
JYU DISSERTATIONS 371

Timo Tuunanen

Tool Support for Open Source
Software License Compliance
The First Two Decades of the Millennium

JYU DISSERTATIONS 371

Timo Tuunanen

Tool Support for Open Source
Software License Compliance

The First Two Decades of the Millennium

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella

julkisesti tarkastettavaksi kesäkuun 4. päivänä 2021 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

on June 4, 2021 at 12 o’clock noon.

JYVÄSKYLÄ 2021

Editors

Timo Männikkö

Faculty of Information Technology, University of Jyväskylä

Ville Korkiakangas

Open Science Centre, University of Jyväskylä

Copyright © 2021, by University of Jyväskylä

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8596-7

ISBN 978-951-39-8596-7 (PDF)
URN:ISBN:978-951-39-8596-7

ISSN 2489-9003

http://urn.fi/URN:ISBN:978-951-39-8596-7

ABSTRACT

Tuunanen, Timo
Tool Support for Open Source Software License Compliance: The First Two Decades
of the Millennium
Jyväskylä: University of Jyväskylä, 2021, 116 p.
(JYU Dissertations
ISSN 2489-9003; 371)
ISBN 978-951-39-8596-7 (PDF)

Open source software reuse enables developers to leverage past accomplishments
while facilitating improvements in software productivity and quality. However,
licenses of the reused software need to be considered to be compliant with the li-
cense terms, thus mitigating intellectual property right risks related to such reuse.
Identifying under which license(s) an open source software is provided and un-
derstanding the terms of these licenses is not trivial, especially when dealing with
substantial reuse, which is common in modern software development. As reused
software is often large, automated license analysis is needed to address these is-
sues and to support users in the license compliant reuse of open source software.

This study aims to provide a comprehensive view on the automated fea-
tures and methods that assist in open source license compliance. It describes the
automated tools and methods of license compliance, here spanning two decades
of research. The empirical study consists of two cycles: In the design cycle, we
identifed the critical user needs for automated license compliance, such as the li-
cense identifcation of source fles and license compatibility analysis, and created
a novel approach ASLA (Automated Software License Analyzer) that supports
these needs. In the review cycle, which consisted of a systematic literature re-
view, we describe how automated license compliance software has evolved since
the introduction of ASLA. We identifed new user needs from the included lit-
erature, such as an identifcation of the origin of the OSS and needs related to
comprehension of OSS licenses. Also, we list the features that were introduced
after the design cycle.

As a conclusion, there is a clear need for automated OSS license compliance
tools since the amount and reuse of OSS has increased signifcantly over the past
10 years. Based on the information of these two cycles, we merged and listed a
set of user needs, which are composed of 16 individual needs. It became evident
that no tool is available that would support all of these needs. Whereas license
identifcation and compatibility analysis are felds that have the most mature so-
lutions in the license compliance process, future research is needed to improve
features related to copyright extraction and the integration of existing features as
part of development process.

Keywords: Open source software, License compliance, Compliance analysis, Tool
support

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Tuunanen, Timo
Työkalutuki avoimen lähdekoodin lisenssien noudattamiseksi: Vuosituhannen
kaksi ensimmäistä vuosikymmentä
Jyväskylä: University of Jyväskylä, 2021, 116 s.
(JYU Dissertations
ISSN 2489-9003; 371)
ISBN 978-951-39-8596-7 (PDF)

Avoimen lähdekoodin uudelleenkäyttö mahdollistaa ohjelmistokehityksen tuot-
tavuuden ja ohjelmistojen laadun parantamisen. Uudelleenkäytön yhteydessä oh-
jelmistojen lisenssien asettamia ehtoja tulee kuitenkin noudattaa, jotta immateri-
aalioikeuksiin liittyvät riskit voidaan minimoida. Erityisesti modernissa, runsaa-
seen uudelleenkäyttöön pohjautuvassa ohjelmistokehityksessä lisenssien tunnis-
taminen ja ymmärtäminen on haastavaa, koska uudelleenkäytettäviä ohjelmisto-
ja on paljon ja ne ovat usein laajoja. Lisenssien noudattamista ja tehokasta uudel-
lenkäyttöä tukemaan tarvitaan automatisoituja menetelmiä.

Tämä tutkielma pyrkii esittämään kattavan kuvan automatisoiduista toi-
minnallisuuksista ja metodeista, jotka tukevat lisenssien noudattamista. Se esitte-
lee automatisoituja työkaluja ja menetelmiä kahden vuosikymmenen ajalta. Em-
piirinen osuus koostuu kahdesta syklistä: suunnittelusyklistä ja katsaussyklistä.
Suunnittelusyklissä tunnistettiin automatisoituun lisenssien noudattamiseen liit-
tyvät kriittiset käyttäjätarpeet, kuten esimerkiksi lisenssien tunnistaminen lähde-
kooditiedostoista ja lisenssien yhteensopivuusanalyysi sekä kehitettiin tarpeita
tukeva uusi ohjelmisto ASLA (Automated Software License Analyzer). Katsaus-
sykli muodostuu systemaattisesta kirjallisuuskatsauksesta, jossa kuvataan kuin-
ka työkalut ja menetelmät ovat kehittyneet ASLA:n julkaisemisen jälkeen. Siinä
tunnistettiin sisällytetystä kirjallisuudesta käyttäjätarpeita, joita ei ollut tunnis-
tettu ensimmäisessä syklissä. Näitä ovat esimerkiksi avoimen lähdekoodin ohjel-
miston alkuperän tunnistaminen ja lisenssiehtojen ymmärtämisen tukeminen. Li-
säksi siinä listataan toiminnallisuuksia, jotka on esitelty sunnittelusyklin jälkeen.

Yhteenvetona voidaan todeta, että automatisoidulle lisenssianalyysille on
selkeä tarve, koska sekä avoimen lähdekoodin määrä että sen uudelleenkäyttö
on kasvanut huomattavasti viimeisen 10 vuoden aikana. Kahden tutkimyssyklin
pohjalta yhdistettiin ja listattiin yhteensä 16 itsenäistä käyttäjätarvetta. Tutkimuk-
sessa kävi selväksi, että mikään yksittäinen työkalu ei tue kaikkia näitä tarpeita.
Lisenssien tunnistamiseen ja yhteensopivuusanalyysiin liittyvät toiminnallisuu-
det ovat parhaiten tuettuja. Jatkotutkimusta tarvitaan erityisesti parantamaan toi-
minnallisuuksia, jotka liittyvät tekijänoikeustietojen keräämiseen lähdekoodista
ja olemassa olevien toiminnallisuuksien liittämiseksi osaksi kehitysprosessia.

Avainsanat: Avoin lähdekoodi, Lisenssien noudattaminen, Noudattamisanalyy-
si, Työkalutuki

Author Timo Tuunanen
Faculty of Information Technology
University of Jyväskylä
Finland

Supervisors Professor Tommi Kärkkäinen
Faculty of Information Technology
University of Jyväskylä
Finland

Professor Tommi Mikkonen
Department of Computer Science
University of Helsinki
Finland

Reviewers Professor Daniel M. German
Department of Computer Science
University of Victoria
Canada

Associate Professor Georgia M. Kapitsaki
Department of Computer Science
University of Cyprus
Cyprus

Opponent Professor Kari Smolander
Software Engineering
LUT University
Finland

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Professor Tommi Kärkkäinen, Professor
Tommi Mikkonen, and Doctor Jussi Koskinen, for their encouragement, discus-
sions, and feedback over the years.

I also would like to thank Professor Daniel M. German and Associate Pro-
fessor Georgia M. Kapitsaki for their valuable feedback as reviewers of this dis-
sertation.

The initial idea for the automated license analysis and many of the user
needs that were implemented in ASLA came from mr. Dietmar Tallroth in the
early years of the millennium. I would like to give my gratitude to him, as this
dissertation would not exist without his involvement.

I hereby also thank all my family and friends for their encouragement, sup-
port, and understanding.

Figures 4, 5, 8, 9, and 10 are material from: Tuunanen, T., Koskinen, J. &
Kärkkäinen, T., Automated software license analysis, Automated Software Engi-
neering 16, published 2009, Springer Nature Switzerland AG.

Espoo 8th of March 2021. Timo Tuunanen

NOMENCLATURE

ACM Association for Computing Machinery.

AGPL Affero General Public License.

ASLA Automated Software License Analyzer.

BSD Family of permissive free software licenses. The original BSD license was
used for its namesake, the Berkeley Software Distribution (BSD), a Unix-
like operating system.

CBDG Concrete Build Dependency Graph.

CDDL Common Development and Distribution License.

CONTU US Commission on New Technological Uses of Copyrighted Works.

COTS Commercial off-the-shelf software component.

DFSG Debian Free Software Guidelines.

DRAT Distributed Release Audit Tool.

DSR Design Science Research.

EPL Eclipse Public License.

FAQ Frequently Asked Questions.

FLC Formalized License Compliance.

FLOSS Free/Libre and Open Source Software.

FOSS Free and Open Source Software.

FS Free Software.

GCC GNU Compiler Collection.

GPL GNU General Public License. Different versions of GPL licenses are re-
ferred with following notation: (L)GPLvX(+), for example GPLv2 meaning
GPL version 2 or GPLv2+ meaning GPL version 2 or any later version.

HTML Hypertext Markup Language.

IEEE Institute of Electrical and Electronics Engineers.

IPR Intellectual Property Rights.

ISO International Organization for Standardization

LGPL GNU Lesser General Public License.

MIT Permissive free software license originating at the Massachusetts Institute
of Technology (MIT).

MPL Mozilla Public License.

OBIE Ontology-Based Information Extraction.

ODRL Open Digital Rights Language.

OSI Open Source Initiative.

OSLC Open Source License Checker.

OSS Open Source Software.

RAT Release Audit Tool.

RDF Resource Description Framework.

RQ Research Question.

SLR Systematic Literature Review.

SPDX Software Package Data Exchange.

LIST OF FIGURES

FIGURE 1 Two cycles of this study. .. 17
FIGURE 2 Mozilla BSD 2-Clause attribution.. 41
FIGURE 3 Chrome attribution page.. 41
FIGURE 4 ASLA architecture (Tuunanen et al. 2009). 44
FIGURE 5 User needs and features of ASLA (Tuunanen et al. 2009). 47
FIGURE 6 Dependency and license analysis (F1.1) usage process of ASLA. 48
FIGURE 7 License identifcation (F1.2) usage process of ASLA.................. 49
FIGURE 8 New license identifcation template addition in ASLA (Tuuna-

nen et al. 2009). ... 51
FIGURE 9 ASLA main view (Tuunanen et al. 2009). 52
FIGURE 10 ASLA license compatibility rules view (Tuunanen et al. 2009). .. 53
FIGURE 11 Flow diagram of the study selection procedure. 62
FIGURE 12 Distribution of papers by year of publication. 65
FIGURE 13 Distribution of papers between felds of license compliance. 65
FIGURE 14 Meta model for licenses (Alspaugh et al. 2011). 84

LIST OF TABLES

TABLE 1 Popular and widely used open source licenses by OSI. 25
TABLE 2 Identifed user needs for ASLA (Tuunanen et al. 2009). 45
TABLE 3 Features of ASLA to satisfy the user’s needs in Table 2 (Tuu-

nanen et al. 2009). ... 46
TABLE 4 ASLA license analysis statuses. .. 54
TABLE 5 ASLA evaluation summary (Tuunanen et al. 2009). 55
TABLE 6 Evaluation of ASLA to DSR checklist according to Vom Brocke

et al. (2020). .. 56
TABLE 7 Summary of the automatic search. .. 59
TABLE 8 Included publications. ... 62
TABLE 9 User needs for automated open source license compliance iden-

tifed in the review cycle. ... 68
TABLE 10 Features for automated OSS license compliance identifed in

the review cycle. ... 69
TABLE 11 Major challenges of license identifcation................................. 88
TABLE 12 User needs for automated open source license compliance tool. 91
TABLE 13 Categorization of OSI-approved licenses. 113
TABLE 14 Excluded publications in phase 3 of selection process. 114

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
NOMENCLATURE
LISTS OF FIGURES AND TABLES
CONTENTS

1 INTRODUCTION .. 13
1.1 Methodology and Research Questions .. 15
1.2 Overview of Results.. 17
1.3 Structure of the dissertation ... 18

2 INTELLECTUAL PROPERTY RIGHTS AND OSS LICENSES 19
2.1 Intellectual property rights .. 19

2.1.1 Overview.. 19
2.1.2 Copyrights .. 20
2.1.3 Patents.. 22
2.1.4 Trademarks ... 22
2.1.5 Licensing IPR protected work ... 23

2.2 Open source software licenses ... 23
2.2.1 History and overview .. 23
2.2.2 Permissive licenses .. 26
2.2.3 Copyleft licenses.. 27
2.2.4 License compatibility ... 29

2.3 Summary... 31

3 OPEN SOURCE LICENSE COMPLIANCE ... 32
3.1 Overview... 32
3.2 Identifying used open source software and its licenses 34
3.3 Approving the reuse of OSS... 36
3.4 Satisfying OSS license obligations .. 39
3.5 Summary... 41

4 RESULTS FROM THE DESIGN CYCLE .. 42
4.1 Identifcation of licenses and their dependencies 48
4.2 Approval of OSS and satisfaction of license obligations 51
4.3 Tool evaluation... 54
4.4 Validity.. 56
4.5 Summary... 57

5 RESULTS FROM THE REVIEW CYCLE ... 58
5.1 Research protocol ... 58

5.1.1 Searching for candidate studies 59

5.1.2 Selection of studies .. 60
5.1.3 Data extraction and synthesis ... 63

5.2 Overview of the results ... 64
5.2.1 Classifcation of the included studies 64
5.2.2 Secondary studies .. 66
5.2.3 Primary studies ... 67
5.2.4 Other studies... 71
5.2.5 Software Package Data Exchange 72

5.3 Identifcation step of license compliance 73
5.3.1 Identifcation of the origin of the OSS 73
5.3.2 License identifcation ... 75
5.3.3 Dependency identifcation .. 79

5.4 Approval of OSS reuse .. 80
5.4.1 License compatibility checking 80
5.4.2 License comprehension .. 82

5.5 Satisfying the license obligations .. 84
5.6 Validity.. 85
5.7 Summary... 86

6 DISCUSSION ... 87
6.1 Revisiting research questions ... 87
6.2 Contributions to theory and practice .. 90

7 CONCLUSION .. 92

YHTEENVETO (SUMMARY IN FINNISH) .. 94

BIBLIOGRAPHY.. 96

APPENDIX 1 CATEGORIZATION OF OSI-APPROVED LICENSES 112

APPENDIX 2 EXCLUDED PUBLICATIONS IN PHASE 3 OF SELECTION
PROCESS ... 114

1 INTRODUCTION

Software systems have become increasingly complicated and large. For instance,
Mozilla Firefox browser, which licenses we analyzed in 2009, had 2 million lines
of code at the time of analysis (Tuunanen et al. 2009). In 2020, it is consisted of
about 20 million lines of code (Abadie and Ledru 2020). Since it would be im-
practical to build large and complex systems from scratch, most systems are con-
structed using preexisting components (Hartmann et al. 2008). Software reuse
can increase productivity by reducing development costs and minimizing sched-
ule overruns, because fewer lines of code need to be written (Kim and Stohr 1998).
Modern software development rely heavily on reuse, and often, only a small por-
tion of code is written by the developers, with the rest being reused (Mikkonen
and Taivalsaari 2019).

Already in early 1980s, it was identifed that the majority of the produced
source code appeared to be common, generic code that could be reused between
different applications (Jones 1984; Lanergan and Grasso 1984). Nowadays, re-
usable code comes in all shapes and sizes, for example, in code snippets, soft-
ware libraries, individual applications, or even as complete operating systems.
There are two main sources of reusable code: proprietary software, often in the
form of commercial off-the-shelf (COTS) components, and open source software
(OSS). The emergence of the software-as-a-service model, Internet-based devel-
oper forums, and OSS repositories have enabled an approach in which people
routinely use ready-made solutions from online sources for all kinds of problems
(Mikkonen and Taivalsaari 2019). This has signifcantly increased the importance
of reusable OSS over proprietary software, and as a result, almost all companies
use open source components in their software (Franch et al. 2013).

The amount of OSS code has increased tremendously over the last decade.
It has been estimated that in 2009, there were in total about 5 billion lines of
OSS code, whereas at the end of 2018, the estimation had increased to 17 billion
lines of code (Dorner et al. 2020). The statistics by GitHub (2020)1, the popular
open source hosting site, reveal the current signifcance and magnitude of OSS
development: during one year, almost 2 billion contributions (25% increase over
1 https://github.com/ accessed Jan 18, 2021

https://github.com

14

the previous year) were added to GitHub, which has over 56 million registered
developers. During the same time span, October 2019 – September 2020, more
than 60 million new repositories (35% increase over previous year) were created
on GitHub (2020). Also, the number of libraries designed especially for reuse
has enlarged, and developers often rely on these libraries to provide a specifc
functionality in their applications (Kula et al. 2018). For instance, in 2010, Maven
Central2 contained over 260,000 reusable libraries, whereas in 2016, this collection
of libraries had risen to almost 1.7 million, and at the end of 2020, it had increased
to over 6 million.

During the early years of open source, the contributors of OSS projects
were mostly individuals and communities (Fitzgerald 2006). However, nowa-
days, companies have become active contributors and even companies such as
Microsoft that used to oppose open source have changed their opinion. In his
famous statement in 2001, Microsoft CEO Steve Ballmer said that the most no-
table open source project at the time, Linux, “is a cancer that attaches itself in
an intellectual property sense to everything it touches” (Greene 2001). However,
some 15 years later, Microsoft had grown to GitHub’s largest open source con-
tributor (Weissman 2016). In 2020, Microsoft president Brad Smith admitted that
“Microsoft was on the wrong side of history when open source exploded at the
beginning of the century” (Hanson 2020). Other top open source contributors
include companies such as Google, Red Hat, IBM, and Intel (Asay 2018).

Companies increasingly realize the benefts of using OSS components in
their products; these benefts include short time-to-market, reduced development
and maintenance costs, and customization capabilities (Franch et al. 2013). One
recent example of the effciency of open source reuse is the application called Ko-
ronavilkku3 (version 1.3.0.), which is used in Finland to detect and contact people
that may have been exposed to the coronavirus (COVID-19). It was developed
and tested by Solita Inc., and it was reviewed and accepted by Finnish author-
ities over a time span of six months (Finnish Institute for Health and Welfare
2020). The Android version of Koronavilkku employs over 100 open source com-
ponents. A list of these components and their respective license texts are found
under the application’s settings menu.

Since software code is protected by intellectual property rights (copyright
and in some cases with patents and trademarks), it must be reused in compli-
ance with its license. Licenses provide authorization to use or exploit copyright
protected work. Open source licenses allow, for instance, modifcations to the
source and creation of derived works. Unfortunately, there are a lot of misunder-
standings about the characteristics of OSS licensing. This problem is amplifed
by a large number of existing open source licenses as there are more than 100
Open Source Initiative (OSI) -approved licenses available (Open Source Initiative
2020a). This leads to a situation where developers may not fully understand the
terms of open source licenses and the differences between these licenses (Almeida
et al. 2019). Being compliant with licenses rights and obligations, especially when

2 https://mvnrepository.com/repos/central accessed Jan 18, 2021
3 https://koronavilkku.f accessed Jan 18, 2021

https://koronavilkku.fi
https://mvnrepository.com/repos/central

15

combining software under different licenses, may be challenging. Also, as some
open source licenses are incompatible, combining components with different li-
censes may not even be possible. To fully understand open source licensing and
its related challenges, the background information about the underlying legal
framework and intellectual property rights must be understood.

Reusers need to control their reuse of OSS to avoid common threats, such as
license non-compliance leading to copyright and patent infringement, which can
result in legal consequences or product recalls (Ruffn and Ebert 2004; Synopsis
2018). License compliance can be addressed using a three-step process: identify
the potentially reused software and its licenses, approve their usage, and sat-
isfy the license obligations (Haddad 2019). However, identifying the license of a
piece of software is often non-trivial since (i) licenses may not be explicitly stated
(Kapitsaki et al. 2015) or (ii) there may be inconsistencies between the stated li-
cense and that of individual source code fles (Vendome et al. 2018). Thus, re-
liable and detailed information about the license(s) of the software component
must be gathered from the source code. The approval stage ensures that the
license terms are understood and that no OSS is reused where licensing terms
are violated or non-approved licenses are used. Satisfying the license obligations
typically requires acknowledgement documentation, reproduction of license text,
and, in case of copyleft licenses, making the copies of the source code of the OSS
component available.

This study aims to provide a comprehensive view of user needs and auto-
mated features and the methods that assist a software reuser in license compli-
ance. User needs refer to the requirements that add value to the user (i.e., the
reuser) of a license compliance tool, features refer to the features of these tools,
and methods refer to, for example, the processes how the tools are used or other
models and practices that assist in compliance assurance. The comprehensive
picture that we aim to give includes the legal background of software licenses,
introduction of open source licenses, license compliance process, and challenges
of constructing automated tools that assist in compliance, along with looking at
the status of existing tools’ features and implementation approaches.

1.1 Methodology and Research Questions

The overall research process of this thesis was slightly unorthodox as the study
was performed in two separate cycles. The frst cycle was conducted between
2004 and 2009 and the second cycle in 2020.

Cycle 1 (see Figure 1), the design cycle, covered the frst decade (2000 –
2009, numbering like, e.g., in c-language) of the millennium and consisted of cre-
ation of a reverse engineering approach and its implementation, called ASLA
(Automated Software License Analyzer). These were constructed to fulfll the
need for automated license compliance assurance. The results were published
in three separate papers (Tuunanen et al. 2006a,b, 2009). In this cycle, a design

16

science methodology (Hevner 2007; Peffers et al. 2007) was followed, consisting
of four parts: (1) understanding the environment, (2) building artifacts, (3) eval-
uating artifacts, and (4) communicating outcomes in publications. As a result
of understanding the environment, the user needs for the license analyzer and
the implementation challenges of fulflling these needs were discovered. The im-
plementation and enhancements of ASLA and its evaluation in terms of features
and its performance fulfll the the artifact building and evaluation parts of de-
sign science methodology. The three publications describing these steps fulfll
the communicating of the outcomes. The results of the design cycle are presented
in Chapter 4.

Cycle 2 (see Figure 1), the review cycle, covered the second decade (2010
onwards) of the millennium and was based on the hypothesis that the number of
automated tools that assist in license compliance assurance has been increasing
as the amount of OSS and its reuse have also been increased substantially during
the past decade. As there is no up-to-date comprehensive picture of the state of
these tools, it is important to describe and organise this information. Therefore,
in this research cycle, we focus on what automated tools are available in 2020,
how user needs have evolved, and what features have been improved and dis-
covered since the introduction of ASLA. The review cycle is done as a systematic
literature review (SLR) (Kitchenham et al. 2015) by: (1) identifying the relevant
research, (2) selecting studies, (3) assessing study quality, (4) extracting data from
selected studies, and (5) synthesizing the results. The results of the review cycle
are presented in Chapter 5.

We also do a refective comparison, where the evolution of license compli-
ance tools, user needs, and features are analyzed in comparison to ASLA’s ap-
proach. This refective comparison is presented in Chapter 6.

As we want to have a comprehensive picture of the state of automated open
source license compliance, it is important to know what user needs have been
discovered. This leads to frst research question, which is stated as follows:

RQ1 What are the user needs to fulfll automated open source license compli-
ance?

As our research consists of design and review cycles, it leads to two sub-questions:

RQ1.1 How does the design cycle contribute to this question?
RQ1.2 How does the review cycle contribute to this question?

Also, as we are interested in the actual features or methods for license compliance,
we state our next research question as follows:

RQ2 What software features are needed to fulfll the user needs?

Also, for this question, we need to state two sub-questions:

RQ2.1 How does the design cycle contribute to this question?
RQ2.2 How does the review cycle contribute to this question?

17

License analyzer user needs
ASLA Reøect the resultsReøect the results

Cycle 2. Second decade of the millennium.
Systematic literature review.

Synthesize

Extract data

Assess quality

Select studies

Identify research

Cycle 1. First decade of the millennium.
Design science research.

Communicate outcomes
into publications

Evaluate artifacts

Build artifacts

Understand the
environment

FIGURE 1 Two cycles of this study.

1.2 Overview of Results

The main research questions stated above were answered by conducting and
summarizing the fndings from the two cycles of this study. The results present
a comprehensive picture of the status of automated tool support of OSS license
compliance in terms of the identifed user needs and available features.

During the design cycle, we identifed 12 user needs for automated license
compliance (see Table 2). These include, for example, the license identifcation of
each source fle and the automated license compatibility analysis. Our implemen-
tation, ASLA, supports all of these needs. The evaluation of ASLA revealed that
it enables the analysis of large OSS programs in a reasonable time and provides
valuable information for meeting licence compliance.

18

After the search and selection process, the review cycle produced 53 rel-
evant publications. What was slightly surprising was the fact that the yearly
amount of research related to automated OSS license compliance has not in-
creased during the past 10 years. It could have been expected that as the amount
of OSS and relevance of OSS reuse has increased dramatically, the research would
have followed this trend.

We collected seven new user needs from the relevant publications in the re-
view cycle that were not identifed in the design cycle. Even though the design
cycle identifed most of the user needs for automated license compliance, the re-
view cycle revealed felds that were not present in the design cycle. These include
the identifcation of the origin of the software and automated license comprehen-
sion. We also collected and organized the existing features for automated license
compliance that were identifed during the review cycle. The features described
using scientifcally sound methods (from 20 papers) are summarized in Table 10.
Notable advancements in the features found in the review cycle include, for ex-
ample, a new license identifcation technique in the tool called Ninka (German
et al. 2010b), various code clone detection features used for identifcation of the
origin of the software, and features related to the creation, validation, and ex-
amination of Software Package Data Exchange (SPDX) fles. SPDX is a standard
format used for communicating the components, licenses, and copyrights associ-
ated with a software package (SPDX Workgroup 2020a).

Based on the design and review cycles, we merged, organized, and listed
a total of 16 user needs for an automated license compliance tool; these are pre-
sented in Table 12. No single tool currently implements features that cover all of
these needs. Especially, the research related to satisfying the license obligations
seems to be in its early stages.

1.3 Structure of the dissertation

Chapter 2 introduces intellectual property rights, a legal instrument that protects
the rights of the authors of software, and open source licenses, which is the mech-
anism that allows the exploitation of these rights. The details of open source
license compliance and the related process to address the legal issues that devel-
opers face when reusing OSS, is described in Chapter 3. The results of the study
are presented in two chapters as the study consists of two research cycles. The
results from the design cycle and the DSR approach we used for the cycle are
presented in Chapter 4. Chapter 5 describes the results of the review cycle, along
with a detailed description of the research protocol used in the SLR. A refective
synthesis of the results from the two cycles are presented in Chapter 6. In Chapter
7, we provide the conclusions of the study.

2 INTELLECTUAL PROPERTY RIGHTS AND OSS
LICENSES

In this chapter, we will describe intellectual property rights from a software li-
censing point of view. This includes the basics of copyrights, patents, and trade-
marks. Also, we describe the characteristics of open source licenses and how they
allow the exploitation of intellectual property rights.

2.1 Intellectual property rights

Creations of the mind, such as inventions; literary and artistic works; designs;
and symbols, names, and images used in commerce are considered intellectual
property (WIPO 2020b). The importance of intellectual property was frst recog-
nized in the Paris Convention for the Protection of Industrial Property (1883) and
the Berne Convention for the Protection of Literary and Artistic Works (1886) (the
Berne Convention) (WIPO 2016).

2.1.1 Overview

Intellectual Property Rights (IPR) allow the creators or owners of copyrighted
works, patents, and trademarks to beneft from their work, thus forming the foun-
dation of the software industry. Technical ideas, forms, individual expressions,
and other kinds of immaterial values are covered by the ownership of IPR (Hell-
stadius 2010). These rights are defned in Article 27 of the Universal Declaration
of Human Rights, which “provides for the right to beneft from the protection
of moral and material interests resulting from authorship of scientifc, literary, or
artistic productions” (United Nations 2020).

Intellectual property is different from other property in at least three ways
(Weckert 1997): First, owning an idea or other abstract object such as rights to
software is not similar to owning a physical object. Someone can take someone
else’s software by copying it, and even so, both the owner and user can use and

20

enjoy it. Therefore, intellectual property is non-exclusive. Second, to what extent
is an idea unique? They come from anywhere, and most likely, any idea that
one has is not that person’s alone. For example, most of the ideas presented in
this thesis come from someone other than us. At best, when one is “original,”
he or she expresses an idea in a novel way. The third difference can be drawn
between moral rights and economic rights to intellectual property. A moral right
is the right to acknowledgement as the author or creator. A economic right is the
right to proft fnancially from the property. As intellectual properties are non-
exclusive, the main issue when infringing on owners intellectual property rights
is not taking something from the owner or creator and thereby depriving him or
her of access to it (Weckert 1997). The issue is the copying of the expression or the
idea.

There is a fundamental difference in copyright law between an idea and an
expression (Galler 1995). A copyright protects only expressions of an idea. Ideas
such as mathematical formulae themself do not fall under copyright protection
(Weckert 1997). Whereas the copyright protects the expressions, a patent is an
exclusive right granted for an invention and to commercially beneft from that
invention (Hellstadius 2010). Of the IPRs copyrights and patents are the most
meaningful in case of computer software (Menell 1989). Also, in the context of
OSS, trademarks must be considered to some extent since some OSS licenses take
into account the use of trademarks. A trademark is a sign that distinguishes the
goods or services and trademark law prevents competitors from using similar
marks to identify their own goods and services (Georgievski 2020). In summary,
IPRs do not grant the exclusive use of owned property. They are concerned more
with controlling who can use the property and who gets acknowledgement and
fnancial reward from that use (Weckert 1997).

2.1.2 Copyrights

A copyright is a right given to authors of original1 works, such as poems, musical
compositions, movies, and computer programs. A copyright comes into existence
immediately upon the production of the work in a “tangible medium of expres-
sion” and lasts for the life of the author plus for a minimum period of 50 years
after the death of the author (WIPO 2020b; WTO 2020). Copyright protection is
obtained without any formalities in countries that have agreed to the Berne Con-
vention (WIPO 2020a), meaning that the registration or deposit of copies is not
required. For example, copyright for computer software is created immediately
as the software code is written.

It was debated in the 1970s and 1980s whether the patent system, the copy-
right system, or a sui generis2 system should provide protection for computer

1 “The threshold of originality is a concept in copyright law that is used to assess whether
a particular work can be copyrighted. It is used to distinguish works that are suffciently
original to warrant copyright protection from those that are not (Wikipedia 2020).”

