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Abstract

Interactive methods are useful decision making tools for multiobjective optimization problems,
because they allow a decision maker to provide her/his preference information iteratively in a com-
fortable way at the same time as (s)he learns about all different aspects of the problem. A wide
variety of interactive methods is nowadays available, and they differ from each other in both tech-
nical aspects and type of preference information employed. Therefore, assessing the performance of
interactive methods can help users to choose the most appropriate one for a given problem. This is a
challenging task, which has been tackled from different perspectives in the published literature. We
present a bibliographic survey of papers where interactive multiobjective optimization methods have
been assessed (either individually, or compared to other methods). Besides other features, we collect
information about the type of decision maker involved (utility or value functions, artificial or human
decision maker), the type of preference information provided and aspects of interactive methods that
were somehow measured. Based on the survey and on our own experiences, we identify a series of
desirable properties of interactive methods that we believe should be assessed.

Keywords: Interactive methods; Multiobjective optimization problems; Performance assessment;
Decision makers; Preference information.

1 Introduction
Multiobjective optimization problems, where several conflicting objective functions are to be optimized
simultaneously, do not typically have any solution where all objectives can reach their individual optima.
Instead, there are several so-called Pareto optimal solutions with different tradeoffs. Problems can be
solved with different methods and we usually need preference information from a decision maker (DM)
having domain expertise to find the best balance between the objectives. Methods can be classified based
on the role of the DM in the solution process in no preference methods (where no preference information
is available), a priori methods (where solutions satisfying some, a priori stated, DM’s preferences are
found), a posteriori methods (where a representative set of Pareto optimal solutions is generated for
the DM to choose from) and interactive methods (where the DM participates in the solution process
iteratively) [29], [42].

Interactive methods have proven to be viable approaches to solve many kinds of multiobjective
optimization problems because they enable the DM to learn about the tradeoffs involved, what kind of
solutions are available and how feasible her/his preferences are (see, e.g., [4]). Furthermore, they can
enhance computational efficiency since only such Pareto optimal solutions need to be generated that
reflect the preferences of the DM. Many interactive methods have been proposed in the literature and
they differ from each other, for example, in the way the DM expresses preference information, how
information is exchanged between the DM and the method, what kind of sub-problems are formulated
to get solutions based on the preference information available and what is the stopping criterion (see,
e.g., [29], [44], [63], [64]). There are both scalarization-based interactive methods ( see, e.g., [42], [44],
[48]) and evolutionary methods (see, e.g., [5]).

Assessing the performance of interactive methods and comparing them is important to be able to
find the most suitable interactive methods for various needs. First of all, we must define what we
understand as “performance” of an interactive method. An interactive method is designed to aid the

1



DM in finding her/his most preferred solution to a multiobjective optimization problem. Therefore, in
a general sense, the “performance” of an interactive method refers to how well it aids the DM in this
task. This performance depends on several different aspects, and besides, many of these aspects vary
depending on the type of problem solved, and on the type of the DM. Therefore, it is not possible to
come up with a single performance measure. Based on the survey carried out in this paper, and on
the authors’ previous experiences, we have identified some aspects that characterize the performance of
interactive methods, which we have named as “desirable properties”.

The assessment of methods has many challenges. Because of the intensive role of the DM in interactive
solution processes, it is common to say that the process stops when the DM is satisfied and confident with
the final solution. However, it is not necessarily clear what this actually means. For example, in some
cases, it might be advisable to make sure that the DM has experimented long enough before (s)he decides
to stop. Therefore, some mechanisms are needed to prevent DMs from terminating the solution process
early [65]. Moreover, the ability to determine whether the obtained solutions are satisfactory is related
to the subjective preferences of the DM and the cognitive burden set on him/her. Furthermore, cognitive
biases of DMs may affect the final solution [67], and, thus, assessing interactive methods involves also
considering how much effect do cognitive biases have on the final solution [66].

Comparing interactive methods is not simple because the DM plays an important role and learns
during the solution process and, thus, the order in which different methods are applied affects the results.
To compensate this, one would need a large number of DMs to apply methods in different orders. Because
the DM must have appropriate domain expertise and feel the responsibility of the final solution, in many
real problems, it is not possible to have such a large number of DMs available. Naturally, students can
act as DMs but only if the problems to be solved have been formulated so that the students are genuinely
responsible for the final solution.

According to [63], we call interactive methods non ad hoc ones, if a utility or value function can
play the role of the DM. Such methods can be compared without human DMs. However, this does
not necessarily represent all properties relevant to human behaviour like anchoring, cognitive biases or
the need to change the preferences thanks to learning. On the other hand, ad hoc methods cannot be
compared even if a utility or value function was available.

To avoid the need of having (large numbers of) DMs, artificial DMs have been introduced recently for
comparing interactive methods in [2], [28], [51]. However, they do not yet capture all relevant elements
and we need to develop new performance metrics to be applied with them.

In this research, we investigate how the performance of interactive methods has been assessed in the
published literature. We consider learning and decision phases of interactive solution processes separately
[48], since they have different objectives. The DM explores various solutions to find a region of interest
in the learning phase and converges to find the most preferred solution in the identified region of interest
in the decision phase. Thus, the performance metrics for the different phases should reflect their special
properties and objectives.

Despite the practical importance of assessing and comparing interactive methods, this research area
has not been studied yet much. In 1992, Olson [52] reviewed published studies where some multiob-
jective optimization methods were applied with human DMs. The impact of learning on DMs was also
considered. In 1996, Aksoy et al. [1] provided a survey of the state of the art studies which included
comparisons of interactive methods, where both human DMs were involved (6 studies) and utility func-
tions were used to simulate DMs (8 studies). Recently, Xin et al. [71] provided a systematic taxonomy
to distinguish representative interactive methods of both scalarization based and evolutionary types. To
characterize different methods, they identified four factors: “interaction pattern, preference information,
preference model and search engine”. They also addressed several key issues in interactive methods from
different perspectives, such as the DM and interaction of the DM and the algorithm.

In this survey, we concentrate on published experiments (i.e., assessments or comparisons of interac-
tive methods). To this end, we have surveyed the literature published in English over the past 20 years to
find papers where interactive methods have been assessed. Since most of these papers focus on assessing
a single interactive method (which is proposed in the corresponding paper) and most experiments have
been conducted without the involvement of real DMs, we have included some older papers surveyed in
[42], where various interactive methods were compared by several human DMs. The total number of
papers considered is 45 and the total number of experiments covered is 48.

We have surveyed what has been done relative to assessing the performance of interactive methods
in the literature. More specifically, we have identified the aspects that have actually been assessed, and
the way they have been assessed, paying attention to the type of experiments used, the type of DM,
the preference information required by the methods and other relevant features of the assessments or
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comparisons of interactive methods.
As previously mentioned, based on the surveyed studies and on our own experiences on the use of

interactive methods, we identify and discuss some desirable properties of an interactive method at the
end of the paper. We also show which of these properties have already been assessed and identify others
that we believe should be assessed. Once the different properties have been identified and characterized,
the next step in future research works will be to formulate indicators to measure the performance and
use them in assessing or comparing methods. Examples of aspects to be considered include how well
are the preferences reflected in the solutions generated, how many iterations with the DM are needed,
can we guarantee Pareto optimality, ability to consider different parts of the Pareto optimal set, DM’s
confidence in the final solution, insight gained during the solution process, etc.

The rest of this paper is structured as follows. In Section 2, we outline the main concepts to be
used. The literature review on assessing and comparing interactive methods is summarized in Section
3, where papers are divided in three classes based on the type of experiments conducted. In Section 4,
we discuss desirable properties characterizing good interactive methods, point out which of them have
been assessed in the experiments reported, and include some thoughts about experiment setting issues.
Finally, we conclude in Section 5 and mention some future research directions.

2 Key Concepts and Terminology
We consider multiobjective optimization problems, where k objective functions are to be optimized
simultaneously. They are functions of decision variables in the decision space. We denote the number
of continuous variables by n and the number of integer variables by i. The k-dimensional vectors of
objective function values corresponding to feasible values of the decision variables are called objective
vectors in the objective space. The objective functions and the constraints defining a feasible region for
the decision variables can be e.g., convex, concave or differentiable. If this is the case, this can be taken
into account in the solution process. Otherwise, we do not make any assumptions of their properties.

As mentioned in the introduction, interactive methods have many desirable properties because of
which they have been applied in various real problems. They allow the DM to consider a limited
amount of information at a time, which keeps the cognitive burden on a tolerable level. And they limit
the computation cost since only solutions that are interesting to the DM are calculated. Because of the
iterative nature, the DM can learn about the relationships (tradeoffs) among the different objectives and,
thus, gain valuable insight about the phenomena involved. The DM can also change one’s preferences
based on the learning.

