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Abstract
This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, 
Serapioni, and Serra Cassano, in the Heisenberg group ℍn , n ∈ ℕ . For 1 ⩽ k ⩽ n , we show 
that every intrinsic L-Lipschitz graph over a subset of a k-dimensional horizontal subgroup 
�  of ℍn can be extended to an intrinsic L′-Lipschitz graph over the entire subgroup �  , 
where L′ depends only on L, k, and n. We further prove that 1-dimensional intrinsic 1-Lip-
schitz graphs in ℍn , n ∈ ℕ , admit corona decompositions by intrinsic Lipschitz graphs with 
smaller Lipschitz constants. This complements results that were known previously only in 
the first Heisenberg group ℍ1 . The main difference to this case arises from the fact that for 
1 ⩽ k < n , the complementary vertical subgroups of k-dimensional horizontal subgroups in 
ℍn are not commutative.

Keywords Heisenberg groups · Lipschitz extension · Corona decomposition · Low-
dimensional intrinsic Lipschitz graphs

Mathematics Subject Classification 35R03 · 26A16 · 28A75

1 Introduction

This note deals with low-dimensional intrinsic Lipschitz graphs in Heisenberg groups. The 
n-th Heisenberg group ℍn is the set ℝ2n+1 with the group product “ ⋅ ” given by
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for (x1,… , x2n, t), (x
�

1
,… , x�

2n
, t�) ∈ ℝ2n+1 . We equip ℍn with the left-invariant metric

where ‖(x, t)‖ ∶= max{�x�,√�t�} and | ⋅ | denotes the usual Euclidean norm on ℝ2n.
Intrinsic Lipschitz graphs (iLG) in ℍn were introduced by Franchi, Serapioni, and Serra 

Cassano in [13]. The definition of codimension-1 iLG is motivated by their appearance 
in connection with a structure theorem for sets of finite perimeter [12], see also [21–23] 
for various applications of such sets. The definition of iLG makes perfect sense also for 
low dimensions, but there are fewer works that study specifically low-dimensional iLG. 
Recently, they have appeared in [1, 2]. To the best of our knowledge, 1-dimensional iLG in 
ℍ1 were first applied by Orponen and the second author in [11] to prove the boundedness of 
certain singular integral operators on regular curves in ℍ1 . The results of the present paper 
constitute a first step towards the generalization of [11] to higher-dimensional Heisenberg 
groups. At the same time, we believe that the results are of independent interest in geomet-
ric measure theory, as they complement the list of fundamental properties that low-dimen-
sional iLG share with Euclidean Lipschitz graphs. This is our first main result:

Theorem 1.2 (Intrinsic Lipschitz extension) Let n ∈ ℕ , k ∈ {1,… , n} , and assume that �  
is a k-dimensional horizontal subgroup of ℍn with complementary vertical subgroup � . 
Then, for every L ⩾ 0 , there exists a constant L� = L�(L, k, n) ⩾ 0 such that every intrin-
sic L-Lipschitz function � ∶ E → � , defined on a subset E ⊂ �  , can be extended to an 
intrinsic L′-Lipschitz function � ∶ � → � . Moreover, if k = n = 1 , then one can take 
L� = C(n)max{L, L2} where C(n) ⩾ 1 is a constant depending only on n.

We defer the definitions to Sect. 2 and more precise statements to Sect. 4, and start by 
discussing the connection between Theorem 1.2 and other Lipschitz extension results.

A pair (X,  Y) of metric spaces has the Lipschitz extension property if there exists a 
constant C > 0 such that, for every E ⊂ X , every Lipschitz function f ∶ E → Y  can be 
extended to a Lipschitz function f ∶ X → Y  with Lipschitz constant Lip(f ) ⩽ C Lip(f ) . It 
is known that the pair of metric spaces (ℝk,ℍn

) has the Lipschitz extension property if and 
only if k ⩽ n , see [5, 10, 17, 20, 26]. Theorem 1.2 is related to this result since every intrin-
sic Lipschitz function � ∶ � → � (as in Theorem  1.2) is in one-to-one correspondence 
with a (metrically defined) Lipschitz function

for which Φ(E) is an intrinsic graph in the sense of Definition 2.1, see Remark 2.4. So the 
point of Theorem 1.2 is to extend the Lipschitz function Φ ∶ E → ℍn to Φ ∶ ℝk

→ ℍn in 
such a way that the intrinsic graph structure of the image is preserved.

While Theorem  1.2 thus yields a conclusion that does not follow from the general 
Lipschitz extension property of (ℝk,ℍn

) for k ⩽ n , our assumption is also stronger in 
that the image of the initially given, partially defined Lipschitz map Φ is an intrin-
sic graph. This additional information is very helpful in the construction of Lipschitz 
extensions, and it led us to a proof for Theorem 1.2 that is different from the extension 

(x1,… , x2n, t) ⋅ (x
�

1
,… , x�

2n
, t�)

=

(
x1 + x�

1
,… , x2n + x�

2n
, t + t� +

1

2

n∑
i=1

xix
�

n+i
− x�

i
xn+i

)

(1.1)d(p, q) ∶= ‖q−1 ⋅ p‖, p, q ∈ ℍ
n,

Φ ∶ E ⊂ (ℝ
k, | ⋅ |) → (ℍ

n, d)
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methods used in [20, 26]. The case k = n = 1 was proven before in [11], but it also fol-
lows, with a different argument, from our proof of Theorem 1.2. A new phenomenon 
appears in higher-dimensional Heisenberg groups, where there is a qualitative differ-
ence between the condition for k-dimensional iLG in the middle dimension k = n and 
in smaller dimensions k < n . We establish the case k = n of Theorem 1.2 by applying a 
C1,1 version of Whitney’s extension theorem by Glaeser [16] to the last component of � . 
The bridge between [16] and intrinsic Lipschitz graphs is provided by the infinitesimal 
condition appearing in Proposition 3.12. The extension theorem in the case k < n can 
be deduced by suitably embedding k-dimensional graphs into n-dimensional graphs and 
applying the k = n version of Theorem 1.2.

Theorem 1.2 complements extension results for low-codimensional iLG in ℍn , proved 
in [14, 21] for codimension 1, and in [25] for codimension k ⩽ n . The proofs in [14, 21] 
use an argument similar to the classical McShane Lipschitz extension theorem, which is 
possible since 1-dimensional horizontal subgroups in ℍn can be equipped with an order 
structure. The extension result in [25] is based on a new level set description of low-
codimensional iLG. Neither of these approaches is available for low-dimensional iLG.

Theorem 1.2, the results mentioned in the last paragraph, and the Rademacher-type 
theorems in [1, 14, 25] show that all intrinsic Lipschitz functions between complemen-
tary homogeneous subgroups of ℍn share two fundamental properties with Euclidean 
Lipschitz functions: the extension property and the almost everywhere differentiabil-
ity. These are crucial features for applications in geometric measure theory. The second 
main result of the present paper establishes an additional property for 1-dimensional 
intrinsic 1-Lipschitz graphs, namely a corona decomposition by intrinsic Lipschitz 
graphs (possibly over different subgroups) with smaller constants. The corresponding 
result for Euclidean Lipschitz graphs plays a crucial role in the theory of quantitative 
rectifiability and singular integrals [8, 9, 24].

Theorem 1.3 (Intrinsic Lipschitz corona decomposition) For every n ∈ ℕ and � ∈ (0, 1) , 
every 1-dimensional intrinsic 1-Lipschitz graph in ℍn admits a corona decomposition by 
1-dimensional intrinsic �-Lipschitz graphs.

A corona decomposition of a 1-dimensional (intrinsic) Lipschitz graph Γ is a hierar-
chical partitioning, called coronization, of ℝ (or a 1-dimensional horizontal subgroup) 
into “good” and “bad” dyadic intervals, where the bad ones are controlled by a Carleson 
packing condition, and the good ones can be partitioned into a forest of trees satisfying 
suitable properties.

In particular, each tree T  comes with an (intrinsic) Lipschitz graph ΓT  with smaller 
Lipschitz constant that approximates Γ well at the resolution of the intervals in the tree. 
A more precise statement is given in Theorem 5.26. Bearing in mind potential applica-
tions to singular integral operators, Theorem 5.26 states the approximation in paramet-
ric form, using maps defined on a common domain, rather than intrinsic graphs over 
possibly different horizontal subgroups.

In ℍ1 , a version of Theorem 5.26 was known before, see [11, Theorem 3.15]. Using 
related ideas in the context of ℍn , we give a proof for the case n > 1 . Theorem  5.26 
yields a corona decomposition for 1-dimensional intrinsic 1-Lipschitz maps. By fixing 
the trees of dyadic intervals in the coronization, and rescaling the components of the 
map, we also obtain a corona decomposition for all intrinsic Lipschitz maps with con-
stant greater than 1, as stated in Corollary 5.30. This generalizes [11, Corollary 3.22].
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In order to prove Theorem  5.26, we start by recalling the corona decomposition for 
Euclidean Lipschitz graphs given by David and Semmes in [9], which we then state for 
convenience in a slightly different form, Theorem  5.3. In a certain sense, it allows to 
approximate a 1-Lipschitz map by �-Lipschitz maps for given � ∈ (0, 1) , up to subtracting 
linear maps. A common challenge in the proof of the extension result (Theorem 1.2) and 
the corona decomposition (Theorem 1.3) is the presence of nonlinear terms in the intrinsic 
Lipschitz condition in dimensions 1 ⩽ k < n , see Lemma 3.1, which are absent for k = n , 
and in particular for n = 1.

Structure of the paper. Most concepts relevant for the paper are introduced in Sect. 2. 
Section 3.1 contains standard computations related to low-dimensional iLG in Heisenberg 
groups. Section  3.2 provides an infinitesimal characterization of 1- and n-dimensional 
entire iLG in ℍn . The extension result, Theorem  1.2, is proven in Sect.  4. The corona 
decomposition, Theorem 1.3, is finally given in Sect. 5.

2  Definitions

2.1  Homogeneous subgroups, projections, and intrinsic Lipschitz graphs

Let n ∈ ℕ . To introduce the relevant concepts, we first fix a horizontal subgroup �  of ℍn of 
dimension k ∈ {1,… , n} , which is given by a set of the form

where V is a k-dimensional isotropic subspace of the standard symplectic space ℝ2n . This is 
equivalent to say that V is a k-dimensional subspace of ℝ2n so that (� , ⋅) is an abelian group 
isomorphic to (ℝk,+) , see for instance [4, Section 2]. Equipped with the metric d defined 
in (1.1), the subgroup �  is isometric to (ℝk, | ⋅ |) . The complementary vertical subgroup � 
is given by the Euclidean orthogonal complement of �  , that is, 𝕎 = V⊥

×ℝ.
Every point p ∈ ℍn has a unique decomposition as

Definition 2.1 Assume that �  and � are homogeneous subgroups of ℍn as above. A map 
𝜙 ∶ E ⊂ � → � is said to be intrinsic L-Lipschitz for a constant L ⩾ 0 if

where Φ ∶ E ⊂ 𝕍 → ℍn is the graph map defined by Φ(v) ∶= v ⋅ �(v) . The intrinsic graph 
of � is the set

and we say that Γ is an intrinsic L-Lipschitz graph (over E ⊂ �).

It follows from [4, Lemma 2.1] and the choice of the metric d that for any pair of com-
plementary homogeneous subgroups (� ,�) and (� �,��

) as above there exists an isomet-
ric isomorphism f ∶ (ℍn, d) → (ℍn, d) with the properties that f (� ) = � � , f (�) = �� 
and such that f maps every intrinsic L-Lipschitz graph over a subset in �  to an intrinsic 

𝕍 = V × {0} ⊂ ℝ
2n+1,

p = �� (p) ⋅ ��(p) with �� (p) ∈ � and ��(p) ∈ �.