2 Sui generis is a Latin phrase that means “of its/his/her/their own kind, in a class by itself,”
therefore “unique.”

21

software (WIPO 2020a). In 1974, US Commission on New Technological Uses of
Copyrighted Works (CONTU) (1978) decided that “software is a proper subject
matter of copyright to the extent that it embodies its authors’ original creation”
(Keplinger 1981). CONTU’s decision and other discussions resulted in the gen-
erally accepted principle that “computer programs should be protected by copy-
right, whereas apparatus using computer software or software-related inventions
should be protected by patents” (WIPO 2020a). In software programs, copyright
protection extends to the overall structure, sequence, and organization of an ap-
plication program and also to the overall structure sequence and arrangement of
the screens, text, and artwork (i.e., the audiovisual display in general) (Menell
1989). Most countries accept copyright protection of computer software and in-
ternational treaties guarantee its consistent application worldwide (WIPO 2020a).

The author of the copyrighted work is allowed to exclusively explore all the
usages of its creation, excluding others from using it without proper authoriza-
tion (Pina 2011). Two types of rights emerge: they allow the rights owner to de-
rive fnancial reward from the use of their works by others (economic rights), and
protect the non-economic interests of the author (moral rights) (Weckert 1997).

While the cost of creating a work subject to copyright protection, such as
a book, movie, or a computer program, is often high, the cost of reproducing,
whether by the creator or by those to whom he or she has made it available is of-
ten low (Landes and Posner 1989). This is the core of the copyright protection: the
right of the copyright’s owner to prevent others from making copies and giving
these copies to others, which is also referred to as the right of reproduction and
distribution (Lemley 1994). Also, copyrights provide technical procedures for the
enforcement of these rights (O’Hare 1982). From an economic perspective, an
owner of intellectual property is deemed to lose if the property is copied or used
without authorization (Weckert 1997). Unauthorized copying, that is, software
piracy has traditionally been very common. In 2000, essentially all new software
was pirated in some countries, whereas in some other countries, less than 40% of
software was pirated (Marron and Steel 2000). The copyright owner also has eco-
nomic rights related to right of performance, right of public transmission, right
of presentation, and right of lending. However, these are less relevant in the case
of computer programs.

Rigamonti (2006) describes the standard set of moral rights as follows: “au-
thor’s right to claim authorship (right of attribution), the right to object to modif-
cations of the work (right of integrity), the right to decide when and how the work
in question will be published (right of disclosure), and the right to withdraw a
work after publication (right of withdrawal).” Justifcation for the existence of
moral rights is that the creator’s labour was put into the original work or that the
creator just deserves some reward for having an idea and developing it (Weckert
1997). From a moral perspective, computer programs have a special characteris-
tic as the adaptation and improvement of software can only be developed if the
source code is available (Pina 2011).

As a summary of economic and moral rights for computer programs, the
owner of the copyright can authorize or prevent the creation of copies of the soft-

22

ware, usage of the software, creation of combined, modifed or derivative works
of the software, and distribution of the software (Freibrun 1995). These rights
form the fundamental elements of OSS licenses described in more detail in Sub-
section 2.2.

2.1.3 Patents

A patent is an intellectual property right for inventions, that is, in the devices
or processes that perform a useful industrial applicable function. A patent effec-
tively grants the inventor a limited monopoly, that is, a right to prevent others
from producing, using, or selling the invention (Hall and MacGarvie 2010). A
patent is generally granted after completing an examination procedure by a gov-
ernment agency, and the protection is granted for a limited period, generally 20
years from the fling date of the application (WIPO 2020b). There are no inter-
nationally harmonized laws related to software patents (Hellstadius 2010). Some
countries allow software patents as such, while others have adopted approaches
that recognize inventions assisted by software (WIPO 2020a).

To be granted a patent, there must be an invention that surpasses a thresh-
old test. Various countries judge the invention threshold differently (Hellstadius
2010). The criteria of novelty, inventive step/non-obviousness, and industrial
applicability/utility must be fulflled. These requirements are nearly universally
recognized, but their application may differ between countries (Hellstadius 2010).
Exclusions are done for matters that are not patent eligible, for example, abstract
ideas or mathematical formulae. Whereas copyright protection is (almost) global,
patents must by applied separately for different countries or areas, such as the
European Union.

In the case of software, patents protect the technical purpose of the program,
which is more about the technical output than the actual code itself (Hellstadius
2010). The main difference between copyright and patents in information tech-
nology is that the copyright protects original computer programs against unau-
thorized copying, whereas patents cover the underlying ideas, procedures, and
methods of operation. Software patents have been granted in the U.S. since the
1970s (Evans and Layne-Farrar 2004). On the other hand, even though the Eu-
ropean Patent Offce (2000) specifcally declared that software is not patentable
in the European Union, software patents have been granted as computer imple-
mented inventions (Hall and MacGarvie 2010).

2.1.4 Trademarks

A trademark refers to a word, phrase, symbol, or design that is used to identify
the producer of goods or services sold, and to distinguish them from the goods
or services of others (Georgievski 2020). By registering trademarks, the owners
of such trademarks secure legal protection of their investment in marketing, rep-
utation for quality, brand names, and distribution channels (Fosfuri et al. 2008).

For example, even though Linux is a clone of the operating system UNIX, as

23

stated in the offcial README -fle of the Linux kernel, it cannot claim to be UNIX
since UNIX is a registered trademark of the Open Group. On the other hand, for
example, Mac OS X (based on BSD, another UNIX -like operating system) is cer-
tifed UNIX, so it is UNIX both in name and in functionality. Trademark rights
can last indefnitely (unlike copyrights and patents), if the trademark owner con-
tinues to use the mark and renews its registration (Georgievski 2020).

2.1.5 Licensing IPR protected work

The rightful owner (i.e., copyright, patent, or trademark holder) of a work can
provide authorization for others to use or exploit that work. Such authorizations
are commonly referred to as licenses (Lindman et al. 2011). The terms under
which a software system (either its code or binary) can legally be distributed,
modifed, and reused are defned by software licenses (Vendome et al. 2018). Tra-
ditionally, proprietary software is distributed in binary form, granting users lim-
ited rights to use the software (Von Krogh and Von Hippel 2003). Typically, only
the authors who created the software can legally edit, inspect, change and en-
hance it. On the other hand, open source licensed software is computer software
where the source code is made available by the author(s) to run, copy, distribute,
study, change, and improve (Free Software Foundation 2019). Open source li-
censes allowing such actions are described in more detail below.

2.2 Open source software licenses

Open source refers to a model of software development where the source code
is made publicly available and free of charge. Also, interested parties have the
right to modify and extend these programs. This is made possible by open source
licenses, which grant rights otherwise protected by international IPR laws.

2.2.1 History and overview

Many of the concepts that characterize the open source movement have been
around since the beginning of the computing era (Aksulu and Wade 2010). These
include concepts such as peer production, shared code, and software as a pub-
lic good. However, the use of the term “open source” was not introduced until
around the turn of the millennium.

A general trend in 1980s in the software world was toward the development
of proprietary software packages and the release of software protected under li-
censes that prevented it from being studied or modifed by others (Von Krogh and
Von Hippel 2003). In 1983, Richard Stallman launched the GNU Project to write a
complete operating system free from the constraints of its source code usage (Free
Software Foundation 2016). Stallman also published the GNU Manifesto (Stall-
man 1985) to outline the GNU project’s purpose and explain the importance of

24

free software: preserve free access for the software and its code (Von Krogh and
Von Hippel 2003). From mid 1980s to late 1990s, the term “free software” (FS) was
mainly used. The term open source software was introduced in 1998 (Peterson
2018). Licensing practices of OSS includes essentially the same as those pioneered
by the FS movement. OSS differs from FS movement primarily on philosophical
grounds, preferring to emphasize the practical benefts of such licensing practices
over issues regarding the moral rightness and importance of granting users the
freedoms (Von Krogh and Von Hippel 2003). According to Peterson (2018), “a
term was needed that focuses on the key issue of source code and that does not
immediately confuse those new to the concept.” Nowadays, also the terms “free
and open source software” (FOSS) (Ebert 2008) and “free/libre and open source
software” (FLOSS) (Harutyunyan et al. 2019) are being used. However, we use
the term “open source” in this dissertation for its simplicity and because it is
commonly used by scholars to refer to FS and OSS (Von Krogh and Von Hippel
2003).

In addition to the actual source code, in the core of the OSS is the OSS li-
censes as they dictate how open source can be used from a legal standpoint. Open
source licenses have very specifc characteristics as defned in Open Source Def-
nition (Open Source Initiative 2020d). For instance, “the license shall not restrict
any party from selling or giving away the software as a component of an aggre-
gate software distribution containing programs from several different sources.
The license shall not require a royalty or other fee for such sale. The program
must include source code, and must allow distribution in source code as well
as compiled form. The license must allow modifcations and derived works, and
must allow them to be distributed under the same terms as the license of the orig-
inal software. The rights attached to the program must apply to all to whom the
program is redistributed without the need for execution of an additional license
by those parties.” With these terms, copyright owners allow the exploitation of
most of their economic and moral rights. One exception is the right to claim au-
thorship: OSS typically has an author or authors who own the copyright.

Conditions related to freedom to use, modify, and redistribute the original
version of the OSS, are essentially the same in all open source licenses (Sen et
al. 2011). Some open source licenses (e.g., Apache 2.0, GPLv3) include patent
clauses, which grant recipients a license to any patents covering the given soft-
ware. Other open source licenses (e.g., BSD, MIT, GPLv2) have no mention of
patents whatsoever. Meeker (2017) mentions that “for these licenses, courts may
use the doctrine of ‘implied license’ to fnd that recipients are still licensed and
protected from any patent infringement allegation arising from using the licensed
software product. By doing this, courts prevent licensors for suing for patent in-
fringement for using the very software they have licensed.” However, it is dif-
fcult to estimate the real risk of patent infringement, because many commonly
used OSS components already infringe patents (Välimäki and Oksanen 2005).

Small minority of open source licenses mention trademarks, because use of
a trademark requires monitoring and quality control by the trademark owner.
Therefore, there is nothing “open” about trademark use. When the trademarks

25

TABLE 1 Popular and widely used open source licenses by OSI.

License Permissive Strong copyleft Weak copyleft
Apache License 2.0 (Apache 2.0) x - -
3-clause BSD license (BSD-3-Clause) x - -
2-clause BSD license (BSD-2-Clause) x - -
GNU General Public License, version 2 (GPL-2.0) - x -
GNU General Public License, version 3 (GPL-3.0) - x -
GNU Lesser General Public License, version 2 (LGPL-2.0) - - x
GNU Lesser General Public License, version 2.1 (LGPL-2.1) - - x
GNU Lesser General Public License, version 3 (LGPL-3.0) - - x
MIT license (MIT) x - -
Mozilla Public License 2.0 (MPL-2.0) - - x
Common Development and Distribution License 1.0 (CDDL-1.0) - - x
Eclipse Public License 2.0 (EPL-2.0) - - x

are addressed specifcally (e.g. Apache 2.0), the reference to trademarks is not to
grant trademark rights. Trademarks are mentioned to expressly clarify that no
rights to use the names or trademarks are granted (Hashimoto and Portner 2020).

Various OSS licenses have one key characteristic that differentiates the li-
censes. This is the degree of restrictions related to the ability to redistribute mod-
ifed version(s) of the OSS or derivative work(s) based on the OSS (Fershtman
and Gandal 2007). Lerner and Tirole (2005) propose three classes of OSS licenses
based on the restrictiveness of redistribution rights: unrestrictive, restrictive, and
highly restrictive. Fershtman and Gandal (2007) distinguish between three lev-
els of (relative) license restrictiveness: non-restrictive, moderately restrictive, and
very restrictive, whereas Phipps (2013) proposes the terms nonreciprocal, fle-
scoped reciprocal, and project-scoped reciprocal. To use the terminology familiar
to OSS developers, we call these three categories permissive, weak copyleft, and
strong copyleft (Almeida et al. 2019; Goldstein 2019; Sen et al. 2008).

Permissive licenses are often textually simple and short (e.g., MIT and BSD
licenses) and the most basic type of open source licenses: they allow reusers to
do whatever they want with the software as long as they abide by the notice re-
quirements (Meeker 2017). Strong and weak copyleft licenses add restrictions to
the permissive licenses. For instance, if you distribute binaries based on copyleft
licensed software, you must make the source code for those binaries available.
Also, the source code must be available under the same (or in some cases similar)
copyleft terms under which you got the code, and you cannot place additional
restrictions on the licensee’s exercise of the license (Meeker 2017).

At the time of writing this dissertation, there are 104 Open Source Initia-
tive (2020a) (OSI) approved licenses. However, 17 of these licenses have been
super seeded or retired by the creator of the license so they should not be used
to license any new code (Open Source Initiative 2020a). A complete list of cate-
gorized (Blue Oak Council 2020a,b; FOSSA 2020; nexB inc. 2020) OSI -approved
licenses is found in Appendix 1. Even though the number of licenses is substan-
tial, there are only 12 of them (listed in Table 1) that are considered by OSI as
“popular and widely-used or with strong communities.”

26

2.2.2 Permissive licenses

A permissive open source license permits derivative works without publishing
the source code (i.e., proprietary software), along with the freedom to use, mod-
ify, and redistribute the software (Goldstein 2019). However, there are some typ-
ical restrictions or obligations in permissive licenses. First, the work is provided
“as is.” You may not hold the author liable of any damages caused by the use
of software. This liability clause is found in almost all OSS licenses. Second, li-
censes often include a notice requirement. The recipient of OSS must be informed
that certain OSS, which is available under the noticed license, is included in the
software being delivered (Meeker 2017). Each open source license has its own no-
tice requirements. Typically, these include providing entire copies of applicable
licenses and acknowledgement of authors.

One representative example of a permissive license is the popular MIT li-
cense.

MIT License
Copyright (c) [year] [fullname]
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation fles (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

As can be seen, the text of the license is fairly short and understandable,
even for a non-lawyer. It explicitly states numerous rights and only includes a
simple obligation of acknowledgement and a liability clause. However, all per-
missive licenses are not as simple and short as MIT or other academic licenses,
such as different versions of the BSD license (Open Source Initiative 2020b,c). For
example, the popular Apache 2.0 license (Apache Software Foundation 2020) is
much more verbose than many other permissive licenses. As such, it is more dif-
fcult for an average software developer to understand. It also has two patent
clauses that are not found in more simple permissive licenses. The frst states
that the software can be used without any obligations, regardless of the software
patents that are in effect. The second states that if software users initiate litigation
over patent infringement, they lose their license.

27

Permissive licenses offer reusers maximum freedom to use the software as
they wish and even distribute the software under different license terms. How-
ever, this was not the intention of the founders of free software trying to preserve
free access to the software and its code (Von Krogh and Von Hippel 2003). For
this purpose, copyleft licenses were invented.

2.2.3 Copyleft licenses

The GNU General Public License (GPL), the frst copyleft license, allows anyone
to copy, modify, and redistribute any GPL-licensed program as long as all distri-
butions include source code. It also sets another condition on redistributions: any
program derived from a GPL-covered program must itself be distributed under
the GPL. This condition, known as “copyleft,” is a key legal innovation of the
GPL (Stoltz 2005). According to the Free Software Foundation (2020c), the au-
thors of the GPL license, “Copyleft is a method for making a software program
free, while requiring that all modifed and extended versions of the program also
be free, and released under the same terms and conditions.”

Even though GPL in its various versions and offshoots, including the Lesser
General Public License (LGPL) and Affero General Public License (AGPL), are the
most famous copyleft licenses, they are by no means the only ones. The Mozilla
Public License (MPL), Common Development and Distribution License (CDDL),
and the Eclipse Public License (EPL) are also well known. What is common to
all copyleft licenses is that other developers have the right to use, modify, and
share the work as long as the reciprocity obligation described in the license is
maintained (Goldstein 2019). They also have notice requirements and liability
clauses, which are also found in permissive licenses. What is varied between
different copyleft licenses are the different levels of reciprocity characteristics.

There are two types of copyleft licenses: strong and weak. In the case of
strong copyleft (e.g., GPL), when using a piece of software covered by a copyleft
license and another piece of software covered by some other license, combining
the two pieces of code in a single work must, by law, result in a work available
under the terms of the copyleft license. Strong copyleft licenses are often used in
applications or other individual pieces of software such as GNU/Linux operat-
ing system (which uses GNU packages on top of a Linux kernel). Whereas strong
copyleft licenses have strong reciprocity, weak copyleft licenses allow other soft-
ware to use the copyleft-licensed software and be redistributed without the re-
quirement for the software to also be copyleft licensed. Weak copyleft licenses are
often used to create software libraries or to allow proprietary plug-ins to extend
the weak copyleft-licensed software. Only changes to the weak-copyleft-licensed
software (e.g., the library or individual source fle) itself can become subject to the
copyleft provisions of such a license. The most popular weak copyleft licenses are
LGPL, MPL, CDDL, and EPL.

The phrases in which the copyleft is stated in the actual license differ. GPLv2
uses the phrase “derivative work,” which was identifed to be problematic as the
legal question of when two interacting programs form a derivative work is by

28

no means simple (Hazen 1986) and will determine how broadly the GPL applies.
For this reason, version 3 uses “work based on the program” making the license
more clear under international copyright laws (Free Software Foundation et al.
2013). In comparison, MPLv2 uses phrases“covered software” and “larger work,”
making it clear that reciprocity characters apply to specifc fles instead of the
work as a whole.

Also, the concept of distribution matters because the requirements of many
open source licenses are triggered only when the software is distributed, which is
defned as transferring a copy of a copyrighted work (such as software) from one
legal person to another (Meeker 2017). As the Free Software Foundation (2020c)
states, “To copyleft a program, we frst state that it is copyrighted; then we add
distribution terms, which are a legal instrument that gives everyone the rights to
use, modify, and redistribute the program’s code, or any program derived from
it, but only if the distribution terms are unchanged.” Because license terms are
mostly triggered only when software is distributed, a person who does not dis-
tribute software cannot violate an open source license’s terms. And because “le-
gal person” includes a corporation, there is no distribution, and therefore no risk
of violating a license’s terms, if software is merely transferred between employees
of the same company (Meeker 2017).

If a software application is used over the Internet, it is usually not qualifed
as distribution of that software (Meeker 2017). This creates a distinguished loop-
hole in the ordinary GPL, where the copyleft provisions are not triggered if the
software is simply used but not distributed. This loophole can be used by applica-
tion service providers to create derivative works of GPL-licensed code and offer
application services over the network without making the changes in the code
available to the public. AGPL (Free Software Foundation 2007) was designed to
close this loophole, as stated in the version 3 of the license, “The GNU General
Public License permits making a modifed version and letting the public access
it on a server without ever releasing its source code to the public. The GNU Af-
fero General Public License is designed specifcally to ensure that, in such cases,
the modifed source code becomes available to the community. It requires the
operator of a network server to provide the source code of the modifed version
running there to the users of that server. Therefore, public use of a modifed ver-
sion, on a publicly accessible server, gives the public access to the source code of
the modifed version.”

A common concern among software companies is that by reusing code li-
censed under GPL (or similar copyleft license) as part of their proprietary code,
the company’s code will be “infected” or “contaminated” and must be licensed
under GPL or forced into the public domain. This concern discourages some
from using GPL code, and for this reason, copyleft licenses are sometimes called
viral licenses, even though usage of this term should be avoided (Rosen 2001).
According to Meeker (2017), concerns related to the consequences of illegal reuse
of GPL are largely unfounded. It is clear that if a developer combines GPL code
with incompatible (e.g., commercial) code and redistributes that combination, it
violates the GPL. Even though the author of the violated GPL code can exercise

29

their right to bring a claim to copyright infringement, the copyright law does not
enforce the license offending code under GPL. The remedy for copyright infringe-
ment is then either money (damages) or stop using the code (injunction) (Meeker
2017). Therefore, combining GPL code with other incompatible code does not
“infect” the incompatible code or convert it into GPL code.

Out of all the common weak copyleft licenses, LGPL has the strongest reci-
procity characteristics. According to the Free Software Foundation (2020a) on the
GNU Licensing FAQ, “(1) If you statically link against an LGPL licensed library,
you must also provide your application in an object (not necessarily source) for-
mat, so that a user has the opportunity to modify the library and relink the ap-
plication. (2) If you dynamically link against an LGPLed library already present
on the user’s computer, you need not convey the library’s source. On the other
hand, if you yourself convey the executable LGPLed library along with your ap-
plication, whether linked with statically or dynamically, you must also convey
the library’s sources, in one of the ways for which the LGPL provides.” How-
ever, this strong interpretation has been challenged by Rosen (2005) as he does
not consider linking as a means to create derivative work.

The Mozilla Foundation and their Firefox browser uses mostly MPLv2.0,
whereas Eclipse foundation’s software (such as Eclipse IDE or Eclipse Glassfsh)
uses mostly EPLv2.0. According to the Mozilla (2020) FAQ, the “MPL flls a useful
space in the spectrum of free and open source software licenses, sitting between
the Apache license, which does not require modifcations to be shared, and the
GNU family of licenses, which requires modifcations to be shared under a much
broader set of circumstances than the MPL. The MPL’s ’fle-level’ copyleft is de-
signed to encourage contributors to share modifcations they make to your code,
while still allowing them to combine your code with code under other licenses
(open or proprietary) with minimal restrictions.” EPL has similar characteristics
and was developed for the needs of the Eclipse Foundation. EPL was originally
derived from Common Public License version 1.0.

CDDL is based on MPLv1.1, but it has made few changes to make it more
accessible to developers, and since the MPLv2.0 had signifcant modifcations
from version 1.1., further separation between these licenses is apparent. The two
main differences between the two licenses are GPL compatibility and simplicity:
the MPLv2.0 is compatible with the GPL, while the CDDL is not. Some argue that
CDDL uses a simpler, more consistent language and that it is better structured to
make the license more understandable and increase developer’s adoption rate
(Sass 2015). For example, Netbeans uses CDDL.

2.2.4 License compatibility

Licenses that can be used together because their limitations, conditions, and per-
missions do not contradict with each other are considered compatible. However,
some OSS licenses are not compatible with each other, and this can make it legally
impossible to mix (or link) open source code if the components have different li-
censes (German and Hassan 2009). This incompatibility occurs when following

30

one license’s terms violates another license’s terms.
Permissive licenses are typically compatible with other licenses in the sense

that software with a permissive license can be combined as part of other permis-
sive-, copyleft-, or commercial-licensed software. However, as described by the
Free Software Foundation (2020b), one notable exception is Apache 2.0, which
is not compatible with GPLv2 because it has patent-related restrictions that are
not in that GPL version. As it is stated in GPLv2 license, “You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein,”
making these two licenses incompatible. However, from the Free Software Foun-
dation’s point of view, the patent termination provision is a good thing, which is
why they recommend the Apache 2.0 license for substantial programs over other
simple permissive licenses (Free Software Foundation 2020b). This incompatibil-
ity is fxed in GPL version 3.

Permissive licenses are usually also compatible the other way around: ad-
ding copyleft-licensed software as part of permissive-licensed software is permit-
ted. However, in this case, permissive-licensed software must often be relicensed
under the copyleft license.

Incompatibilities between copyleft licenses are more common. The Free
Software Foundation (2020b) lists more than 40 free software licenses that are
incompatible with GPL. However, many of these are not approved open source
licenses as listed by the Open Source Initiative (2020a). The incompatibility list
includes, for example, Eclipse Public License Version 2.0 and Common Develop-
ment and Distribution License 1.0.

Licensor and licensees have created ingenious solutions to address the in-
compatibility problem, as described by German and Hassan (2009). For example,
Mozilla code, originally licensed under MPLv1.1, could not be combined with
code under the incompatible GPLv2. To solve this problem, the Mozilla Foun-
dation chose to relicense Mozilla under a “Disjunctive Licensing,” that is, under
three licenses (the GPLv2, LGPLv2.1, and MPLv1.1) and let the licensee choose
one of them. However, later versions of Mozilla have been further relicensed un-
der MPLv2.0 as it is compatible with (L)GPL licenses. Another example to solve
compatibility problem is the “exception,” where the licensor adds an addendum
to a license (such as the GPL) that permits certain uses that would otherwise be
forbidden. One example is the GPLv3 license of the GNU Compiler Collection
(GCC) runtime library, which has a following exception (Free Software Founda-
tion 2009) : “You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if such propa-
gation would otherwise violate the terms of GPLv3, provided that all Target Code
was generated by Eligible Compilation Processes. You may then convey such a
combination under terms of your choice, consistent with the licensing of the In-
dependent Modules.” Because of this exception, a program compiled using GCC
can be distributed under any license (open source or not).

Compatibility between licenses is not only limited to if certain pieces of soft-
ware are used as part of another program. Various forms of program linking are
used to create a combined program (Rosen 2001). For example, according to the

31

Free Software Foundation (2020b), linking LGPLed code statically to incompati-
bly licensed software is not allowed but dynamic linking is. This creates another
dimension to license compatibility, where the build instructions must be taken
into account when determining license compatibility.

Adoption of software licenses are also dictated by the restrictions and guide-
lines of open source communities (Vendome et al. 2018). For example, the Apache
Software Foundation (ASF) requires contributions to be licensed under the Apache
2.0 License. This makes otherwise compatible GPL 3 license incompatible in ASF
software, because it would require Apache-licensed software to be relicensed un-
der GPL (Apache Software Foundation 2019). Debian uses the “Debian Social
Contract” or “Debian Free Software Guidelines” (DFSG) (Debian 2004) to eval-
uate whether a license is free or non-free and whether it can be bundled into
Debian or must be distributed separately.

2.3 Summary

In this chapter, we have described intellectual property rights and open source
licenses. IPRs protect the author(s) of software from the unauthorized exploita-
tion of their work. OSS licenses give rights to, for example, use, copy and create
derivative works and redistribute the copyright protected software. Next, we will
present and open source license compliance, and related process that ensures that
reusers of OSS follow the terms of open source licenses.

3 OPEN SOURCE LICENSE COMPLIANCE

The reuse of open source introduces specifc IPR-related risks that are an exten-
sion of traditional software project risks such as budget overruns, unsatisfactory
functionality, quality, and maintainability (Boehm 1989). To mitigate the risks re-
lated to OSS reuse, the reuse must be governed (Harutyunyan et al. 2019). OSS
governance refers to the set of processes, best practices, and tools to reuse OSS
components while minimizing their risks and maximizing their beneft (Haru-
tyunyan et al. 2019). Open source license compliance is a part of the OSS gover-
nance. In simple terms, open source license compliance means that the users of
OSS must satisfy the license obligations for the OSS they use (Haddad 2019).

3.1 Overview

Clearly, before the reuse can be considered, the candidate software must frst be
found. As the amount of OSS today is substantial, it may be diffcult to fnd ap-
propriate reuse code candidates using traditional search engines such as Google1.
For instance, engines such as Sourcerer by Bajracharya et al. (2006) and Mara-
catu by Garcia et al. (2006) can be used to fnd source code. Sourcerer is capa-
ble of searching both OSS implementations and their usage, as well as program
structures from the Internet, whereas Maracatu is used for retrieving source code
components from development repositories by combining text mining and facet-
based searches. At the time of writing this dissertation, however, there is very
limited availability of online code search tools that are specifcally used for fnd-
ing OSS code. Only notable search engine we were able to fnd was searchcode2.
Also, the component repositories such as GitHub offer their own search tools.

The effcient reuse of OSS in companies and other organizations relies on
governance processes and best practices. These include: establishing, communi-
cating, adjusting, and improving reuse policy and process; creating, updating,

1 https://google.com accessed Jan 18, 2021
2 https://searchcode.com/ accessed Jan 18, 2021

https://searchcode.com
https://google.com

33

maintaining, using, and auditing a component repository; using tools to cre-
ate, update, maintain, and search a component repository; providing all relevant
metadata for components; tracking the OSS reuse and providing its prior ap-
proval data; and adding security check information to components in the repos-
itory (Harutyunyan and Riehle 2019b). In addition, Haddad (2019) also lists rec-
ommended practices such as setting up a review board, setting up automated
systems to detect OSS, improving sourcing practices to make suppliers comply
with OSS licenses, scaling up legal support, and creating checkpoints and check-
lists for compliance activities.

Harutyunyan et al. (2019) describe the industry requirements for OSS gov-
ernance tools to facilitate the use of OSS in commercial products. They identi-
fed fve key categories of OSS governance tool requirements: 1) the tracking and
reuse of OSS components, 2) license compliance of OSS components, 3) search
and selection of OSS components, 4) architecture model for software products,
and 5) other requirements (security, export restrictions, etc.).

The processes, tools, and best practices described above form the large-scale
picture of OSS reuse. Open source license compliance serves a key role in this pic-
ture as it ensures that IPR-related risks are mitigated. Open source license com-
pliance can be addressed through a three-step process of identify the potentially
reused software and its licenses, approve the usage, and satisfy the license obliga-
tions (Haddad 2019). The goal of the identify step is to identify all OSS (packages
and snippets), their origin, licenses, and any licensing inconsistencies. The sec-
ond step uses this collected information to make a decision whether the OSS or
parts of it can be reused. The fnal step makes sure that the obligations listed in
the licenses of reused software are fulflled: source code, copyright notices, and
license texts are made available if necessary.

The complexity of open source license compliance comes from the differ-
ent restrictions and obligations of the OSS licenses compared with commercial li-
censes, where the obligations typically consist only of the payment for the right to
use or distribute the software (Schoettle 2019). Also, the incompatibility of some
OSS licenses and the fact that the overall license of a product might be different
than the license of each of its fles can further complicate compliance (German
et al. 2010b). Nevertheless, ensuring license compliance before the software is
distributed is often neglected (Schoettle 2019). For example, Cisco and VMWare
have faced legal action for violating the licensing terms of the Linux kernel (Ryan
2009; Vaughan-Nichols 2015).

Another aspect of open source license compliance is that companies inte-
grating OSS into their commercial products, software solutions or services, also
want to protect their own intellectual property from unintended disclosure. Un-
der some licenses (e.g., GPLv3), the contributor of the software must also grant
a patent license to the contents of the contributor version (Lau and Ker 2020). In
this way, patent holders may accidentally grant rights to, for example, use, sell,
and import their patented technology.

The risk of unnoticed noncompliance introduced to a software is high since
software components and code snippets are commonly reused (Mikkonen and

34

Taivalsaari 2019). Component reuse often occurs when using package managers,
such as npm3 or Maven4, or by using source code repositories such as GitHub.
The npm and Maven packages include the license information as part of their
metadata, whereas GitHub projects may or may not contain licensing informa-
tion. Through an examination of 1,692,135 code repositories in GitHub, only
14.9% of them specify a license, making their reuse from a licensing perspective
a challenge (Kapitsaki et al. 2015). In addition to reusing software components
as a whole, snippets of code are often reused. Developers routinely search for
solutions for all kinds of programming challenges from forums such as Stack
Overfow5 and use these as a part of their software (Mikkonen and Taivalsaari
2019).

