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 Highlights  

 Activated carbon foams can be used as catalyst supports.  

 High conversion of furfural and selectivity for 2-methylfuran were obtained with Cu/Ni catalysts on 
activated carbon foams.  

 Compressive strength of activated carbon foam materials can be enhanced with thermal treatment at 
high temperatures.  

 Acid treatment of carbon foam supports with nitric acid increased the selectivity to 2-methylfuran.  

 Small metal particles on the surface of the catalyst supports increased the selectivity to 2-

methylfuran.  

 

Abstract: In this study, carbon foams prepared from the by-products of the Finnish forest industry, such 

as tannic acid and pine bark extracts, were examined as supports for 5/5% Cu/Ni catalysts in the 

hydrotreatment of furfural to 2-methylfuran (MF). Experiments were conducted in a batch reactor at 

503 K and 40 bar H2. Prior to metal impregnation, the carbon foam from tannic acid was activated with 

steam (S1), and the carbon foam from pine bark extracts was activated with ZnCl2 (S2) and washed with 

acids (HNO3 or H2SO4). For comparison, a spruce-based activated carbon (AC) catalyst and two 

commercial AC catalysts as references were investigated. Compressive strength of the foam S2 was 30 

times greater than that of S1. The highest MF selectivity of the foam-supported catalysts was 48% (S2, 

washed with HNO3) at a conversion of 91%. According to the results, carbon foams prepared from pine 

bark extracts can be applied as catalyst supports. 

Keywords: Biobased foams, carbon, mechanical strength, furfural, Cu/Ni catalyst, 2-methylfuran. 

 

1. Introduction 

 

Owing to the increase in the demand for chemicals and liquid fuels, which are primarily prepared 

from depleting fossil fuel sources, the growing society requires sustainable and renewable resources to 
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produce value-added chemicals and liquid fuels [1,2]. Biomass has been widely investigated for 

decades, and it has proven to be a good source of energy and raw material for chemicals and fuels due 

to its consistency, renewability, structure, and easy availability [3]. Biomass can be applied in several 

industrial and chemical processes, such as pyrolysis, gasification, fermentation, and extraction, to 

produce heat, electricity, and biobased materials, such as ethanol and furfural derivatives. Developing 

countries produce lignocellulosic feedstocks, which are mainly used as energy for industrial boilers [4]. 

In Finland, lignocellulosic feedstock, which is produced by the forest industry, is also used as an energy 

source,[5] as well as in the pulping process, and it can be further developed in biorefineries to produce 

other value-added products, e.g., 2-methylfuran (MF) and its derivatives [6]. As a side product, bark and 

lignin are produced in a large amount, which are mainly considered as waste or low-value products [7]. 

Furfural is known as a platform chemical, which is obtained from lignocellulosic biomass by the 

hydrolysis and dehydration of hemicellulose [8]. Hydrotreatment is a typical process for the upgrading 

of furanic components; the conversion can be performed in either the gas or liquid phase [8,9]. MF is 

one of the most important products obtained from the hydrotreatment of furfural, which can be used as a 

solvent or biofuel when blended with gasoline [9]. MF demonstrates the potential to replace fossil-based 

components in gasoline due to its beneficial fuel characteristics, e.g., high octane number and low 

solubility in water (research octane number of 131, 7 g L1) [10]. Recent studies have reported high MF 

yields [11–14]. For example, Fu et al. [11] have reported an MF yield of 92% over a 10–10% CuNi 

catalyst on an Al2O3 support, with a furfural conversion of 100%, at 483 K using formic acid as the 

hydrogen donor.  

Furanic compounds, such as furfural, can be adsorbed on a metal either via the furan ring or via the 

oxygenated side chain or both. The adsorption mode of furfural depends on the nature of the metal. 

Three typical adsorption modes are as follows: η1-(O) adsorption mode via the aldehyde functionality, 

η2-(C,O) adsorption mode, in which the furan ring is adsorbed on the metal with the C atom but also 

with the O atom of the carbonyl group, and η1-(C) acyl adsorption mode, which is converted from η2-
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(C,O) adsorption at high temperatures [15,16]. Furfural exhibits a stronger interaction with Ni (in 

contrast to Cu), permitting the adsorption of the furan ring via the η2-(C,O) adsorption mode. In case of 

Cu, the Cu(111) surface, in particular, exhibits a strong repulsion for the furan ring; thus, the typical 

adsorption mode is η1-(O) [16].  

Shi [17] has conducted a density functional theory (DFT) study and reported that MF can be 

formed by four competitive routes. The attack of carbon from the C=O group by hydrogen affords an 

alkoxy intermediate or a 2-furanyl(hydroxy)methyl intermediate. In addition, direct C=O and C–H 

dissociation routes were presented. Among these pathways, the formation of the alkoxy intermediate 

species was the rate-determining step [17]. In general, the Cu catalyst favored the production of furfuryl 

alcohol (FA), MF, and pentanediols rather than decarbonylation and furan-ring hydrogenation products, 

such as 2‐ methyltetrahydrofuran (MTHF) and THF. As the hydrogenation of the C=O bond in FA was 

relatively less favorable, which is required to obtain MF [10,16,18], the activity can be increased by 

utilizing a high reaction temperature, adding a second oxophilic metal to the catalyst to enhance the 

deoxygenation ability, or increasing the Lewis acidity of the catalyst [16]. The presence of  both Cu and 

Cu+ in the catalyst is crucial. Metallic Cu was proposed to activate H2 and the Cu+ species, which serve 

as a Lewis acid or as electrophilic sites polarizing the C=O bond [19].  