‖�𝕎(Φ(v�)−1 ⋅Φ(v))‖ ⩽ L‖�𝕍 (Φ(v�)−1 ⋅Φ(v))‖, v, v� ∈ E,

Γ ∶= {v ⋅ 𝜙(v) ∶ v ∈ E} ⊂ ℍ
n,
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L-Lipschitz graph over a subset in � ′ . For this reason, it is not restrictive to assume, as we 
will in the following unless otherwise stated, that

and

Remark 2.4 It follows from [15, Proposition 3.7] that if 𝜙 ∶ E ⊂ � → � is intrinsic Lip-
schitz, then the associated graph map is a Lipschitz function Φ from (E, d) to (ℍn, d) , or 
from (E, | ⋅ |) to (ℍn, d) , if we identify E with a subset of ℝk , using the map

Conversely, if Φ ∶ (E, | ⋅ |) → (ℍn, d) is L-Lipschitz with respect to the given metrics, 
and we assume in addition that it is of the form Φ(v) ∶= v ⋅ �(v) ∈ � ⋅� for a map 
𝜙 ∶ E ⊂ � → � , then � is intrinsic Lipschitz since, for all v, v� ∈ E,

Once complementary subgroups as in (2.2) and (2.3) have been fixed, it is convenient 
to identify 𝜙 ∶ E ⊂ � → � with a function 𝜙 ∶ E ⊂ ℝk

→ ℝ2n+1−k in the obvious way. 
This identification applied to intrinsic Lipschitz functions leads to the notion of tame maps 
which we discuss in the next section, see especially Propositions 3.3 and 3.6.

2.2  Tame maps

In connection with one-dimensional intrinsic Lipschitz graphs in ℍ1 , tame maps from sub-
sets of ℝk to ℝ2n+1−k for k = n = 1 were introduced in [11]. We extend the definition to 
arbitrary 1 ⩽ k ⩽ n with a slight adaptation of the notation. Here, ⟨⋅, ⋅⟩ denotes the standard 
scalar product on ℝk.

Definition 2.5 Let k, n ∈ ℕ , 1 ⩽ k ⩽ n , E ⊂ ℝk , and Li ⩾ 0 for i ∈ {k + 1,… , 2n + 1} . We 
say that a map � = (�k+1,… ,�2n+1) ∶ E → ℝ2n+1−k is (Lk+1,… , L2n+1)-tame if 

(1) �i is Euclidean Li-Lipschitz for i = k + 1,… , 2n;
(2) � ∶= (�n+1,… ,�n+k) satisfies the following conditions: 

(a) if k = n , then 

(b) if k < n , then 

(2.2)𝕍 = {(x1,… , xk, 0,… , 0) ∶ (x1,… , xk) ∈ ℝ
k
}

(2.3)𝕎 = {(0,… , 0, xk+1,… , x2n, t) ∶ (xk+1,… , x2n, t) ∈ ℝ
2n+1−k

}.

(x1,… , xk, 0,… , 0) ↦ (x1,… , xk).

‖�𝕎(Φ(v�)−1 ⋅Φ(v))‖ ⩽ d(Φ(v),Φ(v�)) + ‖�𝕍 (Φ(v�)−1 ⋅Φ(v))‖
⩽ L�v − v�� + ‖�𝕍 (Φ(v�)−1 ⋅Φ(v))‖
= (L + 1)‖�𝕍 (Φ(v�)−1 ⋅Φ(v))‖.

���2n+1(y) − �2n+1(x) − ⟨�(y), y − x⟩�� + ���2n+1(y) − �2n+1(x) − ⟨�(x), y − x⟩��
⩽ L2n+1�x − y�2, x, y ∈ E,



 D. Di Donato, K. Fässler 

1 3

Remark 2.6 Condition (2) in Definition 2.5 is implied (with twice the constant L2n+1 ) by a 
one-sided version of itself:

and

for x, y ∈ E , if k < n.

Remark 2.7 Condition (2) in Definition 2.5 implies by triangle inequality that

If k = 1 , then � = �n+1 is a real-valued function and (2.8) shows that �n+1 is L2n+1
-Lipschitz. In other words, if k = 1 , then the Lipschitz continuity of �n+1 is automat-
ically implied by part (2) of Definition 2.5, and part (1) holds with “ Ln+1 ” replaced by 
“ min{Ln+1, L2n+1}”.

Remark 2.9 For all 1 ⩽ k ⩽ n , Definition 2.5 implies that �2n+1 is locally Lipschitz. This is 
immediate in the case k = n , and if k < n , it follows easily once one has observed that

3  Elementary properties of tame maps

3.1  Connection between tame maps and intrinsic Lipschitz functions

In this section, we explore the connection between intrinsic Lipschitz functions (as in 
Definition 2.1) and tame maps (as in Definition 2.5). It is this connection that initially 

����2n+1(y) − �2n+1(x) − ⟨�(y), y − x⟩

−
1

2

n�
i=k+1

�i(y)�n+i(x) − �i(x)�n+i(y)
���

+
����2n+1(y) − �2n+1(x) − ⟨�(x), y − x⟩ − 1

2

n�
i=k+1

�i(y)�n+i(x) − �i(x)�n+i(y)
���

⩽ L2n+1�y − x�2, x, y ∈ E.

���2n+1(y) − �2n+1(x) − ⟨�(y), y − x⟩�� ⩽ L2n+1�x − y�2, x, y ∈ E, if k = n,

����2n+1(y) − �2n+1(x) − ⟨�(y), y − x⟩ − 1

2

n�
i=k+1

�i(y)�n+i(x) − �i(x)�n+i(y)
��� ⩽ L2n+1�y − x�2,

(2.8)
|||||

⟨
�(y) − �(x),

y − x

|y − x|
⟩|||||

⩽ L2n+1|x − y|, for x, y ∈ E, x ≠ y.

(2.10)

n∑
i=k+1

�i(y)�n+i(x) − �i(x)�n+i(y)

=

n∑
i=k+1

(
�i(y) − �i(x)

)
�n+i(x) − �i(x)

(
�n+i(y) − �n+i(x)

)
.
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motivated Definition 2.5. Throughout this section, we assume that 1 ⩽ k ⩽ n , and �  is a 
k-dimensional horizontal subgroup of ℍn with complementary vertical subgroup � with 
coordinate expressions as in (2.2) and (2.3). Slightly abusing notation, we identify a set 
E ⊂ �  with E ⊂ ℝk , and � ∶ E → � with � ∶ E → ℝ2n+1−k.

Lemma 3.1 A function (𝜙k+1,… ,𝜙2n+1) ∶ E ⊂ � → � is intrinsic L-Lipschitz if and only 
if

where

and, if k < n , then

Proof We recall from Definition 2.1 that � is intrinsic L-Lipschitz if and only if

The graph map Φ of � is given by

for v = (v1,… , vk) ∈ E . Recalling that �(v) = (�n+1(v),… ,�n+k(v)), we observe

where

and, if k < n , then h(v, v�) is equal to

Next, since �� (x1,… , x2n, t) = (x1,… , xk, 0,… , 0) and

the right-hand side of (3.2) equals L|v� − v| , and the left-hand side can be written as

for v, v� ∈ E , where H(v, v�) is defined as in the statement of the lemma.   ◻

‖(0,… , 0,�k+1(v
�
) − �k+1(v),… ,�2n(v

�
) − �2n(v),H(v, v�))‖ ⩽ L�v� − v�, v, v� ∈ E,

H(v, v�) ∶= �2n+1(v
�
) − �2n+1(v) + ⟨�(v), v� − v⟩, if k = n,

H(v, v�) ∶= �2n+1(v
�
) − �2n+1(v) + ⟨�(v), v� − v⟩ + 1

2

n�
i=k+1

�i(v
�
)�n+i(v) − �i(v)�n+i(v

�
).

(3.2)‖�𝕎(Φ(v)−1 ⋅Φ(v�))‖ ⩽ L‖�𝕍 (Φ(v)−1 ⋅Φ(v�))‖, v, v� ∈ E.

Φ(v) =
(
v,�k+1(v),… ,�2n(v),�2n+1(v) +

1

2

k∑
i=1

vi�n+i(v)
)
,

Φ(v)−1 ⋅Φ(v�) =
(
v� − v,�k+1(v

�
) − �k+1(v),… ,�2n(v

�
) − �2n(v), h(v, v

�
)

)
,

h(v, v�) ∶= �2n+1(v
�
) − �2n+1(v) +

1

2
⟨v� − v,�(v) + �(v�)⟩, if k = n,

�2n+1(v
�
) − �2n+1(v) +

1

2
⟨v� − v,�(v) + �(v�)⟩ − 1

2

n�
i=k+1

�
�i(v)�n+i(v

�
) − �i(v

�
)�n+i(v)

�
.

��(x1,… , x2n, t) =
(
0,… , 0, xk+1,… , x2n, t −

1

2

k∑
i=1

xixn+i

)
,

‖��(Φ(v)−1 ⋅Φ(v�))‖ = ‖(0,… , 0,�k+1(v
�
) − �k+1(v),… ,�2n(v

�
) − �2n(v),H(v, v�))‖,
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Lemma 3.1 provides a link between intrinsic Lipschitz and tame maps. We formulate 
this in two separate propositions.

Proposition 3.3 If 𝜙 = (𝜙k+1,… ,𝜙2n+1) ∶ E ⊂ � → � is intrinsic L-Lipschitz, then 
(�k+1,… ,�2n,−�2n+1) is an (Lk+1,… , L2n+1)-tame map from E ⊂ ℝk to ℝ2n+1−k with

If k = 1 , then one can take Ln+1 = min{L, 2L2}.

Proof Once the tameness is established, the improvement for k = 1 follows from (3.4) by 
Remark 2.7. Hence, it remains to prove the first part of the Proposition. Let � be an intrin-
sic L-Lipschitz function. According to Lemma 3.1, this means that

where

and

if k < n . Recalling that ‖(x, t)‖ = max{�x�,√�t�} for (x, t) ∈ ℝ2n
×ℝ , inequality (3.5) 

implies first that �i is a Euclidean L-Lipschitz function for i = k + 1,… , 2n , which is part 
(1) of the tameness condition in Definition 2.5. Second, we deduce from (3.5) that

and

for v, v� ∈ E if k < n . Hence, (�2,… ,�2n,−�2n+1) is (L,… L, 2L2)-tame in both cases.  
 ◻

We now consider the converse implication.

Proposition 3.6 If (𝜙k+1,… ,𝜙2n,−𝜙2n+1) ∶ E ⊂ ℝk
→ ℝ2n+1−k is an (Lk+1,… , L2n+1)-tame 

map, then 𝜙 = (𝜙k+1,… ,𝜙2n+1) ∶ E ⊂ � → � is intrinsic L-Lipschitz with

Proof If (�k+1,… ,�2n,−�2n+1) is (Lk+1,… , L2n+1)-tame, we find by the first condition 
in Definition 2.5 that for i = k + 1,… , 2n , the function �i is Li-Lipschitz on E. Moreover, 
recalling that

(3.4)Li =

{
L, for i = k + 1,… , 2n,

2L2, for i = 2n + 1.

(3.5)
‖(0,… , 0,�k+1(v

�
) − �k+1(v),… ,�2n(v

�
) − �2n(v),H(v, v�))‖ ⩽ L�v� − v�, v, v� ∈ E,

H(v, v�) = �2n+1(v
�
) − �2n+1(v) + ⟨�(v), v� − v⟩, if k = n,

H(v, v�) = �2n+1(v
�
) − �2n+1(v) + ⟨�(v), v� − v⟩ + 1

2

n�
i=k+1

�i(v
�
)�n+i(v) − �i(v)�n+i(v

�
),

���2n+1(v
�
) − �2n+1(v) + ⟨�(v), v� − v⟩��1∕2 ⩽ L�v� − v�, v, v� ∈ E, if k = n,

�����
�2n+1(v

�
) − �2n+1(v) + ⟨�(v), v� − v⟩ + 1

2

n�
i=k+1

�i(v
�
)�n+i(v) − �i(v)�n+i(v

�
)

�����

1∕2

⩽ L�v� − v�,

L ∶= max
�
�(Lk+1,… , L2n)�,

√
L2n+1

�
.
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the second condition in the tameness definition for (�k+1,… ,�2n,−�2n+1) reads as follows: 
if k = n,

and, if k < n,

for all v, v� ∈ E.
Using Lemma 3.1, we conclude that � ∶= (�k+1,… ,�2n+1) ∶ E → � is an intrinsic 

L-Lipschitz function since its graph map satisfies

  ◻

3.2  Infinitesimal condition for tame maps on open sets

Tame maps defined on open quasiconvex sets can be characterized by an infinitesimal con-
dition. This characterization will be applied in the proofs of the main results of this paper, 
the extension and the corona decomposition for low-dimensional intrinsic Lipschitz graph. 
We first discuss the case k = 1 and n > 1 , which will be used in the proof of Theorem 5.26.