Vendome et al. (2018) describe the licensing issues that developers generally
face when reusing OSS and refer to these as licensing bugs. These bugs are related
to issues such as potential licensing violations, licensing content-related issues,
and the breach of guidelines that can prevent software from being distributed or
modifed, for example, by preventing a patch from being accepted (Mathur et al.
2012; Vendome et al. 2018). Fixing these bugs may require substantial effort. The
violating code needs to be replaced or the software’s license needs to be migrated
to be compatible with the reused code (Vendome et al. 2018).

Distributing software with licensing violations leads to illegally distribut-
ing copyrighted material. When a licensing (or other IPR) violation is created in
a software package, it poses a threat individuals besides the creator of such vi-
olation. When a developer (even acting in good faith) adds a contribution, that
infringe on the IPR holder’s copyright or patent, every subsequent developer can
be liable according to copyright and patent laws, even if they did not know that
the software infringes a third-party right (Välimäki and Oksanen 2005).

3.2 Identifying used open source software and its licenses

The core of the open source license compliance effort is to identify open source
code and their respective licenses, which form the frst step of the compliance
process (Haddad 2019). To store the results of a license analysis and to fulfll the
foregoing information and documentation requirements, one central document
or repository of the bill of materials should be maintained (Schoettle 2019). This
bill of material includes all necessary texts, notes, and information and are con-
tained in a structured manner. The information lists the OSS used, its origin,
license of each source fle, and the overall license(s) of the reused code. Rigorous
maintenance of a bill of materials is especially important in software projects that
reuse substantial amount of OSS, since tracking the reuse afterwards is diffcult,
especially when reusing snippets of code.

3 https://www.npmjs.com/ accessed Jan 18, 2021
4 http://maven.apache.org/ accessed Jan 18, 2021
5 https://stackoverfow.com accessed Jan 18, 2021

https://stackoverflow.com
http://maven.apache.org
https://www.npmjs.com

35

First, the true origin of the potentially reused software should be ensured.
A reused package or snippet may not be fully written by the authors since it may
contain copied code, as code cloning is very common way of reusing source code
in software development (Ain et al. 2019). Cloning becomes especially problem-
atic when it violates the license terms or IPRs of the original author. There are
several examples where GPL-licensed code has been copied in the ways that vio-
lates the terms of the GPL license (Duan et al. 2017; Feng et al. 2019). Also, it has
been shown that copying between OSS projects and developer forums is com-
mon (An et al. 2017; Ragkhitwetsagul et al. 2018). Numerous tools and methods
have been developed to detect code clones that assist in identifying copied code
(Ain et al. 2019). However, identifying the true origin of the source code is very
challenging, because it is hard to build a universal repository that contains ev-
ery version of every open source repository artifact ever released (German and
Di Penta 2012).

The second part of the identifcation step, and probably the most determi-
nant part for dealing with license compliance (Kapitsaki et al. 2015), is the reliable
identifcation of the software’s license(s). The license of an open source program
can be indicated in different ways within the actual software package (Tuunanen
et al. 2009). The license of a source code fle is typically specifed in a comment
at the very beginning of the fle. German et al. (2010b) refer to this region of the
fle as its license statement. A license statement typically contains four sections:
1) a list of copyright owners, 2) a list of authors (if different from the copyright
owners), 3) the license or licenses that cover the fle, and 4) warranty and liability
statements. The licenses in the licensing statement can be of two types (German
et al. 2010b):

by-inclusion: the text of the license is embedded in the fle, and here, examples
are the BSD and the MIT families of licenses;

by-reference: the license statement indicates where the text of the license can be
found (fle or url). This technique is usually used for open source licenses
such as GPL, Apache, and MPL which have a longer license text.

There are several factors that make identifying the origin and license of OSS a
challenge. For instance, ensuring OSS license compliance is not only relevant
regarding the license conditions of directly used OSS, but it also covers those OSS,
that directly used OSS depends on (Dyck et al. 2018). When a reused package
depends on other packages, the total amount of reused code can be substantial
(Mikkonen and Taivalsaari 2019) and, thus, impractical, or even impossible, to
inspect manually.

While all source fles of OSS can have the same license, it is common that
there are several (possible incompatible) licenses used, causing a license-mismatch
problem (German and Hassan 2009). For these packages, license identifcation of
the whole component is not straightforward and may need further analysis in the
approval step.

Vendome et al. (2018) list several licensing content-related bugs that make
the identifcation a challenge, such as incorrect licensing, license inconsistencies,

36

missing licensing, license textual issues, and outdated licensing. Due to these
issues, packages license information could be misrepresented or incomplete. For-
tunately, fxing these licensing bugs is relatively simple, since the actual system
does not need to be modifed (Vendome et al. 2018). It is adequate to add the
proper annotation, move the license fle, or add license headers. German et al.
(2010b) present some examples of OSS packages with these kind of licensing is-
sues. One is an application, where eight fles were identifed under the LGPLv2+,
even though this license does not exist. Other MIT-style licensed application had
three fles out of 37 that contained different liability and warranty clauses than
the rest.

Reused snippets are often copied without proper identifcation of their li-
cense or copyright holder, making the identifcation of their license challeng-
ing and also resulting potential violations of their license terms (Romansky et
al. 2018). Also, if these snippets do not include the copyright notice, then they
violate the author’s right to claim authorship.

When OSS is reused as a package, the package usually contains metadata
describing the license of the package. However, this declared license of the pack-
age and license of the actual source fles may differ (German et al. 2010a; Kapit-
saki et al. 2017; Manabe et al. 2014).

To get a reliable list of the used licenses, the source code of the reused pack-
age must be scanned, identifying the licenses of each source fle. Also, other
sources for the license information, such as the binary of the OSS and the project
website might be used (Dyck et al. 2016), when the license is not explicitly stated.

3.3 Approving the reuse of OSS

After the reused software and its licenses have been identifed, the reuse of the
package must be approved. The approval step ensures that no OSS is reused
when licensing terms are violated or non-approved licenses are used. However,
to approve the reuse of a specifc OSS, the results of the previous step need to
be presented in a meaningful way, and the terms of the used licenses must be
understood.

If the potentially reused package contains licensing violations, it can not be
approved. Licensing violations consist of license incompatibility or other types
of violations (Vendome et al. 2018). The occurrence of a license-mismatch prob-
lem in OSS code may be an indication of license incompatibility issues or other
serious violations or can also be an indication of less severe issues or no issues
at all. A typical example of software having multiple licenses is a case where
some fles are licensed under copyleft license and some other under permissive
license(s). This combination is typically allowed, and reuse can be approved as
long as the licensing terms of all licenses are followed. Combining the software of
conficting licenses is typically not allowed, and these licensing incompatibilities
must be identifed and removed before the reuse of OSS can be approved. An

37

example of such incompatibility was described by German et al. (2010b), where
an application according to its web site, was licensed under the GPLv2. The ma-
jority of its fles were licensed under the GPLv2+, but three of them were under
the GPLv3+. Licensing confict was caused by the GPLv3+ fles: a fle licensed
under the GPLv3+ cannot be combined into a system under the GPLv2.

However, license compatibility checking must also consider the way in which
the code is used, as the technical means of combining the code may affect the
compatibility. Hammouda et al. (2010) present some architectural design deci-
sions motivated by the legal concerns associated with open source licensing is-
sues. These open source legality patterns, that is, recurring design decisions, are
created to simplify and mitigate the risks of combining differently licensed OSS
software. When these patterns are used, even incompatible licensed OSS can be
combined and reused. Patterns include, for example, standardized interfaces,
dynamic linking, and data-driven communication (Hammouda et al. 2010).

Other types of licensing violations are serious violations that do not fall un-
der license incompatibility. For example, these include illegal copying of source
code. Vendome et al. (2018) introduce an example of illegitimate copying, where
a developer copied MIT-licensed code and removed the original author from the
copyright statement of the fle(s). Also, using snippets from developer forums
may result in licensing violations in case they are considered “original works”,
that is, they are original enough to be copyrightable. For instance, code examples
on Stack Overfow are governed by the Creative Commons Attribute-ShareAlike
3.0 Unported license (Stack Exchange Inc. 2020), which means they require giving
appropriate credit, providing a link to the license, and indicating the changes that
were made (Creative Commons 2020).

Even though the licensing content-related issues identifed in the previous
step (e.g., license inconsistencies or missing licensing) may not violate intellectual
properties, they may prevent the approval of software distribution. This is due to
the fact that some communities (e.g., Fedora (2013a)) require that package meta-
data must include correct license information before they can list and distribute
the software.

The litigious nature of the language used in OSS licenses can make under-
standing the ramifcations of these licenses diffcult. Almeida et al. (2019) conduct
a survey that posed development scenarios involving three popular open source
licenses (GPLv3, LGPLv3, and MPLv2) both alone and in combination. The sur-
vey included 375 respondents, who were largely developers. Their answers were
consistent with those of a legal expert’s opinion in 62% of 42 cases. Even though
developers understood cases that involved one license, they had diffculties when
multiple licenses were involved. Also, 36% of the participants reported using re-
sources such as Wikipedia, https://tldrlegal.com and https://choosealicense.com.
Even though developers had some understanding of the licenses, only three well-
known licenses were used in the survey. The diffculty in understanding licenses
can prevent reusers from using certain licenses. This is due to the uncertainty of
the implications of such a decision. The adoption of a license can be prevented,
for example, due to the following reasons: the problem of understanding whether

https://choosealicense.com
https://tldrlegal.com

38

the new license is compatible with the licenses of the software’s dependencies,
the misunderstanding of the implications of a clause, or the uncertainty whether
a license satisfes the business model of the developers (Vendome et al. 2018).

The communities maintained by foundations and commercial organisations
(e.g., the Apache Software Foundation, Debian, the Eclipse Software Foundation
or Fedora), may especially perceive the use of different kinds of conditions as a
necessary means for avoiding legal disputes and for their own legal protection
(Gamalielsson and Lundell 2017). The rules and restrictions for the approval of
software in such communities originate from how a particular community de-
fnes the acceptance of software, which can be stricter than utilizing an open
source license, and how the community interprets licenses based upon their poli-
cies (Vendome et al. 2018). Examples of such acceptance criteria include Debian
free software guidelines (DFSG) (Debian 2004) and Fedora licensing guide (Fe-
dora 2013b). In these cases, software with non-approve licenses, including even
well known OSS licenses, cannot be included in the main distribution and must
be distributed separately (Vendome et al. 2018). Unlike licensing bugs or the
incompatibility of licenses as such, these refect how a community enforces a par-
ticular licensing policy.

The runtime environment also affects whether the OSS can be approved.
For example, GPLv3.0 requires that it must be possible to install modifed ver-
sions of the OSS on devices where the original version is running. This prac-
tically prevents GPLv3.0 licensed code on digital-rights-management-protected
environments such as iPhones (Schoettle 2019).

Some licenses (e.g., GPLv3.0 and Apache 2.0) address issues related to pat-
ents, including their litigation. For example, engaging in a patent lawsuit with
work that is derivative or reuses source/binaries under these licenses will invali-
date the license. For these reasons, the reuse of OSS licensed under these licenses
may be rejected.

Companies use trademarks to protect their name, logo, products and pro-
motions (Fosfuri et al. 2008). Trademark-related restrictions (i.e., preventing some-
one from using the same product name or logo) can prove problematic within
an open source community and may prevent the approval of OSS. Organiza-
tions want to provide a quality guarantee, but communities like Debian debate
whether these restrictions are in-line with their guidelines that promote the free-
ness of OSS (Vendome et al. 2018).

The approval step also includes questions related to laws and their interpre-
tations, such as the following (Vendome et al. 2018): What is copyrightable? What
is a derivative work? How licenses are interpreted under different jurisdictions?
It has been demonstrated that copying as few as 27 lines of code from 525,000 can
constitute copyright infringement when the code is crucial and the incorporating
software would not function without it (Mertzel 2008). As it is very common to
copy code snippets from and to developer forums such as Stack Overfow, the
question whether these snippets are copyrightable becomes relevant (Romansky
et al. 2018). If such snippet is copyrightable, the violation of its license terms are
very likely. Also, to be able to distribute a derivative work, its creator needs a

39

license from the work it is based on. Therefore, the question of what constitutes
a derivative work is critical (Vendome et al. 2018). Some systems, for example,
GNU (Free Software Foundation 2020a), provide clarifcations on whether some-
thing is considered a derivative work of another. Also, this issue has been de-
bated among lawyers extensively over the years (Determann 2006; Evans and
Layne-Farrar 2004; Hazen 1986; Stoltz 2005). However, since the scope and inter-
pretations of copyright law (similar to patent and trademarks) can only be truly
addressed by lawyers, which we are not, these questions fall outside the scope of
the current study.

3.4 Satisfying OSS license obligations

As reuse of OSS is approved and is ready to be reused, the license obligations
must be fulflled. These obligations come into effect when software is distributed
or made available over the network (in case of network reciprocal licenses such as
AGPL). To fulfll these obligations, the bill of materials that is created in the frst
step of license compliance process is vital as it lists all used OSS and its licenses.
Open source licenses require that the distributor of the OSS must do the following
(Haddad 2018):

– In case of distributed software is licensed under a copyleft-license, inform
the end user how to obtain a copy of the source code.

– Acknowledge the use of open source by providing the required copyright,
attribution, and license notices for all applicable OSS (components and snip-
pets).

– Reproduce the entire license text for the open source code included in the
product.

This information is collected in a report that is usually called open source notices
or attribution statements (Goldstein 2020a). It includes all necessary information
to fulfll the license obligations.

OSS may be used “as is” or in a modifed form. In either case, the source
code must be available if the software is licensed under copyleft license. For this
reason, copyleft licensed source code must be prepared for redistribution. This
may include the source code of the entire software (in the case of strong copyleft),
or, for example, individual fles (in case of weak, fle level, copyleft). Typically,
the most simple solution is to provide a link in the open source notices to a public
web page that hosts the source code, regardless of if the source has been modifed
or not.

Acknowledgement requirements consist of three parts: reproduction of copy-
right texts, attribution notices, and license notices. Open source licenses almost
always require reproduction of copyright statements, which are included in the
source fles. The license notice informs the user that the distributed software
includes software under the given license. Attribution statements, which give

40

credit to, or attributes, the creator of the work whom the code is borrowed from,
are explicitly required by some OSS licenses such as Apache 2.0.

Gathering the copyright information manually is very time-consuming and
error-prone (Dyck et al. 2018). For this reason, any effort that makes this process
easier is preferable. For example, the Linux Foundation (Winslow 2020) recom-
mend using a more general statement in a form similar to the following (where
XYZ is the project’s name):

– Copyright The XYZ Authors.
– Copyright The XYZ Contributors.
– Copyright Contributors to the XYZ project.

As Winslow (2020) states, “These statements are intended to communicate the
following: (i) the work is copyrighted, (ii) the contributors of the code licensed it,
but retain ownership of their copyrights; and (iii) it was licensed for distribution
as part of the named project. By using a common format, the projects avoid hav-
ing to maintain lists of names of the authors or copyright holders, years or ranges
of years, and variations on the (c) symbol. This aims to minimize the burden
on developers and maintainers as well as redistributors of the code, particularly
where compliance with the license requires that further distributions retain or
reproduce copyright notices.”

The license notice is typically very simple, as it only requires that it is made
apparent the work contains software under a given license. However, the repro-
duction of the full license text is usually required. Some licenses are explicit in
their attribution requirements. Apache 2.0 requires attribution statements when a
fle called NOTICE exists. However, open source attribution obligations, as spec-
ifed in the many other common licenses, are usually very simply stated and are
subject to a great deal of interpretation regarding what is legally required and
what is the best way to meet these obligations (Clark 2015).

Clark (2015) describes open source notices examples of two major software
providers, Mozilla and Google, which provide examples of very different ap-
proaches. Both these examples do not only fulfll the minimum legal require-
ments, but also the spirit of the attribution where the developers deserve credit
for their contribution. Whenever OSS is reused, Firefox and Chrome can be used
as examples of fair and obligation-fulflling open source notices. In Mozilla Fire-
fox, by clicking on “About Firefox” in the Help menu and then by clicking the
“Licensing Information” link, this takes you to an “about:license” page. The in-
formation on the page lists the names of the licenses used in Firefox, and each
license name is a link that takes you to the complementary details that include
the path name of the component subject to that license, the copyright statement,
and the texts of the licenses and notices (see Figure 2).

In Google Chrome, by clicking on “About Google Chrome” and then by
clicking the “open source software” link, this takes you to a “chrome://credits/”
page. The page lists the open source projects used in Chrome. Each project item
provides links to the project home page and the project license (see Figure 3).

41

FIGURE 2 Mozilla BSD 2-Clause attribution.

FIGURE 3 Chrome attribution page.

3.5 Summary

In this chapter we have described the open source license compliance that can be
addressed through a three-step process where the user must identify, approve,
and satisfy the reuse of OSS. This was preceded by the introduction of IPRs and
open source licenses. These form the theoretical background of the current study.
Next, we will present the results of our study and answer our research questions.

4 RESULTS FROM THE DESIGN CYCLE

This chapter presents our reverse engineering approach for the automated sup-
port of OSS license compliance, its implementation via a tool called ASLA (Auto-
mated Software License Analyzer), and tool evaluation. This chapter will address
the research questions for the design cycles part:

RQ1 What are the user needs to fulfll automated open source license compli-
ance?

RQ2 What software features are needed to fulfll the user needs?

The need for automated OSS license compliance was discovered in the industry
that reuse OSS as part of their commercial products. Based on the initial industry
needs automated license compliance was also identifed to be a relevant academic
problem that extended to the development of ASLA. User needs of ASLA are
based on real-life needs present in the industry at the time. The compatibility
rules between the licenses (see Figure 10), that are used as an example in this
chapter, are based on the views of industry lawyers at the time as well as on the
views of well known OSS license expert, lawyer Lawrence Rosen (2005).

Our goal was to support IPR-aware reuse of OSS packages through an au-
tomated license analysis by retrieving software license information from source
code modules. It was motivated by a typical problem in OSS development: li-
cense compliance should be followed, but reliable and detailed manual license in-
formation retrieval and analysis is time-consuming and error-prone and requires
a profound knowledge of OSS licenses.

The research of the frst cycle followed the Design Science Research (DSR)
approach, by specifying, implementing, and testing an artifact of OSS reuse uti-
lization based on a license analysis. DSR is composed of the three related cy-
cles that should not be confused with the design and review cycles of this study.
DSR includes (i) the relevance cycle, (ii) the rigor cycle, and (iii) the design cycle.
The DSR relevance cycle ensures that technical solutions solve practical business
problems and address the corresponding opportunities. The DSR rigor cycle con-
nects the prior scientifc knowledge and theories with the research (Hevner 2007;

43

Iivari 2007), also ensuring that appropriate methods are applied in the construc-
tion and evaluation of the design artifact (Venable 2010). The DSR design cycle
includes the construction and evaluation phase of the artifact. Peffers et al. (2007)
present a more structured composition of DSR, as follows: (i) identify problem,
(ii) defne solution objectives, (iii) design and development, (iv) demonstration,
(v) evaluation, and (vi) communication.

ASLA was initially introduced in Tuunanen et al. (2006a), which describes
the design and realization of license identifcation and dependency analysis. Tuu-
nanen et al. (2006b) extend the previous paper, especially by addressing the issue
of license retrieval from an OSS perspective and by providing a more detailed de-
scription of ASLA. After further development, the architecture and functionality
of ASLA was described in a more detailed manner, and an extended evaluation
of the tool has been published in Tuunanen et al. (2009).

At the time when our articles were written, there were no license analysis
tools available in an academic sense. However, some open source solutions ex-
isted, such as OSLC version 2.01 and FOSSology version 1.02. The functionality
and performance of these tools are evaluated in Tuunanen et al. (2009) underlin-
ing the research gap (DSR step i) that ASLA fulflled. There was especially a clear
need for more effcient license identifcation from source fles and an automated
compatibility analysis. As we applied the DSR approach in the development of
ASLA, we identifed the typical problems in the OSS license compliance process,
resulting in the user needs for the automated license analysis software (DSR step
ii).

System architecture and tool features were developed (DSR step iii) using an
iterative process model as benefts of these models were well known at the time
of the development (Larman and Basili 2003). The latest version of the ASLA sys-
tem was implemented using Java programming language (version 1.6.0_03). The
system architecture is presented in Figure 4 (Tuunanen et al. 2009). The demon-
stration and evaluation of the artifacts (DSR steps iv and v) resulted in the tool
evaluation in terms of available features and in terms of identifying licenses com-
pared with the other license analyzers mentioned above. The publications listed
above fulfll the DSR step of communicating results in publications (DSR step vi).

In the following sections, the identifed user needs that address research
question RQ1.1 (see Table 2) are marked with Nx (N1 - N14). The features that ad-
dress research question RQ2.1 (see Table 3) and fulfll user needs are marked with
Fx (F1.1 - F9.1). The needs and features related to license identifcation and the
dependency analysis are part of the identifcation step of the license compliance
process, whereas the compatibility analysis and presentation of the identifcation
results are part of the approval step. The needs and features related to the satisfy
step of the compliance process include summary information and browsing of
the results. A summary of user needs and features of ASLA and their relations
are shown in Figure 5 (Tuunanen et al. 2009).

1 https://sourceforge.net/projects/oslc/fles/oslc 202/oslc-2.0-stable/ accessed Jan 18,
2021

2 https://www.fossology.org/ accessed Jan 18, 2021

https://www.fossology.org
https://sourceforge.net/projects/oslc/files/oslc

44

FIGURE 4 ASLA architecture (Tuunanen et al. 2009).

45

TABLE 2 Identifed user needs for ASLA (Tuunanen et al. 2009).

User need Rationale Step*

N1 Identifcation of the program modules that are Get detailed list of used source fles that will I
included in the program within a particular environment. be analyzed and potentially reused.

N2 License identifcation of each source fle. Essential for comprehensive license analysis. I
N3 Dependency identifcation of program modules. Precondition for a detailed compatibility analysis. I
N4 The formation of license compatibility rules. Needed to detect license incompatibility issues. A
N5 The identifcation of licensing problems. Fundamental feature of the license analyzer as A

bugs or lack of them can dictate whether
the component can be reused or not.

N6 The visualization of license analysis results. To make an educated decision of the acceptance A
of the reused software and to display potential
licensing bugs.

N7 Browsing of the results of the license analysis. To see the list of used licenses and to identify A,S
potentially problematic components or source
code fles.

N8 Manual determination of the source code license. Needed as automated license identifcation I
cannot be achieved for every fle.

N9 The addition of license identifcation templates. To handle previously unknown ways of I
indicating used license.

N10 The visualization of license compatibility rules. As compatibility of the OSS licenses can be A
interpreted differently, the user should
be aware of the used rules.

N11 The defnition of license compatibility rules. As compatibility of the OSS licenses can be A
interpreted differently, the user should
be able to defne them.

N12 Statistical information on the analyzed software Assists in satisfying the license obligations. S
package and the license analysis.

* Refers to step of the license compliance process: identify (I), approve (A), and satisfy (S).

46

TABLE 3 Features of ASLA to satisfy the user’s needs in Table 2 (Tuunanen et al. 2009).

Feature Rationale Step*

F1.1 Dependency and license analysis. System-level feature providing dependency I
and license identifcation and compatibility analysis.

F1.2 License identifcation of source code fles. System-level feature providing license identifcation I
of each source fle.

F2.1 Creation of dependency map. To form a structure where dependencies of all program parts I
(source and binary fles) are included to make a compatibility analysis.

F2.2 Separation of the fles used in a specifc environment. Identify which fles are used and which fles are left out in I
selected environment.

F3.1 Automated identifcation of licenses in source code fles. Core feature, which is achieved by using license I
templates given as regular expressions.

F4.1 Automated license compatibility checking. Checks for incompatibilities between licenses of the analyzed A
OSS component.

F4.2 Formation of license compatibility rules. Rules defne how two licenses cooperate with each other. A
F5.1 Manual license determination of individual fles. Allows the tool user to set license of a fle manually I

in cases where the automatic identifcation is not successful.
F5.2 Applying license for a module. Relevant, e.g., in cases where the source fles don’t have any indication I

of the used license, but the module documentation clearly states
the used license.

F6.1 Manual license template addition. To improve the license identifcation coverage, the user is able to I
add new license identifcation template, e.g., in case of a new license.

F6.2 Run-time license template addition. Used, e.g., in cases when license is indicated in the fles on I
a previously unknown way.

F7.1 Visualization of license compatibility rules. To show the user how license compatibility’s are interpreted and A
analyzed.

F7.2 Defnition of license compatibility rules. Allows users to defne compatibility rules according to their A
interpretations or standards.

F8.1 Visualization of the dependency map. Visualizes the program parts and their dependencies to identify A
potentially reusable components and licensing problems.

F8.2 Retrieval of the details of each object in the Shows details of each dependency object: A,S
dependency map. full fle name, fle type, license of the fle, license status,

list of licenses found from child objects, and
(in the case of a source fle) the actual source code.

F8.3 Browsing of the dependency map. User is able to see the list of all the analyzed objects and their A
dependencies.

F9.1 Statistical and summary information about the licenses. Helps in satisfying the license obligations by providing S
found and the fles used from the source package summary information about the licenses found and the fles

used from the source package.

* Refers to step of the license compliance process: identify (I), approve (A), and satisfy (S).

47

FIGURE 5 User needs and features of ASLA (Tuunanen et al. 2009).

48

4.1 Identifcation of licenses and their dependencies

In the identifcation step of the license compliance process, the reuser of OSS
must identify the reused component or the snippets and their license(s). To get
a detailed list of used source fles, it also relevant to identify which parts are
actually reused (N1) as large portions of software may not used at all (e.g., hard-
ware architecture-specifc portions of Linux kernel). In the identifcation step, the
licenses of each individual source code fle need to be identifed (N2) to make
a comprehensive analysis, since a single licensing bug, such as incompatibly li-
censed fle, can prevent the reuse of the whole software package. In addition,
the dependencies between these source fles and the other objects (N3) (compiled
or fetched modules) must be identifed to later conduct the license compatibility
analysis. Also, this identifcation can give some clues about reusable components
within a larger software package, and this becomes useful when partial reuse is
considered.

The most typical usage of the tool is to conduct a dependency and license
analysis (F1.1). The usage process of this system-level feature is summarized in
Figure 6. This full functionality is achieved by analyzing the OSS implemented
using programming languages that can be compiled using GCC. ASLA can also
identify the licenses without a dependency analysis (F1.2) (see Figure 7), of soft-
ware packages that cannot be compiled using GCC, such as, for example, Perl,
Java, or even HTML. These two features form the system-level features of ASLA.
The system was tested using GCC version 4.1.3., and it also used slightly instru-
mented versions of ar (an archive tool) and ld (a linker) from GNU Binutils (ver-
sion 2.18.50) (Tuunanen et al. 2009).

FIGURE 6 Dependency and license analysis (F1.1) usage process of ASLA.

For a dependency and license analysis (F1.1), we frst identify all objects
(source fles, compiled objects, libraries, etc.) and dependencies between these
objects (Tuunanen et al. 2006a). A dependency analysis forms the basis for the

49

FIGURE 7 License identifcation (F1.2) usage process of ASLA.

advanced compatibility analysis between identifed licenses. ASLA uses the out-
puts produced by GCC, GNU ar, and GNU ld. These programs, which are used
in the build process of the software, store information on the dependencies be-
tween program parts to dependency information fles (F2.1). ASLA reads these
fles, creates a map of dependencies, and performs the actual license analysis for
the source fles listed in the map (Tuunanen et al. 2006a). In this way, we get
detailed dependency information and can leave out the source fles not used in
the selected environment (F2.2). Each object in the dependency information map
has references to the objects that it is dependent on, and references to the objects
that are dependent on it. At the time of the implementation, ASLA was known to
be the only license analyzer that provides full information on build process out-
puts and their dependencies (Tuunanen et al. 2009). Each compiled object gets its
license information as a composition of its source fles’ licenses. During the de-
pendency map creation, a special treatment of .lo fles (created by GNU Libtool),
symbolic links, and duplicate fles was required to ensure the correctness of the
dependency map. The approach is simple, and it performs well even with large
software packages, but it has one drawback. The overall performance of the li-
cense analysis is affected, as the analyzed package needs to be compiled.

Our goal for the license identifcation was to automatically identify the li-
censes of all the source fles. In most cases, the OSS source fles include either
the full license text or predefned template or link to the license indicating the
use of a specifc license. Simple permissive open source licenses, such as BSD
and MIT, are typically included at the beginning of each source code fle as a
whole. Another common practice is to make a reference to the license from the
source code. For this purpose, predefned templates are often used. This tech-
nique is typical for open source licenses such as Apache, GPL, LGPL, and MPL
that have longer license text. License identifcation is based on reading these li-
cense statements from each source code fle. Automated license identifcation in
ASLA was achieved by using the license templates given as regular expressions
(F3.1). Regular expressions were chosen, because exact matching techniques were
not feasible for several reasons: (i) comment characters and the various kinds of

50

white space characters prevent exact matching, (ii) programmers modify the pre-
defned license texts, and (iii) there are different published versions of the licenses
(Tuunanen et al. 2006a,b).

Before the search of the license text was conducted for a particular source
fle, there were some cleanups done for the source fle, such as removing the com-
ment characters (Tuunanen et al. 2006a). For example, the license search template
(regular expression) for LGPL version 2 and 2.1 was as follows (Tuunanen et al.
2009):

is free software; you can redistribute it and/or modify (it)? under the terms of the GNU
(Library)—(Lesser) General Public License as published by the Free Software Foundation;
either version 2.*, or \(at your option\) any later version .* is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE See
the GNU (Library)—(Lesser) General Public License for more details You should have
received a copy of the GNU (Library)—(Lesser) General Public License along with this
(program)—(library); if not, write to the Free Software Foundation .* .*USA

The actual identifcation in ASLA is performed using Java java.util.regex.-
Matcher and java.util.regex.Pattern classes. Our regular expression is applied as a
multiline pattern for a source fle that has been stripped for comment characters
as follows (Tuunanen et al. 2009):

Pattern pattern = Pattern.compile(regexp, Pattern.MULTILINE);
Matcher matcher = pattern.matcher(sourceCodeString);
matcher.fnd();

Since the license of a source fle is not always indicated in a previously
known way, it must be possible to add new identifcation criteria for licenses
(N9). New license identifcation templates can be added in two ways. The frst
way is to manually create a new text fle in the directory in which the existing
license template fles are saved (F6.1). The fle format for the new template con-
tains the license name on the frst line of the fle and the template text in regular
expression form in the following lines (Tuunanen et al. 2006a). ASLA automati-
cally reads these new fles in the next startup. Also, it is common that the license
is indicated in the fles in a previously unknown manner. For this purpose, ALSA
provides a run-time license template addition (F6.2) that is conducted after the
initial analysis has been done and the results have already been presented to the
user. The user is able to select a text in a source fle, defne a license name for
this text, and use that information as a license identifcation template, as shown
in Figure 8 (Tuunanen et al. 2009). In this case, ASLA reformats the text into a
regular expression and saves it for future use, if necessary.

