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1. Introduction

Orlicz-Sobolev spaces appear naturally in analysis as generalizations of the usual Sobolev spaces, for 
instance when one studies sharp assumptions for mappings of finite distortion [16,18]. Orlicz-Sobolev spaces 
appear also in many other contexts and have been studied by their own right, see for instance [1,2,5–7,9,8,
12,11,14,13,15,24,30,33] for a sample of the literature.

An important basic question in the theory of function spaces is the relation between different spaces. 
Answers to this question can be given for instance in terms of embeddings and density results. In this paper, 
we show that in Orlicz-Sobolev spaces on bounded simply connected planar domains we can approximate 
functions with bounded derivatives if we consider only the highest order derivatives in the norm.

Theorem 1.1. Let k ∈ N, Ψ be a doubling Young function, and Ω ⊂ R2 be a bounded simply connected 
domain. Then the subspace W k,∞(Ω) ∩ C∞(Ω) is dense in the space Lk,Ψ(Ω).

Recall that for a domain Ω ⊂ R2 and a Young function Ψ, the version of the Orlicz-Sobolev space Lk,Ψ(Ω)
used in Theorem 1.1 is defined as
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Lk,Ψ(Ω) =
{
f ∈ LΨ(Ω) : ∇αf ∈ LΨ(Ω) if |α| = k

}
.

The space Lk,Ψ(Ω) is equipped with the semi-norm 
∑

|α|=k ‖∇αf‖LΨ(Ω), where ‖ · ‖LΨ(Ω) is the Luxemburg 
norm. If we would consider the size of all the lower order derivatives, we would use the space W k,Ψ defined 
as

W k,Ψ(Ω) =
{
f ∈ LΨ(Ω) : ∇αf ∈ LΨ(Ω) if |α| ≤ k

}
.

However, at the moment we are unable to prove the density in this space with the stronger norm ∑
|α|≤k ‖∇αf‖LΨ(Ω). See Section 2 for more basic information on Orlicz and Orlicz-Sobolev spaces. Re-

call also the notation when we deal with the usual Lp-spaces: by W k,p(Ω) we mean integrable functions f
defined on Ω such that all the partial derivatives ∇αf for |α| ≤ k are Lp-integrable.

We will use a Whitney decomposition of the domain Ω ⊂ R2 and make a polynomial approximation 
near the boundary ∂Ω. The validity of the approximation is proven using a Ψ − Ψ Poincaré inequality. 
The form of the polynomial approximation we use here was introduced in [28], where a density result was 
shown for homogeneous Sobolev spaces on simply connected planar domains. This was then extended to 
Gromov hyperbolic domains in higher dimensions in [27]. In turn, both of these results were generalizations 
of density results for first order Sobolev spaces [23,22] which were partly motivated by the recent progress 
on planar Sobolev extension domains [21,31].

Although for every domain smooth functions are dense in W k,p(Ω) [26] and, more generally, in W k,Ψ(Ω)
for doubling Ψ [10], the derivatives of the approximating smooth functions might blow up near the boundary. 
Therefore, the density of other function spaces, such as W k,q(Ω) in W k,p(Ω) might be false, see [20,22] for 
this, and for instance [3,19,29] for earlier counter examples on other function spaces. The density of global 
smooth functions in W 1,p(Ω) is known for instance for Jordan domains [25,23], but the case for higher order 
Sobolev spaces is still open. Similarly, in the case k ≥ 2, the density result presented in Theorem 1.1 remains 
still open for the full Orlicz-Sobolev space W k,Ψ(Ω) as well as for the usual Sobolev space W k,p(Ω).

In the same way as for the first order Sobolev spaces [23], for W 1,Ψ(Ω) we get a better density result 
as a corollary of Theorem 1.1. This is simply because we may first cut a function in W 1,Ψ(Ω) from above 
and below introducing a small error in the norm, so that the function becomes an L∞(Ω) function. The 
remaining approximations do not change the fact that the function is in L∞(Ω).

Corollary 1.2. Let Ψ be a doubling Young function and Ω ⊂ R2 be a bounded simply connected domain. 
Then the subspace W 1,∞(Ω) ∩ C∞(Ω) is dense in the space W 1,Ψ(Ω).

The paper is organized as follows. In Section 2 we recall the Whitney decomposition and list the required 
prerequisites from the Orlicz theory. In Section 3 we give a partition of unity for the domain using a Whitney 
type decomposition. Finally, in Section 4 we show the proof of Theorem 1.1.