Owing to the higher hydrogenation activity of Ni, the distribution of products obtained over a Ni 

catalyst is typically wider than obtained over a Cu catalyst. In addition to FA, MF, pentanediols, 

cyclopentanone, and cyclopentanol, tetrahydrofurfuryl alcohol (THFA), MTHF, THF, and furan can be 

obtained. Previously, Rodiansono et al. [20] have reported the formation of 1,4-pentanediols over Ni 

catalysts. THFA is formed by the nonselective hydrogenation over most of the Ni catalysts [16]. The 

MF selectivity can be improved by the application of bimetallic Ni catalysts; for example, the NiFe 

alloy can reduce the decarbonylation activity and improve the hydrogenolysis of the C–O bond of FA 

by hindering the transformation of the η2-(C,O) adsorption mode to the η1-(C) acyl adsorption mode 

[21]. Moreover, Yu et al. [22] have conducted a DFT study and proposed that the main adsorption mode 
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is via the aldehyde functionality on the NiFe surfaces. A similar interaction also was observed on the 

NiCu(111) surface [15]. 

Activated carbons (ACs) are produced by thermal treatment or a combination of chemical and 

thermal treatment of carbon-rich sources such as lignite or of lignocellulosic materials in the case of 

biomass-based carbon. In AC production, coconut shells, peat, and wood chips or saw dust are typically 

used as biobased raw materials [23,24]. The porous structure, high specific surface area (SSA), and 

adsorption capacity of ACs are widely exploited in several industrial and municipal purification 

processes. ACs are mainly applied for wastewater treatment, gas cleaning processes, metal removal 

from waste streams, and as a catalyst [25–30]. Recently, AC has been used as a support material for 

transition metals, and its activity for the hydrotreatment of furfural has been investigated. For example, 

Fu et al. [12] have reported a high MF yield (91%) after a reaction time of 8 h at 473 K (formic acid as 

the hydrogen donor) using the 10–10% CuNi catalyst on AC. Date et al. [13] have reported an MF yield 

of 95%, with almost complete conversion, after a reaction time of 5 h at 493 K (6.9 bar H2 pressure) 

over a 5% Ir/AC catalyst. Gong et al. [31] have reported the highest MF yield of almost 100%, with 

100% furfural conversion, over a Cu/AC catalysts at 440 K and 40 bar H2 after a reaction time of 4 h. 

One of the drawbacks of using ACs as a catalyst support material is their limited mechanical 

stability, especially abrasion strength [32,33]. Typically, briquetting or other techniques that can 

enhance the mechanical stability of ACs are required to avoid particle shattering and a high pressure 

drop in a fixed-bed reactor [34,35]. Hence, widely investigated condensed tannin-based carbon foams 

[36–38] are promising support materials due to the possibility of tailoring the mechanical strength by 

high-temperature thermal treatment [39]. Thermal treatment (steam activation) typically produces a 

microporous material, whereas chemical activation (e.g., using ZnCl2) typically produces a mesoporous 

material [28]. 

 Tannic-acid-based or pine-bark-extracts-based carbon foams (Fig. 1) can be produced using a 

combination of a phenolic substance (condensed or hydrolysable tannin), which are found in plants or in 
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the wood bark structure, a cross-linker, catalyst, surfactant, and blowing agent. Physical properties, such 

as SSA, pore size distribution (PSD), mechanical strength, electrical and thermal conductivities, fire 

resistance, metal adsorption, and permeability, of tannin-based foams have been investigated previously 

[40–42]. However, to the best of our knowledge, the use of these foams as catalyst support materials has 

not been attempted previously. 

In this study, the goal was to investigate the use of two activated carbon foams (ACF), which were 

produced from tannic acid and pine bark extracts, respectively, as catalyst supports for bimetallic Cu/Ni 

(5/5 w%) catalysts in the conversion of furfural to MF. As-prepared ACF were activated by physical 

and chemical activation methods. In addition, the SSA, PSD, and mechanical strength of these catalysts 

were investigated. Prior to metal addition, the activated support materials were further washed with 

HNO3 and H2SO4 to modify their surface properties. The combination of Cu and Ni was selected as 

these metals were found to be beneficial for the hydrotreatment of furfural to produce MF [11,12,43].  

