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Abstract
We consider the problem of estimating causal effects of 
interventions from observational data when well-known 
back-door and front-door adjustments are not applicable. 
We show that when an identifiable causal effect is subject 
to an implicit functional constraint that is not deducible 
from conditional independence relations, the estimator of 
the causal effect can exhibit bias in small samples. This 
bias is related to variables that we call trapdoor variables. 
We use simulated data to study different strategies to ac-
count for trapdoor variables and suggest how the related 
trapdoor bias might be minimized. The importance of trap-
door variables in causal effect estimation is illustrated with 
real data from the Life Course 1971–2002 study. Using this 
data set, we estimate the causal effect of education on in-
come in the Finnish context. Bayesian modelling allows us 
to take the parameter uncertainty into account and to pre-
sent the estimated causal effects as posterior distributions.

K E Y W O R D S

Bayesian estimation, bias, causality, functional constraint, 
identifiability

1  |   INTRODUCTION

Understanding causal relations forms the basis of decision-making in society. The role of statistics 
is to provide tools that allow us to estimate the causal effects of planned interventions. Instead of 
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modelling just associations, a causal model describes the functional relationships present in the sys-
tem of interest. A core feature of causal models (Pearl, 2009) is the capability to represent the effects 
of actions on the model via symbolic interventions. These interventions are assumed modular in the 
sense that they only modify the target of the intervention leaving other causal mechanisms in the 
model intact. The resulting probability distribution of this post-interventional causal model is defined 
as the causal effect of the intervention.

Various methods have been suggested for estimating causal effects in different settings. Propensity 
score matching (Imbens, 2000; Rosenbaum & Rubin, 1983), inverse probability weighting (Rosenbaum, 
1987; Rosenbaum & Rubin, 1983) and g-methods (Robins et al., 1992) are some of the most well-
known methods. These methods try to mimic a randomized experiment by creating pseudo-samples 
or by weighting the original sample in various ways, and it is typically assumed that there are no 
unobserved confounders present. In the classical structural equation modelling (SEM) approach (see, 
e.g. Kline, 2011), observed variables are assumed to be Gaussian, and unobserved confounders are 
treated as correlations between observed variables (there are also some extensions, such as LiNGAM 
for linear non-Gaussian cases (Shimizu, 2014)).

Another approach to causal inference is based on causal graphs, where the notion of identifiabil-
ity plays a central role (see Section 2). For certain graphs, the well-known back-door and front-door 
adjustment criteria (Pearl, 1995) allow for identification of interventional distributions from obser-
vational data in the presence of unobserved confounders. The back-door criterion tells us whether a 
set of variables forms an admissible set, so that we only need to condition on these variables when 
estimating the causal effect, whereas the similar front-door criterion can be applied in the presence of 
a mediator between the interventional variable and the response variable. More generally, do-calculus 
(Pearl, 1995) can be used to assess whether the interventional distribution of interest is identifiable 
given only the known causal graph, without any parametric assumptions about the distributions of 
the variables or the form of the effects they have on each other. Do-calculus provides an identifying 
functional that is a nonparametric formula for the interventional distribution consisting of terms that 
represent observational distributions. Although identifiability does not in general guarantee estima-
bility (Maclaren & Nicholson, 2019), it is usually possible to obtain an estimator for the causal effect 
by replacing the terms present in the identifying functional by suitable parametric or nonparametric 
estimators and then combining the results accordingly.

We study the estimation of causal effects with small data in scenarios where standard adjustment 
criteria are not applicable. By small data, we refer to a case where parameter estimation exhibits non-
negligible uncertainty due to the sample size. In addition, we consider the presence of functional equal-
ity constraints known as Verma-constraints (Robins, 1986; Tian & Pearl, 2002; Verma & Pearl, 1990). 
Under certain conditions (see Section 2), these constraints are related to special variables that we call 
trapdoor variables. These variables can bias the causal effect estimator for finite samples and we refer to 
this form of bias as trapdoor bias. We demonstrate the practical ramifications of trapdoor variables for 
the estimation of causal effects via simulations in a number of synthetic scenarios with small sample sizes 
and compare a variety of estimation strategies in both nonparametric and parametric settings.

As a motivating example, we consider Bayesian estimation of the causal effect of education on yearly 
income using real data from the Finnish Life Course 1971–2002 study (Kuusinen, 2018). We construct 
a causal model for this study where we take into account the grade point average (GPA) from primary 
school, language skills, gender and the socioeconomic status (SES) of the parents. In the causal model, 
we find that GPA is in fact a trapdoor variable due to a functional equality constraint on the causal effect 
of interest. Bayesian modelling allows us to estimate the full post-interventional distribution of the income 
on different levels of education, which indicate a clear positive causal effect of education on income. We 
combine Bayesian estimation with a specialized Monte Carlo approach in order to take the effect of the 
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trapdoor variable into account in a number of scenarios including the life course model. All analysis was 
done in the R environment (R Core Team, 2020), and the codes for the simulation experiments, the life 
course example, and the figures for the simulation results (created with the ggplot2 package (Wickham, 
2016)) of this paper are available at https://github.com/helsk​e/trapdoor.

The paper is structured as follows. Section 2 introduces the notation, gives a definition for the 
trapdoor variables and present examples on causal models where such variables are present. Section 
3 focuses on various aspects related to the estimation of causal effects in the presence of trapdoor 
variables including a Bayesian approach and demonstrates how a trapdoor variables manifests under 
a linear-Gaussian model. Section 4 considers the effect of trapdoor variables and the trapdoor bias 
of causal effect estimators via simulation in a model with binary variables, a linear-Gaussian model 
and a synthetic scenario based on the life course model. The analysis using the real life course data is 
presented in Section 5. Section 6 provides some concluding remarks.

2  |   THEORY

2.1  |  Notation and basic definitions

Our analysis is based on the framework of structural causal models (SCM) and directed graphs, and 
we assume the reader to be familiar with these concepts and their core probabilistic and graphical 
properties. For a more detailed discussion on SCMs and graph theoretic concepts, we refer the reader 
to works such as (Pearl, 2009) and (Koller & Friedman, 2009).

