωg(l) = −αsNc

4π2

∫
q

l2

q2(q − l)2
(3.25)

defines the gluon Regge trajectory. The virtual emission diagrams lead to corrections
that can be summed into an exponential, which effectively means that the gluon
propagator may be replaced by the propagator of a reggeised gluon:

igµν
l2
→ igµν

l2
eωg(l)Y . (3.26)

This represents an exchanged gluon with spin j = 1 + ωg(l). A reggeised gluon
is therefore a gluon plus all virtual corrections to leading order in ln(1/x). The
virtual emissions result in a correction to the quarkonium–quarkonium cross section
in Eq. (3.16) that equates to the replacement

G(l, l′, Y )→ Gvirtual
1 (l, l′, Y ) := G0(l, l′)2ωg(l)Y. (3.27)
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3. Evolution Equations

Summing the real contributions from Eq. (3.23) and the virtual contributions
from Eq. (3.27) gives a total correction factor

G(l, l′, Y ) = G0(l, l′) +
αsNc

π2

∫ Y

0

dy

∫
q

1

(l− q)2

[
G0(q, l′)− l2

2q2
G0(l, l′)

]
+O

(
α2

s

)
(3.28)

for the quarkonium–quarkonium scattering. To order αs, this expression can be
thought of as the solution to the BFKL equation

∂YG(l, l′, Y ) =
αsNc

π2

∫
q

1

(l− q)2

[
G(q, l′, Y )− l2

2q2
G(l, l′, Y )

]
(3.29)

for the BFKL Green’s function G. The initial condition is given in Eq. (3.17). A
similar BFKL equation holds for the unintegrated gluon distribution:

∂φ(x, l2)

∂ ln(1/x)
=
αsNc

π2

∫
q

1

(l− q)2

[
φ(x, q2)− l2

2q2
φ(x, l2)

]
. (3.30)

At each iteration of Eq. (3.29), the Green’s function gets corrected by one gluon.
Several iterations therefore lead to a BFKL ladder diagram

, (3.31)

where the big solid dots represent Lipatov vertices and the two vertical gluons are
reggeised gluons. The horizontal gluons are ordered in increasing rapidity from top
to bottom. This is a consequence of the constraints imposed on the gluons’ plus
and minus light cone momentum components in the derivation of Eq. (3.29). The
BFKL ladder is referred to as the hard pomeron, since it is governed by perturbative
effects.

3.2.3 Problems with BFKL evolution

Since Eqs. (3.29) and (3.30) are linear differential equations, they can be solved
analytically – see, for example, [29]. Their solutions imply a cross section growth of
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3.3. BK evolution

the form σ ∼ sαP−1, where αP is the so-called pomeron intercept from Regge theory.
In particular, this growth factor violates an important bound. The Froissart–Martin
theorem states that the growth rate of the total cross section as a function of energy
cannot be larger than ln2 s [65, 66]. This is a direct consequence of the unitarity
and analyticity of the scattering matrix. Since the cross section governed by BFKL
evolution violates the Froissart–Martin bound, the BFKL equation clearly violates
these important properties of the scattering matrix.

A second problem with BFKL evolution concerns its high energy limit. For very
large rapidities, it is possible that the lower bound of the transverse momenta of the
horizontal gluons in the ladder (the ladder “rungs”) approaches ΛQCD. This calls
into question the validity of perturbation theory in the high energy limit. These two
serious problems with BFKL evolution may be cured by considering nonlinear effects
at small x, as discussed in the next section. The point to which BFKL evolution is
applicable is governed by a saturation scale Qs. This is one of the defining features
of the CGC, as it signals the onset of the nonlinear effects that lead to saturation.
The associated correlation length Rs := 1/Qs defines the apparent size of the partons
necessary for the overlaps in the partonic wave functions to be included in deriving
the evolution equations.

3.3 BK evolution

The two major problems with BFKL evolution discussed in the previous section
may be cured by introducing nonlinear terms into the evolution equation. This
is the role of the BK equation – a nonlinear renormalisation group equation that
governs the evolution of the dipole correlator with increasing rapidity. A derivation
of the BK equation is provided in [29]; we outline the procedure here.

3.3.1 The Glauber–Gribov–Mueller model

Consider the dipole operator

1−Nxy = S(2)
xy =

1

Nc

tr
(
UxU

†
y

)
=

1

Nc

, (3.32)
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from Section 2.7, where the dipole–target cross section

σqq̄A(r, Y ) = 2

∫
b

Re 〈Nxy〉 , (3.33)

was discussed, as given in Eq. (2.24). In order to calculate Nxy, the target is modelled
using the Glauber model introduced in Section 2.5 and consider dipole–nucleon
scattering in the Glauber–Gribov–Mueller (GGM) model [36, 67–71].

First, we consider the scattering between the dipole and a single nucleon from
the target. This nucleon can be modelled as a dipole of size r2, so that we may
use Eq. (3.13). Both dipoles are considered small, so that r ∼ r2 � 1/ΛQCD. For a
large target, an angular average is taken to account for all possible orientations of
the transverse vectors r and r2. This gives an approximate dipole–nucleon cross
section

σqq̄N ≈ αsπ
2

Nc

r2xgN

(
x,

1

r2

)
, (3.34)

where the gluon distribution xgN refers to the single nucleon from the target.
Averaging over all positions of the nucleon within the target and summing over a
total of A nucleons gives the differential dipole–target cross section

dσqq̄ALO

d2b
= T (b)σqq̄N , (3.35)

where

T (b) :=

∫ ∞
−∞

db3ρA(b, b3) (3.36)

is the nuclear profile function and ρA is the nucleon number density, typically given
by the Woods–Saxon model [72].

Next, this result for a single nucleon scattering is extended to the dipole scattering
with multiple nucleons. For simplicity, each of these nucleons is now modelled as
a single quark instead of a dipole. In the covariant/Feynman gauge and still
considering only two-gluon exchange, the dipole interacts with one nucleon at a
time, ordered along the x+-axis. All other possible interactions are suppressed by a
factor A� 1. By iterating Eq. (3.35) and summing over all the ways that the two
exchanged gluons can attach to the quark and/or antiquark, we obtain

∂s(r, b+)

∂b+
= −1

2
ρA(b, b+)σqq̄Ns(r, b+), (3.37)
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3.3. BK evolution

where s(r, L) corresponds to a dipole S(2)
xy that travels through the target up to

point b+ ∈ (0, L) [36]. The dipole–nucleon cross section is given by

σqq̄N =

∫
l

1

(2π)2

dσqq→qq
d2l

(
2− eil·r − e−il·r

)
, (3.38)

where σqq→qq is determined from Eq. (3.12). At the initial condition, this can be
used with the leading-order single-quark gluon distribution

xgquark
LO (x,Q2) =

αsCF

π
ln

Q2

Λ2
QCD

, (3.39)

to write the GGM multiple-rescattering formula

〈N(r, b, Y = 0)〉 = 1− exp

{
−r

2Q2
s (b)

4
ln

1

|r|ΛQCD

}
. (3.40)

The saturation scale that was discussed in Section 3.2.3 is defined here as

Q2
s (b) :=

4πα2
sCF

Nc

T (b), (3.41)

in terms of the nuclear profile function T (b) given in Eq. (3.36).

3.3.2 Mueller’s dipole model

The task is now to calculate and resum all corrections to Eq. (3.40) in the LLA in
ln(1/x). The diagrams that give the appropriate factor αs ln(1/x) are those in which
the dipole emits an s-channel gluon that interacts with the target, i.e. contributions
of the form

. (3.42)

After the interaction, the emitted gluon is reabsorbed by the dipole. Other types
of corrections, such as additional t-channel gluons of the kind shown in Eq. (3.9),
do not contribute the required resummation factor and may be neglected. During
the interaction with the target, scattering occurs off nucleons ordered in x+ within
the target. Gluon emission from the dipole during this time is suppressed by 1/s
and can be neglected in the eikonal approximation. We assume that the light cone
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3. Evolution Equations

plus component of the emitted gluon’s momentum is much smaller than that of the
quark or the antiquark. On the other hand, all the other transverse momenta in the
problem remain unconstrained and unordered.

The dipole is written in terms of the quarkonium wave function first introduced
in Eq. (3.13). Using standard techniques to calculate the required diagrams of the
form shown in Eq. (3.42) gives a modification∫ min{z1,1−z1}

z0

dz2

z2

∫
x2

1

4π

∑
σ,σ′,λ,a

∣∣∣Ψ(1)
σσ′

∣∣∣2 =

∫ min{z1,1−z1}

z0

dz2

z2

∫
w

αsCF

π2
K̃xzy

∑
σ,σ′

∣∣∣Ψ(0)
σσ′

∣∣∣2
(3.43)

from the real corrections to the original quarkonium wave function Ψ(0) [27]. The
conformal kernel that appears here is given by

K̃xwy := 2Kxwy −Kxwx −Kywy =
(x− y)2

(x−w)2 (w − y)2 , (3.44)

where

Kxwy := KixwKiwy (3.45)

and

Kixw :=
(x− w)i

(x−w)2
(3.46)

is the Weizsäcker-Williams emission kernel. The kernel Kixw denotes the quark →
quark + gluon splitting wave function. Notice that the bare wave function Ψ

(0)
σσ′

factorises out in Eq. (3.43). The virtual corrections require the calculation of several
more diagrams, which are not included here. The total contribution from the virtual
corrections modifies the bare quarkonium wave function by

Ψ
(0)
σσ′(r, z1)

∣∣∣
O(αs)

= −2αsCF

π
ln
|r|
ρ

∫ min{z1,1−z1}

z0

dz2

z2

Ψ
(0)
σσ′(r, z1)

∣∣∣
O(α0

s )
, (3.47)

where ρ is an ultraviolet cutoff that regulates the divergences from the factors x−w
and y −w in the denominator of Eq. (3.43) [27].

Now that we have considered both the real and the virtual corrections to the
dipole, some remarks are in order. Both Eqs. (3.43) and (3.47) contain a factor
αs and an integral

∫
dz2/z2, which confirm that they are LLA contributions. The

resummation procedure to derive a renormalisation group equation in this case
is complicated, but simplifies significantly in the large-Nc limit. In this limit, we
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set Nc → ∞ while simultaneously keeping αsNc constant. Each gluon line in the
diagrams is replaced by a pair of lines denoting a quark–antiquark pair. These are
in a colour octet state, called a daughter dipole.

In the case of a diagram with several gluons emitted from the original parent
dipole, these daughter dipoles need only be considered as noninteracting. Those
diagrams in which they do interact with each other are Nc-suppressed, although
they may act as sources of further gluon emission. An additional simplification
is that the gluon emissions need only be considered ordered in momentum as
z1 � z2 � z3 � . . .� z0, where the gluon with longitudinal momentum fraction z2

is emitted before the gluon with z3, etc. Diagrams in which the emitted gluons are
not ordered in this way are beyond the LLA.

The most concise way to write all the corrections to the quarkonium wave
function is through the dipole generating functional

Z (r, b, Y ;u)
∑
σσ′

∣∣∣Ψ(0)
σσ′

∣∣∣2∣∣∣∣
O(α0

s )

:=
∞∑
n=1

1

n!

∫
r1b1...rnbn

∣∣Ψ[n](r1, b1, . . . , rn, bn)
∣∣2 u(r1, b1) . . . u(rn, bn). (3.48)

The wave function Ψ[n] denotes a quarkonium state with n dipoles, as opposed to a
state Ψ(n) with n gluons. Each dipole i is of size ri and has impact parameter bi.
The dummy functions u(ri, bi) allow us to take derivatives δZ/δu in Eq. (3.48) to
generate a wave function with any required number of emitted dipoles.

Taking into account the real and virtual corrections given in Eqs. (3.43) and
(3.47), respectively, an evolution equation

∂YZ (r, b, Y ;u) =
αsNc

2π2

∫
w

K̃xwy

[
Z

(
y −w, b+

1

2
(w − x), Y ;u

)
×Z

(
w − x, b+

1

2
(w − y), Y ;u

)
− Z (y − x, b, Y ;u)

]
, (3.49)

can be obtained, with the initial condition Z(y − x, b, Y = 0;u) = u(y − x, b).
We have defined ∂Y := ∂/∂Y and taken CF → Nc/2 in the large-Nc limit. The
transverse coordinate structure of Eq. (3.49) is as follows. The original parent dipole
has size r = x− y and centre-of-mass b = (x+ y)/2. The gluon emission kernel
K̃xwy on the right side of the equation corresponds to a gluon emitted at transverse
coordinate w. The kernel is proportional to r, since a dipole of zero size cannot
emit gluons. The first term under the integral corresponds to the emitted gluon
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forming two new daughter dipoles, one with size y −w and centre of mass

1

2
(y +w) =

1

2
(y + x− x+w) = b+

1

2
(w − x), (3.50)

and the other with size w − x and centre-of-mass
1

2
(w + x) =

1

2
(w − y + y + x) = b+

1

2
(w − y). (3.51)

Since both of the new daughter dipoles have to interact with the target, they
appear as a product of generating functionals in the integrand. The second term in
Eq. (3.49) is a virtual term, which accounts for probability conservation; tt therefore
has the same coordinate structure as the original parent dipole. As a consistency
check, it is possible to derive an equation that is equivalent to the BFKL equation
by taking one derivative of Eq. (3.49) with respect to u [26–28, 73–75].

3.3.3 How to derive the BK equation

Given the dipole generating functional obtained above, it is now straightforward to
derive the BK equation. It has already been noted that the cascade of gluons emitted
from the parent dipole before the interaction with the target can be modelled as
a cascade of daughter dipoles in the large-Nc limit. The interaction of the parent
and daughter dipoles with the target is dominated by cases in which each dipole
interacts with a single and different nucleon to the other dipoles. It can be shown
that any other scenarios, such as two dipoles interacting with the same nucleon, are
Nc-suppressed to leading order in A [18]. So we only need to consider independent
dipole–nucleon interactions, instead of all the possible ways in which the dipole
cascade may interact with the target.

The scattering amplitude is therefore a convolution of two parts: the dipole
cascade developed from the parent dipole before the interaction and the multiple
rescattering with the target. For the first part, we take k derivatives of the dipole
generating functional given in Eq. (3.48):

δk

δu(r1, b1) . . . δu(rk, bk)
Z(r, b, Y ;u)

∣∣∣∣
u=0

. (3.52)

This gives the probability of finding k daughter dipoles in the wave function of the
parent dipole. For the dipole amplitude, the sum over all k values gives

〈
S(2)(r, b, Y )

〉
=
∞∑
k=1

1

k!

∫
r1b1...rnbn

δk

δu(r1, b1) . . . δu(rk, bk)
Z(r, b, Y ;u)

∣∣∣∣
u=0

×
〈
S(2)(r1, b1, Y = 0)

〉
. . .
〈
S(2)(rk, bk, Y = 0)

〉
, (3.53)
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with the initial condition given in Eq. (3.40) [18]. This summation leads to the
result 〈

S(2)(r, b, Y )
〉

= Z
(
r, b, Y ;u =

〈
S(2)(r, b, Y = 0)

〉)
, (3.54)

from which we can deduce that the dipole correlator
〈
S(2)

〉
and the generating

functional Z obey the same evolution equation. Using Eq. (3.49) to write this
common evolution equation in terms of Nxy, we get the BK equation [18, 19]

∂Y 〈Nxy〉 =
αsNc

2π2

∫
w

K̃xwy [〈Nxw〉+ 〈Nwy〉 − 〈Nxy〉 − 〈Nxw〉 〈Nwy〉] . (3.55)

The initial condition is given by Eq. (3.40) and the saturation scale Q2
s (b)→ Q2

s0(b)
is taken at Y = 0.

In writing Eq. (3.55), it has already been assumed that 〈Nxy〉 is independent of
the impact parameter b. This assumption holds for large nuclei, far from its edges.
The nucleus can also be assumed to be isotropic, in which case each factor 〈Nxy〉
simply becomes a function of the transverse length |x− y|. Each iteration of the
BK equation leads to one soft s-channel gluon being emitted by the parent dipole
corresponding to Nxy on the left of Eq. (3.55). The only difference between the
BFKL equation and BK equation is the inclusion of the nonlinear term 〈Nxw〉 〈Nwy〉
within the integrand on the right side of Eq. (3.55). At large rapidities, this nonlinear
term becomes important, leading to saturation and the slowing down of energy
growth. It is this nonlinearity of the BK equation that allows it to cure the problems
with BFKL evolution discussed in Section 3.2.3.

In Paper [III], we study the BK equation at next-to-leading order. This may be
derived in the same way as the LO equation but keeping terms of order α2

s at every
stage of the calculation. The resulting evolution equation is of the form [76]

∂Y
〈
S(2)
x,y

〉
=
αsNc

2π2

∫
z

KBC
1 〈D1〉+

α2
sN

2
c

16π4

∫
z,z′

(K2,1 〈D2,1〉+K2,2 〈D2,2〉+Kf 〈Df〉) .

(3.56)

The full expressions for the kernels are provided in Paper [III]. In this thesis, we
focus on the correlators

〈D1〉 =
〈
S(2)
x,zS

(2)
z,y − S(2)

x,y

〉
, (3.57)

〈D2,1〉 =
〈
S(2)
x,zS

(2)
z,z′S

(2)
z′,y

〉
−
〈

1

N2
c

S
(6)
x,z,z′,y,z,z′

〉
− (z′ → z), (3.58)

〈D2,2〉 =
〈
S(2)
x,zS

(2)
z,z′S

(2)
z′,y

〉
, (3.59)

〈Df〉 =

〈
1

N2
c

tr
(
taUxt

bU †y
) [

tr
(
taUzt

bU †z′
)
− (z′ → z)

]〉
. (3.60)
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3. Evolution Equations

The calculation of these correlators in the Gaussian approximation is discussed in
Chapter 7.

Chapter summary

In this chapter, we have discussed three types of evolution equations. The
DGLAP equations govern the evolution of the parton distribution functions as
functions of virtuality Q2. For evolution in rapidity Y , we first considered the BFKL
equation. This linear equation was shown to have some problems, particularly at
large rapidities. Finally, the BK equation was discussed. Its nonlinear terms are
able to cure the problems with the BFKL equation by taking into account multiple
gluon self-interactions.
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4

JIMWLK in the Fokker–Planck
Formalism

In the previous chapter, we discussed three types of evolution equations: DGLAP,
BFKL and BK. These are all labelled on the phase diagram provided in Fig. 2.5. In
this chapter, we discuss the last of the evolution equations labelled there, namely the
JIMWLK equation. This is a nonlinear renormalisation group equation that applies
in the saturation regime at low to moderate Q2 and large rapidity Y . JIMWLK
evolution describes the change in the target field as a function of rapidity by
incorporating the soft gluons emitted at small x into the target wave function, as
opposed to incorporating them into the projectile wave function. In this chapter, we
introduce JIMWLK evolution in the form of a Fokker-Planck equation. In Chapter
5, an equivalent formulation is given in terms of a Langevin equation. While we
only discuss the leading-order equations here, much work has been done towards
understanding the next-to-leading order JIMWLK equation [76–78]. The JIMWLK
equation is not solvable analytically, but it has been implemented on the lattice, for
example, in [79]. It also has applications in other areas, such as in the calculation
of nonglobal jet observables [30].

We begin in Section 4.1 with a discussion on the derivation of the JIMWLK
equation. The Hamiltonian that appears in this equation is obtained in Section
4.2. The Lie derivatives contained in the Hamiltonian are studied in Section 4.3. In
Section 4.4, we use the diagrammatic notation introduced in Chapter 2 to further
study the operation of the JIMWLK Hamiltonian on Wilson line operators. Finally,
in Section 4.5, we relate the JIMWLK equation to the BK equation of the previous
chapter.
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4. JIMWLK in the Fokker–Planck Formalism

4.1 How to derive the JIMWLK equation

In order to derive the JIMWLK equation, we consider quantum corrections to the
MV model that was mentioned in Section 2.5. For more detailed derivations, see
[29, 30, 80], for example. As with the MV model, it is necessary to consider the
small-x and large-x gluons in the target separately. Since larger-x gluons have a
much longer lifetime, they appear as “frozen” sources to the shorter-lived smaller-x
gluons, and constitute a classical background field. As rapidity increases, this
field can act as a source of emission, creating more small-x gluons. At the next
rapidity step, the emitted gluons become large-x gluons and get incorporated into
the classical field, thus continuing the process of emitting more small-x gluons and
so on.

In the context of the MV model, an expression was introduced for the expectation
value of any functional F [U ] of Wilson lines, as given in Eq. (2.25). In that case,
the correlators did not have a rapidity dependence. Since we are now interested in
evolution in rapidity, these correlators need to be considered as rapidity-dependent
objects. In place of Eq. (2.25), we now have

〈F [U ]〉Y =

∫
DρF [U ]WY [ρ]∫
DρWY [ρ]

, (4.1)

where the correlator 〈F [U ]〉Y and the weight functional WY [ρ] have gained rapidity
labels to denote their rapidity dependence. The weight functional WY [ρ] is not
known directly, but its variation can be computed by considering the freezing of
partons within an infinitesimal rapidity interval [81]. Eq. (4.1) can be written more
compactly as

〈F [U ]〉Y =

∫
D̄[U ]F [U ]WY [U ], (4.2)

where the weight functional is normalised as
∫

D[U ]WY [U ] = 1. The two group
theoretical constraints on the Wilson lines have been absorbed into the definition of
the functional De Haar measure such that D̄[U ] := D[U ]δ(UU † − 1)δ(detU − 1).

The goal is now to find an expression for ∂YWY [U ]. Differentiating both sides of
Eq. (4.2) gives

∂Y 〈F [U ]〉Y =

∫
D̃[U ]F [U ]∂YWY [U ]. (4.3)

Since ∂Y 〈F [U ]〉Y is the energy evolution of a correlator, it can be written in terms
of the governing Hamiltonian of the theory, labelled HJIMWLK[U ]. Then

∂Y 〈F [U ]〉Y = 〈−HJIMWLK[U ]F [U ]〉Y . (4.4)
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4.2. The JIMWLK Hamiltonian

Replacing the expectation value on the right side by the definition given in Eq. (4.2)
gives

∂Y 〈F [U ]〉Y =

∫
D̄[U ](−HJIMWLK[U ]F [U ])WY [U ]. (4.5)

Assuming HJIMWLK is Hermitian, this can be partially integrated to get

〈F [U ]〉Y =

∫
D̄[U ]F [U ](−HJIMWLK[U ]WY [U ]). (4.6)

Finally, equating this equation with Eq. (4.3) gives∫
D̄[U ]F [U ]∂YWY [U ] =

∫
D̄[U ]F [U ](−HJIMWLK[U ]WY [U ]), (4.7)

from which the JIMWLK equation

∂YWY [U ] = −HJIMWLK[U ]WY [U ] (4.8)

follows. The Hermiticity of the Hamiltonian is verified in the next section, after an
explicit expression is found.

4.2 The JIMWLK Hamiltonian

In order to find the JIMWLK Hamiltonian HJIMWLK that appears in the evolution
equation for the weight functional in Eq. (4.8), we go back to Eq. (4.4) where it is
first introduced. As a simple test operator, we may choose F [U ]→ (Ux)ij

(
U †y
)
kl
,

with the definitions of the Wilson lines in the fundamental and antifundamental
representations given in Eqs. (2.19) and (2.20), respectively. Now we find an
evolution equation for this test function. As with BK evolution in Section 3.3,
one step of JIMWLK evolution in the LLA in ln(1/x) should generate all possible
diagrams with a single gluon added.

There are eight self-energy contributions, four from each of the diagrams

and . (4.9)
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4. JIMWLK in the Fokker–Planck Formalism

Recall that the vertical grey lines denote a sum over all possible gluon insertions so
that, for example,

:= + + + . (4.10)

In addition to the self-energy diagrams, there are four real contributions which come
from the diagrams in which the gluon interacts with the target field:

. (4.11)

All twelve diagrams can be calculated using standard techniques – see [29] for a
detailed calculation using light cone perturbation theory. The six diagrams in which
the gluon attaches to both the quark and the antiquark sum to(
χ̄qq̄xy
)
ijkl

:= −αs

π2

∫
dY

∫
w

Kxwy

[(
1− UxU

†
w

) (
1− UwU

†
y

)]ab
(taUx)ij ⊗

(
U †yt

b
)
kl
,

(4.12)

where the convolution notation Ux ⊗ U †y ensures that matrix elements (as opposed
to whole matrices) are multiplied. The gluon emission kernel Kxwy has been defined
in Eq. (3.45). The three diagrams in which the gluon attaches only to the quark
line sum to(

χ̄qqxy
)
ijkl

:=
αs

π2

∫
dY

∫
w

Kxwx

[
1− UxU

†
w

]ab (
tbtaUx

)
ij
⊗
(
U †y
)
kl
. (4.13)

The three diagrams in which the gluon attaches only to the antiquark line sum to(
χ̄q̄q̄xy
)
ijkl

:=
αs

π2

∫
dY

∫
w

Kywy

[
1− UwU

†
y

]ab
(Ux)ij ⊗

(
U †yt

bta
)
kl
. (4.14)

After some manipulations, the sum of all twelve diagrams (namely the sum of
Eqs. (4.12), (4.13) and (4.14)) can be written compactly as an evolution equation
for
〈
Ux ⊗ U †y

〉
Y
:

∂Y
〈
Ux ⊗ U †y

〉
Y

=
1

2

〈
χabuvL

a
uL

b
v

(
Ux ⊗ U †y

)〉
Y

+
〈
σavL

a
v

(
Ux ⊗ U †y

)〉
Y
, (4.15)
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4.3. Lie derivatives

where

χabuv :=
1

4π3

∫
z

Kuzv

[(
1− U †uUz

) (
1− U †zUv

)]ab (4.16)

and

σav =
i

8π3

∫
z

Kvzvtr
(
T aŨ †vŨz

)
. (4.17)

The operator Lau that appears in Eq. (4.15) is a “left” Lie derivative, which is
discussed further in the next section.

The procedure to find an evolution equation for the test operator Ux ⊗ U †y can
be repeated for any Wilson line operator. By comparing Eqs. (4.4) and (4.15), an
expression can be read off for the JIMWLK Hamiltonian from Eq. (4.15). After
partial integration, this gives

HJIMWLK :=
1

2
LauL

b
vχ

ab
uv − Lavσav. (4.18)

With this, Eq. (4.8) is now complete and the JIMWLK equation

∂YWY [U ] = −1

2
LauL

b
vχ

ab
uvWY [U ] + Lavσ

a
vWY [U ] (4.19)

follows. Since the weight functional WY represents the probability distribution
within the target, the JIMWLK equation is a partial differential equation for this
object. We can see from Eq. (4.19) that it is a first-order equation in “time”, which in
this context is rapidity. The two Lie derivatives introduce two transverse coordinates
u and v, which makes it a second-order equation in space. Eq. (2.26) may be used
as the initial condition for Eq. (4.19).

4.3 Lie derivatives

The Lie derivatives that appear in the JIMWLK equation are used throughout this
thesis. The “left” and “right” Lie derivatives, respectively, are defined as

Lau := −ig[Uut
a]αβ

δ

δ[Uu]αβ
and Ra

u := −ig[taUu]αβ
δ

δ[Uu]αβ
, (4.20)

where α and β are matrix indices and δ/δUu acts as an ordinary functional derivative,
i.e. as

δ

δ[Uu]αβ
[Ux]γρ = δαγδβρδux. (4.21)
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4. JIMWLK in the Fokker–Planck Formalism

The shorthand δxy := δ(2)(x− y) is used henceforth for the transverse coordinate
plane. The Lie derivatives operate on Wilson lines according to

LauUx = −igδuxUxt
a = −ig

a
x = u

, (4.22)

Ra
uUx = −igδuxtaUx = −ig

a
x = u

, (4.23)

LauU
†
x = igδuxt

aU †x = ig

a
x = u

, (4.24)

Ra
uU
†
x = igδuxU

†
xt
a = −ig

a
x = u

. (4.25)

In this way, they colour-rotate the Wilson lines on the left or right of the target
field. “Left” and “right” are swapped in these diagrams, since the light cone time
axis runs from right to left, as shown in Fig. 2.6, for example. Notice that

(Ra
uUx)† = U †xR

a†
u = igδuxU

†
xt
a = Ra

uU
†
x, (4.26)

where Ra†
u acts to the left. In the same way, UxR

a†
u = Ra

uUx and similar expressions
hold for the left Lie derivative.

The Lie derivatives obey the commutation relations

[Lau, L
b
v] = gδuvf

abcLcv, [Ra
u, R

b
v] = −gδuvfabcRc

v, [Lau, R
b
v] = 0. (4.27)

They are related to each other through the adjoint Wilson line according to

Ũ †bau Ra
u = Lbu, (4.28)
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4.4. Operation of the JIMWLK Hamiltonian

which can be drawn acting on a Wilson line as

a

ba =

b

. (4.29)

This relation follows from multiplying Eq. (4.24) by Ũ †bau , and then using the group
identity

Ũ †bau ta = Uut
bU †u. (4.30)

4.4 Operation of the JIMWLK Hamiltonian

Now that we have properly defined the Lie derivatives that appear in Eq. (4.15), we
return to our discussion of the JIMWLK Hamiltonian as given in Eq. (4.18). By
noticing the relation

σbv = − 1

2g
Lauχ

ab
uv, (4.31)

Eq. (4.18) can be recast as

HJIMWLK =
1

2
Lauχ

ab
uvL

b
v. (4.32)

This is now in the form of a Fokker–Planck equation [50], as proposed at the
beginning of this chapter. The Hamiltonian written in the form of Eq. (4.32) is
helpful in showing its Hermiticity, which was assumed in writing Eq. (5.1). Note
that the Fokker–Planck form applies only to the leading-order JIMWLK equation, as
is the subject of this chapter. At higher orders, the presence of more Lie derivatives
does not allow for the Hamiltonian to take the simple form of Eq. (4.37).

In order to see an explicit diagrammatic interpretation of the JIMWLK Hamil-
tonian, we carry out the following manipulations. The integrand factor from the
definition of χabuv given in Eq. (4.16) can be combined with the Lie derivatives in
Eq. (4.32) to give

Lau
[(

1− UuU
†
z

) (
1− UzU

†
v

)]ab
Lbv

= Lauδ
abLbv − Lau

(
UuU

†
z

)ab
Lbv − Lau

(
UzU

†
v

)ab
Lbv + Lau

(
UuU

†
zUzU

†
v

)ab
Lbv. (4.33)
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4. JIMWLK in the Fokker–Planck Formalism

The unitarity condition for Wilson lines, combined with Eq. (4.28), allows us to
simplify the last term to

Lau
(
UuU

†
zUzU

†
v

)ab
Lbv = Ra

uδ
abRb

v. (4.34)

Eq. (4.28) can also be used to simplify the second and third terms in Eq. (4.33); the
sum of these then becomes

Lau
(
UuU

†
z

)ab
Lbv + Lau

(
UzU

†
v

)ab
Lbv = Ra

uŨ
ab
z L

b
v + LauŨ

†ab
z Rb

v (4.35)

and Eq. (4.33) is simply

Lau
[(

1− UuU
†
z

) (
1− UzU

†
v

)]ab
Lbv = LauL

a
v + Ũab

z

(
Ra

uL
b
v + LauR

b
v

)
+Ra

uR
a
v.
(4.36)

Using this result in Eq. (4.32) gives

HJIMWLK = − 1

8π3

∫
z

Kuzv

[
LauL

a
v + Ũab

z (Ra
uL

b
v + LauR

b
v) +Ra

uR
a
v

]
. (4.37)

The Hamiltonian in this form can be used to find a diagrammatic interpretation
for its operation on any functional of Wilson lines. As a test operator, we once
again consider Ux ⊗ U †y. Then each of the terms in Eq. (4.37) acts as

LauL
a
v ∼ , (4.38)

Ra
uR

a
v ∼ , (4.39)

Ũab
z

(
Ra

uL
b
v + LauR

b
v

)
∼ + . (4.40)
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4.5. The Balitsky hierarchy and BK evolution from JIMWLK

x+ = 0∞ −∞

γ∗
Ux

U†y

target initial statefinal state

background field

Figure 4.1. Figure from Chapter 2 showing the interaction of a dipole with the target.

From this, we see that each time the JIMWLK Hamiltonian acts on an operator,
it adds one gluon to the operator in all possible ways. By construction, this is
indeed what it should do: each successive rapidity step adds an s-channel gluon to
the correlator to account for its small-x evolution. The same physics holds for the
evolution of any other Wilson line correlator.

Another feature of JIMWLK evolution is the longitudinal growth of the projectile
with increasing rapidity. In order to illustrate this, let us consider the dipole
interaction with the target as shown in Fig. 2.6. An increase in energy corresponds
to a lengthening of the distance along the x+-axis between the photon–dipole vertex
(where the virtual photon probe splits into the quark–antiquark pair) and the target
background field (effectively localised at x+ = 0). This means that there is more
phase space for multiple gluon emissions at higher rapidities, so that the probability
for gluon emission increases.

4.5 The Balitsky hierarchy and BK evolution from
JIMWLK

To conclude our discussion of JIMWLK evolution formulated as a Fokker–Planck
equation, we now relate it back to the BK equation studied in Section 3.3. The
JIMWLK equation is equivalent to an infinite set of coupled differential equations,
called the Balitsky hierarchy. Each equation in the hierarchy governs the evolution
of an n-point correlator. The set of equations is open in the sense that the n-order
equation needs input from n + 1-order correlators. In order to demonstrate the
relation between the JIMWLK equation and the Balitsky hierarchy, we derive the
first equation in the hierarchy from the JIMWLK equation. Since all correlators
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4. JIMWLK in the Fokker–Planck Formalism

henceforth are of the form 〈〉Y , the rapidity label is omitted for clarity.

The first equation in the Balitsky hierarchy is the evolution equation for the
dipole correlator

〈
S

(2)
xy

〉
. In order to derive this in the JIMWLK formalism, Eq. (4.4)

is applied (with the JIMWLK Hamiltonian in the form given in Eq. (4.37)) to the
dipole correlator. This results in

∂Y

〈
1

Nc

tr
(
UxU

†
y

)〉
=

〈
−HJIMWLK

1

Nc

tr
(
UxU

†
y

)〉
=

1

8π3

∫
z

Kuzv

〈[
LauL

a
v + Ũab

z

(
Ra

uL
b
v + LauR

b
v

)
+Ra

uR
a
v

] 1

Nc

tr
(
UxU

†
y

)〉
. (4.41)

Each of the four terms in the integrand on the right side can be simplified individually.
After evaluating the two left Lie derivatives in the first term, it becomes

KuzvL
a
uL

a
v

1

Nc

tr
(
UxU

†
y

)
= −g2Kuzv(−δux + δuy)(−δvx + δvy)

1

Nc

tr
(
Uxt

ataU †y
)

(4.42)

= −g2CFK̃xzy
1

Nc

tr
(
UxU

†
y

)
, (4.43)

with the conformal kernel as defined in Eq. (3.44). Similarly, the term in Eq. (4.41)
with two right Lie derivatives becomes the same:

KuzvR
a
uR

a
v

1

Nc

tr
(
UxU

†
y

)
= −g2CFK̃xzy

1

Nc

tr
(
UxU

†
y

)
. (4.44)

The first mixed term in Eq. (4.41) simplifies to

KuzvŨ
ab
z R

a
uL

a
v

1

Nc

tr
(
UxU

†
y

)
=− g2KuzvŨ

ab
z (−δux + δuy)(−δvx + δvy)

1

Nc

tr
(
taUxt

bU †y
)

(4.45)

=− g2K̃xzyŨ
ab
z

1

Nc

tr
(
taUxt

bU †y
)

(4.46)

and the second mixed term is the same:

KuzvŨ
ab
z L

a
uR

a
v

1

Nc

tr
(
UxU

†
y

)
= −g2K̃xzyŨ

ab
z

1

Nc

tr
(
taUxt

bU †y
)
. (4.47)

Putting the four simplified terms together, Eq. (4.41) becomes

∂Y

〈
1

Nc

tr
(
UxU

†
y

)〉
=

g2

4π3

∫
z

K̃xzy

〈
−CF

Nc

tr
(
UxU

†
y

)
+

1

Nc

Ũab
z tr

(
taUxt

bU †y
)〉

.

(4.48)
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This is the evolution equation for the dipole correlator in the Balitsky hierarchy.
By considering higher-point correlators in the JIMWLK equation, the higher-order
equations in the hierarchy may be derived in a similar way.

The evolution equation for the dipole correlator as given in Eq. (4.48) can also
be used to show the relation between the leading-order JIMWLK and BK equations.
One way to close Eq. (4.48) is to use the large-Nc approximation to write the 3-point
correlator that appears on the right side of the equation in terms of the dipole. First,
the Fierz identity

2Ũa
z tr
(
taUxt

bU †y
)

= tr
(
UxU

†
z

)
tr
(
UzU

†
y

)
− 1

Nc

tr
(
UxU

†
y

)
(4.49)

is used to write

∂Y

〈
1

Nc

tr
(
UxU

†
y

)〉
=
αs

π2

∫
z

K̃xyz

〈
1

2Nc

tr
(
UxU

†
z

)
tr
(
UzU

†
y

)
− 1

2N2
c

tr
(
UxU

†
y

)
− CF

1

Nc

tr
(
UxU

†
y

)〉
(4.50)

=
Nc

2

αs

π2

∫
z

K̃xyz

〈
1

N2
c

tr
(
UxU

†
z

)
tr
(
UzU

†
y

)
− 1

Nc

tr
(
UxU

†
y

)〉
. (4.51)

In the large-Nc limit, the expectation value of a product of two traces factorises into
the product of expectation values:〈

1

N2
c

tr
(
UxU

†
z

)
tr
(
UzU

†
y

)〉 Nc→∞−−−−→
〈

1

Nc

tr
(
UxU

†
z

)〉〈 1

Nc

tr
(
UzU

†
y

)〉
. (4.52)

Cross-talk between dipoles (traces) has been shown to be Nc-suppressed [50, 82].
With this approximation, Eq. (4.51) becomes the BK equation

∂Y

〈
1

Nc

tr
(
UxU

†
y

)〉
=
Nc

2

αs

π2

∫
z

K̃xyz

(〈
1

Nc

tr
(
UxU

†
z

)〉〈 1

Nc

tr
(
UzU

†
y

)〉
−
〈

1

Nc

tr
(
UxU

†
y

)〉)
(4.53)

(cf. Eq. (3.55)). In Section 3.3.3, we saw that the only difference between the BK
equation and the BFKL equation is the nonlinear term present in the former. Since
we have shown how the BK equation arises from the JIMWLK equation, we can
make the statement that linearising the JIMWLK equation results in the BFKL
equation. This is important in Chapter 6, where the dilute limit of the JIMWLK
equation from the Langevin formalism is studied.
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Chapter summary

This concludes the chapter on JIMWLK evolution and the JIMWLK equation
written as a Fokker-Planck equation. In this chapter, we have outlined the derivation
of the evolution equation and discussed some important properties of the JIMWLK
Hamiltonian. This required the introduction of Lie derivatives, which we use to
write gluon emissions in a Wilson line operator in a convenient way. We have also
shown the relation between JIMWLK evolution and the Balitsky hierarchy, which
are two equivalent formulations of the same kind of evolution. We have seen that
the BK equation is the JIMWLK equation for the dipole correlator, taken in the
large-Nc limit.
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JIMWLK in the Langevin Formalism

We have thus far discussed JIMWLK evolution in the form of a Fokker–Planck
equation. In Chapter 4, the physical picture was of a target field configuration
evolving in rapidity by inclusion of a soft gluon emitted from the projectile at each
evolution step. Generically, any stochastic process governed by a Fokker–Planck
equation can be described by an equivalent Langevin equation. For the JIMWLK
equation, the latter formalism is particularly of interest for two reasons. Firstly, it
allows for a numerical implementation of JIMWLK evolution that is computationally
cost effective. Secondly, it gives an alternative physical picture of evolution as a
random walk in the functional space of Wilson lines. This stochastic interpretation
proves particularly useful in the study of multi-particle correlations for particles
that are separated from each other by rapidity intervals larger than ∆Y & 1/αs.

In this chapter, we give a theoretical background of the Langevin JIMWLK
equation that was studied in Paper [II]. In Section 5.1, the evolution equation for
Wilson lines is derived. In Section 5.2, we consider inclusive particle production, first
at equal rapidity and then at unequal rapidity. This leads to the bilocal Langevin
equations, which we discuss in Section 5.3. The equations derived in this chapter
are necessary for Chapter 6, where they are expanded in the dilute limit.

5.1 The Langevin JIMWLK equation

The Langevin picture of JIMWLK evolution was first described formally in [81] and
implemented numerically in [79, 83–85]. In [81], standard methods were used to
derive a Langevin equation from a Fokker–Planck equation by considering changes
in the system under consideration during an infinitesimal time interval. In the case
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of JIMWLK evolution, the equivalence between the two descriptions follows from
an alternative formulation of the expectation value given in Eq. (4.2),

〈F [U ]〉 =

∫
D̄[U ]F [U ]WY [U ]. (5.1)

Now the system is considered to be an ensemble of Wilson lines randomly distributed
at rapidity Y according to the weight functional WY [U ]. The expectation value of
some operator is a sum, taken separately at each Y , over all N configurations in
this ensemble:

〈F [U ]〉 ≈ 1

N

∑
F [U ]. (5.2)

Rapidity acts as “time” and evolution is considered over some interval ∆Y & 1/αs.
This interval is discretised into N pieces of size ε, i.e. ∆Y = Yfin − Yin = εN
with Z 3 N → ∞, ε → 0. Quantities at each evolution step are labelled by index
0 ≤ n ≤ N .

An appropriate degree of freedom to consider in the Langevin picture is the
classical field αY (x+,x) := A−(x+,x, 0). Recall that this field appears directly in
the definition of the Wilson line given in Eq. (2.20),

U †x := P exp

{
ig

∫ ∞
−∞

dx+A−(x+,x, 0)

}
. (5.3)

As already mentioned in Chapter 4, the weight functional WY [α] that appears in
Eq. (5.1) is not known, but its variation within an infinitesimal rapidity interval
(Y, Y + ε) can be calculated. The partons that freeze out in this rapidity interval
have longitudinal momenta e−εΛ < k− < Λ [81]. Random fluctuations αY (x)ε over
the field αY (x+,x) are induced by the freezing out of these degrees of freedom. The
fluctuations are calculated as

αaY (x)ε :=

∫
dx+δαY (x+,x), (5.4)

where [7]

δαY (x+,x) ∝ θ(x+)
1

x+

[
exp

{
−ie−εΛx+

}
− exp

{
−iΛx+

}]
. (5.5)

The x+ dependence in the field can be shown to be integrated out in Eq. (5.4),
leaving a factor ε. Then the field at some intermediate rapidity Yn and transverse
position x can be written as αx,n = αax,nt

a, that is, with no x+-dependence. The
components αax,n are now treated as a random variable with a Gaussian distribution
and obeying [81]〈

αax,n+1

〉
= σax,n, and

〈
αax,n+1α

b
y,n+1

〉
=

1

ε
χabxy,n. (5.6)
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The definitions of χabxy,n and σax,n follow from Eqs. (4.16) and (4.17), respectively,
with the Wilson lines from there taken at step n.

An equivalent formulation of the constraints in Eq. (5.6) is the Langevin equation
[81]

αax,n+1 = σax,n +

∫
z

εab,ixz,nν
b,i
z,n+1, (5.7)

where εabxz,n is the square root of χabxy,n = εacxz,nε
cb
zy,n, so that

εab,ixz,n :=
1

2π3/2
Kixz

[
1− Ũ †x,nŨz,n

]ab
. (5.8)

(The Weizsäcker-Williams kernel Kixy was defined in Eq. (3.46)). The νb,iz,n+1 appear-
ing in Eq. (5.7) is a real-numbered auxiliary Gaussian white noise, satisfying

〈f [ν]〉 =

∫
D[ν]f [ν]e−

1
2
νν , (5.9)

for any functional f [ν]. In particular,

〈
νa,ix,n

〉
= 0 and

〈
νa,ix,mν

b,j
y,n

〉
=

1

ε
δmnδ

abδijδxy, (5.10)

where the factor 1/ε comes from the continuous version of the localisation of rapidity
δ(Ym − Yn) → δmn/ε. The localisation of the noise in this way is useful in that it
greatly reduces the computational cost involved in numerical simulations.

In terms of Wilson lines, the continuous version of Eq. (5.7) is

∂YUx = Uxit
a

(∫
y

εab,ixy ν
b,i
y + gσax

)
. (5.11)

This expression allows for a direct interpretation of evolution as an infinitesimal
step in SU(Nc) space. The factor enclosed in round brackets acts as the “angle”
parametrising a local gauge transformation in transverse space and the σax term
represents a deterministic “drift” [30]. Eq. (5.11) can be recast as a discretised
evolution equation for the Wilson lines:

Ux,n+1 = Ux,n exp

{
−igεta

(∫
y

εab,ixy ν
b,i
y + gσax

)}
. (5.12)

It is this form of the evolution equation that we explore further.
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5.1.1 Expansion in rapidity step size

Since the rapidity step size ε is infinitesimal, it can be used to expand the exponential
in Eq. (5.12). An expansion in ε is useful in order to better show the physical meaning
of the evolution equation. It also allows us to use Eq. (5.10) to simplify linear and
quadratic terms in the noise. Terms of order ε and higher can be neglected because
these vanish in the limit ε→ 0. The power counting in ε needs to be done carefully,
bearing in mind that Eq. (5.10) effectively makes each ν of order ε−1/2.

The first term in the expansion of Eq. (5.12) is simply Ux,n × 1. The second
term in the series is

Ux,n ×
{
−igεta

(∫
y

εab,ixy ν
b,i
y + gσax

)}
= − igε

2π3/2

∫
y

Kixyνa,iy Ux,n

(
ta − Ũ †aby,nt

b
)

− εg2

8π3

∫
z

KxzxUx,nt
atb
(
Ũ †bcx,nŨ

ca
z,n − Ũ †acx,nŨ

cb
z,n

)
. (5.13)

To simplify this expression, the definitions of χ and σ have been used, as well as
some basic SU(Nc) identities. Similarly, the third term in the ε expansion is

Ux,n ×
{
−g2ε2ta

(∫
y

εab,ixy ν
b,i
y + gσax

)
tc
(∫

z

εcd,jxz ν
d,j
z + gσcx

)}
= −Ux,n

εg2

4π3

∫
y

Kxyx

(
2tata − tatbŨ †bcx,nŨ

ca
y,n − tatbŨ †acx,nŨ

cb
y,n

)
+O

(
νε2
)
. (5.14)

The second and third terms of Eq. (5.14) cancel and double, respectively, when
combined with the last two terms of Eq. (5.13). Altogether, the expansion of
Eq. (5.12) becomes

Ux,n+1

= Ux,n +

∫
z

(
Ux,nt

a − Ũ †abz,nt
bUx,n

)(
− iεg√

4π3
Kixzνa,iz,n −

εg2

4π3
Kxzxt

a

)
+O

(
νε2
)
.