Proposition 3.7 Assume that n > 1 . Let I ⊂ ℝ be an open interval, and let 
� = (�2,… ,�2n+1) ∶ I → ℝ2n . 

(1) If � is (L2,… , L2n+1)-tame, then �i is Li-Lipschitz for i = 2,… , 2n , and �2n+1 is dif-
ferentiable almost everywhere on I, �̇�2n+1 ∈ L

∞

loc
(I) , and

(2) Conversely, if �i is Li-Lipschitz for i = 2,… , 2n , �2n+1 is locally Lipschitz, and (3.8) 
holds, then � is (L�

2
,… , L�

2n+1
)-tame with

�(v) = (�n+1(v),… ,�n+k(v)),

���2n+1(v
�
) − �2n+1(v) + ⟨�(v�), v� − v⟩�� + ���2n+1(v

�
) − �2n+1(v) + ⟨�(v), v� − v⟩��

⩽ L2n+1�v� − v�2,

��2n+1(v
�
) − �2n+1(v) + ⟨�(v�), v� − v⟩ + 1

2

n�
i=k+1

�i(v
�
)�n+i(v) − �i(v)�n+i(v

�
)�

+ ��2n+1(v
�
) − �2n+1(v) + ⟨�(v), v� − v⟩ + 1

2

n�
i=k+1

�i(v
�
)�n+i(v) − �i(v)�n+i(v

�
)�

⩽ L2n+1�v� − v�2,

‖�𝕎(Φ(v�)−1 ⋅Φ(v))‖ ⩽ max
�
�(Lk+1,… , L2n)�,

√
L2n+1

�
�v − v�� = L�v − v��, v, v� ∈ E.

(3.8)�̇�2n+1 = 𝜙n+1 +
1

2

n∑
i=2

�̇�i𝜙n+i − 𝜙i�̇�n+i, a.e. on I.
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Proof We assume first that � is (L2,… , L2n+1)-tame, in particular, �i is a Lipschitz function 
on I for i = 2,… , 2n . Rademacher’s theorem implies that �i is differentiable almost every-
where on I with bounded derivative. Condition (2) in Definition 2.5 reads

for all x, y ∈ I with x ≠ y , and formula (2.10) for k = 1 is

Using these two facts, it is easy to see that �̇�2n+1 exists almost everywhere on I and (3.8) 
holds. In particular, �̇�2n+1 ∈ L

∞

loc
(I).

Conversely, assume that �i is an Li−Lipschitz function for i = 2,… , 2n and �2n+1 is a 
locally Lipschitz function satisfying (3.8). Then, the corresponding one-sided version 
of (3.9) is satisfied for “ Ln+1 +

∑n

i=2
LiLn+i ” instead of “ L2n+1 ”. Indeed, for x, y ∈ I with 

x < y , the expression (3.10) can be rewritten as

and we obtain that

where in the last inequality we used the fact that �i is Li−Lipschitz for every i = 2,… , 2n .  
 ◻

L�
i
∶= Li for i ≠ 2n + 1 and L�

2n+1
∶= 2

(
Ln+1 +

n∑
i=2

LiLn+i

)
.

(3.9)

|||||
�2n+1(y) − �2n+1(x)

y − x
− �n+1(y) −

1

2

n∑
i=2

�i(y)�n+i(x) − �i(x)�n+i(y)

y − x

|||||
+

|||||
�2n+1(y) − �2n+1(x)

y − x
− �n+1(x) −

1

2

n∑
i=2

�i(y)�n+i(x) − �i(x)�n+i(y)

y − x

|||||
⩽ L2n+1|y − x|,

(3.10)
�i(y)�n+i(x) − �i(x)�n+i(y) = �i(y)(�n+i(x) − �n+i(y)) − �n+i(y)(�i(x) − �i(y)).

(3.11)𝜙i(y)𝜙n+i(x) − 𝜙i(x)𝜙n+i(y) = −𝜙i(y)∫
y

x

�̇�n+i(s) ds + 𝜙n+i(y)∫
y

x

�̇�i(s) ds,

||𝜙2n+1(y) − 𝜙2n+1(x) − 𝜙n+1(y)(y − x)

−
1

2

n∑
i=2

𝜙i(y)𝜙n+i(x) − 𝜙i(x)𝜙n+i(y)
|||||

(3.11)
=

||||∫
y

x

�̇�2n+1(s) ds − ∫
y

x

𝜙n+1(y) ds

+
1

2

n∑
i=2

𝜙i(y)∫
y

x

�̇�n+i(s) ds − 𝜙n+i(y)∫
y

x

�̇�i(s) ds
|||||

(3.8)
=

||||∫
y

x

𝜙n+1(s) − 𝜙n+1(y)

+
1

2

n∑
i=2

�̇�i(s)[𝜙n+i(s) − 𝜙n+i(y)] + �̇�n+i(s)[𝜙i(y) − 𝜙i(s)] ds
|||||

⩽

(
Ln+1 +

n∑
i=2

LiLn+i

)
|y − x|2,
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If n > 1 , there is a fundamental difference between tame maps 𝜙 ∶ E ⊂ ℝk
→ ℝ2n+1−k 

for k = n and for k < n . This difference is visible already in part (2) of Definition 2.5, 
where the expression for k < n contains an additional summand compared to the one 
for k = n . The simple form of tame maps if k = n can be used to characterize them by 
means of a gradient equation for the last component, at least if E is open and quasicon-
vex. Recall that a set U ⊂ ℝn is C-quasiconvex for a constant C ⩾ 1 (with respect to the 
Euclidean distance) if for all x, y ∈ U , there is a curve � connecting x to y inside U of 
Euclidean length length(�) ⩽ C|x − y|.

Proposition 3.12 Let n ∈ ℕ and assume that U is an open subset of ℝn . For a function 
� = (�n+1,… ,�2n+1) ∶ U → ℝn+1 the following holds:

(1) If � is (Ln+1,… , L2n+1)-tame, then �i , i = n + 1,… , 2n , is Euclidean Li-Lipschitz and 
�2n+1 is differentiable on U with Lipschitz continuous gradient

In particular, �2n+1 ∈ C1,1
(U).

(2) If U is additionally assumed to be C-quasiconvex, if (�n+1,… ,�2n) is L-Lipschitz with 
respect to the Euclidean metric, and �2n+1 satisfies (3.13), then � is (L�

n+1
,… , L�

2n+1
)

-tame with

Remark 3.14 If k < n , then one can still carry out the argument in the first part of the proof of 
Proposition 3.12 for tame 𝜙 ∶ U ⊂ ℝk

→ ℝ2n+1−k , but the conclusion is that �2n+1 satisfies

cf. Proposition 3.7 for k = 1 . Since �i,�n+i , i ∈ {k + 1,… , n} , are merely Lipschitz func-
tions, they are only almost everywhere differentiable and the derivatives are just bounded 
measurable functions, so one cannot conclude that �2n+1 is C1,1

(U).

Remark 3.15 Proposition 3.12 yields a self-improvement phenomenon for the tameness 
constant L2n+1 of a (Ln+1,… , L2n+1)-tame map (�n+1,… ,�2n+1) ∶ U → ℝn+1 defined on 
an open and C-quasiconvex set U ⊂ ℝn . By assumption, such (�n+1,… ,�2n) is Euclidean 
|(Ln+1,… , L2n)|-Lipschitz on U, and by Proposition 3.12 (1), the last component �2n+1 is 
differentiable on U with ∇�2n+1 = (�n+1,… ,�2n) . It then follows from part (2) of the same 
proposition that (�n+1,… ,�2n+1) is in fact tame with constants

Hence, the initially given tameness constant “ L2n+1 ” can be replaced by

In particular, if U = ℝn , then this holds with C = 1.

(3.13)∇�2n+1 = (�n+1,… ,�2n) on U.

L�
i
∶= L for i ∈ {n + 1,… , 2n} and L�

2n+1
∶= 2C2 L.

∇�2n+1 =

⎛⎜⎜⎝

�n+1 +
1

2

∑n

i=k+1
�n+i �x1�i − �i �x1�n+i

⋮

�n+k +
1

2

∑n

i=k+1
�n+i �xk�i − �i �xk�n+i

⎞⎟⎟⎠
almost everywhere on U,

Li =

{ |(Ln+1,… , L2n)|, i = n + 1,… , 2n,

2C2|(Ln+1,… , L2n)|, i = 2n + 1.

min{L2n+1, 2C
2|(Ln+1,… , L2n)|}.
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Remark 3.16 The correspondence between intrinsic Lipschitz and tame maps relates Prop-
osition 3.12 to earlier results by Magnani [20] and the second author [10], keeping in mind 
the connection to metric Lipschitz functions explained in Remark 2.4. More precisely, [20, 
Theorem 1.1] and [20, Theorem 4.5] provide a characterization of (locally) Lipschitz func-
tions Φ from (geodetically convex) subsets of Riemannian manifolds into graded groups 
through a system of first order PDEs known as weak contact equations. This characteriza-
tion applies in particular in our setting, where the source space is Euclidean space ℝk and 
the target space is the Heisenberg group ℍn . The purpose of Proposition 3.12 is to show 
that if Φ ∶ ℝk

→ ℍn arises as graph map of an intrinsic Lipschitz function � , and if k = n , 
then this characterization takes a particularly simple form and leads to a gradient equation 
for the last component of � that holds in the classical sense pointwise everywhere. This 
generalizes an observation made in [11]: the condition for a curve � in ℍ1 to be horizon-
tal (or Lipschitz with respect to d) simplifies if s ↦ �(s) = (s, 0, 0) ⋅ �(s, 0, 0) has intrinsic 
graph form. Indeed, whereas the last component of a Lipschitz curve � in ℍ1 need not even 
be everywhere differentiable, the last component of � is C1,1 if � is Lipschitz.

Proof of Proposition 3.12 We assume first that � is (Ln+1,… , L2n+1)-tame, in particular, �i is 
a Lipschitz function on U for i = n + 1,… , 2n . Condition (2) (a) in Definition 2.5 and the 
fact that U is open then imply that ∇�2n+1 exists on U and (3.13) holds.

For the converse implication, we assume in addition that U is C-quasiconvex. We claim 
that if (�n+1,… ,�2n) is an L-Lipschitz function, and (3.13) holds, then the tameness condi-
tion (2) (a) in Definition 2.5 is satisfied with constant

(instead of L2n+1 ). According to Remark 2.6, it suffices to verify the one-sided version of it 
(without the constant “2”). To prove the latter, let x and y be arbitrary distinct points in U, 
and apply the C-quasiconvexity of U to find a curve � ∶ [0, 1] → U with �(0) = x , �(1) = y 
and length(�) ⩽ C|x − y| . Since � is a curve of finite length, we may without loss of gener-
ality assume that the parametrization is Lipschitz continuous. The fundamental theorem of 
calculus then yields for � ∶= (�n+1,… ,�2n) that

Taking absolute values on both sides, we conclude that

  ◻

L�
2n+1

∶= 2C2L

𝜙2n+1(y) − 𝜙2n+1(x) − ⟨𝜓(y), y − x⟩ = 𝜙2n+1(𝛾(1)) − 𝜙2n+1(𝛾(0)) − ⟨𝜓(𝛾(1)), 𝛾(1) − 𝛾(0)⟩
= ∫

1

0

(𝜙2n+1◦𝛾)
�
(s) − ⟨𝜓(𝛾(1)), �̇�(s)⟩ ds

= ∫
1

0

⟨∇𝜙2n+1(𝛾(s)), �̇�(s)⟩ − ⟨𝜓(𝛾(1)), �̇�(s)⟩ ds
(3.13)
= ∫

1

0

⟨𝜓(𝛾(s)) − 𝜓(𝛾(1)), �̇�(s)⟩ ds.