We use capital letters to denote variables (V) and small letters to denote their values (v). Bold let-
ters are used to denote sets of variables (V) and value assignments (v). The set of all possible value 
assignments to V is denoted by val(V). Set difference of sets A and B is denoted by A∖B. We use 
shorthand notation P(Y|x) to denote the probability distribution P�(Y |X = x) where we typically omit 
the dependence of (unknown) model parameters θ.

Each SCM M over a set of variables V is associated a joint probability distribution P(V) in a popu-
lation of interest and a causal graph G over V where directed edges between two observed variables in 
V correspond to direct causal relationships which are assumed to not form any cycles. Bidirected edges 
between two observed variables in V are used to denote confounding by an unobserved common cause. 
In this framework, interventions are represented using the do(·)-operator. An intervention do(X = x) 
forces the variables in X to take the values specified by x while leaving other mechanisms of the model 
intact. This intervention induces a submodel Mx with the interventional distribution P(V| do(X = x)). 
A causal effect P(Y|do(X = x)) is said to be identifiable in G if it is uniquely computable from P(V) 
in any SCM that induces G. A variable Y in the post-intervention model Mx is denoted as Y(x). For an 
identifiable causal effect, an identifying functional is a function f such that f(P(V)) = P(Y| do(X = x)). 
We assume that P(V = v) > 0 for values v ∈ val(V) making all conditional distributions and interven-
tions well-defined.

Note that identifiability only indicates the existence of an estimator and does not take into account the 
potential problems stemming from finite data. Therefore, even though determining the identifiability of 
P(Y| do(X = x)) is an important first step, it does not guarantee that we can estimate the causal effect in 
practice without additional stability assumptions (Maclaren & Nicholson, 2019). Note also that through 
this paper, we assume that our causal graph is correct, while in practice, we are rarely certain of this.

Interventional distributions exhibit conditional independence constraints, which can be character-
ized by d-separation (Pearl, 1988) in the associated causal graph of the model. However, identifiable 
causal effects can be subject to Verma-constraints. As an example of such a constraint, we show that 

https://github.com/helske/trapdoor
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in the causal graph of Figure 1, a causal effect does not depend on the value of a variable W despite it 
appearing in the identifying functional of the interventional distribution. The causal effect of X on Y 
is identifiable in this graph which can be verified using do-calculus or by applying an identifiability 
algorithm such as the one by Huang and Valtorta (2006) or the ID algorithm by Shpitser and Pearl 
(2006). Application of the ID algorithm implemented in the R package causaleffect (Tikka & 
Karvanen, 2017) provides the formula 

where the left-hand side depends on the value of X and Y, but on the right-hand the variable W is also pres-
ent and it is not subject to summation, unlike the variable Z. However, the right-hand side cannot depend 
on the value of W, as there is an admissible set Z which gives us an alternative formula 

that is a simple back-door formula where variable W is not present.
Perhaps surprisingly, Verma-constraints can be expressed as conditional independences in the in-

terventional distribution (Shpitser & Pearl, 2008) and can be used to give an alternative definition for 
nested Markov models in acyclic directed mixed graphs (Richardson et al., 2017). Verma-constraints 
have been used for testing edges (Shpitser et al., 2009) and and for marginalization via variable elim-
ination (Shpitser et al., 2011).

2.2  |  Trapdoor variables

Here we give a broad definition that captures the notion that a set of variables Z may appear in an identify-
ing functional of a causal effect, but the value of the causal effect is not dependent on the value of Z.

Definition 1. � (Functional independence) Let X, Y, Z ⊂ V be disjoint sets and let P(Y| do(X = x)) 
be an identifiable causal effect with an identifying functional g(v) = f(P(v)). If the do-
main of g is val(X) × val(Y) × val(Z), and g(x, y, z1) = g(x, y, z2) for all x ∈ val(X), 
y ∈ val(Y) and z1, z2 ∈ val(Z), then g is functionally independent from Z.

The constraint defined above is specific to the given identifying functional. In some instances, we 
may be able to find identifying functionals that do not exhibit functional equality constraints for any 
subset Z of V. Our interest lies in the opposite direction, where every identifying functional exhibits a 

P(Y | do(X = x)) =
∑

z

P(Y |x, z, w)P(z |w),

P(Y | do(X = x)) =
∑

z

P(Y |x, z)P(z),

F I G U R E  1   A causal graph where the identifying functional of P(Y| do(X = x)) obtained by an application of the 
ID algorithm does not depend on the value of of W and there is an admissible set Z enabling back-door adjustment

YXZW
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specific type of functional independence. Before characterizing this property of interest, we must first 
define an operation known as the latent projection of a causal graph (Pearl & Verma, 1991).

Definition 2. � (Latent projection) Let G be a causal graph over a set of vertices V∪L. The latent 
projection L(G, V) is a causal graph over V where for every pair of distinct vertices 
Z, W ∈ V it holds that 

1.	 L(G,  V) contains an edge Z⟶W if there exists a directed path Z⟶⋯⟶W in G on which 
every vertex except Z and W is in L.

2.	 L(G, V) contains an edge Z⟷W if there exists a path from Z to W in G that does not contain the 
pattern Z⟶M&⟵W (a collider), on which every vertex except Z and W is in L, the first edge of 
the path has an arrowhead into W and the last edge has an arrowhead into Z.

Latent projections can be used to derive identifying functionals for causal effects such that they do 
not contain a specific variable that is the variable is considered latent, and the causal effect of interest 
is identified in the corresponding latent projection (Tikka & Karvanen, 2018). For this reason, the 
presence of a functional constraint in some identifying functional does not rule out the possibility of 
obtaining another identifying functional that is not subject to the same constraint (Recall the example 
on the identifying functional of P(Y| do(X = x)) in the graph of Figure 1).

We rule out this possibility of finding alternative identifying functionals by restricting our atten-
tion to settings where a trapdoor variable is present.

Definition 3. � (Trapdoor variables) If P(Y| do(X=x)) is identifiable in G from P(V), its identifying 
functional f(P(V)) is functionally independent of Z where Z ⊂ V� (X ∪ Y), and P(Y| 
do(X=x)) is not identifiable in L(G, V∖Z) from P(V∖Z), then Z is a set of trapdoor 
variables with respect to f(P(V)) in G.