(5.15)

There is a subtlety that must be mentioned in using Eq. (5.10) to obtain
Eq. (5.15). An expectation value expression is used to simplify an operator expression
that does not contain expectation values. However, this can be justified as follows.
Ultimately, Wilson lines need to be calculated within cross sections, in which they
always appear in pairs. The DIS cross section discussed in Section 2.7, for example,
contains the dipole correlator

〈
tr
(
UxU

†
y

)
/Nc

〉
. In that case, the expansion of
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Eq. (5.12) leads to terms that go like〈
1

Nc

tr
(
U †x,n+1Uy,n+1

)〉
∼

〈( ∞∑
k=0

1

k!
[O (νε) +O (ε)]k

)
×

( ∞∑
l=0

1

l!
[O (νε) +O (ε)]l

)〉
(5.16)

∼
〈
O (1) +O (νε) +O (ε) +O

(
ν2ε2

)
+O

(
νε2
)

+ higher orders
〉
. (5.17)

If we wish to work to order ε accuracy, we therefore only need to keep terms up to
second order in ν in the expansion of each Wilson line. Then the expectation values
from Eq. (5.10) can be used safely for each term in Eq. (5.17). Since this procedure
applies at the end of any cross section calculation, we may use Eq. (5.10) to simplify
factors of ν from the start, even in operator expressions that do not contain any
expectation values.

In order to reconcile Eq. (5.15) with the notion of evolution discussed in Chapter
4, it is expressed in terms of Wilson line diagrams. If the Wilson line of a quark
projectile at the initial condition is represented as

Ux,0 = , (5.18)

then one step in evolution according to Eq. (5.15) gives

Ux,1 =

x

− iεg√
4π3

∫
z

Kixzν
a,i
z,0


a

x

z
− ba

b
x

z



− εg2

4π3

∫
z

Kxzx


a a

x

z
−

a

ba

b
x

z

+O
(
νε2
)
.

(5.19)

This takes into account all possible diagrams with a single gluon added to the initial
condition Ux,0. The first term is simply the original Wilson line. The second and
third terms contain the gluon emitted either before or after the quark interaction
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with the target. The gluon remains unabsorbed by the quark, with an open colour
index that contracts with the colour index of the noise factor. The fourth and fifth
terms in Eq. (5.19) contain the gluon emitted either before or after the target line,
but now the gluon is reabsorbed by the quark after the interaction with the target
field. Both kernels that appear in Eq. (5.19) correspond to the vertical separation
in the diagrams between transverse coordinates x (the quark) and z (the emitted
gluon). We can see from these diagrams that evolution in the Langevin picture
does indeed agree with that of the Fokker–Planck formalism in that a single soft
s-channel gluon gets added to the diagrams at each step in evolution.

As a cross check, it is possible to derive the BK equation from Eq. (5.15). For
each Wilson line in the dipole tr

(
U †x,n+1Uy,n+1

)
/Nc, the expansion is used up to

order νε to write an expression in terms of Wilson lines and noise factors at step n.
Using Eq. (5.10) and the Fierz identity gives

1

εNc

tr
(
U †x,n+1Uy,n+1 − U †x,nUy,n

)
=
αs
π2

Nc

2

∫
z

K̃xyz

×
[

1

N2
c

tr
(
Uy,nU

†
z,n

)
tr
(
Uz,nU

†
x,n

)
− 1

Nc

tr
(
U †x,nUy,n

)]
+O

(
νε2
)
. (5.20)

After identifying the left side with ∂Y tr
(
U †xUy

)
/Nc and taking the expectation

value on both sides, this expression becomes the BK equation given in Eq. (3.55),
written in terms of S(2)

xy instead of Nxy.

5.1.2 Alternative form

The expanded form of the Langevin equation for the Wilson lines has another
important use. It allows us to write Eq. (5.12) in a more useful form, as was
first shown in [86]. An alternative form of Eq. (5.12) that would lead to the same
expanded expression up to order νε2 is

Ux,n+1 = eiεgα
L
x,nUx,ne

−iεgαR
x,n , (5.21)

where “right” and “left” traceless Hermitian colour fields1

αR
x,n :=

1√
4π3

∫
z

Kixzνa,iz,nt
a =:

1√
4π3

∫
z

Kixzνiz,n, (5.22)

αL
x,n :=

1√
4π3

∫
z

Kixzνa,iz,nŨ
†ab
z,nt

b =:
1√
4π3

∫
z

KixzUz,nν
i
z,nU

†
z,n, (5.23)

1Note that the choice of left and right in the definitions of the colour fields is opposite to that
of Paper [II]. They have been redefined here to remain consistent with the labelling of the Lie
derivatives in Chapter 4.
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have been introduced, respectively. The shorthand νiz,n := νa,iz,nt
a is used and the

group identity Ũ †abz,nt
b = Uz,nt

aU †z,n is used in the definition of αL
x,n.

In keeping with the stochastic interpretation of evolution in the context of the
Langevin picture, the two matrix exponentials in Eq. (5.21) act as infinitesimal
colour rotations to the left and to the right of the target field. This causes the random
walk of the evolving Wilson line in colour space. To see this diagrammatically, the
colour fields are applied at the initial condition to the Wilson line initial condition
given in Eq. (5.18). This gives

Ux,0α
R
x,0 =

1√
4π3

∫
z

Kixzν
a,i
z,0

a

,

αL
x,0Ux,0 =

1√
4π3

∫
z

Kixzν
a,i
z,0 ba

b

.

The definitions of the right and left fields can be interchanged by defining a
rotated noise

ν̃ix,n := ν̃a,ix,nt
a := νa,ix,nŨ

†ab
x,nt

b, (5.24)

as discussed in Paper [II]. It can be shown that ν̃ satisfies the same constraints as
Eq. (5.10), namely

〈
ν̃a,ix,n

〉
= 0 and

〈
ν̃a,ix,mν̃

b,j
y,n

〉
=

1

ε
δmnδ

abδijδxy. (5.25)

This means that the definitions of αR and αL in terms of ν̃ may just as well be used
in Eq. (5.21), without changing the meaning of the evolution equation. The choice
of ν or ν̃ is a matter of convention – we consistently use the former. Indeed, the
expansion of Eq. (5.21) in ε can be shown to give the same expression as Eq. (5.15)
up to order νε2. One advantage of Eq. (5.21) over Eq. (5.12) is that the new form
explicitly shows the left–right symmetry inherent in JIMWLK evolution. A second
advantage is that the numerically costly drift term in Eq. (5.12) has been removed.
This makes Eq. (5.21) a computationally preferable form of the Langevin JIMWLK
equation [86].
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5.2 Inclusive particle production

As mentioned at the beginning of this chapter, an important application of the
Langevin picture of JIMWLK evolution is in the study of particle production at
unequal rapidities. We now show why the Langevin JIMWLK equation is so well
suited for this purpose. As a simple example, we consider inclusive quark–gluon
production in a proton–nucleus collision, as was done in Paper [II]. The formulae
presented here extend naturally to other processes by modification of the relevant
operators and colour factors.

5.2.1 Inclusive particle production at equal rapidities

As a warm-up to the main topic of unequal rapidity correlators, we first consider
inclusive production of a quark and a gluon at parametrically similar rapidities
∆Y . 1/αs in an ultrarelativistic collision. The cross section contains a Wilson line
Ux for the quark in the direct amplitude (DA). The complex conjugate amplitude
(CCA) has a corresponding Hermitian conjugate Wilson line U †x, which we write
with bars as Ū †x̄ to make explicit that this is contained in the CCA. It is important
that quantities in the DA and the CCA remain distinct from each other throughout
the calculation.

Mathematically, the produced quark is represented in the cross section by a
fundamental dipole

S
(2)
xx̄ =

1

Nc

tr
(
UxŪ

†
x̄

)
=

1

Nc

tr


x x̄

 , (5.26)

where the dashed red line denotes the separation between the DA on the left and
the CCA on the right. The differential cross section at the parton level for inclusive
quark production is simply the Fourier-transformed expectation value of the dipole
multiplied by the quark distribution in the proton [87, 88]:

dσq

dηpd2p
= xq(x)

1

(2π)2

∫
xx̄

e−ip·(x−x̄)
〈
S

(2)
xx̄

∣∣∣
Ū=U

〉
Y
. (5.27)

The quark has transverse momentum p, pseudo-rapidity ηp and longitudinal mo-
mentum fraction x. The xg(x) denotes the quark distribution in the proton and Y
refers to the relative rapidity between the produced quark and the target.
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If we now want to consider quark–gluon production, we can “produce” a gluon with
transverse momentum k by acting on the dipole S(2)

xx̄ with the so-called production
Hamiltonian [89–91]

Hprod(k) :=
1

4π3

∫
yȳ

e−ik·(y−ȳ)

∫
uū

KiyuKiȳū
(
Lau − Ũ †aby Rb

u

)(
L̄aū −

¯̃U †acȳ R̄c
ū

)
.

(5.28)

Barred Lie derivatives only operate on barred Wilson lines and unbarred Lie deriva-
tives only operate on unbarred Wilson lines. Notice that Eq. (5.28) is effectively the
JIMWLK Hamiltonian from Eq. (4.37), which was shown in Section 4.4 to add a
gluon in all possible ways to the operator on which it acts. A key difference between
Hprod and HJIMWLK is that, unlike in HJIMWLK, the two adjoint Wilson lines in Hprod

are at distinctly different transverse coordinates y and ȳ. This is a consequence of
the separation of the DA and the CCA in the calculation.

The cross section for inclusive quark–gluon production is then [89–91]

dσqg

dηpd2pdηkd2k
=

1

16π4

∫
xx̄

e−ip·(x−x̄)
〈
Hprod(k)S

(2)
xx̄

∣∣∣
Ū=U

〉
Y
, (5.29)

where k and ηk refer to the transverse momentum and pseudo-rapidity, respectively,
of the produced gluon. Eq. (5.29) can be simplified using the definitions of the Lie
derivatives given in Eq. (4.20). After the production Hamiltonian acts on the dipole
operator, it is safe to set Ū = U. Evaluating the integrals over u and ū gives

dσqg

dηpd2pdηkd2k
=

CF

16π4

αs

π2

∫
xx̄yȳ

e−ip·(x−x̄)−ik·(y−ȳ)KiyxKiȳx̄
〈

1

Nc

tr
(
UxU

†
x̄

)
− 1

NcCF

(
Ũ †y + Ũ †ȳ

)ab
tr
(
tbUxt

aU †x̄

)
+

1

NcCF

(
UyU

†
ȳ

)ab
tr
(
taUxU

†
x̄t
b
)〉

Y

. (5.30)

This is the final expression for the cross section for inclusive quark–gluon production
in the case that the produced quark and gluon are separated by a small rapidity
∆Y . 1/αs. Eq. (5.30) is in agreement with the two-gluon analogue obtained in
[92] in the soft gluon limit.

5.2.2 Extension to unequal rapidities

We now try to calculated the cross section in Eq. (5.30) for the case that the
produced quark and gluon are separated by a large rapidity ∆Y & 1/αs. We follow
the formalism developed in [93] for the case of double inclusive two-gluon production
in proton–nucleus collisions. We present the main points of the discussion from
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q

g

target

Y = YN

YA = Y0

Yin

Figure 5.1. A physical picture of the inclusive quark–gluon production cross section
considered, showing the rapidities of the produced quark and gluon and of the target.
In particular, the quark and gluon are now separated by a large rapidity, as opposed to
the case studied in Section 5.2.1.

there for the slightly different case of quark–gluon production. A similar scenario
has also been studied in [94]. The physical picture considered is shown in Fig. 5.1.
A quark is produced at rapidity Y relative to the target’s rapidity Yin. A gluon is
produced at some earlier rapidity YA, where Y − YA & 1/αs. Following the notation
of [93], the “A” label pertains to all quantities at the intermediate rapidity YA. This
labelling system can then be extended to include additional produced gluons at
other rapidities YB, YC, etc. as needed.

The large rapidity separation between the quark and the gluon means that the
whole rapidity interval from Yin to Y needs to be considered in two separate parts
– one for the interval Yin to YA and another for the interval YA to Y . Working
backwards in rapidity, we have the following steps to calculate the cross section:

1. The quark alone evolves from the intermediate rapidity YA up to the final
rapidity Y . This is represented in the cross section by the same fundamental
dipole expectation value as was considered in Section 5.2.1, namely

〈
S

(2)
xx̄

〉
Y−YA

.
The expectation value is traded for an average over the noise ν at the end of
the stochastic process, so that now

〈
S

(2)
xx̄,N

〉
ν
.

2. A gluon with transverse momentum kA is produced at YA from the quark
dipole. We act with the production Hamiltonian given in Eq. (5.28) on the
dipole, i.e. we calculate Hprod(kA)

〈
S

(2)
xx̄,N

〉
ν
. All quantities for Hprod given
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in Eq. (5.28) pertain to rapidity YA, which corresponds to the rapidity step
index n = 0.

3. Both the quark and the gluon evolve from the target rapidity Yin

up to YA. This is represented by a second expectation value as〈
Hprod(kA)

〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

〉
YA

.

The two expectation values here are not calculated in the same way. The outer
expectation value 〈〉YA is calculated in the standard way using Eq. (4.2). The inner
expectation value 〈〉Y−YA , however, now involves a conditional expression, since it
needs to have knowledge of the partially evolved Wilson lines at the intermediate
rapidity YA. Instead of Eq. (4.2), the inner expectation value is calculated according
to 〈

S
(2)
xx̄

〉
Y−YA

:=

∫ [
D̄UD̄Ū

]
WY−YA

[
U, Ū

∣∣UA, ŪA

]
S

(2)
xx̄. (5.31)

The weight functional is now a conditional one, obeying the evolution equation [89]

∂YWY−YA
[
U, Ū

∣∣UA, ŪA

]
= −HevolWY−YA

[
U, Ū

∣∣UA, ŪA

]
(5.32)

by analogy with Eq. (4.8). The initial condition at YA for this differential equation
corresponds to the fundamental dipole evolved up to YA:

WYA

[
U, Ū

∣∣UA, ŪA

]
= δ [U − UA] δ

[
Ū − ŪA

]
. (5.33)

At any other rapidity YB, the condition

WYB

[
U, Ū

∣∣UA, ŪA

]
= δ

[
U − Ū

]
WYB [U |UA] , (5.34)

holds, where WYB [U |UA] evolves according to Eq. (4.8), with the initial condition

WYA [U |UA] = δ [U − UA] . (5.35)

Instead of the JIMWLK Hamiltonian that appears in Eq. (4.8), the so-called
evolution Hamiltonian in Eq. (5.32) is

Hevol := H11 + 2H12 +H22, (5.36)

where

H11 := − 1

8π3

∫
uvz

Kuzv

(
Lau,n − Ũ †abz,nR

b
u,n

)(
Lav,n − Ũ †acz,nR

c
v,n

)
, (5.37)

H12 := − 1

8π3

∫
uv̄z̄

Kuz̄v̄

(
Lau,n − Ũ †abz,nR

b
u,n

)(
L̄av̄,n −

¯̃U †acz̄,nR̄
c
v̄,n

)
, (5.38)

H22 := − 1

8π3

∫
ūv̄z̄

Kūz̄v̄

(
L̄aū,n −

¯̃U †acz̄,nR̄
b
ū,n

)(
L̄av̄,n −

¯̃U †acz̄,nR̄
c
v̄,n

)
. (5.39)
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5. JIMWLK in the Langevin Formalism

Each of these three terms is essentially the JIMWLK Hamiltonian from Eq. (4.37).
The only reason for the added complication of having three distinct terms H11,
H12 and H22 in this case is the separation of the DA and the CCA in our current
calculation.

Instead of Eq. (5.29), the cross section is now

dσqg
dY d2pdYAd2kA

=
1

16π4

∫
xx̄

e−ip·(x−x̄)

〈
Hprod(kA)

〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

〉
YA

, (5.40)

which differs from Eq. (5.29) in that it contains two averaging procedures [93]. The
integrand can be recast in a more enlightening form by using the relevant definitions
for the two expectation values. The definition for the inner expectation value given
in Eq. (5.31) gives

Hprod(kA)
〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

=

∫
[D̄ŪA]δ

[
ŪA − UA

] ∫ [
D̄UD̄Ū

]
×WY−YA

[
U, Ū

∣∣UA, ŪA

]
Hprod(kA)S

(2)
xx̄,N , (5.41)

where a delta function has been introduced that sets ŪA = UA. This can be used in
place of the test operator F [U ] in Eq. (4.2) to do the outer averaging, giving〈

Hprod(kA)
〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

〉
YA

=

∫
[D̄UA]WYA [UA]

∫
[D̄ŪA]δ

[
ŪA − UA

]
×
∫ [

D̄UD̄Ū
]
WY−YA

[
U, Ū

∣∣UA, ŪA

]
Hprod(kA)S

(2)
xx̄,N . (5.42)

Just as was done for the equal rapidity case in Section 5.2.1, we act with the
production Hamiltonian on the dipole operator. Using Eq. (5.28), this gives

Hprod(kA)S
(2)
xx̄,N =

1

4π3

∫
yȳ

e−ikA·(y−ȳ)

∫
uū

KiyuKiȳū

×
(
Lau,0 − Ũ

†ab
y,0R

b
u,0

)(
L̄aū,0 −

¯̃U †acȳ,0 R̄
c
ū,0

) 1

Nc

tr
(
Ux,N Ū

†
x̄,N

)
(5.43)

=
1

4π3

∫
yȳ

e−ikA·(y−ȳ)

∫
uū

KiyuKiȳū
1

Nc

IN , (5.44)

where

In := tr
(
Lau,0Ux,nL̄

a
ū,0Ū

†
x̄,n − Ũ †aby,0R

b
u,0Ux,nL̄

a
ū,nŪ

†
x̄,n −

¯̃U †acȳ,0L
a
u,0Ux,nR̄

c
ū,0Ū

†
x̄,n

+ Ũ †aby,0
¯̃U †acȳ,0R

b
u,0Ux,nR̄

c
ū,0Ū

†
x̄,n

)
. (5.45)
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5.3. The Bilocal Langevin Equations

We emphasise that fundamental and antifundamental Wilson lines in In are taken
at step n, since these originate from the dipole. On the other hand, the adjoint
Wilson lines and all the Lie derivatives in In are taken at the initial condition n = 0,
since these originate from the production Hamiltonian.

Substituting Eq. (5.44) into Eq. (5.41) allows us to write the final expression for
the cross section from Eq. (5.40) as

dσqg
dY d2pdYAd2kA

=
1

4π3

1

16π4

∫
xx̄yȳuū

KiyuKiȳūe−ip·(x−x̄)−ikA·(y−ȳ)

∫
[D̄UA]WYA [UA]

×
∫

[D̄ŪA]δ
[
ŪA − UA

] ∫ [
D̄UD̄Ū

]
WY−YA

[
U, Ū

∣∣UA, ŪA

] 1

Nc

IN , (5.46)

or more compactly as

dσqg
dY d2pdYAd2kA

=
1

4π3

1

16π4

∫
xx̄yȳuū

KiyuKiȳūe−ip·(x−x̄)−ikA·(y−ȳ)

〈〈
1

Nc

IN
〉
ν

〉
YA

.

(5.47)

This is the final expression for the double inclusive quark–gluon cross section studied
in Paper [II]. All that is left to evaluate is the trace I at the final rapidity step N .
From its definition in Eq. (5.45), we see that each of the four terms in I contains a
product of two factors, each of which is a Lie differentiated Wilson line. The first
term in Eq. (5.45), for example, consists of a factor L̄Ū pertaining to the CCA and
a second factor LU † pertaining to the DA. Terms containing a right Lie derivative
are accompanied by the relevant adjoint Wilson line, since these terms involve a
gluon crossing the target field. In the next section, the Lie differentiated Wilson
lines are studied further, since these hold the physics of interest in Eq. (5.47).

5.3 The Bilocal Langevin Equations

The definition of In in Eq. (5.45) contains four factors that need to be evaluated:
RU †, RU , LU † and LU . Each of these quantities is bilocal in the sense that the Lie
derivative and Wilson line of each term are always at different transverse coordinates.
By acting with the Lie derivatives on the Langevin equation for the Wilson line
as given in Eq. (5.21), it is possible to derive a Langevin equation for the bilocal
quantities. This procedure was first outlined in [93], leading to the bilocal Langevin
equation for RU †. From this, the equation for RU follows by taking the Hermitian
conjugate of RU †; the equations for LU † and LU follow after using the relation
Lau,n = Ũ †abu,nR

b
u,n. Instead of evolving all four factors from n = 0 to n = N , it is

therefore only necessary to evolve one of them and then obtain the other three
evolved factors from it.
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5. JIMWLK in the Langevin Formalism

5.3.1 The RU † Langevin equation

The bilocal Langevin equation for RU † was derived in [93] by acting with a right
Lie derivative on the Hermitian conjugate of the Langevin equation in Eq. (5.21).
By the product rule, this gives three terms

Ra
u,0U

†
x,n+1 =

(
Ra

u,0e
iεgαR

x,n

)
U †x,ne

−iεgαL
x,n + eiεgα

R
x,n
(
Ra

u,0U
†
x,n

)
e−iεgα

L
x,n

+ eiεgα
R
x,nU †x,n

(
Ra

u,0e
−iεgαL

x,n

)
. (5.48)

The first term is zero because there is no Wilson line in αR on which to act with R.
The third term can be calculated by expanding the exponential in ε, giving

Ra
u,0e

−iεgαL
x,n = Ra

u,0

[
1− iεgαL

x,n −
1

2
ε2g2(αL

x,n)2 +O
(
νε2
)]

(5.49)

= − iεg√
4π3

∫
z

KixzRa
u,0

(
Uz,nν

i
z,nU

†
z,n

)
+O

(
νε2
)
. (5.50)

The order
(
αL
)2 term has been neglected because〈(

αL
x,n

)2
〉

=
1

4π3

∫
zw

〈(
Kixzνa,iz,nŨ

†ab
z,nt

b
)(
Kjxwνc,jz,nŨ

†cd
z,nt

d
)〉

=
CF

4π3ε

∫
z

Kxzx (5.51)

after using Eq. (5.10). Doing the differentiation in Eq. (5.50) gives two terms which
can be written as

Ra
u,0e

−iεgαL
x,n = − iεg√

4π3

∫
z

Kixz
[
Uz,nν

i
z,nU

†
z,n, Uz,nR

a
u,0U

†
z,n

]
+O

(
νε2
)
. (5.52)

We have used the trick

0 = Ra
u,0(1) = Ra

u,0

(
Ux,nU

†
x,n

)
=
(
Ra

u,0Ux,n

)
U †x,n + Ux,n

(
Ra

u,0U
†
x,n

)
(5.53)

=⇒ Ra
u,0Ux,n = −Ux,n

(
Ra

u,0U
†
x,n

)
Ux,n (5.54)

to write the two terms from the differentiation in Eq. (5.50) as a commutator.

Putting all the pieces together, the bilocal Langevin equation that follows from
Eq. (5.48) is

Ra
u,0U

†
x,n+1 = eiεgα

R
x,nRa

u,0U
†
x,ne

−iεgαL
x,n

− iεg√
4π3

eiεgα
R
x,nU †x,n

∫
z

Kixz
[
Uz,nν

i
z,nU

†
z,n, Uz,nR

a
u,0U

†
z,n

]
+O

(
νε2
)
. (5.55)
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5.3. The Bilocal Langevin Equations

For consistency, the remaining three exponentials in this expression can be expanded
in ε to give

Ra
u,0U

†
x,n+1 = Ra

u,0U
†
x,n +

∫
z

(
iεg√
4π3
Kixzνi,bz,n −

εg2

4π3
Kxzxt

b

)[
tbRa

u,0U
†
x,n

−Ra
u,0U

†
x,nŨ

†bc
z,nt

c − U †x,nUz,n

(
tbRa

u,0U
†
z,n −Ra

u,0U
†
z,nŨ

†bc
z,nt

c
)]

+O
(
νε2
)
. (5.56)

The initial condition

Ra
u,0U

†
x,0 = igδuxU

†
x,0t

a (5.57)

can be read off from Eq. (4.25).

In order to understand the physical meaning of Eq. (5.56), it is useful to express
it in terms of diagrams. If the initial condition is represented as

U †x,0 = , (5.58)

then one step in rapidity gives

Ra
u,0U

†
x,1 = ig

a
x = u

+ ig
iεg√
4π3

∫
z

Kixzν
i,b
z,0 {I} − ig

εg2

4π3

∫
z

Kxzx {II}+O
(
νε2
)
, (5.59)

where

{I} :=

a b
x = u

−

c a

c b

x = u

z

+ a c

d

d

bc

x

z = u
, (5.60)
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{II} :=

a b b
x = u

−

c a

c b

b
x = u

z

+ a c

d

d

bc

b
x

z = u
. (5.61)

When compared to Eq. (5.19), we can see that Eq. (5.59) is just the evolution
equation for the Wilson line, but with an additional gluon added in all possible ways
after the target interaction. The Lie derivative Ra

u,0 assigns transverse coordinate u
to either x or z and colour index a to the additional gluon.

The evolution equations for RU , LU and LU † contain similar diagrams, with
the additional gluon on the relevant side of the target interaction and the relevant
direction arrowhead representing the Wilson line. In particular, notice that the
third diagram in Eq. (5.60) already begins to resemble part of one half of a BFKL
ladder diagram of the kind

(5.62)

that was discussed in Section 3.2.2. In order to see this more clearly, however, it is
necessary to go to the dilute limit, as is done in Chapter 6.

5.3.2 Alternative form

One addition that Paper [II] makes to the work of [93] is that the bilocal Langevin
equations are written in a way that is more conducive to numerical computations.
We define a new bilocal quantity Ra

ux,n := Ux,n

(
Ra

u,0U
†
x,n

)
, which is conveniently

a member of the Lie algebra su(Nc). Its Langevin equation can be obtained from
Eq. (5.55), with Eq. (5.21) multiplied from the left. This results in the cancellation
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of the right-field exponentials αR, giving

Ra
ux,n+1 = eiεgα

L
x,nRa

ux,ne
−iεgαL

x,n − iεg√
4π3

eiεgα
L
x,n

∫
z

Kixz
[
ν̃iz,n, R

a
uz,n

]
, (5.63)

with the rotated noise ν̃ defined in Eq. (5.24). The advantage of this expression over
Eq. (5.55) is that it is a linear evolution equation for a single quantity Ra

ux,n that
contains no explicit Wilson lines and only one type of colour field αL. Expanded in
ε, Eq. (5.63) becomes

Ra
ux,n+1 = Ra

ux,n +

∫
z

iεg√
4π3
Kixz

[
ν̃iz,n, R

a
ux,n −Ra

uz,n

]
− Nc

2

εg2

4π3

∫
z

Kxzx

(
Ra

ux,n −Ra
uz,n

)
+O

(
νε2
)
. (5.64)

Its initial condition follows from Eq. (5.57), namely Ra
ux,0 = igδuxt

a. Note that it is
not possible to simplify Eq. (5.64) further by pulling out an overall R because of
the commutator in the second term on the right.

Similarly to Ra
ux,n, it is possible to define three other quantities

Ra
u,0Ux,n → R̃a

ux,n :=
(
Ra

u,0Ux,n

)
U †x,n, (5.65)

Lau,0U
†
x,n → Laux,n := Ux,n

(
Lau,0U

†
x,n

)
, (5.66)

Lau,0Ux,n → L̃aux,n :=
(
Lau,0Ux,n

)
U †x,n. (5.67)

Their evolution equations can be derived in a similar manner to Eq. (5.63) or they
can be obtained directly from Eq. (5.63). They are

R̃a
ux,n+1 = eiεgα

L
x,nR̃a

ux,ne
−iεgαL

x,n − iεg√
4π3

∫
z

Kixz
[
ν̃iz,n, R̃

a
uz,n

]
e−iεgα

L
x,n , (5.68)

Laux,n+1 = eiεgα
L
x,nLaux,ne

−iεgαL
x,n − iεg√

4π3
eiεgα

L
x,n

∫
z

Kixz
[
ν̃iz,n, L

a
uz,n

]
, (5.69)

L̃aux,n+1 = eiεgα
L
x,nL̃aux,ne

−iεgαL
x,n − iεg√

4π3

∫
z

Kixz
[
ν̃iz,n, L̃

a
uz,n

]
e−iεgα

L
x,n . (5.70)

When expanded in ε, these reduce to the same form as Eq. (5.64):

R̃a
ux,n+1 = R̃a

ux,n +
iεg√
4π3

∫
z

Kixz
[
ν̃iz,n, R̃

a
ux,n − R̃a

uz,n

]
− Nc

2

εg2

4π3

∫
z

Kxzx

(
R̃a

ux,n − R̃a
uz,n

)
+O

(
νε2
)
, (5.71)
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Laux,n+1 = Laux,n +
iεg√
4π3

∫
z

Kixz
[
ν̃iz,n, L

a
ux,n − Lauz,n

]
− Nc

2

εg2

4π3

∫
z

Kxzx

(
Laux,n − Lauz,n

)
+O

(
νε2
)
, (5.72)

L̃aux,n+1 = L̃aux,n +
iεg√
4π3

∫
z

Kixz
[
ν̃iz,n, L̃

a
ux,n − L̃auz,n

]
− Nc

2

εg2

4π3

∫
z

Kxzx

(
L̃aux,n − L̃auz,n

)
+O

(
νε2
)
. (5.73)

The initial conditions follow from Eqs. (4.22), (4.23) and (4.24):

R̃a
ux,0 = igδuxt

a, (5.74)

Laux,0 = igδuxŨ
†ab
x,0 t

b, (5.75)

L̃aux,0 = igδuxŨ
†ab
x,0 t

b. (5.76)

The trace that enters the cross section in Eq. (5.47) can be rewritten in terms of
the newly defined bilocal quantities. By inserting 1 = U †x,nUx,nŪ

†
x̄,nŪx̄,n into each

term in Eq. (5.45), we get

Ra
u,0Ux,n → R̃a

ux,n :=
(
Ra

u,0Ux,n

)
U †x,n, (5.77)

Lau,0U
†
x,n → Laux,n := Ux,n

(
Lau,0U

†
x,n

)
, (5.78)

Lau,0Ux,n → L̃aux,n :=
(
Lau,0Ux,n

)
U †x,n. (5.79)

and In becomes

In := tr
(
L̃aux,nUx,nŪ

†
x̄,nL̄

a
ūx̄,n − Ũ

†ab
y,0 R̃

b
ux,nUx,nŪ

†
x̄,nL̄

a
ūx̄,n

− ¯̃U †acȳ,0 L̃
a
ux,nUx,nŪ

†
x̄,nR̄

c
ūx̄,n + Ũ †aby,0

¯̃U †acȳ,0 R̃
b
ux,nUx,nŪ

†
x̄,nR̄

c
ūx̄,n

)
. (5.80)

From this, we see that two evolution equations need to be solved numerically in
order to completely determine IN . One is for the Wilson lines Ūx̄,n and U †x,n and the
other is for the bilocal quantities L̃aux,n, etc. This information is sufficient to obtain
everything else that appears in IN and therefore the cross section in Eq. (5.47).
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Chapter summary

In this chapter, we have studied the JIMWLK equation in Langevin form.
Inclusive particle production has been considered as a concrete context. We have
seen that it is necessary to keep the DA and the CCA separate up until the end of
evolution. In the specific case of quark–gluon production, Lie derivatives of Wilson
lines enter the cross section. Starting from the Langevin equation for Wilson lines,
we have shown how to derive a bilocal Langevin equation; that is, an evolution
equation for a Lie differentiated Wilson line. We have recast this bilocal evolution
equation in a form that makes it simpler to solve numerically. Both the Langevin
equation for the Wilson line and the bilocal Langevin equation have been expressed
in diagrams, making their physical interpretation easier. This becomes particularly
useful in the dilute limit in the next chapter, when we wish to extract BFKL ladder
diagrams from within the stochastic picture of evolution.
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6

JIMWLK in the Dilute Limit

In Chapter 4, the JIMWLK equation was discussed in the Fokker–Planck formalism.
In Chapter 5, an alternative formalism was discussed in which evolution was inter-
preted as a stochastic dissipation through colour space. The purpose of this chapter
is to link those two pictures by expanding the Langevin equations from Chapter 5
in the dilute limit. Physically, it is expected that the dilute limit reduces JIMWLK
evolution to BFKL evolution. In a dilute target field, the overlapping partonic
wave functions that lead to saturation are not present. The nonlinearity of the BK
and JIMWLK equations is then removed and what remains is the BFKL equation.
In Section 4.5, we already saw how the BFKL equation arises from the JIMWLK
equation in the Fokker–Planck picture. By rederiving the BFKL equation in the
Langevin picture, we can better understand how the two formalisms are related.

The chapter is divided into two sections. In Section 6.1, the Langevin equation
for the Wilson line from Section 5.1 is studied in the dilute limit. We discuss some
properties of the dilute equation, including a formal solution and its Reggeisation.
The BFKL equation for the unintegrated gluon distribution is also derived. In
Section 6.2, we study the cross section for double inclusive quark–gluon production
at unequal rapidities from Section 5.2.2. We also expand the bilocal Langevin
equations from Section 5.3 in the dilute limit and see how BFKL ladder diagrams
emerge. Paper [II] covers much of the same material, but we provide some additional
explanations here that were omitted there.
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6.1 The Langevin equation in the dilute limit

In the dilute limit, the target is considered as a dilute field, as opposed to the highly
dense gluonic medium of the previous chapters. Instead of the Wilson lines that
have appeared thus far, we use expanded versions in terms of elements of the Lie
algebra su(Nc). For the antifundamental Wilson line, we write

U †x,n =: eiλx,n = 1 + iλx,n +O
(
λ2
)
, (6.1)

where λ ∈ su(Nc) is a real matrix that can be expanded in the group generators as
λx,n = λax,nt

a. (Recall from the previous chapter that rapidity has been discretised
intoN pieces of size ε and that n is the rapidity step index). Physically, λ corresponds
to a single t-channel gluon exchanged between the target and projectile:

λx,n = . (6.2)

Since we wish to ultimately reproduce a BFKL ladder diagram of the form

(6.3)

from Section 3.2.2, it is sufficient to work to order λ at each step n and for each
distinct transverse coordinate.

By the unitarity of the Wilson lines, the transpose λ>x,n = λx,n, so that the
Hermitian conjugate of Eq. (6.1) is

Ux,n = e−iλx,n = 1− iλx,n +O
(
λ2
)
. (6.4)

For the adjoint representation, the expansion of the group identity Ũ †abx,nt
b =

Ux,nt
aU †x,n leads to

Ũ †abx,n = δab + fabcλcx,n +O
(
λ2
)
, (6.5)
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after multiplying from the right by ta and taking the trace. Alternatively, we can
expand Ũ †abx,n = 2tr

(
taU †x,nt

bUx,n

)
to get the same expression. Diagrammatically,

the expansion of an adjoint Wilson line at the initial condition looks similar to the
expansion of a fundamental or antifundamental Wilson line:

Ux,0 = = − i +O
(
λ2
)
, (6.6)

Ũ †abx,0 = = + +O
(
λ2
)
. (6.7)

Equipped with Eqs. (6.1), (6.4) and (6.5), it is possible to find the dilute limit of
any expression from Chapter 5. The Langevin equation for the Wilson line expanded
in rapidity step size ε was given in Eq. (5.15), namely

Ux,n+1

= Ux,n +

∫
z

(
Ux,nt

a − Ũ †abz,nt
bUx,n

)(
− iεg√

4π3
Kixzνa,iz,n −

εg2

4π3
Kxzxt

a

)
+O

(
νε2
)
.

(6.8)

The expansion to first order in λ of each Wilson line in this expression leads to the
Langevin equation for λ:

λx,n+1

= λx,n +

∫
z

(
iεg√
4π3
Kixzνi,az,n −

εg2

4π3
Kxzxt

a

)
ifabctc(λbx,n − λbz,n) +O

(
νε2, λ2

)
.

(6.9)

73



6. JIMWLK in the Dilute Limit

After one evolution step, the diagrams that appear in this expression are

λx,1 =

x

+
iεg√
4π3

∫
z

Kixzν
i,a
z,0i


b a

c

c

x

− b a

c

c

z



− εg2

4π3

∫
z

Kxzx


b a

c

c

x

a

− b a

c

c

z

a


+O

(
νε2, λ2

)
. (6.10)

In the terms containing νi,az,0, the three-gluon vertices can also be drawn as separate
gluons by writing

ifabctcλb,0 =
[
ta, λ,0

]
(6.11)

i b a

c

c

=

a

−

a

. (6.12)

Similarly, the terms proportional to the kernel Kxzx can be written separately as

taifabctcλb,0 = CFλ,0 − taλ,0ta (6.13)

i b a

c

c a

=

a a

−

a a

. (6.14)

Eq. (6.9) is the main topic of Section IV in Paper [II], which goes on to discuss its
analytical solution, the so-called Reggeisation of λ and how to obtain the BFKL
equation by effectively squaring Eq. (6.9). Each of these points is addressed next.
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6.1. The Langevin equation in the dilute limit

6.1.1 Analytical solution

Formally, the evolution equation for λ can be solved analytically, since it is a linear
iterative equation. By writing Eq. (6.9) as

λax,n+1t
a

=

∫
w

[
δwxt

dδde +

∫
z

(
iεg√
4π3
Kixzνi,az,n −

εg2

4π3
Kxzxt

a

)
ifabctc(δwx − δwz)δbe

]
λew,n

+O
(
νε2, λ2

)
, (6.15)

multiplying from the right by tg and taking the trace gives

λax,n+1 =

∫
w

Mab
xw,nλ

b
w,n +O

(
νε2, λ2

)
, (6.16)

where the evolution matrix

Mab
xw,n := δxwδ

ab +

∫
z

(
εg√
4π3
Kixzνi,cz,nfabc −

εg2

4π3

Nc

2
Kxzxδ

ab

)
(δxw − δzw) (6.17)

has been defined. By writing the first few terms of Eq. (6.16) explicitly, it is
straightforward to obtain the formal solution

λ
bn+1

wn+1,n+1 =

(
n∏
j=0

∫
wj

Mbj+1bj
wj + 1wj ,j

)
λb0w0,0

. (6.18)

The product of evolution matrices can be simplified further if necessary, using the
constraints on the noise given in Eq. (5.25). For example, after two evolution steps
this is

λax,2 =

∫
w1

Mab1
xw1,1

∫
w0

Mb1b0
w1w0,0

λb0w0,0
. (6.19)

This contains a factor ν from each M, which leads to something of the form〈
νi1,c1z1,1

νi0,c0z0,1

〉
= δi1i0δc1c0δz1z0/ε after taking the expectation value.

6.1.2 Reggeisation of λ

An interesting property of λ relates to the old formalism of Regge theory that was
mentioned in Section 3.2.1. After taking the expectation value of the Langevin
equation for λ given in Eq. (6.9) and using

1

ε

〈
λx,n+1 − λx,n

〉 ε→∞−−−→ ∂Y λx, (6.20)
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6. JIMWLK in the Dilute Limit

we get

〈∂Y λx〉 =
Nc

2

αs

π2

∫
z

Kxzx 〈λz − λx〉+O
(
ε2, λ2

)
. (6.21)

The term linear in ν has already been set to zero according to Eq. (5.25). After
Fourier transforming the components using

λa(p) =

∫
z

eip·zλaz, (6.22)

this becomes

〈∂Y λa(p)〉 = 〈αg(p)λa(p)〉+O
(
ε2, λ2

)
, (6.23)

where

αg(p) :=
Nc

2

αs

π2

∫
z

1

z2

(
eip·z − 1

)
(6.24)

is related to the gluon Regge trajectory ωg defined in Section 3.2.2. The significance
of αg is that it governs the power-law behaviour of the scattering amplitude in
terms of the centre-of-mass energy s, i.e. the scattering amplitude is proportional
to sαg . The gluon corresponding to λ is said to have reggeised. This means that
its propagator may be replaced by a gluon propagator dressed with all virtual
corrections to leading order in ln(1/x), as discussed in Section 3.2.2. The reader
is referred to [95] for more about reggeised gluons in the context of JIMWLK and
related evolution equations.

6.1.3 The BFKL equation for the unintegrated gluon distri-
bution

One of the goals of studying the Langevin evolution of Wilson lines in the dilute
limit is to relate it to the BFKL physics that emerges from the Fokker–Planck
description of JIMWLK evolution. In Section 3.2.2, we discussed the formation of
BFKL ladder diagrams. Motivated by the dipole operator

S
(2)
xx̄ :=

1

Nc

tr
(
UxŪ

†
x̄

)
=

1

Nc

tr


x̄ x

 , (6.25)
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6.1. The Langevin equation in the dilute limit

from Section 5.2.1, we define the unintegrated gluon distribution

φnxx̄ :=
〈
λax,nλ̄

a
x̄,n

〉
, (6.26)

as a step towards recreating a ladder diagram. At the initial condition, this is

〈
λax,0λ̄

a
x̄,0

〉
= < x̄ x >. (6.27)

The two legs of the ladder are formed by the λ in the DA and the λ̄ in the CCA.

The evolution equation for φ follows directly from that of λ. After using Eq. (6.16)
to write one equation for λax,n+1 and another for λ̄ax̄,n+1, we can multiply the two
expressions to get

λax,n+1λ̄
a
x̄,n+1

=

∫
ww̄

(
δwxδw̄x̄ −

Nc

2

εαs

π2

∫
z

[Kx̄zx̄δwx (δw̄x̄ − δw̄z) +Kxzx (δwx − δwz) δw̄x̄

−2Kxzx̄ (δwx − δwz) (δw̄x̄ − δw̄z)]

)
λaw,nλ̄

a
w̄,n +O

(
νε2, λ3

)
. (6.28)

Terms linear in ν have been discarded and terms quadratic in ν have been simplified
according to Eq. (5.25). After taking the expectation value, this can be written in
terms of φ as

1

ε

(
φn+1
xx̄ − φnxx̄

)
= −Nc

2

αs

π2

∫
z

[Kxzx (φnxx̄ − φnzx̄) +Kx̄zx̄ (φnxx̄ − φnxz)

−2Kxzx̄ (φnxx̄ − φnxz − φnzx̄ + φnzz)] +O
(
νε2, φ3/2

)
. (6.29)

Eq. (6.29) is the BFKL equation in coordinate space for the unintegrated gluon
distribution. It is more commonly written in momentum space. The gluon distribu-
tion can be Fourier transformed as

φnxx̄ =:

∫
p

e−ip·(x−x̄)φn(p), (6.30)

with the shorthand ∫
p

:=

∫
d2p

(2π)2
(6.31)
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6. JIMWLK in the Dilute Limit

for the transverse momentum integrals. In writing Eq. (6.30), it is not necessary
to transform x and x̄ separately because φxx̄ is a function of the relative length
|x− x̄|. In order to Fourier transform the kernels present in Eq. (6.29), we first
transform each Weizsäcker-Williams kernel as

Ki(p) =

∫
u−v

eip·(u−v) (u− v)i

(u− v)2
. (6.32)

(Recall that Kuwv := KiuwKiwv – cf. Eqs. (3.45) and (3.46)). Then

Ki(p) = 2πi
pi

p2
=⇒ Kiuv = 2πi

∫
p

e−ip·(u−v) p
i

p2
. (6.33)

After some algebra, Eqs. (6.30) and (6.33) in Eq. (6.29) gives

1

ε

[
φn+1(q)− φn(q)

]
= 4Ncαs

∫
p

[
p2

(q − p)2q2
φn(p)− (q − p) · q

p2(q − p)2
φn(q)

]
+O

(
νε2, φ3/2

)
. (6.34)

In order to get this into the standard textbook form, the left side is written as
∂Y φ(q) when ε→ 0, we define φ̃(q) := q2φ(q) and manipulate the second term by
writing ∫

p

(q − p) · q
p2(q − p)2

=

∫
p

(q − p) · (q − p+ q)

p2(q − p)2
=

1

2

∫
p

q2

(q − p)2p2
. (6.35)

Eq. (6.34) then becomes

∂Y φ̃(q) = 4Ncαs

∫
p

1

(q − p)2

[
φ̃(p)− 1

2

q2

p2
φ̃(q)

]
+O

(
νε2, φ3/2

)
. (6.36)

This is the colour singlet, zero momentum transfer BFKL equation (cf. Eq. (3.30))
as it appears, for example, in [58]. With this, we have shown how the well-known
BFKL equation emerges from the Langevin JIMWLK equation in the dilute limit.

6.1.4 Mueller’s form of the BFKL equation

At the end of Section 3.3.3, it was remarked that the BFKL equation can also be
written in the form of the BK equation given in Eq. (3.55), without the nonlinear
term:

∂Y 〈Nyx〉 =
αsNc

2π2

∫
w

K̃xwy (〈Nyw〉+ 〈Nwx〉 − 〈Nyx〉) . (6.37)
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6.1. The Langevin equation in the dilute limit

Written in this way, Eq. (6.37) is typically referred to as Mueller’s form of the BFKL
equation. Instead of the unintegrated gluon distribution φ defined in Eq. (6.26), the
starting point is now the dipole operator

S(2)
xy :=

1

Nc

tr
(
UxU

†
y

)
=

1

Nc

tr



 , (6.38)

since this is the object that evolves in Eq. (6.37). Mathematically, both Eq. (6.25)
and Eq. (6.38) are just the dipole operator. Physically, however, they arise in slightly
different contexts. The S(2)

xx̄ in Eq. (6.25) corresponds to a single quark interacting
with the target; it appears in the DA with transverse coordinate x and in the
CCA with transverse coordinate x̄. The S(2)

xy in Eq. (6.38) corresponds to a single,
colour-neutral dipole that appears in the total cross section of processes such as
that shown in Fig. 2.3. By the optical theorem as discussed in Section 2.3, the total
cross section is then the imaginary part of the elastic scattering amplitude. This
means there is no separation of the DA and the CCA, since there is only the former.

Since we wish to reproduce the BFKL equation in the form of Eq. (6.37), we
expand the dipole operator in the form of Eq. (6.38) to get

1− 1

Nc

tr
(
Ux,nU

†
y,n

)
=

1

4Nc

(
λax,n − λay,n

)2
+O

(
λ3
)
. (6.39)

This motivates the definition of the so-called BFKL pomeron

ϕnxy :=
〈
(λax,n − λay,n)2

〉
, (6.40)

in place of the unintegrated gluon distribution φ. At the initial condition, this is
just a sum of two-gluon exchange diagrams

〈
(λax,0 − λay,0)2

〉
= < x x

−

x y

−

y x

+

y y >, (6.41)

with different transverse coordinate assignments in each term. By setting λ̄ = λ in
Eq. (6.26), the BFKL pomeron can be written in terms of the unintegrated gluon
distribution as

ϕnxy =
(
φnxx − 2φnxy + φnyy

)∣∣
λ̄=λ

. (6.42)
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6. JIMWLK in the Dilute Limit

In order to write an evolution equation for ϕ, Eq. (6.29) is used for each of the three
terms in this expression, giving

1

ε

(
ϕn+1
xy − ϕnxy

)
= −Nc

2

αs

π2

∫
z

K̃xzy

(
ϕnxy − ϕnxz − ϕnyz

)
+O

(
ϕ3/2

)
. (6.43)

Eq. (6.43) is exactly Eq. (6.37), written in terms of the operator Nxy in the dilute
limit. Note that φ is typically written in momentum space, since it usually appears
in diagrams that are more easily calculated in momentum space. On the other hand,
ϕ is typically written in coordinate space, since it is usually discussed in the context
of the dipole picture.

6.2 Inclusive particle production in the dilute limit

We now return to the subject of inclusive particle production that was introduced
in Section 5.2. We recap some of the main expressions from there that are expanded
in the dilute limit in this section. The main points of this discussion may be found
in Section VI of Paper [II].

The cross section for double inclusive quark–gluon production was given in
Eq. (5.40):

dσqg
dY d2pdYAd2kA

=
1

16π4

∫
xx̄

e−ip·(x−x̄)

〈
Hprod(kA)

〈
S

(2)
xx̄,N

〉
ν

∣∣∣
ŪA=UA

〉
YA

(6.44)

=
1

4π3

1

16π4

∫
xx̄yȳuū

KiyuKiȳūe−ip·(x−x̄)−ikA·(y−ȳ)

〈〈
1

Nc

IN
〉
ν

〉
YA

.