2. Material and Methods 
 

For the first catalyst support material (S1), commercial tannic acid (95%), FA (98%), and surfactant 

(Tween 85) were purchased from Acros Organics. The acid catalyst p-toluenesulfonic acid monohydrate 
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(PTSA, 99%) for the foaming reaction and the blowing agent n-pentane (99.4%) were purchased from 

Merck KGaA. For chemical activation, technical-grade ZnCl2 (97%) was purchased from VWR 

Chemicals. Catalytic precursors of nickel(II) nitrate hexahydrate (20.17 w% Ni, 99% purity) and 

copper(II) nitrate hemi(pentahydrate) (27.30 w% Cu, 98% purity) were purchased from Merck KGaA 

and Alfa Aesar, respectively. For the second catalyst support material (S2), pine bark from northern 

Finland was used as the raw material. Pine bark was extracted using ETA 700 solution (70 w% ethanol 

in a water disinfectant solution), which was purchased from ETRA Oy Finland. For the third catalyst 

support material (S3), fine spruce powder from northern Finland was used. For acid treatment, HNO3 

(65 m%), HCl (32 w%), and H2SO4 (96 w%) were purchased from Merck KGaA. Commercial AC 

supports, i.e., steam-activated carbon (RB4C) and acid-washed carbon (RX3 extra), were obtained from 

Norit.  

For batch reactor experiments, the below-listed chemicals were purchased from Sigma-Aldrich. FA 

(98%), furan (≥99%), MF (99%), THFA (99%), MTHF (anhydrous, ≥99%), 2‐ propanol (≥99.5%), 2‐

butanol (99%), 2‐ pentanol (98%), cyclopentanol (99%), 2‐ pentanone (99.5%), and cyclopentanone 

(≥99%) were used without further purification. Furfural (99%) was distilled to a final molar purity of 

99.8%. The gases used for batch experiments were purchased from Oy AGA Ab. The purity of the 

hydrogen used for reactor experiments was 5.0, and the gases used in analytics were H2 (purity 5.0), He 

(purity 4.6), Ar (purity 5.0), synthetic air (purity 5.0), and N2 (purity 5.0). Two calibration gas mixtures 

were utilized. The first contained 40 mol% N2, 5 mol% CH4, 10 mol% C2H6, 5 mol% C2H4, 10 mol% 

C3H8, 5 mol% C3H6, 5 mol% C2H2, 10 mol% C4H10, and 10 mol% isobutane. The second calibration 

gas mixture contained 15 vol% CO, 15 vol% CO2, 15 vol% H2, 40 vol% N2, and 15 vol% CH4. 

2.1. Preparation of catalyst supports S1, S2, and S3 

 

Supports S1 and S3: The commercial tannic acid mixture was used to prepare support 1 (S1). 

First, deionized water (9 g), furfuryl alcohol (14 g), and Tween 85 (2 g) were thoroughly mixed for 30 s 

Jo
ur

na
l P

re
-p

ro
of



in a 1-L beaker. Second, tannic acid (30 g) was added to this liquid mixture and mixed with a 

mechanical stirrer (2000 rpm) for 5 min. Third, pentane was added (4.5 g) to the homogenous solution, 

followed by the addition of PTSA 8 g, 65% solution), and it was rapidly stirred with a mechanical 

stirrer. Foaming occurred within a few seconds, and polymerization was highly exothermic. When the 

initial foam stopped increasing, the beaker was placed in an oven for 24 h at 373 K by natural 

convection to harden the foam.  

Matured S1 was cut in pieces (1 cm ×1 cm × 1 cm) and placed in a stainless-steel tube, which was 

subsequently placed in a tubular fixed-bed reactor for activation. For support S1, steam activation was 

conducted at 1073 K using a ramp rate of 10 K min1 and a holding time of 4 h at the target 

temperature. For support S3, spruce sawdust was activated by steam at 1073 K using a ramp rate of 6.5 

K min1 and a holding time of 2 h. A water flow of 0.050 mL min1 was utilized for both activation 

methods at the target temperature. Nitrogen gas was flushed through the reactor to avoid sample 

oxidation. After physical activation, S3 material was washed several times with hot water to remove 

impurities such as Ca, K, Mg, Na, and Fe. Next, the catalyst support material was sieved to obtain 

particle sizes of 100–425 µm and further characterized and used for catalyst preparation. 

Support S2: Pine bark extracts were used to prepare support 2 (S2). First, the bark was dried at 

room temperature, followed by crushing and sieving to obtain a particle size of less than 1 mm. Second, 

the bark was extracted with EtOH:H2O (70:30) at a bark:solvent ratio of 75:1 (g L1). Extraction was 

carried out using a Soxhlet extractor for 2 h at an oil bath temperature of ~383 K. The bark extracts 

were dried at room temperature in a fume hood until the solvent was evaporated (~2 days). Then, 

support S2 was prepared as follows.  

First, pine bark extracts (30 g) were placed in a 400-mL beaker, followed by melting on a hot plate 

at 373 K to enable the mixing of the extractives with a spatula. Second, deionized water (9 g), furfural 

alcohol (14 g), and Tween 85 (2 g) were added to this solution, and the mixture was thoroughly mixed 
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for 5 min using a mechanical stirrer. Third, pentane (4.5 g) and PTSA (8 g, 65% solution) were added 

and stirred for 10 s. Foaming occurred within few minutes after placing the beaker in an oven at 373K. 