Finding trapdoor variables is straightforward as outlined by their definition. Given a causal effect 
of interest, we first determine its identifiability and whether the identifying functional is subject to 
functional equality constraints. If this is the case, we proceed to verify whether the causal effect might 
be identifiable when the set Z is considered latent using a suitable latent projection. The algorithm by 
Tian and Pearl (2002) can be used to systematically enumerate functional equality constraints implied 
by a causal model. Evans (2018) showed that this constraint-finding algorithm is complete for cate-
gorical variables, but it is not known whether the algorithm is complete in general, that is, whether all 
such constraints can be found by the algorithm.

If there exists a trapdoor variable for an identifying functional of a causal effect of interest, then 
the estimate of the causal effect may depend on the value of the trapdoor variable. This dependency 
can introduce bias in the estimate.

Definition 4. � (Trapdoor bias) Let ĝ(v) be an estimator of an identifying functional g(v) of a causal 
effect P(Y| do(X = x)) and let Z be a set of trapdoor variables with respect to g(v). 
Let B(ĝ(v)) denote the bias of this estimator. If there exists z1, z2 ∈ val(Z) so that 
B(ĝ(x, y, z1)) ≠ B(ĝ(x, y, z2)), then ĝ(v) exhibits trapdoor bias with respect to Z.

For a consistent estimator, the effect of the trapdoor bias becomes negligible as the sample size grows, 
but for small samples the choice of how to take the trapdoor variables into account may be significant.
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2.3  |  Example on trapdoor variables

Consider the three causal graphs in Figure 2. We are interested in estimating the causal effect of X on 
Y. For example, in our application in Section 5, X will be the education level and Y is the yearly in-
come. Furthermore, Z corresponds to the GPA from primary school, and W to the SES of the parents. 
In all three graphs, we have an arrow from X to Y, meaning that we assume that there is a direct causal 
effect of education on income. In addition, we assume that there may be some unobserved confound-
ers between SES of the parents and income. In the graphs of Figure 2b and c, we also assume that there 
is confounding between SES of the parents and education level of the participant. In Figure 2c, we 
assume that the effect of SES on the education level is mediated by the GPA. We will further extended 
the third graph with additional variables, such as gender, in Section 5.

Now consider the estimation of the interventional distribution P(Y| do(X = x)), that is the distribu-
tion of Y when we intervene on X by setting it to x, which differs from a simple conditional distribution 
of P(Y|X = x) in these graphs. In order to estimate P(Y| do(X = x)), we need to find a formula for it in 
terms of the observed variables only, that is Y, X, W and Z in our example. In the graph of Figure 2a, 
we obtain the so called back-door adjustment formula 

By conditioning on W, we block all back-door paths from X to Y that is those paths between X and 
Y which have arrows into X. Thus by estimating the parameters of the terms P(Y|w,x) and P(W), we can 
estimate the interventional distribution of interest, P(Y| do(X = x)). For example, assuming that all vari-
ables are Gaussian and their relationships are linear, we have Y(x) ∼ N(ay + bywaw + byxx, s2

y
+ b2

yw
s2

w
), 

with bij denoting the estimated regression coefficient of variable j on variable i, ai denoting the inter-
cept term and s2

i
 corresponding to the estimated residual variance.

Now consider the graph of Figure 2b. In this case, conditioning on W blocks the path Y⟷W⟶X 
but opens the path Y⟷W⟷X meaning that we cannot apply the back-door adjustment here. In fact, 
adding the unobserved confounder between W and X renders the causal effect nonidentifiable.

In the graph of Figure 2c, we assume that we have obtained data on variable Z which lies on the 
directed path from W to X. Given this additional information, the causal effect P(Y| do(X = x)) is again 
identifiable, and we have 

However, there is no term for the distribution of Z in Equation (1). Thus after estimating the distributions 
P(Y|x, z, w), P(X|z, w) and P(W), Z is essentially reduced to a fixed but unknown parameter in the context 

P(Y | do(X = x)) =
∑

w

P(Y |x, w)P(w).

(1)P(Y � do(X = x)) =

∑
wP(Y �x, z, w)P(x �z, w)P(w)∑

wP(x �z, w)P(w)
.

F I G U R E  2   Three causal graphs of increasing complexity, where the interest is in the causal effect of X on Y

W

YX

(a)

W

YX

(b)

W

YX

Z

(c)
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of P(Y| do(X = x)). This graph is also considered by Tian and Pearl (2002), Pearl and Mackenzie (2018), 
and Jung et al. (2020). Tian and Pearl (2002) show that this graph contains a functional equality constraint 
of an interventional distribution which cannot be expressed as a conditional independence constraint using 
the observed variables. The constraint states that the formula for P(Y|do(X = x)) given in Equation (1) is 
functionally independent of Z, meaning that its value is independent on the choice of z, just as we would 
intuitively expect. However, when estimating equation (1) from the data, we clearly must choose some 
value for Z, even though the constraint states that the actual value should not matter. In fact, Z is a trapdoor 
variable with respect to the identifying functional of Equation (1) in this graph. This follows from the 
functional equality constraint and the fact that the causal effect is not identifiable in the causal graph of 
Figure 2b which is the latent projection of Figure 2c when Z is considered latent.

Trapdoor variables are in no way limited to the scenario of Figure 2c. Figure 3a presents a gener-
alization of Figure 2c with an additional set of variables B = {B1, …, Bk}, that are possibly connected 
to each other with directed arrows or through unobserved confounders. In addition, any member of B 
is possibly connected to W via a bidirected edge or to Z, X or Y via a directed edge. Figure 4 depicts 
three additional examples of graphs where trapdoor variables are present. In the following sections we 
investigate the challenges that trapdoor variable s impose on the estimation of causal effects.