2. Preliminaries

In this paper, we will usually denote constants by C. The value of the constant might change between 
appearances, even in a chain of inequalities, but the dependence of the constant on a set of fixed parameters 
is always stated. Sometimes, to clarify the dependence, the parameters are written inside parentheses C(·).

2.1. Whitney decomposition

In this section we recall the Whitney decomposition of a domain in Rd. Such decomposition is standard 
in analysis, see for instance Whitney [34] or the book of Stein [32, Chapter VI]. We will use a version of the 
decomposition that was used in [28].
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We denote the sidelength of a square Q by �(Q). For notational convenience we start the Whitney 
decomposition below from squares with sidelength 2−1. Formally, since we are working with doubling Young 
functions, by rescaling, we may consider all bounded domains Ω ⊂ R2 to have diam(Ω) ≤ 1 in which case 
no Whitney decomposition would have squares larger than the ones used below regardless of the starting 
scale. A Whitney decomposition in the plane consists of dyadic squares. Let us first recall those.

Definition 2.1 (Dyadic squares). A dyadic interval in R is an interval of the form [m2−k, (m + 1)2−k] where 
m, k ∈ Z. A dyadic square in R2 is a product of dyadic intervals of the same length. That is, a dyadic square 
is a set of the form

[m12−k, (m1 + 1)2−k] × [m22−k, (m2 + 1)2−k]

for some integers m1 and , m2.

Let us now define a Whitney decomposition following Lemma 2.3 in [28].

Definition 2.2 (Whitney decomposition). Let Ω be a bounded open subset of R2. A Whitney decomposition 
is a collection F̃ of dyadic squares inside Ω satisfying the following properties.

(W1) Ω =
⋃

Q∈F̃ Q

(W2) �(Q) < dist(Q, Ωc) ≤ 3
√

2�(Q) = 3diam(Q) for all Q ∈ F̃
(W3) intQ1 ∩ intQ2 = ∅ for all Q1, Q2 ∈ F̃ , Q1 �= Q2
(W4) If Q1, Q2 ∈ F̃ and Q1 ∩Q2 �= ∅, then �(Q1)

�(Q2) ≤ 2.

Suppose Q1, . . . , Qm are Whitney squares such that Qj and Qj+1 touch and 1
4 ≤ �(Qj)

�(Qj+1) ≤ 4 for all 
j, 1 ≤ j ≤ m − 1. We say then {Q1, . . . , Qm} is a chain connecting Q1 to Qm and define the length of that 
chain to be the integer m.

2.2. Orlicz spaces

Definition 2.3. A function Ψ: [0, ∞) → [0, ∞] is a Young function if

Ψ(s) =
sˆ

0

ψ(t) dt,

where ψ : [0, ∞] → [0, ∞] is an increasing, left continuous function which is neither identically zero nor 
identically infinite on (0, ∞) and which satisfies ψ(0) = 0.

A Young function Ψ is convex, increasing, left continuous, Ψ(0) = 0 and Ψ(t) → ∞ as t → ∞. A 
continuous Young function with the properties Ψ(t) = 0, only if t = 0, Ψ(t)/t → ∞ as t → ∞ and 
Ψ(t)/t → 0 as t → 0 is called an N -function.

It follows easily from the convexity and Ψ(0) = 0, that the function t → Ψ(t)/t is increasing. This implies 
that if Ψ is strictly increasing, then the function Ψ−1(t)/t is decreasing. A Young function Ψ is doubling if 
there is a constant C > 0 such that

Ψ(2t) ≤ CΨ(t) (2.1)

for each t ≥ 0. The smallest constant C satisfying (2.1) is called the doubling constant of Ψ.
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Definition 2.4. Given a doubling Young function Ψ and an open set Ω ⊂ R2, we denote by LΨ(Ω), the Orlicz 
space associated to Ψ, defined by

LΨ(Ω) =

⎧⎨
⎩u : Ω → R :

ˆ

Ω

Ψ(|u(x)|) dx < ∞

⎫⎬
⎭ .

LΨ(Ω) is a Banach space, when equipped with the Luxemburg norm

‖u‖LΨ(Ω) = inf

⎧⎨
⎩k > 0 :

ˆ

Ω

Ψ(k−1|u(x)|) dx ≤ 1

⎫⎬
⎭ .

We will not use the Luxemburg norm in this paper, but work with the integrals. This is justified by the 
following fact.

Lemma 2.5. Let Ψ be a doubling Young function. Then

‖ui − u‖LΨ(Ω) → 0 as i → ∞

if and only if
ˆ

Ω

Ψ(|ui(x) − u(x)|) dx → 0 as i → ∞.

A direct consequence of Jensen’s inequality is the following.