The foam was hardened for 24 h at this temperature before further use. 

First, matured S2 was gently crushed in a mortar using a pestle for chemical activation. Technical-

grade ZnCl2 (40 g) was dissolved in 100–200 mL of deionized water in a 600-mL beaker. Second, the 

support material was added to this solution so as to attain an initial ratio of 2:1 for ZnCl2 to the catalyst 

support material. Third, the solution was stirred using a stir bar at 353 K for 3 h with the addition of 

deionized water from time to time into the solution if the water level decreased considerably. Finally, 

the ZnCl2-impregnated wet carbon foams were dried in an oven at 378 K for 48 h. Then, the dried 

impregnated support material was placed in a stainless-steel tube for chemical activation, which was 

conducted at 873 K using a ramp rate of 5 K min1 and a holding time of 2 h at the target temperature. 

Nitrogen gas was flushed through the reactor the entire time to avoid sample oxidation. 

After wet impregnation and activation, the support material was refluxed with 3 M HCl for 1 h at 

373 K to remove the remaining ZnCl2. The catalyst support material was filtered and washed with 

deionized water until the pH was neutral. Then, the support material was dried in an oven at 373 K for 

24 h. The dry material was then sieved, characterized, and further used to prepare the catalyst in the 

same way as that carried out for S1. 

 

2.2. Mineral acid treatment of S1 and S2 supports 

 
 

Surfaces of S1 and S2 materials were modified by treatment with 3 M HNO3 (A1) or 6 M H2SO4 

(A2). Hereafter, these supports will be referred to as S1_A1, S1_A2 or S2_A1, S2_A2. The precise 

modification method was conducted as follows: In a 100-mL two-neck round-bottom flask, 50 mL of 

acid per 0.3 g of support was used. HNO3 treatment was conducted at 373 K for 2 h, and H2SO4 

treatment was conducted at 353 K for 3 h. For S1 material, careful mixing was required to maintain an 
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appropriate particle size of the material. After acid treatment, supports were washed with distilled water 

until the pH was neutral and subsequently placed in the oven at 373 K.  

 

2.3. Catalyst preparation 

 
 

Prior to the dry impregnation of catalyst supports, pore volumes (PV) of all support materials were 

measured as described in the next section. The amount of metal salts, i.e., Cu(NO3)32.5H2O and 

Ni(NO3)26H2O, inside the support were calculated so that the target concentration of metal was 5 w% 

each. Metal salts were dissolved in an exact amount of water to fill the PV of each support. Supports 

were mixed a few times with a spatula for 4–5 h and finally dried in an oven at 373 K for 24 h. All 

catalysts were subjected to thermal treatment in a stainless-steel tube in a fixed-bed reactor under 

nitrogen. Thermal treatment was carried out at 773 K using a ramp rate of 5 K min1 and a holding time 

of 2 h at the target temperature under a nitrogen flow (10 mL min1). 

2.4. Characterization of catalyst materials 

 

The SSA and PSD were determined The SSA and PSD were determined for unreduced, thermally 

treated catalyst samples by nitrogen physisorption isotherms measured at 77.15 K on a Micromeritics 

ASAP 2020 instrument (Micromeritics Instruments, Norcross, GA, USA). Portions of each sample 

(100–200 mg) were degassed at a low pressure of 0.27 kPa and at a temperature of 413 K for 2 h to 

remove adsorbed gas. Adsorption isotherms were obtained by the immersion of sample tubes in liquid 

nitrogen (77.15 K) to achieve constant temperature conditions and by the addition of a small dose of 

gaseous nitrogen in samples.  

SSAs were calculated from adsorption isotherms according to the Brunauer–Emmett–Teller (BET) 

method [44]. Total PVs were calculated from adsorption isotherms at a p/p0 ratio of 0.985 and in the 

case of the DFT [45] calculation as the total PV was measured at the maximum pore width. PSD was 
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calculated by using the DFT algorithm under the assumption of slit-formed pores [46]. The distribution 

of PV (vol%) was calculated from the individual volumes of micropores, mesopores, and macropores 

with the DFT model. t-Plot calculations were conducted using the Harkins and Jura method [47]. By 

using the instrumental setup, micropores down to a diameter of 1.5 nm can be measured even in case of 

possible contribution from smaller pores. The micropore areas and volumes were calculated by the t-

plot algorithm. A previous study has reported that SSAs are typically measured with a precision of 5% 

[48].    

Compressive strengths (σ) of S1 and S2 supports were determined before and after thermal 

treatment at 1073 K for 2 h using a Zwick/Roell Z010 testing machine (Kennesaw, Georgia, with a load 

cell of 10 kN). The loading speed was 0.1 mm/s, and the measurement ended when the force decreased 

by 50% from the maximum or deformation reached 30%. The compressive strength of pieces, with 

diameters of 1.1 cm × 1.5 cm × 0.4 cm, was measured and calculated using Equation 1, 

σ = F/A,                                                                                     (1) 

where F (N) is the maximum force at the linear region of the compression curve, and A (mm2) is the 

surface area. The accuracy of the instrument was ±1%. 