In the presence of multiple conflicting objectives, we typically cannot find a solution where all objec-
tives can attain their individual optimum concurrently. Instead, we have different tradeoffs among the
objectives. Most multiobjective optimization methods operate with Pareto optimal solutions. In them,
it is impossible to improve any of the objective function values without allowing some impairment in at
least one of the others. We sometimes call the set of Pareto optimal objective vectors as a Pareto front
(PF).

In interactive methods, the preference information provided by the DM is incorporated in the solution
process to generate (Pareto optimal) solutions that reflect the preferences. The DM takes part in the
interactive solution process by providing or refining preferences iteratively. Interactive methods differ
from each other, e.g., in terms of different types of preference information the DM is expected to provide
at each iteration (see, e.g., [39], [42], [48], [63]). Usually, the following types of preference information
are considered:

• Comparison of solutions. Two or more Pareto optimal solutions are calculated, and the DM is
asked either to choose the best and/or the worst solution, or to rank them.

• Local tradeoffs. When moving from a Pareto optimal solution to another one, we must let at least
one objective impair in order to improve another one. This exchange ratio between two objectives
(that is, how much one should be impaired in order to allow the other one to improve by one unit,
if the rest of the objectives remain constant) is usually known as a tradeoff. These tradeoffs can
be defined by quotients of finite increments (finite tradeoffs), or by the corresponding derivatives
(partial tradeoffs). In any case, tradeoff based methods can be of two types. First, the DM may
be asked to assess certain real tradeoffs from the current iteration (or to compare several ones).
Alternatively, other methods ask the DM to give her/his subjective (indifference) tradeoffs from
the current iteration to calculate marginal rates of substitution (MRS).
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• Aspiration levels. The DM is asked, at each iteration, to give desired levels (usually called aspiration
levels or target values) for each of the objectives. Alternatively, instead of aspiration levels forming
a reference point, the DM can give desirable search directions, or desirable ranges for the objectives
(defined by two reference points consisting of aspiration and reservation levels).

• Classification. The DM is asked to classify, at sight of the current iteration, the objectives into
several classes. These classes include objectives that should be improved (as much as possible or up
to a certain aspiration level), objectives that are satisfactory at their present values, and objective
that can be impaired (freely or till a certain bound). The number of classes varies among methods.

• Weights. If weights are given to different objectives, most of the times, given that the weights
are given at sight of the current iteration, they have a local character and therefore, they are
equivalent to giving (partial) indifference tradeoffs. But they can also have a global character, or
complement some other preference information type, like, for example, giving aspiration levels and
weights assessing the importance of reaching each of them.

• Bounds. The DM be asked to set bounds for certain objectives, while trying to improve the others
as much as possible. In some cases, bounds are also combined with some other type of preference
information.

Another important aspect of interactive methods is when to stop the solution process. On the one
hand, one can incorporate a technical stopping criterion. For example, one can set a prefixed number
of iterations or a given number of certain technical issues (like number of function evaluations). Most
of the tradeoff based methods have proven mathematical convergence, assuming that the answers of the
DM follow an implicit utility or value function. In this case, the methods incorporate convergence tests,
basically consisting of estimating the improvement of the utility and stopping when it is small enough.
On the other hand, the DM may freely decide to stop, when (s)he is convinced that a sufficiently
satisfactory solution has been found. This should imply that the DM has learnt enough about the
problem, the tradeoffs among the objectives and about her/his own preferences, to be sure that there
are no significantly better solutions in the feasible region. Interestingly, it has been reported (see, e.g.,
[22]) that the number of iterations carried out in real applications of interactive methods is surprisingly
small. This early termination effect may be due to the fact that the DM does not respond in the same
way to losses and gains, which causes some decisional stress when trading off in the Pareto optimal set,
as discussed in [35].

As mentioned several times, interactive methods allow a DM to provide one’s preferences iteratively.
This is the main advantage of these methods because of two reasons:

• Preferences have a local character because of the nature of interactive methods. That is, the
preferred tradeoffs among the objectives, or their relative importance, or the desired levels for each
of them depend on the part of the feasible or Pareto optimal set that is presently being explored,
or the direction of the search/movement.

• The DM is expected and allowed to learn during the solution process about the structure of the
Pareto optimal set of the problem, the conflict degrees and tradeoffs among the objectives, what
kind of solutions are feasible, and the effect of one’s preferences on the solutions obtained. In this
way, (s)he is able to provide more accurate information as the process goes on. In many methods,
the DM is also allowed to change one’s preferences (thanks to learning) during the solution process.

For the above-mentioned reasons, and as discussed in the introduction and, e.g., in [48], two different
phases can be distinguished when using an interactive method to solve a real decision problem: a learning
phase and a decision phase. During the learning phase, the DM explores the set of Pareto optimal
solutions, learns about the tradeoffs among the objectives, identifies areas with different conflict degrees,
learns about the values of the decision variables that correspond to each area, and finally identifies the
area or region of interest, within the Pareto optimal set that seems to best fit her/his preferences. On
the other hand, in the decision phase, the DM refines the search within the region of interest identified
earlier, until (s)he finds one’s most preferred solution (MPS). In other words, the DM converges in the
region of interest to the final solution.

For assessing an interactive method or comparing with another one, the necessary preference informa-
tion should be provided by DMs in experiments. In this survey, we classify different types of experiments
based on the type and number of DMs involved. If human DMs are involved in the experiment, there can
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be a single DM, or several DMs. As mentioned in the introduction, some experimental studies have been
conducted with utility functions (UFs) for testing non ad hoc interactive methods. In these experiments,
quantitative evaluations or comparisons can be done by calculating distances between the optimal UF
value and the value of the UF at the solutions obtained by the interactive method. On the other hand,
UFs cannot be applied directly to replace a DM in ad hoc interactive methods, because the type of
preference information that these methods need is not straightforward to get from a UF.

In this paper, we use the terminology that an artificial DM is used to replace a human DM in pro-
viding preferences for testing ad hoc interactive methods. In [28], the artificial DM generates preference
information by a cone concerning the MPSs (which are determined before the simulation), and the angle
of the cone delimits the scope of the search area. The learning of DMs is simulated by decreasing the
angle during the solution process. Artificial DMs are defined in [2] and [51] by a so-called steady part
and a current context. The steady part includes core preferences that do not change in time, and the
current context allows changing the preference information according to the current situation. There is
a mechanism that generates preference information (such as reference points) based on these two com-
ponents. For the performance evaluation or comparison of the interactive methods, the distance between
the steady preference information and the obtained solution is calculated or compared. Meanwhile, in
[14] and [37], the authors simulated human behaviors by using different types of UFs and named their
approaches as a virtual DM and a machine DM, respectively.

3 Assessments Available in the Literature
As mentioned in the introduction, we have collected assessments and comparisons of interactive multi-
objective optimization methods from 45 papers and we summarize them in this section. They contain a
total of 48 experiments. Next, we describe some general aspects found in the literature.

An important characteristic of the experiments reported is whether a single interactive method was
tested or different methods were compared. As can be seen in Figure 1, a majority of the papers reviewed
(24) concentrate on demonstrating the performance of a single interactive method, while the rest compare
an interactive method with non-interactive (a posteriori) ones (3), or compare several interactive methods
(21). Thus, we have three classes of experiments.

Figure 1: Experiment classes performed in the literature.

In principle, assessing the goodness of an interactive method may seem to be an easy task if it suffices
to assess the goodness of the final solution obtained. However, unfortunately, defining goodness is far
from trivial. For example, how do we know that a good (or the best possible) solution has been obtained?
Basically, the aim of any interactive method is to support the DM in finding the one’s MPS, that is, the
feasible solution that best meets her/his preferences. Theoretically, we may assume that a utility or a
value function perfectly defines these preferences. In such a case, the original multiobjective optimization
problem can be converted into a single objective one optimizing the utility/value function, and therefore,
any good multiobjective optimization method should find this optimal solution, or at least, one that
is close enough to it. This is why a significant number of papers assess the performance of interactive

5



methods in terms of the closeness of the final solution obtained to the optimal solution of a utility or a
value function.

Nevertheless, when it comes to practice, a theoretical utility/value function does not necessarily exist
(or even if it does, the DM is not able to specify it). For this reason, a majority of the experiments
reviewed (33 out of 48) employ DMs, either artificial (3) or human (30) ones. Out of the 30 experiments
with human DMs, 18 had a single one and the remaining 12 involved several DMs, who independently
assessed the method(s) considered.