�𝜙2n+1(y) − 𝜙2n+1(x) − ⟨𝜓(y), y − x⟩� ⩽ ∫
1

0

Lip(𝜓)�𝛾(s) − 𝛾(1)� ��̇�(s)� ds
⩽ Lip(𝜓) length(𝛾)2 ⩽ C2L�x − y�2.
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4  Extension results

The core of this section are extension results for tame maps 𝜙 ∶ E ⊂ ℝk
→ ℝ2n+1−k , first 

for k = n and then, as a corollary, for k < n . In the final subsection, we use Propositions 3.3 
and 3.6 to translate these results into an extension theorem for intrinsic Lipschitz functions 
(Theorem 1.2 in the introduction).

4.1  Extension of tame maps in the case k = n

A classical method for extending Lipschitz functions f ∶ E → ℝm from a closed set E ⊂ ℝn 
to the entire space ℝn is based on a Lipschitz partition of unity associated with a Whit-
ney decomposition of the complement ℝn ⧵ E , see for instance [18, 2.10]. Variants of this 
approach are also at the core of the Lipschitz extension theorems in [19, 26]. To establish 
the main result of this section, we apply a version of Whitney’s extension theorem, so that 
the proof is again, albeit indirectly, based on a Whitney decomposition of ℝn ⧵ E . The key 
observation is that in our setting it suffices to apply Whitney’s construction to the last com-
ponent of the tame map. More precisely, we will use a C1,1 version of Whitney’s extension 
theorem due to Glaeser [16], see for instance [6, Definition 2.2, (2.48), and Theorem 2.19], 
[7, Lemma 10.70], and the references cited in [3]. Here, C1,1

(ℝn
) is the space of C1

(ℝn
) 

functions with Lipschitz continuous gradients.

Theorem 4.1 (Glaeser’s C1,1 Whitney extension theorem) Let n ∈ ℕ and assume that E is 
a subset of ℝn . The following conditions for functions f ∶ E → ℝ and � ∶ E → ℝn are 
equivalent:

(a) there exists f ∈ C1,1
(ℝn

) with f |E = f  and (∇f )|E = �,
(b) for a constant 𝜆 > 0 and all x, y ∈ E , the following holds:

(1) |�(x) − �(y)| ⩽ �|x − y|,
(2) �f (x) − f (y) − ⟨�(x), x − y⟩� ⩽ ��x − y�2.

Moreover, if (b) holds, then f  can be constructed so that the Lipschitz constant of ∇f  
satisfies

where the inf ranges over all � satisfying (b), and C(n) is a constant depending only on n.

Remark 4.2 Theorem 4.1 is stated for arbitrary subsets E of ℝn , and the same holds true for 
our application in Theorem 4.3 and the corollaries thereof. As observed in [3, §1], if f and 
� satisfy condition (b) in Theorem 4.1 for a set E ⊂ ℝn , then one can always extend them 
to the closure E of E so that inequalities (1) and (2) in (b) are satisfied on E with the same 
constant � . (Extending f and � as continuous maps to the closure is straightforward since 
f is locally Lipschitz and � is Lipschitz; then, it just remains to verify that the inequalities 
(1) and (2) continue to hold on E .) Conversely, if f and � defined on E satisfy condition (a), 
then they can obviously be extended to E so that (a) continues to hold. Thus, the proof of 
Theorem 4.1 is reduced to the case of closed sets.

inf � ⩽ Lip(∇f ) ⩽ C(n) inf �,
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Theorem  4.3 Let n ∈ ℕ . An (Ln+1,… , L2n+1)-tame map 𝜙 ∶ E ⊂ ℝn
→ ℝn+1 can be 

extended to an (L�
n+1

,… , L�
2n+1

)-tame map � ∶ ℝn
→ ℝn+1 such that �|E = � and

Proof of Theorem 4.3 Let � be a tame map on E ⊂ ℝn as in the statement of the theorem. In 
order to extend � to a tame map defined on all of ℝn , we apply the C1,1 Whitney extension 
theorem the function �2n+1 ∶ E → ℝ . The tameness conditions in Definition 2.5 ensure 
that the assumptions of Theorem 4.1 are satisfied with

Thus we find a C1,1 function �2n+1 ∶ ℝn
→ ℝ with �2n+1|E = �2n+1 whose gradient is C(n)�

-Lipschitz and agrees with � = (�n+1,… ,�2n) on E. Then, we simply define

and observe that this extends (�n+1,… ,�2n) from E to ℝn . Thus,

is an extension of � to the entire space ℝn.
Finally, we apply the infinitesimal characterization from Proposition 3.12 to conclude 

that � is a tame map. Since the domain U = ℝn is quasiconvex with constant 1, Proposition 
3.12 (2) implies that � is (L�

n+1
,… , L�

2n
, L�

2n+1
)-tame with

  ◻

Remark 4.5 Applying Theorem  4.1 to the last component �2n+1 of a tame map � and 
extending � = (�n+1,… ,�2n) by formula (4.4) ensures that

is satisfied by definition. If, on the other hand, one tried to extend (�n+1,… ,�2n) first, then 
one would have to make sure that the extension can arise as gradient, and this would entail 
a further differential constraint for �i , i ∈ {n + 1,… , 2n} , cf. the related isotropic map-
pings appearing in [10, 20].

4.2  Extension of tame maps in the case k < n

In this section, we prove the extension result for tame maps 𝜙 ∶ E ⊂ ℝk
→ ℝ2n+1−k in the 

case k < n . The situation is qualitatively different from the middle-dimensional case k = n 
discussed in the previous section. Indeed, recall from Remark 3.14 that the last component 
of an entire tame map � ∶ ℝk

→ ℝ2n+1−k satisfies almost everywhere the nonlinear gradi-
ent equation

L�
i
∶=C(n)max

{|(Ln+1,… , L2n)|,L2n+1
}
, for i ∈ {n + 1,… , 2n},

L�
2n+1

∶=2C(n)max{|(Ln+1,… , L2n)|,L2n+1}.

� ∶= max
{|(Ln+1,… , L2n)|,L2n+1

}
.

(4.4)(�n+1,… ,�2n) ∶= ∇�2n+1,

� ∶= (∇�2n+1,�2n+1) = (�n+1,… ,�2n,�2n+1)

L�
i
= C(n)� for all i ∈ {n + 1,… , 2n} and L�

2n+1
= 2C(n)�.

∇�2n+1 = (�n+1,… ,�2n+1)
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so we are no longer in a setting where Whitney’s extension theorem is directly applicable. 
However, it turns out that the extension in case k < n can be reduced to the case k = n . 
This is best understood if one thinks of intrinsic Lipschitz graphs instead of tame maps. 
The idea is essentially that a k-dimensional intrinsic Lipschitz graph in ℍn for k < n can be 
embedded in an n-dimensional intrinsic Lipschitz graph. The latter can be extended using 
Theorem 4.3, and then it remains to show that one can select a suitable k-dimensional sub-
set of it in order to obtain an extension of the original graph.

Theorem 4.6 Let k, n ∈ ℕ with 1 ⩽ k < n . An (Lk+1,… , L2n+1)-tame map

can be extended to an (Lk+1,… , Ln, L
�

n+1
,… , L�

2n+1
)-tame map � ∶ ℝk

→ ℝ2n+1−k with 
�|E = � and

for i = n + 1,… , 2n , and

for a constant cn that depends only on n.

Proof Since k < n , the Lipschitz map (�k+1,… ,�n) has at least one component, and we 
can consider the associated k-dimensional Lipschitz graph

The remaining components of � are used to define f ∶ Γ
(𝜙k+1,…,𝜙n)(E) ⊂ ℝn

→ ℝn+1 by

Firstly, we show that f is a tame map and so we can apply Theorem 4.3 to find an exten-
sion f̄ = (f̄n+1,… , f̄2n+1) ∶ ℝn

→ ℝn+1 of f with the corresponding tameness assumption 
satisfied. Second, if (�̄�k+1,… , �̄�n) denotes a suitable Euclidean Lipschitz extension of 
(�k+1,… ,�n) , we prove that the map �̄� ∶ ℝk

→ ℝ2n+1−k given by

∇�2n+1 =

⎛
⎜⎜⎝

�n+1 +
1

2

∑n

i=k+1
�n+i �x1�i − �i �x1�n+i

⋮

�n+k +
1

2

∑n

i=k+1
�n+i �xk�i − �i �xk�n+i

⎞
⎟⎟⎠

almost everywhere,

𝜙 ∶ E ⊂ ℝ
k
→ ℝ

2n+1−k

L�
i
= cn

(
1 +

n∑
j=k+1

L2
j

) 1

2

max

{
|(Ln+1,… , L2n)|,L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}

}

L�
2n+1

= cn

(
1 +

n∑
j=k+1

L2
j

)
max

{
|(Ln+1,… , L2n)|,L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}

}

Γ
(𝜙k+1,…,𝜙n)(E) ∶= {(x,𝜙k+1(x),… ,𝜙n(x)) ∶ x ∈ E} ⊂ ℝ

n.

(4.7)

f (�1,… , �n) ∶= (fn+1(�),… , f2n(�), f2n+1(�))

∶=

(
�n+1(�1,… , �k),… ,�2n(�1,… , �k),�2n+1(�1,… , �k) +

1

2

n∑
i=k+1

�i�n+i(�1,… , �k)

)
.
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is the tame extension of � to ℝk we are looking for. We begin by proving that the map f 
defined in (4.7) is (L��

n+1
,… , L��

2n+1
)-tame with

To see this, fix two points

The components fn+1,… , f2n are clearly Lipschitz since, for i = n + 1,… , 2n , we have by 
the Li-Lipschitz continuity of �i that

It remains to check that the tameness condition (2) in Definition 2.5 holds with constant 
L���
2n+1

 . Using the notation � = (�n+1,… ,�n+k) and recalling the expressions for p and q 
given in (4.10), we have that

and analogously with the roles of p and q reverted. Summing up the two expressions, we 
obtain by the (Lk+1,… , L2n+1)-tameness of � that

(4.8)

�̄�(x) ∶=

(
�̄�k+1(x),… , �̄�n(x), f̄n+1(x, �̄�k+1(x),… , �̄�n(x)),… , f̄2n(x, �̄�k+1(x),… , �̄�n(x)),

f̄2n+1(x, �̄�k+1(x),… , �̄�n(x)) −
1

2

n∑
i=k+1

�̄�i(x)f̄n+i(x, �̄�k+1(x),… , �̄�n(x))

)
,

(4.9)

L��
i
∶= Li, i ∈ {n + 1,… , 2n}, and L��

2n+1
∶= L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}.

(4.10)p = (x,�k+1(x),… ,�n(x)), q = (y,�k+1(y),… ,�n(y)) ∈ Γ
(�k+1,…,�n)(E).

|fi(p) − fi(q)| = |||�i

(
x,�k+1(x),… ,�n(x)

)
− �i

(
y,�k+1(y),… ,�n(y)

)||| ⩽ Li|p − q|.

I(p, q) ∶=��f2n+1(q) − f2n+1(p) −
�
(fn+1(q),… , f2n(q)), (q1 − p1,… , qn − pn)

���
=

�����
�2n+1(y) − �2n+1(x) − ⟨�(y), y − x⟩

+
1

2

n�
i=k+1

�i(y)�n+i(y) − �i(x)�n+i(x) − 2�n+i(y)(�i(y) − �i(x))
�����
.