3  |   ESTIMATION

3.1  |  Plug-in estimation

A straightforward strategy for causal effect estimation given the assumed causal graph is to construct 
a parametric model for the conditional distributions that appear in the formula of an identifying func-
tional of a causal effect. As an example, consider the graph of Figure 2c, and assume that we wish to 
estimate E(Y| do(X = x)). We need to estimate the unknown model parameters θ corresponding to the 
causal effect of Equation (1) and we let P�̂( ⋅ ) denote the density where the unknown parameters θ are 
assigned some fixed values such as their maximum likelihood (ML) estimates. The plug-in estimator 
for the expected value of the interventional distribution takes the following form 

(2)Ê�̂,z
(Y �do(X = x)) =

�
y

y

∑
wP�̂(y �w, z, x)P�̂(x �w, z)P�̂(w)∑

wP�̂(x �w, z)P�̂(w)
.

F I G U R E  3   A generalization of the setting presented in Fig. 2c with an additional set of variables B is shown in 
(a). The square node for B denotes an arbitrary causal graph over B. Edges to and from B mean that such an edge may 
exist between any member of B and the other endpoint of the edge. An instance of (a) is shown in (b) with B = {S, G}

B

YXZW

(a)

GS

YXZW

(b)
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Note that this estimate may depend on the value of z when using a small sample estimate for θ. This de-
pendency and the corresponding trapdoor bias vanish when the models are correctly specified and the true 
parameter values are used (by the definition of functional independence). However, even if we assume an 
unbiased estimator �̂, the estimator (2) can still exhibit bias since it is a nonlinear function of �̂ that de-
pends on the choice of z. For large enough data sets, the choice of z in Equation (2) should not have a large 
impact, but we will show that for small samples, the value of the trapdoor variable z can have a crucial role 
in estimating the correct causal effect of X on Y.

An alternative strategy for defining the plug-in estimator is to eliminate the functional constraint 
by averaging the identifying functional over a (conditional) distribution of the trapdoor variable. If Z 
is a trapdoor variable and T ⊆ (V∖Z), then 

since f(P(v)) is functionally independent of Z. This leads to the following alternative estimator for the 
expected value of the interventional distribution in the causal graph of Figure 2c 

Note that while this strategy eliminates the problem of having to choose a specific value for z, it 
also introduces a new problem of selecting the set T and estimating the model parameters for the dis-
tribution P�(Z | t). As before, this estimator is a nonlinear function of the parameters that can result in 
bias. Note that in a frequentist framework, there is no way to divide the total bias of the final estimate 
into trapdoor bias, plug-in bias, or other possible sources of bias.

P(Y | do(X = x)) = f(P(v)) ⋅ 1 = f(P(v))
∑

z

P(z | t) = ∑
z

P(z | t)f(P(v)),

(3)Ê�̂(Y � do(X = x)) =
�

y

y
�

z

P�̂(z � t)
∑

wP�̂(y �w, z, x)P�̂(x �w, z)P�̂(w)∑
wP�̂(x �w, z)P�̂(w)

.

F I G U R E  4   Examples on graphs where trapdoor variables are present. In (a) and (b), Z is a trapdoor variable for 
P(Y | do(X1 = x1, X2 = x2)). In (c), Z is a trapdoor variable for P(Y1, Y2 |do(X = x))

YX2WZX1

(a)

YX2

W

Z

X1

(b)

W

Y2Y1X

Z

(c)
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3.2  |  Bayesian estimation of causal effects

We advocate the use of Bayesian methods for jointly estimating the parameters of the distributions of iden-
tifying functionals of interest. By drawing samples from the joint posterior of the model parameters (using 
any generic Bayesian inference engine, typically some type of Markov chain Monte Carlo (MCMC) algo-
rithm), we propagate the parameter estimation uncertainty to the final causal effect estimates and avoid the 
plug-in bias due to the nonlinear formula of the identifying functional with respect to model parameters. 
This allows us to focus on the effects of the trapdoor variable and the trapdoor bias of the estimators. We 
can also obtain samples from the full posterior of P(Y| do(X = x)) which can be used for straightforward 
evaluation of any properties of interest (such as mean and variance) of this posterior.

In parametric estimation of causal effects, we typically do not have an analytical formula for the 
types of plug-in estimators that are shown in Equations (2) and (3). In these cases, we can use a Monte 
Carlo approach to draw samples from P�̂(Y | do(X = x)), and estimate the desired quantity using these 
samples. The specific Monte Carlo algorithm depends on the causal graph, the identifying functional 
and the corresponding conditional distributions. In simple cases, we simulate variables from their 
(conditional) distributions with fixed x, whereas, for example in the case of Equation (1) where P(X|·) 
is present, we need additional weighting of the samples. Consider our extended example graph in 
Figure 3a, which leads to the following formula for P(Y| do(X = x)): 

Algorithm 1 describes the Monte Carlo algorithm for Equation (4) based on the second approach dis-
cussed in Section 3.1, given the parameter vector ̂� (the same algorithm is also suitable for (1) by omission 
of the references to the variables in B). Algorithm 1 draws samples from the marginal and conditional dis-
tributions defined in (4) and gives us N × M weighted replications from P�̂(Y | do(X = x)) which allows 
us to compute, for example 

where the weights � ij are defined in the last step of Algorithm 1.

(4)
�

b

P(b)

∑
wP(Y �x, z, w, b)P(x �z, w, b)P(b �w)P(w)∑

wP(x �z, w, b)P(b �w)P(w)
.

(5)Ê�̂(Y |do(X = x)) =

N∑
i= 1

M∑
j= 1

� ijyij,
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Here the trapdoor variable has a more crucial role than in the case of analytical formulas. With poor 
choices of z, our weights � ij can become degenerate, that is, most of the weights are near zero. In order to 
avoid this, it is natural to condition the trapdoor variable on x and perhaps other variables such as members 
of bi in Algorithm 1 which should make the weights well behaved.

The suitable number of Monte Carlo samples N × M can determined by computing the Monte 
Carlo standard error (MCSE) of our causal effect estimate. The MCSE measures the additional uncer-
tainty in our estimate due to the finite Monte Carlo sample size. For example, the MCSE for estimator 
(4) can be computed as 

When combining Algorithm 1 with Bayesian parameter estimation, the algorithm is used at each MCMC 
iteration given the current values of the model parameters θ.