Metal contents of the unreduced, thermally treated catalysts were measured by inductively coupled 

optical emission spectrometry (ICP-OES) using a Perkin Elmer Optima 5300 DV instrument. First, 0.1–

0.2 g of samples were digested in a microwave oven (MARS, CEM Corporation) with 9 mL of HNO3 at 

473 K for 10 min. Second, 3 mL of HCl was added, and the mixture was digested at 473 K for 10 min. 

Finally, 1 mL of HF was added, and the mixture was digested again at 473 K for 10 min. Excess HF 

was neutralized using H3BO3 by heating at 443 K for 10 min. Next, the solution was diluted to 50 mL 

with water, and the elements were analyzed by ICP-OES. 
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 Prior to the mineral acid treatment, elemental analysis of support materials S1 and S2, i.e., carbon, 

hydrogen, nitrogen, sulfur, and oxygen, was conducted on a Perkin Elmer 2400 Series II CHNS/O 

device. These measurements were conducted in triplicate. 

 

X-ray diffraction (XRD) patterns for the unreduced, thermally treated catalyst samples were 

recorded on a PANalytical X’Pert Pro X-ray diffraction system using monochromatic CuKα1 radiation 

(λ = 1.5406 Å) at 45 kV and 40 mA. Diffractograms were recorded in a 2θ range of 8–90° at intervals of 

0.017° and with a scan step time of 80 s. Crystalline phases and structures were analyzed by HighScore 

Plus software (Version 4.0, PANalytical BV, Almelo, The Netherlands). The peaks were identified 

using International Centre for Diffraction Data ( ICDD, PDF-4+ 2020). 

X-ray photoelectron spectroscopy (XPS) profiles were recorded for the unreduced, thermally 

treated catalyst samples on a Thermo Fisher Scientific ESCALAB 250Xi XPS System. The catalyst 

samples were placed on an indium film with a pass energy of 20 eV and a spot size of 900 µm, and the 

accuracy of the reported binding energies (BE) was ±0.2 eV. Ni, Cu as well as O, C, and N XPS profiles 

were measured for all samples. Measurement data were analyzed by Avantage V5. The monochromatic 

AlKα radiation (1486.7 eV) was utilized from an X-ray gun operated at 20 mA and 15 kV. Charge 

compensation was utilized to determine the obtained spectra, and the calibration of the BE was 

performed by utilizing the C1s line at 284.8 eV as the reference. 

The morphology of the unreduced, thermally treated catalyst particles was observed on a JEOL 

JEM-2200FS energy-filtered transmission electron microscope equipped with a scan generator 

(EFTEM/SEM). Catalyst samples were dispersed in pure ethanol and pretreated in an ultrasonic bath for 

several minutes to create a microemulsion. A small drop of the microemulsion was deposited on a 

copper grid precoated with carbon (Lacey/Carbon 200 Mesh Copper) and evaporated in air at room 

temperature. For the measurement, an accelerating voltage of 200 kV was utilized, and the resolution of 
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the scanning TEM (STEM) image was 0.2 nm. Particle sizes of metal and metal oxides (both Cu and 

Ni) were calculated from TEM images using a PDF-Xchange Editor program. 

 

2.5. Furfural hydrotreatment experiments 

 

Furfural hydrotreatment experiments were conducted in a 50-mL batch reactor (Parker Autoclave 

Engineers). In the experiments, 0.2 g (with an accuracy of four decimals) of the catalyst was reduced in 

situ (523 K, 2 h, 40 bar H2), followed by the mixing of 1 mL of furfural and 15 mL of solvent (i.e., 2-

propanol) and their subsequent addition into the reactor from a pressurized feed tank under a H2 

pressure of 40 bar at the desired reaction temperature of 503 K. The reactor was heated to the desired 

reaction temperature before adding the feed. A stirring speed of 800 rpm was used for all experiments, 

and the catalyst formed a slurry with the reaction mixture. After the reaction, the reactor was cooled to 

room temperature with an ice bath, and a sample was taken from the gas phase into an evacuated 

container. Another sample was taken from the liquid phase for analysis. Reactions times of 30, 120, and 

300 min were applied. 

Product analysis was performed by a similar method as that reported in our previous study [49]. 

Gas samples were analyzed on an Agilent 6890 Series gas chromatography (GC) system with a flame 

ionization detector (FID) and a thermal conductivity detector (TDC). CO, CO2, H2, and N2 were 

analyzed by TCD, which was connected to two columns: HP‐ PLOT/Q (30 m × 0.53 mm × 40 μm) and 

HP Molesieve (30 m × 0.53 mm × 25 μm) columns. Hydrocarbons were analyzed by FID, which was 

connected to an HP‐ AL/KCL column (50 m × 0.32 m × 8 μm). The heating program started from 

313 K (holding time of 9.5 min) at a heating rate of 10 K min1 up to 473 K. The inlet temperature was 

473 K. The liquid samples were analyzed on an Agilent 6890 Series GC system, equipped with an FID 

and a Zebron ZB‐ wax Plus column (60 m × 0.25 mm × 0.25 μm). The inlet temperature was 503 K, 

and the heating program started at 313 K at a heating rate of 5 K min−1 until 373 K and at a heating rate 

of 20 K min−1 until 503 K. The injection volume was 1 μL, and the internal standard was 2‐ butanol. 
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Most of the compounds were calibrated. For those compounds that could not be calibrated, FID 

response factors were estimated according to the study reported by Scanlon and Willis [50] and the 

corrections provided by Jorgensen et al. [51]. For compound identification, Agilent GC–MS (7890‐

5975) was employed using a similar column and temperature program as described earlier. Mass spectra 

were recorded at an electron impact ionization of 70 eV.  