In some cases, it is also convenient to determine the licenses manually for
a single fle or for a whole component (N8), as automated license identifcation
cannot be achieved for every fle. This is due to the fact that all the source fles
do not either indicate the used license or are indicated in a way that is not known

51

FIGURE 8 New license identifcation template addition in ASLA (Tuunanen et al. 2009).

before. There are two ways to manually identify the licence of a fle, the frst
being to manually set licenses one by one for unidentifed source fles (F5.1). This
is aided by the fact that ASLA lists all source code fles that were unidentifed
in a separated tree entry (see Figure 9 (Tuunanen et al. 2009)). Another way is
to apply a license for a whole module at once (F5.2). This is relevant in cases
where the source fles do not have any indication of the used license but where
the module documentation (e.g., fle called COPYING or LICENSE) clearly states
the used license.

A problem sometimes faced in the license analysis is the inclusion of a li-
brary header fle that has no license information whatsoever. These fles cause
ASLA to report on the missing license, even though such libraries are usually
under permissive licenses that allow them to be used with very little restrictions
as part of another program. For these types, ASLA provides the functionality to
exclude a single fle or a whole directory from the license analysis (F5.3).

By using the dependency and license analysis features described above, the
tool fulflls the needs of the identifcation step of the license compliance process.
By using these methods, we can obtain complete information about the used li-
censes and their relations.

4.2 Approval of OSS and satisfaction of license obligations

The identifcation of licenses and dependencies between fles forms the base for
the approval step of the license compliance process. If more than one license is
found in the identifcation step, it must be evaluated whether this results in li-

52

FIGURE 9 ASLA main view (Tuunanen et al. 2009).

cense incompatibility. An automated system needs rules that defne the compat-
ibility between the licenses (N4) to automatically detect incompatibilities. This
automated detection of potential licensing problems (N5) is a fundamental fea-
ture of the license compliance tool. This need is dependent on the frst four needs
(i.e., N1–N4), and it cannot be fully satisfed unless the information from the frst
four needs is available.

To achieve extendable automated compatibility checking (F4.1), ASLA in-
cludes compatibility rules between licenses (F4.2). A license compatibility rule
defnes how two licenses cooperate with each other. There are four possible states
that can be defned (Tuunanen et al. 2009):

1. NOK (Not OK). Used in situations of clear incompatibility (e.g., Apache 2.0
and GPLv2).

2. Warning. Used in situations where the compatibility is either unclear or
where the reuser is willing to receive notifcation (e.g., use of an original
BSD license with an advertising clause).

3. OK. Used when licenses are compatible with each other.
4. N/A (not available). Means that no rule operating between the two licenses

has been defned.

License rules were defned for both dynamic and static linking, because licenses
may behave differently depending on the linking style. Also, the relation between
two licenses was defned twice, depending on the dependency direction (e.g.,

53

FIGURE 10 ASLA license compatibility rules view (Tuunanen et al. 2009).

MIT code is dependent on GPL licensed code or vice versa), making four different
combinations between each of the two licenses.

As the compatibility of the OSS licenses can be interpreted differently (e.g.,
in case of specifc community standards), the actual interpretations of the license
compatibility rules must be presented (N10) to the user, and then, it is left to the
user to defne (N11) the rules between the different licenses. To fulfll these needs,
ASLA offers a user interface (see Figure 10 (Tuunanen et al. 2009)) that is used for
the visualization (F7.1) and defnition (F7.2) of compatibility rules.

When the license analysis is conducted, the results need to be presented to
the user (N6) in a way that allows for the user to make an educated decision
of the acceptance of the reused software. The user must have the possibility to
browse the individual fles, their licenses, their dependencies, and the list of li-
censes found in the package (N7). These needs are also relevant in the satisfy
step of the license compliance process (see Chapter 3). The ASLA user interface
in Figure 9 (Tuunanen et al. 2009) has two main sections: the left side of the user
interface displays the dependency map in tree format (F8.1), while the right hand
side displays detailed information about the selected dependency object (F8.2).
By browsing the tree on the left (F8.3), the user can see the list of all the analyzed
objects and their dependencies.

The program parts that are successfully analyzed from the license perspec-
tive are colored green, and the objects that have some sort of potential license
problem are colored red. An identifed license problem includes an unrecognized
license or the use of incompatible licenses. By selecting an object in the tree, the
user is provided with the following detailed information concerning the object in
question: full fle name, fle type, license of the fle, license status (OK, unrecognized
license, unrecognized child licenses, incompatible licenses), list of licenses found
from child objects, and (in the case of a source fle) the actual source code. The license
status displays the information concerning the results of the license analysis, as
listed in Table 4.

It is also benefcial that the statistical information of the analysis process

54

TABLE 4 ASLA license analysis statuses.

Status Explanation
OK License of the fle and the licenses of all its child objects have been

successfully identifed and are identifed to be compatible with each other.
Unrecognized license License of the fle has not been successfully identifed.
Unrecognized child licenses License(s) of some of the child fles have not been successfully identifed.
Incompatible licenses All the licenses have been successfully identifed,

but licenses are incompatible with each other, as defned by the compatibility rules.

be summarized for the user (N12) because it helps in satisfying the license obli-
gations. During the license analysis, ASLA collects statistical information and
provides statistical and summary information about the licenses found and the
fles used from the source package (F9.1). ASLA lists all the licenses applied, the
number of fles with each applied license, and the number of fles whose licenses
were not recognized. The statistics also include information about the number
of fles from the source package and the number of external fles included in the
fnal binary output.

The ASLA features presented above provide the reuser of an OSS package
automated means to identify the licenses and potential licensing problems. This
aids the user in the approval or disapproval of the selected package or compo-
nent. It also lists the used licenses assisting in fulflling the licensing obligations.

4.3 Tool evaluation

In the development of ASLA, the main goal was to improve the effciency of the
analysis versus existing tools or compared with a manual analysis (N13). As de-
scribed in Chapter 3, some open source licenses are incompatible with each other.
Since ASLA is able to identify the licenses of source fles and the dependencies be-
tween build process outputs, we were able to automatically identify the possible
license compatibility problems in software components using the compatibility
rules. This automated compatibility analysis greatly increases the effcacy of OSS
license compliance process, as OSS packages can contain hundreds or thousands
of source fles with different licenses.

The license identifcation precision and coverage had the aim of being as
high as possible (N14). However, this can vary signifcantly, since many pack-
ages contain licensing bugs such as missing licenses. Our goal was to identify the
license of each fle that can possibly be identifed using both automated and in-
teractive techniques. We evaluated our approach frst by running a license anal-
ysis for 12 OSS packages of different sizes (Tuunanen et al. 2009). A summary
of these results are presented in Table 5. In the case of dependency and license
analysis (F1.1), which comprised nine out of 12 packages, we read and analyzed
from 10 to 2532 dependency information fles per open source package. We were
initially able to identify licenses in 1–97% of the source fles listed in those fles
without any user involvement (FI). The results were improved to identifcation
of 75–100% of the fles by applying new license templates (F6.2) (FI_F), as shown

55

TABLE 5 ASLA evaluation summary (Tuunanen et al. 2009).

Package KLOC FI FI_F Time

AFPL Ghostscript 673 1% 96% 67 s
Apache HTTP Server 316 5% 98% 13 s
Azureus * 25 56% 84% 20 s
Bugzilla * 162 75% 98% 1 s
GIMP—The GNU Image Manipulation Program 863 91% 92% 325 s
GNU Binutils 1289 88% 92% 18 s
GNU Go 134 35% 92% 124 s
gnuplot 736 41% 85% 11 s
JBoss * 177 97% 97% 18 s
Mozilla Firefox 2063 96% 98% 272 s
Pidgin IM client 332 86% 90% 216 s
Subversion 627 12% 100% 21 s

KLOC = Size of the source package in thousands of lines of code
FI = Percentage of source fles identifed by ASLA without any additional user involvement
FI_F = Percentage of source fles with an identifed license after user involvement
* Indicates license identifcation (F1.2). Other packages include dependency and
license analysis (F1.1).

in Figure 8. Most of the instances of non-identifcation were caused because the
source fles had no indication whatsoever of the license used. In the case of license
identifcation (F1.2), we were also able to initially identify licenses in 1–97% (FI)
of the source fles. By applying new license identifcation templates (F6.2) and
by excluding unnecessary fles (F5.3), such as HTML help fles, the identifcation
results improved to between 79% and 98% (FI_F).

The effciency of the license identifcation of source code fles (F1.2) was be-
tween one and 472 fles per second. This large variance can mostly be explained
by two factors: (1) Successful identifcation is usually very effcient (some mil-
liseconds/fle), especially when most fles within the package have the same li-
cense. (2) In the case of slow results, the license identifcation was unsuccessful
for most fles. The dependency analysis (F2.1 and F2.2) and compatibility check-
ing (F4.1) also affect the total effciency. In most cases, the overhead produced by
these features was about 1.5 to 2 times the time spent on license identifcation,
but in some cases, this fgure rose as high as eight-fold.

The evaluation provided two main results: (1) the ASLA tool enables the
analysis of large OSS programs in a reasonable time, and (2) the tool provides
information which is valuable for meeting license compliance when reusing OSS.
The tool is easily extendable, and it is not restricted to any particular program-
ming language.

56

4.4 Validity

As ASLA was created according to the DSR paradigm, the artifact construction
can be validated accordingly. Sonnenberg and Vom Brocke (2012) identify four
evaluation types derived from typical DSR activities. These types relate to DSR
processes that include the activities of problem identifcation, design, construc-
tion, and use. Evaluation activities include the following (Sonnenberg and Vom
Brocke 2012; Vom Brocke et al. 2020):

Eval1: The evaluation of the problem identifcation activity serves the purpose
of ensuring that a meaningful DSR problem is selected and formulated.

Eval2: The evaluation of the solution design serves the purpose of showing that
an artifact design progresses to a solution of the stated problem.

Eval3: The evaluating of the solution instantiation serves to demonstrate if and
how well the artifact performs.

Eval4: The evaluating of the solution in usage serves to ultimately show that an
artifact is both applicable and useful in practice.

As our evaluation occurs after the instantiation of our artifacts, it is an ex post
evaluation (Venable et al. 2016). The information in Table 6 displays the results of
this post-evaluation.

TABLE 6 Evaluation of ASLA to DSR checklist according to Vom Brocke et al. (2020).

Phase* DSR question ASLA
Is the importance of the research stated in a

Eval1
justifed manner?

Is the novelty (research gap) of the ap-
proach clearly stated?

Is the feasibility (design objectives) of the
approach stated in justifed manner?

There was very little prior research avail-
able related to automated license analysis
at the time of the writing of articles related
to ASLA. Some tools such as OSLC and
FOSSology existed, but those were not de-
scribed academically. Thus, the need for
the automated license analysis was explic-
itly stated based on real-world problems,
especially in the form of user needs (Tuu-
nanen et al. 2009).
Shortcomings of the other tools existing
at the time were analyzed and listed in
Tuunanen et al. (2009). Especially de-
pendency analysis and automated com-
patibility checking were novel solutions.
Also, improved license identifcation was
needed.
User needs formed the objectives for our
design. Our main objective was stated in
the need 13: goal when developing ASLA
was to improve the effciency of the anal-
ysis versus existing tools or compared to
manual analysis.

Does the design specifcation meet the re- Features (see Table 3) and needs (see Ta-
Eval2

quirements of simplicity, clarity, and con- ble 2) are clearly listed and linked to each
sistency? other, as displayed in Figure 5. Also, the

tool architecture was carefully designed, as
presented in Figure 4.

57

Is the selection of design methodology jus-
tifed?

Because of its overall novelty, we used
a prototype-based iterative and incremen-
tal development process. The benefts of
these development process models were
well known at the time of the development.

Eval3
Is the validated artifact easy to use? All features were based on real-world

needs, and the relevant information is pro-
vided in the graphical user interface (see
Figure 4). The user interface highlights the
fles with successfully identifed licenses
and potentially problematic parts with sep-
arately colored nodes. Also, the identifed
licenses are collected as a separate node. By
this way, the user is able to quickly fnd
the relevant information. Full function-

Does the validated artifact perform its task
of solving a real-world problem?

Is the validated artifact robust in its tasks?

ality that includes a dependency analysis
is achieved using well-known compilation
procedures.
ASLA implements all identifed user needs
for automated license analysis that were re-
ported in Tuunanen et al. (2009).
ASLA’s validation was reported in Tuuna-
nen et al. (2009). The results of this evalua-
tion are summarized in Table 5. This eval-
uation did not reveal any shortcomings in
the robustness of the dependency and li-
cense analysis.

Eval4
Is the validated artifact effective, effcient,
and externally consistent in its tasks?

As stated in the evaluation, ASLA enables
the analysis of large OSS programs in a rea-
sonable time, and it provides information
which is valuable for meeting license com-
pliance when reusing OSS.

* Refers to the evaluation phase

4.5 Summary

In this chapter, we have described our reverse engineering approach for auto-
mated license compliance and its implementation, ASLA. Our implementation
supports all 12 identifed user needs that are listed in Table 2. The evaluation of
ASLA revealed that it enables the analysis of large OSS programs in a reasonable
time and provides valuable information for meeting licence compliance. Next,
we will present the results from the review cycle.

5 RESULTS FROM THE REVIEW CYCLE

Systematic literature reviews and mapping studies have increased their popular-
ity to better understand the empirical basis of software and systems development
(see, e.g., Al-Zubidy (2017) and Banaeianjahromi and Smolander (2016)). This
chapter presents the review cycle in the form of a systematic literature review
that describes how automated OSS license compliance has evolved during the
2010s. The following research questions are answered for the review cycle part:

RQ1 What are the user needs to fulfll automated open source license compli-
ance?

RQ2 What software features are needed to fulfll the user needs?

As we are answering these questions based on the state of available public in-
formation, we are dealing with a secondary study. As is customary, this sec-
ondary study follows a systematic approach. As Kitchenham et al. (2015) state,
systematic reviews are used to evaluate how far particular techniques have been
adopted by industry and commerce or to identify the benefts of using tools in
a particular context. As we are interested in offering a comprehensive view of
the methods and tools of the automated license compliance process, a qualitative
approach is being adopted. Qualitative reviews usually address questions about
the specifc use of technology, so they are unlikely to involve making comparisons
(and hence less likely to address questions that involve any sense of something
being “better”) (Kitchenham et al. 2015).

5.1 Research protocol

This section will describe the details of the methods used in the SLR. It includes
the searching for and inclusion of the studies, as well as the data extraction and
synthesis methods.

59

TABLE 7 Summary of the automatic search.

Engine Search expression Years Hits* Yield†
Google Scholar (intitle:licensing OR intitle:licensed OR intitle:licenses) 2009 – 2020 604 78

“open source” tool OR method OR approach
Google Scholar (intitle:license -plate) 2009 – 2020 375 86

“open source” tool OR method OR approach
Google Scholar (intitle:violation OR intitle:violations 2009 – 2020 59 22

OR intitle:inconsistency OR intitle:inconsistencies OR intitle:compliance)
“open source” clone detection license

Google Scholar (intitle:compliance) 2009 – 2020 424 38
“open source” license

Google Scholar intitle:“open source” intitle:legality 2009 – 2020 7 4
“open source” license

Web of science AB=(“open source” AND license NOT plate) 2009 – 2020 11 9
AND AB=(violation OR violations OR inconsistency OR inconsistencies OR compliance)
AND SU=Computer Science

Web of science TI=(licens* NOT plate) AND AB=(“open source”)) 2009 – 2020 16 14
AND SU=Computer Science

Web of science AB=(licens* NOT plate) AND AB=(“open source”)) 2009 – 2020 446 23
AND SU=Computer Science

Web of science (TI=compliance AND AB=(“open source” AND license) 2009 – 2020 2 2
AND SU=Computer Science

IEEE Xplore (“Abstract”: “open source” AND “Abstract”: “license”) 2009 – 2020 16 13
AND (“Abstract”: “violation” OR “Abstract”: “violations” OR “Abstract”: “inconsistency”
OR “Abstract”: “inconsistencies” OR “Abstract”: “compliance”)

IEEE Xplore (“Abstract”: “open source” AND “Abstract”: “license”) 2009 – 2020 108 16
AND (“Abstract”: “tool” OR “Abstract”: “method” OR “Abstract”: “approach”)

ACM dl [Abstract: “open source”] AND [Abstract: “license”] 2009 – 2020 11 11
AND [[Abstract: “violation”] OR [Abstract: “violations”] OR [Abstract: “inconsistency”]
OR [Abstract: “inconsistencies”] OR [Abstract: “compliance”]]
AND [Publication Date: (01/01/2009 TO *)]

ACM dl [Abstract: “open source”] AND [Abstract: “license”] 2009 – 2020 46 9
AND [[Full Text: “method”] OR [Full Text: “tool”] OR [Full Text: “approach”]]
AND [Publication Date: (01/01/2009 TO *)

Springer “open source” AND (violation OR violations OR inconsistency 2009 – 2020 29 13
OR inconsistencies OR compliance) AND NOT (plate)

Springer license AND “open source” AND (method OR tool OR approach) AND NOT (plate) 2009 – 2020 35 12

* Hits refers to the number of search results obtained, as reported by the search engine.
† Yield refers to the number of candidate publications recorded (may include some of the same candidates as other searches).

5.1.1 Searching for candidate studies

The search for the candidate studies was done in two steps: frst, we made an
automated search, and second, we conducted a snowball search. The search
phrases for automated searches were formulated carefully to include relevant
publications and minimize irrelevant candidates. The data collection took place
in September 2020 and encompassed fve databases: Google Scholar, Web of Sci-
ence, IEEE Xplore Digital library, ACM digital library, and SpringerLink. A sum-
mary of the searches and their results is shown in Table 7.

Our initial goal was to make a multi-vocal literature review that would
also include results from “gray” literature, such as blogs, white papers, and web
pages, such as, for example, in Garousi and Mäntylä (2016). As we ran searches
on Google for the following search terms: “open source” license compliance tool
and “open source” license tool, we got 43,000,000 and 121,000,000 hits, respectively.
These numbers are not exceptional, and our goal was to utilize the relevance
ranking of the search engines (e.g., Google’s PageRank algorithm) to restrict the
search space. This means that the most relevant results are displayed in the frst
few pages and that we would not have to go through more than 10 or 15 frst
pages of the results. However, after browsing through more than 20 pages of
the frst searches results, there was no sign of relevance saturation. For exam-

60

ple, result 143 was a blog post describing Licensed, a GitHub tool for maintain
dependency license documentation (Ruskin 2018), which appeared relevant. Fur-
ther down the list, result 259, Gangadharan et al. (2012), was already found in the
automated search done using scientifc engines. Also, the number of relevant
sources was very low, limited mostly to lists of available tools without detailed
information about their features or comparison of the tools. This lead to a con-
clusion that it is not possible to make a comprehensive inclusion of the “gray”
literature, so this approach was dropped, meaning that only academic literature
was included.

For the validation of our searches, we selected four papers that should be
found by the searches. All of these papers use ASLA (Tuunanen et al. 2009) as
their reference. These papers include German et al. (2010b), Kapitsaki et al. (2015),
Paschalides and Kapitsaki (2016), and Wu et al. (2015). All these articles were
found in automatic searches.

The second step, a snowball search, was made on the relevant sources found
in the automated searches. First, we manually scanned the reference list of each
article. Then, we searched the article in Google Scholar and scanned the referenc-
ing articles as well.

5.1.2 Selection of studies

We carefully defned the inclusion and exclusion criteria to ensure all relevant
sources were included in the study and all out-of-scope sources were left out. The
inclusion criteria are based on the three-step license compliance process of OSS
reuse: (i) identify used OSS, its origin, licenses, and dependencies, (ii) approve:
review the output from the previous step, understand the licenses that govern
the use, modifcation and distribution of the source code in question, and make
a decision on the approval or disapproval of the use of the identifed OSS, and
(iii) satisfy the license requirements: license, copyright, and attribution notices for
all approved OSS (whole components and snippets) are included in the product
documentation. Thus, the inclusion and exclusion criteria are as follows:

1. Is this a primary study that describes an automated feature(s) or a method(s)
to create an (at least partially) OSS bill of materials for reuse? The bill of ma-
terial identifes all OSS used (packages and snippets), their origin, license,
and any licensing mismatches. Also, it includes listing other OSS licensing
bugs in the source code and other potential intellectual property violations
such as illegal copying.

2. Is this a primary study that describes an automated feature(s) or method(s)
assisting in OSS reuse approval? Methods or tools include ways of helping
in license understanding or help in deciding on the approval or disapproval
of OSS reuse from the licensing perspective.

3. Is this a primary study that describes an automated feature(s) or method(s)
assisting in satisfying the open source license terms when reusing OSS? For
instance, is this done by listing the license, copyright, and attribution notices
for all approved OSS.

61

4. Is this a secondary study that describes the feature(s) or methods(s) that
answer one or more of the questions above?

5. Is the study related to a reusable form of software (source code or Java
Archive (JAR)) which includes the licensing information?

6. Is this study peer reviewed?
7. Is this study written in English?
8. Is this study published after 2009?
9. Does the research appear sound?

The frst four questions are the inclusion criteria, and the fnal fve are the ex-
clusion criteria. A source was excluded if an answer to all of the frst four ques-
tions or any of the remaining was negative. To validate these criteria, a set of 18
studies were provided to the supervisors of this dissertation for validation of the
inclusion/exclusion criteria. This set included studies that the author had both
included and excluded based on the criteria. Only two of these studies raised a
debate whether they should be included or not. The rationale for the borderline
cases are described below.

Sources that did not meet the above criteria were excluded. For example,
sources that simply use the license analyzers to gather data were left out (e.g.,
Vendome et al. (2017a); Manabe et al. (2010)). Sources that simply identify code
clones but are not related to license identifcation or IPR violation detection from
a reuse perspective were left out (e.g., Feng et al. (2019), Hemel et al. (2011), and
Sajnani et al. (2016)). Also, papers that try to identify licenses from binary fles
such as Duan et al. (2017) were excluded. Papers describing the methods for
simply selecting licenses were excluded (e.g., Viseur (2016)), unless they present
some sort of a method for license comprehension (e.g., Kapitsaki and Charalam-
bous (2016, 2019)), thus being part of the approval step of the license compliance
process. In addition, even though, for example, the titles A study on the identifca-
tion of open source license compatibility violations (Lee and Seo 2018) and Method for
License Compliance of Open Source Software (Yun et al. 2017a), seemed very relevant,
but they were not written in English and, so they were excluded. Some studies
raised questions on the quality of the research as they were only few pages long
(e.g., Gordon (2014), Heirendt et al. (2017), and Xu et al. (2010)). These were ex-
cluded as well. One paper, Singi et al. (2019), which could have been excluded as
it is more of an framework than actual tool or method for license compliance, was
included, however. The reason for this is that it offers a framework that could be
used for implementing an actual license analysis and compliance assisting soft-
ware.

Every source located during the searches were subject to the three phase
selection procedure, summarized in Figure 11. Outcome of each phase was either
exclusion or inclusion. The frst phase was conducted during the searches: title,
abstract, keywords, and other available metadata were examined. Only sources
that were obviously outside the scope were excluded, and all other sources were
included. The second phase was done based on the same metadata as phase one,
and the full text was briefy examined if the metadata were not very useful. In the

62

second phase, we recorded all exclusions with an explanation. The third phase
was to read the full text of the remaining sources and keep a record of inclusion
and exclusion subjects with an explanation. A list of articles that were excluded
in the third phase of the selection procedure is found in Appendix 2.

FIGURE 11 Flow diagram of the study selection procedure.

For the automated search, phase 1 resulted in 226 individual studies after
the duplicates had been removed. After phase 2 had been conducted, 75 stud-
ies were left. Out of these 75 studies, 45 were included in the review. Snowball
searching resulted in a further 42 studies for phase 1. After phase 2 was con-
ducted, 12 of these entered phase 3, and eight were included. Thus, the total
count for the included studies is 53, as presented in Table 8.

TABLE 8 Included publications.

Study P/S* Authors Type† Forum‡ Steps◦

S1 P Alspaugh et al. (2010) M J A
S2 P Alspaugh et al. (2011) M C A
S3 P Alspaugh et al. (2012) M C A
S4 P Alspaugh et al. (2013a) M Bc A
S5 P Alspaugh et al. (2013b) M Bc A
S6 P Bavota et al. (2014) F C A
S7 P Bei and Yuan (2013) M C I
S8 P Davies et al. (2011) F C I
S9 P Davies et al. (2013) F J I
S10 P Di Penta et al. (2010a) M C I
S11 P Di Penta et al. (2010b) M C I
S12 P Dyck et al. (2016) M C I,A,S
S13 P Dyck et al. (2018) F C I,A,S
S14 P Eghan et al. (2019) M J A
S15 P Gangadharan et al. (2012) F J A
S16 P German et al. (2010a) M C A
S17 P German et al. (2010b) F C I
S18 P German and Di Penta (2012) M J I,A
S19 P Golubev et al. (2020) M C I
S20 P Gordon (2011) F C A

63

S21 S Hemel (2015) N/A J I,A,S
S22 P Higashi et al. (2016) F C I
S23 P Higashi et al. (2019) F J I
S24 P Inoue et al. (2012) F C I
S25 P Ishio et al. (2016) F C I
S26 P Jaeger et al. (2017) F J I,A,S
S27 P Kapitsaki and Kramer (2015) F J A
S28 S Kapitsaki et al. (2015) N/A J I,A,S
S29 P Kapitsaki and Charalambous (2016) M C A
S30 P Kapitsaki et al. (2017) F J A
S31 P Kapitsaki and Paschalides (2017) F C A
S32 P Kapitsaki and Charalambous (2019) F J A
S33 P Kashima et al. (2011) M C I
S34 P Kechagia et al. (2010) F C I
S35 P Lee et al. (2015) M J I
S36 P Liu et al. (2019) F C I
S37 P Lokhman et al. (2012) F Bc A
S38 P Manabe et al. (2014) F Bc A
S39 P Mathur et al. (2012) M C I
S40 P Mattmann et al. (2015) F C A
S41 P Mlouki et al. (2016) M C I
S42 P Moreau et al. (2019) F J A
S43 P Nejad et al. (2016) F C A
S44 P Paschalides and Kapitsaki (2016) F C A
S45 P Pellegrini et al. (2019) F C A
S46 P Ragkhitwetsagul and Krinke (2019) F J I
S47 P Singi et al. (2019) M C I,A,S
S48 P Van Der Burg et al. (2014) F C I,A
S49 P Vendome et al. (2017b) F C I
S50 P Wu et al. (2015) M C I
S51 P Xu et al. (2010) M C I,A
S52 P Yun et al. (2017b) F C I
S53 P Zhang et al. (2010) F C I,A

* Indicates whether the study is a primary (P) or secondary (S) study
† Describes a method(s) (M) or feature(s) (F) for license compliance
‡ Published in journal (J), conference (C), or as book chapter (Bc)
◦ Refers to the step of the license compliance process: identify (I), approve (A), and satisfy (S)

5.1.3 Data extraction and synthesis

For qualitative systematic reviews and mapping studies, data are often extracted
in textual form or through the use of a set of classifcation schemes (Kitchenham
et al. 2015). As our overall aim is to identify, evaluate, and synthesize research
about automated open source license compliance, this forms the basis for the
classifcation and extraction. Extracted data included the following:

1. Publication details
2. Review-specifc data relating to

(a) Type of paper (primary or secondary study)
(b) Scope of study in terms of OSS license compliance (new automated

features or other methods)
(c) Main topics covered in terms of OSS license compliance

64

(d) Has the approach been validated? If the validation is done, how has
the validation been performed?

(e) Summary of the main results

In addition to review-specifc data, publication details including publication year
and publication forum (journal, conference, book chapter) were collected for each
included paper. We classifed the publications using the following classifcation
criteria:

– Is the study a primary or secondary study?
– Does the study describe new features (F) for automated license compliance

tools, or does it present a method (M) that, for example, uses a combination
of tools to extract results or describe some other results related to license
compliance?

– Which step(s) of the license compliance process does the paper address?

A summary of the papers in terms of publication details and classifcation are
listed in Table 8. Papers in the selected literature that describe new features re-
lated to the OSS license compliance process are summarized in Table 10. Papers
that do not describe a new functionality are treated as related work.

5.2 Overview of the results

In this section, we present the overview of the review cycle’s results. To answer
our research questions, a classifcation of the included studies is frst required
as it assists in identifying existing research approaches and concrete techniques
(Kitchenham et al. 2015). An overview of the results is presented based on this
classifcation. Detailed results related to each step of license compliance process
are presented in individual sections after the overview.

5.2.1 Classifcation of the included studies

Included papers are distributed fairly evenly between the different years of the
second decade of the millennium, showing that the interest in the feld of license
compliance has remained fairly stable over the years. However, this does not
refect the fact that OSS reuse and the amount of OSS produced every year has
increased substantially over the last 10 years (Dorner et al. 2020). The distribution
of papers between publication years is presented in Figure 12.

Most of the included studies are related to one step of the license compli-
ance process, mostly concentrating on the identifcation and approval steps. The
studies are related to the 1) identifcation of the origin (IO), 2) license identifca-
tion (LI), 3) dependency identifcation (DI), 4) license compatibility analysis (CA),
5) license comprehension (LC), 6) satisfying the license terms (SA), and 7) other
studies (OT). The distribution of papers between these are presented in Figure 13.

65

FIGURE 12 Distribution of papers by year of publication.

It should be noted that total number of studies in Figure 13 exceeds the number
(53) of included studies, because some studies are related to more than one of the
felds listed above. This distribution gives us a partial answer to research ques-
tion RQ1.2 as it reveals felds of license compliance process that are identifed to
be relevant for users.

FIGURE 13 Distribution of papers between felds of license compliance.

Identifying the origin (IO) of the OSS typically involves using clone detec-
tion techniques in combination with other tools such as code search engines. Sev-
eral license identifcation (LI) techniques are proposed in the selected literature.
However, one of them, Ninka (German et al. 2010b) is considered a state-of-the-

66

art license analyzer (Mlouki et al. 2016). It uses a sentence-matching method to
identify licenses from source fles. The papers related to dependency identifca-
tion (DI) include only a few different approaches. A license compatibility analysis
(CA) and license comprehension (LC) have resulted in a wide variety of research,
illustrating the complexity of these issues.

The papers describing tools that cover the whole license compliance pro-
cess are limited to FOSSology (Jaeger et al. 2017) and Java-specifc OMP (Dyck
et al. 2018). These are also the only tools that address the satisfy step (SA) of
the process beyond listing the identifed licenses. The tools categorized to felds
listed above (IO, LI, DI, CA, LC, and SA) form the group of primary studies of
the SLR. The included studies also contain two secondary studies, that is, studies
that are based on available public information: Kapitsaki et al. (2015) (S28) and
Hemel (2015) (S21). Other studies (OT) include papers that were either vague
in describing their results in respect to the license compliance process or lacked
validation.