Lemma 2.6. Let Ψ be a Young function, u ∈ L1
loc(R2) and A ⊂ R2 of positive and finite measure, then

Ψ

⎛
⎝ 

A

|u(x)|dx

⎞
⎠ ≤

 

A

Ψ(|u(x)|) dx,

where uA =
ffl
A
|u(x)| dx is the average integral.

2.3. Poincaré inequalities and polynomial approximation

From now on, Ψ always refers to a doubling Young function. We will construct an approximation by 
replacing the original function by approximating polynomials near the boundary of the domain. For this 
purpose, we will need a few lemmas regarding the polynomials. Here and later on by |E| we denote the 
Lebesgue measure of a set E ⊂ R2.

Lemma 2.7. Let Q be any square in R2 and P be a polynomial of degree k defined in R2. Let F ⊂ Q be such 
that |F | > η|Q| where η > 0. Then

ˆ

Q

Ψ(|P (x)|) dx ≤ C

ˆ

F

Ψ(|P (x)|) dx,

where the constant C depends only on η, k and the doubling constant of Ψ.
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Proof. Since the claim of the lemma is invariant under scalings and translations of the square Q, we may 
assume it to be fixed. Write the space of degree k polynomials as

Pk =

⎧⎨
⎩

∑
i+j≤k,i,j≥0

ai,jx
i
1x

j
2 : ai,j ∈ R

⎫⎬
⎭

and consider it equipped with the norm ‖ 
∑

i+j≤k,i,j≥0 ai,jx
i
1x

j
2‖ =

∑
|ai,j |. Observe that the function

S : {P ∈ Pk : ‖P‖ = 1} → R : P �→ inf
|E|≥ η

2 |Q|
sup
x∈E

|P (x)|

is strictly positive. Moreover, since the function P �→ supx∈Q |P (x)| is continuous, so is the function S. 
Hence, it obtains its strictly positive minimum. Let us call the minimum ε > 0. This implies that

inf
|E|≥ η

2 |Q|
sup
x∈E

|P (x)| ≥ ε||P || (2.2)

for every P ∈ Pk.
Since the space Pk is finite dimensional, the norms ‖P‖ and maxy∈Q |P (y)| are comparable. Hence, by 

(2.2), there exists a constant δ > 0 so that

inf
|E|≥ η

2 |Q|
sup
x∈E

|P (x)| > δmax
y∈Q

|P (y)| (2.3)

for every P ∈ Pk with P �= 0. We claim that the set

F̃ :=
{
x ∈ F : |P (x)| ≥ δmax

y∈Q
|P (y)|

}

satisfies |F̃ | ≥ 1
2 |F |. If this were not the case, then |F \ F̃ | > 1

2 |F | ≥ η
2 |Q|, and in particular P �= 0. Thus, 

by (2.3), and the fact that |P (x)| < δmaxy∈Q |P (y)| for all x ∈ F \ F̃ , we get

δmax
y∈Q

|P (y)| < sup
x∈F\F̃

|P (x)| ≤ δmax
y∈Q

|P (y)|,

giving a contradiction.
Now, by applying monotonicity and doubling properties on Ψ we obtain

ˆ

F

Ψ(|P (x)|) dx ≥
ˆ

F̃

Ψ(|P (x)|) dx ≥
ˆ

F̃

Ψ(δmax
y∈Q

|P (y)|) dx

≥ C

ˆ

F̃

Ψ(max
y∈Q

|P (y)|) dx = C|F̃ |Ψ(max
y∈Q

|P (y)|)

≥ C|F̃ |
|Q|

ˆ

Q

Ψ(|P (x)|) dx ≥ C

ˆ

Q

Ψ(|P (x)|) dx,

which gives the claim. �
Given a function u ∈ C∞(Ω), degree k ∈ N, and a bounded set E ⊂ Ω with |E| > 0, we define (see [17]) 

the polynomial approximation of u in E, Pk(u, E) to be the polynomial of order k − 1 which satisfies
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ˆ

E

∇α(u− Pk(u,E)) = 0

for each α = (α1, α2) such that |α| = α1 + α2 ≤ k − 1. Once k is fixed, we denote the polynomial 
approximation of u in a bounded set E as PE .

Proposition 2.8 (Ψ − Ψ Poincaré inequality). Let k, m ∈ N. There exists a constant C depending only on k, 
m and the doubling constant of Ψ such that for any domain Ω ⊂ R2, a chain {Qi}mi=1 of dyadic squares in 
Ω, and a function u ∈ Lk,Ψ(Ω) we have

 

E

Ψ
(
|u(x) − PE(x)|

�(Q1)k

)
dx ≤ C

 

E

Ψ(|∇ku(x)|) dx,

where we have abbreviated E =
⋃m

i=1 Qi.

