RESEARCH REPORTS FROM THE

DEPARTMENT OF BIOLOGY OF PHYSICAL ACTIVITY

From

Muscle Research Center.

Department of Biology of Physical Activity and
Department of Cell Biology.
University of Jyviäskylä,
Jyväskylä, Finland

10/15.76

FITNESS PROFILES OF ELITE FTNNISH ATHLETES
by

Antti Arstila and Heikki Rusko

This study has been supported with grants from the Finnish Olympic Comnittee and from the Finnish Research Council for Phytical dilucat foniand Sports (Ministry of Rdu:abion).

ABSTRACT

The requirements of 11 different sport events were sturied on the basis of fitness profiles calculated from the results of $4-6$ icest athietes in each sport event and on the basis of correlation coefficiente between parameters studied and the ranking order in athletes ${ }^{3}$ own sport event. Each sport event seemed to have its com specific requirements and even the pure ardurance events, conss country skiing and longmistance ruming, differed from each other Inspite of the specific demands the events could be classified arto four subgroups. The aerobic endurance events included crosswouncry skiing, long-distance runing and nordic combination. The canceists, 800 m ranners and alpine skiers were classified into anaerobic endurarsce athletes. The third group of events, ice hockey and speed skating, were regarded as speedwendurance eventri. The skijumpers $10040 n$ muners jumpers and throwers formed the fourth group of events: power events Based on the correlation coefficients between various parameters it is suggested that the neuromuscular and anaerobic detemninants of physical performance capacity are opposite characteristics of aerobic performance capacity both at whole body level and at muscle tissue level.

INTRODUCTION

In order to achieve new records and victories in intemational competitions there is an evermincreasing dernand for more effective and especially for more specialized training. However, in mosit instances the development of such specialized training orograms still rests on the trial and error type of approach rather than on the knowledge of physiological and kinesiological characteristics of each special sport event. Our approach to obtain such infommation is to make detailed studies on elite athletes in various sport events in order to see how these athletes differ from relatively untrained subjects and to characterize the major physiological differences between athletes competing in different sport events.

MATERTAL AND METHODS

Altogether 89 athletes and 38 reference subjects were employed in the study. The athletes represented the following sport events: cross... country skiing (17 male and 5 females) " nordic combination (5 males) skijumping (9 males), alpine skiing (6 males) "speed skating (6 males) 。 ice hockey (13 males), canoeing (8 males), power events (6 males, $100 \cdots$ 400 m running 3 , throwing 1, jumping 1 , decathlon 1), long distance (8 males) and 800 m (6 males) running. The physical characteristics and the performance characteristics of these athletes have been described in previous reports (Komi et al. 1976, Rusko et al. 1976).

Only the best athletes were included in the calculations of the fitness profiles. These athletes were four male and five female crossm country skiers, four nordic combination skiers, four skijumpers, six alpine skiers, six speed skaters, six ice hockey players, four canoejsts, six power athletes, four long-distance runners and six 800m runners. These athletes were among the best of Finnish athletes in their own particular sport event. Almost all of them had belonged to the Fimmish national teams and most of them had been successful in intemational competitions.

The reference subjects were divided into three groups. The male reference subjects (23) were policemen, students and members of the university staff and most of them had exercised regularly according to their own fitness programs. The male physical education students (8) had trained and competed without any special success in their own sport specialities. The female reference subjects (7) were three physical education students, two physiotherapists, one dentist and one clerical worker and all of them had trained regularly according to their own fitness programs.

The anthropometric variables were height, weight, fatweree weight. percentage and total amount of body fat estimated from skinfolds. The variables of neuromuscular and anaerobic performance capacity were vertical velocity $\left(V_{v y}\right)$ and muscular power (MP) during running up the stairs, total (TIF) and relative (RLF) maximal isometric force of exsensor muscles of both legs and blood lactate concentration after maximal treadmill rumning test. The variables of aerobic performance capacity were maximal oxygen uptake (maxs S_{2}) and maximal heart rate during maximal treadmill rumning test, percentage of slow twitch fibers ($\%$ ST fibers) and succinate dehydrogenase (SDH) activity in m. vastus lateralis ($\mathrm{VLs}_{\mathrm{s}}$). The relative power index (RPI, speed/endurance) was also calculated for all subjects.

In addition, mask V_{2} and maximal heart rate during and blood lactate after maximal arm ergometer work, ratio between arm and leg maxis ${ }_{2}$ and maximal isometric arm force were determined for male and female cross country skiers, nordic combination skiers and most of the reference subjects. Furthermore lactate dehydrogenase (LDH) activity in mo $\mathrm{M} . \mathrm{of}$ male and female cross"country skiers, nordic combination skiers, alpine skiers and skijumpers was assayed.
$\mathrm{Maxk}_{\mathrm{O}_{2}}$ during treadmill running and arm ergometer work was determined according to the principles described by Astrand and Rodahl (1970) and the methods have been presented previously (Rusko et al. 1976). Oxygen uptake was measured using Douglas bags; Scholander gas anelysis. wet and dry gas meters and corrected for STPD.