With the MCMC approach, we can compute functions of Y(x) at each iteration, giving us samples 
from its posterior distribution, or we can store all N × M weighted Monte Carlo samples leading to 
posterior distribution of Y(x), that is, the variable Y in the post-interventional distribution, which can 
be further used to evaluate functions of interest. In the latter case, it can be practical to resample (using 
the corresponding weights) and store only one replication yij at each iteration if memory constraints 
limit the storing of all samples.

3.3  |  Analytical causal effect for a linear-Gaussian model

We will now consider the estimation of causal effects in a common linear-Gaussian case for the causal 
graph of Figure 2c. We assume that the underlying model is defined as 

Here all the parameters �
⋅
, �

⋅
, �

⋅⋅
 and �

⋅
 are unknown, and U and V are unobserved confounders. Our ob-

servational model needed for estimating P(Y| do(X = x)) is 

where parameters a
⋅
, b

⋅⋅
 and s

⋅
 are unknown and have to be estimated from the data.

Now using equations of model (7) to Equation (1) yields 

MCSE
(

Ê�̂(Y| do(X = x))
)
=

√√√√ N∑
i= 1

M∑
j= 1

[
� ij

{
yij − Ê�̂(Y| do(X = x))

}]2

.

(6)

U ∼N(�
u
, �2

u
),

V ∼N(�
v
, �2

v
),

(W|U=u, V= v) ∼N(�
w
+�

wu
u+�

wv
v, �2

w
),

(Z|W=w) ∼N(�
z
+�

zw
w, �2

z
),

(X|Z= z, V= v) ∼N(�
x
+�

xz
z+�

xv
v, �2

x
),

(Y|X= x, U=u) ∼N(�
y
+�

yx
x+�

yu
u, �2

y
).

(7)
W ∼N(aw, s2

w
),

(X|Z= z, W=w) ∼N(ax+bxzz+bxww, s2

x
),

(Y|X= x, Z= z, W=w) ∼N(ay+byxx+byzz+byww, s2

y
),
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and 

While the variance Var(Y| do(X = x)) does not contain the trapdoor variable Z, the expected value E(Y| 
do(X = x)) does, which is not surprising since P(Y| do(X = x)) = P(Y| do(X = x,Z = z)) in the graph of 
Figure 2c. Also, if the interest is only in the difference E(Y| do(X = x+1))−E(Y| do(X = x)) then the effect 
of trapdoor variable cancels out in this linear case.

As our model is linear-Gaussian, we can apply path analysis (Wright, 1934) to our causal graph 
(see, e.g. Pearl (2013)) to find the marginal covariance matrix Σ for (Y, X, Z, W) (shown in Appendix). 
From Σ, using the properties of multivariate normal distribution, we can obtain the theoretical formu-
las for the parameters (a

⋅
, b

⋅⋅
, s

⋅
) of model (7) in terms of the true parameters (�

⋅
, �

⋅
, �

⋅⋅
, �

⋅
) of the 

causal graph (see Appendix for details). Plugging these into Equation (8), we obtain 

and 

As expected, given the true causal model and its known parameters, the effect of the trapdoor variable 
cancels out. Nevertheless, with a finite data set, the estimate of expected value (8) depends on z, unless (
byz −

bywbxws2
w

b2
xw

s2
w
+ s2

x

bxz

)
 happens to estimate to zero.

4  |   SIMULATION EXPERIMENTS

4.1  |  Binary model

We will now illustrate different choices for the trapdoor variable with nonparametric estimation of 
P(Y| do(X = x)) in a case where all variables are binary. Consider Bernoulli variables defined in ac-
cordance with Figure 2c as 

where V and U correspond to the bidirected edges between X and W and between W and Y, respectively. 
By solving Equation (1) analytically, we obtain 

(8)E(Y | do(X = x)) = ay +
byws2

x

b2
xw

s2
w
+ s2

x

aw −
bywbxws2

w

b2
xw

s2
w
+ s2

x

ax +

(
byx +

bywbxws2
w

b2
xw

s2
w
+ s2

x

)
x +

(
byz −

bywbxws2
w

b2
xw

s2
w
+ s2

x

bxz

)
z

Var(Y | do(X = x)) =
b2

xw
s2

y
s2

w
+ s2

x

(
b2

yw
s2

w
+ s2

y

)

b2
xw

s2
w
+ s2

x

.

E(Y | do(X = x)) = �y + �yu�u + �yxx,

Var(Y | do(X = x)) = �2
yu
�2

u
− 2�wu�zw�xz�yx�yu�

2
u
+ �2

y
.

(9)

V ∼Bernoulli(0.5),

U ∼Bernoulli(0.5),

(W|V= v, U=u) ∼Bernoulli(0.4u+0.4v),

(Z|W=w) ∼Bernoulli(0.4+0.4w),

(X|Z= z, V= v) ∼Bernoulli(0.4z+0.4v),

(Y|X= x, U=u) ∼Bernoulli(0.4x+0.4u),

P(Y = y |do(X = x)) = (0.2 + 0.4x)y(0.8 − 0.4x)1− y, y ∈ {0, 1},
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which does not depend on z. However, in practice, when U and V are unobserved and we need to estimate 
distributions P(W), P(X|z, w), and P(Y|x, z, w) from finite data, we will show how the estimate of P(Y| 
do(X = x)) can depend on the chosen value z.

As an example, we simulated 100,000 data sets according to model (9) with sample sizes 100, 300 and 
500, and estimated P(Y| do(X = x)) nonparametrically with various methods for dealing with the trapdoor 
variable. Besides fixing z to zero or one and using the estimator (2), we also computed a weighted aver-
age of these estimates, where the weights were based on the estimated marginal distribution P(Z), or the 
conditional distribution P(Z|x), corresponding to the estimator (3). With sample sizes 100 and 300, there 
were some cases where fixing z to zero or one lead to undefined probabilities (for example, there were no 
observations for which x = 0, z = 0 and w = 0). In these cases (about 10% of cases with sample size 100, 
and less than 0.1% with sample size 300), the entire replication was discarded. Figure 5 shows the results 
of the simulation. We see that using the fixed values with z = 0 or z = 1 leads to some bias. The weighted 
average estimators perform better, and the one based on P(Z|x) outperforms the estimator based on P(Z). 
Overall, we are not far off from the ground truth in this simple setting.