Conversion, selectivity, and batch residence times were calculated as follows. Furfural conversion 

(X) was calculated using Equation 2, 

X = (CF0  CFt)/CF0,                                                                             (2) 

where CF0 is the concentration of furfural (mmol g1
sample) in the feed, and CFt is the concentration of 

furfural (mmol g1
sample) at the reaction time t. Product selectivity (S) and yield (Y) were calculated 

using Equation 3 and 4, respectively, 

Si = Cit/(CF0  CFt),                                                                             (3) 

Yi = Cit/CF0,                                                                                                           (4) 

where Cit is the concentration of the product i (mmol g1
sample) at the reaction time t. Batch residence 

time (τ) [gcat min greactant
1] was calculated according to references [52,53] and used instead of reaction 

time to increase accuracy. 

τ = (mcat t)/mreactant,                              (5) 

where mcat is the mass of the catalyst, and mreactant the mass of furfural added to the reactor.  

3. Results and Discussion 

3.1. Characterization of the AC foams and catalysts 
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Table 1 provides the detailed description of sample names. Two ACF were prepared, i.e., physical 

activation with steam, which was microporous (denoted S1), and chemical activation with ZnCl2, which 

was mainly mesoporous (denoted S2), respectively. Surface properties of the foams were tailored by 

acid washing with HNO3 (S1_A1 and S2_A1) and H2SO4 (S1_A2 and S2_A2). In addition, as 

references, two commercial AC supports were used, i.e., steam-activated (Norit_S) and acid-washed 

(Norit_A) supports, respectively. In addition, a biobased AC support from spruce (S3, for reference) 

was prepared by the steam activation of sawdust.   

Table 1 

Detailed description of supports and catalyst used in this study. 

Sample name Type Description 

S1 Support Support 1, prepared from tannic acid and activated with steam. 

S1_A1 Support S1, treated with HNO3. 

S1_A2 Support S1, treated with H2SO4. 

S1_Cu/Ni Catalyst S1, impregnated with Cu and Ni, thermally treated, ready catalyst. 

S1_A1_Cu/Ni Catalyst S1_A1, impregnated with Cu and Ni, thermally treated, ready catalyst. 

S1_A2_Cu/Ni Catalyst S1_A2, impregnated with Cu and Ni, thermally treated, ready catalyst. 

S2 Support Support 2, prepared from pine bark extracts and activated with ZnCl2. 

S2_A1 Support S2, treated with HNO3. 

S2_A2 Support S2, treated with H2SO4. 

S2_Cu/Ni Catalyst S2, impregnated with Cu and Ni, thermally treated, ready catalyst. 

S2_A1_Cu/Ni Catalyst S2_A1, impregnated with Cu and Ni, thermally treated, ready catalyst. 

S2_A2_Cu/Ni Catalyst S2_A2, impregnated with Cu and Ni, thermally treated, ready catalyst. 

S3 Support Steam-activated carbon prepared from spruce sawdust. 

S3_Cu/Ni Catalyst S3, impregnated with Cu and Ni, thermally treated, ready catalyst. 

Norit_S Support Commercial steam-activated carbon support material. 

Norit_S_Cu/Ni Catalyst Norit_S, impregnated with Cu and Ni, thermally treated, ready catalyst. 

Norit_A Support Commercial steam-activated carbon support treated with acid. 

Norit_A_Cu/Ni Catalyst Norit_A, impregnated with Cu and Ni, thermally treated, ready catalyst. 

 

3.2. Specific surface area and pore size distributions 

 

Table 2 summarizes the SSA and PSD results. The prepared S1 support exhibited a moderate SSA 

and PV. According to the DFT model, the S1 support mainly comprised micropores. t-Plot calculation, 

which used the Harkins and Jura method [47], and the adsorption isotherm (Fig. S1 in Supplementary 

Material) confirmed that the pores created in the S1 support are almost completely micropores. By the 

treatment of the S1 support with acids, SSA and PV decreased, most probably due to the collapse of 
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pores [54]. According to the results shown in Table 2, compared to the S1 support, the S2 support 

exhibited a higher SSA and PV, with a 55 vol% mesoporous structure. Similarly, acid treatment (HNO3) 

led to the decrease in the SSA and PV of S2. However, sulfuric acid treatment did not affect the SSA or 

PV of S2; the reason for this result is not clear thus far. The SSA and PV of Norit_A were similar to 

those of the S2 support. A major difference between these two supports was the PSD. A similar 

difference was observed between S3 and Norit_S supports: After impregnation and thermal treatment, 

the SSA and PV mainly decreased.   
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Table 2 

Specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and average pore size of the prepared supports and catalysts analyzed by N2 adsorption isotherms. 