Proof. By [4, Lemma 1] the claim is true for k = 1 in the case where E is convex. By a change of variables, 
the claim extends to the case k = 1 and E =

⋃m
i=1 Qi, for the chain {Qi}mi=1. What remains to show is the 

case k > 1.
We do this by induction. Suppose the claim is true for the order k−1. Then, using the Poincaré inequality 

first for the k − 1 orders for the function v = 1
�(Q1) (u − Pk(u, E)), for which Pk−1(v, E) = 0, and then for 

the first order for the function ∇k−1(u − Pk(u, E)), we obtain

 

E

Ψ
(
|u(x) − Pk(u,E)(x)|

�(Q1)k

)
dx ≤ C

 

E

Ψ
(
|∇k−1(u(x) − Pk(u,E)(x))|

�(Q1)

)
dx

≤ C

 

E

Ψ
(
|∇k(u(x) − Pk(u,E)(x))|

)
dx

= C

 

E

Ψ
(
|∇ku(x)|

)
dx. �

Lemma 2.9. Let Ω ⊂ R2 be a bounded simply connected domain and F̃ a Whitney decomposition of Ω. Let 
{Qi}mi=1 be a chain of dyadic squares in F̃ . Then there exists a constant C depending only on k, m and the 
doubling constant of Ψ such that if |α| ≤ k, we have

ˆ

Q1

Ψ
(
∇αPQ1 −∇αPQm

�(Q1)k−|α|

)
≤ C

ˆ
⋃m

i=1 Qi

Ψ(|∇ku|).

Proof. Let us abbreviate E =
⋃m

i=1 Qi. Now, using the triangle inequality, Lemma 2.7, the doubling property 
of Ψ, then triangle inequality again and Proposition 2.8 we obtain
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Fig. 1. The domain Ω is decomposed into a core part D3 (obtained as a connected component of a union of Whitney squares) and 
boundary parts H̃i. A partition of unity is made using this decomposition.

ˆ

Q1

Ψ
(
|∇αPQ1 −∇αPQm

|
�(Q1)k−|α|

)

≤
ˆ

Q1

Ψ
(
|∇αPQ1 −∇αPQm

+ ∇αPE −∇αPE |
�(Q1)k−|α|

)

≤ C

ˆ

Q1

Ψ
(
|∇αPQ1 −∇αPE |

�(Q1)k−|α|

)
+ C

ˆ

Qm

Ψ
(
|∇αPQm

−∇αPE |
�(Qm)k−|α|

)

≤ C

ˆ

Q1

Ψ
(
|∇α(u− PQ1)|
�(Q1)k−|α|

)
+ C

ˆ

Qm

Ψ
(
|∇α(u− PQm

)|
�(Qm)k−|α|

)

+ C

ˆ

E

Ψ
(
|∇α(u− PE)|
�(Q1)k−|α|

)

≤ C

ˆ
⋃m

i=1 Qi

Ψ(|∇ku|). �

3. Decomposition and partition of unity

In this section we recall the decomposition of the domain Ω and the associated partition of unity that 
was obtained in [28]. In order to make the comparison between this paper and [28] easy, we use here the 
notation from [28].

3.1. Decomposition of the domain

We fix a square Q0, which is one of the largest Whitney squares in Ω. For each n ∈ N, the domain Ω
is then divided into a core part Dn, and a boundary layer, which is the union of sets H̃i, see Fig. 1. The 
core part Dn is the connected component containing Q0 of the interior of the union of Whitney squares of 
side-length at least 2−n. The construction of the boundary parts {H̃i}li=1 is more involved. The sets H̃i are 
labelled so that H̃i ∩ H̃j �= ∅ if and only if |i − j| ≤ 1 in a cyclical manner.

The sets H̃i are expanded by taking a connected component Hi of a 2−n−3 neighbourhood of H̃i. The 
main property of the decomposition is that these expanded sets still satisfy Hi ∩ Hj �= ∅ if and only if 
|i − j| ≤ 1 in a cyclical manner (Lemma 3.4 in [28]). Moreover, since the neighbourhoods are taken in the 
Euclidean distance, we may use an Euclidean partition of unity.
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For each i we associate a Whitney square Qi ⊂ Dn of side length 2−n so that Hi ∩Qi �= ∅. We have that 
for every i and every n the cardinality of

Bi = {Q Whitney square of Ω : Q ∩ ∂Hi ∩ ∂Dn �= ∅}

is bounded by a universal constant. Notice that Qi ∈ Bi and that the set 
⋃

Q∈Bi
Q is connected. Moreover, 

if |i − j| ≤ 1, we have that
⋃

Q∈Bi

Q ∩
⋃

Q∈Bj

Q �= ∅,

and so there is a chain of Whitney squares Qi,j ⊂ Bi ∪ Bi with length bounded by a universal constant 
connecting Qi and Qj .