A muscle biopsy was taken from m. VL according tro Bergstroim (1962)。 In order to classify the muscle fibers into slow twitch and fast twitch types myosin ATPase staining was used according to Padykula and Herman
(1955) and Gollnick et al. (1972). Part of the muscle sample was weighed, homegenized and used for SDH activity (Pennington 1961), IDH activity (Kornberg 1955) and protein (Lowry et al. 1.951) determination. SDH activity was expressed as nM substrate reduced x $m g^{-1}$ muscle protein $x \min ^{-1}$ at $37^{\circ} \mathrm{C}$ and LDH activity as $\mu M \mathbb{N A D H}$ oxidized $\times \mathrm{mg}^{-1}$ protein $x \mathrm{~min}^{-1}$ at $22^{\circ} \mathrm{C}$ 。

The running velocity of the subjects was measured using the method of Margaria et al. (1966). The subjects ran up the stairs at maximal speed two steps at a time. The running velocity was recorded electronically and the vertical component of the speed in $\mathrm{mx} \mathrm{sec}{ }^{-\cdots}$ $\left(\mathrm{V}_{\mathrm{V}}\right)$ and $\mathrm{kg} \mathrm{xm} \mathrm{\times x} \mathrm{sec}^{-1}$ (MP) was calculated. RPI was obtained by dividing the estimated theoretical oxygen cost of running by the measured maximal oxygen uptake (Margaria et al. 1966).

The isometric forces of extensor muscles of both legs and the right elbow were measured in standard positions using special dynamometers (Komi $1973 \mathrm{a}, \mathrm{b}$). The angles of the knees and the ellow were 107 and 94 degrees, respectively. The relative leg force was calculated by dividing the total leg force by bedy weight.

Blood lactate concentration was measured from two capillary blood samples taken from a fingertip about 3 and 5 minutes after maximal treadmi.ll running and maximal arm ergometer work. The reagents and instructions of Biochemica Boehringer were used.

Heart rate was registered every minute during the work tests using a one-channel ECG-apparatus.

The performance level in actual sport events was scored as follows. The ranking lists of the Finnish Ski Association during winters 1973, 1974 and 1975 were used to place the male and female cross-country skiers, the nordic combination skiers, alpine skiexs and skijumpers in order of superiority. The 800 m runners and longdistance runners were ranked according to their best 800 m , 3000 m , $5000 \mathrm{~m}, 10000 \mathrm{~m}$ and marathon running times during 1.973, 1974 and 1975 using international rating tables for the comparison of the different distances and seasons. The ranking of canoeists and speed skaters was easy because their order was almost the same in all competitions they participated. The ice hockey players were ranked into two groups: those who had belonged to the fimnish national team durimy seasons

1973-74 and 1974-75 and the other players who all belonged to the best Finnish club team during the season 1974-75.

The fitness profiles were calculated as follows. The mean values (\pm one standard deviation) of the 4-6 best athletes in each sport event were compared to the corresponding mean values (\pm one standard deviation) of the reference subjects of the same sex. The mean values of the reference subjects were taken to represent the zero line in each performance characteristics.

RESULTS

There were no similar fitness profiles as calculated from the results of the best athletes in each sport event (Figure l-5, see also the numerical values in Appendix l). The differences in fitness profiles were most prominent between endurance and power athletes.

The best cross-country skiers and long-distance runners differed from the male reference subjects by having smaller fat depots and higher maxio_{2} in leg work. The cross-country skiers tended to have slightly higher maxion ${ }^{\circ}$-values than long-distance runners. With respect to the \%ST fibers and SDH activity in m. VL the best long-distance runners had higher values than the best cross-country skiers who also had higher mean values as compared with the reference subjects. In both groups the RPI was smaller than the mean value of the reference subjects. In arm work the male cross-country skiers had 30-60\% higher $\operatorname{maxv}_{\mathrm{O}_{2}}$ than the reference subjects. (Figure l)

The profile of the best nordic combination skiers agreed fairly well with the profiles of the above mentioned endurance athlete groups. The nordic combination skiers had slightly higher fat depots, smaller max $\mathrm{V}_{\mathrm{O}}^{2}$ both in leg and arm work, lower \%ST fibers and lower SDH activity in m . VL than the best male cross-country skiers and longdistance runners. (Figure 2).