As can be seen in Figure 2, the use of human DMs was the option preferred for all the classes of
experiments, except for the three comparisons of interactive methods with a posteriori methods, that
used utility functions and artificial DMs. It must be pointed out that in the experiments carried out with
a single human DM, it was in many cases the author(s) who simulated the DM’s behavior by providing
different kinds of preference information. Moreover, when several human DMs were involved, they were
often students or staff members of the university (only in four experiments reported, experts in the
problem domain participated). Therefore, it seems to be a difficult task to test methods with real DMs
who are really concerned about the final solution found.

Figure 2: Type of DM.

As previously mentioned, interactive methods differ from each other, e.g., in the type of preference
information that the DM provides at each iteration to direct the solution process. Therefore, it is very
important to know the type of preference information considered in the experiments reported. As can
be seen in Figure 3, the most popular types were:

• Choosing the best (and/or worst) one(s) in a given subset of (Pareto optimal) solutions;

• Ranking a subset of solutions;

• Performing pairwise comparisons of solutions;

• Giving desirable aspiration values (reference points) or directions of improvement for objective
functions;

• Classifying objectives (improvement in some objective(s) only possible by allowing impairment in
some other(s));

• Giving indifference tradeoff information to derive MRS among objectives;

• Providing weights for objective functions.

• Giving upper or lower bounds on certain objective functions.

In general, the different types of preference information used were quite similarly distributed in
the three classes of experiments. One can notice that reference point related preference information (18
experiments) and choosing the best and/or worst solution(s) of a given subset of Pareto optimal solutions
(20 experiments) were the most widely used preference types. Nevertheless, while the latter was used
both in experiments with utility functions and human DMs, the former was never used in experiments
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with utility functions, which clearly shows the difficulty of simulating this type of preference information.
This is an important fact, given that these two types of preference information are widely regarded as
the ones that place the lowest cognitive burden on the DM [36]. On the other hand, three experiments
with artificial DMs used reference points as preference information.

Figure 3: Type of preference information.

As discussed, a stopping criterion is an important issue. The stopping criteria used in the experiments
can be seen in Figure 4. While the DM’s satisfaction with the current solution was the most widely
reported stopping criterion (27 experiments), it was not simulated with utility functions or with artificial
DMs. Once again, this shows the difficulty of artificially simulating human behavior. Besides, the
“improvement of utility” criterion (that is, being close enough to the optimal value of the utility function)
was used in only 4 experiments, while the rest used criteria that could be regarded technical in nature
(mostly related to the evolutionary method used) rather than criteria based on DM’s preferences. For
example, it is hard to believe that in a real application, a DM would be happy if the method stopped
just because of a prefixed number of generations, iterations, crossovers etc. has been reached.

Figure 4: Stopping criteria.

A properly designed user interface is critical for the success of an interactive method in real decision
problems, because it enables communication between the DM and the method. Nevertheless, according
to Figure 5, nearly half of the experiments (22) did not mention a user interface. It is also interesting
to note that even in the experiments that reported the use of a user interface, no assessment was made
about its quality and its contribution to the satisfaction of the DM.

As mentioned at the beginning of this section, we divided the assessments considered into three classes
depending on whether they demonstrate the performance of a single interactive method, compare inter-
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Figure 5: User interface.

active and non-interactive methods or compare several interactive methods. In the following subsections,
we give further details of the experiments in each class in Tables 1, 2 and 3, respectively. In the tables,
the details of the experiments are listed in the following columns: name(s) of method(s) and references,
type of DM, preference type or additional information, what was measured or compared, number of
iterations, stopping criterion, test problems considered, type of problems considered, order of methods
considered, division between learning and decision phases made and user interface (UI) mentioned.

It is necessary to clarify what is meant by the column names in the tables. For Table 1, only the
related method name and its reference are listed since there is no comparison with other methods. On
the other hand, all the compared methods and the reference of the related experiment are listed in the
first column of Tables 2 and 3. We list how the experiments were done in the ’Decision maker’ column,
where the main options are UFs, a single human DM, several human DMs or an artificial DM. We order
the rows in the tables so that similar experiments based the DM type are next to each other. Following
this, in the ’Preference type’ column, only the preference types that were tested in the experiments are
listed. The specific aspects that were measured or compared in the related experiments are summarized
in the fourth column of the tables. For example, some statistical results from several runs, the number
of iterations or some measurements of practical opinions of DMs like satisfaction, confidence, usability
etc., are listed.

Then, the number of iterations carried out in the experiments and whether this number was pre-fixed
or not are indicated in the ’Number of iterations(pre-fixed)’ column. If the number of iterations is not pre-
fixed, we explain how this value was determined. For instance, “3 – (No, depends on DM satisfaction)”
means that the number of iterations was 3, this value was not pre-fixed, and it was determined according
to the DM’s satisfaction. We report how solution processes were terminated in the ’Stopping criterion’
column. In general, DM’s satisfaction or technical aspects like a fixed budget of generations or function
evaluations were used as stopping criteria. The ’Test problems(# of instances)’ and ’Type of problems’
columns give information about the problems tested in the experiments. Problem names and the number
of instances of the problems are given in the ’Test problems(# of instances)’ column. Problem types,
number of objectives (k) and decision variables (n for continuous variables and i for integer variables) are
given in the ’Type of problems’ column. There is an extra column in Tables 2 and 3 informing whether the
order of the methods tested was considered or not in the experiments, in the ’Order considered’ column.
Finally, in the last column (’Learning vs. decision phase/UI’ ) of the tables, we comment whether separate
learning and decision phases were reported or not and the type of user interfaces. The notation ‘-’ means
that the corresponding information was not mentioned in the related reference.

3.1 Demonstrating the performance of a single interactive method
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Table 1: Demonstrating the performance of a single interactive method
Method
and
reference

Decision
maker

Preference type
(additional
information)

What was
measured

Number of
iterations
(pre-fixed)

Stopping
criterion

Test problems
(# of
instances)

Type of
problems

Learning vs.
decision
phase / UI

I-SIBEA [15] Human DM Best and worst
solutions of a subset,
(max # of iterations,
# of solutions to be
compared)

- 6 - (Yes) Max 400
generations
of EA

ZDT4 Convex No / Graphical
(1 instance) k = 2, n = 10

Interactive
RVEA [24]

Human DM Best and worst
solutions of a subset,
reference point,
preferred ranges

- 5 - (No,
depends on
DM
satisfaction)

DM
satisfaction

Multiple-disk
clutch design
problem

k = 5, n = 5 No / Graphical

(1 instance)
E-
NAUTILUS
[58]

Human DM Best solution of a
subset, (# of
iterations, # of
solutions to be
compared)

- 5, 7 - (No,
depends on
DM
satisfaction)

DM
satisfaction

Auxiliary
services of
thermal power
plants [55]

Discontinuous, No / Graphical
Nonconvex
k = 3
n = 13, i = 20

(1 instance)
[38] Human DM Reference point - 3, 4 - (No,

depends on
DM
satisfaction)

DM
satisfaction

Aerodynamic
airfoil shape
optimization
problem

k = 2, 3, 6 No / -
n = 12

(3 instances)
WASF-GA
[56]

Human DM Reference point, (#
of solutions to be
compared)

- 3 - (No,
depends on
DM
satisfaction)

DM
satisfaction

DTLZ2 Concave No / Graphical
(1 instance) k = 5

NAUTILUS
Navigator
[57]

Human DM Reference point,
upper bounds on
objectives, speed of
the movement

- 3 - (No,
depends on
DM
satisfaction)

DM
satisfaction

Auxiliary
services of
thermal power
plants [55]

Discontinuous, No / Graphical
Nonconvex
k = 3
n = 13, i = 20

(1 instance)
PIE [61] Human DM Reference point,

weights, preferred
ranges, % distance to
PF, (# of solutions
to be compared)

- 3 - (No,
depends on
DM
satisfaction)

DM
satisfaction

Locating
pollution
monitoring
station [45]

k = 5, n = 2 No / Text-based

(1 instance)
iPICEA-g
[69]

Human DM Reference point,
weights

- (No, depends
on DM
satisfaction)

DM
satisfaction

ZDT1, DTLZ2 Convex, concave No / Graphical
(2 instances) k = 2, 4, n = 30
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Method
and
reference

Decision
maker

Preference type
(additional
information)

What was
measured

Number of
iterations
(pre-fixed)

Stopping
criterion

Test problems
(# of
instances)

Type of
problems

Learning vs.
decision
phase / UI

NAUTILUS
[43]

Human DM Rank of objectives or
percentages for how
to improve current
obj. values, (# of
iterations)

- 4 - (Yes) DM
satisfaction

Pollution
problem of a
river

k = 4 No / Graphical

(1 instance)

NAUTILUS
2 [47]

Human DM Direction of
improvement, (# of
iterations)

- 3 - (Yes) DM
satisfaction

Pollution
problem of a
river

k = 4 No / -

(1 instance)
Pareto
Navigator
[20]