There is one thing that needs to be taken into account when the usage of
online services is mentioned in the following sections. The services including
Google Code, Google Code Search, and Koders that were used as part of research
in the included literature are no longer available. Google Code was an online
project hosting sites similar to GitHub, whereas Google Code Search and Koders
were search engines used for fnding OSS. To further increase the likelihood of
confusion, at the time of the writing, Google offers a similarly named service
called Code Search1 that is used for searching exclusively Google’s own open
source code, such as code in Android or Chromium. This, however, is not referred
to in any of the included literature.

5.2.2 Secondary studies

Kapitsaki et al. (2015) (S28) investigate approaches within three main categories:
license information identifcation from source code and binaries, software meta-
data stored in code repositories, and license modeling and associated reasoning
actions. The tools in each of these categories assist in OSS license compliance and
help fnd potential licensing violations. The authors note that even though tools
do not necessary solve potential violations, they assist in fnding these violations
faster. For license identifcation, they list many tools that are also covered in the
current study such as ASLA, Ninka, FOSSology, and Joa, as well as some tools
that were not described in our included studies. These license identifcation tools
will be introduced in Subsection 5.3.2. The study (S28) includes also analysis
of three code repositories in terms of how they assist developers in licensing is-
sues: Sourceforge2, Google Code, and GitHub. Kapitsaki et al. discover that even
though these repositories allow the users to add licensing meta data into their
projects, it is questionable whether this information for existing projects is avail-
able and reliable. However, these repositories can be used as an input to license

1 https://developers.google.com/code-search accessed Jan 18, 2021
2 https://sourceforge.net/ accessed Jan 18, 2021

https://sourceforge.net
https://developers.google.com/code-search

67

analyzers as the source code is available in a suitable format. The authors also
systematically cover the license meta-modeling and reasoners that we address in
Subsection 5.4.2.

Hemel (2015) (S21) lists tools for open source license compliance in three
categories: 1) license statement extraction, 2) copyright statement extraction, and
3) code clone detection. These tools focus on the license compliance of OSS in
devices as reuse in these is extensive, market pressure for keeping prices is low,
infringements are common, and software is distributed in a mix of source and
binary code. The tools listed include FOSSology, Ninka, and CCFinderX. Hemel
also lists the main topics that require more research, here being copyright extrac-
tion for satisfying the license obligations and determining who the real authors
of software actually are.

5.2.3 Primary studies

The primary studies of the SLR total 44 articles. These are divided between pa-
pers that present automated features (20 papers) and papers describing other
methods (24 papers) that assist in OSS license compliance.

As mentioned above, there were two tools that cover the whole license com-
pliance process and were reported using scientifcally sound methods: FOSSol-
ogy and OMP. Their general information is presented here, and the details of their
features in upcoming sections are divided between the steps of the license com-
pliance process. The FOSSology project published the frst version of its software
in December 2007. Jaeger et al. (2017) (S26) describe the history and subsequent
versions of FOSSology. It identifes the licenses from source code, lists license
obligations, and provides documentation for satisfying license terms. Dyck et al.
(2016) (S12) introduce an “organizational-technical concept for dealing with the
various OSS licenses by using procedural instructions and build automation soft-
ware.” The technical aspects allow the use of build automation tools to support
and verify open source license compliance during the software development life
cycle. Implementation that supports the concept, called OMP, is described in an-
other paper (Dyck et al. 2018) (S13). OMP uses the build automation tool Maven
for data collection and the software repository tool Nexus for storing and fetch-
ing the collected information. The primary studies also describe tools that cover
more than one step in the license compliance process but do not cover the whole
process, such as Ninka and the unnamed tool described in Van Der Burg et al.
(2014).

The only method described in the primary studies that covers more than
one step of the license compliance process is Kenen (German and Di Penta 2012)
(S18). Kenen is a semiautomatic process to help organizations in their open source
license compliance for Java development. It involves Joa (Davies et al. 2011, 2013;
Ishio et al. 2016) (S8, S9, and S25) for determining the origin of the JAR archive’s
source code, Ninka for license identifcation, and a manual licensing require-
ments analysis. German and Di Penta emphasise the need of license identifcation
of each version of the component as the license may change between versions.

68

TABLE 9 User needs for automated open source license compliance identifed in the
review cycle.

Need Step*
Identifcation of the origin of source fles. I
Identifcation of exceptions to known licenses. I
Listing of rights, obligations, and restrictions of licenses found in analyzed package.
Proposal of alternate licenses that can be used for the package.
Reporting of the license analysis results in SPDX format.
Formation of acknowledgement documentation for each identifed component including list of
used licenses with full license text(s) and extracted copyright information.
Integration of automated license compliance features into development tools such as package
managers or continuous integration tools.

A,S
A
A
S

I,A,S

* Refers to the step of the license compliance process: identifcation (I), approval (A), and satisfy (S).

For the license requirements analysis, they recommend a manual process that is
performed by expert with software and legal knowledge. They justify this based
on the fact that software and its dependencies are complex and that the licenses
are written in legal terms and are intended to be interpreted by lawyers, not com-
puters. German and Di Penta apply Kenen to Maven2 database that included
more that 500,000 repositories with 275 Gbytes of archives to verify whether an
example application uses open source and if it satisfes its licensing constraints.
The preprocessing analysis of this repository created a signatures database and it
took approximately 325 hours on a typical desktop computer. This highlights the
complexity and computational requirements of clone detection on a large scale.
Nevertheless, the actual identifcation of the clones of their example application
took only a few seconds for each JAR fle and successfully identifed 27 of the
57 JAR fles of their example application as existing in Maven2. Their analysis
reveals that there were no incompatibilities between licenses, but acknowledge-
ment requirements in the form of copyright notices were not fully satisfed.

All user needs that were not identifed in the design cycle were collected
from the primary and secondary studies. These user needs that address research
question RQ1.2 and their relation to OSS license compliance process are summa-
rized in Table 9.

All features described using scientifcally sound methods were collected
from the primary and secondary studies. These features that address research
question RQ2.2 and their relation to OSS license compliance process are summa-
rized in Table 10.

69

TABLE 10 Features for automated OSS license compliance identifed in the review cycle.

Tool Described In* Used In Identifcation Approval Satisfy
Ninka S17 (S22, S23) S16, S18, S26, Sentence matching method to Lists included licenses.

S33, S38, S41, automatically identify licenses
S48, S50 from source fles.

FOSSology S26 S10, S27, S30, Uses three different license Allows for defning obligations Provides reports including li-
S35 identifers and outputs results and risks and associating them censing and copyright informa-

in SPDX format. to licenses. Reports these on an- tion.
alyzed package.

OMP S13 Resolves dependencies of the Downloads the license text and Source code and license texts
Maven project. additional information about are pulled from the Nexus

the license for each dependency. repository and provided to-
Checks rules that apply to li- gether with the products.
cense types. If the rules are
not satisfed, the build process is
aborted.

Joa S8, S9 (S25) S18 Uses anchored signature match-
ing technique to identify the
source origin for Java classes.

Siamese S46 Clone search on Java data sets,
such as online code repositories.
License identifcation based on
pattern matching.

Ichi Tracker S24 Takes a code fragment as its
query input, and returns a set
of cloned code fragments which
can be found by source code
search engines.

- S48 Constructs dependency graph
by tracing the operating system
calls.

List deliverables whose source
fles are released under incom-
patible licenses.

- S49 Identifes license exceptions us-
ing machine learning.

70

LChecker S53 Utilizes Google Code Search
service to check whether the
analyzed fle exists in an OSS
project.

SPDX-VT S27, S30, S44 Examines the structure of SPDX
for correct licenses and license
compatibility issues, assisting in
correct license usage and combi-
nation. Can create valid SPDX
fle(s) the original fle had er-
rors.

- S15 Analyzes the compatibility of li-
censes at the element level (i.e.,
on specifc clauses such as com-
position, attribution, or copy-
left).

- S31 Automated license term extrac-
tion system.

CaLi S42 Orders licenses in terms of
compatibility and compliance.
To identify the compatibility
among licenses, restrictiveness
relation is enhanced with con-
straints.

EULAide S43 Extracts information from li-
cense text to list permissions,
prohibitions, and duties

* Studies listed in parentheses extend the original work.

71

5.2.4 Other studies

Studies categorized as other studies were either vague (S34, S40, S47, S51) or
lacked validation (S6, S20, S37, S45, S52). These studies will be summarized here
briefy.

Distributed release audit tool (DRAT) is an extension to the release audit
tool (RAT) used by Apache project (Mattmann et al. 2015) (S40). As far as we
are aware, RAT has not been described academically. RAT’s primary function is
to automatically audit the code and perform an open source license analysis fo-
cusing on source code headers. RAT can also be used to add license headers to
source fles. DRAT improves RAT’s performance by distributing the workload.
Kechagia et al. (2010) (S34) apply a “special Makefle target” to collect dependen-
cies between FreeBSD applications. They visualize the results using the GraphViz
gvpr tool. Also, they manually locate a key phrase that “uniquely identifed” that
license. With those signature phrases, they could search licenses on source fles
using fgrep. Unfortunately, these methods are not described in detail.

Singi et al. (2019) (S47) introduce CAG - Compliance Adherence and Gover-
nance framework that “uses blockchain technologies. The framework (i) enables
the capturing of required data points based on compliance specifcations, (ii) an-
alyzes the events for non-conformant behavior through smart contracts, (iii) pro-
vides real-time alerts, and (iv) records and maintains an immutable audit trail of
various activities.” License compliance tools could be implemented as part of this
framework.

Xu et al. (2010) (S51) propose open source license checker (OSLC) as a partial
license-tracking tool that checks for license conficts. Yun et al. (2017b) (S52) pro-
pose a license identifcation method based on the Levenshtein Distance algorithm
and compatibility analysis of different licenses based on a license’s “feature-points.”

The Carneades software system provides support for arguments, that is,
formal representations of facts, concepts, defeasible rules, and argumentation
schemes. It allows constructing, evaluating, and visualizing of these arguments
(Bavota et al. 2014; Gordon 2011) (S20 and S6). The OSS license compatibility
analysis is then performed using structured argumentation (Gordon 2011).

Lokhman et al. (2012) (S37) present a tool, OSSLI, that addresses the legality
concerns of open source at the level of software architecture. The tool focuses
especially on validating architectural models against open source legality con-
straints and proposes remedial architectural solutions.

Pellegrini et al. (2019) (S45) describe the DALICC, a software framework
that supports the resolution of licensing conficts that occur in the reutilization
of digital assets. However, it can be used for analyzing OSS licenses. DALICC
provides a library of machine-readable standard licenses. In addition, it provides
information about the equivalence, similarity, and compatibility of licenses.

72

5.2.5 Software Package Data Exchange

The reporting of the license analysis results has evolved signifcantly in the sec-
ond decade of the millennium in SPDX format, even though none of the publica-
tions included in the review cycle address the format specifcally. However, it has
been mentioned or used in several studies (German and Di Penta 2012; Jaeger et
al. 2017; Kapitsaki and Kramer 2015; Kapitsaki et al. 2017). SPDX is a “standard
format for communicating the components, licenses, and copyrights associated
with a software package” (SPDX Workgroup 2020a). Its goal is to document the
license of a system and its fles and their licenses in a well-defned format (SPDX
Workgroup 2020a). SPDX was sent to the International Organization for Stan-
dardization (ISO) for consideration as a publicly available specifcation in August
2020 (SPDX Workgroup 2020b).

SPDX fles appear in various formats. These include RDF (Resource De-
scription Framework) fles, a textual key-value pair format referred to as tag
format, spreadsheet format, JSON format, and YAML format (SPDX Workgroup
2020a). These formats can be created manually, but preferably, these should be
created automatically based on the results of automated license analysis tools. For
instance, FOSSology is capable of creating SPDX fles in multiple formats (Jaeger
et al. 2017). The SPDX consortium also provides some tools that assist in the ma-
nipulation of SPDX fles, including fle converters and comparators (Kapitsaki
and Kramer 2015).

The list of approved OSS licenses maintained by OSI is only a subset of
the licenses currently in use in open source projects. The SPDX working group
collects OSS licenses, including also those that are not approved by OSI. At the
time of writing the current dissertation, this effort has identifed more than 400
licenses. The SPDX workgroup also maintains list of commonly found excep-
tions to open source licenses that permits certain uses that would otherwise be
forbidden (SPDX Workgroup 2018).

Some notable felds in the SPDX specifcation include, for example, Declared
License, Concluded License, All Licenses Information from Files, and Copyright Text.
Declared License lists the license(s) that have been announced by the authors of
the package, whereas Concluded License indicates the license that the creator of the
SPDX fle concluded (Kapitsaki et al. 2017). These are typically identical, but the
creator (person or an automated tool) of the SPDX fle may have drawn different
conclusions than the authors, so these may differ. All Licenses Information from
Files is the list of all licenses that were found it the package. Copyright Text feld’s
purpose is to identify the copyright holder of the fle, as well as any dates present.
This information assists in satisfying the documentation obligations of the license
when a package is reused.

Licenses supported by SPDX can be used as single license identifers (i.e.,
usage of one license). These single license identifers are complemented by the
SPDX License Expressions that provide more accurate information for the licens-
ing terms of a software product (Kapitsaki et al. 2017). Expressions (e.g., AND,
OR, WITH, and +) allow the indication of license exceptions and the combination

73

of license identifers. For instance, the AND operator is used, when the software
needs to comply with more than one license at the same time (e.g., GPLv3 AND
MIT), whereas license exceptions are indicated using the WITH operator (e.g.,
GPLv3 WITH classpath-exception) (Kapitsaki et al. 2017).

5.3 Identifcation step of license compliance

As OSS reuse has become more and more popular, methods and automated tool
support in the identifcation step of OSS license compliance has expanded beyond
license and dependency analyses. Research has especially expanded to identify
the origin of the reused snippet or package. Also, improvements in license iden-
tifcation and dependency analyses have been reported.

5.3.1 Identifcation of the origin of the OSS

From the included literature, we identifed six papers (S8, S9, S24, S25, S46, S53)
that describe validated features for identifying the origin of the OSS.

Ragkhitwetsagul and Krinke (2019) (S46) implemented Siamese, a clone
search tool for Java source code. Siamese incorporates multiple code represen-
tation techniques to transform Java code into four code representations to detect
different types of clones at once and a query reduction technique to automatically
reduce the query size on the fy based on token document frequencies. Siamese is
capable of detecting different types of clones: copy-paste clones (Type-1), clones
with variable renaming (Type-2), clones with added or deleted statements (Type-
3), and semantic clones or two code fragments with a different syntax but that
share the same semantic (Type-4). Siamese requires the source code base (e.g.,
GitHub) to be processed before clone searching is possible as it needs to process
a given source code base(s) to generate a searchable code index.

Inoue et al. (2012) (S24) propose an integrated approach to code history
tracking for open source repositories and its prototype implementation: Ichi Trac-
ker (Integrated Code History Tracker). Ichi Tracker uses source code search en-
gines such as SPARS/R, Google Code Search, and Koders to fnd clones. It takes
a code fragment as its query input and returns a set of cloned code fragments
which are found by the search engines. Ichi Tracker extracts words from snip-
pets, generates queries based on the keywords, analyzes the search results, flters
false positive using the code clone detection tool CCFinder, and outputs the re-
sult. Ichi Tracker helps users to understand the backward and forward history of
the queried code fragment.

OSS in Java applications is often reused using Maven package manager, and
these packages do not necessarily include the actual source code but only com-
piled Java archives (JAR). To identify the source fles of Java binary libraries, Soft-
ware Bertillonage, an anchored signature matching technique, has been proposed
(Davies et al. 2011, 2013) (S8, S9). Even though the papers describing the method

74

does not name the tool, the authors refer to this tool as Joa (German and Di Penta
2012). Davies et al. (2011, 2013) consider a list of attributes present in both the
source and binary forms of Java classes such as class’s name and namespace,
inheritance tree, implemented interfaces, methods, modifers, return types and
method parameters, and relative position of methods in the class. From these
attributes, a signature can be composed. To compare two archives, they defne
a metric called the similarity index of archives, which is intended to measure
how similar two archives are with respect to the signatures of the classes within
them. The inclusion index is the proportion of class signatures found in two com-
pared archives. Given a binary archive (JAR fle), they use the similarity and
inclusion indexes to rank the likelihood that any archive in a corpus (Maven2
repository) might contain the same code found in the binary archive. Davies et
al. fnd that they could identify the correct product information of contained bi-
nary Java archives if the product was present in Maven. However, if a product is
present, they fnd that identifying the correct version could be tricky. Although
Joa can extract the candidates of reused components, a user often has to manually
identify the original components among the candidates. Ishio et al. (2016) (S25)
propose an improvement to Joa: a method to automatically select the most likely
origin of the components reused in a product. It is comprised of two steps: sig-
nature extraction and comparison based on these signatures. The method results
in improved accuracy on the identifcation compared to the original method.

Zhang et al. (2010) (S53) describe LChecker, a tool they develop for the auto-
matic checking of license compliance. LChecker utilizes the Google Code Search
service to check whether the analyzed fle exists in an OSS project. LChecker to-
kenizes the program and uses the resulting token list to perform queries via the
Google Code Search service. Tokens are created by removing all comments, blank
fles, and headers in the program. LChecker then performs a syntactical analysis
of the program and identifes unique lexical tokens. Tokens that are common to
all programs are removed by LChecker before querying. The remaining tokens
are concatenated into a single string, which is used as an input for Google Code
Search API. If fles already exist in the Internet as OSS programs, Google will
return the OSS programs together with their license information. Validation of
this tool include only one fairly small program (67 fles), so the validity of the
approach remains open. The paper also describes license identifcation and com-
patibility checking. However, as these are described very vaguely, they will not
be presented further in the current study.

In addition to papers describing the new automated features presented a-
bove, there are seven (S7, S19, S33, S35, S39, S41, S50) other papers that describe
other methods for the origin identifcation. Bei and Yuan (2013) (S7) propose a
process of programmers’ claims of the certifcate of origin of source code and a
workfow. It is based on series of questions that are raised when source code is
committed to the source code management system. The usage of OSS in this stage
raises a fag that the given source code needs further investigation to be accepted
as part of the implemented system.

There are several studies that use clone detection tools in conjunction with

75

other tools to identify the origins and license of OSS. Golubev et al. (2020) (S19)
conduct a study of possible block-level code borrowing and license violations in
the Java corpus of GitHub. They use a method that combines two tools: Sourcer-
erCC to detect clones on the block level and a modifed version of Ninka to detect
licenses in fles. Mlouki et al. (2016) (S41) use a combination of tools to identify the
licenses of mobile applications. They use Ninka to identify licenses from source
fles, Joa to detect licenses form of JAR archives, and CCFinderX to detect code
clones. Mathur et al. (2012) (S39) use a combination of Google Code repository
and their listed licenses and clone detection method based on the plagiarism de-
tection tool MOSS to identify potential licensing violations of OSS. Kashima et al.
(2011) (S33) detect the license of code snippets used in copy-paste reuse. Their
detection process employs Ninka for license detection and CCFinderX for copy-
paste clone detection. Lee et al. (2015) (S35) use “machine-based algorithms to
narrow down the potential violations and guide non-experts to manually inspect
these violations.” They develop an unnamed tool that could automatically de-
tect cloned parts and use FOSSology to identify the licenses of these cloned parts.
Their tool then identifes possible license inconsistencies between these cloned
parts. That information can be used to automatically narrow down potential vi-
olations to reduce the workload. Wu et al. (2015) (S50) focus on detecting the
license inconsistencies among fle clones. They use CCFinder to analyze and de-
termine whether two fles are semantically identical and adopt Ninka to detect
the license of the source fle. Wu et al. group the semantically identical fles and
report the groups that contain license inconsistencies.

5.3.2 License identifcation

From the selected literature, we have identifed nine papers (S10, S11, S17, S22,
S23, S26, S36, S46, S49) that describe validated features or methods for identifying
the license from the source fles. Kapitsaki et al. (2015) (S28) also list and compare
identifcation tools.

German et al. (2010b) (S17) describe the challenges of identifying the li-
cense under which the source code is made available, proposing a sentence-based
matching algorithm to automatically do it and its implementation with a tool
named Ninka.

They use license statements for the identifcation of the license and defne
these as license information, which is typically found in a comment at the very
beginning of the fle. A license statement typically contains four sections: 1) a list
of copyright owners, 2) a list of authors (if different from the copyright owners), 3)
the license or licenses that cover the fle, and 4) warranty and liability statements
(German et al. 2010b). The licenses in the licensing statement can be of two types
(German et al. 2010b):

by-inclusion: the text of the license is embedded in the fle
by-reference: the license statement indicates where the text of the license can be

found

German et al. discover that these licensing statements are prone to errors. Errors

76

include, for example, fles without license, copy pasting a wrong license state-
ment (e.g., GPLv3+ was mistakenly used instead of GPLv2+), inconsistent license
clauses, and incorrect name of the license.

German et al. also list challenges of license identifcation. These fall into
three categories: “1) fnding the license statement: how many licenses are in the
fle and where (within the fle) they are located; 2) language related: the grammar,
spelling, and wording use in a license statement; and 3) license customization:
the terms of the licenses that are sometimes altered by their users” (German et al.
2010b).

Ninka uses a license identifcation algorithm that works by extracting the
license statement from the fle, breaks it apart into textual sentences, and proceeds
to fnd a match for each one individually. The method requires a knowledge base
of the following sets of information: 1) fltering keywords, 2) sets of equivalence
phrases, 3) known sentence-token expressions, and 4) license rules.

One of the challenges of license identifcation using a sentence-matching
technique is discriminating between those sentences that are part of the license
statement and those that are not relevant. For this identifcation, Ninka uses a
set of fltering keywords that need to be found from a sentence. If none of the
keywords are found, sentence is not expected to contribute to the license of the
fle. Keywords can be composed of one or more words. Examples of fltering
keywords are license, conditions, disclaimer, and written permission.

To deal with language-related challenges, Ninka includes sets of equivalent
phrases. All phrases in a set are considered semantically equivalent. Equivalence
phrase sets are, for example, as follows: (at your option) any later version, any later
version or any greater version; distributable, licensed, released, or made available.

The third part of Ninka’s knowledge base, the known sentence-tokens refer
to a sentences of a known licenses. A license is a sequence of sentence-tokens,
regardless of it is indicated by-inclusion or by-reference and they are general-
ized using one or more regular expressions. This set is used for translating each
sentence found in the licensing statement into a sentence of a known license (a
sentence-token).

Each license corresponds to a sequence of one or more sentence-tokens,
which they call a license rule, which is the last part of Ninka’s knowledge base.
Identifcation of a license requires matching of one or more consecutive sentence-
tokens. Typically, licenses indicated by-reference require only one consecutive
sentence-token match, whereas by-inclusion licenses need more than one consec-
utive match.

Based on the knowledge base, Ninka uses an algorithm for license identif-
cation that is divided into six steps:

1. License statement extraction extracts the comments from the beginning of
the fle.

2. Text segmentation converts comments into a sequence of statements.
3. Equivalent phrase substitution scans each sentence and replaces it with a

normalized version of the phrase if that is found.

77

4. Sentence fltering splits the sentence into two parts, one being the part that
includes the legal keyword(s) and the other being the rest (if the legal part
is empty, then the fle does not have a license, so they label the source fle
NONE).

5. Sentence-token matching fnds corresponding sentence-token for the legal
part of the sentence (if no match exists, they use the sentence-token UN-
KNOWN)

6. License rule matching tries to match the sequence identifed in the previous
phase to license rules.

The license of the fle is the list of licenses matched in the last step. If no license is
matched, the fle is considered to have an UNKNOWN license.

If Ninka does not have license identifcation rules for licenses, it reports
them as “unknown license” that must be checked by developers manually. A
license identifcation tool should be appropriately maintained by adding regular
expressions corresponding to the new licenses, as new or derived OSS licenses
appear nearly every year. To address this problem, Higashi et al. (2016, 2019)
(S22, S23) construct a method to automatically create candidates of license rules
to be added to a license identifcation tool such as Ninka.

FOSSology uses three license scan approaches to allow for more adaptive
scanning and the ability to conclude licensing based on the results of these scan-
ners (Jaeger et al. 2017) (S26). Nomos is the main license scanner in FOSSology
and it uses regular expressions to identify licenses from the source fles. Nomos
holds more than 3000 snippets that map to more than 650 licenses (Jaeger et al.
2017). Jaeger et al. notes that disadvantage of matching license-relevant text fnd-
ings with regular expressions of Nomos scanner is the lack of an ability to detect
manipulated license text which adds new conditions for know licenses. For ex-
ample, if a new condition is added to MIT license, then Nomos would still iden-
tify that as a MIT license. FOSSology introduced a new license scanner, Monk,
in version 3 of the software to address these issues. This scanner fnds license
texts faster than the original Nomos scanner. Monk also considers the reference
license text collection from the FOSSology database. Monk compares these texts
with the found text in the fles of the uploaded software component. Monk to-
kenizes the license reference texts and computes the Jaccard3 Text Similarity In-
dex, adding a weighting to the computed index. To help the user to identify
the license, both the matching and the difference between stored license text and
found text is highlighted. However, Monk only recognizes those licenses which
are part of the FOSSology license database. For this reason, the Nomos and Monk
agents complement each other: Nomos detects unknown licensing statements or
license texts, whereas Monk can give very precise detection results for all known
licenses. Ninka has also been integrated into FOSSology to complement Nomos’
fndings. FOSSology is also capable of reusing information from previously anal-
ysed uploads which reduce the time needed for a component analysis. For ex-

Paul Jaccard developed the Jaccard index of similarity (he called it coeffcient de commu-
nauté) and published it in 1901.

3

78

ample, when scanning new versions of software, the analysis can be limited to
compare differences with an older version. FOSSology has the ability to export
license analysis results in SPDX format. FOSSology also has the ability to im-
port SPDX fles, which helps in reducing the effort when analysing new versions
of a software component. Import also allows to for displaying SPDX fles in a
human-readable format.

In addition to Ninka and FOSSology, Kapitsaki et al. (2015) list other source
code license analyzers: ASLA (Tuunanen et al. 2009), OSLC (Xu et al. 2010) (S51),
LIDESC4, Ohloh, and what-license. Ohloh and what-license were online services,
that are no longer available.

In addition to the techniques described above, we have identifed other
matching techniques from the included literature that were described in less de-
tail. Siamese (Ragkhitwetsagul and Krinke 2019) (S46) identifes the software li-
cense in a software project using a two-step approach. First, to detect a license
at the project level, the software attempts to fnd a license fle (LICENSE or LI-
CENSE.txt) from the GitHub projects root level and matches the contents with
the license patterns in its database. Second, to identify the license of each Java
source code fle, Siamese reads a license statement from the beginning of each fle
and performs fle-level pattern matching. The fner-grained fle-level license is
preferred when there is a confict between the fle-level and project-level license.
If the Siamese cannot identify the license, it reports that a manual validation is
needed. Siamese found a number of clone pairs between Stack Overfow and
GitHub projects where the code were exactly matched but had different software
licenses.

Vendome et al. (2017b) (S49) study methods of identifying license excep-
tions by relying on machine learning. Their study includes 51,754 systems from
which the presence of license exceptions could be identifed. Vendome et al. dis-
cover 14 different exception types across 298 fles. Identifying these exceptions
are vital, since they directly impact the way in which OSS can be reused. They
use Ninka to extract the comment portions of the source fle and defne the set of
heuristics to identify license exceptions from these comments. Heuristics here can
be defned based on the known license exceptions listed in the SPDX exceptions
list. Vendome et al. discover that the categorization of license texts and usage of
machine learning classifers provides accurate identifcation of these exceptions.
Support Vector Machine and Random Forest classifers are found to be especially
effcient.

Liu et al. (2019) (S36) propose a learning-based method for predicting li-
censes on the source fle level. This paper illustrates the complexity of license
analysis because the authors seem to lack a detailed understanding of OSS li-
censes. They propose a method that predicts the license of a source fle, one based
on the license of that fle itself and the fles it is dependent on. However, Liu et al.
do not take into account that fles with incompatible licenses cannot be combined
and that the license for these fles cannot be predicted. Also, their algorithm fails

LIDESC: Librock License Awareness System http://www.mibsoftware.com/librock/lidesc/
accessed Jan 18, 2021

4

http://www.mibsoftware.com/librock/lidesc

79

in cases where a single copyleft-licensed fle is combined with several fles of
permissive licenses. This paper also includes several claims about open source
licenses that do not correspond with established knowledge. For instance, Liu
et al. claim that both GPLv2 and GPLv3+ are weak copyleft licenses and their
combination should be licensed as GPLv2. This is clearly not the case, since these
licenses are strong incompatible copyleft licenses.

Di Penta et al. (2010a) (S10) propose an automatic approach to determine
the license of JAR archives. The method combines the use of a code-search en-
gine (Google Code Search) with the automatic classifcation of licenses found
from the text fles within the JAR archive. Their approach is composed of four
steps: 1) extract fles from the JAR archive, 2) identify and classify licenses con-
tained in textual fles (e.g., .txt or .html) using FOSSology, resulting in the de-
clared license(s), 3) retrieve licensing info for Java fles from Google Code Search,
resulting inferred license(s), and 4) combine the different sources of information
by comparing the declared and inferred licenses and determining the probable
license for the archive.

Di Penta et al. (2010b) (S11) also propose an approach that automatically
tracks changes in the licensing terms of a system. This is useful when comparing
two different versions of the same software as the analyzer is able to focus only
on the changed parts. Change tracking is performed by extracting the licensing
statements and calculating their length. Statements that are changed between
two versions of the software are analyzed using FOSSology.

5.3.3 Dependency identifcation

From the selected literature, we have identifed two papers (S48, S13) that de-
scribe validated features for identifying the dependencies of the used software.

Van Der Burg et al. (2014) (S48) propose an approach to construct and ana-
lyze the Concrete Build Dependency Graph (CBDG) of a software system by trac-
ing system calls that occur at build-time. CBDGs can be used to identify which
source fles of the client system are being used, which external components are
being used, and how the client source code and external components are being
combined. To create CBDGs, they record which fles are read and written by each
step in the build process by tracing the operating system calls while the build is
executing. For the collection of these calls, they use strace5. This method can pre-
cisely (88-100%) identify fles that have an impact on the client deliverables with
little impact on the actual build process.

Dyck et al. (2018) (S13) describe OMP that uses the maven-dependency-plugin
to resolve all the transitive dependencies (“OSS, which directly used OSS de-
pends on”, (Dyck et al. 2018, p. 44)) given by the POM of the Maven project.
Information about a dependency is stored as a Maven artifact inside a depen-
dency node, which represents the dependency as a graph. After having created
a graph of all transitive dependencies, a pattern artifact flter is applied for all

strace is a diagnostic, debugging, and instructional userspace utility for Linux.
https://strace.io/ accessed Jan 18, 2021

5

https://strace.io

80

dependencies for which no license information is needed, for example, internal
libraries.