⩽

�����
�2n+1(y) − �2n+1(x) − ⟨�(y), y − x⟩ − 1

2

n�
i=k+1

�i(y)�n+i(x) − �i(x)�n+i(y)
�����

+
1

2

�����

n�
i=k+1

�n+i(y)(�i(x) − �i(y)) − �n+i(x)(�i(x) − �i(y))
�����
,

I(p, q) + I(q, p) ⩽ L2n+1|y − x|2 +
|||||

n∑
i=k+1

(�n+i(y) − �n+i(x))(�i(x) − �i(y))
|||||

⩽ L2n+1|y − x|2 +
n∑

i=k+1

Ln+i|y − x| min{1, Li}|p − q|

⩽

(
L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}

)
|q − p|2.
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Hence, condition (2) in Definition 2.5 holds, and we have shown that f is (L��
n+1

,… , L��
2n+1

)

-tame with the constants defined in (4.9). By Theorem 4.3 applied to f, it then follows that 
there exists an extension f̄ = (f̄n+1,… , f̄2n+1) ∶ ℝn

→ ℝn+1 of f which is (L���
n+1

,… , L���
2n+1

)

-tame with

To construct an extension � for the given map � , we first extend independently the com-
ponents �k+1,… ,�n . For i = k + 1,… , n , we simply apply McShane’s extension theorem 
to extend the Li-Lipschitz function �i ∶ E → ℝ to an Li-Lipschitz function �i ∶ ℝk

→ ℝ . 
With the extensions f  and �k+1,… ,�n at hand, we are now able to prove that the map 
�̄� ∶ ℝk

→ ℝ2n+1−k defined in (4.8) is the desired tame extension of �.
Recalling that f |

Γ
�k+1,…,�n (E) = f  and keeping in mind expression (4.7) for f, it is clear that 

�̄� is an extension of � . Moreover, for every i = n + 1,… , 2n , the function

is Lipschitz:

Recalling formula (4.11) for L���
i

= Lip(f i) , we conclude that �i is L′
i
-Lipschitz with

for i = n + 1,… , 2n and a constant cn that depends only on n.
As a consequence, the only nontrivial condition to check for the map �̄� is the second 

part of the tameness condition, namely (2) in Definition 2.5. Let x, y ∈ ℝk, and, for sim-
plicity, put p ∶= (x, �̄�k+1(x),… , �̄�n(x)), q ∶= (y, �̄�k+1(y),… , �̄�n(y)) and

We have that

(4.11)

L���
i

= 2C(n)max
{|(L��

n+1
,… , L��

2n
)|, L��

2n+1

}

= 2C(n)max

{
|(Ln+1,… , L2n)|, L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}

}
.

�̄�i ∶ ℝ
k
→ ℝ, �̄�i(x) = f̄i(x, �̄�k+1(x),… , �̄�n(x))

|�i(x) − �i(y)| ⩽ Lip(f i)
(
1 +

n∑
j=k+1

L2
j

) 1

2 |x − y|.

L�
i
= cn

(
1 +

n∑
j=k+1

L2
j

) 1

2

max

{
|(Ln+1,… , L2n)|,L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}

}

�̄�(y) ∶= (�̄�n+1(y),… , �̄�n+k(y)) = (f n+1(q),… , f n+k(q)).

J(x, y) ∶=
�����
�̄�2n+1(y) − �̄�2n+1(x) − ⟨�̄�(y), y − x⟩ − 1

2

n�
i=k+1

�̄�i(y)�̄�n+i(x) − �̄�i(x)�̄�n+i(y)
�����

(4.8)

⩽
���f̄2n+1(q) − f̄2n+1(p) −

�
(f̄n+1(q),… , f̄2n(q)), (q1 − p1,… , qn − pn)

����
+

1

2

�����

n�
i=k+1

�̄�i(y)(f̄n+i(q) − f̄n+i(p)) − �̄�i(x)(f̄n+i(q) − f̄n+i(p))
�����

⩽
���f̄2n+1(q) − f̄2n+1(p) −

�
(f̄n+1(q),… , f̄2n(q)), (q1 − p1,… , qn − pn)

����
+

1

2

n�
i=k+1

��̄�i(y) − �̄�i(x)��f̄n+i(q) − f̄n+i(p)�.
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Summing this term and the corresponding expression with the roles of x and y reverted, we 
find by the tameness condition of f  and the Lipschitz continuity of �̄�k+1,… , �̄�n that

for arbitrary x, y ∈ ℝk . Now we only have to recall the expressions for L′′′
j

 , 
j = n + 1,… , 2n , given in (4.11). Then, for a constant cn that depends only on n, the last 
tameness constant of � can be chosen as

  ◻

4.3  Extension result for low‑dimensional intrinsic Lipschitz graphs

Combining the previous results, we establish the extension theorem for low-dimensional 
intrinsic Lipschitz graphs in ℍn , Theorem 1.2 from the introduction.

Proof of Theorem 1.2 Let 1 ⩽ k ⩽ n . First, if � = (�k+1,… ,�2n+1) is intrinsic L-Lipschitz 
on E ⊂ ℝk , Proposition 3.3 implies that (�k+1,… ,�2n,−�2n+1) is (Lk+1,… , L2n+1)-tame 
with

Applying the extension result from Theorem 4.3, if k = n , and Theorem 4.6, if k < n , to 
this tame map yields an (L�

k+1
,… , L�

2n+1
)-tame extension (�k+1,… ,�2n,−�2n+1) , where 

the tameness constants depend only on Lk+1,… , L2n+1 (thus on L), k, and n. Finally, we 
use Proposition 3.6 to conclude that � ∶= (�k+1,… ,�2n,�2n+1) is an intrinsic L′-Lipschitz 
function on �  with

The better quantitative control over the intrinsic Lipschitz constant if k = n = 1 follows 
since Proposition 3.3 yields L2 = min{L, 2L2} in this case. Then, L′

2
 and L′

3
 in Theo-

rem 4.3 can be bounded from above by a constant times L2 , and it follows that we can take 
L� = Cmax{L2, L} for a suitable constant C.   ◻

J(x, y) + J(y, x) ⩽ L���
2n+1

|p − q|2 +
n∑

i=k+1

LiL
���

n+i
|x − y||p − q|

⩽

(
L���
2n+1

(
1 +

n∑
j=k+1

L2
j

)
+

n∑
i=k+1

LiL
���

n+i

(
1 +

n∑
j=k+1

L2
j

) 1

2
)
|x − y|2,

L�
2n+1

= cn

(
1 +

n∑
j=k+1

L2
j

)
max

{
|(Ln+1,… , L2n)|,L2n+1 +

n∑
i=k+1

Ln+i min{1, Li}

}
.

Li = L for i ≠ 2n + 1, and L2n+1 = 2L2.

L� ∶= max{|(L�
k+1

,… , L�
2n
)|,

√
L�
2n+1

}.
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5  Corona decomposition for 1‑dimensional intrinsic Lipschitz graphs

The main result of this section is a corona decomposition of 1-dimensional iLG in ℍn , 
n > 1 , by iLG with smaller Lipschitz constant (Theorem 5.26). The corresponding result 
for n = 1 (and tame maps) was proven in [11, Theorem 3.15], motivated by an application 
to singular integral operators on 1-dimensional iLG in ℍ1 . As was the case for [11], our 
argument is ultimately based on a corona decomposition for Euclidean Lipschitz graphs. 
The version that we will employ looks a little different from the formulations in the litera-
ture, so we state it in Section 5.1 and explain how to deduce it from the “standard” corona 
decomposition for Euclidean Lipschitz graphs given in [9, p.57, Definition 3.19 and p.61, 
(3.33)]. Based on these preparations, we prove the result for iLG in Sect. 5.2.

5.1  Corona decomposition for 1‑dimensional Euclidean Lipschitz graphs

Definition 5.1 (Dyadic intervals and trees) The family of standard dyadic intervals of ℝ 
is called “ D ”. For j ∈ ℤ , we write Dj ⊂ D for the dyadic intervals Q of length |Q| = 2−j . A 
collection T ⊂ D is a tree if 

 (T1) T  contains a top interval Q(T) , that is, a unique maximal element.
 (T2) T  is coherent: if Q ∈ T  , then Q�

∈ T  for all dyadic intervals Q ⊂ Q� ⊂ Q(T).
 (T3) If Q ∈ T  , then either both, or neither, of the children of Q lie in T .

Definition 5.2 (Coronization) A decomposition D = G∪̇B of D into good intervals G and 
bad intervals B (with G ∩ B = � ) is called a coronization if there exists a constant C such 
that the following conditions are satisfied: 

(1) The intervals in B satisfy a Carleson packing condition: 

(2) The intervals in G can be decomposed into a forest F  of disjoint trees T

 whose top intervals satisfy a Carleson packing condition: 

Theorem 5.3 (Corona decomposition for Lipschitz maps) For every n ∈ ℕ and � ∈ (0, 1) , 
there exists a constant C ⩾ 1 with the following property. Let � ∶ ℝ → ℝ2n−1 be 1-Lipschitz. 

∑
Q ∈ B

Q ⊂ Q0

|Q| ⩽ C|Q0|, for all Q0 ∈ D.

G =

⋃̇
T∈F

T

∑
T ∈ F

Q(T) ⊂ Q0

|Q(T)| ⩽ C|Q0|, for all Q0 ∈ D.
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Then, there exists a coronization D = B∪̇G and a forest F  , satisfying the conditions in Def-
inition 5.2 with constant C, such that the following holds. For every T ∈ F  there is a 2-Lip-
schitz linear function LT ∶ ℝ → ℝ2n−1 and a �-Lipschitz function �T ∶ ℝ → ℝ2n−1 such that

where 2Q is the interval with the same midpoint as Q but twice its length.

Proof For n = 1 , the result was deduced in [11, Theorem 3.20] from the corona decomposi-
tion in [9, p.61, (3.33)]. The same approach works for n > 1 , although the reduction to [9, 
p.61, (3.33)] is now a bit more involved.

To start the proof, let us fix n > 1 . By [9, p.61, (3.33) and p.328, §2.2] we know that 
for every �� ∈ (0, 1) , there exists a constant C = C(n, ��) such that, for every 1-Lipschitz 
function � ∶ ℝ → ℝ2n−1 , there is a coronization D = B∪̇G with constant C that satisfies the 
following property. For every tree T  in the associated forest F  there is a 1-dimensional �′
-Lipschitz graph ΓT  such that

In other words, there exists a �′-Lipschitz function �T ∶ ℝ → ℝ2n−1 and R ∈ O(2n) such 
that (5.5) holds for

To be precise, [9, p.61, (3.33)] refers to a system of dyadic cubes on the graph of � , rather 
than in the domain ℝ , but (5.5) is easily deduced. The thus given coronization is the same 
that appears in the statement that we are about to prove, so the only challenge is to find 
��(�, n) so that we can deduce from (5.5) that (5.4) holds for suitable �T  and LT  . As it will 
be convenient to work in coordinates, we represent R as a matrix with respect to the stand-
ard basis of ℝ2n,

so that for �T = (�T,2,… ,�T,2n) the identity (5.6) reads

Then, the approximation property (5.5) means exactly that for every Q ∈ T  , and for every 
s ∈ 2Q , there exists xs ∈ ℝ such that

(5.4)|�(s) − (�T + LT)(s)| ⩽ �|Q|, s ∈ 2Q, Q ∈ T,

(5.5)dist
(
(s,�(s)),ΓT

)
⩽ ��|Q|, for all s ∈ 2Q, Q ∈ T.

(5.6)ΓT = {R(x,�T(x)) ∶ x ∈ ℝ}.

(5.7)R =

⎛⎜⎜⎝

b1,1 ⋯ b1,2n
⋱

b2n,1 ⋯ b2n,2n

⎞⎟⎟⎠
,

(5.8)ΓT =

⎧⎪⎨⎪⎩

⎛⎜⎜⎝

b1,1x +
∑2n

l=2
�T,l(x)b1,l

⋮

b2n,1x +
∑2n

l=2
�T,l(x)b2n,l

⎞⎟⎟⎠
∶ x ∈ ℝ

⎫⎪⎬⎪⎭
.