Human DM Classification of
objectives, search
direction, specifying
starting point

- 4 - (No,
depends on
DM
satisfaction)

DM
satisfaction

Sample problem Nonconvex Yes / Graphical
(1 instance) k = 3 n = 2

NIMBUS
[46]

Human DM Classification of
objectives, (# of
intermediate
solutions, # of
solutions to be
compared)

- (No, depends
on DM
satisfaction)

DM
satisfaction

Sample problem k = 6, n = 2 No / Graphical
(1 instance)

T-IMO-EA
[13]

Human DM Indifference tradeoffs - 3 - (No,
depends on
DM
satisfaction)

DM
satisfaction

River water
quality problem
[72][73]

Nonlinear No / Text-based
k = 3, n = 3

(1 instance)
PROJECT
[40]

Human DM Indifference tradeoffs - 4 - (No,
depends on
DM
satisfaction )

DM
satisfaction

DEA problem
[70]

k = 3, n = 7 No / Text-based

(1 instance)

FLMOEA
[60]

Human DM Relative importance
of objectives

- 3 - (No) 100
generations
of EA

Control system
for flexible robot
arm [18]

k = 7 No / Graphical

(1 instance)
P-NSGA-II
[50]

Human DM Weights - 4, 6 - (No) 800, 1425
generations
of EA

DTLZ1, welded
beam design
problem

Linear, nonlinear No / Graphical
k = 2, 3 n = 4

(2 instances)
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Method
and
reference

Decision
maker

Preference type
(additional
information)

What was
measured

Number of
iterations
(pre-fixed)

Stopping
criterion

Test problems
(# of
instances)

Type of
problems

Learning vs.
decision
phase / UI

[21] Chebyshev,
linear UFs

Best and worst
solutions of a subset

Average values and
deviation from best
found solution in
several runs

3, 5, 6, 9, 11,
15 - (Yes)

20, 500
generations
of EA

0/1 knapsack Combinatorial, No / -
(6 instances) k = 2, 3, 4

i = 100, 200

iMOEA/D
[23]

4 UFs Best solution of a
subset

Values of 30 runs
shown on graphs

4 - (Yes) 500
generations
of EA

ZDT1-2,
DTLZ1-2,
welded beam
design problem

Linear, concave No / -
convex
k = 2, 3, 4
n = 4, 7, 12, 30

(5 instances)
iTDEA [31] Chebyshev,

linear,
quadratic
UFs

Best solution of a
subset

Mean, standard
deviation, absolute
deviation, relative
deviation of 50 runs

4, 6 - (Yes) 80000-320000
function
evaluations

DTLZ1-2, ZDT4 Linear, convex No / -
(6 instance) concave

k = 2, 3

PI-EMO-PC
[62]

Linear,
nonlinear
UFs

Best solution of a
subset

Best, median, worst
values of 21 runs -
# of function evals -
# of DM calls

(No, depends
on stopping
criterion)

Small
expected
improvement

Modified ZDT1,
DTLZ2

Nonconvex, No / -
concave

(3 instances) k = 2, 3, 5
n = 30

BC-EMO [3] Linear,
nonlinear
UFs

Ranking solutions of
a subset

Median values of
100 runs

1, 2, 3 -
(Yes)

500
generations
of EA

0/1 knapsack,
DTLZ1, 6-7

Combinatorial, Yes / -
disconnected,

(36 instances) linear
k = 2− 10, i = 100
n = 2k − 10k

Machine DM
[37] BC-EM0

UFs Ranking solutions of
a subset

Mean values of 10
runs

3 - (Yes) 500
generations
of EA

DTLZ1-2, 6-7 Concave, No / -
(8 instances) disconnected,

linear
k = 5, 7, n = 2k

PI-EMO-VF
[17]

Linear,
nonlinear,
stochastic
UFs

Ranking solutions of
a subset

Best, median, worst
values of 21 runs, #
of function evals, #
of DM calls

(No, depends
on stopping
criterion)

Small
expected
improvement

Modified ZDT1,
DTLZ2

Nonconvex, No / -
concave

(3 instances) k = 2, 3, 5
n = 30

IEM [54] Chebyshev,
linear UFs

Pairwise comparison Average and
standard deviation
of 50 runs - # of
comparisons by DM

(No, based
on estimated
fitness)

Predetermined
# of
crossovers/
population
convergence

0/1 knapsack,
spanning tree
problem

Combinatorial No / -
k = 2, 3, 4
i = 20, 50, 200

(9 instances)
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3.1.1 Type of DMs

Many interactive methods considered were tested alone, rather than compared with other interactive
methods. As mentioned, 24 experiments out of 48 contained no comparisons among different interactive
methods. Information of these experiments is summarized in Table 1. As can be seen, UFs or a single
human DM were used to provide preference information. In eight experiments, different types of UFs
such as Chebyshev, linear, nonlinear or quadratic UFs were used ([3], [17], [21], [23], [31], [37], [54], [62])
(as mentioned in Section 2, we associate machine DMs of [37] to UFs). Furthermore, human DM(s)
took part in the remaining 16 experiments. A single human DM participated in [13], [15], [20], [24],
[38], [40], [43], [46], [50], [56]–[58], [60], [61], [69], except for one experiment [47], where a group of DMs
was involved in a group decision making context. In fact, in all these experiments, the author(s) acted
as DMs establishing some assumptions about possible preference information. Interestingly, a separate
learning and decision phase was mentioned in only two papers [3], [20]. It should be noted that some
methods are particularly suited for one of the phases. For example, navigation based methods like in
[20], [27] and the NAUTILUS family ([43], [47], [57], [58]) are more fitted for the learning phase while
classification based methods like [46] are well suited for the decision phase.

3.1.2 Type of preferences

Different types of preferences were tested in the experiments in this class. Although some methods
had different ways to capture preference information, only one type of preference was tested in each
experiment done by using UFs, such as choosing the best or worst solution in a given subset of solutions
([21], [23], [31], [62]), ranking a subset of solutions ([3], [17], [37]) or carrying out pairwise comparisons
of solutions [54]. On the other hand, by simulating a human DM’s responses, author(s) could sometimes
test different preference types in the same experiment. The most widely used and tested preference
type was specifying a reference point ([24], [38], [56], [57], [61], [69]). In [24], other types of preference
information were tested: selecting preferred solutions, specifying non-preferred solutions and specifying
preferred ranges for objective function values in addition to the reference point. Likewise, specifying
preferred and non-preferred solutions was tested in [15]. A DM’s preferences were simulated in [50] by
specifying values of Gaussian functions. In [61] and [69], DMs expressed their preferences by giving
both reference points and weights for the objectives. Besides, the DM was asked to give the percentage
distance between the current reference point and the corresponding Pareto optimal solution, and the
number of solutions to be compared in [61].

Moreover, the DM classified objectives into some classes, and gave aspiration levels and bounds for
corresponding objectives in [46]. In [20], the DM gave the starting point of the navigation and specified
the search direction during the navigation phase as a reference point or with classification. In [43], [47]
the preference information consisted of ranking the relative importance of improving each objective value,
while in [60] some grades of the relative importance of the objectives were given. The DM also expressed
her/his preferences by providing some percentages indicating how the current objective values should be
improved in [43]. The DM chose the best solution from the shown solutions and could decide the number
of solutions to be shown and the number of iterations to be taken in [58]. The DM gave upper bounds
for some objectives in addition to specifying the reference point and speed of the movement in [57]. The
DM provided local indifference tradeoffs that were used to calculate MRS in the experiments in [13] and
[40].

3.1.3 What was measured

A key issue of this survey is to find out what was measured in the experiments and how. Unfortunately,
not many aspects have been measured in this class of experiments. On the one hand, it is apparent from
Table 1 that some statistical results were measured from several runs if the experiments were carried
out by using UFs. In this type of experiments, algorithms were run several times to measure the results
consistently. These results were presented as best, median, mean, worst values, or standard, absolute,
relative deviation over several runs. Besides these statistical results, the number of DM calls (in this
case, it is the number of UF calculations) was measured and listed in some experiments ([17], [54], [62])
and the number of iterations was not pre-fixed. The number of overall function evaluations was also
shown in the corresponding experiments in [17], [62]. On the other hand, in the rest of the experiments,
the author(s) simulated a human DM’s responses and assumed the necessary preference information,
in order to demonstrate the usage of the proposed interactive methods. They had either graphical or
text-based user interfaces, and they presented some screenshots showing the interaction between the DM
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and the method. Since the purpose of this kind of experiments is just to demonstrate the functioning
of the method and the user experience and not to evaluate the performance, the results were shown on
graphs from a single run of the method.