4.2  |  Linear-Gaussian model

Now consider a model based on Equation (6) with 

(10)

U ∼N(1, 1),

V ∼N(1, 1),

(W|U=u, V= v) ∼N(1+u+v, 1),

(Z|W=w) ∼N(1+w, 1),

(X|Z= z, V= v) ∼N(1+z+v, 1),

(Y|X= x, U=u) ∼N(1+x+u, 0.01).

F I G U R E  5   Average estimates of P(Y = 0| do(X = x)) and ±2SE over 100,000 replications for the Binary model 
with varying sample sizes and different strategies to account for the trapdoor variable Z. The dashed lines show the 
true causal effects

y = 0, x = 0 y = 0, x = 1

100 300 500 100 300 500
0.398

0.399

0.400

0.401

0.402

0.799

0.800

0.801

0.802

Sample size

P
(Y

 =
 y

 | 
do

(X
 =

 x
))

z = 0 z = 1 P(Z) P(Z | X = x) Fully observed



      |  13Helske et al.

We will compare various approaches to account for the trapdoor variable Z. Instead of the nonparametric 
approach used in Section 4.1, we now switch to parametric Bayesian modelling. For comparative pur-
poses, we use uniform priors for all unknown model parameters (a

⋅,b⋅⋅, and s
⋅
 in Equation (7)). As stated in 

Section 3, the Bayesian approach takes into account the uncertainty in P(Y| do(X = x)) due to parameter 
estimation by integrating over the posterior distribution of the parameters and avoids the plug-in bias due 
to the nonlinearity of Equation (8).

For model estimation, we wrote a Stan model (Carpenter et al., 2017; Stan Development Team, 
2019) which simultaneously estimates all unknown model parameters and E(Y|do(X  =  x)) using 
MCMC. We estimate the true expected causal effect E(Y| do(X = x)) using the causal graph with 
observed confounders, with x ∈ {0, 3, 6, 9}, and compare it to the estimates obtained by six different 
methods:

1.	 Fix the trapdoor variable Z to the constant z  =  0 in Equation (8).
2.	 Marginalize over P(Z) that is in addition of estimating model (7) also estimate P(Z), so that the esti-

mator (8) uses z = E(Z) at each MCMC iteration.
3.	 As above, but estimate P(Z|x) and use z = E(Z|x).
4.	 Use a constraint byz = (bxzbywbxws2

w
)∕(b2

xw
s2

w
+ s2

x
) so that the contribution of z is fixed to zero.

5.	 Fit a structural equation model (SEM), a common approach for linear-Gaussian causal modelling 
(Kline, 2011). We used the R package lavaan (Rosseel, 2012) for this purpose.

6.	 Use the composition of weighting operators (CWO) (Jung et al., 2020), which applies weighted 
regression to estimate functions of interventional distributions for arbitrary identifying functionals.

Based on model 1000 we have E(X) = 6, E(Z) = 4, and E(Z|X = 0) = 0.25, E(Z|X = 3) = 2.1255, 
E(Z|X = 6) = 4 and E(Z|X = 9) = 5.875.

We sampled 1000 replications of varying sample size from model (10) and for each replication es-
timated E(Y| do(X = x)) using a single MCMC chain with 10,000 post-warmup iterations and averag-
ing over the iterations (thus taking account the uncertainty from parameter estimation), except for the 
SEM and CWO approaches which are based on the ML estimates. Figure 6 shows how, despite the-
oretical equivalence, results depend heavily on the chosen strategy. Perhaps the most natural choices 
of z = 0 and z = E(Z) are prone to bias which depends on the value x, but the case where z is adapted 
based on x performs well. The SEM approach, which explicitly models the covariance structures 
between variables, also performs well due to the structure of the graph (see Shpitser et al. (2018) for 
more details), but is not applicable in more general graphs with non-Gaussian or nonlinear equations. 
The CWO method shows considerable bias when x≠E(X).

4.3  |  Analytical versus Monte Carlo approach for the linear-Gaussian model

Consider again model (10) but now with 

that is smaller measurement error in X, leading also to a narrower density of P(X|z, w). Because of 
this, a poor choice for the value of the trapdoor variable can cause most of the normalized weights �  
in Algorithm 1 to be close to zero, leading to inefficient Monte Carlo sampling. As an example, we 
simulated one replication of size n = 100 from this model, and estimated the posterior distribution of 
E(Y| do(X = 0)), both using the analytical formula and Monte Carlo with N = 500. For MCMC, we 

(X |Z = z, V = v) ∼ N(1 + z + v, 0.01),
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ran 4 chains with a total of 100,000 post-warmup iterations. In addition, at each MCMC iteration, we 
sampled one replication from the posterior predictive density P(Y| do(X = 0)) from the weighted Monte 
Carlo sample. Figure 7 shows the posterior distributions. We can see that with suitable z = E(Z|X = 0) 
both analytical and Monte Carlo methods give approximately equal results. A poor choice of z = E(Z) 
biases results compared to the analytical solution (which is also biased) as can be seen from the dis-
crepancy between the posterior distributions of E(Y| do(X = 0)) based on Monte Carlo and analytical 
approaches. With N = 500, the average MCSE (over posterior samples) was 0.08 for z = E(Z|X = 0) 
and 0.22 for z = E(Z). The additional variation due to the Monte Carlo sampling can inflate the pos-
terior distribution of E(Z|X = 0), but here with N = 500 the proportion of MCSE of the total posterior 
uncertainty is negligible: when using z = E(Z|X = 0), the posterior standard deviations of analytical and 
Monte Carlo methods were 0.40 and 0.41, respectively.