5.4 Approval of OSS reuse

The approval step of the license compliance process is composed of understand-
ing the licensing of given OSS and, based on this understanding, approving or
disapproving the reuse. Especially here, questions related to the compatibility of
different licenses are relevant. Also, license comprehension is vital to understand
what the licensing terms mean on a practical level.

5.4.1 License compatibility checking

From the selected literature, we have identifed eight papers (S13, S14, S15, S16,
S27, S30, S44, S48) that describe validated license compatibility checking features
or methods.

Dyck et al. (2018) (S13) propose a dependency identifcation method de-
scribed in Subsection 5.3.3. For each dependency identifed, three artifacts are
downloaded from the Maven repositories. These are the JAR fle, the license text
artifact containing the text of the license, and the license information artifact con-
taining additional information about the license. OMP checks the rules that apply
to the license types. If the rules are not satisfed, a message describing the viola-
tion is printed out and the build process is aborted. Some types of licenses have
licensing constraints such as not handing out the source code. To enforce the
rules, the OMP retrieves all used license types based on the license information
artifacts of all used OSS. This list is then checked against an internal set of rules
for violations.

SPDX Violation Tools (SPDX-VT) examines the SPDX fles, ensuring correct
license usage and combination (Kapitsaki et al. 2017) (S30). The initial version
of the tool was introduced in Kapitsaki and Kramer (2015) (S27), and the im-
proved version that can also handle input of multiple SPDX fles can be found
in Paschalides and Kapitsaki (2016) (S44). SPDX-VT assists in verifying that the
correct license information is applied to the software package, identifes incom-
patibilities within the package, and proposes licenses that can be applied when
combining licenses from different software (Kapitsaki et al. 2017). The SPDX vi-
olation check process comprises the following steps: 1) verify whether the SPDX
fle contains correct declared license(s) (see Subsection 5.2.5), 2) give information
on problematic license combinations in case violations are found, and 3) if no vio-
lations are found, propose a number of alternate licenses that can be used for the
package based on the license information in the SPDX fle. Using the fndings in
the SPDX fles, a license graph and the compatibility algorithm are used to exam-
ine and detect potential violations. The algorithm solves the graph reachability
problem and is implemented using modifed version of Breadth First Search. The

81

tool is also able to create valid SPDX fles in case the original fle(s) has errors
(Paschalides and Kapitsaki 2016).

Gangadharan et al. (2012) (S15) use Open Digital Rights Language (ODRL)
to implement the clauses of OSS licenses in a machine interpretable way and in-
troduce an algorithm that analyzes the compatibility between OSS licenses. Al-
though ODRL is a expression language for specifying rights over digital assets,
it can be used for expressing a software license in a machine interpretable way.
ODRL is based on a model for rights expression which comprises the following
core entities and their relationships: 1) assets: resource being licensed, 2) rights:
rules concerning permissions, constraints, requirements, and conditions, and 3)
parties: information regarding the provider, consumer, broker, and so forth. Their
formalized license compliance (FLC) algorithm analyzes the compatibility of li-
censes at the element level (i.e., on specifc clauses such as composition, attribu-
tion, or copyleft). Any two software components can be combined if the licenses
of these components are found compatible by the FLC algorithm.

Van Der Burg et al. (2014) (S48) describe a license compliance assessment
method performed using fve steps: extract the licenses of each fle in each of the
studied systems using Ninka, identify the declared license of the client deliver-
ables by examining product documentation, generate a dependency graph (see
Subsection 5.3.3), annotate the graph fle nodes with license information, traverse
the graph to identify the sources that are used to create the client deliverables,
and mark the client deliverables that contain sources that are released under in-
compatible licenses as inconsistencies.

Eghan et al. (2019) (S14) introduce OntTAM, a trustworthiness assessment
model for software library adoption. OntTAM supports the automated analysis
and assessment of the quality attributes related to the trustworthiness of libraries
and APIs in open source systems, providing developers with additional insights
into the potential impact of reused libraries and APIs on the quality and trust-
worthiness of their project. One implementation of such trustworthiness is the
semantic analysis of license compatibility. The implementation identifes license
violation in case any of the components of a parent project is dependant on com-
ponents with non-compatible licenses. In their case study, the license data of
libraries are collected using Maven.

German et al. (2010a) (S16) propose a method to understand and identify
licensing compatibility issues. It consists of three steps, that have the goal of
1) extracting declared licenses and dependencies from the distribution packages
(Fedora .spec -fles), 2) extracting and classifying actual licenses from the source
code fles, and 3) using the information extracted in steps 1 and 2 to detect licens-
ing incompatibility issues. For each binary package, they execute the rpmquery
command and obtain (i) general information (e.g. brief description of the pack-
age, the package version, and author name), (ii) the declared licenses(s) of that
package (as indicated in the metadata), (iii) the list of components and libraries
provided by the package, and (iv) the list of resources (components and libraries)
the applications in the package require. Second, they extracted the fles from
the source package and then used Ninka to classify their licenses. The extracted

82

information was stored in a relational database. German et al. then queried this
database to identify incompatibilities according to the compatibility rules defned
in earlier studies.

5.4.2 License comprehension

From the selected literature, we have identifed 13 papers (S1, S2, S3, S4, S5, S15,
S26, S29, S31, S32, S38, S42, S43) that describe license comprehension-related fea-
tures or methods.

Modeling all possible licenses and their relations is needed in order to de-
cide which licenses are appropriate for a specifc software system (Kapitsaki et al.
2015). Even though selecting an OSS license is outside the scope of the current
work, the selection process requires similar license comprehension than compli-
ance. fndOSSLicense is a tool for selecting a license and is based on the model-
ing of OSS licenses (Kapitsaki and Charalambous 2016, 2019) (S29, S32). Kapit-
saki and Charalambous propose a license modeling method that “captures dif-
ferent terms of the software license text, divided into rights, obligations, and
additional properties covering the range of license terms of different licenses.”
They analyze 33 open source licenses and discover 38 generalized terms such
as MayCopy, MaySublicense, MustOfferSourceCode, and LimitedLiability (Kapitsaki
and Charalambous 2019). For the term extraction, Kapitsaki and Paschalides pro-
pose an automated extraction system in another paper (Kapitsaki and Paschalides
2017) (S31). The algorithm for term extraction is composed of 1) data preprosess-
ing, including noise removal and sentence segmentation, 2) license term creation
and mapping of these terms to a set of different phrases in OSS license texts,
hence resulting a term to sentence map, 3) topic modeling: a statistical model for
fnding abstract topics in a collection of documents, and 4) term-to-topic match-
ing. For topic modeling, they use the Latent Dirichlet Allocation (Blei et al. 2003)
algorithm. For term-to-topic matching, they use the results from topic modeling
the term to the sentence map. Actual matching uses a Cosine Similarity (Karypis
et al. 2000) algorithm.

FOSSology provides an automated feature that assists in license compre-
hension. An administrator can defne of obligations and risks, which can be asso-
ciated with the licenses. When a license report is generated by FOSSOlogy, it will
list all the obligations and risks of the licenses in effect (the concluded licenses)
(Jaeger et al. 2017) (S26).

Moreau et al. (2019) (S42) propose CaLi, a model that partially orders li-
censes in terms of compatibility and compliance. In a license, actions can be
distributed into status, for example, permissions, obligations, and prohibitions.
To decide if a license is less restrictive than another one, it is necessary to know
if an action in a status is considered less restrictive than the same action in an-
other status. To identify the compatibility among licenses, Moreau et al. refne
the restrictiveness relation with constraints.

Nejad et al. (2016) (S43) introduce the EULAide system, which comprises an
information extraction pipeline tailored for license processing. It is composed of

83

the Ontology-Based Information Extraction (OBIE) method for license term and
phrase extraction to facilitate a better understanding by humans. The pipeline
that processes the license consists of 1) a linguistic pre-processing stage, 2) an
ontology-based Gazetteer, and 3) the OBIE transducer. The frst two steps create
annotation sets that pair bits of text to the Open Digital Rights Language6 ele-
ments. OBIE Transducer uses the previous annotation sets as inputs and matches
pre-defned annotation patterns to the fnal annotation sets of permission, prohi-
bition, and duty.

Alspaugh et al. (2012) (S3) present the results from an analysis directed
toward a formal representation capable of covering an entire license. To form
this type of representation, they identify the license’s actions and relate them
to the actions for exclusive rights defned in law and to the actions defned in
other licenses. Actions are the most common constructs in their analyzed license,
LGPLv2.1, and are essential in how the license is applied. The focus on actions
that can appear in both a right and an obligation also leads to a more fexible and
generalized approach for parameterizing actions and deriving a subsumption re-
lation among them. They also discover, that everything in the LGPLv2.1 text may
be classifed as either 1) the defnition of a term, 2) a right, 3) an obligation, 4) a
modifer to a defnition, right, or obligation, or 5) text without legal effect.

Alspaugh et al. (2010) (S1) defne the challenges of heterogeneously licensed
systems. These include, for example, what license applies to the resulting system
where more than one license is used? What rights or obligations apply? How
can one determine which license constraints match, include, or confict with one
another? To address this problem, Alspaugh et al. present a formal meta-model
that presents the actors, rights, and obligations. They analyzed 10 licenses to em-
pirically validate and improve their model. Since this model only lists conficts,
another paper (Alspaugh et al. 2011) (S2) enhances the model by presenting in-
tellectual property results in terms of the arguments supporting them. As a re-
sult of these two papers, a meta model has been created, as shown in Figure 14
(Alspaugh et al. 2011). Alspaugh et al. (2013b) (S5) use the meta model to describe
guidance for achieving a legally valid architectural component strategy while ob-
taining desired license rights in exchange for acceptable obligations. Alspaugh et
al. (2013a) (S4) present a license analysis scheme to identify the license conficts
arising from composed software elements. The scheme includes actions and ob-
jects. An action is a verb or verb phrase describing what may, must, or must not
be done with the object (e.g., source code). A license then may be expressed as a
set of rights, with each right associated (in that license) with zero or more obli-
gations that must be fulflled to enjoy that right. Alspaugh et al. discover that
with a formal specifcation of a software system’s architecture, they can associate
software license attributes with the system’s components, connectors, and sub-
system architectures and calculate the copyright rights and obligations for the
system. Conficting licenses can be identifed using these obligations.

Manabe et al. (2014) (S38) analyze the license of a source package and the
license of the fles it contains. For this purpose, they create license-inclusion

https://www.w3.org/ns/odrl/2/ accessed Jan 18, 2021 6

https://www.w3.org/ns/odrl/2

84

FIGURE 14 Meta model for licenses (Alspaugh et al. 2011).

graphs. First, they defne the inclusion of one license into another license, such
as BSD licensed code in a GPLv3 licensed package. Using the inclusion relation-
ship, they could compute the licensing inclusion graph of a given collection of
software packages. Second, they defne the license inclusion graph of a package
license as “the subgraph that ends in a given package license. All the edges in the
graph which share a single destination node and come from different nodes with
the same license are merged into a single edge.” As an example, they present a
package which is licensed under GPLv3 and includes 10 source fles with BSD2
license. A graph representing this, includes two nodes “BSD” and “GPLv3” and
a single edge from “BSD” to “GPLv3” with a weight of 10. Finally, they visualize
the license-inclusion graphs to display the license of the package, the included
licenses, and the proportions of each included license.

5.5 Satisfying the license obligations

From the selected literature, we have identifed fve papers (S12, S13, S17, S26,
S51) that describe the features or methods related to satisfying the license obliga-
tions.

License identifers typically list the used licenses, which is one of the key
features when preparing the required documentation for the satisfaction step.
Such tools include Ninka (S17), FOSSology (S26), and OSLC (S51). Also, the re-
trieval of full license text is often needed as it needs to be provided as part of
the redistribution of the OSS. The literature regarding the retrieval of full license
text is vague in many places. However, one example is found in OMP (S12, S13),
which stores artifacts such as third-party dependencies and OSS license texts in
the Nexus repository. When releasing software, relevant artifacts such as OSS
source code and license texts are pulled from the Nexus repository and provided

85

together with the products (Dyck et al. 2018).
Research related to another key feature, acknowledgement documentation,

is in its very early stages (Hemel 2015). Fully automated copyright extraction is
very diffcult as there is no standard notation for copyright statements, that is,
copyright symbol, or the word “copyright” is not required (Hemel 2015). Also,
copyright statements do not need to be in English. FOSSology attempts to fulfll
this need as it strives to extract the relevant information. Also, FOSSology con-
tains the ability to edit the copyright phrases found by the analysis process as it
is sometimes necessary to post-process the results, mainly to remove formatting
characters (Jaeger et al. 2017).

5.6 Validity

Based on the guidelines for performing a systematic literature review and map-
ping studies (Kitchenham et al. 2015; PRISMA 2015), we have systematically
identifed and addressed potential threats to the validity of our study by taking
steps to minimize or mitigate them.

To ensure the internal validity of the systematic approach, the source selec-
tion is described in detail. To make sure that this review is repeatable, the search
engines, search terms, and inclusion/exclusion criteria are carefully defned and
reported. Potentially problematic issues are related to a limitation of search en-
gines and search terms as limited engines and terms can lead to an incomplete set
of studies. To mitigate the risk of fnding all relevant studies, formal searching
using defned keywords was conducted. Also, we performed a snowball search
to ensure study coverage. Our automated search coverage was fairly successful
as it resulted in 45 out of the 53 included studies. Applying inclusion/exclusion
criteria can be biased based on the judgment and experience of the author. The
selection validation was documented, showing substantial agreement between
the author and supervisors of this thesis.

To ensure the validity of the data extraction and synthesis (i.e., construction
of the results), it should be made sure that there is a clear link from the research
questions to the data and then to the syntheses that answers those research ques-
tions (Kitchenham et al. 2015). The research questions related to the second cycle
of the research process were designed to cover our goal, and these questions are
answered accordingly. A threat to construct validity comes from the data extrac-
tion, classifcation, and empirical evidence of the studies (Kitchenham et al. 2015;
PRISMA 2015). The methods of data extraction and classifcation were described
in detail and followed accordingly. We extracted and classifed the data from the
studies according to these methods, ensuring that any bias of individual studies
would be minimized. To identify papers with the most convincing empirical ev-
idence, we extracted the validation of the proposed solution and references (i.e.,
which studies use proposed solution in their study) of that solution. Studies with
limited validation or with no references in other papers were introduced only

86

briefy.

5.7 Summary

In this chapter, we have described the SLR related to automated OSS license com-
pliance. The review consisted of 53 included publications. We identifed user
needs that were not present in the design cycle (see Table 9) and collected the au-
tomated features (see Table 10) that were described in the included publications.

6 DISCUSSION

In the previous chapters, we conducted a study related to automated OSS license
compliance and did so in two cycles. In this chapter, we will summarize the
results in accordance with our research questions and list our main contributions.

6.1 Revisiting research questions

We stated two main research questions related to automated license compliance:

RQ1 What are the user needs to fulfll automated open source license compli-
ance?

RQ2 What software features are needed to fulfll the user needs?

These questions were answered separately for both of the two cycles of the cur-
rent study. For the design cycle, we identifed and listed the user needs that were
published in Tuunanen et al. (2009). These include needs for every step of the
license compliance process. A tool that supports these needs, ASLA, was imple-
mented and reported (Tuunanen et al. 2006a,b, 2009). ASLA’s functionality was
validated using 12 different open source packages of different sizes (Tuunanen
et al. 2009).

In the review cycle, we collected user needs that were not identifed in the
design cycle from the 53 studies that were included in our SLR. These needs are
summarized in Table 9.

For the identifcation step of the compliance process, we recognized that the
identifcation of the origin of the software was a new feld that was not addressed
in the design cycle. The identifcation step also includes license and dependency
identifcation, techniques that was already present in the design cycle. The meth-
ods used for the identifcation of the origin of the software use clone detection
techniques (e.g., Ragkhitwetsagul and Krinke (2019)). These techniques are not
limited to identifying the origin of OSS as they are used, for example, for code
quality assessment and the detection of code from binaries (Ain et al. 2019). Both

88

TABLE 11 Major challenges of license identifcation.

Type Challenge
Finding the license statement. License statements are usually mixed with other text.

The comment characters and the various kinds of white space characters prevent exact matching.
Files might reference another fle where the license is located.
Files might contain multiple licenses.
Individual source fles have no mention of used license.

Language related. Licensing statements contain spelling errors.
A given license is referred in different ways.
Licensors change the spelling/grammar of the license statement.

License customization. Several licenses must be customized when used.
Licensors modify, add or remove conditions to well-known licenses.
Licensors modify licenses for various intents.

cycles describe several challenges of license identifcation that highlight the need
of sophisticated methods. These challenges of license identifcation are summa-
rized in Table 11, here combining the identifed challenges in both cycles (German
et al. 2010b; Tuunanen et al. 2009). The review cycle includes similar regexp-based
license identifcation techniques that were employed in ASLA in the design cycle
and the sentence-matching method described by German et al. (2010b). Only two
new techniques for dependency identifcation were introduced in the review cy-
cle (Van Der Burg et al. (2014) and Dyck et al. (2018)). The review cycle included
no papers describing techniques that would provide a possibility of manually de-
termining the license of a source fle or exclude particular fles from license anal-
ysis. Both of these features were available in ASLA. Only one new automated
method to add new license identifcation templates, a feature already present in
ASLA, was described in the review cycle (Higashi et al. 2016, 2019). Also, the
identifcation of the used parts of the OSS package, which was listed as one of the
needs in the design cycle, is still relevant. Modern mix-and-match reuse relies
heavily on the reuse of components of any shape and size (Mikkonen and Taival-
saari 2019). The installation of one reused package can fetch numerous additional
packages (e.g., in case of the Maven or npm) that may not be used at all, so it is
relevant to focus the license analysis only on the used parts. No studies in the
review cycle address this issue.

Another new user need revealed by the review cycle is license comprehen-
sion, which is needed in the approval step of license compliance process. Based
on the results of Almeida et al. (2019) and study conducted by Harutyunyan et al.
(2019), the compliance tool should help users interpret open source licenses. The
review cycle revealed several methods related to license comprehension: formal
modeling of the licenses (e.g., Alspaugh et al. (2011)), implementations that ex-
tract information from license text (e.g., Kapitsaki and Paschalides (2017)), and
automated tools that identify permissions, obligations, and prohibitions (e.g.,
Moreau et al. (2018)). Another feld in the approval step, license compatibility
checking, revealed several studies during the review cycle. These include ap-
proaches such as dependency-based compatibility checking similar to ASLA (e.g.,
Dyck et al. (2018)), a compatibility analysis based on SPDX fles (e.g., Kapitsaki
et al. (2017)), and license clause-level compatibility checking (Gangadharan et al.
2012).

89

Permissive licenses have gained popularity over the years, and it would
have been expected that the research related to automated license compliance
would follow this trend. A study from the early millennium by Capiluppi et al.
(2003) shows that GPL was by far the most popular license, covering 77% of the
406 analyzed projects, when the most popular permissive license BSD, covered
only 5% of the projects. Vendome et al. (2017a) study Java projects in GitHub
and relative license usage of the analyzed projects between 2002 and 2012. The
study shows that in 2002, permissive and copyleft licenses had about equal us-
age. However, in 2012, copyleft licenses had less than a 40% share of the total
usage. In 2020, according to Goldstein (2020b), 67% of open source components
had permissive licenses, MIT (27%) and Apache 2.0 (23%) being in the frst and
second place of most popular open source licenses, respectively, covering half
of all open source projects. The license compliance features relevant for OSS li-
censed under permissive licenses are often related to documentation features, as
permissive licenses main obligations are related to acknowledgement of the au-
thors, whereas features such as a compatibility analysis are more relevant in case
of being compliant with copyleft licenses.

Acknowledgement documentation along with offering of the source code in
case of copyleft licenses are part of the satisfaction of the license terms, the third
step of the license compliance process. Both cycles, however, produced the least
amount of research related to this step. This is slightly surprising as increased
OSS reuse along with the increased popularity of permissive licenses empha-
sizes the need of documentation features. To fulfll documentation obligations,
a need for the formation of acknowledgement documentation that includes the
extraction of copyright statements was identifed in the review cycle. One exam-
ple of an implementation that produces relevant documentation, that is, source
code and full license text, was introduced in Dyck et al. (2018). However, auto-
mated methods for copyright extraction seems to be in its early stages. Hemel
(2015) notes that a copyright extraction system that works better than current
ones is needed. However, it is not expected to be fully automated but to use more
context-sensitive information, such as author information from version control
systems or other external sources of information (Hemel 2015).

As we compare the features presented in the two cycles, the strengths of
ASLA that were not surpassed during the review cycle include a compatibility
analysis based on the dependency map, the ability to maintain compatibility rules
within a graphical user interface (Kapitsaki and Kramer 2015), and the detection
of modifed license text (Kapitsaki et al. 2015). Manual identifcation techniques
and the ability to exclude program parts from the analysis are also yet to be im-
plemented in other tools.

Only one tool that was present during the design cycle has evolved during
the review cycle. This tool, FOSSology, is also the only programming language
independent tool described in the review cycle that covers the whole license com-
pliance process.

One notable feld of software development was missing from the results of
the review cycle. The included literature revealed no studies that would address

90

open source license compliance for web applications. For example, importing a
single module into the Node.js application can fetch almost 1,000 dependencies
(Morszczyzna 2017). To collect and understand the licensing restrictions and re-
quirements of these modules would require automated support. However, the
automated license compliance of these packages has not yet been described aca-
demically. This may be due to the fact that web applications are often not dis-
tributed but offered as a service; therefore the license identifcation and analysis
is less relevant.

6.2 Contributions to theory and practice

The need for automated open source license compliance was identifed in the de-
sign cycle. The need for an automated analysis is still relevant, as Harutyunyan
et al. (2019) describe in their study of industry requirements for OSS governance
tools: OSS license compliance is a central aspect and key tool requirement cate-
gory within the companies they studied. Companies strive to automate license
compliance, license scanning, and license management. Some companies employ
continuous integration/deployment, thus requiring appropriate license compli-
ance tools that can be integrated into their development process. Tool require-
ments for license compliance go on to encompass automated license interpreta-
tion, license identifcation, and documentation. In addition to these requirements,
the tools need to identify the true origin of the software (e.g., determine who the
real authors of software actually are) (Hemel 2015).

We listed detailed user needs for an automated license compliance tool in
the design cycle (Tuunanen et al. 2009) and collected new user needs in the review
cycle. Based on these two cycles, we combined and merged the user needs for an
automated license compliance tool that are presented in Table 12. Most of the
needs were already identifed in the design cycle, for example, automated identi-
fcation of the license from the source fles and license compatibility analysis. The
needs identifed in the review cycle include the identifcation of the origin of the
OSS (N2) (e.g., Ragkhitwetsagul and Krinke (2019)), identifcation of exceptions
to known OSS licenses (N7) (Vendome et al. 2017b), needs related to comprehen-
sion of OSS licenses (N10) (e.g., Kapitsaki et al. (2015)), proposal of the alternate
licenses (N11) (Kapitsaki et al. 2017), SPDX reporting format of the analysis re-
sults (N12) (e.g., German and Di Penta (2012)), formation of acknowledgement
documentation (N15) (Hemel 2015), and integration of the license compliance
features into development tools (N16) (Dyck et al. 2018).

We implemented and reported ASLA, a license identifcation tool in the de-
sign cycle of the research process (Tuunanen et al. 2006a,b, 2009). ASLA imple-
ments features that fulfll the needs identifed during the design cycle (see Table
3). The review cycle, consisting of a SLR, provides a comprehensive view of the
features implemented during the review cycle related to the automated license
compliance process and are summarized in Table 10. As far as we are aware of,

91

TABLE 12 User needs for automated open source license compliance tool.

Need Step†
N1* Identifcation of the program modules that are included in the program I

within a particular environment.
N2 Identifcation of the origin of source fles. I
N3* Automated license identifcation of source fles. I
N4* Manual determination of the source code license. I
N5* The addition of license identifcation templates. I
N6* Dependency identifcation of program modules. I
N7 Identifcation of exceptions to known licenses. I
N8* The visualization and defnition of license compatibility rules. A
N9* The identifcation of licensing problems, such as use of incompatible li- A

censes.
N10 Listing of rights, obligations, and restrictions of licenses found in the ana- A,S

lyzed package.
N11 Proposal of alternate licenses that can be used for the package. A
N12 Reporting of the license analysis results in SPDX format. A
N13* The defnition of license compatibility rules. A
N14* Browsing of the results of the license analysis. A
N15 Formation of acknowledgement documentation for each identifed compo- S

nent including list of used licenses with full license text(s), attribution no-
tices, and extracted copyright information.

N16 Integration of automated license compliance features into development I,A,S
tools such as package managers or continuous integration tools.

* Identifed in the design cycle of the study.
† Refers to the step of the license compliance process: identifcation (I), approval (A), and satisfy (S).

no other study has addressed the user needs and features of automated license
compliance at this scale.

7 CONCLUSION

The present dissertation introduced automated support for open source license
compliance over the span of two decades. It stated two main research questions:

RQ1 What are the user needs to fulfll automated open source license compli-
ance?

RQ2 What software features are needed to fulfll the user needs?

The answers to these questions were described in two cycles.
The design cycle introduced the the initial set of user needs, which were

composed of 12 individual needs (see Table 2), and our reverse engineering ap-
proach, called ASLA, that fulflled these user needs. ASLA was developed and
reported according to the DSR approach. The main contributions include, for ex-
ample, the implementation of automated license identifcation from the source
fles and automated license compatibility analysis.

In the review cycle, we described what automated tools are available in
2020, how user needs have evolved, and what features have been improved and
discovered since the introduction of ASLA. The review cycle is composed of SLR
that included 53 studies. The review cycle revealed new felds in OSS license
compliance, such as the identifcation of the origin of the software and automated
license comprehension, that were not present in the design cycle. Also, we sys-
tematically collected new features related to license compliance from the included
studies. A summary of these features is displayed in Table 10.

Based on the information of these two cycles, we merged and listed a set of
user needs, which were composed of 16 individual needs (see Table 12) and which
cover the whole open source license compliance process. It became evident that
no tool is available that would support all of these needs. License identifcation
and a compatibility analysis are felds that have the most mature solutions in
the license compliance process. Also, clone detection, which helps identify the
origin of the source code, and license comprehension are described in several
studies, even though the features related to these are yet to be integrated into
other compliance tools.

93

We discovered the following issues to be addressed in future research: 1) in-
tegrating the features that are scattered between different tools into one tool that
can seamlessly integrate these different tools as part of development process and
2) improve automated methods to create required acknowledgement documenta-
tion that seems to be in its early stages (e.g., by extracting copyright information
from source fles). Also, features related to the new user needs identifed in the
review cycle such as clone detection and license comprehension have yet to be
integrated into tools such as FOSSology (Jaeger et al. 2017) or OMP (Dyck et al.
2018) that cover the whole license compliance process. There are also only a few
automated solutions that integrate license compliance features into development
tools. Support for this is especially relevant in modern mix-and-match devel-
opment, where snippets from development forums or packages downloaded by
package managers are routinely integrated into applications as an integral part
of the development process.

94

YHTEENVETO (SUMMARY IN FINNISH)

Tämä tutkielma pyrkii esittämään kattavan kuvan automatisoiduista toiminnal-
lisuuksista ja metodeista, jotka tukevat avoimen lähdekoodin lisenssien noudat-
tamista. Avoin lähdekoodi viittaa tietokoneohjelmistojen kehittämismalliin, jossa
ohjelmistojen lähdekoodi asetetaan julkisesti saataville. Malli mahdollistaa myös
ohjelmistojen vapaan käyttämisen sekä mahdollisuuden niiden muokkaamiseen,
laajentamiseen ja uudelleenjakeluun. Nämä toiminnot ovat mahdollisia avoimen
lähdekoodin lisenssien ansiosta. Lisenssit myöntävät oikeuksia, jotka olisivat
muuten kansainvälisten immateriaalioikeuslakien perusteella kiellettyjä.

Lisenssit asettavat oikeuksien lisäksi uudelleenkäytölle myös eri asteisia
ehtoja. Nämä ehdot voivat muodostua ongelmaksi esimerkiksi siksi, että joiden-
kin avoimen lähdekoodin lisenssien ehdot ovat keskenään ristiriitaisia. Tätä kut-
sutaan lisenssien epäyhteensopivuudeksi, jonka vuoksi kahta eri lisenssin alaista
ohjelmistoa ei voida laillisesti yhdistää. Toinen, erityisesti kaupalliseen uudel-
lenkäyttöön liittyvä ongelma on joidenkin lisenssien asettama ehto, jonka mukaan
uudellenkäytettävään ohjelmistoon pohjautuvat ohjelmistot tulee julkaista saman
avoimen lähdekoodin lisenssin alaisuudessa. Jotta ohjelmistoja voidaan tehok-
kaasti uudelleenkäyttää, tarvitaan automatisoitua lisenssianalyysiä. Analyysillä
varmistetaan, että ohjelmistojen lisenssejä noudatetaan uudellenkäytön yhtey-
dessä. Automatisointia tarvitaan esimerkiksi siksi, että ohjelmistot voivat sisältää
satoja tai jopa tuhansia lähdekooditiedostoja, jotka on mahdollisesti lisensoitu eri
tavoilla.

Tutkielman teoreettinen viitekehys (luvut 2-3) sisältää immateriaalioikeuk-
sien esittelyn ohjelmistojen lisenssien näkökulmasta, avoimen lähdekoodin li-
senssien esittelyn sekä avoimen lähdekoodin lisenssien noudattamiseen liittyvän
prosessin kuvauksen. Prosessi sisältää kolme vaihetta: tunnista, hyväksy ja täytä
lisenssiehdot. Empiirinen osuus (luvut 4-6) koostuu kahdesta syklistä: suunnit-
telusyklistä (Design cycle) ja katsaussyklistä (Review cycle). Suunnittelusyklissä
toteutettiin ASLA (Automated Software License Analyzer) -niminen analyysi-
työkalu. Tulokset julkaistiin kolmessa tieteellisessä artikkelissa vuosina 2006 –
2009. Katsaussykli muodostuu systemaattisesta kirjallisuuskatsauksesta, jossa
kuvataan kuinka automatisoidut työkalut ja menetelmät ovat kehittyneet ASLA:n
julkaisemisen jälkeen. Kirjallisuuskatsaukseen sisällytetyt artikkelit ovat vuosilta
2010 – 2020.