3.1.4 Stopping criteria

Three main stopping criteria were used to terminate interactive methods in this class. The most widely
used stopping criterion was DM’s satisfaction, that is, the method was terminated when the DM was
satisfied with the solution obtained. This criterion was used in most of the experiments involving human
DMs ([13], [20], [24], [38], [40], [43], [46], [47], [56]–[58], [61], [69]). The second stopping criterion was
very technical and based on an initially fixed number of function evaluations or generations ([3], [15],
[21], [23], [31], [37], [50], [60]), while the last stopping criterion was based on expected improvement of
the utility of the solutions ([17], [62]). Besides these main types, the method in [54] was terminated
when either the maximum number of crossovers was met or 95% of the genes converged, which are very
technical criteria as well.

3.1.5 User interface

As was pointed out earlier in this section, the user interface can be an extremely relevant element in the
success of applying interactive methods. A total of 14 experiments out of 24 were carried out by using
either text-based or graphical user interfaces. Only five papers explicitly mentioned the importance of
the user interfaces and the necessary features they should have ([20], [24], [43], [46], [57]). However,
none of the listed experiments in this class made any assessment to evaluate the goodness of their user
interfaces.

3.2 Comparing interactive and non-interactive methods
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Table 2: Comparing interactive and non-interactive methods
Compared
methods and
reference

Decision
maker

Preference type
(additional
information)

What was
compared

Number of
iterations
(pre-fixed)

Stopping
criterion

Test
problems (#
of instances)

Type of
problems

Order
consid-
ered

Learning
vs. decision
phase / UI

[28] Artificial
DM

Reference point Computational time 5 - (Yes) MPS is
reached, max
# of function
evaluations

Inventory
routing
problem

k = 2, i = 2 No No / -

(1 instance)
NEMO-I [6]
NSGA-II

Chebyshev,
linear UFs

Pairwise
comparison

Best and average
values of 4 (for
NEMO-I), 10 (for
NSGA-II) runs

(No, depends
on stopping
criterion)

200
generations
of EA

ZDT1, ZDT2 Convex,
concave

No No / -
(2 instances)

k = 2, n = 30

NEMO-0 [7]
NSGA-II

Chebyshev,
linear UFs

Pairwise
comparison

Best and average
values of 100 runs

(No, depends
on stopping
criterion)

300, 15000
generations
of EA

ZDT1-2, 4,
DTLZ2, WFG1

Convex,
concave

No No / -

(5 instances) k = 2, 3, 4, 5
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The second class of assessments involves comparisons of interactive and non-interactive methods. In
principle, one can question the meaningfulness of such experiments because methods of different types are
compared. As can be seen in Table 2, we have only three such experiments. In [6] and [7], two interactive
methods were compared with an a posteriori evolutionary algorithm. Chebyshev and linear UFs were
used for pairwise comparisons of solutions. As results of comparisons, some statistical values from several
runs were listed. Since UFs were used to simulate the DM’s preferences in both experiments, the order
of the methods was not considered. The stopping criterion was a prefixed number of generations of the
underlying evolutionary algorithm (specified by the authors).

In [28], a reference point-based interactive method was compared with its a posteriori variant on a
real-world problem with an artificial DM simulating the DM’s responses as described in Section 2. The
authors compared the computational effort as the time for finding the MPSs, which were prefixed by the
authors. The interactive method was terminated when the MPS was found, objective function values
were not improved further, or the maximum number of function evaluations was reached.

3.3 Comparing several interactive methods
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Table 3: Comparing several interactive methods
Compared
methods and
reference

Decision
maker

Preference type
(additional
information)

What was
compared

Number of
iterations
(pre-fixed)

Stopping
criterion

Test
problems (#
of instances)

Type of
problems

Order
consid-
ered

Learning vs.
decision
phase / UI

Experimental
study [2]
R-NSGA-II,
WASF-GA

Artificial
DM

Reference point Distance of final
solution and steady
preference information
of 31 runs (mean,
standard deviation,
min), # of iterations

11 - (No,
depends on
stopping
criterion)

Max # of
iterations,
could not
create a new
reference point

DTLZ1-7 Linear,
concave,
disconnected

No No / -
(21 instances)

k = 3, 5, 7

Experimental
study [51]
R-NSGA-II,
ASF

Artificial
DM

Reference point Distance of final
solution and steady
preference information
of 10 runs (mean,
standard deviation,
min), # of iterations

11 - (No,
depends on
stopping
criterion)

Max # of
iterations,
could not
create a new
reference point

DTLZ1-4 Linear,
concave

No No / -
(24 instances)

k = 2, 4, 6

Nonconvex
Pareto
Navigator [27]
PAINT +
NIMBUS

Human DM Classification of
objectives,
aspiration levels,
specifying starting
point, bounds on
objectives

User experience and
learning of DM

(No, depends
on DM
satisfaction)

DM
satisfaction

Wastewater
treatment
plant operation
[26]

Nonconvex No Yes / Graphical
k = 5

(1 instance)

r-NSGA-II
[59]
g-NSGA-II,
PBEA,
R-NSGA-II

Human DM Reference point,
(# of generations
for each iteration,
population size)

Objective values shown
on graphs, additive
binary indicator [74]

4 - (No,
depends on
DM
satisfaction)

DM
satisfaction

ZDT1, 3,
DTLZ2

Concave,
convex,
disconnected

No No / -

(4 instances)
k = 2, 3, 10
n = 12, 30

Experimental
study [8]
STEM, Steuer

142 DMs
(31 profes-
sional, 111
students

Best solution of a
subset, aspiration
levels, changing
between methods

Satisfaction,
instrumentality,
usability,
understandability,
quality, # of changes

(No, depends
on DM
satisfaction)

DM
satisfaction

Buying a car Linear No No / -
(6 instances) k = 2, 4, 6

i = 3, 6

Experimental
study [9]
PLANE,
CONE,
GUESS

24 students Best solutions of a
subset, rating
solutions, upper
and lower bounds
on objectives

Confidence, usability,
understandability,
ability to capture
preferences, # of
iterations, elapsed time

(No, depends
on DM
satisfaction)

DM
satisfaction

Production
planning
problem, river
basin problem

Linear No No / -
k = 3

(2 instances)
Experimental
study [10]
GUESS, ZW

84 students
(4 groups *
21)

Best solution of a
subset, upper and
lower bounds on
objectives

Anchoring (distance
from starting points)

(No, depends
on DM
satisfaction)

DM
satisfaction

Production
scheduling
problem

Spherical Yes No / Graphical
k = 3

(1 instance)
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Compared
methods and
reference

Decision
maker

Preference type
(additional
information)

What was
compared

Number of
iterations
(pre-fixed)

Stopping
criterion

Test
problems (#
of instances)

Type of
problems

Order
consid-
ered

Learning vs.
decision
phase / UI

Experimental
study [11]
ZW, SWT,
STE, GUESS

24 DMs
(students
and staff)

Best or worst
solutions of a
subset, upper and
lower bounds on
objectives

Confidence, usability,
understandability,
CPU time, elapsed
time, most and least
preferred method

(No, depends
on DM
satisfaction)

DM
satisfaction

Production
scheduling
problem

Linear Yes No / -
k = 3

(1 instance)

Experimental
study [12]
GUESS-PM,
GUESS-PU

58 students Best solutions of a
subset, reference
point

Preferred method (No, depends
on DM
satisfaction)

DM
satisfaction

Production
scheduling
problem

Spherical No No / Graphical
k = 3

(1 instance)
Experimental
study [16]
GUESS, ZW,
SMART

84 students
(4 groups *
21)

Best solution of a
subset, upper and
lower bounds on
objectives

Confidence, elapsed
time, usability,
understandability,
willingness to use
methods again

(No, depends
on DM
satisfaction)

DM
satisfaction

Production
planning
problem

Spherical Yes No / Graphical
k = 3

(1 instance)

Experimental
study [19]
Geoffrion,
GUESS

9 students Best solution of a
subset, indifference
tradeoffs

Confidence, usability (No, depends
on DM
satisfaction)

DM
satisfaction

Buying a car Linear No No / Text-based
(1 instance) k = 3, i = 3

Experimental
study [30]
AHP, IGP,
STM, WACM,
ZW

5 DMs Best solution of a
subset, pairwise
comparison,
weights

Computer costs,
usability, information
load, learning effects

(No, depends
on DM
satisfaction)

DM
satisfaction

Energy
planning
problem

Linear No No / Graphical
k = 5, 9

(2 instances)

Experimental
study [34] 5
ways to give
reference
direction: asp.
levels, BPR,
AHP, MRS,
unit vectors

65, 72
students

Best solution of a
subset, reference
direction

Satisfaction,
confidence,
understandability,
usability, usefulness of
provided information,
speed of convergence,
# of iterations

(No, depends
on DM
satisfaction)

DM
satisfaction

Time
allocation [32],
choosing
washing
machine [33],
buying a home
[33]