(5.9)

����������

⎛⎜⎜⎜⎝

s

�2(s)

⋮

�2n(s)

⎞⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎝

b1,1xs +
∑2n

l=2
�T,l(xs)b1,l

b2,1xs +
∑2n

l=2
�T,l(xs)b2,l

⋮

b2n,1xs +
∑2n

l=2
�T,l(xs)b2n,l

⎞
⎟⎟⎟⎟⎠

����������

⩽ ���Q�.
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For a given point s, there can be several points with this property, but we just choose one of 
them and call it xs . We will apply (5.9) for small enough �� ∈ (0, 1) depending on n and the 
parameter � in the statement of the theorem. The precise condition will appear in (5.19), 
but the bound on �′ has to be chosen such that ΓT  in (5.8) can be written as graph over 
the x1-axis of a function of the form �T + LT  , where �T ∶ ℝ → ℝ2n−1 is �-Lipschitz, and 
LT ∶ ℝ → ℝ2n−1 is linear with Lipschitz constant 2. For this purpose, we define

and, recalling (5.8), our goal is to write

for �T  and LT  as mentioned above. Assume for a moment that we know that b1,1 ≠ 0 . 
Then, we can define

and solving (5.10) for �T(z(x)) yields

To establish that the thus defined functions LT  and �T  are Lipschitz with the claimed con-
stants will require us to prove a suitable uniform upper bound for |(b2,1,… , b2n,1)|∕|b1,1| 
assuming an upper bound for �′ (this will show in particular that b1,1 ≠ 0 ). Supposing for a 
moment that this can be done, we will then prove that z ∶ ℝ → ℝ is a bi-Lipschitz homeo-
morphism if �′ is chosen small enough (it is obviously always Lipschitz continuous). This 
will finally also yield that ΓT  is indeed the graph of �T + LT  . Before entering the computa-
tions, we recall that R is an orthogonal matrix, so all its rows and columns have length 1, 
and in particular we obtain that

Combined with the �′-Lipschitz continuity of �T  , this yields that

for all x1, x2 ∈ ℝ . Once again, a universal positive lower bound on b1,1 will conclude the 
proof if �′ is chosen small enough.

z(x) ∶= b1,1x +

2n∑
l=2

�T,l(x)b1,l

(5.10)

⎛⎜⎜⎜⎜⎝

b1,1x +
∑2n

l=2
�T,l(x)b1,l

b2,1x +
∑2n

l=2
�T,l(x)b2,l

⋮

b2n,1x +
∑2n

l=2
�T,l(x)b2n,l

⎞
⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

z(x)

�T,2(z(x)) + LT,2(z(x))

⋮

�T,2n(z(x)) + LT,2n(z(x))

⎞⎟⎟⎟⎠
, x ∈ ℝ

(5.11)LT,l(x) ∶=
bl,1

b1,1
x, for l = 2,… , 2n

(5.12)�T,l(z(x)) =

2n∑
i=2

(
bl,i −

bl,1

b1,1
b1,i

)
�T,i(x), for l = 2,… , 2n.

(5.13)1 ⩾ ||(b1,2,⋯ , b1,2n)
||.

(5.14)

|z(x1) − z(x2)| =
||||||
b1,1(x1 − x2) +

2n∑
l=2

b1,l(�T,l(x1) − �T,l(x2))

||||||
⩾
(|b1,1| − ��||(b1,2,… , b1,2n)

||
)|x1 − x2|

(5.13)

⩾
(|b1,1| − ��

)|x1 − x2|
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Motivated by these considerations, we now concentrate our efforts on proving that

To see why such a statement is plausible, it may help the reader to picture the case n = 1 . 
Then, (5.15) essentially says that if the graph of the 1-Lipschitz function � is well-approxi-
mated by ΓT  , which is obtained by rotating the graph of a �′-Lipschitz function �T  over the 
x1-axis by angle � , then | tan(𝜃)| = |b2,1∕b1,1| < 2 if �′ is small enough.

We will now prove (5.15) for n > 1 . To this end, pick an arbitrary interval S ∈ T  and 
denote by s1 and s2 the endpoints of S. Moreover, let x ∶= xs1 ∈ ℝ be such that (5.9) 
holds for s = s1 and Q = S , and in the same way, associate to the other endpoint s2 a point 
x� ∶= xs2 ∈ ℝ such that (5.9) holds for s = s2 and Q = S . Using this property, combined 
with the 1-Lipschitz continuity of � , the matrix representation (5.7) of R ∈ O(2n) , and the 
�′-Lipschitz continuity of �T  , we conclude that

This implies that

The above estimates hold for arbitrary points in 2S, but the fact that s1 and s2 are the end-
points of S, allow us to show that |S| ≲ |x − x�| . More precisely, since �T  is �′-Lipschitz, we 
find

Moving the terms with |S| to the left-hand side, we conclude for small enough �′ as in 
(5.15) that

Inserting this estimate in (5.16) and dividing both sides by |x − x�| , we observe that

(5.15)𝛿� ⩽
1

100
√
2n−1

⇒ �b1,1� ⩾ 1∕
√
5

�
⇔ �(b2,1,… , b2n,1)�∕�b1,1� < 2.

�

�����
⎛
⎜⎜⎝

b2,1
⋮

b2n,1

⎞
⎟⎟⎠
(x − x�) +

⎛
⎜⎜⎝

⟨(b2,2,… , b2,2n),�T(x) − �T(x
�
)⟩

⋮

⟨(b2n,2,… , b2n,2n),�T(x) − �T(x
�
)⟩

⎞
⎟⎟⎠

�����
(5.9)

⩽ ��(s1) − �(s2)� + 2���S� ⩽ �s1 − s2� + 2���S�
(5.9)

⩽

������
b1,1(x − x�) +

2n�
l=2

b1,l(�T,l(x) − �T,l(x
�
))

������
+ 4���S�

⩽ �b1,1��x − x�� + ��T(x) − �T(x
�
)� + 4���S� ⩽ ��b1,1� + ��

��x − x�� + 4���S�.

(5.16)

�������

⎛⎜⎜⎝

b2,1
⋮

b2n,1

⎞⎟⎟⎠

�������
�x − x�� ⩽

�
�b1,1� + (

√
2n − 1 + 1)��

�
�x − x�� + 4���S�.

|S| = |s1 − s2| ⩽
||||||
s1 − b1,1x −

2n∑
l=2

b1,l�T,l(x)

||||||
+

||||||
s2 − b1,1x

�
−

2n∑
l=2

b1,l�T,l(x
�
)

||||||
+ |b1,1||x − x�| + ��|x − x�|

(5.9)

⩽ 2��|S| + |b1,1||x − x�| + ��|x − x�|.

|S| ⩽
(|b1,1| + ��

1 − 2��

)
|x − x�| ⩽ 5

2
|x − x�|.
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As the columns of the orthogonal matrix R are unit vectors, we have

If �′ is small enough, say as in (5.15), then we can deduce from (5.17) that b2
1,1

> 1∕5 , and 
hence

which concludes the proof of (5.15).
It is now immediate from formula (5.11) that LT  is 2-Lipschitz. Moreover, it follows 

from the formula for �T  in (5.12), the �′-Lipschitz continuity of �T  , the Cauchy–Schwarz 
inequality, and (5.18) that

for all x1, x2 ∈ ℝ . Since �b1,1� ⩾ 1∕
√
5 and (5.14) holds, it is clear that for

the function �T  is �-Lipschitz, as required.
It remains to verify the approximation condition (5.4). This follows easily from (5.9), 

which can now be rewritten as

Since |s − z(xs)| ⩽ ��|Q| , and �T + LT  is 3-Lipschitz, it follows that (5.20) holds with z(xs) 
replaced by s, and �′ replaced by � , recalling the bound (5.19). This concludes the proof of 
Theorem 5.3.   ◻

We make one more modification in the construction of �T  , see Corollary 5.22. This is an 
additional step compared to the proof for n = 1 in [11], necessitated by the noncommuta-
tivity of codimension-1 vertical subgroups in ℍn for n > 1.

In the setting of Theorem 5.3, if T ∈ F  is a tree with top interval Q(T) , we denote by 
S(T) the (possibly empty) collection of minimal intervals in T  . Moreover, we write

for the set of points in Q(T) in infinite branches of T  . By the approximation condition (5.5) 
in the corona decomposition, we have

�(b2,1,… , b2n,1)� ⩽ �b1,1� + ��
�
11 +

√
2n − 1

�
.

(5.17)
1 − b2

1,1
= �(b2,1,… , b2n,1)�2 ⩽ b2

1,1
+ 2

�
11 +

√
2n − 1

�
�� +

�
11 +

√
2n − 1

�2

��
2
.

(5.18)
||b2,1,… , b2n,1

||2
b2
1,1

=

1 − b2
1,1

b2
1,1

< 4,

��T(z(x1)) − �T(z(x2))� ⩽ 3
√
2n − 1��T(x1) − �T(x2)� ⩽ 3

√
2n − 1 �� �x1 − x2�

(5.19)�� ⩽
�

100
√
2n − 1

(5.20)
|||||

(
s

�(s)

)
−

(
z(xs)

�T(z(xs)) + LT(z(xs))

)|||||
⩽ ��|Q|, Q ∈ T, s ∈ 2Q.

E ∶= Q(T) ⧵
⋃

S∈S(T)

S

(5.21)�(s) = [LT + �T](s), for all s ∈ E.
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For the application to intrinsic Lipschitz graphs in ℍn , n > 1 , in Sect. 5.2, it will be benefi-
cial to have the identity (5.21) also in all points s ∈

⋃
S∈S(T) �S . Otherwise, error terms will 

appear depending on the position of the intrinsic graph and caused by the noncommutativ-
ity of codimension-1 vertical subgroups.

Corollary 5.22 For T ∈ F  , the function �T  in Theorem 5.3 can be constructed so that

Proof Fix an arbitrary tree T  in the forest F  associated with the corona decomposi-
tion given by Theorem  5.3 for the 1-Lipschitz function � ∶ ℝ → ℝ2n−1 and parameter 
“ �∕(8

√
2n − 1) ”. Assume that S(T) is nonempty, otherwise there is nothing to prove. Let 

�T  and LT  be the associated functions provided by Theorem  5.3. We will now slightly 
modify �T  inside each minimal interval S ∈ S(T) so that (5.23) holds for the modi-
fied function �̃T  , which will be �-Lipschitz and satisfy (5.5) (for � , LT  and “ �”). Set 
�̃T(s) ∶= �T(s) = �(s) − LT(s) for s ∈ E. It is possible to define the modified function �T  
on Q(T) ⧵ E by considering one minimal interval S at the time, since the boundary points of 
S either belong to E, where (5.21) already holds, or they are boundary points of two adja-
cent minimal intervals, so that the modification will be well-defined. Assuming that �T  is 
defined on the entire real line, we set �̃T = �T  outside Q(T).

Fix S = [a, b] ∈ S(T) . The components of �̃T,l , l = 2,… , 2n , can be taken of the form

for suitable constants cS,l ∈ ℝ with

Since we have merely added an affine function, the modified map �̃T  is clearly Lipschitz 
with constant �∕(8

√
2n − 1) + �(cS,2,… , cS,2n)� ⩽ (3∕8)�.

Moreover,

by construction, and

So we only have to show that cS,2,… , cS,2n can be chosen such that the two functions match 
also at the other endpoint of S, that is �̃T,l(b) = �l(b) − LT,l(b) for l = 2,… , 2n . This forces 
us to take

Then, the approximation condition (5.5) provides the desired bound for cS,l , l = 2,… , 2n , 
namely

(5.23)�(s) = [LT + �T](s), for all s ∈
⋃

S∈S(T)

�S.

(�̃T,l)|S(s) ∶= �T,l(s) + (�l(a) − LT,l(a) − �T,l(a)) + cS,l(s − a), s ∈ S,

(5.24)|(cS,2,… , cS,2n)| ⩽ �∕4.

�̃T,l(a) = �l(a) − LT,l(a),

(5.25)�̃T,l(s) + LT,l(s) = �T,l(s) + LT,l(s) = �l(s), for all s ∈ E.

cS,l ∶=
1

b − a

[
�l(b) − LT,l(b) − �T,l(b) − (�l(a) − LT,l(a) − �T,l(a))

]
.
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which yields (5.24). We apply the same procedure for every minimal interval S. This yields 
the modified function �̃T ∶ ℝ → ℝ2n−1 , which is 3

8
�-Lipschitz. This follows from

and the �

8
√
2n−1

-Lipschitz continuity of �T  as well as the 3
8
�-Lipschitz continuity of �̃T|S

 for 
all S ∈ S(T).

Finally, we verify that �̃T  has the desired approximation property. For every Q ∈ T  , 
s ∈ 2Q , there exists a point

with |s − s1| ⩽ |Q| . This point satisfies by construction

Then, for s ∈ 2Q as above, we find that

where in the last inequality we used the facts that �T  and �̃T|S
 are �

8
√
2n−1

-Lipschitz and 3
8
�

-Lipschitz, respectively. Hence, it remains to estimate the term |�T(s1) − �̃T(s1)|. There are 
two cases: s1 ∈ E or s1 ∈

⋃
S∈S(T) �S. In the first case, |�T(s1) − �̃T(s1)| = 0 because of 

(5.25). On the other hand, if s1 ∈ Q ∩ �S for some S ∈ S(T) , then �̃T(s1) = �(s1) − LT(s1) 
by construction, and so

Inserting the bound for |�T(s1) − �̃T(s1)| in the previous estimate, we deduce that

which shows that the approximation condition (5.4) holds for �̃T  , and thus concludes the 
proof of Corollary 5.22.   ◻

�cS,l� ⩽ 1

b − a
��l(b) − LT,l(b) − �T,l(b)� + 1

b − a
��l(a) − LT,l(a) − �T,l(a)�

⩽
��S�

8
√
2n − 1�S�

+
��S�

8
√
2n − 1�S�

=
�

4
√
2n − 1

,

�̃T(s) = �(s) − LT(s) for s ∈ E ∪

⋃
S∈S(T)

�S and �̃T(s) = �T(s) for s ∈ E,

s1 ∈ Q ∩

(
E ∪

⋃
S∈S(T)

�S
)

�(s1) = �̃T(s1) + LT(s1).