(6.45)

The production Hamiltonian was defined as

Hprod(k) :=
1

4π3

∫
yȳ

e−ik·(y−ȳ)

∫
uū

KiyuKiȳū
(
Lau − Ũ †aby Rb

u

)(
L̄aū −

¯̃U †acȳ R̄c
ū

)
(6.46)

in Eq. (5.28) and we defined

In := tr
(
Lau,0Ux,nL̄

a
ū,0Ū

†
x̄,n − Ũ †aby,0R

b
u,0Ux,nL̄

a
ū,nŪ

†
x̄,n −

¯̃U †acȳ,0L
a
u,0Ux,nR̄

c
ū,0Ū

†
x̄,n

+ Ũ †aby,0
¯̃U †acȳ,0R

b
u,0Ux,nR̄

c
ū,0Ū

†
x̄,n

)
(6.47)
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6.2. Inclusive particle production in the dilute limit

in Eq. (5.45). The evolution equation for RU † was given in Eq. (5.56) as

Ra
u,0U

†
x,n+1 = Ra

u,0U
†
x,n +

∫
z

(
iεg√
4π3
Kixzνi,bz,n −

εg2

4π3
Kxzxt

b

)[
tbRa

u,0U
†
x,n

−Ra
u,0U

†
x,nŨ

†bc
z,nt

c − U †x,nUz,n

(
tbRa

u,0U
†
z,n −Ra

u,0U
†
z,nŨ

†bc
z,nt

c
)]

+O
(
νε2
)
. (6.48)

6.2.1 The bilocal Langevin equations in the dilute limit

In order to expand Eq. (6.48) in the dilute limit, Eq. (6.1) is used to expand each
of the Wilson lines. This leads to

Ra
u,0λx,n+1 = Ra

u,0λx,n +

∫
z

(
iεg√
4π3
Kixzνi,dz,n −

εg2

4π3
Kxzxt

d

)
ifdbctcRa

u,0(λbx,n−λbz,n)

+O
(
νε2, λ2

)
, (6.49)

which is the same as Ra
u,0 acting on Eq. (6.9). The initial condition for this evolution

equation follows from the expansion of the initial condition for Eq. (6.48), as given
in Eq. (5.57):

Ra
u,0U

†
x,0 = igδuxU

†
x,0t

a =⇒ Ra
u,0λx,0 = gδuxt

a +O (λ) . (6.50)

Eq. (6.49) is a linear iterative equation for the quantity Rλ in the same way that
Eq. (6.16) was an equation for λ. A formal analytical solution can therefore be
written for Eq. (6.49) in a similar way as was done in Section 6.1.1 for Eq. (6.16).
The equation for Lλ and its initial condition are the same as Eqs. (6.49) and (6.50),
respectively, with R→ L.

In order to make sense of the Lie derivatives operating on elements of the group
algebra, we start with their definitions given in Eq. (4.20),

Lau := −ig[Uut
a]αβ

δ

δ[Uu]αβ
and Ra

u := −ig[taUu]αβ
δ

δ[Uu]αβ
, (6.51)

and make a change of variables by expanding each Wilson line in powers of λ. This
results in [95]

Lau,0 = g

[
δac − 1

2
fabcλbu,0 +O

(
λ2
)] δ

δλcu,0
, (6.52)

Ra
u,0 = g

[
δac +

1

2
fabcλbu,0 +O

(
λ2
)] δ

δλcu,0
. (6.53)
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6. JIMWLK in the Dilute Limit

Recall from Eq. (6.46) that the Lie derivatives are only required at the initial
rapidity Y0 = YA. This means that the λbu,0 present in Eqs. (6.52) and (6.53) remain
unevolved.

The physical significance of Eq. (6.49) is clearer in diagrams. After one evolution
step, and using Eq. (6.50) for the initial condition, Eq. (6.49) gives

Ra
u,0λx,1 = gδux

a

+
iεg√
4π3

∫
z

Kixzν
i,b
z,0ig(δux − δuz) a b

c

c

− εg2

4π3

∫
z

Kxzxig(δux − δuz) a b

c

c b

+O
(
νε2, λ

)
. (6.54)

This is effectively Eq. (6.10), with Ra
u,0 acting to sever the connection between the

t-channel gluon and the target as it “differentiates away” one factor of λ. These
diagrams already start to resemble one half of a BFKL ladder.

6.2.2 The cross section in the dilute limit

Now that the bilocal Langevin equations are known in the dilute limit, it is possible
to use them to find the cross section in Eq. (6.45) in the dilute limit. One way
to proceed would be to use Eq. (6.53) and the corresponding equation for Lλ to
calculate each of the terms in the Eq. (6.47) in the dilute limit. It is then reasonable
to see how BFKL ladders might arise from the square of Eq. (6.54).

An alternative way to calculate the cross section is to use Eq. (6.44) after
expanding both the dipole operator and the production Hamiltonian in the dilute
limit. The former has already been calculated in Eq. (6.55), from which we can read
off

S
(2)
xx̄,n = 1− 1

4Nc

(
λax,n − λ̄ax̄,n

)2
+O

(
λ3
)
. (6.55)

For the production Hamiltonian, Eq. (6.5) is used to expand the adjoint Wilson
lines and Eqs. (6.52) and (6.53) are used to expand the Lie derivatives. This gives

Lau,0 − Ũ
†ab
y,0R

b
u,0 = gfabc

[
λcu,0 − λcy,0 +O

(
λ2
)] δ

δλbu,0
. (6.56)
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6.2. Inclusive particle production in the dilute limit

Acting on the initial condition λx,0, this looks like

(
Lau,0 − Ũ

†ab
y,0R

b
u,0

)
x

= gδux


c a

b

b

u

− c a

b

b

y


+O

(
λ2
)
. (6.57)

The full operator in Hprod is the square of Eq. (6.56):

(
Lau,0 − Ũ

†ab
y,0R

b
u,0

)(
L̄aū,0 −

¯̃U †acȳ,0 R̄
c
ū,0

)
= g2fabcfade

[(
λcu,0 − λcy,0

) (
λ̄eū,0 − λ̄eȳ,0

)
+O

(
λ3
)] δ

δλbu,0

δ

δλ̄dū,0
. (6.58)

Since this contains both a λ derivative and a λ̄ derivative, the only term from the
expanded dipole operator in Eq. (6.55) that survives the operation of Hprod is the
λλ̄ term. Then

(
Lau,0 − Ũ

†ab
y,0R

b
u,0

)(
L̄aū,0 −

¯̃U †acȳ,0 R̄
c
ū,0

)
S

(2)
xx̄,n =

1

Nc

In

=
g2

2Nc

fabcfade
[(
λcu,0 − λcy,0

) (
λ̄eū,0 − λ̄eȳ,0

)
+O

(
λ3
)] δλfx,n
δλbu,0

δλ̄fx̄,n
δλ̄dū,0

. (6.59)

It is straightforward to keep track of which λ’s originate from which factor in the
full dense expression by following the transverse coordinate assignments.

The colour algebra simplifies when the initial condition of the dipole operator is
taken into account. According to Eq. (6.55), λ and λ̄ have the same colour index at
n = 0. This means that c = e in Eq. (6.59) and

(
Lau,0 − Ũ

†ab
y,0R

b
u,0

)(
L̄aū,0 −

¯̃U †acȳ,0 R̄
c
ū,0

)
S

(2)
xx̄,n

=
g2

2

[(
λcu,0 − λcy,0

) (
λ̄cū,0 − λ̄cȳ,0

)
+O

(
λ3
)] δλax,n
δλbu,0

δλ̄ax̄,n
δλ̄bū,0

. (6.60)
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At the initial condition, this becomes

(
Lau,0 − Ũ

†ab
y,0R

b
u,0

)(
L̄aū,0 −

¯̃U †acȳ,0 R̄
c
ū,0

) 1

2Nc

d,x̄ d,x

=
g2

2
(N2

c − 1)δuxδūx̄




a,u

−

a,y




a,ū

−

a,ȳ


+O

(
λ3
)

.

(6.61)

Using Eq. (6.60) in Eq. (6.45) gives the final expression for the cross section in the
dilute limit:

dσqg
dY d2pdYAd2kA

=
αs

2π2

1

16π4

∫
xx̄yȳuū

KiyuKiȳūe−ip·(x−x̄)−ikA·(y−ȳ)

×

〈〈[(
λcu,0 − λcy,0

) (
λ̄cū,0 − λ̄cȳ,0

)
+O

(
λ3
)] δλax,N
δλbu,0

δλ̄ax̄,N
δλ̄bū,0

〉
ν

〉
YA

. (6.62)

6.2.3 The BFKL Green’s function

The cross section in Eq. (6.62) can be written in a more concise way by defining the
BFKL Green’s function

Fnx,x̄,u,ū :=
δλax,n
δλbu,0

δλ̄ax̄,n
δλ̄bū,0

, (6.63)

which was discussed in Section 3.2.2. Since this is of order λ0 at the initial condition
and the evolution equations for λ and λ̄ are linear (cf. Eq. (6.9)), F remains of
order λ0 throughout the evolution. We can also write〈(

λcu,0 − λcy,0
) (
λ̄cū,0 − λ̄cȳ,0

)〉
= φ0

uū − φ0
uȳ − φ0

yū + φ0
yȳ (6.64)

= −1

2

(
ϕ0
uū − ϕ0

uȳ − ϕ0
yū + ϕ0

yȳ

)
, (6.65)
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which are more physically intuitive. Together with the BFKL Green’s function, this
makes Eq. (6.60)

〈
1

Nc

In
〉

=
g2

2

(
φ0
uū − φ0

uȳ − φ0
yū + φ0

yȳ

)
Fnx,x̄,u,ū +O

(
φ3/2

)
. (6.66)

This can be equally well written in terms of ϕ instead of φ if needed.

In order to calculate the cross section at the end of evolution, the only quantity
that requires evolving in 6.66 is F . Since the derivatives in F are taken at n = 0,
the only evolution that we need to keep track of is that of the dipole term λax,nλ̄

a
x̄,n

in the definition of F . Fortunately, the evolution equation for this quantity has
already been found in Eq. (6.28), which we now differentiate by λbu,0 and λ̄bū,0 to
write everything in terms of F . The resulting expression is the evolution equation
for the BFKL Green’s function

1

ε

(
Fn+1

x,x̄,u,ū −Fnx,x̄,u,ū
)

= −Nc

2

αs

π2

∫
z

[
Kxzx

(
Fnx,x̄,u,ū −Fnz,x̄,u,ū

)
+Kx̄zx̄

(
Fnx,x̄,u,ū −Fnx,z,u,ū

)
− 2Kxzx̄

(
Fnx,x̄,u,ū −Fnx,z,u,ū −Fnz,x̄,u,ū + Fnz,z,u,ū

) ]
+O

(
νε2,F3/2

)
, (6.67)

which can be read off from Eq. (6.29), with the replacement φnxx̄ → Fnx,x̄,u,ū. The
initial condition has already been calculated in writing Eq. (6.61):

F0
x,x̄,u,ū =

δλax,0
δλbu,0

δλ̄ax̄,0
δλ̄bū,0

= (N2
c − 1)δuxδūx̄. (6.68)

In Paper [II], the BFKL Green’s function is Fourier transformed to write a
momentum space version of Eq. (6.67) and subsequently, the cross section in
momentum space:

dσqg
dY d2pdYAd2kA

= − αs

Nc

∫
q

q2

(q − kA)2k2
A

ϕ0(−q)Fn(−p,p, q − kA,−q + kA) +O(ϕ3/2). (6.69)
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This does indeed have the BFKL ladder structure

G(l, l′, Y )

l l

l′ l′

(6.70)

that was seen in Section 3.2.2 in quarkonium–quarkonium scattering. In place of G,
we now have Fn; in place of the quarkonia, we have a quark projectile and nuclear
target. The transverse momentum structure of 6.69 is covered in detail in Paper
[II], so we omit further discussion here.

Chapter summary

In this chapter, we have studied the Langevin formulation of JIMWLK evolution
in the dilute limit. First, the Langevin equation for the Wilson line was expanded.
This was used to derive the BFKL equation for two quantities, the unintegrated
gluon distribution φ and the BFKL pomeron ϕ. Next, the bilocal Langevin equations
were expanded in the dilute limit. These were used in the cross section for inclusive
quark–gluon production. In expanding the relevant equations from Chapter 5, we
have seen how BFKL ladder diagrams emerge from a stochastic picture of evolution.
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In Section 2.7, we saw how the dipole correlator enters the cross section for DIS.
More complicated processes may require the calculation of higher-order correlators.
In Chapter 4.5, the evolution for such correlators was discussed in terms of the
Balitsky hierarchy and the JIMWLK equation. In practice, it may not be possible
to use such equations to calculate the evolution of a particular correlator, due to
the required input from even higher-order correlators. For example, the evolution
equation for the dipole correlator

∂Y

〈
1

Nc

tr
(
UxU

†
y

)〉
= −CF

αs

π2

∫
z

K̃xzy

〈
1

Nc

tr
(
UxU

†
y

)
− 1

NcCF

Ũab
z tr

(
taUxt

bU †y
)〉
(7.1)

was provided in Eq. (4.48). In Section 4.5, the large Nc approximation was used to
write the 3-point correlator that appears on the right side of this equation in terms
of the dipole, thus closing the equation and giving us the BK equation.

In order to go beyond the equation for the dipole correlator in a systematic
way, a self-consistent truncation scheme is needed to close the infinite hierarchy of
evolution equations. One possibility which has proven successful, is the Gaussian
Approximation (GA). In this chapter, we use the GA to calculate the previously
known 2-, 3- and 4-point correlators. With the method established from these, we
move on to the 6-point correlators, which are of particular interest due to their
presence in the NLO BK equation, as shown in Section 3.3.3.

Since the notation for correlators of several Wilson lines becomes tedious, we
extend the definition

S(2)
xy :=

1

Nc

tr
(
UxU

†
y

)
(7.2)
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introduced at the end of Section 2.7 to include any number of Wilson lines:

S(n)
x1,x2,...,xn−1,xn

:=
1

Nc

tr
(
Ux1U

†
x2
. . . Uxn−1U

†
xn

)
. (7.3)

This is also the notation used in Paper [III]. In the case of 4- and 6-point correlators,
the target line at the bottom of the diagrams is henceforth left out the sake of
clarity.

We begin this chapter with an introduction to the GA in Section 7.1. In Section
7.2, parametric equations are calculated for the 2- and 3-point correlators in order
to demonstrate the use of the GA. In Section 7.3, this method is extended to 4-point
correlators, which prove to be a much more involved calculation due to the matrix
structure of expressions. Finally, we discuss the calculation of the 6-point correlators
in Section 7.4. Since this is covered in detail in Paper [III], we only give a brief
outline of the main points here.

7.1 Parametrisation definition

In the GA, a correlator is parametrised in terms of a rapidity-dependent two-point
function, which is labelled Guv. The parametrisation allows us to express any
higher-order correlator in terms of the dipole correlator. The GA is so named due
to its equivalence with a nonlocal Gaussian approximation for the weight functional
WY [ρ] (see Section 2.7). These weights are written as

W̃η[ρ] = exp

{
−
∫ η

dη̃

∫
uv

ρc(η̃,u)ρc(η̃,v)

2µ2(η̃,u,v)

}
, (7.4)

where ρc is a colour source with variance µ2 and W̃η[ρ] is an equivalent weight
to WY [ρ] [49]. The rapidity η is specifically a parametrisation rapidity – it is not
necessarily the same as the evolution rapidity Y . The reader is referred to Paper [I]
and to [99] for further discussion about this small distinction.

Generically, the truncation of an infinite hierarchy requires certain constraints to
be imposed to ensure that the approximation remains legitimate. For the Schwinger–
Dyson equations, for example, the Ward identities must be satisfied when the
hierarchy is truncated at some specific order. The group theoretical constraints
in the local limits of transverse coordinates, which are called coincidence limits
following [49], are the appropriate analogue to the Ward identities in the context of
the GA. One crucial advantage of the GA is that it automatically satisfies these
group theoretical constraints, as we show explicitly for some of the correlators
discussed in this chapter.
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The starting point of the GA is the parametrisation of a generic correlator of
any Wilson line operator O[U ] as

〈O[U ]〉 (η) =

〈
exp

{
−1

2

∫ η

dη̃

∫
uv

Guv(η̃)LauL
a
v

}
O[U ]

〉
(η0). (7.5)

A more practical form of this equation is

∂η 〈O[U ]〉 (η) =

〈
−1

2

∫
uv

Guv(η̄)LauL
a
vO[U ]

〉
(η), (7.6)

which is used to calculate various correlators in this chapter by simply operating
with two Lie derivatives on the relevant O[U ] and inserting the result on the right
side. The overall operator that acts on O[U ] in this expression is denoted by the
shorthandM and is referred to as the transition matrix. Since the Lie derivatives
in Eq. (7.6) are symmetric under exchange of u and v, we have Guv = Gvu.

7.2 Simple Correlators

7.2.1 The 2-point correlator

We begin by demonstrating the use of Eq. (7.6) on the simplest operator, the dipole
tr
(
UxU

†
y

)
/Nc. Diagrammatically, we need to solve

∂η< 1

Nc > = <−1

2

1

Nc

×
∫
uv

Guv(η̄)LauL
a
v × > (7.7)

∼ < >, (7.8)

where the red line in the rightmost diagram represents the parametrisation of a
gluon insertion in the dipole diagram. This is not to be confused with the gluon
diagram

6= . (7.9)
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Operating with LauLav as described in Section 4.3 on the dipole operator, we get all
the ways that a gluon can be added to the right of the target line:

LauL
a
v ∼ + + +

(7.10)

=: . (7.11)

Eq. (7.7) then gives

∂η

〈
1

Nc

tr
(
UxU

†
y

)〉
=

〈
−CF

2
[Gxx(η) +Gyy(η)− 2Gxy(η)]

1

Nc

tr
(
UxU

†
y

)〉
.

(7.12)

By defining

Gxy(η) :=

∫ η

dη̄

[
Gxy(η̄)− 1

2
[Gxx(η̄) +Gyy(η̄)]

]
, (7.13)

such that Gxy = Gyx and Gxx = 0, and taking the derivative G ′xy(η) := ∂ηGxy(η),
Eq. (7.12) can be written more compactly as

∂η

〈
1

Nc

tr
(
UxU

†
y

)〉
=

〈
−CFG ′xy(η)

1

Nc

tr
(
UxU

†
y

)〉
. (7.14)

This has a simple exponential solution

< 1

Nc > = exp {−CFGxy(η)} , (7.15)

which is the well-known result for the dipole correlator in the GA [49]. The
calculation can be repeated in any representation. In the adjoint representation, for
example, the result is the same with a different colour factor CF → CA = Nc and a
different normalisation dF = Nc → dA = N2

c − 1. The explicit η-dependence labelled
in G is dropped henceforth for clarity.
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7.2.2 The 3-point correlator

Another simple correlator to calculate in the GA is
〈
Ũab
z tr

(
taUxt

bU †y
)
/(NcCF)

〉
,

which appears, for example, in Eq. (7.1). Using Eq. (7.6), we need to solve

∂η< 1

NcCF > = <−1

2

1

NcCF

×
∫
uv

GuvL
a
uL

a
v × >. (7.16)

The operation of the Lie derivatives can be carried out using the product rule, giving

LcuL
c
v

[
1

NcCF

Ũab
z tr

(
taUxt

bU †y
)]

=
1

NcCF

[
LcuL

c
vŨ

ab
z

]
tr
(
taUxt

bU †y
)

+
1

NcCF

[
LcvŨ

ab
z

] [
Lcutr

(
taUxt

bU †y
)]

+
1

NcCF

[
LcuŨ

ab
z

] [
Lcvtr

(
taUxt

bU †y
)]

+
1

NcCF

Ũab
z

[
LcuL

c
vtr
(
taUxt

bU †y
)]
. (7.17)

In order to act with the Lie derivatives on adjoint Wilson lines, they are written as
Ũab
z = 2tr

(
taUzt

bU †z
)
. Then

LcvŨ
ab
z = ifacdŨdb

z δvz, (7.18)

LcuL
c
vŨ

ab
z = CAŨ

ab
z δuzδvz. (7.19)

Using these expressions, each of the four terms in Eq. (7.17) can be calculated
separately. After using the delta functions to perform the transverse integrals, the
first term becomes∫

uv

Guv
1

NcCF

[
LcuL

c
vŨ

ab
z

]
tr
(
taUxt

bU †y
)

= CAGzz
1

NcCF

Ũab
z tr

(
taUxt

bU †y
)
. (7.20)

The second and third terms simplify after some colour algebra to give∫
uv

Guv
1

NcCF

[
LcvŨ

ab
z

] [
Lcutr

(
taUxt

bU †y
)]

=

∫
uv

Guv
1

NcCF

[
LcuŨ

ab
z

] [
Lcvtr

(
taUxt

bU †y
)]

(7.21)

=− CA

2
(Gxz +Gyz)Ũdb

z

1

NcCF

tr
(
tdUxt

bU †y
)
. (7.22)

Similarly, some basic colour algebra reduces the fourth term to∫
uv

Guv
1

NcCF

Ũab
z

[
LcuL

c
vtr
(
taUxt

bU †y
)]

=
(
−2CFG ′xy + CAGxy

) 1

NcCF

Ũab
z tr

(
taUxt

bU †y
)
. (7.23)
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Putting all four results together and using Eq. (7.13) to express all G’s as G’s,
Eq. (7.17) simplifies to

∂η

〈
1

NcCF

Ũab
z tr

(
taUxt

bU †y
)〉

=

〈
−
[
CA

2

(
G ′xz + G ′yz − G ′xy

)
+ CFG ′xy

]
1

NcCF

Ũab
z tr

(
taUxt

bU †y
)〉

. (7.24)

Like the dipole correlator, this has an exponential solution〈
1

NcCF

Ũab
z tr

(
taUxt

bU †y
)〉

= exp

{
−CA

2
(Gxz + Gyz − Gxy)− CFGxy

}
, (7.25)

which is the well-known result for the 3-point correlator in the GA [49].

A self-consistency check can be performed on the parametric equation of any
correlator by taking certain coincidence limits. For the 3-point correlator, we see
that Eq. (7.25) in the particular limit

lim
y→x

1

NcCF

Ũab
z tr

(
taUxt

bU †y
)

=
1

dA

Ũab
z Ũ

ab
x , (7.26)

results in two adjoint Wilson lines. This is expected, since the quark and antiquark
are placed on top of each other at the same coordinate and become equivalent to a
gluon at that coordinate. In diagrams,

→ . (7.27)

Another scenario to consider is one in which the gluon is placed on top of either
the quark or antiquark. Then

lim
z→y

1

NcCF

Ũab
z tr

(
taUxt

bU †y
)

= lim
z→x

1

NcCF

Ũab
z tr

(
taUxt

bU †y
)

=
1

Nc

tr
(
UxU

†
y

)
. (7.28)

This is also an expected result, since all that remains after taking the limit is the
fundamental dipole. The last limiting case that may be considered is

lim
z→y
y→x

1

NcCF

Ũab
z tr

(
taUxt

bU †y
)

= 1, (7.29)

which shows that

= NcCF (7.30)
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is the correct normalisation factor for the 3-point correlator. Coincidence limits of
this kind are trivial when the objects of interest are simple 2- and 3-point correlators.
They become useful when more complicated parametric equations need to be checked,
such as those encountered for the 4- and 6-point correlators.

7.2.3 Evolution equation for Gxy

The parametric equations for the 2- and 3-point correlators are sufficient to find
an evolution equation for the GA 2-point function itself, starting from the Balitsky
equation. In Eq. (7.1), we use Eq. (7.15) for the 2-point correlators on the left and
right of the equation and Eq. (7.25) for the 3-point correlator. This results in

∂ηGxy =
αs

π2

∫
z

Kxzy

(
1− exp

{
−CA

2
(Gxz + Gyz − Gxy)

})
, (7.31)

which governs the evolution in rapidity Y (from the Balitsky equation) of Gxy
[49]. Although the quark and antiquark were taken to be in the fundamental
representation in this equation, in [83] it was shown that Eq. (7.31) is the correct
result regardless of representation. In Paper [I], this equation was extended to
include the odderon three-point function Gxyz, but this discussion is postponed
until we introduce an extension of the GA in Chapter 8.

7.3 4-point correlators

We now move on to more complicated correlators. Even at the level of the 4-point
correlators, finding the correct parametrisation equations becomes significantly more
complicated than what was done in the previous section. This is because there
is now more than one way to form a multiplet state from four Wilson lines – a
problem that was not encountered with the 2- and 3-point correlators. Consequently,
Eq. (7.6) becomes a matrix differential equation that results in a system of coupled
equations. Fortunately, the matrices involved are symmetric by construction. The
4-point correlators consisting of two fundamental and two antifundamental Wilson
lines were calculated in [49]. We give a brief overview of that calculation, since it is
helpful in understanding the calculation for the 6-point correlators.

In [102], 4-point correlators were used to calculate correlations in azimuthal angle
in DIS. Another motivation for studying higher-point correlators of this kind is that
they provide information about other related correlators. Consider, for example,
the 3-point operator from Section 7.2.2. Mathematically, the same operator can be
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obtained by taking the relevant coincidence limits in a particular 4-point operator:

1

dA/4
tr
(
Uy′t

aU †x′t
b
)

tr
(
Uxt

aU †yt
b
)

=
1

dA/4
(7.32)

y′→x′−−−→ 1

NcCF

Ũab
x′ tr

(
taUxt

bU †y
)

=
1

NcCF

. (7.33)

Studying higher-point correlators in local limits therefore allows us to simultaneously
study processes concerning gluons interacting with the target field.

7.3.1 Matrix equation

In order to form the space of all 4-point correlators, we start with a product of two
quarks and two antiquarks

Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ =

x
y

x′
y′
. (7.34)

The target line at the bottom of the diagrams is omitted henceforth for clarity in
diagrams with more than two projectiles. The notation ⊗ is used to emphasize that
this is a matrix product with suppressed open indices

j

k
j′

k′

i

l

i′

l′

. (7.35)

There are two multiplets that can be formed, which are drawn in the notation of
[103]. One choice for an orthonormal basis consists of the normalised singlet–singlet
and octet states

B :=

 1
Nc

, 1√
dA/4

 , (7.36)

as used in [49]. Each solid line corresponds to a Dirac delta and each vertex
corresponds to a generator such that

= δi1,l1δi2,l2 , and = tai1,l1t
a
i2,l2

. (7.37)
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In order to write the second one of these in terms of Dirac deltas, we can use the
Fierz identity given in Eq. (4.49), which can be written as

2tai1,l1t
a
i2,l2

= δi1,l1δi2,l2 −
1

Nc

δi1,l2δi2,l1 , (7.38)

2 = − 1

Nc

. (7.39)

It is also possible to choose a different basis, such as 1
Nc

, 1√
dA/4

 . (7.40)

This is equivalent to B and results in the same parametric equations for the 4-point
correlators. Any multiplets can be used for the calculation, provided they form an
orthonormal basis.

The 2× 1 structure of B means that Eq. (7.6) is now a 2× 2 matrix equation.
On the left side is a matrix of operators

A(η) :=


1
N2

c

1

Nc

√
dA/4

1

Nc

√
dA/4

1
dA/4

 (7.41)

=

 1
N2

c
tr
(
Uy′U

†
x′

)
tr
(
UxU

†
y

)
1

Nc

√
dA/4

tr
(
Uy′t

aU †x′
)

tr
(
Uxt

aU †y
)

1

Nc

√
dA/4

tr
(
Uy′U

†
x′t

b
)

tr
(
UxU

†
yt
b
)

1
dA/4

tr
(
Uy′t

aU †x′t
b
)

tr
(
Uxt

aU †yt
b
)
 .

(7.42)

This is formed by wedging the product of Wilson lines in Eq. (7.34) between the
basis vectors, i.e. by calculating B>

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′

)
B, where

B> =


1
Nc

1√
dA/4


=


1
Nc
δj1,k1δj2,k2

1√
dA/4

tbj1,k1t
b
j2,k2

 . (7.43)

To read the mathematical expressions from the diagrams, one traces each loop
along the direction of the arrows and denotes it by a trace, then multiplies all loops
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contributing to a particular diagram. For the bottom right element in Eq. (7.41),
for example, we get

B>2

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′

)
B2 =

1√
dA/4

× × 1√
dA/4

(7.44)

=
1√
dA/4

taj1,k1t
a
j2,k2

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′

)
.

(7.45)

It is also possible to set up the calculation such that one considers two separate
2× 1 column vectors, as is done in [96], for example. We choose to keep the matrix
structure following [49] as a matter of convenience for calculating the transition
matrix. Eq. (7.6) is now written as

∂η 〈A(η)〉 = −〈MA(η)〉 , (7.46)

whereM is the transition matrix that is still to be calculated.

7.3.2 Transition matrix

Before solving Eq. (7.46), the transition matrix must be calculated. The right side
of Eq. (7.46) is given by

−MA(η) := −
(
M(1,1) M(1,2)

M(1,2) M(2,2)

)
1
N2

c

1

Nc

√
dA/4

1

Nc

√
dA/4

1
dA/4

 (7.47)

= −


1
N2

c

1

Nc

√
dA/4

1

Nc

√
dA/4

1
dA/4

 . (7.48)

These are the diagrams that contain the relevant G content that need to be calculated
in order to extractM.

As an example of how this setup works, consider the top left element of the
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matrix in Eq. (7.48):

[MA(η)]11 =
1

N2
c

(7.49)

=M(1,1) 1

N2
c

+M(1,2) 1

Nc

√
dA/4

. (7.50)

From the right side of Eq. (7.6), it follows that Eq. (7.50) is the same as

−1

2

∫
uv

GuvL
a
uL

a
vA(1,1)(η) = −1

2

∫
uv

GuvL
a
uL

a
v

1

N2
c

=
1

N2
c

.

(7.51)

The G content of the rightmost diagram can be separated from the target interaction
by inserting a complete set of states:

1

N2
c

=
1

N2
c

(∑
n

|n〉〈n|

)
(7.52)

=
1

N2
c

(
1

N2
c

+
1

dA/4

)
(7.53)

=
1

N4
c

+
1

N2
c dA/4

. (7.54)

Then, direct comparison with Eq. (7.50) gives the two transition matrix elements

M(1,1) = − 1

N2
c

and M(1,2) = − 1

Nc

√
dA/4

. (7.55)

Similarly, by calculating the other three elements of the matrix in Eq. (7.48), we
get the full transition matrix

M = −


1
N2

c

1

Nc

√
dA/4

1

Nc

√
dA/4

1
dA/4

 , (7.56)
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where [49]

M(1,1) = CF

(
G ′xy + G ′x′y′

)
, (7.57)

M(1,2) =

√
dA/4

CA

(
G ′x′x + G ′y′y − G ′x′y − G ′y′x

)
, (7.58)

M(2,2) =

(
CF −

CA

2

)(
G ′xy + G ′x′y′

)
+
Cd + CA

4

(
G ′x′x + G ′y′y

)
− Cd − CA

4

(
G ′x′y + G ′y′x

)
.

(7.59)

Now we have a completed differential equation to solve in the form of Eq. (7.46).

7.3.3 Differential equation solution

It is straightforward to solve Eq. (7.46) by exponentiating the right side, giving

〈A(η)〉 =

〈
Pη exp

{
−
∫ η

η0

dη̄M
}
A(η0)

〉
, (7.60)

where Pη denotes path ordering in rapidity η and the normalisation factor A(η0)
is set by the initial condition. The part of 〈A(η)〉 that is of interest for the study
of the 6-point correlators presented in Paper[III] is the so-called rigid exponential.
This is found by assuming that the transition matrices at different parametrisation
rapidities commute. Consequently, the path ordering in η can be neglected and
what remains is 〈

Arigid(η)
〉

:=

〈
exp

{
−
∫ η

dη̄M
}〉

. (7.61)

The explicit rigid exponential solution for the 4-point correlators is provided in [49].

7.3.4 Local limits

The final task regarding the 4-point correlators is the check of coincidence limits to
ensure that the expressions provided in Eqs. (7.57), (7.58) and (7.59) are consistent
with the 2- and 3-point correlators from Section 7.2. These checks are shown explicitly
here, since the same method is applied in the case of the 6-point correlators in the
next section, where they are lengthy and therefore omitted. First, we consider the
case of putting one of the quarks and one of the antiquarks at the same coordinate.
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Taking the limit x→ y for each element ofM gives

lim
x→y
M(1,1) = CFG ′x′y′ , (7.62)

lim
x→y
M(1,2) = 0, (7.63)

lim
x→y
M(2,2) =

(
CF −

CA

2

)
G ′x′y′ +

CA

2

(
G ′x′y + G ′y′y

)
. (7.64)

The off-diagonal elements of A(η) are expected to vanish in this limit because of the
unitarity of the Wilson lines – this is consistent with Eq. (7.63). The matrix equation
given in Eq. (7.46) therefore decouples into two separate equations. The equation for
A(1,1)(η), together with Eq. (7.62), reproduces the 2-point correlator parametrisation
given in Eq. (7.15). The equation for A(2,2)(η), together with Eq. (7.64), reproduces
the 3-point correlator parametrisation given in Eq. (7.25). Any other limit besides
x→ y which puts one of the quarks and one of the antiquarks at the same coordinate
gives the same results.

In addition to the first limit, we can also put the remaining quark and antiquark
at the same coordinate. Then

lim
x→y
x′→y′

M(1,1) = 0, (7.65)

lim
x→y
x′→y′

M(2,2) = CAG ′y′y. (7.66)

The first line vanishes as expected. The second line is consistent with the dipole
parametrisation Eq. (7.15) in the adjoint representation. These limits therefore
show that the parametric equations for the 4-point correlators are consistent with
those of the 2- and 3-point correlators.

The last set of limits that can be considered is x→ x′ and y → y′, corresponding
to the two quarks at one coordinate and the two antiquarks at another coordinate.
To make sense of this, it is necessary to change from the basis in Eq. (7.36) to a
third equivalent set 1√

Nc(Nc+1)/2
, 1√

Nc(Nc+1)/2


>

. (7.67)

We have used

=
1

2

(
+

)
, (7.68)

=
1

2

(
−

)
, (7.69)
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for symmetry and antisymmetry operators, respectively, following the notation of
[104]. A more detailed discussion of this particular basis is given in [49].

7.4 6-point correlators

Next, we extend the method used to calculate the 4-point correlators to calculate
the 6-point correlator consisting of three fundamental and three antifundamental
Wilson lines. Two of these correlators, namely〈

S(2)
xzS

(2)
zz′S

(2)
z′y

〉
=

〈
1

N3
c

tr
(
UxU

†
z

)
tr
(
UzU

†
z′

)
tr
(
Uz′U

†
y

)〉
(7.70)

and 〈
S

(6)
xzz′yzz′

〉
=

〈
1

Nc

tr
(
UxU

†
zUz′U

†
yUzU

†
z′

)〉
, (7.71)

appear in the NLO BK equation discussed in Section 3.3.3 and are therefore of
particular interest. The full calculation of these correlators in the GA is provided in
Paper [III], where they are also compared numerically to their counterparts in the
large-Nc limit.

7.4.1 Matrix equation

In order to form the space of all 6-point correlators, the product of Wilson lines in
Eq. (7.34) is extended to

Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′ =

x
y

x′
y′

x′′
y′′

, (7.72)

with open indices

j

k
j′

k′

j′′

k′′

i

l

i′

l′

i′′

l′′

. (7.73)
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There are now six ways to join the endpoints on either side in a consistent way with
the arrow directions to form multiplets. On the right side, for example, we can use
one of the simple elements of the (not orthogonal) set

Bsim :=

(
1√
N3

c

, 1√
N3

c

, 1√
N3

c

, 1√
N3

c

, 1√
N3

c

, 1√
N3

c

)
. (7.74)

The two required operators from Eqs. (7.70) and (7.71) can be formed using Bsim
1

and Bsim
5 and then taking the appropriate coincidence limits, i.e.

S(2)
xyS

(2)
yx′′S

(2)
x′′y′′ =

(
Bsim

1

)>  lim
x′→y
y′→x′′

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′

)Bsim
1

(7.75)

= lim
x′→y
y′→x′′

1

N3
c

× × , (7.76)

and

S
(6)
xzx′yzz′ =

(
Bsim

1

)>  lim
x′→y
y′→x′′

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′

)Bsim
5 (7.77)

= lim
x′→y
y′→x′′

1

Nc

× × . (7.78)

The exact transverse coordinate labels are different from those that appear in the
6-point correlators of the NLO BK equation. They have been relabelled here to be
consistent with the labels from Section 7.3.

Natural basis

The natural extension of the orthonormal basis B defined in Eq. (7.36) for the
4-point correlators is then

Bnat

:=

(
1√
N3

c

,
√

1
NcdA/4

,
√

1
NcdA/4

,
√

1
NcdA/4

,
√

1
−NcdA/8

,
√

1
CddA/8

)
.

(7.79)
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The black and white dots in the last two elements denote the antisymmetric and
symmetric structure constants, fabc = −2itr

([
ta, tb

]
, tc
)
and dabc = 2tr

({
ta, tb

}
, tc
)
,

respectively, so that

= fabctai1,l1t
b
i2,l2

tci3,l3 and = dabctai1,l1t
b
i2,l2

tci3,l3 . (7.80)

Using the Fierz identity given in Eq. (7.39), it is possible to write any of the
elements in Bnat solely in terms of the elements in Bsim. Then the appropriate
linear combinations of the elements of Bnat can be used in place of Bsim

1 and Bsim
5

in Eqs. (7.70) and (7.71).

Similarly to the calculation of the 4-point correlators, Eq. (7.6) must now be
used in the form

∂ηA(η) = −MA(η), (7.81)

(cf. Eq. (7.46)) to calculate the parametric equations for each 6-point correlator.
Since the basis is six-dimensional, Eq. (7.81) is a 6× 6 matrix differential equation.
If we proceed to solve it in the same way as the 4-point correlators in Section 7.3.3,
we would need to exponentiate a 6× 6 matrix. This is not feasible analytically, so
we proceed in a different way.

Improved basis

The ultimate goal of the 6-point correlator calculation is to study those that appear
in the NLO BK equation. We can therefore choose specific transverse coordinates
that give the desired correlators in the end. From the analysis in Section 7.3.4 of
the 4-point correlators in certain coincidence limits, we know that the parametric
equations for the 6-point correlators must reduce consistently to the equations for the
lower-point correlators already calculated. Since the particular 6-point correlators in
the NLO BK equation already contain some redundancy in the transverse coordinates,
this can be exploited using our knowledge of the lower-point correlators.

We begin with the assumption that, in the limits x′ → y and y′ → x′′, a basis
Bimp can be found such that one part of Eq. (7.81) reproduces the 2-point correlator
equation and another independent part reproduces the 4-point correlator. This
means that the transition matrix in Eq. (7.81) takes the block-diagonal form

lim
x′→y
y′→x′′

M =

M
(3×3)
3 0 0

0 M(2×2)
2 0

0 0 M(1×1)
1

 (7.82)
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7.4. 6-point correlators

in this basis, where the dimensionality of each block is given as the superscript
(n× n). The resulting differential equation splits into three parts,

∂η

〈
A(3×3)

3 (η)
〉

= −
〈
M(3×3)

3 A(3×3)
3 (η)

〉
, (7.83)

∂η

〈
A(2×2)

2 (η)
〉

= −
〈
M(2×2)

2 A(2×2)
2 (η)

〉
, (7.84)

∂η

〈
A(1×1)

1 (η)
〉

= −
〈
M(1×1)

1 A(1×1)
1 (η)

〉
, (7.85)

where each of the operator matrices can be formed from the basis Bimp as

A(3×3)
3 (η) =

(
Bimp

1 , Bimp
2 , Bimp

3

)>  lim
x′→y
y′→x′′

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′

)
×
(
Bimp

1 , Bimp
2 , Bimp

3

)
, (7.86)

A(2×2)
2 (η) =

(
Bimp

4 , Bimp
5

)>  lim
x′→y
y′→x′′

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′

)
×
(
Bimp

4 , Bimp
5

)
, (7.87)

A(1×1)
1 (η) =

(
Bimp

6

)>  lim
x′→y
y′→x′′

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′

)Bimp
6 . (7.88)

The claim is that Eq. (7.88) reproduces the 2-point correlator parametrisation
given in Eq. (7.15) and that Eq. (7.87) reproduces one of the 4-point correlator
parametrisations given by Eq. (7.61) (with the transition matrix elements from
Eqs. (7.57), (7.58) and (7.59)).

A systematic way to try to find the proposed basis Bimp is to calculate each of
the correlators

(
Bsim
i

)>  lim
x′→y
y′→x′′

(
Ux ⊗ U †y ⊗ Ux′ ⊗ U †y′ ⊗ Ux′′ ⊗ U †y′′

)Bsim
j (7.89)

for 1 ≤ i, j ≤ 6, and see which of these reproduces the required lower-point correlator
equations. Doing so gives

lim
x′→y
y′→x′′

1

N3
c

x
y

x′
y′

x′′
y′′

=
1

Nc

tr
(
UxU

†
y

)
, (7.90)
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for i = j = 6, which is just the 2-point correlator. So Bimp
6 := Bsim

6 . Next, we find
two basis elements that are linearly independent of Bsim

6 and that reproduce one of
the 4-point correlator equations. These elements are found to be

Bimp
4 :=

1√
2NcdA

(
−Bsim

2 +Bsim
3

)
, (7.91)

Bimp
5 :=

1√
2NcdA

(
−Bsim

2 −Bsim
3 +

2

Nc

Bsim
6

)
. (7.92)

The corresponding expression to Eq. (7.90) is a lengthy combination of various
6-point operators; how the 4-point correlator parametrisations emerge is shown in
the next subsection. Finally, the last three elements of the improved basis can be
chosen in any way such that they are orthonormal to Bimp

4 , Bimp
5 and Bimp

6 . We
choose

Bimp
1 :=

1√
N2

c dACd/2

(
Nc

2
Bsim

1 −Bsim
2 −Bsim

3 −Bsim
4 +

Nc

2
Bsim

5 +
2

Nc

Bsim
6

)
,

(7.93)

Bimp
2 :=

1√
2NcdA

(
−Bsim

1 +Bsim
5

)
, (7.94)

Bimp
3 :=

1√
NcdA

(
−Bsim

4 +
1

Nc

Bsim
6

)
. (7.95)

The final basis choice is therefore

(
Bimp

)>
:=



1√
N2

c dACd/2

[
Nc

2
− − − + Nc

2
+ 2

Nc

]
1√

2NcdA

[
− +

]
1√
NcdA

[
− + 1

Nc

]
1√

2NcdA

[
− +

]
1√

2NcdA

[
− − + 2

Nc

]
1√
N3

c



. (7.96)

It is easier to see why this basis choice works to block-diagonalise the transition
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matrix in the appropriate limits if the Fierz identity in Eq. (7.39) is used to write

(
Bimp

)>
=



1√
N2

c dACd/2

[
Nc +Nc − 2 − 2

]
1√

2NcdA

[
2 − 2

]
1√
NcdA

[
−2

]
1√

2NcdA

[
2 +

]
1√

2NcdA

[
−2 − 2

]
1√
N3

c



. (7.97)

In particular, notice that the bottom three elements contain the diagrams

, , , (7.98)

which all reduce to basis elements from the 2- and 4-point correlator calculations
in the limits x′ → y,y′ → x′′. This is why Bimp results in a block-diagonalised
transition matrix in these limits.

7.4.2 Transition matrix

Using Bimp as a basis to calculate Eq. (7.81) in the same way as for the 4-point
correlators results in a transition matrix of the form given in Eq. (7.82):

lim
x′→y
y′→x′′

M =

M
(3×3)
3 0 0

0 M(2×2)
2 0

0 0 M(1×1)
1

 , (7.99)

where

M1 = CFG ′x,y (7.100)
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and

M2 =
Nc

4

(
M(1,1)

2 M(1,2)
2

M(1,2)
2 M(2,2)

2

)
, (7.101)

with

M(1,1)
2 =M(2,2)

2 = G ′x,z + G ′y,z −
2

N2
c

G ′x,y + G ′x,z′ + G ′y,z′ , (7.102)

M(1,2)
2 = G ′x,z + G ′y,z − G ′x,z′ − G ′y,z′ . (7.103)

These can be shown to agree with the transition matrices for the 2- and 4-point
correlators, respectively. For the 3× 3 transition sub-matrix in Eq. (7.99), we get

M3 =

 Nc

4
Γ′1

√
NcCd

4
Γ′2 0√

NcCd

4
Γ′2

Nc

4
Γ′1 − 1√

2
Γ′2

0 − 1√
2
Γ′2 Γ′0

 , (7.104)

where

Γ0 := CFGx,y +NcGz,z′ , (7.105)

Γ1 := Gx,z + Gy,z −
2

N2
c

Gx,y + Gx,z′ + Gy,z′ + 2Gz,z′ , (7.106)

Γ2 := Gx,z − Gy,z − Gx,z′ + Gy,z′ , (7.107)

and Γ′i := ∂ηΓi for i = 0, 1, 2. This is needed to find the 6-point correlators for the
NLO BK equation.

7.4.3 Differential equation solutions

With the transition matrix in block-diagonal form, Eq. (7.81) separates into
Eqs. (7.83), (7.84) and (7.85). These can can be solved independently from one
another following the procedure from Section 7.3.3.

1× 1 equation

First, we solve the simple one-dimensional equation by using Eq. (7.100) in Eq. (7.85)
to get

∂η 〈A1(η)〉 = −
〈
CFG ′x,yA1(η)

〉
. (7.108)
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Using Eq. (7.88) gives

A1(η) = lim
x′→y
y′→x′′

1

N3
c

=
1

Nc

tr
(
UxU

†
y

)
, (7.109)

as already seen in Eq. (7.90). This leads to the solution〈
1

Nc

tr
(
UxU

†
y

)〉
= exp {−CFGxy(η)} , (7.110)

which is exactly the 2-point correlator parametrisation in Eq. (7.15).

2× 2 equation

Next, we solve the 2× 2 matrix equation by using Eq. (7.101) in Eq. (7.84) to get

∂η 〈A2(η)〉 = −

〈
Nc

4

(
M(1,1)

2 M(1,2)
2

M(1,2)
2 M(2,2)

2

)
A2(η)

〉
. (7.111)

The explicit elements of the correlator matrix 〈A2(η)〉 contain cumbersome linear
combinations of various six-point operators. They are provided in diagrammatic
form in the appendix of Paper [III]. After some simplification, they may be written
as

A(1,1)
2 (η) = A(2,2)

2 (η)

=
1

2dA

[
tr
(
UyU

†
y′′

)
tr
(
UxU

†
y

)
− 2

Nc

tr
(
U †y′′Ux

)
+ tr

(
Ux′′U

†
y′′

)
tr
(
UxU

†
x′′

)]
,

(7.112)

A(1,2)
2 (η) = A(2,1)

2 (η)

=
1

2dA

[
tr
(
UyU

†
y′′

)
tr
(
UxU

†
y

)
− tr

(
Ux′′U

†
y′′

)
tr
(
UxU

†
x′′

)]
. (7.113)

For the single trace term in Eq. (7.112), the parametrisation of the dipole
correlator given in Eq. (7.15) can be used to rewrite the trace as an exponential of
G. Using the rigid exponentiation method, the solution of Eq. (7.111) is found to be

A2(η) =
1

2
e

1
2Nc
Gxy′′

×

(
e−

Nc
2

(Gxx′′+Gx′′y′′ ) + e−
Nc
2

(Gxy+Gyy′′ ) −e−
Nc
2

(Gxx′′+Gx′′y′′ ) + e−
Nc
2

(Gxy+Gyy′′ )

−e−
Nc
2

(Gxx′′+Gx′′y′′ ) + e−
Nc
2

(Gxy+Gyy′′ ) e−
Nc
2

(Gxx′′+Gx′′y′′ ) + e−
Nc
2

(Gxy+Gyy′′ )

)
.