Suunnittelusyklissä tunnistettiin 12 käyttäjätarvetta, jotka liittyvät automa-
tisoituun lisenssien noudattamiseen. Nämä sisältävät esimerkiksi lisenssien tun-
nistamisen lähdekooditiedostoista ja lisenssien yhteensopivuusanalyysin. Käyt-
täjätarpeiden pohjalta kehitettiin niitä tukeva ohjelmisto ASLA. ASLA validoitiin
analysoimalla 12 avoimen lähdekoodin ohjelmistoa. ASLA:n avulla kyettiin au-
tomaattisesti tunnistamaan lisenssien yhteensopivuusongelmia, koska se tunnis-
taa lähdekooditiedostojen lisenssit ja niiden väliset riippuvuudet ja se sisältää
lisenssien väliset yhteensopivuussäännöt. Lisenssien tunnistamisessa pyrittiin
mahdollisimman suureen kattavuuteen. Tämä kattavuus voi kuitenkin vaihdella

95

merkittävästi, sillä useat ohjelmistot sisältävät ns. lisensointivikoja, kuten esimer-
kiksi puuttuvia lisenssitietoja. Tavoitteena oli tunnistaa jokaisen lähdekooditie-
doston lisenssi käyttämällä ensin automatisoituja tekniikoita ja täydentäen ana-
lyysiä interaktiivisilla tekniikoilla. Tunnistamisen automatisoidussa vaiheessa
pystyttiin tunnistamaan lähdekooditiedostojen lisenssi 1–97 %:ssa tapauksista.
Tulokset kohentuivat 75–98 %:iin käyttäen interaktiivisia tekniikoita.

Katsaussykliin valikoitui 53 tieteellistä artikkelia. Näistä artikkeleista tun-
nistettiin yhteensä seitsemän uutta käyttäjätarvetta, joita ei ollut tunnistettu en-
simmäisessä syklissä. Näitä ovat esimerkiksi avoimen lähdekoodin ohjelmiston
alkuperän tunnistaminen ja lisenssiehtojen ymmärtämisen tukeminen. Erityi-
sesti ohjelmiston alkuperän tunnistaminen on tärkeää, sillä uudelleenkäyttö on
lisääntynyt merkittävästi viimeisen 10 vuoden aikana ja lähdekoodia kopioidaan
usein ohjelmistosta toiseen. Alkuperän tunnistamisen avulla voidaan varmis-
taa ohjelmiston oikea alkuperä ja näin ollen myös sen lisenssi. Lisäksi lisenssit
ovat lakiteknistä tekstiä, joten niiden ymmärtäminen on ohjelmistokehittäjille
vaikeaa. Lisenssien ymmärtämisen tukemiseksi on esitelty menetelmiä, joilla
lisenssien antamat oikeudet ja velvollisuudet voidaan esittää helpommin ym-
märrettävässä muodossa. Käyttäjätarpeiden tunnistamisen lisäksi listataan au-
tomaattista lisenssianalyysiä tukevia toiminnallisuuksia, jotka on esitelty suun-
nittelusyklin jälkeen. Nämä on ryhmitelty ja listattu yllä mainitun lähdekoodin
lisenssien noudattamiseen liittyvän prosessin mukaan.

Yhteenvetona voidaan todeta, että automatisoidulle lisenssianalyysille on
selkeä tarve. Kahden tutkimyssyklin pohjalta yhdistettin ja listattiin yhteensä 16
itsenäistä käyttäjätarvetta, jotka kuvaavat kokonaisvaltaisesti automatisoituun li-
senssien noudattamiseen liittyvät käyttäjätarpeet. Tutkimuksessa kävi selväksi,
että mikään yksittäinen työkalu ei tue kaikkia näitä tarpeita. Lisenssien tun-
nistamiseen ja yhteensopivuusanalyysiin liittyvät toiminnallisuudet ovat parhai-
ten tuettuja. Jatkotutkimusta tarvitaan erityisesti parantamaan toiminnallisuuk-
sia, jotka liittyvät tekijänoikeustietojen keräämiseen lähdekoodista ja olemassa
olevien toiminnallisuuksien liittämiseksi osaksi työkaluja, joita käytetään päivit-
täisessä ohjelmistokehityksessä.

96

BIBLIOGRAPHY

Abadie, B. and Ledru, S. 2020. Engineering code quality in the Firefox browser:
A look at our tools and challenges. hURL: https://hacks.mozilla.org/2020/
04/code-quality-tools-at-mozilla/i.

Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., and Maqbool, B. 2019. A system-
atic review on code clone detection. IEEE Access 7, 86121–86144.

Aksulu, A. and Wade, M. R. 2010. A comprehensive review and synthesis of open
source research. Journal of the Association for Information Systems 11 (11),
6.

Al-Zubidy, A. 2017. The search phase of software engineering systematic litera-
ture review: barriers and solutions. PhD thesis. University of Alabama Li-
braries.

Almeida, D. A., Murphy, G. C., Wilson, G., and Hoye, M. 2019. Investigating
whether and how software developers understand open source software
licensing. Empirical Software Engineering 24 (1), 211–239.

Alspaugh, T. A., Asuncion, H. U., and Scacchi, W. 2011. Presenting Software Li-
cense Conficts through Argumentation. In Proceedings of the 23rd Inter-
national Conference on Software Engineering and Knowledge Engineering.
Knowledge Systems Institute Graduate School, 509–514.

Alspaugh, T. A., Asuncion, H. U., and Scacchi, W. 2013a. Software licenses, open
source components, and open architectures. In Aligning Enterprise, System,
and Software Architectures. IGI Global, 58–79.

Alspaugh, T. A., Asuncion, H. U., and Scacchi, W. 2013b. The challenge of hetero-
geneously-licensed systems in open architecture software ecosystems. In
Software Ecosystems. Edward Elgar Publishing.

Alspaugh, T. A., Scacchi, W., and Asuncion, H. U. 2010. Software licenses in con-
text: The challenge of heterogeneously-licensed systems. Journal of the As-
sociation for Information Systems 11 (11), 2.

Alspaugh, T. A., Scacchi, W., and Kawai, R. 2012. Software licenses, coverage, and
subsumption. In 2012 Fifth IEEE International Workshop on Requirements
Engineering and Law (RELAW). IEEE, 17–24.

An, L., Mlouki, O., Khomh, F., and Antoniol, G. 2017. Stack overfow: a code laun-
dering platform? In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 283–293.

Apache Software Foundation 2019. GPL compatibility. hURL: https://www.apac
he.org/licenses/GPL-compatibility.htmli.

Apache Software Foundation 2020. Apache License, Version 2.0. hURL: https://
www.apache.org/licenses/LICENSE-2.0i.

https://hacks.mozilla.org/2020/04/code-quality-tools-at-mozilla/
https://hacks.mozilla.org/2020/04/code-quality-tools-at-mozilla/
https://www.apache.org/licenses/GPL-compatibility.html
https://www.apache.org/licenses/GPL-compatibility.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

97

Asay, M. 2018. Who really contributes to open source. hURL: https://www.info
world.com/article/3253948/who-really-contributes-to-open-source.html#
tk.twt_ifwi.

Azhakesan, A. and Paulisch, F. 2020. Sharing at scale: an open-source-software-
based license compliance ecosystem. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering in
Practice, 130–131.

Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., and Lopes, C.
2006. Sourcerer: a search engine for open source code supporting structure-
based search. In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications, 681–
682.

Banaeianjahromi, N. and Smolander, K. 2016. What do we know about the role
of enterprise architecture in enterprise integration? A systematic mapping
study. Journal of Enterprise Information Management.

Bavota, G., Ciemniewska, A., Chulani, I., De Nigro, A., Di Penta, M., Galletti,
D., Galoppini, R., Gordon, T. F., Kedziora, P., et al. 2014. The market for
open source: An intelligent virtual open source marketplace. In 2014 Soft-
ware Evolution Week - IEEE Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering (CSMR-WCRE), 399–402.

Bei, L. and Yuan, S. 2013. Software Intellectual Property Management through
Self-Claiming of the Certifcate of Origin of the Source Code. In 2013 In-
ternational Conference on Computational and Information Sciences. IEEE,
613–615.

Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. Latent dirichlet allocation. Journal
of machine Learning research 3 (Jan), 993–1022.

Blue Oak Council 2020a. License List. hURL: https://blueoakcouncil.org/listi.
Blue Oak Council 2020b. The Blue Oak Guide to Copyleft. hURL: https://blueoa

kcouncil.org/copylefti.
Boehm, B. 1989. Software risk management. In European Software Engineering

Conference. Springer, 1–19.

Boughanmi, F. 2010. Multi-language and heterogeneously-licensed software anal-
ysis. In 2010 17th working conference on reverse engineering. IEEE, 293–
296.

Capiluppi, A., Lago, P., and Morisio, M. 2003. Characteristics of open source soft-
ware projects. In Proc. 7th European Conference on Software Maintenance
and Reengineering (CSMR 2003), 317–330.

Clark, D. 2015. OSS Attribution Best Practices. hURL: https://www.nexb.com/
blog/oss_attribution_obligations.htmli.

Creative Commons 2020. Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0).
hURL: https://creativecommons.org/licenses/by-sa/3.0/i.

https://www.infoworld.com/article/3253948/who-really-contributes-to-open-source.html#tk.twt_ifw
https://www.infoworld.com/article/3253948/who-really-contributes-to-open-source.html#tk.twt_ifw
https://www.infoworld.com/article/3253948/who-really-contributes-to-open-source.html#tk.twt_ifw
https://blueoakcouncil.org/list
https://blueoakcouncil.org/copyleft
https://blueoakcouncil.org/copyleft
https://www.nexb.com/blog/oss_attribution_obligations.html
https://www.nexb.com/blog/oss_attribution_obligations.html
https://creativecommons.org/licenses/by-sa/3.0/

98

Davies, J., German, D. M., Godfrey, M. W., and Hindle, A. 2011. Software bertillon-
age: fnding the provenance of an entity. In Proceedings of the 8th working
conference on mining software repositories, 183–192.

Davies, J., German, D. M., Godfrey, M. W., and Hindle, A. 2013. Software bertillon-
age: Determining the provenance of software development artifacts. Empir-
ical Software Engineering 18 (6), 1195–1237.

Debian 2004. Debian Social Contract. hURL: https://www.debian.org/social_
contracti.

Determann, L. 2006. Dangerous Liaisons-Software Combinations as Derivative
Works-Distribution, Installation, and Execution of Linked Programs under
Copyright Law, Commercial Licenses, and the GPL. Berkeley Tech. LJ 21,
1421.

Di Penta, M., German, D. M., and Antoniol, G. 2010a. Identifying licensing of jar
archives using a code-search approach. In 2010 7th IEEE Working Confer-
ence on Mining Software Repositories (MSR 2010). IEEE, 151–160.

Di Penta, M., German, D. M., Guéhéneuc, Y.-G., and Antoniol, G. 2010b. An ex-
ploratory study of the evolution of software licensing. In 2010 ACM/IEEE
32nd International Conference on Software Engineering. Vol. 1. IEEE, 145–
154.

Dorner, M., Capraro, M., and Barcomb, A. 2020. Quo Vadis, Open Source? The
Limits of Open Source Growth. arXiv preprint arXiv:2008.07753.

Duan, R., Bijlani, A., Xu, M., Kim, T., and Lee, W. 2017. Identifying open-source
license violation and 1-day security risk at large scale. In Proceedings of the
2017 ACM SIGSAC Conference on computer and communications security,
2169–2185.

Dyck, S., Haferkorn, D., Kerth, C., and Schoebel, A. 2018. Automating Open Source
Software License Information Generation in Software Projects. Journal of
Systemics, Cybernetics and Informatics 16 (5), 44–49.

Dyck, S., Haferkorn, D., and Sander, J. 2016. An Organizational-Technical Con-
cept to Deal with Open Source Software License Terms. In Proceedings of
the 20th World Multi-Conference on Systemics, Cybernetics and Informat-
ics, WMSCI, 5–8.

Ebert, C. 2008. Open source software in industry. IEEE Software 25 (3), 52–53.

Eghan, E. E., Alqahtani, S. S., Forbes, C., and Rilling, J. 2019. API trustworthi-
ness: an ontological approach for software library adoption. Software Qual-
ity Journal 27 (3), 969–1014.

European Patent Offce 2000. The European Patent Convention. hURL: https://
www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar52.htmli.

Evans, D. S. and Layne-Farrar, A. 2004. Software patents and open source: The
battle over intellectual property rights. Va. JL & Tech. 9, 1.

https://www.debian.org/social_contract
https://www.debian.org/social_contract
https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar52.html
https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar52.html

99

Fedora 2013a. Licensing Guidelines. hURL: https://docs.fedoraproject.org/en-
US/packaging-guidelines/LicensingGuidelines/i.

Fedora 2013b. Licensing:Main. hURL: https://fedoraproject.org/wiki/Licensing:
Maini.

Fendt, O. and Jaeger, M. C. 2019. Open source for open source license compliance.
In IFIP International Conference on Open Source Systems. Springer, 133–
138.

Feng, M., Mao, W., Yuan, Z., Xiao, Y., Ban, G., Wang, W., Wang, S., Tang, Q., Xu,
J., Su, H., et al. 2019. Open-source license violations of binary software at
large scale. In 2019 IEEE 26th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER). IEEE, 564–568.

Fershtman, C. and Gandal, N. 2007. Open source software: Motivation and re-
strictive licensing. International Economics and Economic Policy 4 (2), 209–
225.

Finnish Institute for Health and Welfare 2020. An application that helps break the
chains of infection Koronavilkku. hURL: https://thl.fi/en/web/infectious-
diseases - and - vaccinations / what - s - new / coronavirus - covid - 19 - latest -
updates/transmission-and-protection-coronavirus/contact- tracing-app-
will-help-stop-chains-of-infectioni.

Fitzgerald, B. 2006. The transformation of open source software. MIS quarterly,
587–598.

Fosfuri, A., Giarratana, M. S., and Luzzi, A. 2008. The penguin has entered the
building: The commercialization of open source software products. Organi-
zation science 19 (2), 292–305.

FOSSA 2020. Software Licenses in Plain English. hURL: https://tldrlegal.comi.
Franch, X., Susi, A., Annosi, M. C., Ayala, C., Glott, R., Gross, D., Kenett, R.,

Mancinelli, F., Ramsany, P., Thomas, C., et al. 2013. Managing risk in open
source software adoption. In ICSOFT 2013: Proceedings of the 8th Interna-
tional Joint Conference on Software Technologies, 258–264.

Free Software Foundation 2007. GNU Affero General Public License. hURL: https:
//www.gnu.org/licenses/agpl-3.0.en.htmli.

Free Software Foundation 2009. GCC runtime library exception. hURL: https://
gcc.gnu.org/onlinedocs/libstdc++/manual/license.htmli.

Free Software Foundation 2016. GNU Hurd/ history. hURL: https://www.gnu.
org/software/hurd/history.htmli.

Free Software Foundation 2019. What is free software? hURL: https://www.gnu.
org/philosophy/free-sw.en.htmli.

Free Software Foundation 2020a. Frequently Asked Questions about the GNU
Licenses. hURL: https://www.gnu.org/licenses/gpl-faq.en.htmli.

Free Software Foundation 2020b. Various Licenses and Comments about Them.
hURL: https://www.gnu.org/licenses/license-list.en.htmli.

https://docs.fedoraproject.org/en-US/packaging-guidelines/LicensingGuidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/LicensingGuidelines/
https://fedoraproject.org/wiki/Licensing:Main
https://fedoraproject.org/wiki/Licensing:Main
https://thl.fi/en/web/infectious-diseases-and-vaccinations/what-s-new/coronavirus-covid-19-latest-updates/transmission-and-protection-coronavirus/contact-tracing-app-will-help-stop-chains-of-infection
https://thl.fi/en/web/infectious-diseases-and-vaccinations/what-s-new/coronavirus-covid-19-latest-updates/transmission-and-protection-coronavirus/contact-tracing-app-will-help-stop-chains-of-infection
https://thl.fi/en/web/infectious-diseases-and-vaccinations/what-s-new/coronavirus-covid-19-latest-updates/transmission-and-protection-coronavirus/contact-tracing-app-will-help-stop-chains-of-infection
https://thl.fi/en/web/infectious-diseases-and-vaccinations/what-s-new/coronavirus-covid-19-latest-updates/transmission-and-protection-coronavirus/contact-tracing-app-will-help-stop-chains-of-infection
https://tldrlegal.com
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html
https://www.gnu.org/software/hurd/history.html
https://www.gnu.org/software/hurd/history.html
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/licenses/gpl-faq.en.html
https://www.gnu.org/licenses/license-list.en.html

100

Free Software Foundation 2020c. What is Copyleft? hURL: https ://www.gnu.
org/copyleft/i.

Free Software Foundation, I., Center, S. F. L., Gingerich, D., Sebro Jr, A. K., Kuhn,
B. M., and Legal, C. 2013. Detailed Analysis of the GNU GPL and Related
Licenses. hURL: https://copyleft.org/guide/comprehensive-gpl-guidepa1.
htmli.

Freibrun, E. 1995. Intellectual Property Rights in Software – What They Are and
How to Protect Them. hURL: https://freibrunlaw.com/intellectual-propert
y-rights-software-protect/i.

Fujita, K. and Tsukada, Y. 2012. An approach to the formal analysis of license
interoperability. Computers & Electrical Engineering 38 (6), 1670–1686.

Galler, B. A. 1995. Software and intellectual property protection: copyright and
patent issues for computer and legal professionals. Greenwood Publishing
Group.

Gamalielsson, J. and Lundell, B. 2017. On licensing and other conditions for con-
tributing to widely used open source projects: an exploratory analysis. In
Proceedings of the 13th International Symposium on Open Collaboration,
1–14.

Gangadharan, G., D’Andrea, V., De Paoli, S., and Weiss, M. 2012. Managing li-
cense compliance in free and open source software development. Informa-
tion Systems Frontiers 14 (2), 143–154.

Garcia, V. C., Lucrédio, D., Durão, F. A., Santos, E. C. R., Almeida, E. S. de, Mattos
Fortes, R. P. de, and Lemos Meira, S. R. de 2006. From specifcation to ex-
perimentation: A software component search engine architecture. In Inter-
national Symposium on Component-Based Software Engineering. Springer,
82–97.

Garousi, V. and Mäntylä, M. V. 2016. When and what to automate in software test-
ing? A multi-vocal literature review. Information and Software Technology
76, 92–117.

Georgievski, G. 2020. Intellectual Property Rights in Software. hURL: https : / /
www.odilaw.com/intellectual-property-rights-in-software/i.

German, D. M. and Di Penta, M. 2012. A method for open source license compli-
ance of java applications. IEEE software 29 (3), 58–63.

German, D. M., Di Penta, M., and Davies, J. 2010a. Understanding and auditing
the licensing of open source software distributions. In 2010 IEEE 18th Inter-
national Conference on Program Comprehension. IEEE, 84–93.

German, D. M. and Hassan, A. E. 2009. License integration patterns: Addressing
license mismatches in component-based development. In 2009 IEEE 31st In-
ternational Conference on Software Engineering. IEEE, 188–198.

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/
https://copyleft.org/guide/comprehensive-gpl-guidepa1.html
https://copyleft.org/guide/comprehensive-gpl-guidepa1.html
https://freibrunlaw.com/intellectual-property-rights-software-protect/
https://freibrunlaw.com/intellectual-property-rights-software-protect/
https://www.odilaw.com/intellectual-property-rights-in-software/
https://www.odilaw.com/intellectual-property-rights-in-software/

101

German, D. M., Manabe, Y., and Inoue, K. 2010b. A sentence-matching method for
automatic license identifcation of source code fles. In Proceedings of the
IEEE/ACM international conference on Automated software engineering,
437–446.

Germonprez, M., Young, B., Mathiassen, L., Kendall, J. E., Kendall, K. E., Warner,
B., and Cao, L. 2012. Risk mitigation in corporate participation with open
source communities: protection and compliance in an open source supply
chain. Risk 12, 15–2012.

GitHub 2020. The 2020 State of the Octoverse. hURL: https://octoverse.github.
com/i.

Goldstein, A. 2019. Open Source Licenses Explained. hURL: https://resources.
whitesourcesoftware.com/blog-whitesource/open-source-licenses-explai
nedi.

Goldstein, A. 2020a. Everything You Wanted to Know About Open Source Attri-
bution Reports. hURL: https://resources.whitesourcesoftware.com/blog-
whitesource/open-source-attribution-reportsi.

Goldstein, A. 2020b. Open Source Licenses in 2020: Trends and Predictions. hURL:
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-
source-licenses-trends-and-predictionsi.

Golubev, Y., Eliseeva, M., Povarov, N., and Bryksin, T. 2020. A Study of Poten-
tial Code Borrowing and License Violations in Java Projects on GitHub.
In Proceedings of the 17th International Conference on Mining Software
Repositories. MSR ’20. Association for Computing Machinery, 54–64. ISBN:
9781450375177. DOI: 10.1145/3379597.3387455.

Gordon, T. F. 2011. Analyzing open source license compatibility issues with
Carneades. In Proceedings of the 13th International Conference on Artifcial
Intelligence and Law, 51–55.

Gordon, T. F. 2014. A Demonstration of the MARKOS License Analyser. Compu-
tational Models of Argument: Proceedings of COMMA 2014 266, 461.

Greene, T. C. 2001. Ballmer: ’Linux is a cancer’. hURL: https://www.theregister.
com/2001/06/02/ballmer_linux_is_a_cancer/i.

Haddad, I. 2018. Open Source Compliance in the Enterprise 2nd Edition. The
Linux Foundation.

Haddad, I. 2019. Recommended Open Source Compliance Practices for the En-
terprise. The Linux Foundation.

Hall, B. H. and MacGarvie, M. 2010. The private value of software patents. Re-
search Policy 39 (7), 994–1009.

Hammouda, I., Mikkonen, T., Oksanen, V., and Jaaksi, A. 2010. Open source le-
gality patterns: architectural design decisions motivated by legal concerns.
In Proceedings of the 14th International Academic MindTrek Conference:
Envisioning Future Media Environments, 207–214.

https://octoverse.github.com/
https://octoverse.github.com/
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-licenses-explained
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-licenses-explained
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-licenses-explained
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-attribution-reports
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-attribution-reports
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://doi.org/10.1145/3379597.3387455
https://www.theregister.com/2001/06/02/ballmer_linux_is_a_cancer/
https://www.theregister.com/2001/06/02/ballmer_linux_is_a_cancer/

102

Hanson, M. 2020. Microsoft admits it was wrong about Linux and open source.
hURL: https : / / www . techradar . com / news / microsoft - admits - it - was -
wrong-about-linux-and-open-sourcei.

Hartmann, B., Doorley, S., and Klemmer, S. R. 2008. Hacking, mashing, gluing:
Understanding opportunistic design. IEEE Pervasive Computing 7 (3), 46–
54.

Harutyunyan, N., Bauer, A., and Riehle, D. 2019. Industry requirements for FLOSS
governance tools to facilitate the use of open source software in commercial
products. Journal of Systems and Software 158, 110390.

Harutyunyan, N. and Riehle, D. 2019a. Getting started with open source gov-
ernance and compliance in companies. In Proceedings of the 15th Interna-
tional Symposium on Open Collaboration, 1–10.

Harutyunyan, N. and Riehle, D. 2019b. Industry best practices for open source
governance and component reuse. In Proceedings of the 24th European Con-
ference on Pattern Languages of Programs, 1–14.

Hashimoto, G. and Portner, C. 2020. The Intersection of Trademarks and Open
Source. hURL: https://www.hopkinscarley.com/blog/client-alerts-blogs-
updates/post/the-intersection-of-trademarks-and-open-sourcei.

Hazen, T. L. 1986. Contract Principles as a Guide for Protecting Intellectual Prop-
erty Rights in Computer Software: The Limits of Copyright Protection, the
Evolving Concept of Derivative Works, and the Proper Limits of Licensing
Arrangements. UC Davis L. Rev. 20, 105.

Heirendt, L., Arreckx, S., Trefois, C., Yarosz, Y., Vyas, M., Satagopam, V. P., Schnei-
der, R., Thiele, I., and Fleming, R. M. 2017. ARTENOLIS: Automated Repro-
ducibility and Testing Environment for Licensed Software. arXiv preprint
arXiv:1712.05236.

Hellstadius, Å. 2010. Software Patents. In Information & communication technol-
ogy : legal issues. Jure, 362–396.

Hemel, A. 2015. Tooling for Open Source Software License Compliance. Com-
puter Law Review International 16 (4), 101–106.

Hemel, A., Kalleberg, K. T., Vermaas, R., and Dolstra, E. 2011. Finding software
license violations through binary code clone detection. In Proceedings of the
8th Working Conference on Mining Software Repositories, 63–72.

Hevner, A. R. 2007. A three cycle view of design science research. Scandinavian
journal of information systems 19 (2), 4.

Higashi, Y., Manabe, Y., and Ohira, M. 2016. Clustering OSS License Statements
Toward Automatic Generation of License Rules. In 2016 7th International
Workshop on Empirical Software Engineering in Practice (IWESEP). IEEE,
30–35.

Higashi, Y., Ohira, M., Kashiwa, Y., and Manabe, Y. 2019. Hierarchical Clustering
of OSS License Statements toward Automatic Generation of License Rules.
Journal of Information Processing 27, 42–50. DOI: 10.2197/ipsjjip.27.42.

https://www.techradar.com/news/microsoft-admits-it-was-wrong-about-linux-and-open-source
https://www.techradar.com/news/microsoft-admits-it-was-wrong-about-linux-and-open-source
https://www.hopkinscarley.com/blog/client-alerts-blogs-updates/post/the-intersection-of-trademarks-and-open-source
https://www.hopkinscarley.com/blog/client-alerts-blogs-updates/post/the-intersection-of-trademarks-and-open-source
https://doi.org/10.2197/ipsjjip.27.42

103

Iivari, J. 2007. A paradigmatic analysis of Information Systems as a design science,
forthcoming in Scandinavian Journal of Information Systems. Draft 27p, ask
the newest version from the author juhani. iivari@ oulu. f.

Inoue, K., Sasaki, Y., Xia, P., and Manabe, Y. 2012. Where does this code come
from and where does it go?—Integrated code history tracker for open source
systems. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 331–341.

Ishio, T., Kula, R. G., Kanda, T., German, D. M., and Inoue, K. 2016. Software
ingredients: Detection of third-party component reuse in java software re-
lease. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). IEEE, 339–350.

Ishio, T., Sakaguchi, Y., Ito, K., and Inoue, K. 2017. Source fle set search for clone-
and-own reuse analysis. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 257–268.

Jaeger, M. C., Fendt, O., Gobeille, R., Huber, M., Najjar, J., Stewart, K., Weber, S.,
and Wurl, A. 2017. The FOSSology Project: 10 Years Of License Scanning.
IFOSS L. Rev. 9, 9.

Jones, T. C. 1984. Reusability in Programming: A Survey of the State of the Art.
IEEE Transactions on Software Engineering (5), 488–494.

Kapitsaki, G. M. and Charalambous, G. 2016. Find your open source license now!
In 2016 23rd Asia-Pacifc Software Engineering Conference (APSEC). IEEE,
1–8.

Kapitsaki, G. M. and Charalambous, G. 2019. Modeling and recommending open
source licenses with fndOSSLicense. IEEE Transactions on Software Engi-
neering.

Kapitsaki, G. M. and Kramer, F. 2015. Open source license violation check for
spdx fles. In International Conference on Software Reuse. Springer, 90–105.

Kapitsaki, G. M., Kramer, F., and Tselikas, N. D. 2017. Automating the license
compatibility process in open source software with SPDX. Journal of Sys-
tems and Software 131, 386–401.

Kapitsaki, G. M. and Paschalides, D. 2017. Identifying terms in open source soft-
ware license texts. In 2017 24th Asia-Pacifc Software Engineering Confer-
ence (APSEC). IEEE, 540–545.

Kapitsaki, G. M., Tselikas, N. D., and Foukarakis, I. E. 2015. An insight into license
tools for open source software systems. Journal of Systems and Software
102, 72–87.

Karypis, M. S. G., Kumar, V., and Steinbach, M. 2000. A comparison of document
clustering techniques. In TextMining Workshop at KDD2000 (May 2000).

Kashima, Y., Hayase, Y., Yoshida, N., Manabe, Y., and Inoue, K. 2011. An investi-
gation into the impact of software licenses on copy-and-paste reuse among
OSS projects. In 2011 18th Working Conference on Reverse Engineering.
IEEE, 28–32.

104

Kechagia, M., Spinellis, D., and Androutsellis-Theotokis, S. 2010. Open source
licensing across package dependencies. In 2010 14th Panhellenic Conference
on Informatics. IEEE, 27–32.

Keplinger, M. S. 1981. Computer Software–Its Nature and its Protection. Emory
LJ 30, 483.

Kesan, J. P. and Gruner, R. S. 2020. Intellectual Property Compliance: Systematic
Methods for Building and Using Intellectual Property. In Cambridge Hand-
book of Compliance, edited by D. Daniel Sokol & Benjamin van Rooij.

Kim, Y. and Stohr, E. A. 1998. Software reuse: survey and research directions.
Journal of Management Information Systems 14 (4), 113–147.

Kitchenham, B. A., Budgen, D., and Brereton, P. 2015. Evidence-Based Software
Engineering and Systematic Reviews. Chapman & Hall/CRC.

Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue, K. 2018. Do developers
update their library dependencies? Empirical Software Engineering 23 (1),
384–417.

Landes, W. M. and Posner, R. A. 1989. An economic analysis of copyright law.
The Journal of Legal Studies 18 (2), 325–363.

Lanergan, R. G. and Grasso, C. A. 1984. Software engineering with reusable de-
signs and code. IEEE Transactions on Software Engineering (5), 498–501.

Larman, C. and Basili, V. R. 2003. Iterative and incremental developments. a brief
history. Computer 36 (6), 47–56.

Lau, B. and Ker, S. 2020. An Intellectual Property Law perspective on Open Source
Software Licences - Taylor Vinters. hURL: https ://www.taylorvinters . co
m / article / an - intellectual - property - law - perspective - on - open - source -
software-licencesi.

Lee, D.-G. and Seo, Y.-S. 2018. A Study on the Identifcation of Open Source Li-
cense Compatibility Violations. KIPS Transactions on Software and Data En-
gineering 7 (12), 451–460.

Lee, S., German, D. M., Hwang, S.-w., and Kim, S. 2015. Crowdsourcing Identif-
cation of License Violations. Journal of Computing Science and Engineering
9 (4), 190–203.

Lemley, M. A. 1994. Intellectual property and shrinkwrap licenses. S. Cal. L. Rev.
68, 1239.

Lerner, J. and Tirole, J. 2005. The scope of open source licensing. Journal of Law,
Economics, and Organization 21 (1), 20–56.

Lindman, J., Rossi, M., Puustell, A., et al. 2011. Matching open source software
licenses with corresponding business models. IEEE software.