Linear,
discrete

Yes No / Graphical

k = 3, 5

(3 instances)
Experimental
study [41]
Steuer, ZW

5 DMs Best solution of a
subset

# of iterations 3, 4, 5, 6 -
(No, depends
on DM
satisfaction)

DM
satisfaction

Production
planning
problem

Linear No No / Text-based
k = 3
i = 42

(1 instance)
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Compared
methods and
reference

Decision
maker

Preference type
(additional
information)

What was
compared

Number of
iterations
(pre-fixed)

Stopping
criterion

Test
problems (#
of instances)

Type of
problems

Order
consid-
ered

Learning vs.
decision
phase / UI

Experimental
study [49]
AHP, ZW

28 students Best solution of a
subset

Satisfaction, gained
insight,
understandability,
usability, ability to
capture preferences,
elapsed time

(No, depends
on DM
satisfaction)

DM
satisfaction

Resource
allocation
problem

Linear No No / Text-based
k = 3

(1 instance)

Experimental
study [68]
Geoffrion,
STEP,
unstructured
approach
(UN)

36 DMs (18
students, 18
managers)

Indifference
tradeoffs, solution
of step size
problem, objective
to deteriorate,
max amount of
relaxation, vector
of objective values

Most and least
preferred method,
confidence, usability,
understandability,
usefulness of provided
information, speed of
convergence, CPU
time

(No, depends
on DM
satisfaction)

DM
satisfaction

Production
planning
problem

Linear Yes No / Text-based
k = 3, i = 7

(1 instance)

Experimental
study [14]
T-IMO-EA,
I-SIBEA

Quadratic
UFs

Best and worst
solutions of a
subset, indifference
tradeoffs

Best, mean, worst
values of 20 runs,
mean running time

2, 3, 4 - (No,
depends on
stopping
criterion)

Change in UF
small enough

ZDT1, DTLZ1 Convex,
linear

No No / -
(2 instances)

k = 6, 10

I-SIBEA [15]
W-Hype

Chebyshev
UFs

Best and worst
solutions of a
subset

Mean, standard and
absolute deviation,
optimal UF values of
10, 30, 50 runs

2, 4, 6, 8 -
(Yes)

20000, 40000,
120000
function evals

DTLZ1,
DTLZ2, ZDT4

Linear,
concave,
convex

No No / Graphical

(3 instances)
k = 2, 3
n = 7, 10, 11

NEMO-0 [7]
IEM

Chebyshev
UFs

Pairwise
comparison

Best and average
values of 100 runs

(No, depends
on stopping
criterion)

300, 15000
generations of
EA

ZDT1-2, 4,
DTLZ2, WFG1

Convex,
concave

No No / -

(5 instances) k = 2, 3, 4, 5

INSPM [53]
iTDEA

3 UFs Pairwise
comparison

Average values and
average running times
of 50 runs

(Yes) 50 generations
of EA

ZDT4 Convex No No / -
(1 instance) k = 10

T-IMO-EA
[13] GRIST

Quadratic
UFs

Indifference
tradeoffs

Best, mean, worst
values of 20 runs,
mean running time

(No, depends
on stopping
criterion)

Change in UF
small enough

GLT5, DTLZ1 Linear,
nonlinear

No No / Text-based
(3 instances)

k = 3, 5
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3.3.1 Type of DMs

Lastly, we summarize comparisons of several interactive methods. Table 3 provides detailed information
about these experiments. As shown, the most preferred experiment type was using several human DMs
([8]–[12], [16], [19], [30], [34], [41], [49], [68]). In general, students were used as DMs and professionals
were included together with students in only two experiments ([8], [68]). In [30] and [41], only domain
experts were used. Generally, the DMs were divided into groups, which solved problems with interactive
methods in different orders to avoid cognitive biases such as anchoring and learning. Interestingly, we
can see that this kind of experiments have not been published in recent years. By using human DMs, the
authors could compare interactive methods from the practical applicability point of view. On the other
hand, in order to compare the computational performances of the methods, UFs were used to simulate
DMs in five experiments ([7], [13]–[15], [53]). (As mentioned in Section 2, we associate virtual DMs of
[14] to UFs). Artificial DMs, as described in Section 2, were used to simulate the preference information
of DMs in two experiments in order to compare reference point based interactive methods ([2], [51]).
Finally, the last experiment type in this class was using a single human DM ([27], [59]).

3.3.2 Type of preferences

Let us next consider the types of preference information tested. In a majority of experiments, DMs were
asked to choose the best (most preferred) and/or the worst (least preferred) solution from a subset of
solutions shown ([8]–[12], [16], [19], [30], [34], [41], [49]). The same preference type was tested by using
UFs in [14] and [15]. In addition to this preference type, DMs were also asked to specify upper and lower
bounds for objective function values in some experiments ([9]–[11], [16]). DMs were allowed to change
from one method to another while solving a problem in [8], and they could also specify aspiration levels.
In [10], several solutions representing the set of Pareto optimal solutions were shown to the DMs who
were asked to specify a rating of each shown solution using a 20-point cardinal scale.

In [34], five different ways for specifying reference directions were tested (aspiration levels, the bound-
ary point ranking method (BPR), the analytic hierarchy process (AHP), MRS and the use of unit vec-
tors). A tradeoff type of preference information can be found in [68], where DMs were asked to provide
indifference tradeoffs to estimate MRSs between objectives for one method, to choose the objective to
deteriorate for another method and to enter a vector of objective values for an unstructured approach.
In [27], a human DM specified a starting point of the navigation method as well as aspiration levels and
bounds of objectives and compared the solution process with a combination of an approximation method
and a classification based method. Several reference point-based methods were tested by specifying ref-
erence points by artificial DMs ([2], [51]), or by human DMs ([12], [59]). To simulate the preferences of
the DMs, some UFs were used for pairwise comparisons in [7], [53], and to calculate MRSs in [13], [14].

3.3.3 What was compared

To answer the question of what was compared, we can say that it highly depended on the experiment
type. If UFs were used, some computational performance indicators were compared, such as best, mean
or worst values of UF values from several runs or deviations from the best found solution over several
solution processes ([7], [13]–[15], [53]). In [13], [14] and [53], average times of solution processes were
also compared. We have 2 experiments done by using a human DM. In [27], two solution processes with
different interactive methods were compared with a domain expert as a DM. As a result, it was concluded
that the DM learned better and gained more insight into the problem by using a navigation method.
Preference information such as reference points, the number of generations for each iteration and the
population size of the underlying evolutionary algorithm to compare reference point based interactive
methods were provided in [59]. The comparison was made by considering graphical representations of
the solutions obtained and evaluating the performance indicator called additive binary indicator [74].

Furthermore, several measures related to the practical applicability were compared by using human
DMs. In these experiments, DMs were asked to evaluate the methods by rating several aspects on a scale
ranging from, e.g., 1 to 10. In fact, DMs were asked to determine some scores for each type of measure
after the experiments. For example, a question like “How much were you satisfied with the final solution?”
was asked and the DM gave a score as a response. Since this kind of measure is directly related with the
personality or the background of a DM, several DMs were involved in these experiments. The following
features were measured and compared in this type of experiments:

• Satisfaction or confidence in the final solution [8], [9], [11], [34], [49], [68].
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• Confidence in the method [16], [19], [34].

• Ease of understanding the method [8], [9], [11], [16], [34], [49], [68].

• Ease of using the method [8], [9], [11], [16], [19], [30], [34], [49], [68].

• Ability to capture preferences [9], [49].

• Usefulness of the provided information to aid the DM [34], [68].

• Most and least preferred method [11], [12], [68].

• Willingness to use the methods again [16].

• Instrumentality of the methods to achieve a solution [8].

• Anchoring (distance from the starting points) [10].

• “Experienced” speed of convergence [34], [68].

• Information load [30].

• Learning effects [30].

• Gained insight of the problem [49].

• CPU time (computation time) [11], [30], [68] or elapsed time (total time for solving the problem)
[8], [9], [11], [16].

3.3.4 Stopping criteria

When we examine the experiments in terms of stopping criteria, we observe that 1) if experiments were
done with human DMs, methods were terminated if the DM was satisfied with the obtained solution
([8]–[12], [16], [19], [27], [30], [34], [41], [49], [59], [68]), 2) if experiments were done by using UFs, methods
were terminated based on a fixed budget of function evaluations or generations ([7], [15], [53]) and 3) if
experiments were done by using artificial DMs, methods were terminated if the artificial DM was unable
to generate a new reference point or if the maximum number of iterations had been reached ([2], [51]).
In addition to these stopping criteria, methods were terminated if the value of UF did not improve along
a tradeoff direction, or a change of the UF value was smaller than a threshold in [13], [14].