(7.114)
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In order to reconcile this with the 4-point correlator expressions from Section 7.3,
the particular elements in the operator matrix

1
N2

c

1

Nc

√
dA/4

1

Nc

√
dA/4

1
dA/4

 (7.115)

given in Eq. (7.41) need to be extracted from A2(η). This can be achieved by taking
the sum of A(1,1)

2 (η) and A(1,2)
2 (η) to get

< 1

N2
c >x′=y

y′=y′′
=

〈
1

N2
c

tr
(
UyU

†
y′′

)
tr
(
UxU

†
y

)〉
=

2CF

Nc

exp

{
1

2Nc

Gxy′′
}

exp

{
−Nc

2
(Gxy + Gyy′′)

}
+

1

N2
c

exp {−CFGxy′′} . (7.116)

This is the same as the explicit solution for the top left element of Eq. (7.115)
that is provided in [49], which means that our calculation of A2 is consistent with
the 4-point correlator parametrisations. The other expression that follows from
Eq. (7.114) comes from the difference of A(1,1)

2 (η) and A(1,2)
2 (η) and leads to the

same expression shown in Eq. (7.116).

3× 3 equation

Finally, the last matrix differential equation is found by using Eq. (7.103) in Eq. (7.83)
to get

∂η 〈A3(η)〉 = −<
 Nc

4
Γ′1

√
NcCd

4
Γ′2 0√

NcCd

4
Γ′2

Nc

4
Γ′1 − 1√

2
Γ′2

0 − 1√
2
Γ′2 Γ′0

A3(η)>. (7.117)

Since the solution is the matrix exponentiation of a 3× 3 matrix, it can be found
analytically. Recall that this is only possible due to our choice of basis Bimp, which
allowed us to block-diagonalise the full 6× 6 transition matrix and separate the full
matrix equation into three independent pieces.

The exponentiation of the 3× 3 transition matrixM3 is straightforward and the
result is provided in Section III.D of Paper [III]. Despite the lengthy expressions
contained there, notice that there are only simple functions of G. This means that,
even though the parametric equations may be tedious to extract, the procedure is
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straightforward algebraically. In a similar way that Eq. (7.116) was found from the
solution of the 2× 2 matrix differential equation, the relevant correlators

〈
S(2)
xyS

(2)
yx′′S

(2)
x′′y′′

〉
= lim

x′→y
y′→x′′< 1

N3
c >, (7.118)

〈
S

(6)
xzx′yzz′

〉
= lim

x′→y
y′→x′′< 1

Nc > (7.119)

can be extracted from the solution of the 3× 3 matrix equation. This procedure
is explained in Section III.E of Paper [III]. Once these expressions are found, the
dipole parametrisation may be used to write

Gxy = − 1

CF

ln

〈
1

Nc

tr
(
UxU

†
y

)〉
. (7.120)

This can be substituted into the parametric equation for any other correlator that
is written in terms of G, thereby relating higher-order correlators to the dipole.

The 6-point correlator calculation has been verified in all possible coincidence
limits, in the same way that the 4-point correlator calculation was checked in
Section 7.3.4. Particular coordinate configurations have also been used to study
the final parametric equations, in order to get an idea of the behaviour of the
6-point correlators in the NLO BK equation. These results, as well as the numerical
implementation of the analytical calculation in the NLO BK equation, are shown in
Section IV of Paper [III].

Chapter summary

In this chapter, we have used the GA to truncate the evolution equations for
Wilson line correlators. We have demonstrated how this is used to calculate simple
correlators, such as the 2- and 3-point correlators. We have also discussed the
calculation of the 4-point correlators from [49], since the same method was used
to study the 6-point correlators. In the latter case, the ability to find a particular
multiplet basis when there are only four distinct transverse coordinates, allowed us
to simplify the calculation substantially. This lead to explicit analytical expressions
for the 6-point correlators, particularly those found in the NLO BK equation.
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8

Beyond the Gaussian Approximation

In Chapter 7, the GA was used to calculate several Wilson line correlators. In
this chapter, we introduce an extension to the GA and use it to study the 2-, 3-
and 4-point correlators of Chapter 7. Ultimately, the goal is to obtain the odderon
equation studied in Paper [I]. The odderon, as first suggested in [105], is the charge-
parity-odd (C-odd) counterpart to the pomeron. This defining characteristic of the
odderon is necessary, for example, to account for the production of colourless C-even
states such as the neutral pion in exclusive DIS. Since the calculational details of the
odderon evolution equation are not discussed in the paper, we provide them here.
For the numerical implementation, the reader is referred in particular to Sections
VI and VII of Paper [I].

We begin this chapter by introducing the extended Gaussian approximation
(eGA) and then studying its properties in Section 8.1. In Section 8.2, the eGA
is used to calculate 4-point correlators. In Section 8.3, we discuss the emergence
of the odderon as a consequence of the extension of the GA and its effect on the
parametrisations of the 2- and 3-point correlators.

8.1 The extended GA operator

Recall Eq. (7.6),

∂η 〈O[U ]〉 (η) =

〈
−1

2

∫
uv

Guv(η̄)LauL
a
vO[U ]

〉
(η), (8.1)
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which was used to calculate various correlators in the previous chapter. For the
dipole correlator of Section 7.2.1, for example, we solved the differential equation

∂η< 1

Nc > = <−1

2

1

Nc

×
∫
uv

Guv(η̄)LauL
a
v × > (8.2)

∼ < >, (8.3)

to obtain the dipole parametrisation. The so-called transition matrix was calculated
by operating with the GA operator

Guv(η̄)LauL
a
v ∼ . (8.4)

The simplest extension to this operator would be the inclusion of other products
of two Lie derivatives. The inclusion of an Ra

uR
a
v term is trivial, since the operation

of Lau and Ra
u on the same Wilson line is effectively the same, up to a sign. Instead

of Eq. (8.1), we would have

∂η 〈O[U ]〉 (η) =

〈
−1

2

∫
uv

Guv(η̄)
1

2
(LauL

a
v +Ra

uR
a
v)O[U ]

〉
(η) (8.5)

and the physics discussions of the previous chapter do not change significantly. On
the other hand, the inclusion of mixed terms LauRa

v and Ra
uL

a
v is more complicated,

since this introduces a gluon interaction with the target. Since there is little
experimental motivation to consider such an addition to the GA, we do not proceed
in this direction.

Instead, we introduce a 3-point function to the right side of Eq. (8.1). For the
dipole correlator, for example, this would add contributions of the type

and (8.6)

to Eq. (8.4). These diagrams contain an antisymmetric structure constant fabc at
each three-gluon vertex, denoted by a large black dot. Symmetric contributions

and (8.7)
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8.1. The extended GA operator

also need to be considered, where the three-gluon vertex now has a large white dot
for each factor dabc. Contributions of these types may be included in the definition
of the parametrisation according to

∂η 〈O[U ]〉 (η) =

〈
−
[

1

2

∫
uv

Guv(η̄)LauL
a
v

+

∫
uvw

[
fabcGf

uvw(η̄) + dabcGd
uvw(η̄)

]
LauL

b
vL

c
w

]
O[U ]

〉
(η). (8.8)

The various terms are referred to henceforth as the

• GA operator Guv(η̄)LauL
a
v

• antisymmetric eGA operator fabcGf
uvw(η̄)LauL

b
vL

c
w

• symmetric eGA operator dabcGd
uvw(η̄)LauL

b
vL

c
w.

As with the 2-point function, the explicit rapidity dependence of the 3-point functions
are suppressed henceforth for clarity.

At this stage, the symmetry properties of the 3-point functions Gf and Gd in
Eq. (8.8) are not known. They can be found by first writing Gf and Gd as linear
combinations of all possible permutations of the transverse coordinates:

Gf
uvwL

a
uL

b
vL

c
w −→

1

6

[
Gf

uvwL
a
uL

b
vL

c
w +Gf

vwuL
a
vL

b
wL

c
u +Gf

wuvL
a
wL

b
uL

c
v

+Gf
uwvL

a
uL

b
wL

c
v +Gf

vuwL
a
vL

b
uL

c
w +Gf

wvuL
a
wL

b
vL

c
u

]
,

(8.9)

Gd
uvwL

a
uL

b
vL

c
w −→

1

6

[
Gd

uvwL
a
uL

b
vL

c
w +Gd

vwuL
a
vL

b
wL

c
u +Gd

wuvL
a
wL

b
uL

c
v

+Gd
uwvL

a
uL

b
wL

c
v +Gd

vuwL
a
vL

b
uL

c
w +Gd

wvuL
a
wL

b
vL

c
u

]
.

(8.10)

The positions of the coordinate indices on the G’s in these expressions should now be
taken literally. In order to make these expressions more manageable, all coordinate
and colour indices are ordered so that an overall LauLbvLcw can be factored out.

8.1.1 Ordering transverse coordinates

To order the transverse coordinates u,v,w, we make use of the commutator written
as [

Lau, L
b
v

]
= ifabdδuvL

d
u =

1

2
ifabdδuv

(
Ldu + Ldv

)
, (8.11)
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As an example, the fifth term in Eq. (8.9) becomes

Gf
vuwL

a
vL

b
uL

c
w = Gf

vuw

(
LbuL

a
v + [Lav, L

b
u]
)
Lcw (8.12)

= Gf
vuw

(
LbuL

a
v +

1

2
ifabdδuv

(
Ldu + Ldv

))
Lcw (8.13)

= Gf
vuwL

b
uL

a
vL

c
w +

1

2
ifabd

(
Gf

uuwL
d
uL

c
w +Gf

vvwL
d
vL

c
w

)
. (8.14)

Notice that for each use of the commutator, two new terms are introduced, both of
which contain only two coordinate indices. We write

fabcGf
uvwL

a
uL

b
vL

c
w −→

(
Ĝf2 + Ĝf3

)
, (8.15)

where Ĝf2 contains terms with two Lie derivatives and Ĝf3 contains terms with
three Lie derivatives. Explicitly, the resulting expressions from Eq. (8.9) are

Ĝf2 :=
1

12
ifabc

[
facd

(
Gf

uwuL
d
uL

b
w +Gf

vwvL
d
vL

b
w

)
+ f bcd

(
Gf

vuuL
a
vL

d
u +Gf

vwwL
a
vL

d
w

)
+ fabd

(
Gf

uuvL
d
uL

c
v +Gf

wwvL
d
wL

c
v

)
+ facd

(
Gf

vuvL
b
uL

d
v +Gf

wuwL
b
uL

d
w

)
+ f bcd

(
Gf

uvvL
a
uL

d
v +Gf

uwwL
a
uL

d
w

)
+ fabd

(
Gf

uuwL
d
uL

c
w +Gf

vvwL
d
vL

c
w

)
+ f bcd

(
Gf

wuuL
a
wL

d
u +Gf

wvvL
a
wL

d
v

)
+facd

(
Gf

uvuL
d
uL

b
v +Gf

wvwL
d
wL

b
v

)
+ fabd

(
Gf

vvuL
c
uL

d
v +Gf

wwuL
c
uL

d
w

)]
(8.16)

and

Ĝf3 :=
1

6
fabc

[
Gf

uvwL
a
uL

b
vL

c
w +Gf

vwuL
c
uL

a
vL

b
w +Gf

wuvL
b
uL

c
vL

a
w

+Gf
uwvL

a
uL

c
vL

b
w +Gf

vuwL
b
uL

a
vL

c
w +Gf

wvuL
c
uL

b
vL

a
w

]
. (8.17)

For Eq. (8.10), the result is simpler because each time the commutator is used to
reorder coordinates, terms with a factor fabc cancel with the overall factor dabc.
Therefore, only terms with three distinct coordinates can survive:

dabcGd
uvwL

a
uL

b
vL

c
w −→ Ĝd :=

1

6
dabc

[
Gd

uvwL
a
uL

b
vL

c
w +Gd

wuvL
b
uL

c
vL

a
w

+Gd
vwuL

c
uL

a
vL

b
w +Gd

uwvL
a
uL

c
vL

b
w +Gd

vuwL
b
uL

a
vL

c
w +Gd

wvuL
c
uL

b
vL

a
w

]
. (8.18)

8.1.2 Ordering colour indices

The reshuffling of coordinate indices in Ĝf2, Ĝf3 and Ĝd results in colour indices
becoming disordered. This can be fixed using the antisymmetry and symmetry of
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8.1. The extended GA operator

the structure constants fabc and dabc, respectively. For the operator Ĝf2, every term
in Eq. (8.16) has only two coordinates, which can be relabelled as follows. In terms
containing u and w, we replace w → v; in terms containing v and w, we replace
w → u. Then Eq. (8.16) becomes

Ĝf2 =
1

12
ifabc

[
facd

(
2Gf

uvuL
d
uL

b
v +Gf

uvuL
d
uL

b
v + 2Gf

vuvL
b
uL

d
v +Gf

vuvL
d
vL

b
u

)
+ 3f bcd

(
Gf

uvvL
a
uL

d
v +Gf

vuuL
a
vL

d
u

)
+ fabd

(
3Gf

uuvL
d
uL

c
v + 2Gf

vvuL
c
uL

d
v

+Gf
vvuL

d
vL

c
u

)]
. (8.19)

Each fabc can be written as a difference of traces as fabc =
−2i

[
tr
(
tatbtc

)
− tr

(
tatctb

)]
. Using the Fierz identity from Eq. (7.39) and

simplifying each trace gives

Ĝf2 =
iNc

6

[
−2Gf

uvuL
b
uL

b
v −Gf

uvuL
b
uL

b
v − 2Gf

vuvL
b
uL

b
v −Gf

vuvL
b
vL

b
u

+3Gf
uvvL

a
uL

a
v + 3Gf

vuuL
a
vL

a
u + 3Gf

uuvL
c
uL

c
v + 2Gf

vvuL
c
uL

c
v +Gf

vvuL
c
vL

c
u

]
. (8.20)

Since [Lau, L
a
v] = 0, the product of Lie derivatives can be written in terms of the

anticommutator 1
2
{Lau, Lav} = LauL

a
v in order to highlight the symmetry of the term.

Then

Ĝf2 =
iNc

4
G(2)

uv {Lau, Lav} , (8.21)

where

G(2)
uv := Gf

uuv −Gf
uvu +Gf

vuu + (u↔ v). (8.22)

In the expressions for Ĝf3 and Ĝd, all colour indices are contracted within each
term, so these can be relabelled and the colour indices in the Lie derivatives can be
reordered. This results in

Ĝf3 =
1

6
fabc

(
Gf

uvw +Gf
vwu +Gf

wuv −Gf
uwv −Gf

vuw −Gf
wvu

)
LauL

b
vL

c
w, (8.23)

Ĝd =
1

6
dabc

(
Gf

uvw +Gf
vwu +Gf

wuv +Gf
uwv +Gf

vuw +Gf
wvu

)
LauL

b
vL

c
w. (8.24)

8.1.3 Symmetry properties of the final eGA operator

So far, we have simple explicit expressions for Ĝf2, Ĝf3 and Ĝd, as given by
Eqs. (8.21), (8.23) and (8.24), respectively. The next step is to determine the
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8. Beyond the Gaussian Approximation

symmetry properties of these three objects. Such information is very useful when
lengthy expressions in the calculation of correlators need to be simplified.

Recall the symmetry and antisymmetry operators

=
1

2

(
+

)
, (8.25)

=
1

2

(
−

)
, (8.26)

from Eqs. (7.68) and (7.69), respectively. These can be extended to any number of
objects. For example,

and (8.27)

are the symmetric and antisymmetric linear combinations of three objects. With
these, it can be shown [104] that any set of three objects can be written as

= +
4

3
+

4

3
+ . (8.28)

(This can be verified by expanding each of the symmetric and antisymmetric
operators in all four terms on the right side).

We now apply Eq. (8.28) to the indices u,v,w. In Eqs. (8.9) and (8.10), we
introduce auxiliary factors mi, where i = 1, · · · , 4 corresponding to

−→ m1, (8.29)

−→ m2, (8.30)

−→ m3, (8.31)

−→ m4. (8.32)

By wrapping each contribution within these auxiliary factors, it is possible to keep
the G’s corresponding to each of the four terms in Eq. (8.28) distinct from one other.
At the end of the calculation, all mi’s are set to 1 – they are merely a bookkeeping
device.
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8.2. The 4-point correlator beyond the GA

For the operator Ĝf2, separating terms in this way results in

Ĝf2 =
iNc

18

[
m1

(
2
(
Gf

uuv + 2Gf
uvu +Gf

vuu

)
+Gf

vvu +Gf
vuv +Gf

uvv

)
+m2

(
2
(
2Gf

uuv −Gf
uvu −Gf

vuu +Gf
vvu

)
−Gf

vuv −Gf
uvv

)
+3m3

(
−2Gf

uvu + 2Gf
vuu −Gf

vuv +Gf
uvv

)]
{Lau, Lav} . (8.33)

Since the mixed symmetry terms m1 and m2 survive, we can conclude that Ĝf2 has
both symmetric and antisymmetric contributions. For the operator Ĝf3, only the
antisymmetric m4 term survives. Instead of expressing Eq. (8.23) as a sum of six
terms, it can be written as

1

6

(
Gf

uvw +Gf
vwu +Gf

wuv −Gf
uwv −Gf

vuw −Gf
wvu

)
= Gf

uvw, (8.34)

so that

Ĝf3 = fabcGf
uvwL

a
uL

b
vL

c
w, (8.35)

where Gf
uvw is understood henceforth to be totally antisymmetric. For the operator

Ĝd, only the symmetric m1 term survives. This means that Ĝd can be written as

Ĝd = dabcGd
uvwL

a
uL

b
vL

c
w, (8.36)

where Gd
uvw is understood henceforth to be totally symmetric.

Putting all three operators of the eGA together, the final form of the parametri-
sation equation becomes

∂η 〈O[U ]〉 (η) =

〈
−
[

1

2

∫
uv

(
Guv + iNcG

(2)
uv

)
LauL

a
v

+

∫
uvw

(
fabcGf

uvw + dabcGd
uvw

)
LauL

b
vL

c
w

]
O[U ]

〉
(η), (8.37)

with Gf
uvw and Gd

uvw understood to be antisymmetric and symmetric, respectively.
The G(2)

uv term that contributes to the original GA 2-point function Guv contains
both symmetric and antisymmetric contributions. The symmetric part of the original
term fabcGf

uvwL
a
uL

b
vL

c
w as introduced in Eq. (8.8) has now been extracted and is

contained wholly in G(2)
uv. This is why the Gf

uvw term in Eq. (8.37) is now totally
antisymmetric.

8.2 The 4-point correlator beyond the GA

Now that we have established the symmetry properties of the eGA operators, we
use them to see how the parametric equations for the 4-point correlators discussed
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8. Beyond the Gaussian Approximation

in Section 7.3 are modified. Since the terms in Eq. (8.37) are additive, we consider
each to act individually on the correlator matrix 〈A(η)〉. The three contributions
are resummed in the end.

The procedure followed here is similar to that of Section 7. By analogy with the
transition matrixM in Eq. (7.46), the following three new transition matrices are
defined, corresponding to the three terms in Eq. (8.37):

M(2) :=

(
M(1,1)

(2) M(1,2)
(2)

M(1,2)
(2) M(2,2)

(2)

)
, (8.38)

corresponding to the 2-point operator Guv + iNcG
(2)
uvLauL

a
v,

Mf :=

(
M(1,1)

f M(1,2)
f

M(1,2)
f M(2,2)

f

)
, (8.39)

corresponding to the antisymmetric eGA operator fabcGf
uvwL

a
uL

b
vL

c
w, and

Md :=

(
M(1,1)

d M(1,2)
d

M(1,2)
d M(2,2)

d

)
, (8.40)

corresponding to the symmetric eGA operator dabcGd
uvwL

a
uL

b
vL

c
w. Each of these can

be calculated following the method of Section 7.3.2 – their results are given below.
We also discuss the coincidence limits of each case in order to verify that our results
are self-consistent with the expressions from Chapter 7.

8.2.1 Transition matrix from the 2-point eGA operator

In order to calculate the elements ofM(2) defined in Eq. (8.38), we act with the
second term in Eq. (8.37) on a product of two fundamental and two antifundamental
Wilson lines:

∂η< x
y

x′
y′> = <−iNc

2

∫
uv

G(2)
uvL

a
uL

a
v

x
y

x′
y′>. (8.41)
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This gives

M(1,1)
(2) =

iN3
c

2

(
−G(2)

xy −G
(2)
x′y′ +Gf

xxx +Gf
yyy +Gf

x′x′x′ +Gf
y′y′y′

)
, (8.42)

M(1,2)
(2) =

iN3
c

√
dA

8

(
G

(2)
xx′ −G

(2)
xy′ −G

(2)
yx′ +G

(2)
yy′

)
, (8.43)

M(2,2)
(2) =

iNcdA

32

(
G(2)

xy +G
(2)
x′y′ − 2

[
G

(2)
xx′ +G

(2)
yy′

]
+ (1− dA)

[
G

(2)
xy′ +G

(2)
yx′

]
+dA

[
Gf

xxx +Gf
yyy +Gf

x′x′x′ +Gf
y′y′y′

])
.

(8.44)

Notice the following from these expressions:

• The Gf ’s inM(1,1)
(2) do not mix the Wilson lines at x and y with those at x′

and y′. Cross-terms, i.e. terms with both primed and unprimed coordinates,
do not appear because this would mean that colour gets carried between the
two dipoles. Since the dipoles are in singlet states in this case (this is the (1, 1)
element ofM(2) specifically), this is not possible.

• Element M(1,2)
(2) contains all the terms that M(1,1)

(2) (η) does not. The two

corresponding off-diagonal operator matrix elements are and .
Since colour is now exchanged between the primed and unprimed coordinate
Wilson lines via the octet state on one side, only terms with one-gluon exchange
between the two top and two bottom Wilson lines are allowed.

• ElementM(2,2)
(2) contains all possible Gf ’s with two indices. Cross-terms are

allowed because any colour transfer can be compensated for by the octet states
on either side.

In keeping with the analysis made in Section 7.3.4 for the transition matrix in
various coincidence limits, we consider the effects onM(2). In the limit x→ y, in
which upper quark and antiquark are placed at the same coordinate, the elements
ofM(2) become

lim
x→y
M(1,1)

(2) =
iN3

c

2

(
−G(2)

x′y′ +Gf
x′x′x′ +Gf

y′y′y′

)
, (8.45)

lim
x→y
M(1,2)

(2) = 0, (8.46)

lim
x→y
M(2,2)

(2) =

iNcdA

32

(
−N2

c

[
G

(2)
yx′ +G

(2)
yy′

]
+G

(2)
x′y′ + 2N2

cG
f
yyy

+dA

[
Gf

x′x′x′ +Gf
y′y′y′

])
.

(8.47)
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As expected, all traces over the upper two Wilson lines vanish inM(1,1)
(2) because there

is no way for them to connect to the bottom dipole that is in a singlet state. M(1,2)
(2)

becomes zero as all terms cancel pairwise. In fact, by writing Ĝf2 in the expansion
of Eq. (8.33) shows that each auxiliary factor mi goes to zero independently in the
limit x→ y.

In addition, we can impose a second limit x′ → y′, giving

lim
x→y
x′→y′

M(1,1)
(2) = 0, (8.48)

lim
x→y
x′→y′

M(2,2)
(2) =

iN3
c dA

16

(
−G(2)

yy′ +Gf
yyy +Gf

y′y′y′

)
. (8.49)

NowM(1,1)
(2) vanishes by the same logic that all terms with single dipoles vanish in

the first limit x→ y.

The other limit that can be studied is x→ y′. This gives

lim
x→y′

M(1,1)
(2) =

iN3
c

2

(
−G(2)

yy′ −G
(2)
x′y′ +Gf

yyy +Gf
x′x′x′ +Gf

y′y′y′

)
, (8.50)

lim
x→y′

M(1,2)
(2) =

iN3
c

√
dA

8

(
−G(2)

yx′ +G
(2)
yy′ +G

(2)
x′y′ − 2Gf

y′y′y′

)
, (8.51)

lim
x→y′

M(2,2)
(2) =

iNcdA

32

(
(1− dA)G

(2)
yx′ + dAG

f
yyy + dAG

f
x′x′x′ + 2Gf

y′y′y′

)
. (8.52)

The terms in M(1,1)
(2) that vanished in the limit x → y no longer vanish because

the limit x→ y′ now connects the two dipoles to each other. M(1,2)
(2) also survives

because there is no longer a pairwise cancellation of terms. Taking a second limit
x′ → y′ in these results gives

lim
x→y′
x′→y

M(1,1)
(2) = iN3

c

(
−G(2)

yy′ +Gf
yyy +Gf

y′y′y′

)
, (8.53)

lim
x→y′
x′→y

M(2,2)
(2) =

iNcdA

16

(
−G(2)

yy′ +Gf
yyy +Gf

y′y′y′

)
, (8.54)

lim
x→y′
x′→y

M(1,2)
(2) = −iN

3
c

√
dA

4

(
−G(2)

yy′ +Gf
yyy +Gf

y′y′y′

)
. (8.55)

In this case, all the elements have the same G content but different prefactors.

As in the GA, it is possible to study other limits, such as x→ x′ by making a
change of basis as described in Section 7.3.4. From the limits considered so far, we
can conclude that our transition matrixM(1,1)

(2) has been calculated correctly.
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8.2.2 Transition matrix from the antisymmetric 3-point eGA
operator

Next, we calculate the contribution of the second term in Eq. (8.37) by considering

∂η< x
y

x′
y′> = <−∫uvw fabcGf

uvwL
a
uL

b
vL

c
w

x
y

x′
y′>. (8.56)

Since the eGA 3-point function Gf
uvw is totally antisymmetric, only Gf ’s with three

different indices can appear inMf . This means thatM(1,1)
f must be zero, which

works out in practise due to all terms containing tr (ta) = 0. The final transition
matrix elements are

M(1,1)
f = 0, (8.57)

M(1,2)
f =

3iN2
c

√
dA

2

(
Gf

xyx′ −G
f
xyy′ +Gf

xx′y′ −G
f
yx′y′

)
, (8.58)

M(2,2)
f = 0. (8.59)

The vanishing ofM(2,2)
f is somewhat unexpected, but can be explained by expanding

each octet state using the Fierz identity. Then the octet–octet operator becomes
four terms

=
1

4

(
− 1

Nc

− 1

Nc

+
1

N2
c

)
. (8.60)

By the same reasoning thatM(1,1)
f is zero, so too are the first and last terms in this

sum. The remaining two terms are traces in opposite directions that cancel each
other. ElementM(1,2)

f , on the other hand, makes no colour flow transgressions and
so all possible antisymmetric Gf ’s are present. The relative signs among the terms
inM(1,2)

f (η) are due to the sign difference between the differential operator L acting
on a quark or antiquark.

The coincidence limits are straightforward to evaluate forM(1,2)
(2) . They are

lim
x→y
M(1,2)

f =
3iN2

c

√
dA

2

(
Gf

yyx′ −G
f
yyy′

)
, (8.61)

lim
x→y′

M(1,2)
f =

3iN2
c

√
dA

2

(
Gf

yy′y′ −G
f
x′y′y′

)
, (8.62)

lim
x→y′
x′→y

M(1,2)
f = lim

x→y
x′→y′

M(1,2)
f = 0. (8.63)

These are consistent with what is expected based on the corresponding physical
scenarios, as already discussed in detail forM(2).
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8.2.3 Transition matrix from the symmetric 3-point eGA op-
erator

Finally, we consider the totally symmetric term in Eq. (8.37) by calculating

∂η< x
y

x′
y′> = <−∫uvw dabcGd

uvwL
a
uL

b
vL

c
w

x
y

x′
y′>. (8.64)

We can expect the transition matrixMd to be more complicated in structure than
Mf because the antisymmetry of Gf that lead to several terms cancelling in the
calculation ofMf is no longer applicable. We get

M(1,1)
d = −3iCdCF

2

(
−GOxy −GOx′y′ +

1

3

[
Gd

xxx −Gd
yyy +Gd

x′x′x′ −Gd
y′y′y′

])
,

(8.65)

M(1,2)
d = −3iNcCd

√
dA

4

(
GOxy′ +GOx′y +Gd

xxx′ −Gd
yyy′ +Gd

x′x′x −Gd
y′y′y

−2
[
Gd

xyx′ −Gd
xyy′ +Gd

x′y′x −Gd
x′y′y

])
,

(8.66)

M(2,2)
d = −3iCd

4Nc

(
GOxy +GOx′y′ + (1− dA)

[
GOxy′ −GOyx′

]
+
dA

3

[
Gd

xxx −Gd
yyy

+ Gd
x′x′x′ −Gd

y′y′y′
]
− 2

[
Gd

xxx′ −Gd
yyy′ +Gd

x′x′x −Gd
y′y′y

]
+4
[
Gd

xyx′ −Gd
xyy′ +Gd

xx′y′ −Gd
yx′y′

])
,

(8.67)

where GOxy := Gd
xxy − Gd

yyx. As in the M(1,1)
(2) case, M(1,1)

d does not contain any
cross-terms between the two dipoles. The 1/3 that appears both here and inM(2,2)

d

is a symmetry factor. All possible permutations of coordinate indices are present
inM(2,2)

d . InM(1,2)
d , however, only Gd’s that link the two dipoles appear. This is

necessary to compensate for the colour transfer by the octet state on one side.

Md simplifies significantly in the limit x→ y:

lim
x→y
M(1,1)

d = −3iCdCF

2

(
GOx′y′ +

1

3

[
Gd

x′x′x′ −Gd
y′y′y′

])
, (8.68)

lim
x→y
M(1,2)

d = 0, (8.69)

lim
x→y
M(2,2)

d = −3iCd

4Nc

(
N2

c

[
GOyx′ −GOyy′

]
+GOx′y′ +

dA

3

[
Gd

x′x′x′ −Gd
y′y′y′

])
.

(8.70)
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Additionally, imposing a second limit x′ → y′ gives

lim
x→y
x′→y′

M(1,1)
d (η) = lim

x→y
x′→y′

M(2,2)
d (η) = 0 (8.71)

as it should.

In the limit x→ y′, we get

lim
x→y′

M(1,1)
d = −3iCdCF

2

(
GOyy′ −GOx′y′ −

1

3

[
Gd

yyy −Gd
x′x′x′

])
, (8.72)

lim
x→y′

M(1,2)
d = −3iNcCd

√
dA

4

(
GOyx′ −GOyy′ +GOx′y′

)
, (8.73)

lim
x→y′

M(2,2)
d = − 3i

4Nc

(
GOyy′ −GOx′y′ + (dA − 1)GOyx′ +

dA

3

[
Gd

yyy +Gd
x′x′x′

])
.

(8.74)

Taking a second limit x′ → y gives zero in all cases:

lim
x→y′
x′→y

M(1,1)
d = lim

x→y′
x′→y

M(2,2)
d = lim

x→y′
x′→y

M(1,2)
d = 0. (8.75)

With these results, we may conclude that our expression forMd is consistent with
all our previously calculated parametric equations.

8.3 The odderon contribution to simple correlators

We have thus far completely calculated the transition matrixM in the extended
GA parametrisation scheme for the 4-point correlators. This can be used to find the
modifications to the 2- and 3-point correlator parametrisations discussed in Section
7.2. For the 2-point correlator, only the singlet–singlet elements in the limit x′ → y′

need to be considered, since this becomes

x
y

x′
y′

x′→y′−−−→ x
y . (8.76)

The transition elements and the octet–octet terms necessarily vanish because there
is no second dipole to which the octet states can connect. Similarly, the only relevant
matrix elements for the 3-point correlator are the octet–octet terms in the limit
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x′ → y′:

x
y

x′
y′

x′→y′−−−→
x
y
. (8.77)

Since the singlet–singlet and octet–octet elements of Mf are zero, the only new
information that can be added to the GA parametrisations for the 2- and 3-point
correlators comes from Md. This addition is called the odderon, a symmetric
three-gluon state in the t-channel.

The contribution from Gd to the 2-point correlator is obtained from the transition
matrix elementM(1,1)

d . By translational invariance (equivalent here to conservation
of the identity matrix under rapidity evolution), it can be shown that Gd

xxx = 0.
Then Eq. (8.65) gives

lim
x′→y′

M(1,1)
d =

3iCdCF

2
GOxy, (8.78)

which is the only new term to be included in the parametrisation of the 2-point
correlator. The new differential equation is

∂η

〈
tr
(
UxU

†
y

)
Nc

〉
= −

(
CFG ′xy +

3iCdCF

2
GOxy

)〈
tr
(
UxU

†
y

)
Nc

〉
, (8.79)

which has the solution〈
tr
(
UxU

†
y

)
Nc

〉
= exp

{
−CFGxy −

3iCdCF

2
GOxy

}
. (8.80)

Once again using Gd
xxx = 0, the octet–octet element from Eq. (8.67) required

for the 3-point correlator becomes

lim
x′→y′=z

M(2,2)
d = −3iCd

4Nc

(
GOxy +N2

cG
O
zx +N2

cG
O
yz

)
. (8.81)

The new differential equation is

∂η

〈
Ũab
z tr

(
taUxt

bU †y
)

NcCF

〉
= −

[
CA

2

(
G ′xz + G ′yz − G ′xy

)
+ CFG ′xy

−3iCd

4Nc

(
GOxy +N2

cG
O
zx +N2

cG
O
yz

)]〈
Ũab
z

tr
(
taUxt

bU †y
)

NcCF

〉
, (8.82)
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which has the solution〈
Ũab
z tr

(
taUxt

bU †y
)

NcCF

〉
= exp

{
−CA

2
(Gxz + Gyz − Gxy)− CFGxy +

3iCd

4Nc

(
GOxy +N2

cG
O
zx +N2

cG
O
yz

)}
.

(8.83)

Eqs. (8.80) and (8.83) are our final parametric equations including the odderon
contribution for the 2- and 3-point correlators, respectively. One possible consistency
check to perform is to take the limit z → x in Eq. (8.83). This should reduce the
3-point correlator expression to the 2-point correlator expression, and does indeed
reproduce Eq. (8.80).

8.3.1 Evolution equation for Gd

In Section 7.2.3, the parametric equations for the 2- and 3-point correlators were
used in the Balitsky equation to derive a rapidity evolution equation for the GA
2-point function Gxy. The calculation from there can be repeated using the new
expressions, Eqs. (8.80) and (8.83). After some algebra, it follows that

∂η

〈
G̃Oxy

〉
=

〈
αs

π2

∫
z

K̃xzy

(
1− exp

{
−Nc

2

(
G̃Oxz + G̃Ozy − G̃Oxy

)})〉
, (8.84)

where G̃Oxy := Gxy + 3
2
iCdG

O
xy has been defined to emphasize the fact that the GA

Gxy and the odderon GOxy appear in similar ways in this expression. That is, up to
an overall colour factor, the linear combination of terms that appear on the right
side of Eq. (8.84) are the same.

Eq. 8.84 is the final evolution equation for Gd (contained implicitly in the
definition of GO) that was studied in Paper [I]. The LO BK equation was used
to numerically implement the evolution of the odderon. The ultimate conclusion
from our analysis was that the odderon is difficult to observe experimentally, (due
to its relatively small contribution in comparison to the pomeron) to the dipole
amplitude and its fast decay with increasing rapidity. Details of the numerical work
are provided in Sections VII and VIII of Paper [I].
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8. Beyond the Gaussian Approximation

Chapter summary

In this chapter, we have extended the GA from Chapter 7 by including two new
3-point functions in the definition of the approximation parametrisation. The first
task was to study the symmetry properties of these new functions. This resulted in a
2-point function G(2) with mixed symmetry, a totally antisymmetric 3-point function
Gf and a totally symmetric 3-point function Gd. We have used the eGA to study
4-point correlators. These have been checked in various coincidence limits to ensure
their consistency with the results from Section 7.3. Finally, we have investigated
the so-called odderon by using the eGA to calculate the 2- and 3-point correlators.
This gave a final evolution equation for the odderon function, which we have studied
further in Paper [I].
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9

Conclusion and Outlook

In this thesis, we have discussed the evolution of Wilson line correlators in the
CGC effective field theory. These are important to understand and predict the
cross sections of various processes within an ultrarelativistic collision. In particular,
we have used the BK and JIMWLK equations to study the nonlinear evolution of
correlators as a function of rapidity. The JIMWLK equation, which is typically
formulated as a Fokker–Planck equation, has been studied in detail as a Langevin
equation. We have also discussed how to use the Langevin formalism to study
correlators of Wilson lines separated by a large rapidity. By going to the dilute limit,
we have seen how BFKL dynamics emerge from the stochastic picture of evolution.
Given this new insight into the Langevin framework of JIMWLK, the next step
would be to numerically implement the bilocal Langevin equations studied in Paper
[II]. There is much phenomenological work to be done in this direction, by applying
such an implementation to various physical processes, particularly those that will
be seen at the future EIC. Some predictions for observing saturation at the EIC
have been made in [106].

A significant fraction of this thesis has been dedicated to the GA and its
extensions. We have discussed the calculational details behind the parametric
equations of the 6-point correlators that appear in the NLO BK equation. The
somewhat surprising results from the numerical implementation of these equations
requires further work. In Paper [III], the comparison of our finite-Nc expressions to
their large-Nc counterparts showed an order 1% agreement between the two. It is
not yet understood why exactly this occurs. A useful next step would be to look
more closely at the 6-point correlators in various regions of coordinate space to see
where their dominant contributions lie. By considering our parametric equations for
the 6-point correlators in coincidence limits, it may be possible to understand the
surprising agreement between the large- and finite-Nc versions. Such a study may
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9. Conclusion and Outlook

also be helpful if it can be extended to other correlators or even generalised.

Finally, the last chapter of this thesis discussed a natural extension of the GA by
including a 3-point function to the approximation definition. We have calculated the
4-point correlators using this extension and verified the results by taking coincidence
limits. An important consequence of the eGA is that an evolution equation for the
odderon can be derived. This has been implemented numerically in Paper [I] and is
of great interest at the moment due to the experimental observation of the odderon
at the LHC [107]. It may be interesting to include the contributions from the eGA
to correlators from other physical processes to see if the odderon has a significant
contribution to their cross sections. The work covered in this thesis is only a small
fraction of what needs to be done in order to understand the internal structure of
nuclear matter from the perspective of the CGC formalism. With the increasing
ability of modern collider experiments to access higher energies, saturation physics
becomes increasingly important to understand theoretically.

128



Bibliography

[I] T. Lappi, A. Ramnath, K. Rummukainen and H. Weigert, JIMWLK
evolution of the odderon, Phys. Rev. D 94 (2016) no. 5 054014
[arXiv:1606.00551 [hep-ph]].

[II] T. Lappi and A. Ramnath, Unequal rapidity correlators in the dilute limit of
the JIMWLK evolution, Phys. Rev. D 100 (2019) no. 5 054003
[arXiv:1904.00782 [hep-ph]].

[III] T. Lappi, H. Mäntysaari and A. Ramnath, Next-to-leading order
Balitsky-Kovchegov equation beyond large Nc, Phys. Rev. D 102 (2020) no. 7
074027 [arXiv:2007.00751 [hep-ph]].

[4] T. Regge, Introduction to complex orbital momenta, Nuovo Cim. 14 (1959)
951.

[5] G. Chew and S. C. Frautschi, Principle of Equivalence for All Strongly
Interacting Particles Within the S Matrix Framework, Phys. Rev. Lett. 7
(1961) 394.

[6] V. Gribov, Partial waves with complex orbital angular momenta and the
asymptotic behavior of the scattering amplitude, Sov. Phys. JETP 14 (1962)
1395.

[7] E. Iancu, A. Leonidov and L. D. McLerran, Nonlinear gluon evolution in the
color glass condensate. 1., Nucl. Phys. A 692 (2001) 583
[arXiv:hep-ph/0011241].

[8] E. Iancu, A. Leonidov and L. D. McLerran, The Renormalization group
equation for the color glass condensate, Phys. Lett. B 510 (2001) 133
[arXiv:hep-ph/0102009].

[9] V. Gribov and L. Lipatov, Deep inelastic e p scattering in perturbation theory,
Sov. J. Nucl. Phys. 15 (1972) 438.

129

http://dx.doi.org/10.1103/PhysRevD.94.054014
http://arXiv.org/abs/1606.00551
http://dx.doi.org/10.1103/PhysRevD.100.054003
http://arXiv.org/abs/1904.00782
http://dx.doi.org/10.1103/PhysRevD.102.074027
http://dx.doi.org/10.1103/PhysRevD.102.074027
http://arXiv.org/abs/2007.00751
http://dx.doi.org/10.1007/BF02728177
http://dx.doi.org/10.1007/BF02728177
http://dx.doi.org/10.1103/PhysRevLett.7.394
http://dx.doi.org/10.1103/PhysRevLett.7.394
http://dx.doi.org/10.1016/S0375-9474(01)00642-X
http://arXiv.org/abs/hep-ph/0011241
http://dx.doi.org/10.1016/S0370-2693(01)00524-X
http://arXiv.org/abs/hep-ph/0102009


Bibliography

[10] V. Gribov and L. Lipatov, e+ e- pair annihilation and deep inelastic e p
scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 675.

[11] G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl.
Phys. B 126 (1977) 298.

[12] Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic
Scattering and e+ e- Annihilation by Perturbation Theory in Quantum
Chromodynamics., Sov. Phys. JETP 46 (1977) 641.

[13] L. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in
Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338.

[14] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Multi - Reggeon Processes in
the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443.

[15] E. Kuraev, L. Lipatov and V. S. Fadin, The Pomeranchuk Singularity in
Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199.

[16] I. Balitsky and L. Lipatov, The Pomeranchuk Singularity in Quantum
Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822.

[17] L. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys.
JETP 63 (1986) 904.

[18] Y. V. Kovchegov, Small x F(2) structure function of a nucleus including
multiple pomeron exchanges, Phys. Rev. D 60 (1999) 034008
[arXiv:hep-ph/9901281].

[19] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463
(1996) 99 [arXiv:hep-ph/9509348].

[20] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson
renormalization group for low x physics: Towards the high density regime,
Phys. Rev. D 59 (1998) 014014 [arXiv:hep-ph/9706377].

[21] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, Unitarization of
gluon distribution in the doubly logarithmic regime at high density, Phys. Rev.
D 59 (1999) 034007 [arXiv:hep-ph/9807462]. [Erratum: Phys.Rev.D 59,
099903 (1999)].

[22] J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization
group for low x physics: Gluon evolution at finite parton density, Phys. Rev.
D 59 (1998) 014015 [arXiv:hep-ph/9709432].

130

http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1103/PhysRevD.60.034008
http://arXiv.org/abs/hep-ph/9901281
http://dx.doi.org/10.1016/0550-3213(95)00638-9
http://dx.doi.org/10.1016/0550-3213(95)00638-9
http://arXiv.org/abs/hep-ph/9509348
http://dx.doi.org/10.1103/PhysRevD.59.014014
http://arXiv.org/abs/hep-ph/9706377
http://dx.doi.org/10.1103/PhysRevD.59.034007
http://dx.doi.org/10.1103/PhysRevD.59.034007
http://arXiv.org/abs/hep-ph/9807462
http://dx.doi.org/10.1103/PhysRevD.59.014015
http://dx.doi.org/10.1103/PhysRevD.59.014015
http://arXiv.org/abs/hep-ph/9709432


Bibliography

[23] E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon
evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489
[arXiv:hep-ph/0109115].

[24] N. N. Nikolaev and B. Zakharov, Color transparency and scaling properties of
nuclear shadowing in deep inelastic scattering, Z. Phys. C 49 (1991) 607.

[25] N. Nikolaev and B. G. Zakharov, Pomeron structure function and diffraction
dissociation of virtual photons in perturbative QCD, Z. Phys. C 53 (1992) 331.

[26] N. N. Nikolaev and B. Zakharov, The Triple pomeron regime and the
structure function of the pomeron in the diffractive deep inelastic scattering at
very small x, Z. Phys. C 64 (1994) 631 [arXiv:hep-ph/9306230].

[27] A. H. Mueller, Soft gluons in the infinite momentum wave function and the
BFKL pomeron, Nucl. Phys. B 415 (1994) 373.

[28] A. H. Mueller, Unitarity and the BFKL pomeron, Nucl. Phys. B 437 (1995)
107 [arXiv:hep-ph/9408245].

[29] Y. V. Kovchegov and E. Levin, Quantum chromodynamics at high energy,
vol. 33. Cambridge University Press, 8, 2012.

[30] H. Weigert, Evolution at small x(bj): The Color glass condensate, Prog. Part.
Nucl. Phys. 55 (2005) 461 [arXiv:hep-ph/0501087].

[31] F. Gelis and B. Schenke, Initial State Quantum Fluctuations in the Little
Bang, Ann. Rev. Nucl. Part. Sci. 66 (2016) 73 [arXiv:1604.00335
[hep-ph]].

[32] E. Iancu and R. Venugopalan, The Color glass condensate and high-energy
scattering in QCD. 3, 2003. arXiv:hep-ph/0303204.

[33] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass
Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333
[hep-ph]].

[34] J. L. Albacete and C. Marquet, Gluon saturation and initial conditions for
relativistic heavy ion collisions, Prog. Part. Nucl. Phys. 76 (2014) 1
[arXiv:1401.4866 [hep-ph]].

[35] E. Levin and M. Ryskin, The Hadron - Nucleus Interaction in {QCD} at
High-energy, Nucl. Phys. B 304 (1988) 805.

[36] A. H. Mueller, Small x Behavior and Parton Saturation: A QCD Model, Nucl.
Phys. B 335 (1990) 115.

131

http://dx.doi.org/10.1016/S0375-9474(01)01329-X
http://arXiv.org/abs/hep-ph/0109115
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1007/BF01597573
http://dx.doi.org/10.1007/BF01957772
http://arXiv.org/abs/hep-ph/9306230
http://dx.doi.org/10.1016/0550-3213(94)90116-3
http://dx.doi.org/10.1016/0550-3213(94)00480-3
http://dx.doi.org/10.1016/0550-3213(94)00480-3
http://arXiv.org/abs/hep-ph/9408245
http://dx.doi.org/10.1016/j.ppnp.2005.01.029
http://dx.doi.org/10.1016/j.ppnp.2005.01.029
http://arXiv.org/abs/hep-ph/0501087
http://dx.doi.org/10.1146/annurev-nucl-102115-044651
http://arXiv.org/abs/1604.00335
http://arXiv.org/abs/1604.00335
http://arXiv.org/abs/hep-ph/0303204
http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://arXiv.org/abs/1002.0333
http://arXiv.org/abs/1002.0333
http://dx.doi.org/10.1016/j.ppnp.2014.01.004
http://arXiv.org/abs/1401.4866
http://dx.doi.org/10.1016/0550-3213(88)90655-4
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://dx.doi.org/10.1016/0550-3213(90)90173-B


Bibliography

[37] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory.
Westview, Boulder, CO, 1995. Includes exercises.

[38] F. Halzen and A. D. Martin, Quarks and leptons: an introductory course in
modern particle physics. Wiley, New York, NY, 1984.

[39] G. F. Sterman, An Introduction to Quantum Field Theory. Cambridge Univ.
Press, Cambridge, 1993.

[40] J. Callan, Curtis G. and D. J. Gross, High-energy electroproduction and the
constitution of the electric current, Phys. Rev. Lett. 22 (1969) 156.