4.4  |  Non-Gaussian model

In Section 5, we study the causal effect of education level on income using real data. Here we perform 
a simulation experiment where we emulate the real-data case using the assumed graph of the real-data 
case and define the data generating process so that it reflects the nature of the variables in Section 5. 
We use graph of Figure 3b where we obtain the following formula for P(Y| do(X = x)): 

F I G U R E  6   Average estimates of E(Y| do(X = x)) and ±2 SE over 1000 replications with sample sizes 100, 300 
and 500 and different choices for taking the trapdoor variable into account in the simulation study of Section 4.2. The 
dashed lines show the true expected values
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Let variables U1, U2 and U3 correspond to the confounders between W and Y, W and X, and W and 
S, respectively. For our simulation purposes, we define a following data generating process: 

(11)
�
s,g

P(g)P(s)

∑
wP(Y �x, z, w, s, g)P(x �z, w, s, g)P(s �w)P(w)∑

wP(x �z, w, s, g)P(s �w)P(w)
.

U1 ∼N(0, 1),

U2 ∼N(0, 1),

U3 ∼N(0, 1),

G ∼Bernoulli(0.5)

(S�U3 =u3) ∼N(36+3u3 , 25)

(W�U1 =u1, U2 =u2, U3 =u3) =

⎧⎪⎨⎪⎩

1 if u1+u2+u3 ≤−1.1

2 if −1.1<u1+u2+u3 ≤1.9

3 otherwise

(Z�W=w, S= s, G=g) ∼Beta(𝜇
z
𝜙

z
, (1−𝜇

z
)𝜙

z
),

(X�Z= z, U2 =u2, S= s, G=g) ∼SM(−0.5g+0.04s+13.5z+2u2, (12.5, 14)),

(Y�X= x, U1 =u1, S= s, G=g) ∼Gamma(10000, 10000∕𝜇
y
),

F I G U R E  7   Posterior predictive distribution P(Y| do(X = 0)) and posterior distribution of E(Y| do(X = 0)) of the 
linear-Gaussian model for different estimation methods in the Monte Carlo simulation of Section 4.3
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where 

and SM(η,τ) is a sequential model (Bürkner & Vuorre, 2019; Tutz, 1990) with a linear predictor η and a 
threshold vector τ.

Compared to the linear-Gaussian experiment of Section 4.2, here additional difficulties arise due 
to the fact that in addition to the unknown parameters θ, our distributional assumptions for the terms 
in Equation (11) are not correct. For example, while (Y |X = x, U1 = u1, S = s, G = g) is Gamma dis-
tributed by definition, (Y|X = x, S = s, G = g, W = w, Z = z) might not be. This can naturally bias our 
causal estimates, but the question remains whether different choices for the trapdoor variable affect 
the bias or precision of the causal estimates.

For the terms in (11), we assume a Gamma distribution for Y, and model its expected value given 
other variables via log-link, assuming a monotonic effect (Bürkner & Charpentier, 2020) of X and 
W. We treat X and W as ordinal variables and model them with ordered logistic regression and a se-
quential model with a logit-link (Bürkner & Vuorre, 2019; Tutz, 1990), respectively. We use a normal 
distribution for S, and a Bernoulli distribution for G.

We simulated 1000 replications of sample size 500 from this model, and estimated the poste-
rior mean of P(Y| do(X = x)) using the four different strategies for the trapdoor variable: Z ∼ P(Z), 
Z ∼ P(Z |S = si, G = gi), Z ∼ P(Z |S = si, G = gi, X = x), and Z ∼ P(Z|X = x). We use a beta distri-
bution for Z in all cases by modelling the expected value via a logit-link and precision via a log-
link. Based on the data generating process, the true causal effects are 19,690; 24,049 and 32,463 
for x = 0, 1, 2, respectively. The root mean square error (RMSE) and bias of our causal estimates 
compared to ground truth are shown in Table 1. We see that RMSE increases with respect to the in-
tervention variable X and the differences between trapdoor strategies are relatively small except when 
x = 2, where conditioning on the intervention variable results in approximately 20% smaller RMSE 
than when using the marginal distribution of the trapdoor variable or when conditioning only with 
covariates S and G. The differences in bias estimates are within the Monte Carlo error in the case of 
X = 0. With X = 1, the trapdoor strategies without conditioning on X results in positive bias whereas 
conditioning on X leads to a bias of similar magnitude but in a different direction. For X = 2, the bias 

�
z
= exp(−1.2+0.4g+0.05s+0.1I(w=2)+0.3I(w=3)),

�
z
= exp(2.2+0.2g),

�
y
= exp(9.3+0.02s−0.5g+0.2I(x=1)+0.5I(x=2)+0.4u1),

T A B L E  1   RMSEs and biases of the estimates for the causal effect of X on Y in the non-Gaussian simulation 
experiment using four different strategies for sampling the trapdoor variable Z, and the true data generating process 
with observed confounders. MCSEs (computed with simhelpers R package (Joshi & Pustejovsky, 2020)) were 
between 0.4 and 2 for the RMSE estimates, and between 14 and 62 for the bias estimates, increasing with respect to X 
in both cases

RMSE Bias

Trapdoor strategy X = 0 X = 1 X = 2 X = 0 X = 1 X = 2

P(Z|x, s, g) 528 875 1770 121 −149 209

P(Z|x) 528 890 1729 123 −233 4

P(Z|s,g) 540 914 2238 106 110 1028

P(Z) 544 912 2173 114 101 942

Data generating process 443 541 734 −3 −3 −3
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is substantially larger with trapdoor strategies not involving X. In this simulation experiment, condi-
tioning on the covariates B does not improve the estimates.

5  |   CAUSAL EFFECT OF EDUCATION ON INCOME

As an example with real data, we analyse Life Course 1971–2002 data set from Finnish Social 
Science Data Archive (Kuusinen, 2018). This longitudinal study consists of life courses of 634 
Finnish children born in 1964–1968 in Jyväskylä, Finland. In the early 1970s, when the children 
were aged between 3 and 9, the Illinois Test of Psycholinguistic Abilities (ITPA) was used to test 
their verbal intelligence. Participants were then followed up, with further information on their 
life events gathered in 1984, 1991 and 2002. While the data set has been used in various studies 
regarding the intelligence and school achievement (see, e.g. Kuusinen & Leskinen, 1988), we use 
this data to study the causal effect of education level (secondary or less, lowest/lower tertiary, or 
higher tertiary) on yearly income (euros, in 2000). Note that due to the limited geographical scope 
of the data, the participants do not necessarily form a fully representative sample of the corre-
sponding birth cohorts in Finland.