Calculation method Unit 

Prepared supports/catalysts Commercial supports/catalysts 

Support 

S1 

Support

S1_A1 

Support

S1_A2 

Catalyst 

S1_A1 

Cu/Ni 

Catalyst

S1_A2 

Cu/Ni 

Support

S2 

Support

S2_A1 

Support

S2_A2 

Catalyst 

S2_A1 

Cu/Ni 

Catalyst 

S2_A2 

Cu/Ni 

Support  

S3 

Catalyst 

S3 

Cu/Ni 

Support 

Norit_A 

Catalyst 

Norit_A 

Cu/Ni 

Support 

Norit_ S 

Catalyst 

Norit_S 

Cu/Ni 

BET                  

SSA m2g1 560 332 381 549 469 1361 911 1395 715 1151 891 683 1381 1152 961 756 

Pore volume cm3g1 0.24 0.14 0.16 0.24 0.21 0.89 0.53 0.91 0.38 0.71 0.60 0.46 0.63 0.53 0.43 0.34 

t-Plot                  

Micropore volume cm3g1 0.19 0.11 0.13 0.19 0.16 0.07 0.13 0.07 0.14 0.10 0.20 0.15 0.41 0.34 0.32 0.25 

Micropore area m2g1 482 280 324 469 405 148 297 148 348 228 486 362 1023 859 810 630 

External surface area m2g1 79 52 56 80 64 1213 613 1247 367 924 405 321 358 293 151 126 

DFT                  

Average pore size  Nm <1.5 <1.5 <1.5 <1.5 <1.5 2.2 1.8 2.2 1.9 2.1 2.0 2.0 1.6 1.5 1.5 1.5 

Pore volume cm3g1 0.20 0.12 0.13 0.19 0.17 0.76 0.44 0.78 0.31 0.61 0.51 0.39 0.51 0.42 0.34 0.27 

Micropores % 96 93 96 95 95 45 57 45 69 50 50 49 89 90 94 93 

Mesopores % 4 4 4 5 5 55 43 55 31 50 50 51 11 10 6 7 

Macropores % 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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3.3. Compressive strength and elemental analysis of S1 and S2 supports 

 
 

Table 3 summarizes the results obtained from compressive strength measurements. A clear 

difference in compressive strengths between uncarbonized (no thermal treatment) and carbonized 

(high-temperature thermal treatment) S1 and S2 supports was observed, which was in good 

agreement with previously published results [39]. The compressive strength of the support before 

and after carbonization was compared to confirm that a more stable structure is obtained by thermal 

treatment. The matured support S1 exhibited a compressive strength of 0.040 MPa, and after 

thermal treatment, its compressive strength was nearly three times higher (0.142 MPa). The same 

observation was made for the S2 support: After thermal treatment, the mechanical strength was two 

times higher. Notably, the comparison of the compressive strengths between S1 and S2 supports 

revealed significant differences. Uncarbonized S2 was almost 30 times stronger than uncarbonized 

S1. In addition, the thermally treated S2 support was more than 15 times stronger than the S1 

support. 

Such a large difference in the compressive strength between S1 and S2 was related to the 

different compositions of the raw materials. The S1 support was prepared using tannic acid, while 

support S2 was prepared using pine bark extracts extracted with a 30/70 w% water/ethanol solution. 

Although the exact composition of the extracts was not known, but the extracts undoubtedly 

contained sugars, lignin, and different tannins. Carbon foams prepared using tannic acid are known 

to be rather fragile (Table 3). According to results obtained herein, the mechanical stability of 

tannic-acid-based carbon foams can be enhanced by using a complex mixture of phenolic 

substances. An increased number of crosslinking molecules, such as lignin and sugars, are present 

in the foam solution, which in turn increase the rigidity of foam structure during polymerization. 

Table 3 

Compressive strengths of matured precursor and thermally treated support materials (S1 and S2). 

Support Matured Thermally treated 
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Precursor to S1 Precursor to S2 Support  S1 Support S2 

Average compressive 

strength (MPa) 
0.040 1.15 0.142 2.29 

 
 
 

Table 4 below summarizes the elemental analysis of the thermally treated supports S1 and S2. As 

expected, both supports exhibited a high carbon content of greater than 80 w%. Sulfur and nitrogen 

contents of the supports were similar, but higher contents of hydrogen (33%) and oxygen (15%) 

were observed in support S1, related to the different compositions of the raw material. 

 

Table 4 

Elemental analysis for carbon, hydrogen, nitrogen, sulfur, and oxygen determined on the Perkin Elmer 2400 Series II CHNS/O 

device. 