With respect to the arrount of body fat, $\max \hat{O}_{2}$ in leg and arm work and \%ST fibers in m . VL the female cross-country skiers differed less from the female reference group than the male skiers from the male reference group. On the contrary, the SDH activity in m. VL of

Figure 1. Fitness profiles of the best male cross ${ }^{-c o u n t r y}$ skiers and long--distance runners. The mean values of the athletes $(\pm 1 \mathrm{SD})$ have been compared to the mean values ($\ddagger 1 \mathrm{SD}$) of the reference subjects in each parameters. Abbreviations are explained on page 2.
the female skiers differed much more than that of the male crosso country skiers from the values of their reference subjects. (Figure 2).

The best ice hockey players were characterized by high leg forcess vertical velocity and muscular power (Figure 3). They also had high maximal oxygen uptake and SDH activity in m . VL as compared with the male reference subjects.

Figure 2. Fitness profiles of the best nordic combination skiers and the best female skiers. For explanations see figure 1.

The best speed skaters differed from the reference subjects by having higher vertical velocity and muscular power as well as higher maximal oxygen uptake and \circ ST fibers in m. VL (Figure 3). Their body fat, blood lactate and relative power index were slightly lower than those of the reference subjects.

The best canceists differed from the reference subjects in several characteristics. Their height, weight, fat-free weight, leg forces, muscular power and blood lactate values as well as $\%$ fit fibers and relative power index differentiated them from the reference

Figure 3. Fitness profiles of the best ice hockey players and the best speed skaters. For explanations see Figure 1.
subjects. Furthermore their maximal oxygen uptake exceeded the corresponding values of the reference group both in leg work and especially in arm work. (Figure 4).

The 800 m runners had higher blood lactate concentration, maximal oxygen uptake and SDH activity in m . VL than the reference subjects. They also tended to have lower RPI, percentage and total ameunt of fat as well as higher vertical velocity and maximal heart rate than the reference subjects. (Figure 4).

The alpine skiers differed from the reference subjects mainly

Figure 4. Fitness profiles of the best canoeists, 800 m runners and alpine skiers. For explanations see Figure 1.

Figure 5. Fitness profiles of the best skijumpers and power athletes. For explanations see Figure 1.
by having higher blood lactate, vertical velocity, maximal oxggen uptake and \%ST fibers in m 。VL.

The skijumpers differed from the reference subjects most clearly by having higher vertical velocity. They also tended to have higher maximal oxygen uptake and smaller body size than the reference subjects. (F'igure 5)。

The power athletes had higher vertical velocity, muscular power, leg forces and blood lactate concentration than the reference sukjects. Their SDH activity and RPI values were also relatively high. (rigure 5).

The corxelation coefficients between ranking orders in the athletes ${ }^{\circ}$ own sport events and the performance characteriscios studied are sumarized in Trable 1. Power athletes were not included because they represented several sport events and in the case of ice hockey significant differences between national team level players and the other players have been calculated.

The maximal osygen uptake of the male and female crosswountry skiers and the longodistance runners correlated negatively with ranking orders indicating that the best athletes seem to have highest maxV $\mathrm{V}_{2}-$ values. In longwaistance munning also \%SI fibers in mo VL, correlated negatively and V_{V} and RPI positively with ramking order. In nordic combination \%SI fibers and SDH activity in m. VL correlated negatively with skiing perfomance and V_{V} with jumping perfomance. In speed skating V_{V} and M correlated negatively with ranking ordex in short distances ($500 \times 1500 \mathrm{~m}$ skating) and maxs $\mathrm{S}_{\mathrm{O}_{2}}$-values with long distance performances (3000 $=10000 \mathrm{~m}$ skating). In ice hockey the national team players had significantly lower \%ST fibers and sou activity and they also tended to have higher leg forces and vextical velocity than the other players. In canoeing maxk ${ }_{O_{2}}$ of both arms and legs correlated negatively with ranking order in actual camoeing performances. The best 800 m rumers were characterized by higher max $\stackrel{\circ}{O}_{2}$ and lower fat percentage than the rumers with weaker pexform ances as judged from the correlation coefficients. In alpine skling the leg forces, V_{V} and masion correlated negatively with ranking order. In skijumpers osT fibers correlated significantily and V_{v} RTE and RPI almost significantly with ranking order.

When calculated from the results of all male subjects two significant correlations were found between variables of aerobio and anaerobicmeuromuscular performance capacity: $r=-.25(p<01)$ between mas $\forall_{O_{2}}$ and V_{V} and $r=-.24(p<05)$ between SHH activity in m. VL and RLF. When calculated from the results of the male athletes the following pairs of variables correlated negatively with each other: masio $\mathrm{V}_{\mathrm{O}_{2}}-\mathrm{V}_{\mathrm{V}}(\mathrm{r}=-.55, \mathrm{p} \& .001), \max _{\mathrm{O}_{2}} \cdots \mathrm{RLF}(x=-.26, \mathrm{P} \leqslant .05)$;
 $\mathrm{p} \& .05$) and SDH activity -LDH activity $(x=-.42, \mathrm{~F} .05)$. Within different groups of subjects only one significant correlation was

Table 1. The correlations between ranking ordex in athletes" own sport sport events and the performance characteristics studied. The signs in front of the parameters indicate negative (-) or positive (+) relationship between the variables. In the case of ice hockey the national team level players have been compared with the other players and $(+)$ means that the national team players have higher mean values.