3.3.5 User interface

As we discussed earlier, designing a good user interface is important for the success of applying interactive
methods. As can be seen in Table 3, user interfaces, either graphical ([10], [12], [15], [16], [27], [30], [34]) or
text-based ([13], [19], [41], [49], [68]), were mentioned in 12 experiments out of 21. When we analyzed the
experiments that included comparisons of several interactive methods, we could not see any assessments
of the user interfaces.

4 Discussion
In this section, we discuss several important aspects of the assessments of interactive methods. We first
propose in Section 4.1 desirable properties of interactive methods by collecting them from the papers
considered in the previous section and using our own experiences. We consider learning and decision
phases separately as well as properties that are common for both phases. In Section 4.2, we then
indicate which of the properties have already been measured in the papers surveyed. We also discuss
some challenges of assessing interactive methods.
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4.1 Desirable properties of interactive methods - What should be measured?
To be able to assess the performance of an interactive method or compare several methods, we must
characterize what we regard desirable. Thus, we must decide what makes an interactive method good.
Because learning and decision phases have somewhat different objectives, they do naturally have their
own desirable properties. In addition, we have general desirable properties that are independent of the
phase of the solution process.

• General properties (GP)

GP1 - The method captures the preferences of the DM.

GP2 - The method sets as low cognitive burden on the DM as possible.

GP3 - A user interface supports the DM in problem solving.

GP4 - The DM feels being in control while interacting with the method.

GP5 - The method prevents premature termination of the overall solution process.

• Learning phase (LP)

LP1 - The method helps the DM avoid anchoring.

LP2 - The method allows exploring any part of the Pareto optimal set.

LP3 - The method easily changes the area explored as a response to a change in the preference
information given by the DM.

LP4 - The method allows the DM to learn about the conflict degree and tradeoffs among the objec-
tives in each part of the Pareto optimal set explored.

LP5 - The method properly handles uncertainty of the information provided by the DM.

LP6 - The method allows the DM to find one’s region of interest at the end of the learning phase.

• Decision phase (DP)

DP1 - The method allows the DM to be fully convinced that (s)he has reached the best possible
solution at the end of the solution process.

DP2 - The method reaches the DM’s MPS.

DP3 - The method allows the DM to fine-tune solutions in a reasonable number of iterations and/or
reasonable waiting time.

DP4 - The method does not miss any Pareto optimal solution that is more preferred (with a given
tolerance) for the DM than the one chosen.

Each desirable property has a particular purpose. To be clear, we briefly describe the listed desirable
properties. The purpose of GP1 is to determine the ability to capture DM’s preferences correctly. Hence,
an interactive method should adequately react to DM’s preferences. GP2 is valid for both the learning
and the decision phases since the cognitive burden set on the DM may affect the whole solution process
and the final solution, correspondingly. The method should not make the DM tired or confused during the
interactive solution process. In order to support the DM, the method should provide useful information
to the DM via a user interface which is mentioned in GP3. Besides, with the help of the method, the
DM should be aware of what is going on during the whole solution process without feeling to be losing
the control of the method (GP4). Each phase of the solution process should not be terminated before
the DM finds the region of interest at the end of the learning phase or is satisfied with the final solution
at the end of the decision phase (GP5). In other words, the method should not make the DM want to
stop iterating before (s)he is sure about having obtained a good enough final solution.

As far as the learning phase is concerned, a DM may not have a clear idea about the tradeoffs of the
problem at the beginning of the solution process. Therefore, the starting solution may affect the final
decision of the DM if (s)he does not learn enough (LP1). Accordingly, (s)he may want to explore the
search area (LP2) in order to gain insight into the problem in the learning phase. For this purpose, LP3

deals with the change in the preference information by changing the explored area efficiently. During the
solution process, the DM may provide inconsistent or uncertain preference information and this requires
special attention which is referred to the property LP5. Finally, the purpose of the learning phase is to
find the region of interest after understanding the problem details (LP6).
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As mentioned earlier, assessing the goodness of an interactive method is quite challenging due to the
difficulty of designing an objective performance metric. Therefore, both qualitative and quantitative,
objective and subjective assessments are needed to find the most suitable interactive method based on
the needs of a DM. Here, DP1 is about the qualitative and subjective appreciation of the DM about
her/his confidence and satisfaction in the final solution. On the other hand, a quantitative goodness
is emphasized in DP2 and can be measured by UFs, artificial DMs and human DMs. Since the DM
learned and gained insight in the learning phase, (s)he should be sure about her/his region of interest at
the beginning of the decision phase. Therefore, the method should allow the DM to refine the solution
within this region of interest in a reasonable time and a number of solutions (DP3). Of course, it is
highly important not to miss any other Pareto optimal solution which would be better than the one
selected by the DM (DP4).

4.2 General considerations of assessing interactive methods
Most of the desirable properties listed in the previous subsection were not measured in the literature
reviewed in Section 3. Actually, only GP1, GP2, LP1, LP4, DP1, DP2 and DP3 were measured (see
Table 4).

The anchoring effect was measured in [10] by comparing the Euclidean distances of starting points
and final solutions. Conclusively, starting points of the solution processes affected the final solution.
Therefore, selecting a starting point of an interactive method is an important issue. Otherwise, the DM
can get stuck in local optima or cannot explore the objective space sufficiently in the learning phase. As a
consequence, the DM may not be able to learn well enough about the problem and (s)he may terminate
the solution process with unsatisfactory solutions. In order to avoid the anchoring effect, an inferior
point is proposed as a starting point in the NAUTILUS family where the DM can see improvement of
each objective simultaneously at each iteration ([43], [47], [57], [58]).

In [9], [68] the authors asked the DMs to give some points for qualitative questionnaires regarding the
method’s ability to capture the preferences of the DMs. Capturing preferences sufficiently and providing
adequate information to aid the DM are crucial issues that should be assessed for interactive methods.
The more useful information for the DM is shown and the better capabilities to capture different types
of preferences of the DM there are, the better the method is.

Questionnaires were also used to measure the DM’s satisfaction with the obtained solution in [8],
[9], [11], [34], [49], [68]. There was no comparison or measurement of the DM’s satisfaction for most
of the other methods, which use DM’s satisfaction as a stopping criterion. Instead of carrying out
experiments with human DMs, the authors usually acted as DMs and provided the necessary preference
information to demonstrate the usage of their methods. In this type of experiments, the authors claimed
a solution as a final one. Measuring the DM’s satisfaction or confidence in the final solution is one
of the most challenging issue in assessing and comparing interactive methods. There should be more
systematic experiments done by several human DMs to understand the confidence or satisfaction level
of the obtained solution or the method itself.

It can be easily observed from the experiments that the number of iterations or time spent in the
experiments was generally measured and compared since these values can be collected from the experi-
ments effortlessly. However, many real DMs have limited time available to solve optimization problems.
Therefore, the number of iterations with the method and the total time spent and/or waiting time
between each iteration should be reasonable.

In Section 4.1, we listed desirable properties of interactive methods. We count the number of exper-
iments of our survey where they have been assessed, and suggest whether they can be measured with
human DMs or replacing humans by UFs or artificial DMs in Table 4. The properties are given with
reminders (in parenthesis) which are compact ways of representing the actual properties. The symbol
(’X’) indicates that the property in question was measured or can be measured. We use a question mark
(’?’) if it is not clear whether the property can be measured by the corresponding type of DMs.

As previously mentioned, non ad hoc interactive methods can be assessed or compared by using UFs.
Naturally, experimenting with UFs requires less resources and time than experimenting with human
DMs [1]. However, it is not possible to use UFs for comparing methods employing all types of preference
information. Therefore, artificial DMs have been proposed in [2], [28], [51] to test reference point based
interactive methods, which are ad hoc by nature.

Experimenting with UFs and artificial DMs enables controlling the experimental setting and repeating
experiments if needed. Besides, one can avoid problems arising from human nature such as cognitive
biases, tiredness and learning transfers [28]. However, the usefulness and the practical applicability of the

22



Table 4: Suggested ways of measuring desirable properties
Properties # of experiments Human DMs UFs Artificial DMs
GP1 (Capturing preferences) 2 X X X
GP2 (Cognitive burden) 1 X
GP3 (User interface) - X
GP4 (Being in control) - X
GP5 (Early termination) - X ? ?
LP1 (Anchoring) 1 X X X
LP2 (Exploring PO) - X X X
LP3 (Changing area) - X ? X
LP4 (Learning) 2 X X
LP5 (Uncertain preference) - X X X
LP6 (Region of interest) - X X X
DP1 (Convinced) 6 X
DP2 (MPS) 18 X X X
DP3 (Iterations / waiting time) 8 / 10 X X X
DP4 (Not missing PO) - X X X

interactive methods can hardly be tested by using UFs. Furthermore, formulating UFs mathematically
is not an easy task. Even if we assume that the DM can specify a UF, it may change since the DM might
gain more insight of the problem over time [42]. Therefore, in order to compare interactive methods by
using UFs, there is a need of constructing more types of UFs that take into account various cognitive
biases and behaviors of human DMs. These issues are also valid for artificial DMs. Except for the
positive feature that artificial DMs can be programmed to learn and change over time.