��(s) − [�̃T + LT](s)� ⩽ ��(s) − [�T + LT](s)� + ��T(s) − �̃T(s)�
⩽

��Q�
8
√
2n − 1

+ ��T(s) − �T(s1)� + ��T(s1) − �̃T(s1)� + ��̃T(s1) − �̃T(s)�

⩽
��Q�

4
√
2n − 1

+ ��T(s1) − �̃T(s1)� + 3�

8
�Q�,

��T(s1) − �̃T(s1)� = ��T(s1) − (�(s1) − LT(s1))� ⩽ �

8
√
2n − 1

�Q�.

��(s) − [�̃T + LT](s)� ⩽ ��Q�
4
√
2n − 1

+
��Q�

8
√
2n − 1

+
3��Q�
8

⩽ ��Q�, Q ∈ T, s ∈ 2Q,
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5.2  Corona decomposition for 1‑dimensional intrinsic Lipschitz graphs

With Corollary 5.22 at hand, we are now ready to establish the corona decomposition for 
1-dimensional intrinsic Lipschitz graphs. Given such a graph in ℍn , the idea is to apply 
Corollary 5.22 to the 1-dimensional Euclidean Lipschitz graph in ℝ2n which is obtained 
by projecting the intrinsic graph to the horizontal coordinate plane {t = 0} . We obtain a 
corona decomposition of this graph with approximating Lipschitz functions

While it is straightforward to lift these approximating functions to intrinsic Lipschitz func-
tions, these lifts may not approximate the initially given iLG well enough in the t-variable. 
Analogously to the approach in [11], the following theorem is therefore based on a modi-
fication of �T  which will ensure that the lift of �T + LT  has the desired approximation 
properties.

Theorem  5.26 (Corona decomposition for intrinsic 1-Lipschitz maps) Let n > 1 , and 
assume that �  is a 1-dimensional horizontal subgroup in ℍn with complementary vertical 
subgroup � . For every � ∈ (0, 1) , there exists a constant C ⩾ 1 such that the following 
holds. Let

be intrinsic 1-Lipschitz. Then, there exists a coronization D = G∪̇B satisfying the condi-
tions in Definition 5.2 with constant C such that, for every T ∈ F  , there is an intrinsic Lip-
schitz map �T = (LT + �T,�T,2n+1) ∶ � → � where LT ∶ ℝ → ℝ2n−1 is a linear 2-Lipschitz 
map and �T ∶ ℝ → ℝ2n−1 is a �-Lipschitz map such that �T  approximates � well at the 
resolution of the intervals in T :

In (5.27), d refers to left invariant metric on ℍn as defined in (1.1):

If Φ and ΦT  denote the intrinsic graph maps of � and �T  , respectively, then 
d(�(s),�T(s)) = d(Φ(s),ΦT(s)) , so that (5.27) really gives an estimate on how well the 
intrinsic graph of �T  approximates the intrinsic graph of �.

Theorem 5.26 looks a little different from the corona decomposition stated in Theo-
rem 1.3 in the introduction. The reason is simply that the graph of � and all the approxi-
mating intrinsic graphs in Theorem 5.26 are written as intrinsic graphs of functions over 
the same horizontal subgroup, say they are all graphs over the x1-axis. Consequently, 
�T  itself need not have small intrinsic Lipschitz constant, but its first components have 
small Lipschitz constants, up to subtracting the linear term LT  . The following lemma 
can be used to deduce Theorem 1.3 from Theorem 5.26 applied with constant “ �2∕c2

n
”.

Lemma 5.28 Let n ∈ ℕ , and consider the horizontal subgroup 𝕍 = {(x1, 0,… , 0) ∶ x1 ∈ ℝ} 
with complementary vertical subgroup � . There exists a constant 1 ⩽ cn < ∞ , such that 

�T + LT ∶ ℝ → ℝ
2n−1.

� = (�2,… ,�2n+1) ∶ � → �

(5.27)d(�(s),�T(s)) ⩽ �|Q|, s ∈ 2Q, Q ∈ T.

d(�(s),�T(s)) = max
{
|(�2,… ,�2n)(s) − [LT + �T](s)|,

|�2n+1(s) − �T,2n+1(s) +
1

2

n∑
i=2

−�T,i(s)�n+i(s) + �i(s)�T,n+i(s)|1∕2
}
.
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the following holds for every � ∈ (0, 1) . If � = (�2,… ,�2n+1) ∶ � → � is an intrinsic Lip-
schitz function with the property that

is the sum of an �-Lipschitz map � ∶ ℝ → ℝ2n−1 and a linear map L ∶ ℝ → ℝ2n−1 , then 
{v ⋅ �(v) ∶ v ∈ �} is an intrinsic cn

√
�-Lipschitz graph over the horizontal subgroup

Proof We write �L as the span of a unit vector v1 ∶= (b1,1,… , b1,2n) in the horizontal plane 
{t = 0} . Now we can use similar arguments as in the proof of Theorem 5.3. For arbitrary 
points (x,�(x) + L(x)) and (x�,�(x�) + L(x�)) , we compute

Here, the first inequality can be deduced by triangle inequality and the fact that the vector 
(x − x�, L(x − x�)) is parallel to v1 . The remaining inequalities use that v1 = (b1,1,… , b2n,1) 
is a unit vector, and � is �-Lipschitz for some � ∈ (0, 1) . Denoting

the previous computations show

and z ∶ ℝ → ℝ is a homeomorphism. Now we complete v1 to an orthonormal basis 
{v1,… , v2n} of ℝ2n , and we define a map � ∶ span(v1) → span{v2,… , v2n} by setting

so that the graph of � (over �L ) as a set in ℝ2n coincides with graph of � + L (over �  ). 
Then, there exists a constant �n , depending only on n, such that

This shows that the projection of the intrinsic graph Γ of � to the horizontal plane {t = 0} 
is the graph of the Euclidean Lipschitz function � over span(v1) . Then, it is easy to see that 
there exists a unique real-valued function �2n+1 so that Γ is the intrinsic graph of (�,�2n+1) 
over �L , and the graph map of � at x equals the graph map of (�,�2n+1) at z(x)v1 . It remains 
to show that (�,�2n+1) is intrinsic cn

√
�-Lipschitz for a suitable constant cn . It is easy to 

deduce from the intrinsic Lipschitz property of � , Remark 2.4 applied to � , and (5.29) that 
the graph map of (�,�2n+1) is a Lipschitz function with respect to the Heisenberg metric. 
Applying again Remark 2.4, but now to (�,�2n+1) , we conclude that this function is intrin-
sic Lipschitz. Finally, it follows from the Euclidean (�n �)∕(

√
2 − 1)-Lipschitz continuity 

ℝ → ℝ
2n−1, x ↦ (�2,… ,�2n)(x, 0,… , 0) = �(x) + L(x)

𝕍L ∶= {(x, L(x), 0) ∈ ℝ ×ℝ
2n−1

×ℝ ∶ x ∈ ℝ}.

�⟨(x − x�,[� + L](x) − [� + L](x�)), v1⟩�
⩾ �(x − x�, L(x − x�))� − ��(x) − �(x�)� �(b2,1,… , b2n,1)�
⩾ �x − x��

��
1 + �(b2,1,… , b2n,1)�2 − �(b2,1,… , b2n,1)�

�

⩾ (

√
2 − 1)�x − x��

z(x) ∶= ⟨(x, [� + L](x)), v1⟩,

(5.29)�z(x) − z(x�)� ⩾ (

√
2 − 1)�x − x��,

�(z(x)v1) =

2n∑
j=2

⟨(
x

[� + L](x)

)
, vj

⟩
vj

��(z(x)v1) − �(z(x�)v1)� ⩽ �n��(x) − �(x�)� ⩽ �n��x − x�� ⩽ �n �√
2 − 1

�z(x) − z(x�)�.
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and the arguments in Sect. 2 that the intrinsic Lipschitz constant of (�,�2n+1) can be taken 
to be cn

√
� .   ◻

Before proving Theorem 5.26, we give another version for intrinsic N-Lipschitz maps 
� = (�2,… ,�2n+1) with N ⩾ 1 , similarly as in [11]. We can consider

which is an intrinsic 1-Lipschitz map. Hence, we apply Theorem 5.26 to �̂� and constant � . 
This yields a coronization with Carleson packing constants independent of N, and for every 
associated tree T  an approximating map �̂�T = (�̂�T + L̂T, �̂�T,2n+1) as stated in Theorem 5.26. 
Then, 

is intrinsic Lipschitz and its projection to the horizontal plane {t = 0} is the sum of a �N2

-Lipschitz map �T  and a linear 2N2-Lipschitz map LT  with the properties stated in the fol-
lowing corollary. The appearance of the constant N2 (instead of N) is related to the fact that 
intrinsic N-Lipschitz maps correspond essentially to (N,… ,N,N2

)-tame maps by Proposi-
tions 3.3 and 3.6.

Corollary 5.30 (Corona decomposition for intrinsic N-Lipschitz maps) For every 
n ∈ ℕ , n > 1 , and � ∈ (0, 1) , there exists a constant C ⩾ 1 such that the following 
holds. Let N ⩾ 1 be arbitrary and let � = (�2,… ,�2n+1) ∶ � → � be intrinsic N-Lip-
schitz. Then, there exists a coronization D = G∪̇B satisfying the conditions in Defini-
tion 5.2 with constant C such that, for every T ∈ F  , there is an intrinsic Lipschitz map 
�T = (LT + �T,�T,2n+1) ∶ � → � where LT ∶ ℝ → ℝ2n−1 is a linear 2N2-Lipschitz map 
and �T ∶ ℝ → ℝ2n−1 is a �N2-Lipschitz map such that �T  approximates � well at the reso-
lution of the intervals in T :

Proof of Theorem  5.26 We apply the Lipschitz corona decomposition stated in The-
orem  5.3 and Corollary 5.22 with parameter � ∶= �2∕(100n) to the 1-Lipschitz 
map � ∶= (�2,… ,�2n) ∶ ℝ → ℝ2n−1 . Hence, there are a coronization with Carle-
son packing constant depending on n and � , and an associated forest F  of trees. We 
fix T ∈ F  , and consider the top interval Q(T) = [x, y] with x < y . Then, there exists 
a �-Lipschitz map �T = (�T,2,… ,�T,2n) ∶ ℝ → ℝ2n−1 and a linear 2-Lipschitz map 
LT = (LT,2,… , LT,2n) ∶ ℝ → ℝ2n−1 such that

In addition, we may assume by Corollary 5.22 that

Here, as before, S(T) is the collection of minimal intervals in T  (possibly an empty collec-
tion) and

�̂� = (�̂�2,… , �̂�2n+1) =

(
1

N
𝜙2,… ,

1

N
𝜙n,

1

N2
𝜙n+1,

1

N
𝜙n+2,… ,

1

N
𝜙2n,

1

N2
𝜙2n+1

)
,

𝜙T ∶=

(
N�̂�T,2,… ,N�̂�T,n,N

2�̂�T,n+1,N�̂�T,n+2,… ,N�̂�T,2n,N
2�̂�T,2n+1

)

d(�(s),�T(s)) ⩽ (�N2
)|Q|, s ∈ 2Q, Q ∈ T.

(5.31)|(�2,… ,�2n)(s) − [LT + �T](s)| ⩽ �|Q|, s ∈ 2Q, Q ∈ T.

(5.32)�i(s) = [LT,i + �T,i](s), for all s ∈ E ∪

⋃
S∈S(T)

�S, i = 2,… , 2n.
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Now we would like to produce an intrinsic Lipschitz function

satisfying the claims stated in Theorem 5.26. The challenge is to find the last component 
of �T  so that the intrinsic Lipschitz and approximation property hold, and this will require 
some changes in the terms LT,n+1 + �T,n+1 (but not in the other components).