Sport event	Level of significance of the correlation coefficient (or tom value)		
	$\mathrm{p} \cong .01$	p §. 05	. $05<\mathrm{p}<.10$
Cross-country skiing, males		$\begin{aligned} & \text { (-) Mass } \mathrm{O}_{2} \text { ml } \mathrm{mk} \mathrm{~g}^{-1} \mathrm{xmmin} \\ & \text { (+) Maxi } \mathrm{M}_{2} \text { arms/legs } \end{aligned}$	(-) MaxV̊O, 1man ${ }^{-1}$ (-) $\%$ Os fibers $(+) \mathrm{RL} \mathrm{F}$ (t) RPI
Cross-country skiing, females	(+) FFW	$\underset{(-) \mathrm{Marsi}_{\mathrm{O}}^{2}}{(+) \mathrm{IDH}} \mathrm{mlxk}^{-1} \mathrm{smin} \mathrm{n}^{-1}$	(+) RPI
Iong-mistance running	$(-) \mathrm{MaskV}^{+} \mathrm{O}_{2} \mathrm{lrmin}^{-1}$	$\begin{aligned} & (-) \% S T \text { fibers } \\ & (+) \mathrm{V}_{\mathrm{V}} \\ & (+) \mathrm{RPI} \end{aligned}$	(-) $\mathrm{MaxV}_{\mathrm{O}_{2}} \mathrm{mlsikg} \mathrm{xmmin}$ $(+) \mathrm{SDH}$
Nordic combination ${ }^{2 x}$	$\begin{aligned} & (-) \text {) } \begin{array}{l} \text { ST fibers } \\ (-) \text { SDH } \end{array} \end{aligned}$	$(+) V_{V}{ }^{\text {x }}$	$\begin{aligned} & (-) \operatorname{Max}^{\mathbf{t}} \mathrm{O}_{2} 1 \times m \mathrm{n}-1 \\ & (-) \mathrm{TM}^{-1} \end{aligned}$
Speed skating ${ }^{\text {XX }}$	$(-) \mathrm{Maxi}^{+1} \mathrm{O}_{2} \mathrm{milxkg} \mathrm{g}^{-1} \mathrm{~mm} \mathrm{n}^{-1}$		$\begin{aligned} & (+) \mathrm{RPI} \\ & (-) \mathrm{SDH} \\ & (-) \mathrm{RCF} \mathrm{EXS} \end{aligned}$
Canoeing			(-) \%ST fibers m, VT, ($⿰ \cdots$) Max̂́op ayne, $\mathrm{ml} \mathrm{xfg}^{-1} \times \mathrm{mm}$
800m running		$\begin{aligned} & (-) \mathrm{MaxiVO}_{2} \mathrm{mlxk}^{-1} \mathrm{mmin}^{-1} . \\ & (+) \mathrm{Fat}^{1} \end{aligned}$	$\begin{aligned} & \text { (-) Masvon Ixmin } \\ & \text { (+) Fat, } \mathrm{gy} \\ & \text { (}- \text { Blood Iactate } \\ & \text { (+) RPI } \end{aligned}$
Alpine skiing	(-) TLF	$\begin{aligned} & (-) \text { RLF } \\ & (-) \text { Max }^{\prime} \mathrm{V}_{\mathrm{O}_{2}} \quad \mathrm{mmin}^{1} \\ & (-) \mathrm{V}_{\mathrm{rr}} \end{aligned}$	(-) Bloed lactate $(-) \mathrm{RPI}$
Skijumping	$(+) \%$ ST fibers		
Ice hockey	(-) \%ST fibers	$(-) \mathrm{SDH}$	$\begin{aligned} & (+) \mathrm{TIXF}^{\prime} \\ & (+) \mathrm{RNF} \\ & (+) \mathrm{V}_{\mathrm{yy}} \end{aligned}$

x In nordic combination vertical velocity and leg force wexe correlated with jumplng performance, other parameters with skiing performance.
xx In speed skating vertical velocity, muscular power and leg force ware correlated with performance in short distances ($500 \cdots 1500 \mathrm{~m}$), other parameteras with performance in long distances ($3000-10000 \mathrm{~m}$).
found: $r=-.81$ ($p \& .\left(01\right.$) between $\max ^{\circ} V_{O_{2}}$ and V_{V} of longwdistance runers. When examining the performance capacity of the arms it was found that the isometric arm force of male subjects correlated positively with their $\operatorname{maxV}_{\mathrm{O}_{2}}$ in arm work $(~(~=~=.32, ~ p \& .05)$. Within groups no significant correlations were found.