As previously discussed, several important issues can only be properly assessed by humans. Of
course, a single DM, if really involved with the problem solved, can give her/his opinions about the
interactive method but a single opinion, referring to a single problem, is not enough to assess the quality
of a method. Moreover, because a human DM is involved in the solution process, the performance of
the method depends on the personality of the DM. Human DMs have subjective preferences and their
feelings, morale or tiredness may affect the solution process directly. Besides, assessing the interactive
method or comparing several ones might not be fair because of the cognitive biases such as learning and
anchoring as mentioned before. Therefore, we believe that experiments with several human DMs must
be conducted to measure some properties. From the previous experiences with this kind of experiment
reported in the literature, we learn that the following aspects should be carefully addressed:

• Who acts as a DM? Ideally, DMs should be experts in the problem domain considered in testing
methods, but it seems nearly impossible to involve the number of experts that these experiments
would need. Instead, some experiments reported in the literature fall back on students as DMs,
which seems a more reasonable way to find the appropriate number of persons. Nevertheless, in this
case, some effective way needs to be found to assure the students’ involvement with the problems
solved. That is, the students must have a sufficient knowledge about the problems, and they must
be concerned about finding a good enough final solution.

• Several problems and several methods. It seems reasonable to think that a single problem may have
special features that make certain methods more suitable than others. Therefore, we believe that
several problems should be considered in the experiments. On the other hand, several methods
are usually compared. This multiplicity of problems and methods brings new decisions, regarding
how many problems should each DM solve, and with how many methods. If a single DM solves
the same problem with different methods, there is an unavoidable learning effect that may alter
the results. In this case, it is important to have other DMs testing the same methods in a different
order. On the other hand, it may be hard to have a single student properly involved with several
problems. Therefore, these decisions must be properly made depending on the number of methods
to be tested, the number of problems used, and the number of students and their knowledge and
involvement with the problems.

• What to ask. If the above experimental setup can be created, then we need to specify questions
that DMs are asked. These questions must be understandable and easily answerable, since the DMs
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should feel comfortable to answer them. Separate questions should be asked for different features
of interactive methods. Moreover, answering should not take much of DM’s time.

4.3 Some aspects on selecting an interactive method
As mentioned in the introduction, supporting the selection of an appropriate interactive method for
various needs was one of the objectives of this research. We have identified many aspects that deserve
further study. In general, the choice of the method depends at least on the availability of the DM,
the type of preference information the DM can provide, desires of the DM in terms of what kind of
information should be available during the solution process and characteristics of the problem to be
solved. A matter which deserves further study is the possibility of changing the method during the
solution process. One can, for example, apply first a method for learning, where a high accuracy of
solutions is not necessary and then switch to a different method in the decision phase to fine-tune the
solution with accurate calculations.

As said, many aspects must be considered when choosing an adequate interactive method for a
given problem. Having access to an accurate assessment of these aspects for different methods becomes,
therefore, crucial. In this paper, we have identified how such assessments have been carried out in the
published literature, and we have found some issues that have not been measured yet. For this reason,
we feel that there is still much to be done in the assessment field, before reliable recommendations of
interactive method can be made. Nevertheless, based on the lessons learned in this paper, we can identify
some aspects that need to be taken into account when selecting a method.

As mentioned before, aspects related to the DM should be taken carefully in selecting a method.
The availability of the DM has to be checked first. In real applications, DMs may have limited time to
be involved in interactive solution processes. In this case, methods that have a reasonable number of
iterations and waiting time (DP3) should be considered. In problems where the function evaluations are
time consuming, methods that start with a pre-generated set of solutions are recommendable.

In these methods, time-consuming optimization is mainly conducted before involving the DM in the
interactive solution process. Hence, the waiting times are significantly shortened during the solution
process.

Another important aspect regarding the DM is the type of preference information depending on the
DM’s needs and previous experiences. Providing preference information in a preferred way (GP1) is
highly desirable, because the DM can easily understand what is needed from her/him and this enables
her/him to better control the interactive process (GP4). Otherwise, the cognitive burden set on the DM
(GP2) can increase and affect the quality of the solution process and thus, the final solution.

One more important aspect is the experience of the DM regarding the problem to be solved. If the
DM is not very familiar with the trade-offs in the problem, selecting a method suitable for the learning
phase is needed. Hence, exploring different parts of the Pareto optimal set (LP2), changing the area
explored (LP3) easily, and learning about the conflict degree and tradeoffs among the objectives (LP4)
helps the DM in gaining more insight about the problem. Furthermore, if the DM does not have deeper
knowledge about the problem to be solved, (s)he may not be aware of whether her/his preferences are
feasible or not, and therefore, (s)he may provide uncertain or imprecise preference information. In this
case, support is needed in dealing with uncertain preferences (LP5). On the other hand, if the DM has
experience with solutions obtained using other methods, a method that can provide support in avoiding
anchoring (LP1) may be useful.

As mentioned, besides the DM, also characteristics of the problem to be solved affect the choice of the
method. First of all, the problem may have different types of decision variables. Accordingly, the selected
method should incorporate an appropriate solver for the variable type. Second, if the problem has some
constraints, the method must be able to handle them efficiently. Third, the number of objectives in
the problem influences the computational efficiency. The more objectives in the problem, the higher
the computational complexity typically is. As the computational complexity increases, it becomes more
difficult and time-consuming to generate solutions for each iteration. During the solution process, waiting
for a long time to see some solutions may increase the cognitive burden of the DM. Besides, the DM may
have limited time or a deadline to reach, as already mentioned. Therefore, methods that apply different
types of surrogate models which are computationally efficient should be selected to decrease the waiting
times and the cognitive burden of the DM. Besides, the shape of the Pareto front is also an issue to be
considered. Some methods are not able to handle complex shapes (like nonconvex or disconnected ones)
that can occur in practice.

Last but not least, one should select a method that has an implementation available. Without a proper
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implementation and a user interface that supports the DM and eases the communication/interaction, it
is naturally difficult to apply an interactive method to any problem. Naturally, efficient visualizations
(GP3) are needed to decrease the cognitive burden of the DM, especially as the number of objectives of
the problem grows. In this, different types of visualizations are important, since coordinated multiple
views can complement each other [25] and different DMs may be comfortable with different visualization
types.

5 Conclusions
In this paper, we concentrated on assessing and comparing interactive methods and conducted a related
literature survey. After discussing challenges involved, we summarized findings from 45 papers covering
48 numerical experiments.

The experiments were classified to those demonstrating a single interactive method, those comparing
an interactive and an a posteriori method and those comparing several interactive methods. We collected
information about the type of experiments conducted and performance criteria involved, type of DMs
involved and nature of problems considered, among others, and analysed the findings.

Finally, we characterized desirable properties of interactive methods to be able to use them in com-
parisons. We devoted attention to different objectives of learning and decision phases of interactive
solution processes. We also suggested types of DMs that can be applied in measuring the properties.

This paper is aimed at supporting the task of assessing and comparing interactive methods. As seen,
new performance metrics are needed to assess interactive methods from different perspectives, taking
into account the desirable properties of interactive methods.

One must note that the performance of a given interactive method may depend on many factors,
including the technical features of the problem to be solved, and also, of course, the type and personality
of the DM involved. Different DMs may not only obtain different final solutions, but may also assess
the performance of a method in a different way. As a result, giving an absolute measure of a method’s
performance does not seem realistic and, therefore, being able to say that a given method is better than
another one is also, in general, too optimistic. While assessing the performance of an interactive method
is a challenging issue, we believe that the research carried out in this paper gives relevant information to
researchers in the field, about what has been done in this respect (and how), and what still needs to be
done. Nevertheless, the subjective nature of decision making has necessarily to be taken into account in
any practical instance.

In summary, we have surveyed what has been done relative to assessing the performance of interactive
methods. We answered questions such as; “what has been done about assessing interactive methods?”,
“what have they measured and how” and “what could be measured?”. How to measure the desired
properties identified remains an open question, which we intend to undertake as future research. In the
long run, well-designed experiments should help in selecting or recommending an appropriate method
for different problem and DM types. Then, it can be possible to compare interactive methods in a
controlled environment by using artificial DMs with the new performance metrics. In the future, we
hope to switch focus to studying solution processes instead of individual methods, where the DM can
change the preference type and method as needed.
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