[41] ZEUS collaboration, S. Chekanov et. al., Measurement of the neutral current
cross-section and F(2) structure function for deep inelastic e + p scattering at
HERA, Eur. Phys. J. C 21 (2001) 443 [arXiv:hep-ex/0105090].

[42] ALICE collaboration, S. Acharya et. al., Measurement of prompt D0, D+,
D∗+, and D+

S production in p–Pb collisions at
√

sNN = 5.02 TeV, JHEP 12
(2019) 092 [arXiv:1906.03425 [nucl-ex]].

[43] M. Hentschinski and K. Kutak, Signs for the onset of gluon saturation in
exclusive photo-production of vector mesons, PoS LHCP2019 (2019) 039
[arXiv:1908.03494 [hep-ph]].

[44] G. Giacalone and C. Marquet, Signature of gluon saturation in forward
di-hadron correlations at the Large Hadron Collider, Nucl. Phys. A 982
(2019) 291 [arXiv:1807.06388 [hep-ph]].

[45] L. D. McLerran and R. Venugopalan, Gluon distribution functions for very
large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352
[arXiv:hep-ph/9311205].

[46] L. D. McLerran and R. Venugopalan, Computing quark and gluon distribution
functions for very large nuclei, Phys. Rev. D 49 (1994) 2233
[arXiv:hep-ph/9309289].

[47] L. D. McLerran and R. Venugopalan, Green’s functions in the color field of a
large nucleus, Phys. Rev. D 50 (1994) 2225 [arXiv:hep-ph/9402335].

[48] A. Ayala, J. Jalilian-Marian, L. D. McLerran and R. Venugopalan, The Gluon
propagator in nonAbelian Weizsacker-Williams fields, Phys. Rev. D 52 (1995)
2935 [arXiv:hep-ph/9501324].

[49] C. Marquet and H. Weigert, New observables to test the Color Glass
Condensate beyond the large- Nc limit, Nucl. Phys. A 843 (2010) 68
[arXiv:1003.0813 [hep-ph]].

132

http://dx.doi.org/10.1103/PhysRevLett.22.156
http://dx.doi.org/10.1007/s100520100749
http://arXiv.org/abs/hep-ex/0105090
http://dx.doi.org/10.1007/JHEP12(2019)092
http://dx.doi.org/10.1007/JHEP12(2019)092
http://arXiv.org/abs/1906.03425
http://dx.doi.org/10.22323/1.350.0039
http://arXiv.org/abs/1908.03494
http://dx.doi.org/10.1016/j.nuclphysa.2018.10.009
http://dx.doi.org/10.1016/j.nuclphysa.2018.10.009
http://arXiv.org/abs/1807.06388
http://dx.doi.org/10.1103/PhysRevD.49.3352
http://arXiv.org/abs/hep-ph/9311205
http://dx.doi.org/10.1103/PhysRevD.49.2233
http://arXiv.org/abs/hep-ph/9309289
http://dx.doi.org/10.1103/PhysRevD.50.2225
http://arXiv.org/abs/hep-ph/9402335
http://dx.doi.org/10.1103/PhysRevD.52.2935
http://dx.doi.org/10.1103/PhysRevD.52.2935
http://arXiv.org/abs/hep-ph/9501324
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.056
http://arXiv.org/abs/1003.0813


Bibliography

[50] H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823
[arXiv:hep-ph/0004044].

[51] G. Beuf, Dipole factorization for DIS at NLO: Loop correction to the
γ∗T,L → qq light-front wave functions, Phys. Rev. D 94 (2016) no. 5 054016
[arXiv:1606.00777 [hep-ph]].

[52] G. Beuf, Dipole factorization for DIS at NLO: Combining the qq̄ and qq̄g
contributions, Phys. Rev. D 96 (2017) no. 7 074033 [arXiv:1708.06557
[hep-ph]].

[53] H. Hänninen, T. Lappi and R. Paatelainen, One-loop corrections to light cone
wave functions: the dipole picture DIS cross section, Annals Phys. 393 (2018)
358 [arXiv:1711.08207 [hep-ph]].

[54] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL
equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997)
415 [arXiv:hep-ph/9701284].

[55] R. Ellis, W. Stirling and B. Webber, QCD and collider physics, vol. 8.
Cambridge University Press, 2, 2011.

[56] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications.
Cambridge University Press, 8, 2013.

[57] J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin,
D. Stump and C. P. Yuan, CT10 next-to-next-to-leading order global analysis
of QCD, Phys. Rev. D 89 (2014) no. 3 033009 [arXiv:1302.6246 [hep-ph]].

[58] J. R. Forshaw and D. Ross, Quantum chromodynamics and the pomeron,
vol. 9. Cambridge University Press, 1, 2011.

[59] V. Barone and E. Predazzi, High-Energy Particle Diffraction, vol. v.565 of
Texts and Monographs in Physics. Springer-Verlag, Berlin Heidelberg, 2002.

[60] F. Low, A Model of the Bare Pomeron, Phys. Rev. D 12 (1975) 163.

[61] S. Nussinov, Colored Quark Version of Some Hadronic Puzzles, Phys. Rev.
Lett. 34 (1975) 1286.

[62] S. Nussinov, A Perturbative Recipe for Quark Gluon Theories and Some of
Its Applications, Phys. Rev. D 14 (1976) 246.

[63] T. Regge, Bound states, shadow states and Mandelstam representation,
Nuovo Cim. 18 (1960) 947.

133

http://dx.doi.org/10.1016/S0375-9474(01)01668-2
http://arXiv.org/abs/hep-ph/0004044
http://dx.doi.org/10.1103/PhysRevD.94.054016
http://arXiv.org/abs/1606.00777
http://dx.doi.org/10.1103/PhysRevD.96.074033
http://arXiv.org/abs/1708.06557
http://arXiv.org/abs/1708.06557
http://dx.doi.org/10.1016/j.aop.2018.04.015
http://dx.doi.org/10.1016/j.aop.2018.04.015
http://arXiv.org/abs/1711.08207
http://dx.doi.org/10.1016/S0550-3213(97)00440-9
http://dx.doi.org/10.1016/S0550-3213(97)00440-9
http://arXiv.org/abs/hep-ph/9701284
http://dx.doi.org/10.1103/PhysRevD.89.033009
http://arXiv.org/abs/1302.6246
http://dx.doi.org/10.1103/PhysRevD.12.163
http://dx.doi.org/10.1103/PhysRevLett.34.1286
http://dx.doi.org/10.1103/PhysRevLett.34.1286
http://dx.doi.org/10.1103/PhysRevD.14.246
http://dx.doi.org/10.1007/BF02733035


Bibliography

[64] V. S. Fadin, E. A. Kuraev and L. N. Lipatov, On the Pomeranchuk
Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50.

[65] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam
representation, Phys. Rev. 123 (1961) 1053.

[66] A. Martin, Unitarity and high-energy behavior of scattering amplitudes, Phys.
Rev. 129 (1963) 1432.

[67] R. J. Glauber, Cross-sections in deuterium at high-energies, Phys. Rev. 100
(1955) 242.

[68] V. Franco and R. J. Glauber, High-energy deuteron cross-sections, Phys. Rev.
142 (1966) 1195.

[69] V. N. Gribov, Glauber corrections and the interaction between high-energy
hadrons and nuclei, Sov. Phys. JETP 29 (1969) 483.

[70] R. J. Glauber and G. Matthiae, High-energy scattering of protons by nuclei,
Nucl. Phys. B 21 (1970) 135.

[71] V. N. Gribov, Interaction of gamma quanta and electrons with nuclei at
high-energies, Sov. Phys. JETP 30 (1970) 709.

[72] R. D. Woods and D. S. Saxon, Diffuse Surface Optical Model for
Nucleon-Nuclei Scattering, Phys. Rev. 95 (1954) 577.

[73] A. H. Mueller and B. Patel, Single and double BFKL pomeron exchange and
a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471
[arXiv:hep-ph/9403256].

[74] N. N. Nikolaev, B. G. Zakharov and V. R. Zoller, The s channel approach to
Lipatov’s pomeron and hadronic cross-sections, JETP Lett. 59 (1994) 6
[arXiv:hep-ph/9312268].

[75] N. N. Nikolaev, B. G. Zakharov and V. R. Zoller, The Spectrum and solutions
of the generalized BFKL equation for total cross-section, Phys. Lett. B 328
(1994) 486 [arXiv:hep-th/9401052].

[76] I. Balitsky and G. A. Chirilli, Next-to-leading order evolution of color dipoles,
Phys. Rev. D 77 (2008) 014019 [arXiv:0710.4330 [hep-ph]].

[77] E. Iancu and Y. Mulian, Forward dijets in proton-nucleus collisions at
next-to-leading order: the real corrections, JHEP 03 (2021) 005
[arXiv:2009.11930 [hep-ph]].

134

http://dx.doi.org/10.1016/0370-2693(75)90524-9
http://dx.doi.org/10.1103/PhysRev.123.1053
http://dx.doi.org/10.1103/PhysRev.129.1432
http://dx.doi.org/10.1103/PhysRev.129.1432
http://dx.doi.org/10.1103/PhysRev.100.242
http://dx.doi.org/10.1103/PhysRev.100.242
http://dx.doi.org/10.1103/PhysRev.142.1195
http://dx.doi.org/10.1103/PhysRev.142.1195
http://dx.doi.org/10.1016/0550-3213(70)90511-0
http://dx.doi.org/10.1103/PhysRev.95.577
http://dx.doi.org/10.1016/0550-3213(94)90284-4
http://arXiv.org/abs/hep-ph/9403256
http://arXiv.org/abs/hep-ph/9312268
http://dx.doi.org/10.1016/0370-2693(94)91508-3
http://dx.doi.org/10.1016/0370-2693(94)91508-3
http://arXiv.org/abs/hep-th/9401052
http://dx.doi.org/10.1103/PhysRevD.77.014019
http://arXiv.org/abs/0710.4330
http://dx.doi.org/10.1007/JHEP03(2021)005
http://arXiv.org/abs/2009.11930


Bibliography

[78] Y. Hatta and E. Iancu, Collinearly improved JIMWLK evolution in Langevin
form, JHEP 08 (2016) 083 [arXiv:1606.03269 [hep-ph]].

[79] K. Rummukainen and H. Weigert, Universal features of JIMWLK and BK
evolution at small x, Nucl. Phys. A 739 (2004) 183 [arXiv:hep-ph/0309306].

[80] A. H. Mueller, A Simple derivation of the JIMWLK equation, Phys. Lett. B
523 (2001) 243 [arXiv:hep-ph/0110169].

[81] J.-P. Blaizot, E. Iancu and H. Weigert, Nonlinear gluon evolution in path
integral form, Nucl. Phys. A 713 (2003) 441 [arXiv:hep-ph/0206279].

[82] A. Kovner, J. G. Milhano and H. Weigert, Relating different approaches to
nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000)
114005 [arXiv:hep-ph/0004014].

[83] Y. V. Kovchegov, J. Kuokkanen, K. Rummukainen and H. Weigert,
Subleading-N(c) corrections in non-linear small-x evolution, Nucl. Phys. A
823 (2009) 47 [arXiv:0812.3238 [hep-ph]].

[84] T. Lappi, Gluon spectrum in the glasma from JIMWLK evolution, Phys. Lett.
B 703 (2011) 325 [arXiv:1105.5511 [hep-ph]].

[85] A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke and R. Venugopalan,
Renormalization group evolution of multi-gluon correlators in high energy
QCD, Phys. Lett. B 706 (2011) 219 [arXiv:1108.4764 [hep-ph]].

[86] T. Lappi and H. Mäntysaari, On the running coupling in the JIMWLK
equation, Eur. Phys. J. C 73 (2013) no. 2 2307 [arXiv:1212.4825
[hep-ph]].

[87] T. Altinoluk and A. Kovner, Particle Production at High Energy and Large
Transverse Momentum - ’The Hybrid Formalism’ Revisited, Phys. Rev. D 83
(2011) 105004 [arXiv:1102.5327 [hep-ph]].

[88] G. A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive Hadron Productions in pA
Collisions, Phys. Rev. D 86 (2012) 054005 [arXiv:1203.6139 [hep-ph]].

[89] M. Hentschinski, H. Weigert and A. Schafer, Extension of the color glass
condensate approach to diffractive reactions, Phys. Rev. D 73 (2006) 051501
[arXiv:hep-ph/0509272].

[90] A. Kovner, M. Lublinsky and H. Weigert, Treading on the cut: Semi inclusive
observables at high energy, Phys. Rev. D 74 (2006) 114023
[arXiv:hep-ph/0608258].

135

http://dx.doi.org/10.1007/JHEP08(2016)083
http://arXiv.org/abs/1606.03269
http://dx.doi.org/10.1016/j.nuclphysa.2004.03.219
http://arXiv.org/abs/hep-ph/0309306
http://dx.doi.org/10.1016/S0370-2693(01)01343-0
http://dx.doi.org/10.1016/S0370-2693(01)01343-0
http://arXiv.org/abs/hep-ph/0110169
http://dx.doi.org/10.1016/S0375-9474(02)01299-X
http://arXiv.org/abs/hep-ph/0206279
http://dx.doi.org/10.1103/PhysRevD.62.114005
http://dx.doi.org/10.1103/PhysRevD.62.114005
http://arXiv.org/abs/hep-ph/0004014
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.006
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.006
http://arXiv.org/abs/0812.3238
http://dx.doi.org/10.1016/j.physletb.2011.08.011
http://dx.doi.org/10.1016/j.physletb.2011.08.011
http://arXiv.org/abs/1105.5511
http://dx.doi.org/10.1016/j.physletb.2011.11.002
http://arXiv.org/abs/1108.4764
http://dx.doi.org/10.1140/epjc/s10052-013-2307-z
http://arXiv.org/abs/1212.4825
http://arXiv.org/abs/1212.4825
http://dx.doi.org/10.1103/PhysRevD.83.105004
http://dx.doi.org/10.1103/PhysRevD.83.105004
http://arXiv.org/abs/1102.5327
http://dx.doi.org/10.1103/PhysRevD.86.054005
http://arXiv.org/abs/1203.6139
http://dx.doi.org/10.1103/PhysRevD.73.051501
http://arXiv.org/abs/hep-ph/0509272
http://dx.doi.org/10.1103/PhysRevD.74.114023
http://arXiv.org/abs/hep-ph/0608258


Bibliography

[91] A. Kovner and M. Lublinsky, One gluon, two gluon: Multigluon production
via high energy evolution, JHEP 11 (2006) 083 [arXiv:hep-ph/0609227].

[92] E. Iancu and J. Laidet, Gluon splitting in a shockwave, Nucl. Phys. A 916
(2013) 48 [arXiv:1305.5926 [hep-ph]].

[93] E. Iancu and D. N. Triantafyllopoulos, JIMWLK evolution for multi-particle
production in Langevin form, JHEP 11 (2013) 067 [arXiv:1307.1559
[hep-ph]].

[94] F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in
nucleus-nucleus collisions. 3. Long range rapidity correlations, Phys. Rev. D
79 (2009) 094017 [arXiv:0810.4829 [hep-ph]].

[95] S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093
[arXiv:1309.6521 [hep-th]].

[96] J. P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the
color glass condensate approach. 2. Quark production, Nucl. Phys. A 743
(2004) 57 [arXiv:hep-ph/0402257].

[97] F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of
Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005
[arXiv:1101.0715 [hep-ph]].

[98] E. Iancu, K. Itakura and L. McLerran, A Gaussian effective theory for gluon
saturation, Nucl. Phys. A 724 (2003) 181 [arXiv:hep-ph/0212123].

[99] E. Iancu and D. N. Triantafyllopoulos, Higher-point correlations from the
JIMWLK evolution, JHEP 11 (2011) 105 [arXiv:1109.0302 [hep-ph]].

[100] E. Iancu and D. N. Triantafyllopoulos, JIMWLK evolution in the Gaussian
approximation, JHEP 04 (2012) 025 [arXiv:1112.1104 [hep-ph]].

[101] M. Alvioli, G. Soyez and D. N. Triantafyllopoulos, Testing the Gaussian
Approximation to the JIMWLK Equation, Phys. Rev. D 87 (2013) no. 1
014016 [arXiv:1212.1656 [hep-ph]].

[102] A. Dumitru and V. Skokov, cos(4ϕ) azimuthal anisotropy in small-x DIS
dijet production beyond the leading power TMD limit, Phys. Rev. D 94
(2016) no. 1 014030 [arXiv:1605.02739 [hep-ph]].

[103] J. P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the
color glass condensate approach. 1. Gluon production and the Cronin effect,
Nucl. Phys. A 743 (2004) 13 [arXiv:hep-ph/0402256].

136

http://dx.doi.org/10.1088/1126-6708/2006/11/083
http://arXiv.org/abs/hep-ph/0609227
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.012
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.012
http://arXiv.org/abs/1305.5926
http://dx.doi.org/10.1007/JHEP11(2013)067
http://arXiv.org/abs/1307.1559
http://arXiv.org/abs/1307.1559
http://dx.doi.org/10.1103/PhysRevD.79.094017
http://dx.doi.org/10.1103/PhysRevD.79.094017
http://arXiv.org/abs/0810.4829
http://dx.doi.org/10.1007/JHEP05(2015)093
http://arXiv.org/abs/1309.6521
http://dx.doi.org/10.1016/j.nuclphysa.2004.07.006
http://dx.doi.org/10.1016/j.nuclphysa.2004.07.006
http://arXiv.org/abs/hep-ph/0402257
http://dx.doi.org/10.1103/PhysRevD.83.105005
http://arXiv.org/abs/1101.0715
http://dx.doi.org/10.1016/S0375-9474(03)01477-5
http://arXiv.org/abs/hep-ph/0212123
http://dx.doi.org/10.1007/JHEP11(2011)105
http://arXiv.org/abs/1109.0302
http://dx.doi.org/10.1007/JHEP04(2012)025
http://arXiv.org/abs/1112.1104
http://dx.doi.org/10.1103/PhysRevD.87.014016
http://dx.doi.org/10.1103/PhysRevD.87.014016
http://arXiv.org/abs/1212.1656
http://dx.doi.org/10.1103/PhysRevD.94.014030
http://dx.doi.org/10.1103/PhysRevD.94.014030
http://arXiv.org/abs/1605.02739
http://dx.doi.org/10.1016/j.nuclphysa.2004.07.005
http://arXiv.org/abs/hep-ph/0402256


Bibliography

[104] P. Cvitanovic, Group theory: Birdtracks, Lie’s and exceptional groups.
Princeton University Press, 2020.

[105] L. Lukaszuk and B. Nicolescu, A Possible interpretation of p p rising total
cross-sections, Lett. Nuovo Cim. 8 (1973) 405.

[106] H. Mäntysaari, N. Mueller, F. Salazar and B. Schenke, Multigluon
Correlations and Evidence of Saturation from Dijet Measurements at an
Electron-Ion Collider, Phys. Rev. Lett. 124 (2020) no. 11 112301
[arXiv:1912.05586 [nucl-th]].

[107] D0, TOTEM collaboration, V. M. Abazov et. al., Comparison of pp and pp̄
differential elastic cross sections and observation of the exchange of a
colorless C-odd gluonic compound, arXiv:2012.03981 [hep-ex].

137

http://dx.doi.org/10.1007/BF02824484
http://dx.doi.org/10.1103/PhysRevLett.124.112301
http://arXiv.org/abs/1912.05586
http://arXiv.org/abs/2012.03981


 

ORIGINAL PAPERS 
 
 

I  
 
 

JIMWLK EVOLUTION OF THE ODDERON 
 
 
 
 

by 
 

Lappi, T., Ramnath, A., Rummukainen, K., & Weigert, H. 2016 
 

Physical Review D, 94(5), Article 054014 
 

https://doi.org/10.1103/PhysRevD.94.054014 
 
 

Reproduced with kind permission by American Physical Society. 
 



JIMWLK evolution of the odderon

T. Lappi*

Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland
and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64,

Helsinki 00014, Finland

A. Ramnath†

Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland

K. Rummukainen‡

Department of Physics and Helsinki Institute of Physics, University of Helsinki, Helsinki 00014, Finland

H. Weigert§

Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
(Received 21 June 2016; published 14 September 2016)

We study the effects of a parity-odd “odderon” correlation in Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner renormalization group evolution at high energy. Firstly we show that in the
eikonal picture where the scattering is described by Wilson lines, one obtains a strict mathematical upper
limit for the magnitude of the odderon amplitude compared to the parity-even Pomeron one. This limit
increases with Nc, approaching infinity in the infinite Nc limit. We use a systematic extension of the
Gaussian approximation including both two- and three-point correlations which enables us to close the
system of equations even at finite Nc. In the large-Nc limit we recover an evolution equation derived earlier.
By solving this equation numerically we confirm that the odderon amplitude decreases faster in the
nonlinear case than in the linear Balitsky-Fadin-Kuraev-Lipatov limit. We also point out that, in the three-
point truncation at finite Nc, the presence of an odderon component introduces azimuthal angular
correlations ∼ cosðnφÞ at all n in the target color field. These correlations could potentially have an effect
on future studies of multiparticle angular correlations.

DOI: 10.1103/PhysRevD.94.054014

I. INTRODUCTION

High energy hadronic collisions at modern collider
energies involve a dense system of gluons. At high enough
energy the typical phase space density becomes nonper-
turbatively large, i.e. of the order of the inverse QCD
coupling constant 1=αs. In this limit it is better to describe
these gluonic degrees of freedom as a classical color field
than as a collection of individual particles, in what is known
as the color glass condensate (CGC) picture [1,2]. In
practice, the important degree of freedom here is the
Wilson line, a path-ordered exponential in the color field.
It gives the scattering amplitude of a colored high energy
particle passing through the CGC target. Increasing the
collision energy opens up phase space for the emission of
even more gluons, which in this case are treated as quantum
fluctuations on top of the classical field. These fluctuations
can be systematically integrated out and included in the
classical field. This procedure leads to renormalization

group equations that describe the evolution of the Wilson
lines as a function of collision energy.
The complete system of evolution equations is known as

the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) equation [3–13] or equivalently as
the Balitsky hierarchy [14–17]. It describes the evolution
of the whole probability distribution of Wilson lines. While
this equation can be solved, at least at leading order,
numerically [18–21], most phenomenological applications
rely on simpler approximations. This is typically done by
an evolution equation for an expectation value of Wilson
lines that can be derived, in some approximation, from the
equation for the full probability distribution. The usual
approximation here is to use the large-Nc limit, which
allows one to truncate the Balitsky hierarchy and obtain an
evolution equation for the two-point function of Wilson
lines known as the Balitsky-Kovchegov (BK) [14,22]
equation. A related approximation, which has an identical
dynamical content but can be used to construct the Wilson
line expectation values at finite Nc, is provided by the
Gaussian approximation.
The Gaussian approximation relates all Wilson line

correlators to a single two-point correlator. The purpose
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of this paper is to take the first step beyond the Gaussian
approximation and introduce an intrinsic three-point cor-
relation function of color charges using a method that can
be extended to include all n-point functions up to any fixed
finite number of points m in what we refer to as an
(exponential) m-point truncation. When this is used to
evaluate the evolution equation for the two-point function
of Wilson lines (the dipole operator), it turns out that the
new three-point function only appears in a specific coor-
dinate limit. It can, in fact, be rewritten as an imaginary part
of the earlier two-point function. Physically this new degree
of freedom corresponds to the odderon: an interaction by
the exchange of a parity-odd particle. Similar modifications
to the Gaussian average have been considered before in the
context of the McLerran-Venugopalan (MV) [23–25]
model (see e.g. [26–28]). Here, we will go beyond the
work in these papers and derive evolution equations in
rapidity for the odderon amplitude in the exponential three-
point approximation, extending earlier large-Nc results
[29,30] to finite Nc. We will then numerically solve these
evolution equations in a truncation in the harmonic number
in the azimuthal direction. To determine the consistency of
truncated JIMWLK evolution we complement our discus-
sion with a numerical simulation of parity-even correlations
using full untruncated JIMWLK evolution in the Langevin
framework, reproducing the same qualitative behavior.
This paper is structured in the following way. First, in

Sec. II, we motivate this study by an example of a
phenomenological context in which the odderon amplitude
appears directly. Then, in Sec. III, we point out that the
origin of the dipole amplitude as a correlation function of
Wilson lines that live on the SU(3) group manifold places
stringent mathematical bounds on the size of the odderon.
We then quantify these bounds for specific parametric
forms of the initial conditions in Sec. IV. On the same basis
we argue that, in the JIMWLK context, the odderon cannot
affect observables that do not break rotational symmetry in
the transverse plane. Section V presents the derivation of
the evolution equations for the odderon component from an
exponential n-point truncation. We solve these truncated
equations in Sec. VI with a further approximation to the
lowest nontrivial cos nθ azimuthal harmonic. Then in
Sec. VII we construct initial conditions for the JIMWLK
equation that include an odderon component and study its
evolution in a full (fixed coupling) JIMWLK simulation.

II. OBSERVABLES AND CROSS SECTIONS

The simplest application of JIMWLK evolution is
calculating the total cross section in experiments like deep
inelastic scattering (DIS), where a spacelike virtual photon
is scattered on a nuclear target. At small x and leading order
in perturbation theory, the cross section is dominated by the
qq̄ component of the photon wave function, which interacts
eikonally with the target. That is to say that the interaction
is driven by an average of the dipole operator

D̂x;y ¼
1

Nc
trðUxU

†
yÞ: ð1Þ

Using the diagrammatic notation introduced in [31] (see
Fig. 1), the total cross section can be cast as

ð2Þ

and allows access only to the real part of the dipole
correlator contained in the last two terms of Eq. (2), since

htrðUxU
†
yÞiðYÞ þ htrðU†

xUyÞiðYÞ ¼ 2hRetrðUxU
†
yÞiðYÞ:

ð3Þ

As indicated, the average will depend on Y ¼ ðln 1=xÞ with
the Y dependence governed by JIMWLK evolution.
The dipole operator does give rise to imaginary parts in a

generic average hD̂x;yiðYÞ, i.e. over an ensemble not
explicitly tailored to have a vanishing imaginary part,
but one needs more detailed experiments to access this
information. (We will argue in Sec. III that this is in fact an
absolute statement, at least within the JIMWLK context.)
The single transverse spin asymmetry (STSA) is such an

FIG. 1. Diagrammatic representation of the amplitude for γ�A
scattering at small x at momentum transfer Q2 ¼ −q2 as
introduced in [31]. Light cone “time” x− runs from right to left.
The interacting “out state” (top diagram) contains nontrivial
interactions between projectile and target. The interaction region
is indicated by a vertical bar at x− ¼ 0with superimposed explicit
markers for the Wilson lines picked up by each projectile
constituent. An arrow to the left indicates a U, an arrow to the
right a U−1. Arrows on gluon lines stand for Wilson lines in the
adjoint representation. The noninteracting “in state” (bottom
diagram) instead has no interactions and correspondingly con-
stant Wilson line factors at x− ¼ 0 which are gauge equivalent to
the unit element.
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observable. Kovchegov and Sievert [32] have in fact
suggested a new mechanism to generate a contribution
to STSA at small x that is triggered by this imaginary part.
The contribution suggested by Kovchegov and Sievert
takes the diagrammatic form

ð4Þ

where the incoming quark is taken (probabilistically) from
the incoming projectile.
In Eq. (4) the momentum and spin of the quark in the

final state are tagged and the color in the initial state is
summed over. Tagging the quark momentum leads to
different coordinates on the corresponding Wilson lines
in amplitude and complex conjugate amplitude. The gluon
momentum is integrated over so that the gluon Wilson line
in the last term cancels between the two sides of the cut.
The color correlators from the right-hand side of Eq. (4)
result in the following terms:

I ðqÞ ¼
�
trðUzU

†
yÞ

Nc
−

1

dA
~Uab
x 2trðtaUztbU

†
wÞ

−
1

dA
~Uab
x 2trðtaUutbU

†
yÞ þ trðUuU

†
wÞ

Nc

�
: ð5Þ

The STSA is driven by the contributions that are anti-
symmetric under exchange of the quark and antiquark
coordinates z ↔ y and thus the imaginary part of, for
example, the first term.

III. GROUP THEORY CONSTRAINTS ON
THE REAL AND IMAGINARY PARTS

OF qq̄ CORRELATORS

Most readers familiar with JIMWLK and BK simula-
tions will be prepared to accept that the qq̄ and qq̄g
correlators in Eq. (5), with normalization factors included,
are real and interpolate between 1 at distances much
smaller than the inverse saturation scale and 0 at pairwise
separations much larger than the inverse saturation
scale. This behavior is indeed respected by JIMWLK
evolution in all its forms, provided it is satisfied by the
initial condition.
This situation changes if one allows imaginary parts to

arise. Wewill illustrate the situation with a discussion of the
qq̄ dipole correlator and its underlying configurations that
appear explicitly in a Langevin simulation of JIMWLK
evolution. To this end, note that these configurations appear

as explicit SUðNcÞ matrices Ux.
1 This remains true for the

products entering the qq̄ correlators: UxU
†
y ∈ SUðNcÞ is

unitary and therefore has Nc eigenvalues of the form
eiϕiðx;yÞ, i ¼ 1;…; Nc ∈ N. All of them are functions of
both coordinates and live on the unit circle. The determi-
nant condition detðUxU

†
yÞ ¼ 1 then enforces that the

phases of the eigenvalues sum to an integer multiple of
2π. Suppressing the coordinate dependence on the ϕiðx; yÞ
we have, for each pair of points

1 ¼ detðUxU
†
yÞ ¼ ei

P
Nc
i¼1

ϕi⇔
XNc

i¼1

ϕi ¼ 2πn; n ∈ Z:

ð6Þ

The trace of the dipole operator is therefore fully
determined by Nc − 1 phases ϕi ∈ ½0; 2π½.
Using the constraint (6) to remove ϕNc

, one finds an
expression for the trace of our group element UxU

†
y that

reads

1

Nc
trðUxU

†
yÞ ¼ 1

Nc

�XNc−1

i¼1

eiϕi þ e−i
P

Nc−1
i¼1

ϕi

�
: ð7Þ

This trace falls into a simply connected closed subset of the
complex plane, bounded by the curve

hNc
ðθÞ ¼ 1

Nc
ððNc − 1Þeiθ þ e−iðNc−1ÞθÞ; ð8Þ

where θ ∈ ½0; 2π½. (See [33] for a recent discussion of these
textbook results.) Equation (8) has a very simple geometric
interpretation: The center of a small circle (represented by
the second term) is traveling along the perimeter of a large
circle (represented by the first term).2 While the large circle
is traversed once in a counterclockwise direction, the small
traveling circle is traversed clockwise Nc times. The line
traced out by hNc

ðθÞ in this manner is called a hypocycloid.
The curve is fully contained in the unit circle and, for fixed
Nc, has cusps at the Ncth roots of unity—these are the only
points where the curve touches the unit circle. These points
correspond to specific group elements that form the center
of the group fei2πn=Nc1jn ∈ Z=Ncg. In Fig. 2 both the
geometric origin and the cusp structure are illustrated for a
few values of Nc. For Nc → ∞, the hypocycloid will
approximate the unit circle. The value Nc ¼ 2 does not
allow for an imaginary part at all—the underlying reason is

1All arguments here assume that the coupling to the target is
described fully through Wilson lines, i.e. the absence of sub-
eikonal corrections, as is the case for all JIMWLK evolution.

2This description is adapted from the formula—alternatively,
one might describe the boundary as the curve traced by a point on
a circle of radius 1=Nc that rolls on the inside of the unit circle,
starting with both circles touching at 1.
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that the group is pseudoreal, i.e. U† ¼ ϵUϵ (ϵ ¼ ½ϵij�) is
isomorphic to U. In this vein, Nc ¼ 3 is the first case that
allows an imaginary part and has, at the same time, the
strongest limitations on its size from the group struc-
ture alone.
The dipole correlator appears as an average over such

configurations and can be parametrized in terms of two real
degrees of freedom

SxyðYÞ ≔ htrðUxU
†
yÞiðYÞ=Nc

¼ 1 − PxyðYÞ þ iOxyðYÞ
¼ e−CFðPxyþiOxyÞðYÞ; ð9Þ

i.e. either directly through real and imaginary parts (1 − Pxy
and Oxy, respectively) or exponentially via a logarithmic
modulus and phase (Pxy andOxy, respectively). Noting that
complex conjugation simply swaps the coordinates on S,
S�xy ¼ Syx implies that P and P are symmetric, whileO and
O are antisymmetric under the exchange of x and y. This
symmetry property links them to the Pomeron and odderon,
respectively.
One striking observation is that nothing inherently

prevents the real part, the Pomeron contribution, from
taking negative values—the hypocycloids allow negative
real parts. In fact the Wilson line dipole correlators of
Eq. (9) are averages of configurations falling into the
interior of the hypocycloid hNc

ðθÞ and thus are even

slightly less constrained: Such an average may fall outside
the hypocycloid but must remain inside a polygon con-
necting the cusps, as illustrated for a few values of Nc in
Fig. 3. For Nc ∈ Z ≥ 2, where there is a well-defined
interior, the bounding polygon can be parametrized by

pNc
ðθÞ ¼

cosð π
Nc
Þ

cosðmod ðθ; 2πNc
Þ − π

Nc
Þ e

iθ; ð10Þ

again with θ ∈ ½0; 2π½.
Let us emphasize that this is not in contradiction with the

bounds observed for real correlators in earlier simulations.
In fact, consistent, real-valued initial conditions for the qq̄
and qq̄g correlators of Eq. (5) during evolution lie between
the fixed points at 1 and 0 and the evolution equation does
not develop an imaginary part starting from a real initial
condition respecting these bounds.
This behavior is in fact a generic requirement on a

consistent evolution equation for Wilson line dipole corre-
lators. To expose the physics content of this statement,
parametrize a point inside the hypocycloid or inside its
bounding polygon by a real factor ρ ∈ ½0; 1� and a point on
the boundary bNc

ðθÞ [with bNc
ðθÞ either given by hNc

ðθÞ or
pNc

ðθÞ], so that the Wilson line correlator (the average)
takes the form

htrðUxU
†
yÞiðYÞ=Nc ¼ ρxyðYÞbNc

ðθxyðYÞÞ: ð11Þ

Like for the ingredients of Eq. (9) there are clear symmetry
requirements on ρ and θ in Eq. (11): They must be

FIG. 2. Geometric origin and shape of the hypocycloids traced
out by hNc

ðθÞ. The shaded region corresponds to allowed values
of trðUxU

†
yÞ=Nc, i.e. the set of points in the complex plane

reached by Eq. (7).

FIG. 3. Average group element traces must fall within a
polygon connecting the Ncth roots of unity. For Nc → ∞ the
polygon will approximate the unit circle.
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symmetric and antisymmetric, respectively, under
exchange of x and y. If the measurement is both transla-
tionally and rotationally symmetric in the transverse plane
[i.e. in the absence of an additional transverse vector ŝ to
furnish the sign change via a factor ŝ · ðx − yÞ], the
contribution of any antisymmetric function such as θxy
must vanish. In that case Eq. (11) can be reduced to
SxyðYÞ ¼ ρxyðYÞ ∈ ½0; 1�; i.e. the solutions are restricted to
the intersection of the hypocycloid with the positive real
axis. (See also Sec. VII where this mechanism is demon-
strated for JIMWLK ensembles.)
The need for additional directional information is a

physics requirement: To be able to see an odderon con-
tribution in an experiment one needs to break rotational
symmetry in the transverse plane such as is done by
measuring a spin asymmetry in STSA. The total cross
section, by contrast, averages over all directions ŝ (in the
average that forms the correlator) and thus forces bNc

→ 1.
In this case there is no scope for an average odderon
contribution to couple to the real part visible in Eq. (3); it is
zero throughout.
As a mathematical constraint, one needs an imaginary

part in the initial condition for the average to allow it to
move away from the interval [0, 1] and, in particular, for the
real part to turn negative. (Note that this does not imply that
individual configurations may not fall onto the negative real
axis; see again Sec. VII for explicit examples.)
To conclude this section, we note that the perturbative

limit r → 0 takes htrðUxU
†
yÞiðYÞ=Nc → 1 and thus is

associated with strong correlations and the trivial center
element UxU

†
x ¼ 1. The origin on the other hand corre-

sponds to htrðUxU
†
yÞiðYÞ=Nc → 0 and thus the long dis-

tance limit where the Wilson lines are uncorrelated. The
remaining center elements (at least for Nc ¼ 3) correspond
to maximally anticorrelated configurations.
If such configurations are not present with considerable

weight, the averages will not have any chance of being
pulled outside the hypocycloid into the remainder of then
enveloping polygon. The perturbatively motivated initial
conditions discussed in Sec. IV below do not lead to such
behavior despite the presence of noticeable anticorrelation
in one of the examples.

IV. CONSTRAINTS ON THE
INITIAL CONDITIONS

The physics expectations for the total cross section in the
absence of an imaginary part severely restrict the form of
the initial condition. The simplest assumption, based on
exponentiating the r2 behavior of leading-order light
cone perturbation theory, leads to the well-known Golec-
Biernat–Wüsthoff (GBW) [34] ansatz Sxy ¼ e−ðx−yÞ2Q2

s=4,
where Qs is the GBW saturation scale. The MV model
modifies this with a logarithmic correction in the exponent,
and evolution at leading order will carry any of these into a

scaling form entirely imposed by the nonlinear form of the
evolution equation. For our discussion here, all of these
forms are suitable since at leading order (see, however
[35–38]) evolution will quickly readjust these to take on the
features of the scaling form.
If we allow for a nonzero odderon admixture, the choice

of a physically meaningful initial condition for the pair ofP
and O needs some thought. At short distance, light cone
perturbation theory leads to Pxy ∝ jx− yj2 and Oxy∝ jx−yj3
[29], but the symmetry properties imposed by complex
conjugation require the presence of an additional transverse
vector ŝ as discussed in Sec. III. We thus expect a short
distance r ≪ 1=Qs behavior of the form

Pxy ∝ r2; Oxy ∝ κr2r · ŝ ¼ κr3r̂ · ŝ; ð12Þ

where r ¼ x − y and r̂ ¼ r=r. If we measure both contri-
butions in (12) in the same units, κ serves to parametrize the
normalization of the odderon relative to the Pomeron
amplitude. Wewill see in the following that it is constrained
by the group theory limits on the scattering amplitude in the
dilute limit r → 0.
As discussed in Sec. III, we can impose the group theory

constraints on the amplitude at two levels of rigor.
Physically we would expect that the average amplitude
itself is within the group manifold. In principle, it is also
possible that the average amplitude is within the polygon
region defined by linear combinations of amplitudes in
the group.
In the first, more physical case, this leads in the r → 0

limit to the constraint

Or ≤
ffiffiffi
2

p

3

Nc − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 1

p ðPrÞ3=2: ð13Þ

Assuming that the Pomeron has the perturbative behavior

Pr ≈ r2Q2
s=4 ð14Þ

and parametrizing the odderon with a general power law as

Or ≈ κðrQs=2Þα; ð15Þ

this leads to the constraint α ≥ 3. Thus, the result Or ∼ r3

of Ref. [29] indeed corresponds to the mildest r depend-
ence allowed by the group theory constraint. Assuming
now the power α ¼ 3 we get the limit

κ ≤
ffiffiffi
2

p

3

Nc − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 1

p ¼
Nc¼3

1

3
: ð16Þ

We want to stress the remarkable nature of this result. With
linear Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution
the magnitudes of the Pomeron and odderon amplitudes
are only limited by phenomenology. The interpretation of
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the scattering amplitude in terms of the Wilson line
immediately places a nonperturbative mathematical upper
limit on the odderon amplitude.
Strictly speaking the averages of SUðNcÞ matrices need

not be inside the group. Thus, in principle the upper limit
for the odderon follows from restricting the expectation
value of the amplitude to lie inside the Nc-sided polygon
with corners at the Nc roots of unity. This leads in the limit
r → 0 to

Or ≤
sin 2π

Nc

1 − cos 2π
Nc

Pr: ð17Þ

For amplitudes parametrized as in (14) and (15), this leads
to the less stringent limit α ≥ 2. For the limiting power
α ¼ 2 the odderon amplitude is constrained to

κðα ¼ 2Þ ≤ sin2π
Nc

1−cos2πNc

. For the value α ¼ 3, any value of κ

satisfies this more lax version of the group theory constraint
sufficiently close to r ¼ 0. From larger dipole sizes one
does obtain an upper limit on κ, but this limit is universal in
the same way; i.e. it depends on the functional form at
larger r.
As practical initial conditions for evolution including the

odderon, we suggest two possible extensions of the GBW
parametrization:

htrðUxU
†
yÞiðY0Þ=Nc ¼ e−r

2Q2
0
=4þiκr3Q3

0
=8r̂·ŝ ð18Þ

or

htrðUxU
†
yÞiðY0Þ=Nc ¼ e−r

2Q2
0
=4ð1þ iκr3Q3

0=8r̂ · ŝÞ: ð19Þ

Exponentiating the real part ensures that both the short- and
long-distance behavior are qualitatively correct: The
x − y → 0 limit produces 1 and the limit x − y → ∞
produces 0. We have no similar bias for or against
exponentiating the imaginary contribution, but the two
choices have very different consequences: Ansatz (18)
leads to anticorrelations in the real part while (19) does
not—see Figs. 4 and 5. This is qualitatively different, but
neither option can be excluded on purely theoretical
grounds.
The initial conditions (18) and (19) are visualized in

Fig. 6. As discussed above, in order for the average
amplitude to stay within the group manifold, we must
have κ ≤ 1=3. For the functional form of Eq. (19) the
parametrization stays within the triangle allowed for linear
combinations of SUðNc ¼ 3Þ Wilson lines for

κ ≤
2

ffiffi
2
3

q
ðeWð−3e−3=2=2Þþ3=2Þ

ð3þ 2Wð−3e−3=2=2ÞÞ3=2 ≈ 0.9867; ð20Þ

whereW is the Lambert function, defined as the solution of
z ¼ WðzÞeWðzÞ. We see that for the other parametrization

(18), the amplitude stays within the triangular region for the
same values κ.
In both cases, κ ≲ 1 so that real and imaginary parts show

modulation only near QsðY0Þ and thus provide perturba-
tively consistent starting points for evolution in a calcu-
lation where QsðY0Þ is assumed to be in the perturbative
domain. Note that the size of the odderon peak (the
maximum of imaginary parts shown in red in Figs. 4
and 5) is severely limited by the bounds on κ.

V. GAUSSIAN AND HIGHER-ORDER
EXPONENTIAL TRUNCATIONS

The dependence of the Wilson lines on the factorization
rapidity that separates the small- and large-x degrees of
freedom in the CGC formalism is given by the JIMWLK
equation [3–13] or equivalently by the Balitsky hierarchy

FIG. 4. Perturbatively motivated initial conditions for both real
and imaginary parts (solid blue and red dashed curve, respec-
tively) of htrðUxU

†
yÞiðY0Þ=Nc ¼ e−r

2Q2
0
þiκr3Q3

0
r̂·ŝ at r̂ · ŝ ¼ 1

assuming no extreme anticorrelations to drive the correlator
outside the hypocycloid (left) and relaxing this condition (right).
In both cases, real and imaginary parts show modulation only
near QsðY0Þ.

FIG. 5. Perturbatively motivated initial conditions for both real
and imaginary parts (solid blue and red dashed curve, respec-
tively) of htrðUxU

†
yÞiðY0Þ=Nc ¼ e−r

2Q2
0
þiκr3Q3

0
r̂·ŝ at r̂ · ŝ ¼ 1 as-

suming no extreme anticorrelations to drive the correlator outside
the hypocycloid (left) and relaxing this condition (right). In
both cases real and imaginary parts show modulation only
near QsðY0Þ.
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[14–17]. The Balitsky hierarchy is a coupled set of integro-
differential equations for operators made from products of
Wilson lines. The first equation of the hierarchy is

d
dY

htrðUxU
†
yÞi ¼ αs

π2

Z
d2z ~Kxzy

× h ~Uab
z trðtaUxtbU

†
yÞ − CFtrðUxU

†
yÞi;

ð21Þ
where ~Kxzy ¼ ðx−yÞ2

ðx−zÞ2ðz−yÞ2. It relates the rapidity dependence

of the dipole operator to a combination of dipole and three-
point operators. The equation is derived by considering the
emission of one soft gluon from the dipole; it is therefore
not surprising that the three-point function involved is the
same as in the STSA cross section (5). Using the Fierz
identity, Eq. (21) becomes

d
dY

�
trðUxU

†
yÞ

Nc

�
¼ αs

π2
Nc

2

Z
d2z ~Kxzy

×
�
trðUxU

†
yÞ

Nc

trðUxU
†
yÞ

Nc
−
trðUxU

†
yÞ

Nc

�
:

ð22Þ
This form is often used to truncate the hierarchy by

factorizing

�
trðUxU

†
yÞ

Nc

trðUxU
†
yÞ

Nc

�
⟶
fact

�
trðUxU

†
yÞ

Nc

��
trðUxU

†
yÞ

Nc

�

ð23Þ
in the spirit of an independent scattering approximation for
dipoles. The resulting closed mean-field equation

d
dY

�
trðUxU

†
yÞ

Nc

�
¼ αs

π2
Nc

2

Z
d2z ~Kxzy

×

��
trðUxU

†
yÞ

Nc

��
trðUxU

†
yÞ

Nc

�
−
�
trðUxU

†
yÞ

Nc

��
ð24Þ

is the Balitsky-Kovchegov equation [14,22] and is a crucial
tool in practical phenomenological applications of the CGC
formalism.
To develop a better understanding of the possible physics

content of the correlators in Eq. (5) and their JIMWLK
evolution, we now turn to a set of systematically extendable
truncations of the Balitsky hierarchy associated with the
dipole operator, the simplest of which is known as the
Gaussian truncation.
The motivation and prototype of this truncation is a

procedure applied to the calculation of the gluon density in
the MV model already in Ref. [3] and heavily reused since
[31,39–43]. The method relies on the fact that Wilson lines
are given as path-ordered exponentials in the gauge field as

Ux ¼ P exp

	
ig
Z

dx−Aa;þ
x;x−ta



ð25Þ

and the assumption—intrinsic to the MV model—that the
correlators of the A field in the exponent obey Gaussian
statistics with only a local correlation in the longitudinal
coordinate

g2hAa;þ
x;x−A

b;þ
y;y−i ¼ δðx− − y−ÞδabGx−;xy: ð26Þ

The MV model further assumes a specific form of the
correlation function

∂2
x∂2

yGx−;xy ¼ g2μ2ðx−Þδxy; ð27Þ
but the latter is not a necessary ingredient for the trunca-
tions and will not be assumed in the following.
One advantage of such a procedure is that all possible

correlators with any number of Wilson lines automatically
obey all group theoretical relations imposed in any possible
coincidence limit, such as the relationships listed in Fig. 7.
More generally, we can achieve this feature by parametriz-
ing Wilson line correlators in a Gaussian manner via

h…iðηÞ ¼ hPηe
R

η

η0
dη0½1

2

R
uv
Guvðη0Þi∇a

ui∇a
v �…iðη0Þ; ð28Þ

where we have replaced x− by a general coordinate space
longitudinal (rapidity) variable η ∼ ln x−. Practically,
Eq. (28) allows one to find a parametrization for any set
of correlators with consistent coincidence limits (such as
listed in Fig. 7) by solving the functional differential
equation

d
dη

hF½U�iðηÞ ¼ 1

2

Z
u;v

hGuvðXÞi∇a
ui∇a

vF½U�iðηÞ ð29Þ

FIG. 6. Perturbatively motivated initial conditions for
Pomeronþ odderon configuration averages. Lowest-order per-
turbative calculations yield r2 and r3 behavior for small
r ¼ jx − yj in the Pomeron and odderon channel, respectively.
The plots show how different initial conditions seeded with this
behavior at small r traverse the complex plane. In the para-
metrizations shown κ parametrizes the ratio of characteristic
scales in the Pomeron and odderon sector. To fall into the allowed
region jκj must be small (jκj ≤ 1

3
, blue; κ ≤ .98, dashed red and

blue lines), which limits the possible size of the Pomeron
contribution in the initial condition; see Figs. 4 and 5.
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to parametrize some singlet observable hF½U�i in terms of
the two-point correlator Guv. The simplest example is the
qq̄ correlator with F½U� → trðUxU

†
yÞ=Nc for which this

functional equation indeed turns into a closed differential
equation. For more complicated operators such as q2q̄2, the
functional equation turns into a set of coupled differential
equations that need to be solved simultaneously. The
expectation values of several different Wilson line operators
with a Gaussian weight have been calculated in the
literature, e.g. in Refs. [3,31,40–45].
The simplest generalization of the Gaussian truncation is

what we will call the three-point exponential truncation.
It includes the two-point contribution from the Gaussian
truncation but adds all mathematically independent three-
point functions to the exponential. This can be summa-
rized by

h…iðηÞ ¼
�
Pη exp

	Z
η

η0

dη0
�
1

2

Z
uv
Guvðη0Þi∇a

ui∇a
v
1

3!