The relative power index ranged from 1.84 for male crosscountry skiers to 3.18 for power athletes. This variable correlated negatively with \%ST fibers in m. VL when calculated from the results of all male subjects $(x=-.49, p<.001$) or all male athletes ($r=\ldots .38, p \& 001$) (see figure 6). This correlation was significantly negative also within groups of male crosswcountry skiers, long-di.stance runners and ice hockey players.

Figure 6. Percent distribution of fast twitch fibers (oFr fibers) in the vastus lateralis muscle (left) and the relative rower index (RN I, right) of the different athlete and reference groups (means and standard deviations).

DISCUSSION

Although in recent years there has been considerable increase in research, aimed at the characterization of major physiological factors important in intemational level athletic competitions, such studies have so far been directed towards few sport events and also only a few physiological parameters have been studied. The overall goal of this project has therefore been to gather data on elite Finnish athletes corpeting in various sport events and to develop a suitable battery of tests in order to characterize various physiological, metabolic and anthropometrical. requirements typical to different sport performances.

In order to analyze the requirements of the sport events results were arranged as profiles, in which the mean values of best athletes practising certain sport events were compared to the corresponding mean values of the reference group of the same sex. The parameters were then arranged into three groups, the first one describing major anthropometrical variables, the second describing some neuromuscular and anaerobic determinants of performance and the third one describing aerobic parameters. The perfommance characteristics of the anms were also included in those sport events which require extensive use of the arms.

On the basis of the fitness profiles and correlation coefficients between ranking order and parameters studied each sport event seems to have its own specific requirements. Even the pure endurance events, cross-country skiing and long-distance running, seem to differ from each other: the maximal oxygen uptake is a characteristics required especially in cross-country skiing whereas the oxidative capacity of the muscles might be needed in long-distance running more than in cross-country skiing.

When the fitness profiles were analyzed in more detail it was found that the athletes and sport events could be classified into four main groups. The "aerobic endurance" events include crossmeountry skiing, long-distance running and nordic combination. They are all characterized by high demands for the aerobic performance capacity but by no extra demands for the neuromuscular or anaerobic components of performance capacity. The athletes competing in these sport events
seem to have low body weights and fat depots. The female crosscountry skiers belong also into this group although their fat depots were almost equal with those of female reference subjects.

The best cross-country skiers and nordic cambination skiers all belonged to the Finnish national team during the World Championships in 1974 in Falun, Sweden. The personal records of the four best long ${ }^{-\infty}$ distance runners during the competitive season of 1973-74 varied from 13.48 to 14.11 for 5000 m and from 28.52 to 29.07 for 10000 m competition. Maximal oxygen uptake seemed to be the best predictor of performance in these aerobic endurance events whereas a high \%ST fiber distribution might be a prerequisite for a successful endurance athlete.

The canoeists, 800 m runners and alpine skiers might be called "anaerobic endurance" athletes because their blood lactate values were in the mean higher than those of reference subjects. These athletes had also high aerobic perfomance capacity. Fitness profiles and correlations with ranking order seem to prove that canoeing requires tall muscular men whose aerobic performance capacity is very near the level of the aerobic endurance athletes. Both aerobic and anaerobic determinants of performance capacity predict fairly well the performance in actual sport event. However, measurement of oxygen uptake and oxygen debt during actual canoeing have correlated better (unpublished results) with the ranking order of these same canoeists. The athletes competing in alpine skiing and 800 m running have not been. very successful in international competitions although they belong to national elite. Therefore their fitness profiles may not reflect the foremost characteristics of international elite athletes. However, the crew of the four best canoeists studied was 7th in Mulnchen in 1972.

The third group of events, ice hockey and speed skating, might be called "speed-endurance" events because their vertical velocity and muscular power distinguish them from the reference subjects, in addition to some variables of aerobic performance capacity. The best ice hockey players seem to resemble both aerobic endurance athletes and power athletes (below). In addition to fitness, ice hockey requires both technical and tactical skill. Therefore it was not expected that also some of the physiological parameters would differentiate the national team level players from the other players. The best speed
skaters belong to national elite but they have not been successful in international competitions. Probably therefore their leg forces and blood lactate might have been relatively low as compared with the reference subjects or the best ice hockey players.

The skijumpers and the power athletes (100-400m runners, jumper, thrower, decathlete) form the fourth group of events: power events. Only vertical velocity distinguished the skijumpers from the reference subjects. This is related to the correlations between ranking order and vertical velocity both in skijumping and nordic combination. The large variations in body size, fat depots and leg forces of the skim jumpers suggest that there are also several other (psychological?) factors which might be important in this sport event. Nevertheless, the percent distribution of slow twitch muscle fibers was found to predict significantly the performance in actual ski.jumping.