3.2. Partition of unity

Using the decomposition of the domain Ω introduced above, we make a partition of unity for the domain. 
The partition of unity consists of functions ϕi, i ∈ {0, . . . , l} with the following properties:

(1) The function ϕ0 is supported in {x ∈ Ω : dist(x, Dn < 2−n

10 }.
(2) For i ≥ 1 the function ϕi is supported in Hi.
(3) For all i, 0 ≤ ϕi ≤ 1.
(4)

∑
ϕi ≡ 1 on Ω.

(5) For all i, |∇αϕi| ≤ C(α)2n|α| for all multi-indices α.

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1, using the results of Section 2 and the partition of unity from 
[28] that was recalled in Section 3. The polynomial approximation is exactly the same as in [28]. What 
is different is the way the estimates are carried out using Poincaré inequalities. Since the usual Poincaré 
inequality is replaced by a Ψ − Ψ Poincaré inequality (Proposition 2.8), we need to be more careful with 
the chains of inequalities.

Given a function u ∈ Lk,Ψ(Ω) and ε > 0, our aim is to find a function uε ∈ W k,∞(Ω) ∩C∞(Ω) satisfying ∥∥∇kuε −∇ku
∥∥
LΨ(Ω) � ε. We start by noting that we may assume u ∈ Lk,Ψ(Ω) ∩ C∞(Ω), since smooth 

functions are dense in Lk,Ψ(Ω), see [10].
For n ∈ N fixed, we let Dn and {Hi}li=1 be as in Section 3. With these we define a function un ∈

W k,∞(Ω) ∩ C∞(Ω) by setting for all x ∈ Ω

un(x) = ϕ0(x)u(x) +
l∑

i=1
ϕi(x)Pi(x),

where we have abbreviated Pi := PQi
with the choice of squares Qi done in Section 3.2. Clearly, un ∈

W k,∞(Ω) ∩ C∞(Ω). Therefore, what remains to show is that
∥∥∇kun −∇ku

∥∥
LΨ(Ω) → 0, as n → ∞.

First of all, by the definition of un, we have

un(x) = u(x) for all x ∈ {z ∈ Ω : ϕ0(z) = 1} ⊂ Dn−1.
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Also, for all i ∈ {1 . . . , l}, since Pi is a degree k − 1 polynomial, we have

∇kun(x) = 0 for all x ∈ {z ∈ Ω : ϕi(z) = 1}.

Therefore,

∥∥∇kun −∇ku
∥∥
LΨ(Ω) =

∥∥∇kun −∇ku
∥∥
LΨ({ϕ0 �=1})

≤
∥∥∇ku

∥∥
LΨ(Ω\Dn−1)

+
∥∥∇kun

∥∥
LΨ(

⋃l
i=1 Ai)

,

where we have written Ai := {x ∈ Ω : 0 < ϕi(x) < 1} for i ∈ {1, . . . , l}. Since the sets Dn increasingly 
exhaust the domain Ω, we have

∥∥∇ku
∥∥
LΨ(Ω\Dn−1)

→ 0 as n → ∞.

Thus, it remains to show that

∥∥∇kun

∥∥
LΨ(

⋃l
i=1 Ai)

→ 0 as n → ∞,

or equivalently, via Lemma 2.5, that for each multi-index α with |α| = k we have

ˆ
⋃l

i=1 Ai

Ψ(|∇αun(x)|) → 0 as n → ∞. (4.1)

In order to show (4.1), we write for each i ∈ {1, . . . , l} and multi-index α with |α| = k,

un(x) = ϕ0(x)u(x) +
l∑

j=1
ϕjPj(x)

= ϕ0(x)u(x) − ϕ0Pi(x) + ϕ0Pi(x) +
l∑

j=1
ϕjPj(x)

= ϕ0(x)(u(x) − Pi(x)) + Pi(x) +
l∑

j=1
ϕj(Pj(x) − Pi(x))

and estimate, by using the fact that ∇αPi(x) = 0, the triangle inequality, and Jensen’s inequality

ˆ

Ai

Ψ(|∇αun(x)|) dx =
ˆ

Ai

Ψ

⎛
⎝
∣∣∣∣∣∣∇

α

⎛
⎝ϕ0(x)u(x) +

l∑
j=1

ϕj(x)Pj(x)

⎞
⎠
∣∣∣∣∣∣
⎞
⎠ dx

≤ C
∑
β≤α

ˆ

Ai

Ψ(|∇βu(x) −∇βPi(x)||∇α−βϕ0(x)|) dx

+ C
∑
β≤α

ˆ

Ai

l∑
j=1

Ψ(|∇βPj(x) −∇βPi(x)||∇α−βϕj(x)|) dx.