Z
uvw

Gd
uvwðη0Þdabci∇a

ui∇b
v i∇c

w

×
1

3!

Z
uvw

Gf
uvwðη0Þfabci∇a

ui∇b
v i∇c

w þ 4 pts

�

…ðη0Þ

�
: ð30Þ

As indicated there is, in principle, no obstruction to higher
n-point functions to this parametrization functional.
Note that in Eq. (30) both G and Gd are fully symmet-

rical under exchange of any pair of transverse coordinates,
while Gf has slightly more complicated features but will
not enter any of the correlators in Eqs. (3) and (5) so that we
have no need to discuss it in any more detail.
We choose Guu ¼ 0 and Guuu ¼ 0 as this simplifies

some of the expressions below from the outset. The
correlators in Eq. (21) then take the form

Sxy ¼
htrðUxU

†
yÞi

Nc
¼ e−CFGxy ð31aÞ

and

hUab
z trðtaUxtbU

†
yÞi

2NcCF
¼ e−

Nc
2
ðGxzþGzy−GxyÞ−CFGxy; ð31bÞ

where

GxyðηÞ ¼ ðP þ iOÞxy ð31cÞ

whose real and imaginary parts are literally the P and O
introduced as parametrization functions of the complex
number htrðUxU

†
yÞiðYÞ=Nc. The truncation procedure

asserts that they also consistently parametrize the qq̄g
correlator and provides an explicit expression of G in terms

of G and Gd and their respective initial conditions
at η0:

PxyðηÞ ≔
Z

η

η0

dη0Gxy þ Pxyðη0Þ ¼ PyxðηÞ; ð32aÞ

iOxyðηÞ ≔
Cd

4

Z
η

η0

dη0ðGd
yxx −Gd

yyxÞ þ iOxyðη0Þ

¼ −iOyxðηÞ: ð32bÞ

Strikingly, the observables considered here do not allow
access to Guvw with all three coordinates independent
despite the fact that the qq̄g correlator features three distinct
coordinates. For Guvw to occur with its full coordinate
dependence one needs for example a protonlike state which
remains outside the scope of this paper.
In the literature one often uses the same notation for the

factorization rapidity Y and the longitudinal coordinate in
the path-ordered exponential η (or ln x−). With the physical
interpretation given above these are, however, not the same
quantity. The coordinate x− that gives the interpretation of
the Wilson line as a path-ordered exponential in the color
field is a spatial coordinate along the trajectory of the path-
ordered exponential. The local structure of the correlation
function in the longitudinal coordinate essentially imposes
the Gaussian property on the distribution of Wilson lines,
since these are made up of independent infinitesimal
increments. The coordinate x− is, however, not directly

FIG. 7. Correlator relations between qq̄g, qq̄ and gg.
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related to an experimental observable, but cross sections
always depend on Wilson lines integrated over x−.
The rapidity Y, on the other hand, is a longitudinal

momentum scale separating large- and small-x degrees of
freedom in the CGC formalism. The scale Y is a factori-
zation scale in the renormalization group evolution and
should be chosen according to the typical longitudinal
momentum scale in the studied scattering process. A loose
uncertainty principle argument states that for a momentum
space scale Y, the fields in the target are localized in a
coordinate space interval Δx− ∼ expfYg. Thus, identifying
η and Y is indeed justified at the leading logarithmic level
(but not at higher orders in perturbation theory). This
identification is not needed or used anywhere in the present
calculation and we will keep the separate notation for these
two variables.
It is important to realize that Eq. (29) is a parametrization

equation that expresses singlet Wilson line correlators in
terms of a two-point function whose Y dependence needs to
be derived separately or is known a priori. Thus, the
solutions of the parametrization equation, e.g. Eqs. (31a)
and (31b), have an unknown dependence on the factori-
zation rapidity Y that will need to be derived from the actual
QCD dynamics.
One way to derive an equation for the dependence of the

two-point function G on the factorization rapidity Y is to
take the solutions of Eq. (29) and insert them into the
appropriate equations from the Balitsky hierarchy. Every
equation of the hierarchy leads to a different equation for G.
Choosing this equation to be the equation (21) for the
expectation value of trðUxU

†
yÞ=Nc dipole leads to a

Gaussian truncation of the JIMWLK hierarchy.
It is also possible to rewrite the parametrization

equation (30) in terms of a more abstract longitudinal

coordinate, which can then be chosen to be equal to the
evolution rapidity. This procedure can be used to simplify
the coupled evolution equations for more complicated
higher-point operators of Wilson lines [31], at the expense
of losing the physical interpretation of the longitudinal
coordinate. Here we will concentrate on the evolution
equation for just the dipole operator and can easily remain
with the physical interpretation of η as being related to x−

and distinct from the momentum rapidity Y.
As indicated in Eq. (32), the effective two-point

functions do show the required symmetry properties of
htrðUxU

†
yÞi=Nc under complex conjugation; one obtains a

consistent gauge-invariant truncation of the associated
Balitsky hierarchy with the evolution equation

d
dY

Gxy ¼
αs
π2

Z
d2zKxzyð1 − e−

Nc
2
½GxzþGzy−Gxy�Þ; ð33Þ

which obviously couples real and imaginary parts.
Equation (33) generalizes the large-Nc results of [29,30]
to finite Nc.
The solutions to the parametrization equations (31) and

thus the evolution equation (33) differ from their BK
counterpart for the total cross section in the Gaussian
truncation only through a nonvanishing imaginary part
iO ≠ 0 appearing in G. Indeed iO ¼ 0 and P ∈ ½0;∞� is a
consistent solution to this equation which leads to a
successful phenomenology for HERA data at small x
[46]: If the initial condition for G is real, the equation
never generates an imaginary part. This can be seen from
the coupled equations for the real and imaginary parts
explicitly:

d
dY

PxyðYÞ ¼
αs
π2

Z
d2zKxzy

�
1 − e−

Nc
2
½PxzþPzy−Pxy�ðYÞ cos

�
Nc

2
½Oxz þOzy −Oxy�ðYÞ

��
; ð34aÞ

d
dY

OxyðYÞ ¼
αs
π2

Z
d2zKxzy

�
e−

Nc
2
½PxzþPzy−Pxy�ðYÞ sin

�
Nc

2
½Oxz þOzy −Oxy�ðYÞ

��
: ð34bÞ

VI. EVOLUTION IN THE THREE-POINT
EXPONENTIAL TRUNCATION

There are many different ways to rewrite the equation
before implementing it numerically. The most prominent
among these is the possibility to map (33) into the BK
equation, as noted in [1]. Let us briefly recapitulate how
this is done. Inserting the Gaussian correlator parametriza-
tions of the three-point exponential truncation (31) into the
first equation of the Balitsky hierarchy (21) and canceling
an overall factor of Nc, we get

d
dY

e−CFGxy ¼ αsCF

π2

Z
d2z ~Kxzy

× ðe−Nc
2
½GxzþGzy−Gxy�−CFGxy − e−CFGxyÞ: ð35Þ

From here it is straightforward to arrive at Eq. (33) after
canceling an overall factor e−CFGxy common to both sides.
To derive the relation between the BK equation and the

Gaussian truncation one starts by multiplying both sides of
Eq. (33) with − Nc

2
e−

Nc
2
Gxy , leading to the alternative form
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d
dY

e−
Nc
2
Gxy ¼ αs

π2
Nc

2

Z
d2zKxzy

× ðe−Nc
2
½GxzþGzy� − e−

Nc
2
GxyÞ ð36Þ

for this evolution equation. Now, after identifying

SBKxy ≔ e−
Nc
2
Gxy ; ð37Þ

it is manifest that Eq. (36) is equivalent to the BK equation

d
dY

SBKxy ¼ αs
π2

Nc

2

Z
d2z ~KxzyðSBKxz SBKzy − SBKxy Þ: ð38Þ

Equations (33), (35), (36), and (38) are all equivalent: They
all determine the evolution for the same function G and will
lead to the same Y dependence provided we set the same
initial condition on G. The difference between the Gaussian
truncation and the large-Nc BK equation (in the sense
the term is commonly used) is in the relation between the
physical scattering amplitude and the solution of the evolu-
tion equation. In the large-Nc limit the solution of the BK
equation SBK is assumed to be the physical scattering
amplitude. In the finite-Nc Gaussian truncation the physical
scattering amplitude is related to the fundamental two-point
correlatorG by (33) and to the solution of theBKequation by
(36). Thus the physical scattering amplitude is obtained from
the solution of the BK equation as

Sxy ¼
�
trðUxU

†
yÞ

Nc

�
¼ ðSBKxy Þ

2CF
Nc : ð39Þ

Thus the real and imaginary parts of the physical dipole
operator in theGaussian truncationSxy, expressed in terms of
the real and imaginary parts of the BK-evolved dipole, read

ReSxy ¼ jSBKxy j
2CF
Nc cos

	
2CF

Nc
arctan

ImSBKxy
ReSBKxy



; ð40Þ

ImSxy ¼ jSBKxy j
2CF
Nc sin

	
2CF

Nc
arctan

ImSBKxy
ReSBKxy



: ð41Þ

Note that a purely real solutionof theBKequation still gives a
purely real dipole expectation value, but the presence of an
imaginary part in the BK equation affects both the real and
imaginary parts of the physical dipole.
Separating the identity from the BK-equation dipole

operator SBK, one gets the scattering amplitude NBK
r ¼

1 − SBKr , where r ¼ x − y. In line with our earlier con-
ventions in Eq. (9) we denote its real and imaginary parts as
PBK
r ≔ ReðNBK

r Þ, the BK Pomeron and OBK
r ≔ ImðNBK

r Þ,
the BK odderon. In terms of these, the evolution equa-
tion (38) now becomes a set of two real integro-differential
equations

dPBK
r

dY
¼ αsNc

2π2

Z
d2r0

r2

r02r002
ðPBK

r0 þ PBK
r00

− PBK
r − PBK

r0 PBK
r00 þOBK

r0 OBK
r00 Þ; ð42Þ

dOBK
r

dY
¼ αsNc

2π2

Z
d2r0

r2

r02r002
ðOBK

r0 þOBK
r00 −OBK

r

− PBK
r0 OBK

r00 −OBK
r0 PBK

r00 Þ; ð43Þ

where r00 ≡ r − r0. These equations are identical to those
derived in Refs. [29,30] in the large-Nc limit. As discussed
above, what changes at finite Nc in the Gaussian truncation
is the relation between the solution of these equations and
the physical scattering amplitude, which is now given by
Eqs. (40) and (41).
Recall that from the definition of Sr it follows that

S�r ¼ S−r. This in turn imposes separate symmetry proper-
ties on the real and imaginary parts of G ¼ P þ iO which
are correctly reproduced by our truncation in Eq. (32). Via
(37) they directly imply that SBKr � ¼ SBK−r . Thus the real and
imaginary parts of the amplitude are odd or even under
reflections:

PBK
−r ¼ PBK

r ; ð44Þ

OBK
−r ¼ −OBK

r : ð45Þ

For the linear BFKL part of the equation it is particularly
convenient to decompose the solution to the evolution
equation in terms of eigenfunctions of the kernel, both in jrj
and in azimuthal angle. For the nonlinear case it is more
convenient to continue working in r space, but we can
still perform a Fourier series expansion in the azimuthal
angle. The symmetry (44) and (45) dictates that the
Pomeron and odderon can only have even or odd harmon-
ics, respectively:

PBK
r ¼

X∞
n¼0

PBK
2n ðrÞ cosð2nφrÞ; ð46Þ

OBK
r ¼

X∞
n¼0

OBK
2nþ1ðrÞ cosðð2nþ 1ÞφrÞ; ð47Þ

where φr is the angle of the vector r with respect to an
(arbitrary) reaction plane. Based on the known BFKL
dynamics in the linear regime, we expect the small
azimuthal harmonics to dominate in the high energy
regime. Our working hypothesis here is that the same is
true also in the nonlinear case. This allows us to efficiently
study the equations by truncating the series and only
keeping the lowest harmonics. We can control the error
made in this approximation ex post by calculating the
rapidity dependence of the first neglected term in the series
from the ones that are kept.
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A quick examination of Eqs. (42) and (43) reveals that
the usual azimuthal PBK

0 ðrÞ is a fixed point of the equation.
Including the lowest odderon harmonic OBK

1 ðrÞ will gen-
erate a second Pomeron PBK

2 ðrÞ through the ðOBKðrÞÞ2
term in (42), which again will generate a higher OBK

3 ðrÞ
harmonic through the nonlinear PBKOBK coupling in (43).
In this way, including an odderon will automatically
generate an infinite tower of higher harmonics in both
the odderon and the Pomeron amplitudes. In principle, it
could thus be possible that, through this coupling, an
odderon component would have an observable signal in

a P-even observable such as dijet correlations at an
electron-ion collider [47].
For this first numerical study we have truncated the series

to the smallest harmonics of both the Pomeron and odderon,
i.e.PBK

0 ðrÞ andOBK
1 ðrÞ, by dropping theOBK

r0 OBK
r00 term from

the Pomeron evolution equation (42). With this truncation,
the Pomeron amplitude stays rotationally invariant and the
odderon equation (43) can be solved as such with only the
lowest harmonicOBK

1 ðrÞ. To see this explicitly, note that with
only the azimuthally symmetric component in the Pomeron
amplitude, we can write the odderon equation as

dOBK
1 ðrÞ cos θ
dY

¼ αsNc

2π2

Z
d2r0

r2

r02r002
× ðOBK

1 ðr0Þ cos θ0 þOBK
1 ðr00Þ cos θ00 −OBK

1 ðrÞ cos θ

− PBK
0 ðr0ÞOBK

1 ðr00Þ cos θ00 −OBK
1 ðr0ÞPBK

0 ðr00Þ cos θ0Þ; ð48Þ

where θ, θ0 and θ00 are the angles of r, r0 and r00with respect to the x axis. In practicewe can solve Eq. (43) by choosing the vector
r to lie on the x axis, with thus cosφr ¼ 1. To show explicitly that this is the case, we use ðr00Þ2 ¼ r2 þ ðr0Þ2 − 2rr0 cosðθ − θ0Þ
and cos θ00 ¼ ðr cos θ − r0 cos θ0Þ=r00 to write this as

dOBK
1 ðrÞ cos θ
dY

¼ αsNc

2π2

Z
dr0dθ0r0

r2

ðr0Þ2ðr00Þ2Þ ×
�
ð1 − PBK

0 ðr00ÞÞOBK1ðr0Þ cos θ0

þ ð1 − PBK
0 ðr0ÞÞOBK

1 ðr00Þ r cos θ − r0 cos θ0

r00
−OBK

1 ðrÞ cos θ
�
: ð49Þ

We then take ϕ ¼ θ0 − θ as a new integration variable and use the identity cosðθ0Þ ¼ cosϕ cos θ − sinϕ sin θ. Now the terms
that are proportional to sin θ are also proportional to sinϕ times an even function of ϕ and vanish upon integration over ϕ,
leaving every termon the right-hand side ofEq. (49) proportional to cos θ. Thus, as discussed earlier,with this approximationof
a θ-independent Pomeron amplitude the equation for the cos θ harmonic of the odderon closes. We can cancel the cos θ from
Eq. (49), and we are left with the truncated set of equations

dPBK
0 ðrÞ
dY

¼ αsNc

2π2

Z
d2r0

r2

r02r002
ðPBK

0 ðr0Þ þ PBK
0 ðr00Þ−PBK

0 ðrÞ − PBK
0 ðr0ÞPBK

0 ðr00ÞÞ; ð50Þ

dOBK
1 ðrÞ
dY

¼ αsNc

2π2

Z
dr0dϕr0

r2

ðr0Þ2ðr00Þ2Þ
�
ð1−PBK

0 ðr00ÞÞOBK1ðr0Þ cosϕþð1−PBK
0 ðr0ÞÞOBK

1 ðr00Þr− r0 cosϕ
r00

−OBK
1 ðrÞ

�
; ð51Þ

with ðr00Þ2 ¼ r2 þ ðr0Þ2 − 2rr0 cosϕ.
We will now proceed to numerically solve Eqs. (50)

and (51). We will parametrize the initial condition as in
Eq. (19):

PBK
0 ðr00ÞjY¼0 ¼ 1 − exp

	
−Q2

0r
2

4



; ð52Þ

OBK
1 ðrÞjY¼0 ¼ −κ exp

	
−Q2

0r
2

4


�
Q3

0r
3

8

�
; ð53Þ

with the maximal value κ ¼ 1=3. Figure 8 shows the
resulting amplitudes. For the Pomeron part one sees the

familiar “traveling wave” solution moving towards smaller
dipoles with rapidity. The odderon amplitude, on the other
hand, merely decreases in magnitude but its characteristic
dipole size scale does not decrease. This behavior is
quantified further in Figs. 9 and 10, showing the height of
the odderon amplitude peak as a function of rapidity and the
ratio of the (BK) odderon to the (BK) Pomeron amplitude.
In the calculations presented above, we have neglected the

odderon squared term in the evolution equation. This can be
justified by the fact that, since it has not yet been unambig-
uously observed experimentally, the odderon amplitude can
be expected to be small.Also expectations basedon the linear
evolution equation would lead to an odderon amplitude that
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decreases as a function of rapidity [29,30]. Within the
truncation of the harmonic series (46) and (47) one can
estimate the size of this approximation by evaluating the
contribution of the first neglected term on one time step, i.e.
the contribution of the odderon squared term to the evolution
equation of the Pomeron.As discussed previously, the square
of the odderon termOBK

1 ðrÞ cos θ gives both a θ-independent
and a cos 2θ contribution to the evolution equation of the
Pomeron. We denote the coefficients of these by a1 and a2;
i.e. we write

dPBK
r

dY
¼ ½BK� þ a1ðrÞ þ a2ðrÞ cosð2θrÞ: ð54Þ

We can now compare the odderon terms to the rotationally
invariant solution. Figure 11 shows the initial condition for
the fairly large value of κ ¼ 1=3. It can be seen that the
odderon squared terms are negligible in the small-r region
that drives the evolution. The θ-independent a1 term is
particularly small, while a2 is slightly larger. We conclude

FIG. 9. Plot of the height of the odderon peak (as shown in
Fig. 8) as a function of rapidity. Three different values κ ¼ 1=3,
1=6 and 1=12 are shown.

FIG. 10. Ratio of OðrÞ=PðrÞ for κ ¼ 1=3 as a function of r at
different rapidities.

FIG. 8. Evolution of the Pomeron (left) and odderon (right) amplitudes according to Eqs. (50) and (51) with the initial condition (19)
with κ ¼ 1=3.

FIG. 11. Contribution to ΔPr=ΔY in one step in rapidity from:
the BK equation, a1ðrÞ and a2ðrÞ, with the maximal odderon
amplitude κ ¼ 1=3.
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that the main effect of the nonlinear odderon term is not to
modify the evolution of the rotationally invariant PBK

0 ðrÞ
amplitude but to introduce a small cos 2θ term into the
Pomeron.

VII. FULL LEADING-ORDER JIMWLK
EVOLUTION WITH ODDERON ADMIXTURE

Since the evolution equation (33) or (34) is the result of a
truncation of the full functional JIMWLK evolution, one
may legitimately ask if the truncation deviates quantita-
tively or even qualitatively from a full JIMWLK simula-
tion. This can be performed at leading order or at partial
next-to-leading order with running coupling corrections
included. Since in this paper we are only interested in
qualitative behavior we have, for simplicity, chosen the
former option.
What is quite remarkable is that the only thing that needs

to change to perform a simulation run is the initial
condition. The Langevin simulation governing JIMWLK
evolution is carried out on a square transverse grid. A
simulation for the total cross section starts from an initial
condition that treats both of the principal directions of the
transverse plane in the same way. To obtain an odderon
admixture one must break this lattice remnant of rotational
invariance and introduce a bias towards one of the
directions into the initial condition—the code used for
evolution needs no modification at all.
In this work we investigate the properties of the parity-

odd initial states with the following simple setup: We use a
lattice of size L2 with periodic boundary conditions. First
we generate an ensemble of standard parity-even initial
states with a probability distribution

PðRetrðUxU
†
yÞÞ ∝ expð−ðx − yÞ2=4R2Þ; ð55Þ

using the methods described in [19]. This generates
configurations with saturation scale Qs ∼ 1=R. The expect-
ation value of the imaginary part of htrðUxU

†
yÞi=Nc

vanishes and its real part falls into the interval between
0 and 1. Such an ensemble is a suitable starting point for a
simulation without an odderon admixture.
To introduce an odderon contribution one needs to

generate an imaginary part. A convenient way of doing
so is to consider a “potential”

V½U�ðxÞ ¼ α
X
y

ImtrðUxU
†
yÞfðx − yÞ; ð56Þ

where α is a small real parameter and f is an odd function
of r that breaks the symmetry between the two coordinate
directions:

fðxÞ ¼ x1e−x
2=4R2 ðx21 − ðL=2Þ2Þðx22 − ðL=2Þ2Þ

L4
: ð57Þ

The last part of the expression merely ensures that fðxÞ
vanishes at the boundaries xi ¼ �L=2 so that no disconti-
nuities arise there.
We use a left derivative to define the force induced by the

“potential” V as

FaðxÞ ¼ −α
X
y

RetrðλaUxU
†
yÞfðx − yÞ ð58Þ

and make an update Ux → eiαFaðxÞλaUx. This update is
repeated a few times for all sites x. The magnitude of the
parity-odd contribution can be modified by adjusting the
constant α and the number of update steps.
In Figs. 12–14 we show the behavior of the real and

imaginary parts of trðUxU
†
yÞ as measured on L2 ¼ 1282

lattices, using (a) no, (b) mild and (c) very large odderon
contributions, respectively. Let us discuss the three cases
in turn:

FIG. 12. Leading-order Langevin simulations with curves for
different Y values at Nc ¼ 3 without an odderon admixture. The
top row shows a density histogram of individual trace values (left)
and averages (right) for configurations pulled from the ensembles
through some Y range. The dipole trðUxU

†
yÞ=Nc becomes 1 in the

short-distance limit. This is why the distribution exhibits a strong
maximum there. Note that the configurations cover much of
the allowed range with only a small fraction falling near the
maximally anticorrelated corners at e�i2π=3. The density distri-
bution is symmetric under reflection about the real axis. The
averages fall into the real interval [0, 1], despite the fact that many
individual configurations show negative real parts. The bottom
row shows real and imaginary parts of the correlator averages for
a number of Y values. The real part exhibits the familiar approach
to scaling (curves move “left” with increasing Y) and an
imaginary part that is zero within good accuracy with only small
fluctuations visible.

JIMWLK EVOLUTION OF THE ODDERON PHYSICAL REVIEW D 94, 054014 (2016)

054014-13



(a) No odderon in the initial state.—The ensemble is
generated to follow Eq. (42) with no distortion applied
so that the average

htrðUxU
†
yÞiðYÞ=Nc ∈ ½0; 1� for all Y: ð59Þ

The imaginary part vanishes in the initial condition
and none is generated during evolution. This can likely
be traced back to the adjoint nature of the Wilson lines
“dressing” the Gaussian noise in the Langevin version
of the leading-order JIMWLK equation. Note that this
holds despite the fact that individual configurations
trðUxU

†
yÞ=Nc occur anywhere inside the hypocycloid

allowed by the constraints discussed in Sec. III. Plots
illustrating this simulation are shown in Fig. 12. The
top left displays a density histogram of configurations
trðUxU

†
yÞ=Nc which almost fill the whole allowed

region. Note that the density is lowest at the anti-
correlated cusps corresponding to e�i2π=31 and that the
distribution is symmetric under a reflection along the
real axis. As a consequence, Eq. (59) is satisfied for all
Y, as shown top right. The plots in the second row
show real and imaginary parts as a function of dipole
size.3 The real part shows the familiar decay of the
correlation length RsðYÞ and will develop scaling
behavior if allowed to evolve far enough.

(b) A moderate odderon admixture to the initial state.—
Plots illustrating this simulation are shown in Fig. 13.
The density histogram for individual configurations
trðUxU

†
yÞ=Nc shows a bias towards a positive imagi-

nary part, which is confirmed by the averages
htrðUxU

†
yÞiðYÞ=Nc shown top right. Along with the

appearance of an imaginary part, one observes that the
real part shows negative values—anticorrelations
appear. This simulation is qualitatively close to what
we have discussed in the context of the truncations

FIG. 13. Leading-order Langevin simulations with curves for
different Y values at Nc ¼ 3 with a moderate odderon admixture.
The top row shows a density histogram of individual trace values
(left) and averages (right) for configurations pulled from the
ensembles through some Y range. Note that, as in Fig. 12, the
configurations cover much of the allowed range with only a small
fraction falling near the maximally anticorrelated corners at
e�i2π=3. The density distribution now shows a small bias towards
positive real parts that leads to a nontrivial imaginary part in the
averages. These move towards the real axis as Y increases. The
bottom row shows real and imaginary parts of the correlator
averages for a number of Y values. The real part now shows a
small amount of anticorrelation which is erased quickly. The
overall trend is an approach to scaling behavior very similar to
that of the odderon-free simulation of Fig. 12. The imaginary part
is small and erased in place as Y increases. The two contributions
behave in a qualitatively different manner: approach to scaling for
the real part (the Pomeron) decay for the imaginary part (the
odderon).

FIG. 14. Leading-order Langevin simulations with curves for
different Y values at Nc ¼ 3 with a maximized odderon admix-
ture. The layout repeats that of Figs. 12 and 13. The density
histogram now shows a second maximum at ei2π=3, a strong
anticorrelating distortion of the initial condition. This manifests
itself in averages that (initially) push outside the hypocycloid into
the triangle connecting the 3rd roots of unity, as discussed in the
text. With this come strong anticorrelations in the real parts in the
initial condition. These features that are extreme in the initial
conditions nevertheless are erased during evolution which again
approaches scaling form. The imaginary parts are maximized in
the initial condition beyond what we expect to be physical, but
the overall behavior is the same as for a moderate odderon
admixture: The odderon contribution is erased in place.

3Units can only be assigned after a data fit, which is not the
goal of this publication.
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with a perturbative boundary condition, although no
effort was made to create a literal r3 behavior for the
initial condition.
The striking feature of this is the qualitatively

different behavior seen in the Y dependence of real
and imaginary parts. While the real part does exhibit a
small anticorrelation for r≳ Rs ≡ 1=Qs, the evolution
of Rs and the approach to scaling are affected very
little by the presence of an imaginary part. The
imaginary part is not characterized by a moving Y-
dependent scale; it shows a single, clearly developed
maximum that remains largely at the same distance
scale as Y changes. The dominating feature of evo-
lution is that the height of the maximum shrinks—the
odderon is erased in place.

(c) A maximized odderon admixture in the initial state.—
Plots illustrating this simulation are shown in Fig. 14.
The initial condition is maximally distorted and the
distribution of trace values has developed a second
maximum in the maximally anticorrelated region at
ei2π=31.
This is an extreme case that we have included to

illustrate the features of JIMWLK evolution. Due to the
extreme initial condition, the dipole averages start to fall
outside the hypocycloids and the lattice is too small for
the real part to reach zero at large distances. Never-
theless, the behavior of the imaginary part still mirrors
that of the realistic odderon admixture: The odderon
does notmove; it decays in place.We conclude that both
the scale shift for the real part and the fixed scale decay
for the imaginary part of the dipole correlator are
genuine features of JIMWLK evolution, irrespective
of the details of the initial condition.

VIII. DISCUSSION

In this paper we have shown how to derive the high
energy evolution equations for the odderon amplitude using
a consistent three-point truncation of the Balitsky hierarchy.
In the large-Nc limit our solution recovers that of [29,30].
Decomposing the amplitudes in terms of Fourier harmonics
yields an infinite series of coupled equations. Due to the
nonlinear relation between the real and imaginary parts of
the physical scattering amplitude, and the solutions of the
corresponding BK equation [see Eqs. (40) and (41)], the
presence of any odderon component introduces an angular
dependence at all harmonics n into the scattering ampli-
tude. This correlation vanishes in the large-Nc limit and
would therefore not have been accessible previously. This
coupling between the odderon amplitude and higher
harmonics could allow for a quantitative experimental
access to the odderon component in multiparticle correla-
tions in future precise DIS experiments [48].
By truncating the harmonic series to the first nontrivial

terms for both the Pomeron and odderon parts, one gets a
closed nonlinear equation for the energy dependence of the

odderon amplitude. We have presented the first numerical
solution to this equation available in the literature. We have
then completely independently confirmed these results with
a numerical lattice solution of the full JIMWLK equation
with an initial condition containing an odderon component.
Both of these numerical calculations have confirmed the
earlier analytical conjectures based on the linear BFKL
limit [29,30], showing that the odderon amplitude
decreases with increasing collision energy. This observa-
tion justifies the truncation of the higher harmonic terms
used in the BK-like numerical evaluation (the JIMWLK
simulation needs no such truncation).
The odderon appears in full JIMWLK evolution only by

preparing its initial conditions in a way that breaks rotational
invariance in the transverse plane. This mirrors directly what
is happening in a measurement process: The ensemble we
average over needs to break rotation invariance in both cases.
In an experiment this can be achieved by measuring polar-
izations, as is done in an STSAmeasurement. The total cross
section as an average over a fully symmetric unbiased set of
events will not be able to couple to the odderon at all. (Not
even through mixing of real and imaginary parts during
evolution—there are no average imaginary parts to begin
with and none are generated during evolution.) A targeted
observable on the other hand, like STSA, can give access to
the imaginary parts ofWilson line correlators directly.Once a
preselected ensemble of events generates such imaginary
parts in the average, they also impact the real parts and may
even trigger anticorrelations there. The mechanism for this
mixing in full JIMWLK lies in the nonlinear nature of the
evolution equation. Judging from the agreement between full
JIMWLK evolution and the numerical results in the three-
point exponential truncation it would appear that this non-
linear mechanism is well captured in the truncated theory.
The coupling of the odderon component may not have a

strong effect on high energy asymptotical behavior even of
targeted observables—as we have demonstrated, the odd-
eron still decays with energy even beyond the linear BFKL
approximation. At realistic collider energies the question is
still open, but only if we consider tailored experiments of
sufficient accuracy. If the presence of an odderon contri-
bution comes with anticorrelations in the real parts in its
initial condition, this might open new avenues to access
them experimentally.
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We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution in the color glass condensate effective field
theory. We discuss a diagrammatic interpretation of the long-range correlators. By separately evolving the
Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle
production at large rapidity separations. We show that the evolution between the rapidities of the two
produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how
the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin-Kuraev-Lipatov (BFKL)
picture in the dilute limit and in momentum space, providing an interpretation of BFKL evolution as a
stochastic process for color charges.
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I. INTRODUCTION

Multiparticle correlations, in both azimuthal angle and
rapidity, are becoming an increasingly important exper-
imental tool to access the properties of QCD in high energy
collision systems. There is an intensive debate (see e.g., [1])
on the origin of the structure of azimuthal correlations in
small (proton-proton and proton-nucleus) collision sys-
tems, where QCD correlations already present in the
colliding objects compete with the effects of particle
reinteractions (such as hydrodynamical flow or escape
bias) in the later stage of the collision. In order to fully
sort out the interpretation of the experimental results, it is
important to fully understand the QCD dynamics leading to
particle correlations. In particular, a characteristic feature of
a hydrodynamical-like azimuthal correlation in a hadronic
collision is that it extends far in rapidity [2]. Whereas
effects at later times, such as resonance decays, have a very
short range in rapidity, effects that extend to large rapidity
separations must originate early in the collision. This is the
case both for hydrodynamical flow, which is sensitive to the
coordinate space geometry that is similar at all rapidities,
and for correlations between the partons in the colliding

hadrons. Therefore, one needs to understand in QCD how
the production of particles in high energy collisions is
correlated across large rapidity separations.
The color glass condensate (CGC; see e.g., [3–5]) is an

effective theory of QCD for high energy processes. It is
based on a separation of scales between “fast” large-x
degrees of freedom (d.o.f.) that are integrated out into
an effective description and the soft small-x gluons that are
the relevant d.o.f. for high energy scattering. The longi-
tudinal momentum cutoff separating these two scales can
be varied, and the effect of changing it absorbed into a
renormalization of the effective description as a function of
the longitudinal momentum (or rapidity) scale. This pro-
cedure leads to the JIMWLK1 evolution equation [6–16],
which can be used to resum leading logarithmic (in energy
or x) corrections to QCD scattering cross sections. In
practical calculations, the convenient d.o.f. for describing
high energy QCD scattering is the Wilson line (see e.g.,
[17]). This is the eikonal scattering amplitude for a partonic
probe passing through the target color field. In the CGC
picture, the Wilson lines at each point in the transverse
plane are stochastic variables drawn from a probability
distribution; it is this probability distribution whose
dependence on the rapidity Y ¼ ln 1=x is given by the
JIMWLK equation. An equivalent formulation for the
evolution of the probability distribution is provided by
the Langevin formulation [18], where the Wilson lines
themselves depend on rapidity through a stochastic partial
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differential equation involving a random noise. In addition
to providing a more direct physical picture of the evolution,
the Langevin formulation is the basis for numerical
solutions of the JIMWLK equation [19–21].
The most common phenomenological applications of the

CGC framework involve processes in which one needs only
theWilson lines at one rapidity. This includes deep inelastic
scattering (DIS) cross sections [22–30], where the relevant
rapidity depends only on the energy of the incident virtual
photon, and single inclusive particle production [31–40],
where it is determined by the kinematics of the produced
particle. This is also true for multiparticle production
[41,42], if the produced particles are close to each other
in rapidity. The situation becomes more complicated, how-
ever, if one is interested in the correlations between particles
that are separated by a parametrically large rapidity inter-
val ΔY ≳ 1=αs.
For the case of two dense projectiles, there is a

formalism, developed initially in [43], in which one follows
a separate JIMWLK evolution for each of the colliding
nuclei (see also [44] for a discussion). While the theoretical
status of this formulation is still poorly understood (see e.g.,
the calculation reported in [45] suggesting that the decor-
relation speed in rapidity is not an infrared safe quantity in
this framework), it has been used in some phenomeno-
logical applications [46]. It has also led, via a kT-factorized
approximation, to the “glasma graph” or related calcula-
tions of multiparticle correlations in small collision systems
[47–53]. In a perturbative language, the correlation in these
calculations originates from two particles being produced
from different Balitsky-Fadin-Kuraev-Lipatov (BFKL) lad-
ders. This contribution dominates when both the projectile
and the target are parametrically dense, so that there is no
suppression for having additional ladders between them.
In this sense, these are “dense-dense” calculations, even if
done in a kT-factorized approximation. On the other hand,
when both the projectile and the target are dilute, correlated
semihard particle production should be dominated by
production from a single ladder, or the “jet graphs” in the
language of [52,53]. Here, perturbative calculations of
azimuthal decorrelations between these (Mueller-Navelet)
jets have been performed, even at the next-to-leading-order
(NLO) level [54].
For correlations between particles with large rapidity

separations, it turns out that the “dilute-dense” case is
actually in some sense the most complicated one. In the
power counting of [43,55], where the color charge density
in the dense target is parametrically large ρ ∼ 1=g, and in
the dilute projectile parametrically small ρ ∼ g, both the
“single ladder” (or jet graph) and “separate ladder” (or
glasma graph) contributions are parametrically (in αs)
equally important. Out of these two kinds of contributions,
there has been a lot of recent work in understanding the
separate ladder contributions beyond the glasma graph
approximation [48,49,56–59].

In the case of a dense target, our understanding of
how to calculate the single ladder contribution is much less
developed. One needs to generalize the fully nonlinear
JIMWLK equation to the evolution of not just operators
made out of Wilson lines at a single rapidity, but corre-
lations of Wilson lines at different rapidities. For this
purpose, a formalism based on the Langevin description
of JIMWLK evolution was developed by Iancu and
Triantafyllopoulos (IT) in [60] (see also earlier, very similar
work in [61,62]). Here, one derives a new Langevin
equation for a bilocal quantity that encodes the correlation
between Wilson lines at two different rapidities. This
formalism has not, however, been fully applied to phe-
nomenology, nor has it been analyzed in more detail.
Our intention in this paper is to do the latter, with the

main purpose of elucidating the diagrammatic interpreta-
tion of the IT formalism. We do this by starting from the
bilocal Langevin description and taking the dilute limit. We
show explicitly how this procedure recovers a two-particle
correlation originating in particle production from the same
BFKL ladder. In the process, we show also that the bilocal
Langevin formulation, even in the full nonlinear case, can
actually be transformed into a form in which the evolution
between the rapidities of the two produced particles is
linear. This somewhat surprising, or even counterintuitive,
result seems to confirm what has been found earlier in
[62,63]. This statement does not mean that the two-particle
production process would somehow be fully linear; one
still needs to solve the nonlinear evolution equation for
the Wilson lines themselves. Rather than explore the full
phenomenological consequences of this picture, we will try
to elucidate the physics in this formalism and set the stage for
such a calculation in future work. For concreteness, we will
focus throughout this paper on the two-particle cross section
specifically for the production of a quark and a gluon. The
incoming projectile is consequently a Wilson line in the
fundamental representation; the generalization of this to a
gluon probe should be relatively straightforward.
This paper is structured as follows. First, we review

the basics of JIMWLK evolution in Sec. II, both in the
Fokker-Planck and in the Langevin formulations. We then
discuss in Sec. III two-particle production at parametrically
similar rapidities, i.e., without evolution between the
rapidities of the particles. In Sec. IV, we develop the dilute
limit of JIMWLK evolution in terms of color charges or,
more accurately, Reggeized gluons, leading to the BFKL
equation for the unintegrated gluon distribution. We then
move in Sec. V to the IT formalism of Langevin evolution
between the rapidities of the two produced particles,
slightly rewriting the evolution equation to highlight the
linear structure in the evolution between the two rapidities.
Finally, in Sec. VI we show how the dilute limit of the IT
formalism leads to a factorized structure that one would
expect from BFKL dynamics, with a BFKL Green’s
function separating the two particles.
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II. JIMWLK EVOLUTION

A. The JIMWLK equation in the
Fokker-Planck formalism

We consider a high energy interaction of a dilute colored
probe with the color field of a dense target. In the CGC
theory, the expectation value of an observable Ô that is
local in rapidity Y is given by

hÔiY ≡
Z

½DU�WY ½U�Ô: ð1Þ

Here ½DU� is the functional de Haar measure on SUðNcÞ,
and WY ½U� is the CGC weight function describing the
density distribution at Y of the Wilson lines in the target.
These Wilson lines U ¼ UðxÞ≡Ux are unitary, path-
ordered exponentials

U†
x ≡ P exp

�
ig
Z

dxþαaxðxþÞta
�
; ð2Þ

represented diagrammatically following the notation of
[20,64,65] as

ð3Þ

Here, αax is the color field generated by the target with
color index a ¼ 1;…; Nc and the t’s are the fundamental
generators of SUðNcÞ. The light-cone time axis xþ runs
from right to left in these diagrams. The Hermitian
conjugate Wilson line is then denoted by an arrow facing
the opposite way:

ð4Þ

An example of a simple observable that is relevant in this
context is the quark dipole

ð5Þ

The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Y in to a final Y
according to the JIMWLK equation

∂
∂Y WY ½U� ¼ HWY ½U�: ð6Þ

Typically, a Gaussian distribution is used for the initial
condition WY in

, as in the McLerran-Venugopalan (MV)
[66–68] model. The JIMWLK Hamiltonian is

H ≡ 1

8π3

Z
uvz

KuvzðLa
u − Ũ†ab

z Rb
uÞðLa

v − Ũ†ac
z Rc

vÞ; ð7Þ

where tildes denote the adjoint representation and two-
dimensional coordinate space integrals are denoted with the
shorthand

R
u ≡

R
d2u. The JIMWLK kernel is

Kuvz ≡Ki
uzKi

vz; ð8Þ

where

Ki
uz ¼

ðu − zÞi
ðu − zÞ2 ð9Þ

is the Weizsäcker-Williams soft gluon emission kernel. The
L and R are “left” and “right” Lie derivatives2 that act to
color rotate the Wilson lines on the left and right sides of
the target field, respectively. They are defined as

La
u ≡ −igðUutaÞαβ

δ

δUu;αβ
; ð10Þ

Ra
u ≡ −igðtaUuÞαβ

δ

δUu;αβ
; ð11Þ

where α, β are matrix indices and δ
δUu

acts as an ordinary
functional derivative:

δ

δUu;αβ
Ux;γρ ¼ δαγδβρδ

ð2Þðu − xÞ≡ δαγδβρδux: ð12Þ

We can represent the action of the Lie derivatives on the
Wilson lines as

ð13Þ

ð14Þ

2The naming of the derivatives may seem counterintuitive, but
they appear on the opposite side to what is expected due to the
light-cone time axis running from right to left in our diagram-
matic notation.
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The Hermitian conjugates of these expressions give

ð15Þ

ð16Þ

The left and right Lie derivatives L and R are related to each
other by

La
u ¼ Ũ†ab

u Rb
u ð17Þ

ð18Þ

which follows from the identity Ũ†ab
u tb ¼ UutaU

†
u. The Lie

derivatives satisfy the commutation relations

½La
u; Lb

v � ¼ gδuvfabcLc
u; ð19Þ

½Ra
u; Rb

v � ¼ −gδuvfabcRc
u; ð20Þ

½La
u; Rb

v � ¼ ½La
u; Ũ

†ab
z � ¼ ½Ra

u; Ũ
†ab
z � ¼ 0: ð21Þ

B. The JIMWLK equation in the Langevin formalism

Generically, it can be shown that a Fokker-Planck
description of a system’s dynamics can be recast in a
Langevin description. For the JIMWLK equation, this was
done in [18], with a slight simplification introduced in [21]
using the form of Eq. (7) with left and right derivatives.
Numerical solutions to JIMWLK evolution are more
conveniently expressed using the Langevin formulation
of the equation, as opposed to the Fokker-Planck formu-
lation discussed in the previous section. This is one reason to
explore analytically the Langevin picture. In this formu-
lation, evolution is treated as a randomwalk in the functional
space of Wilson lines. Rapidity acts as a “time” and is
discretized as Y − Y0 ¼ ϵN with Z ∋ N → ∞, ϵ → 0,
where each evolution step is labeled by n ∈ f0; 1;…; Ng.
The averaging over the probability distribution of Wilson
lines in Eq. (1) is equivalent to the averaging over a noise
term in the stochastic equation. This term can be taken as a
localized Gaussian white noise

hνi;ax;mνj;by;ni ¼ 1

ϵ
δijδabδmnδxy; ð22Þ

where νi;az;m ∈ R. The noise is introducedwithin termswe can
call, respectively, “left” and “right” (traceless, Hermitian)
color fields

αLx;n ≡ 1ffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xzν
i
z;n; ð23Þ

αRx;n ≡ 1ffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xzUz;nν
i
z;nU

†
z;n; ð24Þ

where νiz;n ≡ νi;az;nta is an element of the SUðNcÞ algebra.
These definitions of αL and αR can be interchanged,

as long as one is rotated by Ũ†ab with respect to the other;
this merely amounts to a redefinition of the noise in
Eq. (22) [21]. To be explicit, one defines a rotated noise as

ν̃iz;n ≡ ν̃i;az;nta ≡Uz;nν
i
z;nU

†
z;n: ð25Þ

It is then straightforward to show that this rotated noise is
also a Gaussian random variable with

hν̃i;ax;mν̃jby;ni ¼ 1

ϵ
δijδabδmnδxy: ð26Þ

With this, one can equally well consider the rotated noise ν̃
as being independent of the Wilson lines. Thus, the original
noise ν and so too αL are quantities that depend on them.
However, the choice of whether to consider ν or ν̃ has to be
made globally for the whole calculation at once, and kept
fixed when taking functional derivatives with respect to the
Wilson lines. These properties will be crucial later to see
how the evolution between the two rapidities becomes
independent of the Wilson lines.
The Langevin equation describing the evolution of a

Wilson line from step n to step nþ 1 is written as

U†
x;nþ1 ¼ eiϵgα

L
x;nU†

x;ne−iϵgα
R
x;n : ð27Þ

The two matrix exponentials act as infinitesimal color
rotations to the left and to the right of the target field, hence
the naming of the α’s. If the Wilson line at rapidity step n is
represented as

ð28Þ

then we can write
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ð29Þ

ð30Þ

Notice that the free color index in these two
diagrams contracts with the color index of the noise factor.
The Hermiticity of the color fields means that the time step
for the complex conjugate Wilson line is simply

Ux;nþ1 ¼ eiϵgα
R
x;nUx;ne−iϵgα

L
x;n : ð31Þ

1. Expansion in the time step ϵ

Since ϵ is infinitesimal, we may choose to keep terms
only up to order ϵ. The color fields each contain a factor
ν, which is of order ϵ−1=2, and always appear multiplied
by a factor of ϵ. So OðϵαL=RÞ ¼ Oðϵ1=2Þ, and we can
immediately neglect from the expansion powers of αL=R

larger than two. Also, since in the end we only need to
keep terms of order ðαL=RÞ2 multiplied by terms that do
not depend on the noise, we can at any stage in the
calculation take the expectation value over the noise in
such terms.
It is useful to note that Wilson lines appear only in the

cross term αLαR, but not in the squares:

hðαLx;nÞ2i ¼ hðαRx;nÞ2i ¼
CF

4π3ϵ

Z
z
Kxxz: ð32Þ

In terms of diagrams, this can be expressed as the
relation

ð33Þ

Using these, one step of the Wilson line to the order needed
can be written as

U†
x;nþ1 ¼ U†

x;n þ
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;a
z;n −

ϵg2

4π3
Kxxzta

�

× ðtaU†
x;n −U†

x;nŨ
†ab
z;n tbÞ þOðϵ3=2Þ ð34Þ

ð35Þ

where the relation (33) can be used to draw the virtual
diagram on either side of the target.
By calculating the dipole Ŝxx̄;nþ1 in terms of quantities at

the previous step n, we can also derive the first equation of
the Balitsky hierarchy:

d
dY

trfU†
xUyg
Nc

¼−
Nc

2

αs
π2

Z
z
K̃xyz

�
trfU†

x;nUy;ng
Nc

−
trfU†

z;nUy;ng
Nc

trfU†
x;nUz;ng
Nc

�
þOðϵ3=2Þ:

ð36Þ

Here, one needs to use the Fierz identity

2Ũab
z trfU†

ytaUxtbg¼ trfU†
zUxgtrfU†

yUzg−
1

Nc
trfU†

yUxg

ð37Þ

to simplify the color structure and get rid of the adjoint
representation matrices. Note that at this order in ϵ (and thus
also in the limit ϵ → 0), Eq. (36) is exact, even at the level of a
single configurationwithout expectationvalues.Additionally,
taking the expectation value on both sides and using
the mean field approximation htrfU†

z;nUy;ngtrfU†
x;nUz;ngi ≈

htrfU†
z;nUy;ngihtrfU†

x;nUz;ngi transform Eq. (36) into the
Balitsky-Kovchegov (BK) [29,69] equation

d
dY

�
trfU†

xUyg
Nc

�
¼ −

Nc

2

αs
π2

Z
z
K̃xyz

��
trfU†

x;nUy;ng
Nc

�

−
�
trfU†

z;nUy;ng
Nc

��
trfU†

x;nUz;ng
Nc

��

þOðϵ3=2Þ: ð38Þ
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III. ONE- AND TWO-PARTICLE PRODUCTION
AT EQUAL RAPIDITY

Consider a single quark produced in a proton-nucleus
collision. It is described mathematically by a fundamental
representation dipole

ð39Þ

where the dashed line denotes the separation between
the direct amplitude (DA) on the left and the complex
conjugate amplitude (CCA) on the right. The bars on
both the Wilson line and the coordinate in Ūx̄ denote
that this Wilson line is in the CCA. Henceforth, this bar
notation will be used to distinguish between quantities in
the DA (unbarred) and the CCA (barred). The cross section
for inclusive quark production in a proton-nucleus collision
is then

dσq
dηpd2p

¼ xqðxÞ 1

ð2πÞ2
Z
xx̄
e−ip·ðx−x̄ÞhŜxx̄jŪ¼UiY: ð40Þ

Here, Y is the relative rapidity of the produced quark with
respect to the target, x is the longitudinal momentum
fraction of the projectile, xqðxÞ is the quark distribution
in the proton, and p and ηp are the transverse momentum
and rapidity, respectively, of the quark. The dipole expect-
ation value can be obtained by averaging the dipole
operator over the probability distribution of the Wilson
lines according to Eq. (1), except that at this stage, the DA
and CCA should still be regarded as independent:

hŜxx̄iY ¼
Z

½DU�½DŪ�WY ½U; Ū�Ŝxx̄: ð41Þ

For inclusive quark-gluon production (both the quark
and the gluon emitted with rapidity Y with respect to the
target), the cross section can be written compactly in terms
of a “production Hamiltonian” [60–62] operating on the
quark cross section:

dσqg
dηpd2pdηkd2k

¼ 1

ð2πÞ4
Z
xx̄
e−ip·ðx−x̄ÞhHprodðkÞŜxx̄jŪ¼UiY:

ð42Þ

Here, the quark has transverse momentum p and
pseudorapidity ηp, and the gluon has transverse momentum
k and pseudorapidity ηk. The production Hamiltonian is
given by [60]

HprodðkÞ ¼
1

4π3

Z
yȳ
e−ik·ðy−ȳÞ

Z
uū
Ki

yuKi
ȳ ū

× ðLa
u − Ũ†ab

y Rb
uÞðL̄a

ū −
¯̃U†ac
ȳ R̄c

ūÞ; ð43Þ

which correctly accounts for all possible ways that a second
gluon can be produced. Notice that transverse coordinates y
and ȳ are kept distinct, and the Lie derivatives with respect
to the Wilson lines in the DA and CCA are kept separate. In
spite of the notational similarity, this makes Hprod a
somewhat more complicated operator than the JIMWLK
Hamiltonian in Eq. (7).
In order to evaluate the cross section, the four terms in

ðLa
u − Ũ†ab

y Rb
uÞðL̄a

ū −
¯̃U†ac
ȳ R̄c

ūÞŜxx̄ ð44Þ

need to be calculated, where the left and right Lie
derivatives can be evaluated using Eqs. (13) and (16).
Only once all the functional derivatives have been evalu-
ated can we set Ū ¼ U, since there is no more need to
distinguish between Wilson lines in the DA and CCA
separately. Substituting the results into Eq. (42) gives

dσ2g
dηpd2pdηkd2k

¼ 1

ð2πÞ4
αs
π2

Z
xx̄yȳ

e−ip·ðx−x̄Þ−ik·ðy−ȳÞKi
yxKi

ȳ x̄

×

�
Cf

trfUx̄U
†
xg

Nc
− ðŨ†ab

ȳ þ Ũ†ab
y Þ trft

bUx̄taU
†
xg

Nc

þ ðUȳU
†
yÞab trft

aUx̄U
†
xtbg

Nc

�
Y
; ð45Þ

where the integrals over u and ū have been evaluated using
the delta functions δū x̄δux from calculating the Lie deriv-
atives, and the overall constant has been rewritten using
αs ¼ g2=ð4πÞ. This is the analogue of the result (in the soft
gluon limit z → 0) of two-gluon production at equal
rapidity obtained in Ref. [70]. Note that the rapidities of
the quark and gluon are not really equal, because in the
production Hamiltonian one has taken the limit where the
gluon is soft. However, at this point they are also not
parametrically large, so that one would need to consider
high energy evolution between the two. Thus, the rapidity
separation in Eq. (45), ΔY, satisfies 1 ≪ ΔY ≪ 1=αs.