Link, C. 2010. Patterns for the commercial use of open source: legal and licensing
aspects. In Proceedings of the 15th European Conference on Pattern Lan-
guages of Programs, 1–10.

https://www.taylorvinters.com/article/an-intellectual-property-law-perspective-on-open-source-software-licences
https://www.taylorvinters.com/article/an-intellectual-property-law-perspective-on-open-source-software-licences
https://www.taylorvinters.com/article/an-intellectual-property-law-perspective-on-open-source-software-licences

105

Liu, X., Huang, L., Ge, J., and Ng, V. 2019. Predicting licenses for changed source
code. In 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 686–697.

Lokhman, A., Abdul-Rahman, S., Luoto, A., and Hammouda, I. 2011. Managing
Open Source Legality Concerns–A Sustainability Catalyst. Proceedings of
SOS 2011: Towards Sustainable Open Source, 13.

Lokhman, A., Luoto, A., Abdul-Rahman, S., and Hammouda, I. 2012. OSSLI: Ar-
chitecture level management of open source software legality concerns. In
IFIP International Conference on Open Source Systems. Springer, 356–361.

Manabe, Y., German, D. M., and Inoue, K. 2014. Analyzing the relationship be-
tween the license of packages and their fles in free and open source soft-
ware. In IFIP International Conference on Open Source Systems. Springer,
51–60.

Manabe, Y., Hayase, Y., and Inoue, K. 2010. Evolutional analysis of licenses in
FOSS. In Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), 83–87.

Marron, D. B. and Steel, D. G. 2000. Which countries protect intellectual property?
The case of software piracy. Economic inquiry 38 (2), 159–174.

Mathur, A., Choudhary, H., Vashist, P., Thies, W., and Thilagam, S. 2012. An em-
pirical study of license violations in open source projects. In 2012 35th An-
nual IEEE Software Engineering Workshop. IEEE, 168–176.

Mattmann, C. A., Oh, J.-H., Palsulich, T., McGibbney, L. J., Gil, Y., and Ratnakar,
V. 2015. DRAT: An Unobtrusive, Scalable Approach to Large Scale Software
License Analysis. In 2015 30th IEEE/ACM International Conference on Au-
tomated Software Engineering Workshop (ASEW). IEEE, 97–101.

Meeker, H. 2017. Open source licensing: What every technologist should know.
hURL: https://opensource.org/licenses/categoryi.

Menell, P. S. 1989. An Analysis of the Scope of Copyright Protection for Appli-
cation Programs. Stanford Law Review 41 (5), 1045. ISSN: 00389765. DOI:
10.2307/1228751.

Mertzel, N. J. 2008. Copying 0.03 percent of software code base not ‘de minimis’.
Journal of Intellectual Property Law & Practice 3 (9), 547–548.

Mikkonen, T. and Taivalsaari, A. 2019. Software reuse in the era of opportunistic
design. IEEE Software 36 (3), 105–111.

Mlouki, O., Khomh, F., and Antoniol, G. 2016. On the detection of licenses viola-
tions in the android ecosystem. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). Vol. 1. IEEE,
382–392.

Monden, A., Okahara, S., Manabe, Y., and Matsumoto, K. 2010. Guilty or not
guilty: Using clone metrics to determine open source licensing violations.
IEEE software 28 (2), 42–47.

https://opensource.org/licenses/category
https://doi.org/10.2307/1228751

106

Moreau, B., Serrano-Alvarado, P., and Desmontils, E. 2018. CaLi: A Lattice-Based
Model for License Classifcations.

Moreau, B., Serrano-Alvarado, P., Perrin, M., and Desmontils, E. 2019. Modelling
the compatibility of licenses. In European Semantic Web Conference. Spring-
er, 255–269.

Morszczyzna, M. 2017. What’s really wrong with node_modules and why this is
your fault. hURL: https://hackernoon.com/whats-really-wrong-with-node
-modules-and-why-this-is-your-fault-8ac9fa893823?gi=8cf0367f74dci.

Mozilla 2020. MPL 2.0 FAQ. hURL: https://www.mozilla.org/en-US/MPL/2.0/
FAQ/i.

Nejad, N. M., Scerri, S., Auer, S., and Sibarani, E. M. 2016. Eulaide: Interpreta-
tion of end-user license agreements using ontology-based information ex-
traction. In Proceedings of the 12th International Conference on Semantic
Systems, 73–80.

nexB inc. 2020. Licenses. hURL: https://enterprise.dejacode.com/licenses/i.
O’Hare, M. 1982. Copyright and the protection of economic rights. Journal of Cul-

tural Economics 6 (1), 33–48.

Open Source Initiative 2020a. Open Source Licenses by Category. hURL: https :
//opensource.org/licenses/categoryi.

Open Source Initiative 2020b. The 2-Clause BSD License. hURL: https://opensou
rce.org/licenses/BSD-2-Clausei.

Open Source Initiative 2020c. The 3-Clause BSD License. hURL: https://opensou
rce.org/licenses/BSD-3-Clausei.

Open Source Initiative 2020d. The Open Source Defnition. hURL: https://opens
ource.org/osdi.

Papazafeiropoulou, A. and Spanaki, K. 2016. Understanding governance, risk
and compliance information systems (GRC IS): The experts view. Informa-
tion Systems Frontiers 18 (6), 1251–1263.

Paschalides, D. and Kapitsaki, G. M. 2016. Validate your SPDX fles for open
source license violations. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 1047–
1051.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. 2007. A design
science research methodology for information systems research. Journal of
management information systems 24 (3), 45–77.

Pellegrini, T., Havur, G., Steyskal, S., Panasiuk, O., Fensel, A., Mireles, V., Thurner,
T., Polleres, A., Kirrane, S., and Schönhofer, A. 2019. DALICC: A License
Management Framework for Digital Assets. Proceedings of the Internationa-
les Rechtsinformatik Symposion (IRIS) 10.

Peterson, C. 2018. How I coined the term ’open source’. hURL: https://opensour
ce.com/article/18/2/coining-term-open-source-softwarei.

https://hackernoon.com/whats-really-wrong-with-node-modules-and-why-this-is-your-fault-8ac9fa893823?gi=8cf0367f74dc
https://hackernoon.com/whats-really-wrong-with-node-modules-and-why-this-is-your-fault-8ac9fa893823?gi=8cf0367f74dc
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
https://enterprise.dejacode.com/licenses/
https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/osd
https://opensource.org/osd
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software

107

Phipps, S. 2013. Open source needs to clean up its language. hURL: https://www.
infoworld . com / article / 2612747 / open - source - needs - to - clean - up - its -
language.htmli.

Pina, P. 2011. Computer Games and Intellectual Property Law: Derivative Works,
Copyright and Copyleft. In Business, Technological, and Social Dimensions
of Computer Games: Multidisciplinary Developments. IGI Global, 464–475.

PRISMA 2015. PRISMA. Transparent reporting of systematic reviews and meta-
analyses. hURL: http://www.prisma-statement.org/i.

Ragkhitwetsagul, C. and Krinke, J. 2019. Siamese: scalable and incremental code
clone search via multiple code representations. Empirical Software Engi-
neering 24 (4), 2236–2284.

Ragkhitwetsagul, C., Krinke, J., and Oliveto, R. 2018. Awareness and experience
of developers to outdated and license-violating code on stack overfow: An
online survey. arXiv preprint arXiv:1806.08149.

Riehle, D. and Harutyunyan, N. 2019. Open-source license compliance in soft-
ware supply chains. In Towards Engineering Free/Libre Open Source Soft-
ware (FLOSS) Ecosystems for Impact and Sustainability. Springer, 83–95.

Rigamonti, C. P. 2006. Deconstructing moral rights. Harv. Int’l LJ 47, 353.

Romansky, S., Chen, C., Malhotra, B., and Hindle, A. 2018. Sourcerer’s Apprentice
and the study of code snippet migration. arXiv preprint arXiv:1808.00106.

Rosen, L. 2001. The unreasonable fear of infection. Open Magazine.

Rosen, L. 2005. Open source licensing. Vol. 692. Prentice Hall.

RoyChowdhury, S., Gangadharan, G., Silveira, P., and D’Andrea, V. 2010. From
ODRL-S to low-Level DSL: a case study based on license compliance in ser-
vice oriented systems. In Proceedings of the 8th international workshop for
technical, economic and legal aspects of business models for virtual goods.

Ruffn, C. and Ebert, C. 2004. Using open source software in product develop-
ment: A primer. IEEE software 21 (1), 82–86.

Ruskin, J. 2018. Improving your OSS dependency workfow with Licensed. hURL:
https : / / github . blog / 2018 - 03 - 07 - improving - your - oss - dependency -
workflow-with-licensed/i.

Ryan, P. 2009. Cisco settles FSF GPL lawsuit, appoints compliance offcer. hURL:
https://arstechnica.com/information-technology/2009/05/cisco-settles-
fsf-gpl-lawsuit-appoints-compliance-officer/i.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., and Lopes, C. V. 2016. SourcererCC:
Scaling code clone detection to big-code. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, 1157–1168.

Sass, R. 2015. Top 10 Common Development and Distribution License (CDDL)
Questions Answered. hURL: https://resources.whitesourcesoftware.com/
blog-whitesource/top-10-cddl-questions-answeredi.

https://www.infoworld.com/article/2612747/open-source-needs-to-clean-up-its-language.html
https://www.infoworld.com/article/2612747/open-source-needs-to-clean-up-its-language.html
https://www.infoworld.com/article/2612747/open-source-needs-to-clean-up-its-language.html
http://www.prisma-statement.org/
https://github.blog/2018-03-07-improving-your-oss-dependency-workflow-with-licensed/
https://github.blog/2018-03-07-improving-your-oss-dependency-workflow-with-licensed/
https://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer/
https://arstechnica.com/information-technology/2009/05/cisco-settles-fsf-gpl-lawsuit-appoints-compliance-officer/
https://resources.whitesourcesoftware.com/blog-whitesource/top-10-cddl-questions-answered
https://resources.whitesourcesoftware.com/blog-whitesource/top-10-cddl-questions-answered

108

Schoettle, H. 2019. Open Source License Compliance-Why and How? Computer
52 (8), 63–67.

Sen, R., Subramaniam, C., and Nelson, M. L. 2011. Open source software licenses:
Strong-copyleft, non-copyleft, or somewhere in between? Decision support
systems 52 (1), 199–206.

Sen, R., Subramaniam, C., and Nelson, M. L. 2008. Determinants of the choice of
open source software license. Journal of Management Information Systems
25 (3), 207–240. ISSN: 07421222. DOI: 10.2753/MIS0742-1222250306.

Singi, K., Kaulgud, V., Bose, R. J. C., and Podder, S. 2019. CAG: compliance adher-
ence and governance in software delivery using blockchain. In 2019 IEEE/
ACM 2nd International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB). IEEE, 32–39.

Sonnenberg, C. and Vom Brocke, J. 2012. Evaluations in the science of the artifcial–
reconsidering the build-evaluate pattern in design science research. In In-
ternational Conference on Design Science Research in Information Systems.
Springer, 381–397.

SPDX Workgroup 2018. License Exceptions. hURL: https://spdx.org/licenses/
exceptions-index.htmli.

SPDX Workgroup 2020a. SPDX. hURL: https://spdx.dev/i.
SPDX Workgroup 2020b. SPDX Specifcation submitted to ISO. hURL: https ://

spdx.dev/spdx-specification-submitted-to-iso/i.
Stack Exchange Inc. 2020. Public Network Terms of Service. hURL: https://stack

overflow.com/legal/terms-of-service/public#licensingi.
Stallman, R. 1985. The GNU Manifesto. hURL: https : / / www . gnu . org / gnu /

manifesto.en.htmli.
Stoltz, M. L. 2005. The penguin paradox: How the scope of derivative works in

copyright affects the effectiveness of the GNU GPL. BUL Rev. 85, 1439.

Synopsis 2018. Synopsis: Open Source Security and Risk Analysis. Network Se-
curity 2018 (6), 3. ISSN: 1353-4858. DOI: https://doi.org/10.1016/S1353-
4858(18)30051-5.

Tamrawi, A., Nguyen, H. A., Nguyen, H. V., and Nguyen, T. N. 2012. Build code
analysis with symbolic evaluation. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 650–660.

Tang, W., Chen, D., and Luo, P. 2018. Bcfnder: A lightweight and platform-inde-
pendent tool to fnd third-party components in binaries. In 2018 25th Asia-
Pacifc Software Engineering Conference (APSEC). IEEE, 288–297.

Tuunanen, T., Koskinen, J., and Kärkkäinen, T. 2006a. Asla: reverse engineering
approach for software license information retrieval. In Conference on Soft-
ware Maintenance and Reengineering (CSMR’06). IEEE, 4–pp.

https://doi.org/10.2753/MIS0742-1222250306
https://spdx.org/licenses/exceptions-index.html
https://spdx.org/licenses/exceptions-index.html
https://spdx.dev/
https://spdx.dev/spdx-specification-submitted-to-iso/
https://spdx.dev/spdx-specification-submitted-to-iso/
https://stackoverflow.com/legal/terms-of-service/public#licensing
https://stackoverflow.com/legal/terms-of-service/public#licensing
https://www.gnu.org/gnu/manifesto.en.html
https://www.gnu.org/gnu/manifesto.en.html
https://doi.org/https://doi.org/10.1016/S1353-4858(18)30051-5
https://doi.org/https://doi.org/10.1016/S1353-4858(18)30051-5

109

Tuunanen, T., Koskinen, J., and Kärkkäinen, T. 2006b. Retrieving open source soft-
ware licenses. In IFIP International Conference on Open Source Systems.
Springer, 35–46.

Tuunanen, T., Koskinen, J., and Kärkkäinen, T. 2009. Automated software license
analysis. Automated Software Engineering 16 (3-4), 455–490.

United Nations 2020. Universal Declaration of Human Rights. hURL: https : / /
www.un.org/en/universal-declaration-human-rights/i.

US Commission on New Technological Uses of Copyrighted Works (CONTU)
1978. Final report of the National Commission on New Technological Uses
of Copyrighted Works. US Congress.

Välimäki, M. and Oksanen, V. 2005. How to Manage IPR Infringement Risks in
Open Source Development. Intellectual Property Beyond Rights”, IPR Uni-
versity Center, WSOY, Finland, 347–364.

Van Der Burg, S., Dolstra, E., McIntosh, S., Davies, J., German, D. M., and Hemel,
A. 2014. Tracing software build processes to uncover license compliance in-
consistencies. In Proceedings of the 29th ACM/IEEE international confer-
ence on Automated software engineering, 731–742.

Vaughan-Nichols, S. J. 2015. VMware sued for failure to comply with Linux li-
cense. hURL: https://www.zdnet.com/article/vmware-sued-for-failure-
to-comply-with-linuxs-license/i.

Venable, J. 2010. Design science research post hevner et al.: criteria, standards,
guidelines, and expectations. In International Conference on Design Science
Research in Information Systems. Springer, 109–123.

Venable, J., Pries-Heje, J., and Baskerville, R. 2016. FEDS: a framework for eval-
uation in design science research. European journal of information systems
25 (1), 77–89.

Vendome, C. 2015. A large scale study of license usage on GitHub. In 2015 IEEE/
ACM 37th IEEE International Conference on Software Engineering. Vol. 2.
IEEE, 772–774.

Vendome, C. 2016. Assisting developers with license compliance. In 2016 IEEE/
ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 811–814.

Vendome, C., Bavota, G., Di Penta, M., Linares-Vásquez, M., German, D. M., and
Poshyvanyk, D. 2017a. License usage and changes: a large-scale study on
gitHub. Empirical Software Engineering 22 (3), 1537–1577.

Vendome, C., German, D. M., Di Penta, M., Bavota, G., Linares-Vásquez, M., and
Poshyvanyk, D. 2018. To Distribute or Not to Distribute? Why Licensing
Bugs Matter. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 268–279.

https://www.un.org/en/universal-declaration-human-rights/
https://www.un.org/en/universal-declaration-human-rights/
https://www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license/
https://www.zdnet.com/article/vmware-sued-for-failure-to-comply-with-linuxs-license/

110

Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German, D. M., and
Poshyvanyk, D. 2015. License usage and changes: a large-scale study of java
projects on github. In 2015 IEEE 23rd International Conference on Program
Comprehension. IEEE, 218–228.

Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German, D. M., and
Poshyvanyk, D. 2017b. Machine learning-based detection of open source li-
cense exceptions. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering (ICSE). IEEE, 118–129.

Viseur, R. 2016. A FLOSS License-selection Methodology for Cloud Computing
Projects. In CLOSER (1), 129–136.

Vom Brocke, J., Hevner, A. R., and Maedche, A. 2020. Introduction to Design Sci-
ence Research. Springer International Publishing, 1–13. ISBN: 9783030467814.
DOI: 10.1007/978-3-030-46781-4_1. hURL: http://dx.doi.org/10.1007/978-
3-030-46781-4_1i.

Von Krogh, G. and Von Hippel, E. 2003. Special issue on open source software
development.

Weckert, J. 1997. Intellectual property rights and computer software. Business
Ethics: A European Review 6 (2), 101–109.

Weissman, N. 2016. I Didn’t Believe It Either. Microsoft No.1 for Open Source!
hURL: https://resources.whitesourcesoftware.com/blog- whitesource/i-
didn-t-believe-it-either-microsoft-no-1-for-open-sourcei.

Wikipedia 2020. Threshold of originality. hURL: https://en.wikipedia.org/wiki/
Threshold_of_originalityi.

Winslow, S. 2020. Copyright Notices in Open Source Software Projects. hURL: ht
tps://www.linuxfoundation.org/blog/2020/01/copyright- notices- in-
open-source-software-projects/i.

WIPO 2016. Understanding Copyright and related rights. WIPO Publication, 1–
26. ISSN: 03361500. DOI: 10 .3406/colan .1975 .4181. hURL: https ://www.
wipo.int/edocs/pubdocs/en/wipo_pub_909_2016.pdfi.

WIPO 2020a. Copyright Protection of Computer Software. hURL: https://www.
wipo.int/copyright/en/activities/software.htmli.

WIPO 2020b. What is Intellectual Property? hURL: https://www.wipo.int/edocs
/pubdocs/en/wipo_pub_450_2020.pdfi.

WTO 2020. What are intellectual property rights? hURL: https://www.wto.org/
english/tratop_e/trips_e/intel1_e.htmi.

Wu, Y., Manabe, Y., German, D. M., and Inoue, K. 2017a. How are Developers
Treating License Inconsistency Issues? A Case Study on License Inconsis-
tency Evolution in FOSS Projects. In IFIP International Conference on Open
Source Systems. Springer, 69–79.

https://doi.org/10.1007/978-3-030-46781-4_1
http://dx.doi.org/10.1007/978-3-030-46781-4_1
http://dx.doi.org/10.1007/978-3-030-46781-4_1
https://resources.whitesourcesoftware.com/blog-whitesource/i-didn-t-believe-it-either-microsoft-no-1-for-open-source
https://resources.whitesourcesoftware.com/blog-whitesource/i-didn-t-believe-it-either-microsoft-no-1-for-open-source
https://en.wikipedia.org/wiki/Threshold_of_originality
https://en.wikipedia.org/wiki/Threshold_of_originality
https://www.linuxfoundation.org/blog/2020/01/copyright-notices-in-open-source-software-projects/
https://www.linuxfoundation.org/blog/2020/01/copyright-notices-in-open-source-software-projects/
https://www.linuxfoundation.org/blog/2020/01/copyright-notices-in-open-source-software-projects/
https://doi.org/10.3406/colan.1975.4181
https://www.wipo.int/edocs/pubdocs/en/wipo_pub_909_2016.pdf
https://www.wipo.int/edocs/pubdocs/en/wipo_pub_909_2016.pdf
https://www.wipo.int/copyright/en/activities/software.html
https://www.wipo.int/copyright/en/activities/software.html
https://www.wipo.int/edocs/pubdocs/en/wipo_pub_450_2020.pdf
https://www.wipo.int/edocs/pubdocs/en/wipo_pub_450_2020.pdf
https://www.wto.org/english/tratop_e/trips_e/intel1_e.htm
https://www.wto.org/english/tratop_e/trips_e/intel1_e.htm

111

Wu, Y., Manabe, Y., Kanda, T., German, D. M., and Inoue, K. 2015. A method
to detect license inconsistencies in large-scale open source projects. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE,
324–333.

Wu, Y., Manabe, Y., Kanda, T., German, D. M., and Inoue, K. 2017b. Analysis of
license inconsistency in large collections of open source projects. Empirical
Software Engineering 22 (3), 1194–1222.

Wu, Y., Wang, S., Bezemer, C.-P., and Inoue, K. 2019. How do developers utilize
source code from stack overfow? Empirical Software Engineering 24 (2),
637–673.

Xu, H., Yang, H., Wan, D., and Wan, J. 2010. The design and implement of open
source license tracking system. In 2010 International Conference on Com-
putational Intelligence and Software Engineering. IEEE, 1–4.

Yun, H. Y., Joe, Y. J., Jung, B.-O., and Shin, D. 2017a. Method for License Com-
pliance of Open Source Software. In Proceedings of the Korea Information
Processing Society Conference. Korea Information Processing Society, 548–
550.

Yun, H. Y., Joe, Y. J., and Shin, D. M. 2017b. Method of license compliance of open
source software governance. In 2017 8th IEEE International Conference on
Software Engineering and Service Science (ICSESS). IEEE, 83–86.

Zhang, H., Shi, B., and Zhang, L. 2010. Automatic checking of license compliance.
In 2010 IEEE International Conference on Software Maintenance. IEEE, 1–3.

APPENDIX 1 CATEGORIZATION OF OSI-APPROVED
LICENSES

TABLE 13 Categorization of OSI-approved licenses.

Permissive Weak copyleft Strong copyleft

0-clause BSD License (0BSD) Adaptive Public License (APL-1.0) CeCILL License 2.1 (CECILL-2.1)
1-clause BSD License (BSD-1-Clause) Apple Public Source License (APSL-2.0) Cryptographic Autonomy License v.1.0 (CAL-1.0)
2-clause BSD License (BSD-2-Clause) Common Public Attribution License 1.0 (CPAL-1.0) European Union Public License 1.2 (EUPL-1.2)
3-clause BSD License (BSD-3-Clause) Common Development and Distribution License 1.0 (CDDL-1.0) Frameworx License (Frameworx-1.0)
Academic Free License 3.0 (AFL-3.0) Eclipse Public License 2.0 (EPL-2.0) GNU Affero General Public License version 3 (AGPL-3.0)
Apache License 2.0 (Apache 2.0) GNU Lesser General Public License version 2.1 (LGPL-2.1) GNU General Public License version 2 (GPL-2.0)
Artistic License 2.0 (Artistic-2.0) GNU Lesser General Public License version 3 (LGPL-3.0) GNU General Public License version 3 (GPL-3.0)
Attribution Assurance License (AAL) IBM Public License 1.0 (IPL-1.0) Licence Libre du Québec – Réciprocité forte (LiLiQ-R+) version 1.1 (LiliQ-R+)
Boost Software License (BSL-1.0) Licence Libre du Québec – Réciprocité (LiLiQ-R) version 1.1 (LiliQ-R) Nethack General Public License (NGPL)
BSD-3-Clause-LBNL Microsoft Reciprocal License (MS-RL) Non-Proft Open Software License 3.0 (NPOSL-3.0)
BSD+Patent (BSD-2-Clause-Patent) Motosoto License (Motosoto) OCLC Research Public License 2.0 (OCLC-2.0)
Computer Associates Trusted Open Source License 1.1 (CATOSL-1.1) Mozilla Public License 2.0 (MPL-2.0) Open Software License 3.0 (OSL-3.0)
eCos License version 2.0 (eCos-2.0) NASA Open Source Agreement 1.3 (NASA-1.3) RealNetworks Public Source License V1.0 (RPSL-1.0)
Educational Community License, Version 2.0 (ECL-2.0) Nokia Open Source License (Nokia) Reciprocal Public License 1.5 (RPL-1.5)
Eiffel Forum License V2.0 (EFL-2.0) OSET Public License version 2.1 Simple Public License 2.0 (SimPL-2.0)
Entessa Public License (Entessa) Q Public License (QPL-1.0) Sleepycat License (Sleepycat)
EU DataGrid Software License (EUDatagrid) Ricoh Source Code Public License (RSCPL) Sybase Open Watcom Public License 1.0 (Watcom-1.0)
Fair License (Fair) Sun Public License 1.0 (SPL-1.0)
Historical Permission Notice and Disclaimer (HPND) Upstream Compatibility License v1.0
IPA Font License (IPA) wxWindows Library License (WXwindows)
ISC License (ISC)
LaTeX Project Public License 1.3c (LPPL-1.3c)
Lawrence Berkeley National Labs BSD Variant License (BSD-3-Clause-LBNL)
Licence Libre du Québec – Permissive (LiLiQ-P) version 1.1 (LiliQ-P)
Lucent Public License Version 1.02 (LPL-1.02)
Microsoft Public License (MS-PL)
MirOS Licence (MirOS)
MIT License (MIT)
Mulan Permissive Software License v2 (MulanPSL - 2.0)
Multics License (Multics)
Naumen Public License (Naumen)
NTP License (NTP)
Open Group Test Suite License (OGTSL)
OpenLDAP Public License Version 2.8 (OLDAP-2.8)
PHP License 3.01 (PHP-3.01)
The PostgreSQL License (PostgreSQL)
Python License (Python-2.0)
CNRI Python license (CNRI-Python)
SIL Open Font License 1.1 (OFL-1.1)
Universal Permissive License (UPL)
University of Illinois/NCSA Open Source License (NCSA)
Unicode Data Files and Software License
The Unlicense
Vovida Software License v. 1.0 (VSL-1.0)
W3C License (W3C)
X.Net License (Xnet)
Zero-Clause BSD / Free Public License 1.0.0 (0BSD)
Zope Public License 2.0 (ZPL-2.0)
zlib/libpng license (Zlib)

113

APPENDIX 2 EXCLUDED PUBLICATIONS IN PHASE 3 OF
SELECTION PROCESS

TABLE 14 Excluded publications in phase 3 of selection process.

Authors Exclusion rationale

An et al. (2017) No automated tools or methods for OSS license compli-
ance described. Uses method described in Mlouki et al.
(2016).

Azhakesan and No automated tools or methods for OSS license compli-
Paulisch (2020) ance described. Only listed for upcoming talk.
Boughanmi (2010) No automated tools or methods for OSS license compli-

ance described.
Duan et al. (2017) Related to clone detection of binaries, which is not the

preferred format for reuse.
Fendt and Jaeger (2019) No automated tools or methods for OSS license compli-

ance described.
Feng et al. (2019) Not related to OSS license compliance in reuse. Violation

detection instead.
Fujita and Tsukada Not related to OSS licenses.
(2012)
Germonprez et al. No automated tools or methods for OSS license compli-
(2012) ance described.
Gordon (2014) Tool demonstration. Quality of research raises questions.
Harutyunyan et al. No automated tools or methods for OSS license compli-
(2019) ance described. However, important background info.
Harutyunyan and No automated tools or methods for OSS license compli-
Riehle (2019b) ance described. Instead focuses on OSS governance.
Harutyunyan and No automated tools or methods for OSS license compli-
Riehle (2019a) ance described. Focuses on OSS governance and compli-

ance practices.
Heirendt et al. (2017) Tool demonstration. Quality of research raises questions.
Hemel et al. (2011) Not related to OSS license compliance in reuse. Violation

detection instead.
Ishio et al. (2017) No automated tools or methods for OSS license compli-

ance described.
Kesan and Gruner Not related to OSS.
(2020)
Lindman et al. (2011) Related to license selection, not compliance.
Link (2010) No automated tools or methods for OSS license compli-

ance described.
Lokhman et al. (2011) No automated tools or methods for OSS license compli-

ance described.

Manabe et al. (2010)

Monden et al. (2010)

Moreau et al. (2018)
Papazafeiropoulou and
Spanaki (2016)
Riehle and Harutyun-
yan (2019)
Romansky et al. (2018)

RoyChowdhury et al.
(2010)
Schoettle (2019)

Tamrawi et al. (2012)

Tang et al. (2018)

Vendome (2015)

Vendome et al. (2015)

Vendome (2016)

Vendome et al. (2017a)

Viseur (2016)
Wu et al. (2017b)

Wu et al. (2017a)

Wu et al. (2019)

115

No automated tools or methods for OSS license compli-
ance described. Only uses Ninka.
Clone detection metrics exploration. Not related to li-
cense compliance.
Working paper. Results presented in Moreau et al. (2019).
No automated tools or methods for OSS license compli-
ance described.
No automated tools or methods for OSS license compli-
ance described.
Quality of research raises questions. Published in non
peer reviewed site.
Not related to OSS reuse.

No automated tools or methods for OSS license compli-
ance described. However, important background info.
Not related to OSS license compliance in reuse. Improve-
ment to ASLA dependency map creation.
Not related to OSS license compliance in reuse. Violation
detection instead.
No automated tools or methods for OSS license compli-
ance described.
No automated tools or methods for OSS license compli-
ance described.
No automated tools or methods for OSS license compli-
ance described.
No automated tools or methods for OSS license compli-
ance described.
Related to license selection, not compliance.
No automated tools or methods for OSS license com-
pliance described. Uses method described in Wu et al.
(2015)
No automated tools or methods for OSS license com-
pliance described. Uses method described in Wu et al.
(2015).
No automated tools or methods for OSS license compli-
ance described.

	Tool Support for Open Source Software License Compliance: The First Two Decades of the Millennium
	Abstract
	Tiivistelmä (Abstract in Finnish)
	Acknowledgements
	Nomenclature
	Lists of Figures and Tables
	Contents
	Introduction
	Methodology and Research Questions
	Overview of Results
	Structure of the dissertation

	Intellectual property rights and OSS licenses
	Intellectual property rights
	Overview
	Copyrights
	Patents
	Trademarks
	Licensing IPR protected work

	Open source software licenses
	History and overview
	Permissive licenses
	Copyleft licenses
	License compatibility

	Summary

	Open source license compliance
	Overview
	Identifying used open source software and its licenses
	Approving the reuse of OSS
	Satisfying OSS license obligations
	Summary

	Results from the design cycle
	Identification of licenses and their dependencies
	Approval of OSS and satisfaction of license obligations
	Tool evaluation
	Validity
	Summary

	Results from the review cycle
	Research protocol
	Searching for candidate studies
	Selection of studies
	Data extraction and synthesis

	Overview of the results
	Classification of the included studies
	Secondary studies
	Primary studies
	Other studies
	Software Package Data Exchange

	Identification step of license compliance
	Identification of the origin of the OSS
	License identification
	Dependency identification

	Approval of OSS reuse
	License compatibility checking
	License comprehension

	Satisfying the license obligations
	Validity
	Summary

	Discussion
	Revisiting research questions
	Contributions to theory and practice

	Conclusion
	Yhteenveto (Summary in Finnish)
	Bibliography
	Categorization of OSI-approved licenses
	Excluded publications in phase 3 of selection process