For S = [a, b] ∈ S(T) fixed, we will modify the restriction of �T,n+1 to 1
2
S = [s1, s2] with 

s1 ⩽ s2 , which is the interval with the same centre but half the length as S. The property of 
1

2
S needed in the future is that if Q ∈ T  with |Q| < |S| , then

Analogously as in the proof of [11, Theorem 3.15], we add to �T,n+1 a suitable “correction 
term” �S ∶ S → ℝ in order that 

(1) �S(t) = 0, ∀t ≠ [s1, s2];
(2) it holds 

The idea behind (5.35) is the following. As suggested by (5.33), we will define

but for i = n + 1 and S ∈ S(T) , we set

while �T,n+1|E ∶= �T,n+1|E + LT,n+1|E . The function �S allows us to match �T,2n+1 with �2n+1 
in endpoints of minimal intervals. Up to a sign change, the desired intrinsic Lipschitz prop-
erty of �T  is equivalent to the tameness condition. Tame maps on intervals can be charac-
terized as in Proposition 3.7, so we will obtain �T,2n+1 by integrating an expression involv-
ing the components �T,2,… ,�T,2n . Then, (5.35) ensures that the thus defined �T,2n+1 agrees 
with �2n+1 in endpoints of the minimal intervals S ∈ S(T).

To obtain (5.35), we define �S ∶ S → ℝ as

where c ∈ ℝ is such that (5.35) holds. Since

E = Q(T) ⧵
⋃

S∈S(T)

S.

(5.33)�T = (LT,2 + �T,2,… , LT,2n + �T,2n,�T,2n+1) ∶ � → �

(5.34)2Q ∩
1

2
S = �.

(5.35)

∫
b

a

−𝜉S(r) dr = ∫
b

a

−𝜙n+1(r) + 𝜓T,n+1(r) + LT,n+1(r)

+
1

2

n∑
i=2

𝜙i(r)�̇�n+i(r) − �̇�i(r)𝜙n+i(r) − 𝜙T,i(r)�̇�T,n+i(r) − �̇�T,i(r)𝜙T,n+i(r) dr.

�T,i ∶= �T,i + LT,i, for i = 2,… , n, n + 2,… , 2n,

�T,n+1|S ∶= �T,n+1|S + �S + LT,n+1|S,

�S(t) ∶=

⎧⎪⎨⎪⎩

4c(t − s1), for t ∈ [s1,
s1+s2

2
],

4c(s2 − t), for t ∈ (
s1+s2

2
, s2],

0, otherwise
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and S = [a, b] , the requirement (5.35) means that

The �-Lipschitz continuity of

on S will follow from a bound on |c|. We claim that |c| ⩽ 24n� ; indeed, by (5.36),

Using (5.31), we obtain that |I1| ⩽ 4� ; moreover, using again (5.31) and recalling that 
�T  is a �-Lipschitz map with 𝛿 < 1 and LT  is a linear 2-Lipschitz map, we have that 
|Ii| ⩽ 12(n − 1)� for i = 2, 3 . Finally, integrating by parts, and using �i(s) = �T,i(s) for 
s ∈ {a, b} and i = 2,… , 2n , we get that I4 = 0.

Hence, |c| ⩽ 24n� , as desired. Consequently, we get that �S is 96n�-Lipschitz with 
‖�S‖L∞ ⩽ 24n��S�.

We make analogous modifications inside all intervals S ∈ S(T) . Recalling that we have 
chosen � so that 100n� = �2 ⩽ � , we obtain an �-Lipschitz map on ℝ , piecewise defined on 
S as in (5.37).

We next show that the modified map still satisfies (5.31), albeit with a larger constant 
than � . Indeed, for Q ∈ T  it suffices to check the condition for s ∈ 2Q that belong to 1

2
S 

for some S ∈ S(T) , as this is the only place where we have done a modification. So assume 
s ∈ 2Q ∩

1

2
S . Then, |S| ⩽ |Q| by (5.34), and (5.31) yields

Now we consider the last component of the approximation map �T  of � . For Q(T) = [x, y] , 
we define

∫S

�S(r) dr =
c|S|2
4

,

(5.36)

−c =
4

(b − a)2 ∫
b

a

−𝜙n+1(r) + 𝜓T,n+1(r) + LT,n+1(r)

+
1

2

n∑
i=2

𝜙i(r)�̇�n+i(r) − �̇�i(r)𝜙n+i(r) − 𝜙T,i(r)�̇�T,n+i(r) + �̇�T,i(r)𝜙T,n+i(r) dr.

(5.37)(�T,2,… ,�T,n,�T,n+1 + �S,�T,n+2,… ,�T,2n)

(5.38)

−c =
4

(b − a)2 ∫
b

a

−𝜙n+1(r) + 𝜓T,n+1(r) + LT,n+1(r) dr

+
2

(b − a)2

n∑
i=2

∫
b

a

(𝜙i(r) − 𝜙T,i(r))�̇�n+i(r) − (𝜙n+i(r) − 𝜙T,n+i(r))�̇�i(r) dr

+
2

(b − a)2

n∑
i=2

∫
b

a

(𝜙i(r) − 𝜙T,i(r))�̇�T,n+i(r) − (𝜙n+i(r) − 𝜙T,n+i(r))�̇�T,i(r) dr

+
2

(b − a)2

n∑
i=2

∫
b

a

𝜙T,i(r)�̇�n+i(r) − 𝜙T,n+i(r)�̇�i(r) − 𝜙i(r)�̇�T,n+i(r) + 𝜙n+i(r)�̇�T,i(r) dr

=∶ I1 + I2 + I3 + I4.

(5.39)|(�2,… ,�2n)(s) − (�2,… ,�2n)(s)| ⩽ 25n�|Q| ⩽ �|Q|.
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for all s ∈ [x, y]. By Proposition 3.7, �T ∶ � → � is an intrinsic Lipschitz map. The next 
step is to show

for s ∈ E ∪
⋃

S∈S(T) �S . By construction, this is equivalent to verifying that for 
s ∈ E ∪

⋃
S∈S(T) �S and Q(T) = [x, y] we have

We recall that E is a measurable set because E = Q(T) ⧵
⋃

S∈S(T) S and S(T) is a countable 
family of intervals. Moreover,

If E is a Lebesgue null set, then the integral over E is not relevant. On the other hand, the 
derivatives of �i,�T,i , i = 2,… , 2n + 1 exist almost everywhere, and if E has positive meas-
ure, then almost every point in E is a Lebesgue density point of E. Since �i(s) = �T,i(s) 
for all s ∈ E and i = 2,… , 2n , it follows that �̇�i(s) = �̇�T,i(s) for almost every s ∈ E and so 
�̇�T,2n+1(s) = �̇�2n+1(s) for almost every s ∈ E . Moreover,

Indeed, by the choice of s ∈ E ∪
⋃

�S we have two cases to consider: S ∩ [x, s] = S or 
S ∩ [x, s] = �. The latter intervals S can be ignored, and for the former, the integrals on the 
left and on the right-hand side of (5.41) agree, by (5.35). This proves (5.40).

Finally, it remains to check the approximation condition (5.27). Having already estab-
lished (5.39), the only nontrivial inequality is

for every Q ∈ T  , s ∈ 2Q . We have two different cases: s ∈ E and s ∉ E. Firstly, for s ∈ E , 
the left-hand side of (5.42) vanishes by (5.32) and (5.40), and so the inequality holds trivi-
ally true. Secondly, for s ∉ E , as in the proof of [11, Proposition 3.6], we know that there is 
s̃ ∈ Q ∩ (E ∪

⋃
S∈S(T) 𝜕S) such that |s − s̃| ⩽ |Q| . Since 𝜙T,n+1(s̃) = 𝜙n+1(s̃) , we can estimate 

as follows:

𝜙T,2n+1(s) ∶= 𝜙2n+1(x) + ∫
s

x

−𝜙T,n+1(r) +
1

2

n∑
i=2

𝜙T,i(r)�̇�T,n+i(r) − �̇�T,i(r)𝜙T,n+i(r) dr,

(5.40)�2n+1(s) = �T,2n+1(s),

∫
s

x

�̇�2n+1(r) dr = ∫
s

x

�̇�T,2n+1(r) dr.

𝜙T,2n+1(s) = 𝜙2n+1(x) + ∫E∩[x,s]

�̇�T,2n+1(r) dr +
∑

S∈S(T)
∫S∩[x,s]

�̇�T,2n+1(r) dr.

(5.41)
∑

S∈S(T)
∫S∩[x,s]

�̇�T,2n+1(r) dr =
∑

S∈S(T)
∫S∩[x,s]

�̇�2n+1(r) dr.

(5.42)

A ∶=

|||||
�2n+1(s) − �T,2n+1(s) +

1

2

n∑
i=2

−�T,i(s)�n+i(s) + �i(s)�T,n+i(s)
|||||
⩽ �2|Q|2,
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For convenience, let us denote the integral in the above expression by “I”, so that

Using similar computations as in the bound for c, see (5.38), we find

Notice that [s̃, s] ⊂ 2Q (or [s, s̃] ⊂ 2Q ), so |�T,n+1(r) − �n+1(r)| ⩽ 25n�|Q| for all r ∈ [s̃, s] 
by (5.39), and |�T,i(r) − �i(r)| ⩽ �|Q| for i ∈ {2,… , 2n} ⧵ {n + 1} by the property coming 
from Theorem 5.3. Using also that |s − s̃| ⩽ |Q| , we obtain the desired estimates for the 
first three summands: |J1| + |J2| + |J3| ⩽ 50n�|Q|2. The term “ J4 ” might look problematic 
at first since Φ(s) does not necessarily agree with ΦT(s) . However, if we combine it first 
with the second summand in (5.43), then cancellation occurs by partial integration:

Since Φ(̃s) = ΦT (̃s) , the expression on the right vanishes. Hence, we obtain that

Finally, we recall that 100n� = �2 , so (5.42) holds, as desired. This concludes the proof.  
 ◻

A ⩽

|||||
𝜙2n+1(s) − 𝜙2n+1(s̃) − 𝜙T,2n+1(s) + 𝜙T,2n+1(s̃)

+
1

2

n∑
i=2

−𝜙T,i(s)𝜙n+i(s) + 𝜙i(s)𝜙T,n+i(s)
|||||

=

|||||∫
s

s̃

−𝜙n+1(r) + 𝜙T,n+1(r) +
1

2

n∑
i=2

𝜙i(r)�̇�n+i(r) − �̇�i(r)𝜙n+i(r)

−
1

2

n∑
i=2

𝜙T,i(r)�̇�T,n+i(r) − 𝜙T,n+i(r)�̇�T,i(r) dr

+
1

2

n∑
i=2

𝜙T,n+i(s)𝜙i(s) − 𝜙T,i(s)𝜙n+i(s)
|||||
.

(5.43)A ⩽

|||||
I +

1

2

n∑
i=2

�T,n+i(s)�i(s) − �T,i(s)�n+i(s)
|||||
.

I =∫
s

s̃

−𝜙n+1(r) + 𝜓T,n+1(r) dr

+
1

2

n∑
i=2

∫
s

s̃

(𝜙i(r) − 𝜙T,i(r))�̇�n+i(r) − (𝜙n+i(r) − 𝜙T,n+i(r))�̇�i(r) dr

+
1

2

n∑
i=2

∫
s

s̃

(𝜙i(r) − 𝜙T,i(r))�̇�T,n+i(r) − (𝜙n+i(r) − 𝜙T,n+i(r))�̇�T,i(r) dr

+
1

2

n∑
i=2

∫
s

s̃

𝜙T,i(r)�̇�n+i(r) − 𝜙T,n+i(r)�̇�i(r) − 𝜙i(r)�̇�T,n+i(r) + 𝜙n+i(r)�̇�T,i(r) dr

=∶J1 + J2 + J3 + J4.

J4 +
1

2

n∑
i=2

�T,n+i(s)�i(s) − �T,i(s)�n+i(s) =
1

2

n∑
i=2

−�T,i (̃s)�n+i (̃s) + �T,n+i (̃s)�i (̃s).

A ⩽ 50n�|Q|2.
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