In this study a significant negative relationship existed between speed and strength on one hand and aerobic performance capacity on the other hand. This relationship was most pronounced when only male athletes were included in the calculations. This negative relationship appeared both at whole body and at muscle tissue level and it might mainly be due to differences between groups of athletes, in other words, evidently due to differences in training. This negative relationship should be taken into account when planning the training programs for the athletes.

In some sport events both speed and strength as well as endurance are needed. In this study ice hockey, canoeing and speed skating might represent such sport events. Within the group of ice hockey players low nonsignificant positive correlations were found between maximal oxygen uptake and vertical velocity and between maximal oxygen uptake and relative leg force. Previously, we have also found a significant positive correlation between oxygen uptake during and oxygen debt after maximal 1000 m canoeing test among the same canoeists studied in the present study (unpublished results).

Recent investigations (Gollnick and Hermansen 1973, Karlsson et al. 1974) seem to indicate that LDH activity is lower in ST fibers that in FI' fibers. In this study the endurance athletes had lower LDH activity than skijumpers or alpine skiers and LDH activity was found to correlate
negatively both with maximal oxygen uptake and SDH activity in the same muscle. All these results support the hypothesis that LDH activity might decrease as a response to endurance training. Karlsson et al. (1974) have also shown that the LDH i.sozyme pattern in the skeletal muscle of endurance athletes has changed to the heart type isozyme pattern.

The theoretical basis of the relative power index is not clear and in this study it is rather regarded as an index of speed versu:s endurance. Anyway, this variable was found to correlate signi.ficantly with $\%$ © fibers. Therefore RPI could also be thought to give rough information on the structural qualification of the athletes. Furthermore, it is quite sensitive to training because both of its components change during training and both components have reciprocal characteristics.

1. Bergström, J.: Muscle electrolytes in man. Scand. J. Clin. Lab. Invest. Suppl. 68, 1962
2. Dumin, J. and Rahaman, M_{p} : The assessment of the amount of fat in the human body from the measurement of skinfold thickness. Brit. J. Nutr. 21, 681-689, 1967
3. von Döbeln, W.: Anthropometric determination of fatmfree body weight. Acta Med. Scand. 165, 37~41, 1959
4. Gollnick, P., Armstrong, R., Saubert, C., Piehl, K. and Saltin, B.: Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J.Appl. Physiol. 33, 312-319, 1972
5. Gollnick, P. and Hermansen, L.: Biochemi.cal adaptation to exercise. In wilmore, J.) ed.) : Exercise and sport sciences rewiews. Vol l. Academic Press, Inc., New York and London, 1973
6. Karlsson, J., Frith, K., Sjödin, B., Gollnick, P. and Saltin, B. : Distribution of LDH isozymes in human skeletal muscle. Scand. J. Clin. Lab. Invest. 33, 307-312, 1974
7. Komi, P_{o} : Measurement of the force-welocity relationship in human muscle under concentric and eccentric contractions. In: Medicine and sport, Vol. 8: Biomechanics III, pp. 174-w180. Karger, Basel, 1973 a
8. Komi, P.: A new electromechanical ergometer. In: 3. Internationales Seminax für Ergometrie, pp. 173-176. Ergon Verlag, Berlin 1973 b
9. Komi, P., Rusko, H., Vos, J. and Vihko, V.: Anaerobic performance capacity in athletes. Research reports from the Department of Biology of Physical Activity, No 8. University of Jyvåskylä 1976
10. Kornberg, A.: Lactic dehydrogenase of muscle. In: Golowick, S. and Kaplan, N. (ed.): Methods in enzymology I. Academic Press, Inc., New York, 1955
11. Lowry, O., Rosebrough, N., Farr, A, and Randle, R.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275, 1951
12. Margaria, R., Aghemo, P. and Rovelli, E.: Measurement of muscular power (anaerobic) in man. J. Appl. Physiol 21, 1661-1664, 1966
13. Padykula, II. and Hemme E.: 'Ihe sreeiricity of the histochemical method of adenosine triphosphatase. J. Histochem. Cytochem. 3, 170*195, 1955
14. Pennington, R.: Biochemistry of dystrophic muscle. Mitochondrial succinatew tetrazolium reductase and adenosine triphosphatase. Biochem. J. 80. 649-654, 1961
15. Rusko, H., Havu., M., and Karvinen, E.: Aerobic performance capacity in athletes. Research reports from the Department of Biology of Physical Activity, No 9. University of Jyväskylä 1976
16. Astrand, P.-O. and Rodahl, K.: Textbook of work physiology. McGraw-Hill, New York, 1971

Appendix 1. Means and standard deviations of different variables for the best athletes in each sport event and for the male and female reference subjects. Abbreviations are explained on page 2.