IV. DILUTE LIMIT: STOCHASTIC PICTURE OF
BFKL EVOLUTION

In order to understand the connection of the Langevin
picture of JIMWLK evolution to the physics of the BFKL
equation, we must develop the Wilson lines in the limit of a
small color field [28,71–73]. To do this, we start with the
fundamental representation Wilson line
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U†
x;n ≡ P exp

�
ig
Z

dxþαax;nðxþÞta
�

≡ eiλx;n

¼ 1þ iλx;n −
1

2
λ2x;n þOðλ3Þ; ð46Þ

where each real matrix λ is an element of the algebra of
SUðNcÞ and denotes a one-gluon interaction between
projectile and target. We can represent this diagrammati-
cally as

ð47Þ

The Hermitian conjugate is simply

Ux;n ¼ e−iλx;n ¼ 1 − iλx;n −
1

2
λ2x;n þOðλ3Þ; ð48Þ

and an adjoint Wilson line is

Ũ†ab
x;n ¼ δab þ fabcλcx;n þ 2trftaλx;ntbλx;ng

− trftaftb; λ2x;ngg þOðλ3Þ: ð49Þ

The part of the Langevin step for Wilson lines in Eq. (34)
involving an adjoint representationWilson line corresponds
to the interaction of a gluon with the target shock wave. At
step n ¼ 0 in this linearized limit, we have

U†
x;0Ũ

†ab
z;0 t

b ¼ ta − fabcλbz;0t
c þ iλx;0ta þOðλ2Þ; ð50Þ

which we can represent as

ð51Þ

Using this, we can write the full Langevin step to linear
order in the gluon field as

λx;nþ1 ¼ λx;n þ
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;a
z;n −

ϵg2

4π3
Kxxzta

�

× ifabctcðλbx;n − λbz;nÞ þOðϵ3=2; λ2Þ: ð52Þ

Diagrammatically, we have

ð53Þ

Note that the three-gluon vertex can also be written as a
commutator:

ifabctcλbx;n ¼ ½ta; λx;n�; ð54Þ

ð55Þ

Equation (52) is simply a linear iterative equation, for
which we can write a formal solution. Separating out a time
evolution matrix M as

Mab
xw;n≡δxwδ

abþ
Z
z

�
ϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;c
z;nfabc−

ϵg2

4π3
Nc

2
Kxxzδ

ab

�

× ðδxw−δzwÞ; ð56Þ
we can write

λax;nþ1 ¼
Z
w
Mab

xw;nλ
b
w;n þOðϵ3=2; λ2Þ: ð57Þ

This recursive relation has the solution

λax;nþ1 ¼
Z
wn

Mabn
xwn;n

Yn−1
j¼0

�Z
wj

M
bjþ1bj
wjþ1wj;j

�
λb0w0;0

: ð58Þ

The product of M’s can be simplified further if necessary,
by using Eq. (22) and keeping terms up to linear order in ϵ.

A. Reggeization

As a side note, we can now easily see (following [71])
how the gluon field λ “Reggeizes” in this picture. This is
done by taking the expectation value of the single gluon
field time step Eq. (52), which eliminates terms linear in ν
and leads to
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1

ϵ
hλx;nþ1−λx;ni¼−

Nc

2

g2

4π3

Z
z
Kxxzhλx;n−λz;niþOðϵ2;λ2Þ;

ð59Þ

which we may write as

�
d
dY

λx

�
¼ Nc

2

αs
π2

Z
z
Kxxzhλz;n − λx;ni þOðϵ2; λ2Þ: ð60Þ

This equation can be Fourier transformed using

λaðpÞ ¼
Z
z
eip·zλaz ð61Þ

and written as

�
d
dY

λaðpÞ
�

¼ hαgðpÞλanðpÞi þOðϵ2; λ2Þ: ð62Þ

Here,

αgðpÞ≡ Nc

2

αs
π2

Z
z

1

z2
ðeip·z − 1Þ ð63Þ

is the so-called “Regge trajectory” (see [71]). The gluon is
said to Reggeize, meaning that the amplitude for the gluon
exchange process scales with energy to the power of the
trajectory. In the Langevin picture, Reggeization therefore
simply refers to the power law growth of the expectation
value of the gluon field.

B. The BFKL equation

Let us then obtain the BFKL equation for the uninte-
grated gluon distribution. This can be done by first
expanding the Wilson lines in the dilute limit and looking
at the evolution of a quantity that is quadratic in the
expansion parameter λ. For this discussion, it is useful to
still keep track of the λ’s in the DA and CCA separately. In
order to derive such a quadratic equation, we square
Eq. (57). Eventually taking the expectation value of the
noise on both sides will remove terms linear in ν and
simplify terms quadratic in ν according to Eq. (26). As
discussed above, we have expanded to the relevant order in
the rapidity step ϵ. After some straightforward color
algebra, we obtain

λax;nþ1λ̄
a
x̄;nþ1¼

Z
ww̄

	
δwxδw̄ x̄−

Nc

2

ϵαs
π2

Z
z
ðKx̄ x̄ zδwxðδw̄ x̄−δw̄zÞ

þKxxzðδwx−δwzÞδw̄ x̄

−2Kxx̄zðδwx−δwzÞðδw̄ x̄−δw̄zÞÞ


λaw;nλ̄

a
w̄;n

þOðϵ3=2;λ3Þ: ð64Þ

From this basic equation, one can define two different
versions of the BFKL equation. The first one comes
naturally when one considers a particle production process,
in which one wants to keep a nonzero contribution from
both the DA and the CCA. To do this, we define the
unintegrated gluon distribution

ϕn
xx̄ ≡ hλax;nλ̄ax̄;ni: ð65Þ

Then, Eq. (64) yields the evolution equation

ϕnþ1
xx̄ −ϕn

xx̄¼−
Nc

2

ϵαs
π2

Z
z
½Kxxzðϕn

xx̄−ϕn
zx̄ÞþKx̄ x̄zðϕn

xx̄−ϕn
xzÞ

−2Kxx̄zðϕn
xx̄−ϕn

xz−ϕn
zx̄þϕn

zzÞ�
þOðϵ3=2;ϕ3=2Þ: ð66Þ

Note that this does not have the customary form of a
coordinate space BFKL equation. Equation (66) acquires a
more familiar form, however, in momentum space. To see
this, we define the Fourier transform

ϕxx̄ ≡
Z

d2p
ð2πÞ2 e

−ip·ðx−x̄ÞϕðpÞ≡
Z
p
e−ip·ðx−x̄ÞϕðpÞ: ð67Þ

ϕxx̄ is a function of the relative length x − x̄, so we need not
transform each coordinate separately. Using this and the
Fourier transformed kernel

Ki
uv ¼ 2πi

Z
k
e−ik·ðu−vÞ

ki

k2
; ð68Þ

the BFKL equation (66) becomes

ϕnþ1ðqÞ¼ϕnðqÞþ4Ncϵαs

Z
p

1

ðq−pÞ2
�
ϕnðpÞp2

q2
−
1

2

ϕnðqÞq2
p2

�

þOðϵ3=2;ϕ3=2Þ: ð69Þ

This is immediately recognized as the (color singlet,
zero momentum transfer) textbook version of the BFKL
equation [74].
The other (Mueller’s) version of the BFKL equation

[75,76] is obtained when we set theWilson lines to be equal
in the DA and CCA. One then looks at the expansion of the
dipole operator up to order λ2 as

trfU†
xUyg
Nc

¼ 1 −
1

4Nc
ðλax − λay Þðλax − λay Þ þOðλ3Þ: ð70Þ

The natural definition of the gluon distribution based on the
expansion of the dipole operator is then the so-called
“BFKL pomeron” [71]

φxy ≡ hðλax − λay Þðλax − λayÞi; ð71Þ
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which we can write in terms of ϕ by setting λ̄ ¼ λ:

ϕxx þ ϕyy − 2ϕxy ¼λ̄¼λ
φxy: ð72Þ

Using Eq. (66) for each of the three terms in Eq. (72), one
arrives at the Mueller version of the BFKL equation:

φnþ1
xy − φn

xy ¼ −
Nc

2

ϵαs
π2

Z
z
K̃xyz½φn

xy − φn
xz − φn

zy�: ð73Þ

This is the version of the BFKL equation one usually sees
written in coordinate space. It can also be obtained by
linearizing the BK equation (38).
It is important to emphasize the relatively trivial but

important observation that the two equations, (66) and (73),
are closely related but not the same. Equation (66) is
usually derived and written in momentum space by con-
sidering the BFKL ladder diagrams. It appears naturally for
a particle production process in which we want to have an
explicit product of the DA and the CCA. Such a calculation
would begin with the dipole written diagrammatically as

On the other hand, the Mueller version of the BFKL
equation (73) is satisfied by an object associated with the
elastic amplitude for a color neutral dipole. In our notation,
this would be expressed as

which is not naturally separated into terms associated with
the DA and the CCA. While Eq. (73) is usually written in
coordinate space, the momentum space version is straight-
forward to obtain; it is not particularly simple or useful in
this context, so we omit it here.

V. UNEQUAL RAPIDITY CORRELATORS
IN JIMWLK

A. Two-particle production

Next, we consider the production of two particles
produced at parametrically different rapidities. The rapidity
YA is closer to that of the target; i.e., it is “earlier” on the
evolution trajectory of the target. We want to calculate the
double inclusive cross section for the simultaneous pro-
duction of another particle at a later rapidity Y that is much
larger than the first one: αsðY − YAÞ ≫ 1. Unlike the case
considered in Sec. III, we now have genuine high energy
evolution between the two produced particles due to the

rapidity separation. The situation is rendered more com-
plicated than the JIMWLK evolution considered in Sec. II
by the fact that the Wilson line trajectories are now
conditional ones. This is because they are now aware of
the fact that a particle with a specific transverse momentum
was produced earlier in the evolution. The IT Langevin
formalism for this scenario was set up in [60]. The purpose
of our discussion here is to elucidate how this formalism in
the dilute limit relates to a conventional BFKL picture.
We begin this discussion as formulated in [60]. After the

first part of evolution from rapidity Y in to YA for the quark
dipole, one obtains the Wilson lines Ūx̄;A and U†

x;A at the
earlier rapidity YA. In order to keep track of the gluon that is
produced at YA, we consider these Wilson lines to be fixed
for now. They act as the initial condition for the second part
of the evolution from rapidity YA to Y. In terms of the
discretization Y − YA ¼ Nϵ, we have Y0 ≡ YA, U0 ≡ UA,
and Ū0 ≡ ŪA at n ¼ 0. The expectation value of the cross
section for producing a quark at some rapidity Y is then
calculated as an average over the noise ν at the end of the
stochastic process:

hŜxx̄iY−YA
¼ hŜxx̄;Niν: ð74Þ

Equation (1) for the expectation value of an operator at the
later rapidity Y is now written as

hÔiY−YA
≡

Z
½DUDŪ�WY−YA

½U; ŪjUA; ŪA�Ô: ð75Þ

We need to have a new conditional weight function
WY−YA

½U; ŪjUA; ŪA� [43], which is the probability of
observing Wilson lines U and Ū at rapidity Y, with the
condition that there are already Wilson lines UA and ŪA at
the earlier rapidity YA. This weight function obeys the
differential equation

∂
∂Y WY−YA

½U; ŪjUA; ŪA� ¼ HevolWY−YA
½U; ŪjUA; ŪA�

ð76Þ

[cf. Eq. (6)]. The evolution Hamiltonian Hevol is just the
conventional JIMWLK Hamiltonian, with the exception
that one must now keep track of the Wilson lines and Lie
derivatives for the DA and the CCA separately. Thus, there
are terms operating only on the DA (11), terms operating
only on the CCA (22), and a mixed term (12),

Hevol ≡H11 þ 2H12 þH22; ð77Þ

where
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H11 ≡ 1

8π3

Z
uvz

KuvzðLa
u;n − Ũ†ab

z;n Rb
u;nÞðLa

v;n − Ũ†ac
z;n Rc

v;nÞ;

ð78Þ

H12 ≡ 1

8π3

Z
uv̄z

Kuv̄zðLa
u;n − Ũ†ab

z;n Rb
u;nÞðL̄a

v̄;n −
¯̃U†ac
z;n R̄c

v̄;nÞ;

ð79Þ

H22 ≡ 1

8π3

Z
ū v̄ z̄

Kū v̄ z̄ðL̄a
ū;n −

¯̃U†ac
z̄;n R̄b

ū;nÞðL̄a
v̄;n −

¯̃U†ac
z̄;n R̄c

v̄;nÞ

ð80Þ

[cf. Eq. (7) or rather (43)]. Here, the Lie derivatives and the
adjoint Wilson lines carry a subscript n to emphasize that
they pertain to the current (latest) rapidity in the evolution.
The initial condition at YA for the conditional weight

function sets Wilson lines for both the DA and the CCA:

WYA
½U; ŪjUA; ŪA� ¼ δ½U − UA�δ½Ū − ŪA�: ð81Þ

If one sets the DA and the CCA to be the same at the initial
condition, this property is preserved throughout the evo-
lution; at some other rapidity YB, we then have

WYB
½U; ŪjUA;UA� ¼ δ½U − Ū�WYB

½UjUA�; ð82Þ

where WYB
½UjUA� is just the conventional conditional

probability [e.g., Eq. (6)] with initial condition

WYA
½UjUA� ¼ δ½U − UA�: ð83Þ

The cross section for inclusive two-particle production,
as provided by Eq. (42), needs to be modified to account for
the fact that the emitted particle has a different rapidity to
the projectile. For a gluon emitted from a quark projectile at
rapidity YA, we must now operate with the production
Hamiltonian (43) acting on the Wilson lines at YA, i.e., on
the initial condition for the conditional evolution [60]:

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
Z
xx̄
e−ip·ðx−x̄ÞhHprodðkAÞhŜxx̄iY−YA

jŪA¼UA
i
YA
: ð84Þ

Note that there are now two separate averages. The dipole
operator is evolved from YA to Y with the conditional
JIMWLK evolution; the average over these Langevin
trajectories is denoted by hiY−YA

. One then operates with
the production Hamiltonian, which is a functional deriva-
tive with respect to the initial conditions UA and ŪA. Only
then does one set the Wilson lines to be the same in the DA
and the CCA. Finally, one does the average over the earlier
rapidity distribution hiYA

, using a weight function that has
been evolved from Y in to YA. This double averaging
procedure can be written in a more explicit way with the
help of delta functions and conditional probabilities:

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
Z
xx̄
e−ip·ðx−x̄Þ

Z
½DUA�WYA

½UA�
Z

½DŪA�δ½ŪA −UA�HprodðkAÞ

×
Z

½DUDŪ�WY−YA
½U; ŪjUA; ŪA�Ŝxx̄: ð85Þ

In order to proceed, we need the result of the production
Hamiltonian operating on the dipole; i.e., we need to
calculateHprodŜxx̄. This expression will have several terms,
with left or right Lie derivatives operating on the Wilson
lines. We also have to maintain the distinction between
barred and unbarred contributions. The resulting expres-
sions involve Wilson lines not only at the rapidity YA ≡ Y0

but also at later rapidities Yn, where the n refers to the
discrete Langevin process description we are using. Putting
everything together, we can write the cross section as

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
1

4π3
1

Nc

Z
xx̄yȳ

e−ip·ðx−x̄Þ

×e−ikA·ðy−ȳÞ
Z
uv
Ki

yuKi
ȳvhhINiνiYA

; ð86Þ

where

In ≔ trfL̄a
ū;0Ūx̄;nLa

u;0U
†
x;ng − ¯̃U†ac

ȳ;0 trfR̄c
ū;0Ūx̄;nLa

u;0U
†
x;ng

− Ũ†ab
y;0 trfL̄a

ū;0Ūx̄;nRb
u;0U

†
x;ng

þ Ũ†ab
y;0

¯̃U†ac
ȳ;0 trfR̄c

ū;0Ūx̄;nRb
u;0U

†
x;ng: ð87Þ

Before moving forward, let us stress some features of
Eqs. (86) and (87). In addition to the Wilson lines at
rapidity YN, they involve Lie derivatives of Wilson lines at
YN with respect to Wilson lines at YA, e.g., L̄a

ū;0Ūx̄;N ,
denoted by the subscript 0 in the Lie derivatives. This is
contrary to the evolution Hamiltonian in Eqs. (78), (79),
and (80) that involved Lie derivatives with respect to the
latest rapidity in the evolution. Additionally, the expression
contains adjoint representation Wilson lines at the initial
rapidity YA, again denoted by the subscript 0. These Lie
derivatives are new d.o.f., in some sense like Reggeized
gluon propagators, that encode information about the

T. LAPPI and A. RAMNATH PHYS. REV. D 100, 054003 (2019)

054003-10



(de)correlation in rapidity of theWilson lines. The JIMWLK
equation also gives the evolution equations for the Lie
derivatives themselves. To find the expressions for RU†,
RU, LU†, and LU, one starts by acting with the Lie
derivatives on Eqs. (27) and (31). However, the four
equations are not independent of each other. For example,
wemay start by finding the equation forRU†. TheHermitian
conjugate will give the equation for RU, and the relation
La
u;0 ¼ Ũ†ab

u;0 R
b
u;0 can be used to get the equations for LU†

and LU.
The initial conditions at Y0 for these four bilocal

Langevin equations are given by Eqs. (13) to (16):

Ra
u;nU

†
x;0 ¼ igδuxU

†
x;0t

a; ð88Þ

Ra
u;0Ux;0 ¼ −igδuxtaUx;0; ð89Þ

La
u;0U

†
x;0 ¼ igδuxtaU

†
x;0; ð90Þ

La
u;0Ux;0 ¼ −igδuxUx;0ta: ð91Þ

We emphasize once more that the adjoint Wilson lines
appearing in In are from the production Hamiltonian; they
are always at Y0 and do not evolve to YN .

B. Evolution in rapidity

To derive the evolution equations for the Lie
derivatives, we begin by acting on Eq. (27) with a right

Lie derivative. After some manipulations described in [60],
we arrive at

Ra
u;0U

†
x;nþ1 ¼ eiϵgα

L
x;nRa

u;0U
†
x;ne−iϵgα

R
x;n −

iϵgffiffiffiffiffiffiffi
4π3

p eiϵgα
L
x;nU†

x;n

×
Z
z
Ki

xz½Uz;nν
i
z;nU

†
z;n; Uz;nRa

u;0U
†
z;n�: ð92Þ

The quantity Ra
u;0U

†
x;n describes the evolution from the

initial rapidity YA, initial coordinate u, and color index a to
the final Wilson line at rapidity step n, coordinate z, and a
color that is encoded in the matrix structure of Ra

u;0U
†
z;n.

In order to understand what Eq. (92) does at each
iteration, we can look at one step in evolution in diagrams.
First, we Taylor expand the exponentials in ϵ. At n ¼ 0, we
can use the initial condition Eq. (88) to write

Ra
u;0U

†
x;1¼ igδuxU

†
x;0t

aþ ig
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;b
z;0−

ϵg2

4π3
Kxxztb

�

× ½δuxðtbU†
x;0t

a−U†
x;0t

aŨ†bc
z;0 t

cÞ
−δuzðU†

x;0Ũ
†bc
z;0 t

cta−U†
x;0t

aŨ†bc
z;0 t

cÞ�þOðϵ3=2Þ:
ð93Þ

In diagrams, this is

ð94Þ

From this, we can see that after one iteration, Eq. (92)
contains all possible diagrams with one gluon inserted on
the right of the target (corresponding to color index a in the
diagrams), and afterwards either none or one more gluon
insertion. The second gluon (corresponding to color indices
b and c) can be inserted in four different ways: either to
the right or to the left of the target, and either at coordinate

x or z. Additionally, it can be either left as a free color index
(contracted by the color of the noise) or reabsorbed by the
quark. This makes the 23 two-gluon diagrams shown
in Eq. (94).
The next iteration of the evolution equation will add

more gluons to the diagrams present in Eq. (94), in the same
way. The number of terms therefore grows very rapidly

UNEQUAL RAPIDITY CORRELATORS IN THE DILUTE LIMIT … PHYS. REV. D 100, 054003 (2019)

054003-11



with each step. The same analysis can be done for the LU†

evolution. The only difference will be that the gluons
appear on the opposite side of the target.
It is more natural to write Eq. (92) such that the color

structure is more explicit. The propagator should have two
adjoint representation indices at the ends, i.e., Rab, or
equivalently, be an explicitly Hermitian traceless matrix
with one additional index, i.e., Rabtb. This more symmetric
form is achieved by multiplying RU† by U from the left.
Defining Ra

ux;n ≡Ux;nRa
u;0U

†
x;n, which is conveniently a

member of the Lie algebra of SUðNcÞ, we can write the
Langevin step compactly as

Ra
ux;nþ1 ¼ eiϵgα

R
x;nRa

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p eiϵgα
R
x;n

Z
z
Ki

xz½ν̃iz;n; Ra
uz;n�; ð95Þ

where we have used ν̃iz;n ¼ Uz;nν
i
z;nU

†
z;n as introduced in

Eq. (25). Notice that this equation is linear in Ra
ux;n,

although it resums all orders in the background field,
incorporated into the Wilson line.
As mentioned above, the three other required equations,

RU, LU†, and LU, can be obtained directly from Eq. (95).
In terms of explicitly Hermitian quantities, we obtain for
R̄a
ux;n ≡ ðRa

u;0Ux;nÞU†
x;n

R̄a
ux;nþ1 ¼ eiϵgα

R
x;n R̄a

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n; R̄a
uz;n�e−iϵgαRx;n : ð96Þ

Defining La
ux;n ≡ Ux;nLa

u;0U
†
x;n, we get the corresponding

equations for the left Lie derivative,

La
ux;nþ1 ¼ eiϵgα

R
x;nLa

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p eiϵgα
R
x;n

Z
z
Ki

xz½ν̃iz;n; La
uz;n�; ð97Þ

and for L̄a
ux;n ≡ ðLa

u;0Ux;nÞU†
x;n,

L̄a
ux;nþ1 ¼ eiϵgα

R
x;n L̄a

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n; L̄a
uz;n�e−iϵgαRx;n : ð98Þ

The initial conditions for this set of four evolution equa-
tions follow directly from Eqs. (88) to (91):

Ra
ux;0 ¼ igδuxta; ð99Þ

R̄a
ux;0 ¼ −igδuxta; ð100Þ

La
ux;0 ¼ igδuxŨ

†ab
x;0 t

b; ð101Þ

L̄a
ux;0 ¼ −igδuxŨ

†ab
x;0 t

b: ð102Þ

A quick inspection of the equations of motion (95) to
(98) reveals in all of them two crucial features. First, they
only depend on the “rotated noise” ν̃ [see Eq. (25)], but not
the original unrotated noise ν; note that this is true also for
the “right” color field αRx;n, Eq. (24). Second, their depend-
ence on the Wilson line also comes through the rotated
noise, but not separately in terms of explicit Wilson lines in
the evolution equations. Thus, if we take the rotated noise
as the independent variable that one averages over, all the
dependence on the Wilson lines disappears. This means
that the quantities Ra

ux;n, R̄a
ux;n, La

ux;n, and L̄a
ux;n satisfy

evolution equations that are linear and independent of the
Wilson lines, and we can therefore express the evolution
between the two rapidities in terms of linear BFKL-like
dynamics. This can be made even more explicit by
developing the equations in ϵ and, as usual, replacing
the terms that are quadratic in the noise with their expect-
ation values. Doing this one gets

Ra
ux;nþ1¼Ra

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;Ra
ux;n−Ra

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðRa

ux;n−Ra
uz;nÞþOðϵ3=2Þ; ð103Þ

R̄a
ux;nþ1¼ R̄a

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;R̄a
ux;n− R̄a

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðR̄a

ux;n− R̄a
uz;nÞþOðϵ3=2Þ; ð104Þ

La
ux;nþ1¼La

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;La
ux;n−La

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðLa

ux;n−La
uz;nÞþOðϵ3=2Þ; ð105Þ

L̄a
ux;nþ1¼ L̄a

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;L̄a
ux;n− L̄a

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðL̄a

ux;n− L̄a
uz;nÞþOðϵ3=2Þ: ð106Þ

The whole cross section, however, is not given by a
“kT-factorized” expression (unlike the dilute case that we
discuss in the next section). This is not true even at equal
rapidity, as we have seen in Eq. (45). This is due to the
appearance of the Wilson lines in two places in the cross
section. First, the initial conditions for Ra

ux;n, R̄a
ux;n, La

ux;n,
and L̄a

ux;n depend on the Wilson lines at YA. Second, the
final expression for the cross section (87) written in terms
of these quantities is now
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In ¼ trfL̄a
vx̄;nUx̄;nU

†
x;nLa

ux;ng − ¯̃U†ac
ȳ;0 trfR̄c

vx̄;nUx̄;nU
†
x;nLa

ux;ng
− Ũ†ab

y;0 trfL̄a
vx̄;nUx̄;nU

†
x;nRb

ux;ng
þ Ũ†ab

y;0
¯̃U†ac
ȳ;0 trfR̄c

vx̄;nUx̄;nU
†
x;nRb

ux;ng: ð107Þ

We see that this expression involves explicit Wilson lines
both at the rapidity of the earlier particle (i.e., n ¼ 0) and at
the rapidity of the later one (i.e., n). Because of the latter,
the expression in the full nonlinear case cannot be written in
a kT-factorized form with only an unintegrated gluon
distribution at n ¼ 0 and a BFKL Green’s function between
the rapidities, as we will do in the dilute limit in Sec. VI.
Because the evolution equations (95) to (98) do not

depend on the Wilson lines, the dynamics of the evolution
of the two-particle correlation between these rapidities is
linear. This is a remarkable feature that should significantly
simplify a future numerical analysis of the two-particle
correlation in this framework. This is generically quite
difficult in the original formulation due to the bilocal nature
of the “Reggeized gluon propagators” Ra

ux;n, R̄a
ux;n, La

ux;n,
and L̄a

ux;n (i.e., the fact that they depend on two separate
coordinate arguments). Note, however, that calculating the
cross section requires additionally the nonlinear evolution
of the Wilson lines themselves according to conventional
JIMWLK. This evolution is correlated with that of the
Reggeized gluon propagators, since the evolution steps of
both quantities are expressed in terms of the same noise at
the same rapidity step. Since the evolution step of the latter
is linear and does not explicitly involve the Wilson lines, it
should be simpler to analyze. However, one cannot
factorize the expectation value of Eq. (107) as a product
of expectation values of a Wilson line operator at rapidity n
on the one hand and a two-point function of the Reggeized
gluon propagators on the other.
Let us make, in passing, a side note concerning the initial

conditions (101) and (102). It would be tempting to get rid of
theWilson line in these initial conditions by defining, instead
of La

ux;n≡Ux;nLa
u;0U

†
x;n, a new quantity ðLa

u;0U
†
x;nÞUx;n and

set out to solve its equation of motion. Contrary to La
ux;n,

which has an initial condition that depends on theWilson line
but an evolution that can be expressed in a way that does not,
this alternative quantity would have a simple initial condition
(only a generator matrix ta) but an evolution equation that
depends on both the noise ν and the rotated noise ν̃. This
wouldmake the linear dynamics of the evolution muchmore
difficult to see explicitly.
The statement of linearity in the evolution between the

two rapidities is in fact in agreement with the result for one
quark and one gluon production in [63], where it is argued
that there can be no pomeron mergings between these two
particles. However, the situation becomes more compli-
cated when one considers the production of one quark and
two gluons. In this case, the result of [63] is that evolution
between the produced particles is genuinely nonlinear.

VI. TWO-PARTICLE CORRELATORS IN THE
DILUTE LIMIT

We shall now move on to work out what happens in
the dilute limit and show explicitly how to recover an
expected BFKL result from this formalism. Our aim is to
show that the two-particle cross section in the dilute limit
can be expressed as a convolution of an unintegrated gluon
distribution at the earlier rapidity YA and a BFKL Green’s
function from YA to the rapidity of the quark (see e.g., [77]
for calculations of two-particle production from the same
BFKL ladder). Although the following calculation is done
by linearizing the evolution, it is important to note that due
to the linearity of the dynamics in the full case discussed
above, the nature of decorrelations in rapidity could be
expected to be very similar.
The general idea is to see what happens when we start

increasing the rapidity separation between the produced
quark and gluon. The gluon is produced at rapidity YA; the
quark rapidity increases and the cross section changes
accordingly, via JIMWLK evolution. It is important here to
note that the JIMWLK evolution is that of the Wilson lines
in the dipole operator Ŝxx̄ at rapidity Yn only. The Wilson
lines and Lie derivatives in the production Hamiltonian
Hprod remain at the initial rapidity YA. In this sense, the
JIMWLK evolution “commutes” with the production
Hamiltonian and only operates on the dipole operator.
We also know that the evolution must be linear, and thus
in the dilute limit it must correspond to the BFKL
equation (69).
The essential part of the cross section (86) is given by In

as defined in Eq. (87): the combination of Wilson lines and
their derivatives. To understand how this works, we have to
understand the operations of the Lie derivatives in the dilute
limit, i.e., how the Lie derivatives as defined in Eqs. (10)
and (11) act on λ. The result is obtained by changing the
differentiation variable from elements of U to λ, and then
performing an expansion in powers of λ. Doing so gives

La
u;0 ¼ g

�
δac −

1

2
fabcλbu;0 þOðλ2Þ

�
δ

δλcu;0
;

Ra
u;0 ¼ g

�
δac þ 1

2
fabcλbu;0 þOðλ2Þ

�
δ

δλcu;0
ð108Þ

(see also [71]). As expected, the Lie derivatives reduce the
term they act on by one power of λ; they are after all
derivatives with respect to the Wilson line. Since the
evolution equation for λ is linear, this statement will be
true at any step n.
The most straightforward way to proceed would be

to derive, in the spirit of [60], evolution equations for the
Lie derivatives operating on λ. This can be done in two
equivalent ways: either by expanding the evolution equa-
tions of the bilocal quantities, e.g., Eq. (92), or by acting
with the Lie derivative on the time step of λ [Eq. (52)].
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In other words, the operations of Lie differentiating and
expanding in λ are commutative. Either procedure results in

Ra
u;0λx;nþ1 ¼ Ra

u;0λx;n þ
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;d
z;n −

ϵg2

4π3
Kxxztd

�

× ifdbctcRa
u;0ðλbx;n − λbz;nÞ þOðϵ3=2; λ2Þ:

ð109Þ

The equation for LU† is identical, with R → L. The initial
conditions for the bilocal Langevin equations are given in
Eqs. (88) to (91). By expanding them as

Ra
u;0U

†
x;0 ¼ igδux

�
1þ iλx;0 −

1

2
λ2x;0

�
ta þOðλ3Þ; ð110Þ

La
u;0U

†
x;0 ¼ igδuxta

�
1þ iλx;0 −

1

2
λ2x;0

�
þOðλ3Þ; ð111Þ

one easily obtains the initial conditions for the Lie
derivatives of λ as

Ra
u;0λx;0 ¼ La

u;0λx;0 ¼ gtaδux þOðλÞ: ð112Þ

In principle, we could go on to solve these equations, and
indeed it is straightforward to write down a full formal
solution in terms of the time evolution matrix Mab

xy , as
defined in Eq. (56). But our main objective is to look at the
cross section directly, as well as to derive an evolution
equation for its dependence on the later rapidity Y. To do
this, we use the expressions (108) to write the Lie
derivatives in Hprod as

ðL̄a
ū;0 −

¯̃U†ac
ȳ;0 R̄c

ū;0ÞðLa
u;0 − Ũ†ab

y;0 R
b
u;0Þ

¼ g2½fabcfadeðλ̄eū;0 − λ̄eȳ;0Þðλcu;0 − λcy;0Þ þOðλ3Þ�

×
δ

δλ̄dū;0

δ

δλbu;0
: ð113Þ

We emphasize here that one must take care to perform the
functional derivatives in the right order. It is essential to
operate first with the Lie derivatives in the DA and the CCA
separately. Only after doing this is one allowed to set λ̄0 ¼
λ0 at the initial rapidity Y0 ¼ YA. On the other hand, the
noise ν is the same in the DA and the CCA, so we do not
need to keep them separated when averaging over the noise.
For example, we can take the expectation value that
allowed us to write Eq. (64), even if the expression involves
both λ and λ̄ separately.
An important feature of the operator (113) is that it has

exactly one derivative operating on the DA and one on the
CCA. Also, since the DA and the CCA evolve separately,
λn depends only on λ0 and not on λ̄0, and vice versa. Thus,
from the expansion of the dipole in Eq. (85) as

Ŝxx̄¼ 1−
1

4Nc
λaxλ

a
x −

1

4Nc
λ̄ax̄ λ̄

a
x̄þ

1

2Nc
λax λ̄

a
x̄þOðλ3Þ ð114Þ

[cf. Eq. (70)], we need only to retain the cross term ∼λλ̄
when operating with the production Hamiltonian.
Using the linearized production Hamiltonian (113) and

the linearized dipole (114), we have

In ¼
g2

2Nc
fabcfadeðλ̄eū;0 − λ̄eȳ;0Þðλcu;0 − λcy;0Þ

×
δ

δλ̄dū;0

δ

δλbu;0
λ̄fx̄;nλ

f
x;n þOðλ3Þ: ð115Þ

Now we can write the explicit λ’s from the production
Hamiltonian (113) in terms of the gluon distribution ϕ0

ww̄
(65) at the initial rapidity YA. Then we can use δce from the
initial condition of ϕ to simplify the color algebra. We now
introduce the definition

F n
x;x̄;u;ū ≡ δ

δλ̄aū;0

δ

δλau;0
λ̄bx̄;nλ

b
x;n ð116Þ

for the BFKL Green’s function. Note that due to the linear
evolution of λ, the relation between λbx;n and λau;0 is linear
[see e.g., Eq. (58)]. Thus Green’s function F n

x;x̄;u;ū defined
by Eq. (116) does not depend on λ. Using this we get

hINi ¼
g2

2
ðϕ0

ūu − ϕ0
ūy − ϕ0

ȳu þ ϕ0
ȳyÞFN

x;x̄;u;ū þOðϕ3=2Þ;
ð117Þ

which we can put into the equation for the two-particle
cross section (85) to obtain a kT-factorized expression:

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
1

2Nc

αs
π2

Z
xx̄yȳuū

Ki
yuKi

ȳ ūe
−ip·ðx−x̄Þ−ikA·ðy−ȳÞ

× ðϕ0
ūu − ϕ0

ūy − ϕ0
ȳu þ ϕ0

ȳyÞFN
x;x̄;u;ū þOðϕ3=2Þ: ð118Þ

At this stage all the functional derivatives are already
taken, and we can now finally take the color field to be
equal in the DA and the CCA, i.e., take λ ¼ λ̄. We can now,
in fact, also replace the ϕ’s with the other gluon distribution
φ (71), since they appear in the particular combination

ϕ0
ūu − ϕ0

ūy − ϕ0
ȳu þ ϕ0

ȳy ¼ −
1

2
ðφ0

ūu − φ0
ūy − φ0

ȳu þ φ0
ȳyÞ;
ð119Þ

where the value of the distribution at zero coordinate
separation cancels. This means that the cross section can
be equally well written in terms of the gluon distribution ϕ
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satisfying the usual BFKL equation (66) [more familiarly
Eq. (69) in momentum space] or the BFKL pomeron φ
satisfying the Mueller version of the equation, Eq. (73).
There is a factor of −1=2 difference due to our conventions
here. The fact that we are taking derivatives with respect to
λ̄ū;0 and λu;0 does not in any way interfere with the BFKL
evolution of the gluon density λ̄bx̄;nλ

b
x;n. So it is clear that

F n
x;x̄;u;ū satisfies the same equation as λ̄bx̄;nλ

b
x;n with respect

to the rapidity index n:

F nþ1
x;x̄;u;ū ¼ F n

x;x̄;u;ū −
Nc

2

ϵαs
π2

Z
z
½KxxzðF n

x;x̄;u;ū − F n
z;x̄;u;ūÞ

þKx̄ x̄ zðF n
x;x̄;u;ū − F n

x;z;u;ūÞ
− 2Kxx̄zðF n

x;x̄;u;ū − F n
x;z;u;ū − F n

z;x̄;u;ū þ F n
z;z;u;ūÞ�

þOðF 3=2Þ ð120Þ

[cf. Eq. (66)].
Now that we have derived the factorized form for the

cross section, Eq. (118), it is easy to write it in momentum
space. We use the Fourier representations of the gluon
emission kernels, given in Eq. (68), to write

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ2
1

4Nc

αs
π2

Z
xx̄yȳuūww̄ll̄

l · l̄

l2 l̄2

× e−il·ðy−uÞ−il̄·ðȳ−ūÞe−ip·ðx−x̄Þ−ikA·ðy−ȳÞ

× ðδwu − δwyÞðδw̄ ū − δw̄ ȳÞφ0
ww̄F

N
x;x̄;u;ū

þOðφ3=2Þ: ð121Þ

Introducing a Fourier representation for the BFKL Green’s
function

F n
x;x̄;u;ū ¼

Z
PP̄mm̄

e−iðP·xþP̄·x̄þm·uþm̄·ūÞF nðP; P̄;m;m̄Þ ð122Þ

and

φxy ≡
Z
q
e−iq·ðx−yÞφðqÞ; ð123Þ

we can write

dσqg
dYd2pdYAd2kA

¼ −
αs
Nc

Z
q

q2

ðq − kAÞ2k2A
FNð−p; p; q − kA;

− qþ kAÞφ0ð−qÞ þOðφ3=2Þ ð124Þ

with the (zero momentum transfer) BFKL Green’s function
F in momentum space satisfying the usual BFKL equation

F nþ1ðP;−P;m;−mÞ ¼ F nðP;−P;m;−mÞ þ 4Ncϵαs

Z
K

1

ðP − KÞ2
�
F nðK;−K;m;−mÞK

2

P2
−
1

2
F nðP;−P;m;−mÞ P

2

K2

�

þOðϵ3=2;F 3=2Þ ð125Þ

[cf. Eq. (69)]. A diagrammatic interpretation of this as a
typical BFKL ladder is given in Fig. 1. Equation (124) is
the main result of this section. It shows that the IT Langevin
equation formalism reduces, in the dilute limit, to a
conventional correlation between two particles produced
from the same BFKL ladder.
The initial condition for the evolution can be read off

from the definition (116),

F 0
x;x̄;u;ū ¼ ðNc

2 − 1Þδxuδx̄ ū; ð126Þ

or in momentum space,

F 0ðP; P̄;m;m̄Þ¼ ðNc
2−1Þδð2ÞðPþmÞδð2ÞðP̄þ m̄Þ: ð127Þ

Using this in the general expression (124) reduces the equal
rapidity cross section to a kT-factorized expression for the
two-particle production cross section:

dσqg
dYd2pdYAd2kA

����
Y¼YA

¼−
αs

ð2πÞ2
ðpþkAÞ2
p2k2A

φ0ðpþkAÞ:

ð128Þ

This expression already has the structure of Fig. 1, with an
unintegrated gluon distribution q2φðqÞ for the gluon taken
from the target, and propagators 1=k2A and 1=p

2 correspond-
ing to the produced particles. For this case of no evolution in
rapidity, the Lipatov vertices for producing the gluon and the

FIG. 1. Coordinate and momentum assignments for the BFKL
ladder diagram corresponding to Eq. (125).
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initial condition for the BFKL Green’s function combine to
produce a simple factor δð2Þðq − kA − pÞ, which naturally
means that in the absence of gluon emission in a ladder, the
transverse momentum of the two final-state particles must
match that coming from the target.

VII. CONCLUSIONS

In conclusion, we have attempted to clarify here the
Langevin formulation [60] of two-particle correlations in
JIMWLK evolution, in the case of a dilute probe scattering
off a dense color field target. Our first important result is the
observation that, although the JIMWLK evolution for the
Wilson lines is nonlinear, the evolution of the Lie deriv-
atives encoding the correlation between the two rapidities is
in fact not. It can be expressed instead, with a suitable
transformation, as a linear equation that is independent of
the Wilson lines. This observation seems to confirm the
result obtained earlier (in a rather different language) in
[63]. This conclusion points toward a much simpler way to
calculate the two-particle cross section than a straightfor-
ward numerical solution of the bilocal Langevin equations
in [60]. Exploring the full phenomenological consequences
of this observation is beyond the scope of this paper, but it
would be valuable to pursue this in future work.
We have also calculated explicitly the dilute limit of the

Langevin formulation, where the decorrelations in azimu-
thal angle between the two particles are given by a BFKL
Green’s function between the two rapidities. The physical

picture here is that of color charges, or rather Reggeized
gluon fields λ, that change with rapidity in a stochastic
process [see e.g., Eqs. (52) and (109)]. The power counting
for calculating two-particle correlations in this limit is,
however, tricky. This is due to the fact that the two-particle
cross section depends on Reggeized gluon fields from the
expansion of both the adjoint Wilson lines and the Lie
derivatives in the production Hamiltonian. In order to see
this connection, it is easier to continue a bit further with the
more formal definition in terms of the functional deriva-
tives. The essential feature is that JIMWLK evolution as a
function of the quark rapidity Y “commutes” with the
production Hamiltonian and only operates on the dipole
operator at Y. The evolution of the double inclusive cross
section with Y is therefore determined by the evolution of
the single inclusive cross section, but with a more com-
plicated initial condition. This feature enabled us to show
that in the linearized limit, the result is in fact what one
would expect from BFKL dynamics.
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We calculate finite-Nc corrections to the next-to-leading order (NLO) Balitsky-Kovchegov (BK)
equation. We find analytical expressions for the necessary correlators of six Wilson lines in terms of the
two-point function using the Gaussian approximation. In a suitable basis, the problem reduces from the
diagonalization of a six-by-six matrix to the diagonalization of a three-by-three matrix, which can easily be
done analytically. We study numerically the effects of these finite-Nc corrections on the NLO BK equation.
In general, we find that the finite-Nc corrections are smaller than the expected 1=N2

c ∼ 10%. The
corrections may be large for individual correlators, but have less of an influence on the shape of the
amplitude as a function of the dipole size. They have an even smaller effect on the evolution speed as a
function of rapidity.