We estimate the above two terms separately.
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Let us take β ≤ α and write

ˆ

Ai

Ψ(|∇βu(x) −∇βPi(x)||∇α−βϕ0(x)|) dx

=
∑
Q∈Bi

ˆ

Q

Ψ(|∇βu(x) −∇βPi(x)|C2n(|α|−|β|)) dx.

Notice that the integral is split into Whitney squares Q ∈ Bi. These are exactly the Whitney squares Q for 
which Q ∩Ai ∩A0 �= ∅ and hence the squares that intersect Ai where |∇α−βϕ0(x)| does not vanish. There 
are only a uniformly bounded amount of squares in Bi, and for each Q ∈ Bi we have

ˆ

Q

Ψ(|∇βu(x) −∇βPi(x)|C2n(|α|−|β|)) dx

≤ C

ˆ

Q

Ψ
(
|∇βu(x) −∇βPQ(x)|

2−n(|α|−|β|)

)
dx + C

ˆ

Q

Ψ
(
|∇βPQ(x) −∇βPi(x)|

2−n(|α|−|β|)

)
dx

≤ C

ˆ

Q

Ψ(|∇ku(x)|) dx + C

ˆ
⋃

Q′∈Bi
Q′

Ψ(|∇ku(x)|) dx,

using the doubling property of Ψ, triangle inequality, Proposition 2.8 and Lemma 2.9 for a chain of cubes 
inside Bi.

Next we estimate for β ≤ α,

ˆ

Ai

l∑
j=1

Ψ(|∇βPj(x) −∇βPi(x)||∇α−βϕj(x)|) dx

=
i+1∑

j=i−1

ˆ

Ai∩Aj

Ψ(|∇βPj(x) −∇βPi(x)|C2n(|α|−|β|)) dx

≤ C

i+1∑
j=i−1

ˆ

Qi

Ψ
(
|∇βPj(x) −∇βPi(x)|

2−n(|α|−|β|)

)
dx

≤ C
i+1∑

j=i−1

ˆ
⋃

Q′∈Bi∪Bj
Q′

Ψ(|∇ku(x)|) dx

using the fact that Hi ∩Hj �= ∅ if and only if |i − j| ≤ 1, Lemma 2.7 (with the smallest square Q containing 
(Ai ∩Aj) ∪Qi and with F = Qi) and Lemma 2.9 for the chain Qi,j contained in Bi ∪ Bj .

Combining the above estimates and using the fact that there is only a uniform number of overlaps for 
the estimates we have

ˆ
⋃l

i=1 Ai

Ψ(|∇αun(x)|) ≤ C

ˆ
⋃l

i=1
⋃

Q∈Bi
Q

Ψ(|∇αu(x)|),

giving (4.1). This proves the theorem.



W.A. Ortiz, T. Rajala / J. Math. Anal. Appl. 503 (2021) 125329 11
References

[1] David R. Adams, Ritva Hurri-Syrjänen, Vanishing exponential integrability for functions whose gradients belong to 
Ln(log(e + L))α, J. Funct. Anal. 197 (1) (2003) 162–178. MR 1957679.

[2] Robert A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press [A subsidiary of Harcourt 
Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957.

[3] Charles J. Amick, Approximation by smooth functions in Sobolev spaces, Bull. Lond. Math. Soc. 11 (1) (1979) 37–40. MR 
535794.

[4] Tilak Bhattacharya, Francesco Leonetti, A new Poincaré inequality and its application to the regularity of minimizers of 
integral functionals with nonstandard growth, Nonlinear Anal. 17 (9) (1991) 833–839. MR 1131493.

[5] Jana Björn, Orlicz-Poincaré inequalities, maximal functions and AΦ-conditions, Proc. R. Soc. Edinb., Sect. A 140 (1) 
(2010) 31–48. MR 2592711.

[6] Andrea Cianchi, Continuity properties of functions from Orlicz-Sobolev spaces and embedding theorems, Ann. Sc. Norm. 
Super. Pisa, Cl. Sci. (4) 23 (3) (1996) 575–608. MR 1440034.