Variable	Cross ${ }^{-}$ country skiing, 4 males		Long- distance running, 4 males		Nordic combination 4 males		Cross ${ }^{-}$ country skiing, 5 females	
Height, cm	176.6	5.8	178.3	4.5	176.2	5.4	163.3	7.8
Weight, kg	70.6	7.4	68.2	1.0	70.4	5.7	59.1	5.2
FFW, kg	62.4	6.9	62.4	1.9	62.0	5.0	47.0	4.8
Fat, \%	10.6	0.8	8.6	1.0	11.2	1.4	21.8	3.7
Fat, kg	7.5	0.7	5.9	0.7	7.9	1.5	13.0	2.9
TLF, kg	265	36	256	53	295	54	227	63
RLF , kg/BW	3.75	0.14	3.74	0.72	4.17	0.59	3.90	1.28
$\mathrm{V}_{\mathrm{V}^{\prime}} \mathrm{mx} \mathrm{sec}{ }^{-1}$	1.29	0.06	1.28	0.07	1.31	0.09	1.17	0.07
MP, kgm x sec ${ }^{-1}$	90.8	13.5	87.3	5.1	92.5	12.5	69.3	7.0
Blood lactate, running, ma	10.8	1.9	11.4	1.9	11.8	2.1	11.0	2.6
$\mathrm{MaxV}_{\mathrm{O}_{2}}$, running, $1 \times \min ^{-1}$	5.84	0.50	5.44	0.10	5.12	0.27	4.03	0.15
$\operatorname{ml} \times \mathrm{kg}^{-1} \mathrm{x} \min ^{-1}$	83.4	4.7	79.8	2.2	72.3	2.5	68.2	3.9
\%ST fibers, m. VL	69.5	7.8	82.3	6.0	63.4	4.9	60.0	12.9
SDH act., m. VL	29.7	6.4	41.6	10.0	21.8	3.5	27.7	7.3
Max. heart rate, running	192.5	3.9	197.3	12.7	193.8	7.5	194.8	9.8
RPI	1.73	0.17	1.81	0.12	2.03	0.19	1.90	0.14

$\mathrm{MaxV}_{\mathrm{O} 2}$, arm work, $1 \times \min$	4.11	0.33	3.54	0.36	2.93	0.27
$\mathrm{ml} \times \mathrm{kg}^{-1} \mathrm{x} \min ^{-1}$	59.0	3.8	50.3	2.5	49.8	7.2
\% (ams/legs)	0.70	0.05	0.69	0.05	0.73	0.09
Blood lactate,	10.5	1.8	12.2	2.1	9.2	1.2
Max heart wate,	185.0	5.6	181. 2	5.1	187.4	12.0

Appendix 1. Means and standard deviations of different variables for the (continues) best athletes in each sport event and for the male and female reference subjects. Abbreviations are explained on page 2 .

Variable	Ice hockey 6 males		Speed skating 6 males		Skijumping 4 males		Power events 6 males	
Height, cm	177,0	3,9	181,4	3,6	172,3	7,4	176,2	4,7
Weight, kg	76,9	5,1	76,5	1,7	67,3	12,5	76,3	6,4
FFW, kg	63,9	4,6	65,7	1,7	57,2	7,3	63,1	5,2
Fat, \%	12,6	2,2	11,4	2,3	12,1	3,5	13,0	3,4
Fat, kg	9,7	2,0	8,7	1,7	8,6	3,9	10,1	3,2
TLF, kg	381	82	307	48	314	82	365	70
RLF, kg/BW	4,95	0,97	4,12	0,57	4,65	0,67	4,79	0,80
$\mathrm{V}_{\mathrm{v}^{\prime}} \mathrm{mx} \sec ^{-1}$	1,56	0,08	1,53	0,14	1,50	0,06	1,57	0,13
MP, kgm $\times \mathrm{sec}^{-1}$	119,9	6,6	116,8	12,5	101,2	19,9	119,8	17,2
Blood lactate, running, mM	11,1	2,0	9,0	1,1	10,9	1,5	13,2	2,8
$\begin{gathered} \operatorname{Max} \hat{O}_{O_{2}}, \text { running, } \\ 1 \times \min ^{-1} \end{gathered}$	4,75	0,46	5,58	0,37	4,02	0,40	4,33	0,50
$\mathrm{ml} \times \mathrm{kg}^{-1} \times \min ^{-1}$	62,5	5,7	72,9	4,3	60,7	6,0	57,1	8,4
\%ST fibers, m. VL	53,0	3,0	68,8	12,7	49,3	6,4	37,0	18,9
SDH act., m. VL	34,3	6,2	25,1	4,7	19,2	1,6	27,2	8,8
Max. heart rate, running	204,5	3,6	197,2	5,1	202,8	6,6	200,0	6,3
RPI	2,87	0,28	2,36	0,19	2,82	0,35	3,16	0,66

Appendix 1. Means and standard deviations of different variables for the (continues) best athletes in each sport event and for the male and female reference subjects. Abbreviations are explained on page 2 .