In addition to earned income Y and education level X, we have information on the GPA from 
primary school Z, SES of the parents W (low, middle and high), gender G and the ITPA score S (the 
General Language composite variable, a combination of the subtests). Out of the 634 participants 
in the full data set, we use 509 participants with fully observed aforementioned variables and avoid 
considerations related to missing data. The assumed causal graph is shown in Figure 3b, and as be-
fore, all analyses are based on the assumption that this graph is correct. We use same distributional 
assumptions as in our simulation experiment in Section 4.4, after transforming the original scale of 
GPA from 4–10 to 0–1.

It could be argued that there should be direct arrows from parental SES to child’s education 
level and income. However, in Finland, it is likely that the effect of SES to education is strongly 
mediated by the child’s school achievement (variable Z in our graph) (Acacio-Claro et al., 2018). 
Also, the SES in our data was coded based on the occupations of the parents, which in turn 
depends on their education. We thus assume that the unobserved confounder between W and X 
contains, among other things, the education levels of the parents. Similarly, there are studies sug-
gesting that in Finland, after accounting for a child’s education, the effect of family income on 
children’s income is low (Österbacka, 2001). Finally, the intergenerational mobility of education 
and income are among the highest in Finland (and Nordic countries in general) compared to other 
countries (Björklund et al., 2002; Pfeffer, 2008). This suggests that even if there is a direct arrow 
from W to X or Y, these direct effects are likely negligible. Nevertheless, it is, of course, possible 
(and perhaps likely) that our causal graph is an oversimplification of the complex causal mecha-
nisms related to education and income.

We used four chains with total of 100,000 post-warmup iterations and N = M = 250, leading to 
MCSE around 50–80, depending on x with both trapdoor strategies.

Table 2 shows the posterior summary statistics for median(Y| do(X = x)) and E(Y| do(X = x)) for all 
education groups. We see a clear discrepancy between the estimates based on the conditional trapdoor 
variable Z ∼ P(Z|x, s, g) and the marginal trapdoor variable Z ∼ P(Z). Finally, Figure 8 shows the full 
posterior distributions P(Y| do(X = x)). The two strategies for the trapdoor variable give somewhat 
different results: When conditioning the trapdoor variable grade on the education level, the interven-
tional distributions between educational levels differ more than with sampling the trapdoor variable 
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from P(Z). For example, we estimate the mean annual income for the highest education level as 29,500 
euros using the conditional trapdoor variable compared to 26,600 euros when using the marginal 
trapdoor variable. On the basis of the simulation results of Section 4.4, we prefer the estimates with 
Z ∼ P(Z|x, s, g). Unsurprisingly, obtaining a higher education level has a positive causal effect on 
income. Our causal estimates also differ somewhat from the observed incomes in different education 

F I G U R E  8   Posterior predictive distribution P(Y| do(X = x)) for the income model using the estimators with the 
conditional trapdoor variable (upper panel) and the marginal trapdoor variable (lower panel)
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T A B L E  2   Posterior mean, median, and their posterior standard deviations for the causal effect of education on 
income, in hundred euros

Education level Trapdoor strategy Mean Median SD (Mean) SD (Median)

Secondary or less P(Z) 195 166 8 6

Secondary or less P(Z|x,s,g) 187 161 7 6

Lowest/lower tertiary P(Z) 216 183 12 11

Lowest/lower tertiary P(Z|x,s,g) 223 192 13 11

Higher tertiary P(Z) 266 226 21 18

Higher tertiary P(Z|x, s, g) 295 253 22 19
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groups, with the observed median incomes being (from lowest to highest) 17,700, 19,300 and 26,800 
euros, and the mean incomes 18,700, 21,800 and 28,700 euros.

6  |   CONCLUSION

We have shown how it is possible to estimate causal effects when the back-door and front-door adjust-
ments are not applicable and highlighted the potential issues related to the application of theoretical 
identifying formulas to finite data sets. Our real-data example on the effect of education on income 
illustrates how Bayesian causal inference can be applied to complex causal graphs with multiple types 
of variables, and how trapdoor variables can have a substantial effect on the estimated causal effects.

The basic structure that leads to implicit functional constraints and trapdoor variables was pre-
sented in the graph of Figure 2c. This graph has been considered in the literature earlier but according 
to our knowledge, it has not been fully analysed from the viewpoint of estimation. This basic structure 
can be extended in several directions so that the causal effect is still identifiable while retaining the 
implicit functional constraint. The graph for the Life Course 1971–2002 study (Figure 3b) is an ex-
ample of such an extension. There are other interesting graphs such as those shown in Figure 4 with 
similar or even more complex identifying functionals which exhibit the problems related to trapdoor 
variables.

Determining the optimal method to account for the presence of a trapdoor variable remains a 
challenging problem. The trapdoor bias exhibited for small sample sizes depends on the (possibly 
parametric) assumptions about the causal model as well as the properties of the estimators used for 
the conditional distributions appearing in the identifying functional. Even in the simple case of the 
linear model with a single trapdoor variable, the optimal method is not apparent. It may also be the 
case that minimizing the trapdoor bias might result in a large variance of the causal effect estimator 
necessitating further considerations about the estimation problem at hand.

Our simulation experiments in Bernoulli and linear-Gaussian cases illustrated how choosing the 
value of the trapdoor variable can have substantial effect in estimating the interventional distribution 
P(Y| do(X = x)). Our results suggest that a good default for the trapdoor variable should be based on 
its conditional distribution given the interventional variable X. On the other hand, for nonlinear and 
non-Gaussian models the effect of the trapdoor variable can have nonlinear effects on P(Y| do(X = x)) 
which can further bias the results. Therefore as a general sensitivity check, we recommend computing 
the causal effect using various strategies to account for the trapdoor variables and reporting how sen-
sitive the results are with respect to these strategies.
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APPENDIX A

THEORETICAL PARAMETER ESTIMATES FOR THE LINEAR-GAUSSIAN MODEL OF 
SECTION 3.3
Marginal covariance matrix Σ of Y, X, Z and W can be found by applying path analysis in the graph 
of Figure 2c, which leads to 
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