[7] Andrea Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1) (1996) 39–65. MR 
1406683.

[8] Almir Joaquim de Souza, An extension operator for Orlicz-Sobolev spaces, An. Acad. Bras. Ciênc. 53 (1) (1981) 9–12. MR 
623636.

[9] Noel R. DeJarnette, Self improving Orlicz-Poincare inequalities, Thesis (Ph.D.)–University of Illinois at Urbana-
Champaign, ProQuest LLC, Ann Arbor, MI, 2013. MR 3251391.

[10] Thomas K. Donaldson, Neil S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971) 52–75. 
MR 0301500.

[11] David E. Edmunds, Petr Gurka, Bohumír Opic, Double exponential integrability of convolution operators in generalized 
Lorentz-Zygmund spaces, Indiana Univ. Math. J. 44 (1) (1995) 19–43. MR 1336431.

[12] Nicola Fusco, Pierre-Louis Lions, Carlo Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Am. Math. Soc. 
124 (2) (1996) 561–565. MR 1301025.

[13] Toni Heikkinen, Sharp self-improving properties of generalized Orlicz-Poincaré inequalities in connected metric measure 
spaces, Indiana Univ. Math. J. 59 (3) (2010) 957–986. MR 2779068.

[14] Toni Heikkinen, Characterizations of Orlicz-Sobolev spaces by means of generalized Orlicz-Poincaré inequalities, J. Funct. 
Spaces Appl. 2012 (2012) 426067, https://doi .org /10 .1155 /2012 /426067, 15. MR 2881765.

[15] Toni Heikkinen, Heli Tuominen, Orlicz-Sobolev extensions and measure density condition, J. Math. Anal. Appl. 368 (2) 
(2010) 508–524. MR 2643819.

[16] Tadeusz Iwaniec, Pekka Koskela, Jani Onninen, Mappings of finite distortion: monotonicity and continuity, Invent. Math. 
144 (3) (2001) 507–531. MR 1833892.

[17] Peter W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1–2) (1981) 
71–88. MR 631089.

[18] Janne Kauhanen, Pekka Koskela, Jan Malý, Jani Onninen, Xiao Zhong, Mappings of finite distortion: sharp Orlicz-
conditions, Rev. Mat. Iberoam. 19 (3) (2003) 857–872. MR 2053566.

[19] Torbjörn Kolsrud, Approximation by smooth functions in Sobolev spaces, a counterexample, Bull. Lond. Math. Soc. 13 (2) 
(1981) 167–169. MR 608104.

[20] Pekka Koskela, Removable sets for Sobolev spaces, Ark. Mat. 37 (2) (1999) 291–304. MR 1714767.
[21] Pekka Koskela, Tapio Rajala, Yi Ru-Ya Zhang, A geometric characterization of planar Sobolev extension domains, preprint.
[22] Pekka Koskela, Tapio Rajala, Yi Ru-Ya Zhang, A density problem for Sobolev spaces on Gromov hyperbolic domains, 

Nonlinear Anal. 154 (2017) 189–209. MR 3614650.
[23] Pekka Koskela, Yi Ru-Ya Zhang, A density problem for Sobolev spaces on planar domains, Arch. Ration. Mech. Anal. 

222 (1) (2016) 1–14. MR 3519964.
[24] Alois Kufner, Oldřich John, Svatopluk Fučík, Function Spaces, Monographs and Textbooks on Mechanics of Solids and 

Fluids, Mechanics: Analysis, Noordhoff International Publishing/Academia, Leyden/Prague, 1977. MR 0482102.
[25] John L. Lewis, Approximation of Sobolev functions in Jordan domains, Ark. Mat. 25 (2) (1987) 255–264. MR 923410.
[26] Norman G. Meyers, James Serrin, H = W , Proc. Natl. Acad. Sci. USA 51 (1964) 1055–1056. MR 0164252.
[27] Debanjan Nandi, A density result for homogeneous sobolev spaces, preprint, 2018.
[28] Debanjan Nandi, Tapio Rajala, Timo Schultz, A density result for homogeneous Sobolev spaces on planar domains, 

Potential Anal. 51 (4) (2019) 483–498. MR 4031263.
[29] Anthony G. O’Farrell, An example on Sobolev space approximation, Bull. Lond. Math. Soc. 29 (4) (1997) 470–474. MR 

1446566.
[30] M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, 

Marcel Dekker, Inc., New York, 1991. MR 1113700.
[31] Pavel Shvartsman, On Sobolev extension domains in Rn, J. Funct. Anal. 258 (7) (2010) 2205–2245. MR 2584745.
[32] Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, 