Variable	Canoeing 4 males		800 m running 6 males		Alpine skiing 6 males	
Height, cm	182,8	3,3	179,5	3,8	176,1	6,0
Weight, kg	82,2	7,4	72,3	4,6	70,1	8,0
FFW, kg	70,0	4,2	62,9	4,5	60,8	5,9
Fat, \%	13,0	2,9	12,4	1,4	14,1	3,0
Fat, kg	10,8	3,3	9,0	1,4	10,0	3,0
TLF, kg	377	26	296	84	324	36
RLF' KG/BW	4,77	0,31	4,06	1,06	4,60	0,32
$V_{v^{\prime}} m \times \sec ^{-1}$	i,40	0,05	1,40	0,20	1,43	0,10
MP, $\mathrm{kgm}^{\text {x sec }}{ }^{-1}$	115,3	9,4	101,8	19,3	100,5	15,0
Blood lactate,	11,4	2,6	13,8	2,1	13,6	1,0

running, mM
$\mathrm{MaxV}_{\mathrm{O}_{2}}{ }_{-1}^{\text {running, }}$
$1 \times$ min $^{-1}$
$\mathrm{ml} \mathrm{x} \mathrm{kg}^{-1} \mathrm{x} \mathrm{min}^{-1}$
\%ST fibers, m. VL
SDH act., m. VL
Max. heart rate, running
RPI

5,49 0,25
5,04 0,37
4,45 0,35
67,1 6,1
60,5 9,9
15,5 0,5
196,0 8,1
$2,37 \quad 0,18$
$2,26 \quad 0,44$
2,46 0,22
69,8 4,5
63,8 4,5
45,3 17,0
$63,7 \quad 8,3$
32,5
24,3
199,0 7,6
$\mathrm{MaxV}_{\mathrm{O}_{2}}$, arm work
$1 \times \min ^{-1}$
4,75 0,25
$\mathrm{ml} \mathrm{x} \mathrm{kg}^{-1} \mathrm{x} \mathrm{min}^{-1}$
61,9 2,3
\% (arms/legs)
Blood lactate, arm work, mM

Max. heart rate, arin work

0,86 0,04
9,3 1,8
192,5 4,1

Appendix 1. Means and standard deviations of different variables for the (continues) best athletes in each sport event and for the male and female reference subjects. Abbreviations are explained on page 2.

	Reference	Reference
vubjects,	subjects	
23 males	7 females	

Height, cm
Weight, kg
FFW, kg
Fat, \%
Fat, kg

175,8	7,0	164,4	6,6
75,0	11,8	57,5	5,5
61,6	8,4	45,6	3,3
14,4	3,0	22,8	2,4
10,9	3,6	13,2	2,2

ITF, kg
30571
195101
RLF, kg/BW
$\mathrm{V}_{\mathrm{v}} \mathrm{mx} \mathrm{sec}^{-1}$
MP, kgm x sec ${ }^{-1}$
Blood lactate, running, mM

4,08	0,69	3,39	1,45
1,32	0,13	1,24	0,14
98,9	16,7	71,4	12,2
10,8	2,2	8,3	2,1

$\mathrm{MaxV}_{\mathrm{O}_{2}}$, running,
$1 \times \min ^{-1}$
$\mathrm{ml} \mathrm{x} \mathrm{kg}{ }^{-1} \mathrm{xmin}^{-1}$
$\% S T$ fibers, m. VL
SDH act., m VL
Max. heart rate, running

4,06	0,54	3,19	0,36
55,1	7,1	55,6	5,6
47,1	13,1	48,8	8,3
21,4	5,5	12,5	4,7
193,0	8,1	197,1	4,7
2,72	0,43	2,40	0,26

$\mathrm{MaxV}_{\mathrm{O}_{2}}$, arm work,
$1 \times \mathrm{min}^{-1}$
ml $\mathrm{x} \mathrm{kg}^{-1} \mathrm{x} \mathrm{min}^{-1}$
웅 (arms/legs)
Blood lactate, arm work, mM

Max heart rate, arm work
$3,00 \quad 0,53$
$2,33 \quad 0,38$
39,0 5,5
40,4 4,5
$0,73 \quad 0,06$
$0,73 \quad 0,06$
$12,1 \quad 2,8$
$8,21,6$
184,1 10,2
$183,4 \quad 9,6$