DOI: 10.1103/PhysRevD.102.074027

I. INTRODUCTION

In hadronic collisions at high energies, large gluon den-
sities are created by the emission of soft gluons carrying a
small fraction of the longitudinalmomentumof the parent [1].
Nonlinear dynamics of gluons becomes important in such an
environment, where parton densities eventually grow to
become on the order of the inverse of the QCD coupling
αs. To describeQCD in this region, the color glass condensate
(CGC) effective field theory [2] has been developed.
In the CGC framework, cross sections for various

scattering processes can be expressed in terms of correla-
tors of Wilson lines. A Wilson line describes the eikonal
propagation of a parton in the strong color field of the
target. The energy dependence of the target color fields,
and thus cross sections, is obtained by solving the so-
called Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) equation [3–6]. This is a perturbative
evolution equation that describes the Bjorken-x dependence
of a Wilson line. In phenomenological applications, it is
usually convenient to work directly in terms of the Wilson
line correlators, and to solve instead the Balitsky-Kovchegov
(BK) equation [7,8] for the dipole operator (correlator of two
Wilson lines), which can be obtained from the JIMWLK
equation in the large-Nc limit.
The CGC framework has been used extensively in

phenomenological applications at leading order (LO) in

αs, with the evolution equations resumming contributions
∼αs ln 1=x to all orders. Running coupling effects derived
in Refs. [9–12] (see also [13]) can also be taken into
account. The nonperturbative initial condition for the small-
x evolution is obtained by performing fits to the HERA
structure function data [1,14], for example in Refs. [15–18]
(see also [19,20]). The obtained initial condition can then
be used for various calculations, for example particle
production in proton-nucleus collisions [17,21–27]. In
the future, the nuclear deep inelastic scattering (DIS)
experiments at the Electron Ion Collider (EIC) [28,29] in
the US, at the LHeC [30] at CERN and at the EicC in China
[31] will provide a vast amount of precise data from clean
DIS processes. These experiments will be able to probe the
nuclear structure where nonlinearities are enhanced by
roughly A1=3 higher densities compared to the proton.
Before the EIC, similar studies limited to the photopro-
duction region can be performed in ultra-peripheral heavy-
ion collisions [32,33].
In order to quantitatively study nonlinear dynamics in

high-energy scattering processes (and especially at the
future EIC), it is crucial to move beyond LO accuracy.
The next-to-leading order (NLO) evolution equations are
available: theNLOBKequationwas derived inRef. [34] and
the NLO JIMWLK equation was derived in Refs. [35,36].
Similarly, the impact factors are becoming available at NLO
for some processes: inclusive DIS [37–41] (in the case of
massless quarks), exclusive vector meson production
[42,43] (see also [44]) and particle production in proton–
nucleus collisions [45]. However, the phenomenological
applications of these are still developing [46–51].
The BK equation is usually solved in the large-Nc limit.

In the LO case, the large-Nc limit makes it possible to
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express the four-point correlator of fundamental represen-
tation Wilson lines in terms of the two-point function. In
detailed numerical studies, it has been shown that the finite-
Nc corrections are smaller than the naive expectation of
Oð1=N2

cÞ [52,53]. At NLO, the equation involves six-point
functions of fundamental Wilson lines that must similarly
be expressed in terms of the two-point function in order to
close the equation. The purpose of this work is to see if the
finite-Nc corrections are similarly small in the case of the
NLO equation, where all corrections of the order α2s are
taken into account.
In order to numerically solve the BK equation at finite

Nc, we use the Gaussian approximation [54–56] to derive
analytical parametric equations for the six-point correlators
in terms of the two-point correlators. We study numerically
the finite-Nc corrections to these correlators, and also their
effect on the NLO BK evolution. In addition to the BK
equation, higher-point correlators are needed in the calcu-
lations of multi-particle correlations in the CGC frame-
work, see eg. Refs. [57–60].
The structure of the paper is as follows. In Sec. II,

we introduce the NLO BK equation and provide both the

large-Nc and finite-Nc expressions for the correlators that
will be studied. In Sec. III, we introduce the Gaussian
approximation, explain the diagrammatic notation used in
the rest of the paper and then explain the analytical
calculation done for finding the parametric equations for
the six-point correlators. Section IV contains the numerical
results obtained from using the analytical expressions for
the six-point correlators to solve the BK equation. Finally,
we end with a few concluding remarks and a summary of
our main results.

II. THE BK EQUATION AT NLO

For any product of n=2 pairs of fundamental Wilson lines
UU†, we use the notation

SðnÞx1;x2;…;xn−1;xn ≔
1

Nc
trðUx1U

†
x2…Uxn−1U

†
xnÞ: ð1Þ

The NLO BK equation in the case of zero active quark
flavors (nf ¼ 0) reads [34]

∂YhSð2Þx;yi ¼ αsNc

2π2
KBC

1 ⊗ hD1i þ
α2sN2

c

16π4
K2;1 ⊗ hD2;1i þ

α2sN2
c

16π4
K2;2 ⊗ hD2;2i þOðnfÞ; ð2Þ

where the brackets hi refer to the expectation value over target color field configurations. The kernels are

KBC
1 ¼ r2

X2Y2

�
1þ αsNc

4π

�
β

Nc
ln r2μ2 −

β

Nc

X2 − Y2

r2
ln
X2

Y2
þ 67

9
−
π2

3
−
10

9

nf
Nc

− 2 ln
X2

r2
ln
Y2

r2

��
; ð3Þ

K2;1 ¼ −
4

Z4
þ
�
2
X2Y 02 þ X02Y2 − 4r2Z2

Z4ðX2Y 02 − X02Y2Þ þ r4

X2Y 02 − X02Y2

�
1

X2Y 02 þ
1

Y2X02

�

þ r2

Z2

�
1

X2Y 02
−

1

X02Y2

��
× ln

X2Y 02

X02Y2
; ð4Þ

K2;2 ¼
�
r2

Z2

�
1

X2Y 02 þ
1

Y2X02

�
−

r4

X2Y 02X02Y2

�
ln
X2Y 02

X02Y2
: ð5Þ

The convolutions ⊗ in Eq. (2) denote integrations over
the transverse coordinate z (in KBC

1 ) or z and z0 (in K2;1 and
K2;2). We use the notation r2 ¼ ðx − yÞ2, X2 ¼ ðx − zÞ2,
X02 ¼ ðx − z0Þ2, Y2 ¼ ðy − zÞ2, Y 02 ¼ ðy − z0Þ2 and
Z2 ¼ ðz − z0Þ2. We note that the kernel proportional to
nf is also available [34]. Since the purpose of this work is to
study the importance of the finite-Nc corrections in the
NLO BK equation, we do not include contributions
proportional to nf. The finite-Nc effects could be expected
to be similar to the nf ¼ 0 case.
The Wilson line operators appearing in Eq. (2) are

hD1i ¼ hSð2Þx;zS
ð2Þ
z;y i − hSð2Þx;yi; ð6Þ

hD2;1i ¼ hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi −

1

N2
c
hSð6Þx;z;z0;y;z;z0 i

− ðz0 → zÞ; ð7Þ

hD2;2i ¼ hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi − ðz0 → zÞ: ð8Þ

Although the original NLO BK equation in the form
presented in Ref. [34] does not contain the subtraction
z0 → z in D2;2, we have introduced the subtraction to
improve numerical stability. This subtraction term has no
effect on the final evolution because the integral of K2;2

over z0 vanishes if the Wilson line operator term does not
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depend on z0 (see Ref. [34]). We will refer throughout this
work to two pieces of the right side of Eq. (2) as the

(i) αsNc
2π2

KBC
1 ⊗ hD1i∼ “LO-like” contribution,

(ii) α2sN2
c

16π4
K2;1⊗hD2;1iþα2sN2

c
16π4

K2;2⊗hD2;2i∼ “NLO-like”
contribution.

In other words, we separate the terms in the NLO BK
equation by the types of Wilson line correlators, not by the
order in αs. Thus, the LO-like contribution also includes a
significant α2s correction.
The interpretation of the NLO BK equation is that one

considers all possible ways to emit either one or two
gluons, at transverse coordinates z and z0, from the boosted
dipole consisting of quarks at transverse coordinates x and
y. The effect of the boost is that instead of the original
dipole projectile, the original quarks and the emitted gluons
scatter off the target color field. As such, the evolution can
be seen to describe the evolution of the projectile probing
the target structure. On the other hand, the emitted gluons
can also be taken to be a part of the target wave function, in
which case the boost corresponds to the evolving target
color field as probed by the original projectile. For a more
detailed discussion on the NLO evolution in the projectile
or target wave function, the reader is referred to Ref. [61].
The NLO BK equation is known to be unstable [62] due

to the large contributions enhanced by the large double
transverse logarithm lnX2=r2 lnY2=r2. We resum these
contributions to all orders following the procedure devel-
oped in Ref. [63], which was numerically confirmed in
Ref. [64] to result in a stable evolution (see also Ref. [65]
for an equivalent resummation of the same double loga-
rithms). In addition, we include the running of the QCD
coupling by noticing that the terms proportional to the beta
function coefficient β in Eq. (3) should be resummed into
the running coupling. We implement this resummation by
following the Balitsky prescription from Ref. [12]. Both
running coupling and double transverse logarithm resum-
mations are included by modifying the kernel KBC

1 as

αsNc

2π2
KBC

1 →
αsðrÞNc

2π2
KDLA

�
r2

X2Y2
þ 1

X2

�
αsðXÞ
αsðYÞ

− 1

�

þ 1

Y2

�
αsðYÞ
αsðXÞ

− 1

��
þ Kfin

1 : ð9Þ

The double log corrections to all orders are taken into
account by the factor

KDLA ¼ J1ð2
ffiffiffiffiffiffiffiffiffi
ᾱsx2

p
Þffiffiffiffiffiffiffiffiffi

ᾱsx2
p ; ð10Þ

where ᾱs ¼ αsNc=π. The double logarithm here is
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnX2=r2 lnY2=r2

p
. If lnX2=r2 lnY2=r2 < 0, then

an absolute value is used and the Bessel function is changed

from J1 → I1 (see Ref. [63]). The scale of the coupling in
KDLA is determined by the smallest dipole minfr2; X2; Y2g.
In addition to the double log contributions, one can also

resum a set of higher-order contributions enhanced by
single transverse logarithms, as shown in Ref. [66]. For the
purposes of this paper, this resummation is not necessary
and is excluded for simplicity. In this running coupling
prescription, we keep the order α2s terms in the kernel KBC

1

that are not proportional to the beta function. These are
included in the term Kfin

1 , which reads

Kfin
1 ¼ α2s ðrÞN2

c

8π3
r2

X2Y2

�
67

9
−
π2

3
−
10

9

nf
Nc

�
: ð11Þ

The strong coupling constant in the transverse coordinate
space is evaluated as

αsðrÞ ¼
4π

β lnf½ð μ2
0

Λ2
QCD

Þ
1
c þ ð 4C2

r2Λ2
QCD

Þ1c�cg
; ð12Þ

where β ¼ ð11Nc − 2nfÞ=Nc. We take nf to be zero in both
Kfin

1 and β. We use1 C2 ¼ 1 and μ0=ΛQCD ¼ 2.5 in our
numerical calculations, which freezes the coupling at
αsðr → ∞Þ ¼ 0.762 in the infrared, and c ¼ 0.2 which
controls the transition to the infrared region.
The initial condition for the BK equation is taken from

the McLerran-Venugopalan (MV) model [67,68]. In the
MV model, the color charge density is assumed to be a
random Gaussian variable, with a zero expectation value
and a variance proportional to the local saturation scaleQ2

s .
The dipole correlator in the MV model is written as

hSð2Þx;yiMV ¼ exp

�
−
r2Q2

s0

4
ln

�
1

rΛQCD
þ e

��
: ð13Þ

Here, the constant e acts as an infrared regulator. We use
ΛQCD¼0.241GeV and Q2

s0¼1GeV2 in the numerical ana-
lysis. In analytical studies of the correlators of Wilson lines
in specific “line” coordinate configurations in Sec. IVA, we
use the GBW [69] form for the dipole correlator

hSð2Þx;yiGBW ¼ exp

�
−
r2Q2

s0

4

�
: ð14Þ

In principle, the resummation procedure for the double
transverse logs would also change the initial condition, as
discussed in Refs. [63,64]. However, since the initial
condition is a nonperturbative input for the evolution,
we consider Eq. (13) to be the nonperturbative initial
condition for the resummed evolution as well. For the

1A generic estimate [9,13] would be C2 ¼ e−2γE ≈ 0.32. We
use a larger value C2 ¼ 1 which results in slightly slower
evolution, as the C2 is usually taken to be a free parameter
controlling the coordinate space scale.
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purposes of this paper, the actual form of the initial
condition is not relevant.
We compare the finite-Nc version of the BK equation

presented above to the equation obtained in the large-Nc
limit, which has been studied numerically in Refs. [62,64].
In this limit, one can drop operators suppressed by 1=Nc
and the correlators in Eq. (2) become

hD1i ⟶
Nc→∞hD1iNc→∞ ¼ hSð2Þx;z ihSð2Þz;y i − hSð2Þx;yi; ð15Þ

hD2;1i ⟶
Nc→∞hD2iNc→∞; ð16Þ

hD2;2i ⟶
Nc→∞hD2iNc→∞; ð17Þ

with

hD2iNc→∞ ¼ hSð2Þx;z ihSð2Þz;z0 ihSð2Þz0;yi − hSð2Þx;z ihSð2Þz;y i: ð18Þ

III. SIX-POINT FUNCTIONS IN THE GAUSSIAN
APPROXIMATION

A. The Gaussian approximation

At large Nc, all Wilson line operators present in the NLO
BK equation can be expressed solely in terms of dipole
correlators, as can be seen from Eqs. (15) and (16). At finite

Nc, on the other hand, the higher-point functions hSð2Þx;zS
ð2Þ
z;y i,

hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi and hSð6Þx;z;z0;y;z;z0 i are needed. An expression

for the four-point function in terms of two-point functions
has been derived using the Gaussian approximation (see
e.g., [55]). This makes it possible to obtain a closed form
for the LO BK equation at finite Nc. The purpose of this
work is to compute also the six-point functions using the
Gaussian approximation, in order to obtain a closed finite-
Nc BK equation at NLO accuracy.
In the Gaussian approximation, all correlators are para-

metrized by a single two-point function, and all higher-
point functions can then be expressed in terms of this
function. The initial condition for the small-x evolution is
usually assumed to be Gaussian (e.g., as in the MV model),
but it is not clear a priori that the Gaussian approximation
is valid after the evolution. However, numerical studies of
the JIMWLK equation [70,71] have not found any indi-
cation of major effects breaking the validity of this
approximation.
We use the diagrammatic notation of Refs. [53,55,72], in

which Wilson lines are denoted as

ð19Þ

ð20Þ

The projectile transverse coordinate is x, the lightcone time
axis runs from right to left and the blue vertical line
represents the target background field. In the Gaussian
approximation, the correlator for someWilson line operator
O½U� is approximated as an integral over a parametrization
rapidity η of a single two-point correlator Gu1;u2 :

hO½U�iη ¼ exp

�
−
1

2

Z
η
dη̃

Z
u1;u2

Gu1;u2ðη̃ÞLa
u1L

a
u2

�
O½U�:

ð21Þ

The transverse integrals are denoted as
R
u ¼ R

d2u and La
u

is a Lie derivative that acts on Wilson lines according to

La
uUx ¼ −igδð2Þðx − uÞtaUx ð22Þ

ð23Þ

The structure as an exponential of a two-point function (as
in the MV model [67]) is what makes this a “Gaussian”
approximation. In practice, for gauge invariant (color
singlet) operators, the two-point function Gu1;u2 always
appears in the linear combination

Gu1;u2ðηÞ ≔
Z

η
dη̃

�
Gu1;u2ðη̃Þ −

1

2
ðGu1;u1ðη̃Þ þ Gu2;u2ðη̃ÞÞ

�
:

ð24Þ

For the integrand, we use the notation G0 ≔ ∂ηG. Physical
observables only depend on the integrated G and not on the
integrand G0. Thus, for the purpose of our calculation,
where we need to relate higher-point functions of Wilson
lines to the two-point function, there is some freedom in
choosing the parametrization rapidity. We use this freedom
in such a way that the η and transverse coordinate depend-
ences of G0 factorize,2 as is usually done when employing
the Gaussian approximation (see e.g., [54,56,58,70,74–76])
in phenomenological applications. We henceforth omit the
explicit η dependence of G for brevity.
As an example of the procedure for finding the para-

metric equation for a correlator using Eq. (21), we illustrate

2This assumption has the effect that the transition matrices
MðηÞ [introduced below in Eq. (30)] at different rapidities η
commute with each other. This turns the path ordered exponential
of MðηÞ into a normal exponential. This, in turn, makes it
possible to relate higher-point functions to the two-point function
without any further assumptions about the η dependence of G0. In
the terminology of Ref. [55], we use a “rigid exponentiation”
instead of the “Gaussian truncation.” The “Gaussian truncation”
would imply equating the parametrization rapidity η with the
evolution rapidity Y. See the related discussion in Refs. [72,73].
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the steps for the dipole operator hSð2Þx;yi. A more practical
form of Eq. (21) is to write the integral over the para-
metrization rapidity η in differential form. Then, we have

∂ηhSð2Þx;yi ¼ −MðηÞhSð2Þx;yi; ð25Þ

where M is the so-called transition matrix formed by
operating with the argument of the exponential in Eq. (21)
on the operator of interest. In this case, there are four
contributions from acting with the Lie derivatives on a
product of two Wilson lines:

ð26Þ

ð27Þ

From this sum, we need to factorize out the original
operator Ux ⊗ U†

y, so we use the Fierz identity

ð28Þ

There is only one way to join the endpoints of the Wilson
lines into a singlet operator. This is to trace over them, i.e.,
wedging them between and Doing so and
performing the remaining operations in the exponent of
Eq. (21), we get

ð29Þ

where CF ¼ N2
c−1
2Nc

. Since the operators and were
normalized, the initial condition at η ¼ 0 for the differential
equation (25) is given by trivial Wilson lines equal to the
identity matrix in the absence of a color field. This is the
well-known parametric equation for the dipole correlator
[55] in the Gaussian approximation.
In the case of n-point correlators larger than the dipole,

the operator hO½U�i in Eq. (21) is actually an n × n matrix
of correlators, denoted AðηÞ, and Eq. (25) becomes an
n × n matrix differential equation

∂ηAðηÞ ¼ −MðηÞAðηÞ: ð30Þ

By construction, M is a symmetric matrix, so there are at
most

P
n
i¼1 i ¼ nðnþ 1Þ=2 distinct elements, not n × n.

For example, a product of six Wilson lines is represented
in this notation as

ð31Þ

(the haphazard assignment of coordinate labels is conven-
ient for the NLO BK equation and will become clear when
constructing the transition matrix). The notation here
means that this product is actually a matrix with six open
indices on the left and another six on the right; we denote
them as

Since only singlet states are gauge-invariant, the only
operators of interest here are singlets. There are six pos-
sible ways to join the endpoints of these Wilson lines to
form a singlet. Equation (30) is therefore a six-by-six
matrix differential equation, as opposed to the much
simpler one-dimensional problem illustrated for the dipole
correlator.
In analogy to the procedure for the dipole operator, the

procedure to use Eq. (30) to find parametric equations for
the six-point correlators is as follows:
(1) Choose a multiplet basis, represented as a column

vector B, of n ¼ 6 color structures for the space
of all six-point correlators. Each element will have
six open color indices, which can contract with the
open indices on the left of Uz ⊗ U†

z0 ⊗ Uv ⊗
U†

y ⊗ Ux ⊗ U†
w. For example, one choice for an

element of B could be

ð32Þ

and the corresponding element for the other end of the
Wilson line is then
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ð33Þ

The prefactor is a normalization constant found by squaring
the basis element.
(2) Construct the correlator matrix A by taking

BðUz ⊗ U†
z0 ⊗ Uv ⊗ U†

y ⊗ Ux ⊗ U†
wÞBT. The ele-

ments of B on the left are contracted with the open
color indices on the left of the Wilson lines, and the
elements of BT with the open indices on the right.
For example, using the basis element shown above,
we have for one of the 36 elements in A,

ð34Þ

(3) Construct the transition matrix M by summing (for
each element in A) all possible one-gluon diagrams
obtained with the double Lie derivative operator and
rewriting the result in terms of elements of A.

(4) Solve Eq. (30) by exponentiating M to find ex-
pressions for each element in A, using as an initial
condition the correlator matrix A corresponding to
Wilson lines equal to the identity matrix.

B. Choosing a basis

Starting from a product of six Wilson lines, there are six
ways to form multiplets by joining endpoints in all possible
ways:

ð35Þ

The simplest way to construct an orthonormal basis from
these would be to use color algebra to choose

ð36Þ

The blue lines denote gluons and the last two elements
of B represent the antisymmetric and symmetric structure
constants, respectively, fabc ¼ −2itrð½ta; tb�; tcÞ and
dabc ¼ 2trðfta; tbg; tcÞ. The color factors are dA ¼ N2

c −
1 and Cd ¼ N2

c−4
Nc

. The next step would be to use this basis to
construct the correlator matrix A and the transition matrix
M. However, doing so results in a matrix differential
equation ∂ηAðηÞ ¼ −MðηÞAðηÞ, whose complicated sol-
ution is the matrix exponential of a six-by-six matrix M.
For our case, a better way to proceed is to exploit the

structure of the six-point correlators that are actually
needed for the NLO BK equation. Since there are only
four distinct coordinates in these particular correlators, we
make the coordinate assignments

ð37Þ

It is easy to see from this that there is one way to join the
endpoints such that in the limit v → z0, w → z, four Wilson
lines cancel (due to unitarity). The result simplifies to a
single trace:
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ð38Þ

So choosing as one of our basis elements allows

one dimension of our six-dimensional space of operators to
decouple, giving the equation for the dipole correlator.
Similarly, the choice of two more particular basis elements
results in two correlators that reduce to four-point functions;
one due to the limit v → z0 and the other due to the limit
w → z. Thus, we can expect to choose a further two basis
elements such that two more dimensions decouple from
the remaining five, corresponding to the equation for the

four-point operators. These two basis elements can be
chosen as

and

We will choose the remaining three basis elements such
that they are orthonormal to the three already chosen,
resulting in the final basis vector

ð39Þ

Since this basis is orthonormal, the correlator matrix at the
initial condition Aðη ¼ 0Þ will just be the identity matrix.

C. Constructing the correlator matrix and the
transition matrix

Due to this choice of basis B̃, the full matrix differential
equation (30) now decouples into three independent equa-
tions. This allows us to forego exponentiating a six-by-six
matrix; at most we will need to exponentiate a three-by-
three matrix, which can be done analytically.
To form the correlator matrix A, we take the product

B̃ðUz ⊗ U†
z0 ⊗ Uv ⊗ U†

y ⊗ Ux ⊗ U†
wÞB̃T and set w → z

and v → z0. To form the transition matrix, we act with
the argument of the exponential in Eq. (21) on the operator
Uz ⊗ U†

z0 ⊗ Uv ⊗ U†
y ⊗ Ux ⊗ U†

w, then wedge the result
between the basis vectors and set w → z and v → z0:

B̃

�
−
1

2

Z
η
dη0

Z
u1;u2

Gu1;u2ðη0ÞLa
u1L

a
u2

�

× ðUz ⊗ U†
z0 ⊗ Uv ⊗ U†

y ⊗ Ux ⊗ U†
wÞB̃T

				
w→z
v→z0

ð40Þ

Diagrammatically, this is equivalent to summing all
possible ways of attaching one gluon line on the
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operator , using the Fierz identity to replace the gluon

vertices, and finally closing the Wilson line endpoints on
the left and right using the basis vector. For example, the
element (6, 6) of the correlator matrix A is

ð41Þ

We then sum all the diagrams in which a gluon is attached
to this diagram so that it joins any two of the six Wilson
lines on the right of the target interaction. Using the Fierz
identity in Eq. (28), we may write the resulting expression
in terms of diagrams with no gluons. After making the
substitutions w → z and v → z0, the result will be a linear
combination of elements of the operator matrixAðηÞ. From
this linear combination, one can read off the elements of
column 6 of the transition matrix M. The explicit expres-
sions for the elements of AðηÞ in terms of the Wilson line
correlators are shown in Appendix.
Performing this procedure for each diagram in AðηÞ, we

get the full transition matrix

MðηÞjw→z
v→z0

¼

0
B@

M3 0 0

0 M2 0

0 0 M1

1
CAðηÞ; ð42Þ

where the subscripts refer to the dimension of the
submatrix.
The first (one-dimensional) transition submatrix is

M1ðηÞ ¼ CFGx;y
0 ð43Þ

and upon exponentiation, gives the parametric equation for
the dipole correlator as shown in Eq. (29). When inverted,
this equation can be used to express the two-point function
Gx;y in terms of the dipole correlator. This will be needed to
evaluate the higher-point functions in terms of the

dipole hSð2Þx;yi.
The second (two-dimensional) transition submatrix is

M2ðηÞ ¼
Nc

4

�
M2

ð1;1Þ M2
ð1;2Þ

M2
ð1;2Þ M2

ð1;1Þ

�
ðηÞ; ð44Þ

where

Mð1;1Þ
2 ðηÞ ≔ G0

x;z þ G0
y;z −

2

N2
c
G0
x;y þ G0

x;z0 þ G0
y;z0 ; ð45Þ

Mð1;2Þ
2 ðηÞ ≔ G0

x;z þ G0
y;z − G0

x;z0 − G0
y;z0 : ð46Þ

The matrix differential equation

∂ηA2ðηÞ ¼ −M2ðηÞA2ðηÞ ð47Þ
then gives a coupled system of 2 × 2 differential equations,
out of which 2 are linearly independent, corresponding to
the fact that the same transition matrix operates separately
on each of the two columns ofA2. The exponential solution
for this system of equations gives the known parametriza-
tion for the four-point correlator with one repeated coor-
dinate [55]

hSð2Þx;zS
ð2Þ
z;y i ¼ 1

N2
c
e−CFGx;y þ 2CF

Nc
e−CFGx;ye−

Nc
2
ðGx;zþGy;z−Gx;yÞ:

ð48Þ
The third and final (three-dimensional) transition sub-

matrix is

M3ðηÞ ¼

0
BB@

Nc
4
Γ0
1

ffiffiffiffiffiffiffiffi
NcCd

p
4

Γ0
2 0ffiffiffiffiffiffiffiffi

NcCd
p

4
Γ0
2

Nc
4
Γ0
1 − 1ffiffi

2
p Γ0

2

0 − 1ffiffi
2

p Γ0
2 Γ0

0

1
CCA; ð49Þ

where

Γ0 ≔ CFGx;y þ NcGz;z0 ; ð50Þ

Γ1 ≔ Gx;z þ Gy;z −
2

N2
c
Gx;y þ Gx;z0 þ Gy;z0 þ 2Gz;z0 ; ð51Þ

Γ2 ≔ Gx;z − Gy;z − Gx;z0 þ Gy;z0 ð52Þ
and the primes on the Γ’s in Eq. (49) denote derivatives in η.
Exponentiating this matrix is the last step required to get
expressions for the remaining six-point correlators in A3.

D. Exponentiating the transition matrix M3

In order to obtain the six-point functions, it is necessary
to solve the differential equation

∂ηA3ðηÞ ¼ −M3ðηÞA3ðηÞ: ð53Þ
Solving this equation is equivalent to exponentiating the
matrix M3, as shown above in the cases of the two- and
four-point functions. To exponentiateM3, we consider two
different cases: Γ0

2 ¼ 0 and Γ0
2 ≠ 0. The reason for this will

become clear shortly.
When Γ0

2 ¼ 0,M3 in Eq. (49) becomes diagonal and we
directly obtain

A3ðηÞ ¼

0
B@

e−
Nc
4
Γ1 0 0

0 e−
Nc
4
Γ1 0

0 0 e−Γ0

1
CA: ð54Þ

When Γ0
2 ≠ 0, the matrix elements of A3 are calculated

by matrix-exponentiating the full M3 in Eq. (49), giving
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A3ðηÞ ¼
X3
i¼1

ezi=4

0
BBB@

a11ðziÞ
dðziÞ −

ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
Γ2

a12ðziÞ
dðziÞ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2CdNc

p
Γ2
2
a13ðziÞ
dðziÞ

−
ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
Γ2

a12ðziÞ
dðziÞ

m22ðziÞ
dðziÞ 2

ffiffiffi
2

p
Γ2

a23ðziÞ
dðziÞ

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2CdNc

p
Γ2
2
a13ðziÞ
dðziÞ 2

ffiffiffi
2

p
Γ2

a23ðziÞ
dðziÞ

a33ðziÞ
dðziÞ

1
CCCA: ð55Þ

Here, zi are the roots of the cubic polynomial

pðzÞ ¼ z3 þ 2ð2Γ0 þ NcΓ1Þz2 þ ½NcΓ1ð8Γ0 þ NcΓ1Þ − ðN2
c þ 4ÞΓ2

2�zþ 4½N2
cΓ0Γ2

1 − ððN2
c − 4ÞΓ0 þ 2NcΓ1ÞΓ2

2�: ð56Þ
They are

z1 ¼
1

3

�
−2c1 þ c3 þ

1

c3
½ðc1 − 6Γ0Þ2 þ 3ðN2

c þ 4ÞΓ2
2�
�
; ð57Þ

z2 ¼ −
1

6

�
16c1 þ c3ð1 − i

ffiffiffi
3

p
Þ þ 1

c3
ð1þ i

ffiffiffi
3

p
Þ½ðc1 − 6Γ0Þ2 þ 3ðN2

c þ 4ÞΓ2
2�
�
; ð58Þ

z3 ¼ −
1

6

�
16c1 þ c3ð1þ i

ffiffiffi
3

p
Þ þ 1

c3
ð1 − i

ffiffiffi
3

p
Þ½ðc1 − 6Γ0Þ2 þ 3ðN2

c þ 4ÞΓ2
2�
�
; ð59Þ

where
c1 ¼ 2Γ0 þ NcΓ1; ð60Þ

c2 ¼ ð2c1½c21 − 9ðN2
c − 8ÞΓ2

2�Þ2 − 4½c21 þ 3ðN2
c þ 4ÞΓ2

2�3;
ð61Þ

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

p
2

þ c1½c21 − 9ðN2
c − 8ÞΓ2

2�
3

r
: ð62Þ

The functions of the roots that appear in Eq. (55) are

a11ðzÞ ¼ 4NcΓ0Γ1 − 8Γ2
2 þ ð2Γ0 þ c1Þzþ z2; ð63Þ

a12ðzÞ ¼ 4Γ0 þ z; ð64Þ
a13ðzÞ ¼ 1; ð65Þ

a22ðzÞ ¼ 4NcΓ0Γ1 þ ð2Γ0 þ c1Þzþ z2; ð66Þ
a23ðzÞ ¼ NcΓ1 þ z; ð67Þ

a33ðzÞ ¼ N2
cΓ2

1 − ðN2
c − 4ÞΓ2

2 þ 2NcΓ1zþ z2 ð68Þ
dðzÞ ¼ 3z2 þ 4c1zþ NcΓ1ð8Γ0 þ NcΓ1Þ − ðN2

c þ 4ÞΓ2
2:

ð69Þ
Notice that c3 may be complex. However, the final
expressions for each element in A3 are in fact real, as
correlators should be. Notice also that c3 appears in the
denominator in the roots. Since c3 ¼ 0 ⇔ Γ2 ¼ 0 and we
have treated the Γ2 ¼ 0 case separately, we need not worry
about dividing by zero where c3 appears in the denominator
in (57)–(59).

E. Extracting six-point correlators needed for NLO BK

Equation (55) gives the analytical expressions for the
correlators formed using basis B̃, solely in terms of the
parameter G [which can be used to relate these expressions
to the dipole via Eq. (29)]. For example,

ð70Þ

However, the two correlators required in Eqs. (7) and (8)
are

ð71Þ

ð72Þ

These are not explicitly any of the elements of matrix A3,
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since and are not basis elements in B̃. Instead, they are

linear combinations of the elements B̃i contained in B̃:

ð73Þ

ð74Þ

Using these two expressions, it is simple to get the final
equations for the two six-point correlators needed. In terms
of the elements of the correlator matrixA3 given in Eq. (55)
(see Appendix for detailed expressions) they are

hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi ¼

1

N2
c
hSð6Þx;z;z0;y;z;z0 i þ

dA
N3

c
ð−

ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
A3

ð1;2Þ þ NcA3
ð2;2Þ þ

ffiffiffi
2

p
A3

ð2;3ÞÞ ð75Þ

and

hSð6Þx;z;z0;y;z;z0 i ¼ −hSð2Þx;yi þ hSð2Þx;zS
ð2Þ
z;y i þ hSð2Þx;z0S

ð2Þ
z0;yi þ

dA
Nc

�
Cd

2
A3

ð1;1Þ −

ffiffiffiffiffiffiffiffi
2Cd

Nc

s
A3

ð1;3Þ −
Nc

2
A3

ð2;2Þ þ 1

Nc
A3

ð3;3Þ
�
: ð76Þ

Equations (75) and (76) are the final two expressions
needed to solve the NLO BK equation at finite Nc; they are
the main analytical results of this work. It is now possible to
express these six-point functions entirely in terms of dipole
correlators using Eq. (29). This makes it possible to write
the NLO BK equation from Eq. (2) solely in terms of dipole
correlators. In such a closed form, it can be solved directly,
as was done in the large-Nc case in Refs. [62,64].
To verify the validity of Eqs. (75) and (76), we perform

three checks. First, the Gaussian approximation has the
built-in property that it should be consistent in color
algebra. This means that taking any coincidence limit in
which coordinates are made equal in Eqs. (75) and (76),
should reduce them to the relevant expressions for the
lower-point functions Eqs. (29) and (48). For example,
setting z → x and z0 → y in Eq. (75), we reproduce the
equation for the dipole (29), as expected.
Secondly, when Eq. (75) is taken in the dilute limit,

where the Wilson lines are expanded as

Ux ¼ e−λaðxÞta ð77Þ

¼ 1 − λaðxÞta þOðλ2Þ; λaðxÞ ∈ R; ð78Þ

Eq. (75) should be the same up to order λ2 as the parametric
equation for the large-Nc counterpart operator. In the case

of correlator hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi, the large-Nc result is just the

factorized product of dipole correlators

hSð2Þx;z ihSð2Þz;z0 ihSð2Þz0;yi ¼ e−CFðGx;zþGz;z0þGz0 ;yÞ: ð79Þ

After some algebra, Eq. (75) can be shown to give the same
result up to order G.
Finally, we have confirmed that Eq. (76) reproduces the

large-Nc result in the appendix of Ref. [60] in the particular
line configuration of coordinates discussed below in
Sec. IVA. Since our expression is rather complicated
due to the complex roots zi, we have not been able to
analytically take the limit Nc → ∞ of our expression.
Instead we have evaluated our result numerically at very
large values of Nc and checked that the result matches that
obtained using the expression in Ref. [60].
We note that in Ref. [59], correlators of up to eight

Wilson lines have been calculated at finite Nc. The differ-
ence between that work and ours is that the authors there
are solving the system for a general configuration of
coordinates, where it is difficult to find a basis such that
the transition matrix would become block diagonal.
Consequently, an analytical approach as presented in this
paper is not possible. Instead, the authors numerically
exponentiate the transition matrix, which is a much more
expensive computational procedure than what is needed
here.

IV. NUMERICAL RESULTS

We now study numerically the obtained six-point corre-
lators, Eqs. (75) and (76). In particular, we are interested in

T. LAPPI, H. MÄNTYSAARI, and A. RAMNATH PHYS. REV. D 102, 074027 (2020)

074027-10



the effects of the 1=N2
c suppressed contributions included in

these six-point correlators, compared to the large-Nc
version in Eq. (16), which was used previously in numeri-
cal studies of the NLO BK equation. We will first study
these operators in a specific coordinate configuration (with
the GBW parametrization for the dipole). We will then
integrate the operators over the gluon coordinates z; z0 and
study the BK evolution starting from an MV model initial
condition.

A. Correlators in a line configuration of coordinates

As a baseline for comparison of the six-point correlators
in the NLO BK integrand, we consider first the four-point

correlator hSð2Þx;zS
ð2Þ
z;y i that appears in the LO BK equation.

We compare the full finite-Nc result to its large-Nc limit

hSð2Þx;z ihSð2Þz;y i. The finite-Nc correlator is evaluated by apply-
ing Eq. (48). For the dipole operator hSð2Þi, we use the
GBW form given in Eq. (14). We consider the following,
specific but not atypical, configuration of coordinates: x; y
and z in a line along the horizontal axis of transverse
coordinate space, as shown in Fig. 1. The distance between
points y and z is denoted by a, the distance between points x
and z is 2a, and the distance between x and y is 3a.
We have confirmed that the rough relative magnitude of

the finite-Nc effects of the results shown in this subsection
are not specific to the actual chosen geometric configura-
tion. To confirm this, we have tested other coordinate
configurations, for example the four coordinates placed at
the corners of a square. The results of these tests were very
similar to the plots shown here for the line configuration.
We therefore consider this particular geometry to be
representative of the typical magnitude of the finite-Nc
corrections.
To show the results as a function of the dimensionless

distance scale aQs, we define the saturation scale Qs as

hSð2Þx;yiðx−yÞ2¼2=Q2
s
¼ e−1=2: ð80Þ

In Fig. 2, the four-point correlator is shown both at finite
Nc and at large Nc as a function of the distance aQs.
Additionally, the magnitude of the finite-Nc correction is
shown as a difference between the finite-Nc and large-Nc

results, denoted by hSð2ÞSð2Þi − hSð2ÞihSð2Þi. The finite-Nc

correction to the four-point correlator hSð2ÞSð2Þi is found to
be negligible. At typical aQs ¼ 1, the relative finite-Nc

correction ðhSð2ÞSð2Þi − hSð2ÞihSð2ÞiÞ=ðhSð2ÞihSð2ÞiÞ is
approximately 5%. The relative correction becomes more
important at large aQs, in the region which gives only a
negligible contribution to the BK evolution. We will return
to the discussion of the finite-Nc corrections at aQs ≳ 1
later, when evaluating the six-point functions. Also shown
in Fig. 2 is the full LO-like operator factor D1 (see Eq. (6)
from the BK equation, both at large and finite Nc. The
difference between the finite-Nc and large-Nc results is the
same as the difference for the four-point correlators. The
fact that the finite-Nc corrections are smaller than ∼1=N2

c is
not surprising, as these corrections to the LO BK equation
are known to be small [53].
Next, we choose for the four coordinates present in the

NLO-like operators in the BK equation a similar line
configuration, shown in Fig. 3. In Fig. 4, the behaviour
of the operator hSð2ÞSð2ÞSð2Þi and the large-Nc counterpart

FIG. 1. Coordinates in the LO-like operators of the BK
equation placed in a line configuration as a function of some
value a.

FIG. 2. Correlators in the LO-like piece of the BK equation (2),
in the line configuration of coordinates as shown in Fig. 1.

FIG. 3. Coordinates in the NLO-like operators of the BK
equation placed in a line configuration as a function of some
value a.
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hSð2ÞihSð2ÞihSð2Þi are plotted as a function of aQs. For the
finite-Nc correlator hSð2ÞSð2ÞSð2Þi, we use our analytical
result Eq. (75). Although the difference between the large-
Nc and finite-Nc results (also shown in the figure) is larger
here compared to the four-point function shown in Fig. 2, it
is still negligible at aQs ≪ 1. On the other hand, the finite-
Nc corrections clearly dominate in the region aQs ≳ 1, the
relative contribution from 1=N2

c suppressed terms being
approximately 40% at aQs ¼ 1. A similar, although
numerically smaller, effect was observed in the four-point
function studied above. This can be understood as follows.
When 2a ≳ 1=Qs, the color fields at points x and z, as well
as at y and z0 are uncorrelated. However, at finite Nc, the
six-point function is also sensitive to the color field
correlations between points x and z0, as well as between
y and z that belong to different dipoles and are thus not
correlated in the large-Nc limit. When jx − z0j ¼ jy − zj≲
1=Qs, these correlations do not vanish and actually domi-
nate the full six-point function.
Also shown in Fig. 4 for comparison is the other 1=N2

c

suppressed six-point correlator 1
N2

c
hSð6Þi present in the NLO

BK integrand at finite-Nc (cf. Eq. (7)). This is plotted using
Eq. (76). We can see that the contribution of the six-point
function Sð6Þ=N2

c to D2;2 is similar in magnitude as that of
the finite-Nc corrections to the dipole cubed opera-
tor Sð2ÞSð2ÞSð2Þ.
In Fig. 5, we use all the above mentioned correlators to

plot the NLO-like factors hD2;1i and hD2;2i, as defined by

Eqs. (7) and (8), respectively. Since both quantities reduce
to the same expression in the large-Nc limit, only one curve
is shown for the large-Nc case. The dashed curves show the
differences, i.e., the finite-Nc corrections to hD2;1i and
hD2;2i. As already seen when studying the six-point
correlators, the finite-Nc corrections are negligible at
aQs ≪ 1, but become numerically important when
aQs ≳ 1. In comparison to the dashed curves in Fig. 2
for the LO-like case, we see that the finite-Nc corrections in
the NLO-like case are larger. At aQs ¼ 1, the finite-Nc
corrections to the operators hD2;1i and hD2;2i are approx-
imately 20% and 16%, respectively. In comparison, the
LO-like operator hD1i shown in Fig. 2 has a finite-Nc
correction of approximately 8%. When considering the full
NLO BK evolution, one should keep in mind that the
evolution is driven by the dipole sizes r≲ 1=Qs. As such,
even though the finite-Nc corrections can be large at
r ¼ 1=Qs, the actual effect of the 1=N2

c suppressed con-
tributions to the small-x evolution can be smaller. The NLO
BK evolution at finite-Nc is studied in the next section.

B. BK evolution at finite Nc

Equipped with the insight gained for the expected
behavior of correlators using the line configuration,
we move on to studying the full BK equation using
the MV model initial condition, shown in Eq. (13), with
Q2

s;0 ¼ 1 GeV2. Since the finite-Nc corrections to the

FIG. 4. Six-point correlators present in the NLO BK equa-
tion (2), in the line configuration of coordinates as shown in
Fig. 3.

FIG. 5. Correlator factors hD2;1i and hD2;2i in the NLO-like
part of the BK equation (2), in the line configuration of
coordinates as shown in Fig. 3. Both factors reduce to the same
expression hD2iLargeNc

in the large-Nc limit, as also shown in the
figure.
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individual operators have been found to be small (except at
large distances which do not significantly contribute to the
BK evolution), we expect the finite-Nc corrections to
remain small when performing integrations over gluon
coordinates z and z0 in Eq. (2).
In Fig. 6, we show the relative evolution speed 1

N ∂YN,
where the dipole amplitude N ¼ Nx;y is defined as

Nx;y ¼ h1 − Sð2Þx;yi. This is obtained by integrating the full
right side of Eq. (2), first using the large-Nc expressions for
the correlators, then again using the finite-Nc expressions.
These are shown separately for the LO-like contribution
[only the term containing D1 in the integrand in Eq. (2)]
and the NLO-like contribution (only the terms containing
D2;1 and D2;2). As expected from the line configuration
studies, we see that the finite-Nc corrections for the NLO-
like terms are slightly larger, but of the same order of
magnitude as the finite-Nc corrections for the LO-like
terms. The finite-Nc corrections vanish when the parent
dipole size r is small, and are most important at rQs ∼ 1, as
expected from the line configuration analysis pre-
sented above.
In Fig. 7, we plot the difference between the large-Nc and

finite-Nc cases, separately for the LO-like and NLO-like
terms. This shows more clearly that the difference for the

NLO-like terms is of the same order of magnitude as for the
LO-like terms. We also note that the difference has the
opposite sign in the LO-like and the NLO-like terms.
Consequently, a part of the difference cancels in the total
evolution speed. At rQs ¼ 1, the relative finite-Nc correction
is approximately 8% in the LO-like contribution and 13% in
theNLO-like contribution. The relativemagnitude of the total

FIG. 6. Evolution speed of the dipole amplitude at the initial
condition at large-Nc and at finite-Nc. We show separately the
contribution from the LO- and NLO-like terms (note that the LO-
like contribution includes the order α2s contribution included in
Kfin

1 ).

FIG. 7. Difference of the evolution speeds at finite Nc and at
large Nc, shown separately for the LO-like, NLO-like and total
(LO-like þ NLO-like) contributions.

FIG. 8. Evolution for the ratio of the dipole amplitudes obtained
by performing the finite-Nc and large-Nc evolutions with the
same initial condition.
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1=N2
c suppressed contribution is 5%, which is somewhat

smaller than the expected correction of 1=N2
c ∼ 10%.

Finally, the last thing left to study is to move beyond the
initial condition and determine how the finite-Nc correc-
tions behave under the NLO BK evolution. In Fig. 8, we
show the ratio of the dipole amplitudes N obtained by
solving the full NLO BK equation at finite Nc to that at
large Nc. At r≳ 1=Qs, when the details of the initial
condition are lost and one enters the geometric scaling
region, the difference between the large-Nc and finite-Nc
cases evolves only very slowly. At small dipoles, the ratio
grows approximately linearly in Y. The fact that the total
finite-Nc correction is positive at small dipole sizes and
negative at large dipoles, as seen in Fig. 7, is found to hold
also asymptotically after many units of rapidity evolution.
The evolution speed of the saturation scale, ∂Y lnQ2

s , is
shown in Fig. 9. Similarly to what is seen in the dipole
amplitude plot in Figure 8, we see from this figure that the
finite-Nc corrections are more important at the initial
condition, slowing down the evolution of Q2

s by approx-
imately 5%. Later in the evolution, where the solution
approaches the asymptotic shape of the BK evolved dipole,
the difference becomes smaller—of the order of 1%.
Consequently, even at the initial condition (and especially
when the details of the initial condition are lost) the finite-
Nc corrections to the evolution speed of Qs are found to be
significantly smaller than the naive expectation of 1=N2

c
at NLO.

V. CONCLUSIONS

In this work, we have studied the six-point correlators in
the NLO BK equation using the Gaussian approximation.

This allowed us to express these higher-point correlators in
terms of the dipole operator. In using our analytical results,
we have seen numerically that the overall finite-Nc cor-
rections to the NLO-like part of the BK equation are
somewhat smaller than what is naively expected. However,
one needs to state the actual quantity being compared in
order to quantify this correction.
When correlators are considered between Wilson lines

separated by large distances relative to 1=Qs, 1=N2
c sup-

pressed corrections may be considerable. Despite these
potentially large corrections to individual correlators, these
configurations do not contribute much to the right side of
the BK equation. Therefore, we find a somewhat smaller,
although still significant, effect on the shape of the dipole
amplitude as a function of r. The finite-Nc corrections are
watered down further when one considers the evolution
speed of Qs as a function of rapidity, especially once the
evolution settles toward its asymptotic form away from the
initial condition. In general, finite-Nc corrections need to be
considered carefully when evaluating the NLO BK equa-
tion, since they may have a non-negligible effect at the
required accuracy.
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APPENDIX: CORRELATOR MATRIX AðηÞ
We give here the explicit expressions for the operators

contained in the correlator matrixAðηÞ. Since the transition
matrix M block-diagonalizes in basis B̃, as explained in
Sec. III C, we are only interested in the corresponding
block-diagonalized matrix

AðηÞ
			
w→z
v→z0

¼

0
B@

A3 0 0

0 A2 0

0 0 A1

1
CAðηÞ: ðA1Þ

The one-dimensional submatrix is

FIG. 9. Evolution speed of the saturation scale Q2
s as a function

of rapidity at large Nc and at finite Nc.
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ðA2Þ

The two-dimensional submatrix is

ðA3Þ

where

ðA4Þ

ðA5Þ

The three-dimensional submatrix is

ðA6Þ

where

ðA7Þ

ðA8Þ

ðA9Þ
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ðA10Þ

ðA11Þ

ðA12Þ
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