Princeton University Press, Princeton, N.J., 1970. MR 0290095.
[33] Heli Tuominen, Characterization of Orlicz-Sobolev space, Ark. Mat. 45 (1) (2007) 123–139. MR 2312957.
[34] Whitney Hassler, Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc. 36 (1) (1934) 

63–89. MR 1501735.

http://refhub.elsevier.com/S0022-247X(21)00408-X/bib63FD528B6578A6B38D2648F353487E91s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib63FD528B6578A6B38D2648F353487E91s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibDB48626FE69FC2FA2191287510A76831s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibDB48626FE69FC2FA2191287510A76831s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibC61186D55FF0466BAA29E9FDCD2A3817s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibC61186D55FF0466BAA29E9FDCD2A3817s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib03483CF71782DD0CC421314967DADE4Cs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib03483CF71782DD0CC421314967DADE4Cs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib5224D572F0D791F58C66E4DCD5E2C2D0s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib5224D572F0D791F58C66E4DCD5E2C2D0s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibEDA4455913690BB9B158D6063B55CFEFs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibEDA4455913690BB9B158D6063B55CFEFs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib9795984731C7E7ECCC20D384D60F7060s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib9795984731C7E7ECCC20D384D60F7060s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib25249B310CE9947686DBDBAB2D615B91s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib25249B310CE9947686DBDBAB2D615B91s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib2AFF6807CB01A49BB7F986FDA56FAC16s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib2AFF6807CB01A49BB7F986FDA56FAC16s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib4D63EC1AA4C46738107033714ADF7189s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib4D63EC1AA4C46738107033714ADF7189s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib8E3173AD86757AC37ABB91EEC8FE8141s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib8E3173AD86757AC37ABB91EEC8FE8141s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib12BC3BFF0165F5BBE13497AA795A4C95s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib12BC3BFF0165F5BBE13497AA795A4C95s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibA4B6A87A3991211E4F3F48A62D895021s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibA4B6A87A3991211E4F3F48A62D895021s1
https://doi.org/10.1155/2012/426067
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibE1F652ACC652AF43F8BC0C6E1BD3E321s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibE1F652ACC652AF43F8BC0C6E1BD3E321s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib259BF6598E4C195DF3D823E00182DB58s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib259BF6598E4C195DF3D823E00182DB58s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibFF44570ACA8241914870AFBC310CDB85s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibFF44570ACA8241914870AFBC310CDB85s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibC0B1B533B77B9F947D246F6AE3A1DB89s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibC0B1B533B77B9F947D246F6AE3A1DB89s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibE8C39FCC2FBA88A2209EEBF02798C8C9s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibE8C39FCC2FBA88A2209EEBF02798C8C9s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibA9D817B4BB14C7EAA620CFF7140B6454s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibF27D165D90A9E408DE23ACA3A317B115s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibF27D165D90A9E408DE23ACA3A317B115s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib4ACEB7D6B4564EC96BC6605CD5AF37E7s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib4ACEB7D6B4564EC96BC6605CD5AF37E7s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibE7882709BC92CCFBF17934C1ABA2CE93s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibE7882709BC92CCFBF17934C1ABA2CE93s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibB6B0A0C468B75B4FE18ECD6E18E7D374s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibF1E3446C69E4D87279FF7863482F9DCBs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibF1E3446C69E4D87279FF7863482F9DCBs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibAFA47E54178C50C255E33122DA5727F7s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibAFA47E54178C50C255E33122DA5727F7s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibCB95449A94688AF33F6E9BB090CF2936s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibCB95449A94688AF33F6E9BB090CF2936s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib17168C78F570FA0E2422F0A52BBF079Bs1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibF569AB23D780A45BDF93C9CA7A710CC0s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bibF569AB23D780A45BDF93C9CA7A710CC0s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib1FCAE8A901DEBE8AFCF52A754AB573A3s1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib5EFD5935913B175E4EA16E9BD9B6F53As1
http://refhub.elsevier.com/S0022-247X(21)00408-X/bib5EFD5935913B175E4EA16E9BD9B6F53As1

	A density result on Orlicz-Sobolev spaces in the plane
	1 Introduction
	2 Preliminaries
	2.1 Whitney decomposition
	2.2 Orlicz spaces
	2.3 Poincaré inequalities and polynomial approximation

	3 Decomposition and partition of unity
	3.1 Decomposition of the domain
	3.2 Partition of unity

	4 Proof of Theorem 1.1
	References