Sample 
Determined values 

C (w%) H (w%) N (w%) S (w%) O (w%) 

Support S1 80 ± 5 14 ± 2 1.1 ± 0.4 <0.1 4.6 ± 0.6 

Support S2 86 ± 4 9.4 ± 0.5 0.7 ± 0.1 <0.1 3.9 ± 0.1 

 

3.4. Metal content  

 

Metal contents of the catalysts were estimated by ICP-OES. Table 5 summarizes the results. 

The target metal contents of Ni and Cu in the supported catalysts were 5 w%. The measured metal 

contents of the impregnated and thermally treated S1_A2_Cu/Ni, S2,_A2_Cu/Ni, S3_Cu/Ni, 

Norit_S_Cu/Ni, and Norit_A_Cu/Ni catalysts were close to the target values. However, the contents 

of nickel and copper in S1_A1_Cu/Ni and S2_A1_Cu/Ni were higher than expected. This result 

was possibly related to the acid treatment with HNO3, which increased the oxygen content of the 

supports (Table S1 in the Supplementary Material). The surface oxygen might have burned away 

some carbon from the surface during thermal treatment; hence, the weight percentage of the metal 

in the catalysts increases. Moreover, the content of impurities such as Zn and S, which remained 

after the pretreatment of the catalysts, was measured. The limits of detection for Zn metal and sulfur 

were 0.4 mg/kg and <20000 mg/kg, respectively. Zn impurity levels were relatively low, most 
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probably related to the reactor used for the activation of supports or thermal treatment of the 

catalysts. Most of the catalysts exhibited S content of less than 2 w%. Only S2_A2_Cu/Ni exhibited 

a slightly higher S content due to the sulfuric acid treatment. In addition, compared to 

S1_A2_Cu/Ni, S2_A2_Cu/Ni exhibited a higher PV (Table 2), indicating that the adsorption of 

sulfur-containing groups inside the pores of S2_A2_Cu/Ni is better than that of S1_A2_Cu/Ni.  

 

Table 5  

Elemental contents of the samples determined by ICP-OES. 

Sample 

Target values of 

Cu and Ni 

(w%) 

Determined values 

Cu (w%) Ni (w%) Zn (w%) S (w%) 

S1_A1_Cu/Ni 5.0 7.0 7.2 0.0060 <2 

S1_A2_Cu/Ni 5.0 5.0 5.1 0.014 <2 

S2_A1_Cu/Ni 5.0 6.6 6.5 0.0030 <2 

S2_A2_Cu/Ni 5.0 5.7 5.6 0.013 2.2 

S3_Cu/Ni 5.0 4.3 4.3 0.0040 <2 

Norit_S_Cu/Ni 5.0 3.8 4.0 0.019 <2 

Norit_A_Cu/Ni 5.0 4.3 4.7 0.0020 <2 

 

 

3.5. X-ray photoelectron spectroscopy and X-ray diffraction analysis 

 

XPS (detection depth < 10 nm) was employed to characterize the surface functionalities of the 

AC supports. XPS data, i.e., C1s, O1s, and N2p profiles, of untreated and acid-treated supports were 

analyzed. Table S1 and S2 in Supplementary Material summarize the XPS results of the supports 

and catalysts, respectively. From the C1s spectra, carbon-containing groups were deconvoluted into 

five peaks based on (BE) (Table S1 and S2 and Fig. S4(a) in Supplementary Material), i.e., carbon–

carbon bonds (BE = 284.8 eV), carbon species in alcohol or ether groups (BE = 286.3–287.0 eV), 

carbon in carbonyl groups (BE = 287.5–288.1 eV), carbon in carboxyl or ester groups (BE = 289.3–

290.0 eV), and shake-up satellites due to π–π* transition in aromatic rings (BE = 291.2–292.1 eV), 
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respectively [55]. According to C1s scans, the support S1 and S2 surfaces predominantly comprised 

carbon–carbon-type bonds, with some oxygen-containing functional groups. In addition, low levels 

of aromatic rings (from π–π* transitions) were detected. In addition, the total oxygen content from 

O1s data was calculated (Tables S1 and S2 in Supplementary Material), which revealed some 

oxygen functionalities (≤10% from surface functionalities) on the S1 and S2 supports. Moreover, 

the surface-oxygen functionalities on S2 were slightly less (4%) than those on S1 (10%). 

Commercial and S3 supports exhibited a similar surface composition (C1s, O1s), especially S1. The 

highest amount of oxides was observed on support S1_A1 (Table S1 and Fig. S4(b)), which was 

four times greater than that observed for the untreated S1 support. In addition, H2SO4 treatment led 

to the increase in the oxygen content on support S1, and it was two times greater than the oxygen 

content for the untreated S1 support. For S2, the same effect was observed, and HNO3 treatment led 

to the increase in the oxygen functionalities on the support in comparison with that observed for 

H2SO4 treatment. Overall, compared to support S2, support S1 exhibited a higher amount of oxides 

as detected by XPS. Supports exhibited a small amount of nitrogen as observed by XPS N2p scans 

(<0.5%); however, HNO3 treatment possibly led to the increase in the nitrogen content due to the 

addition of nitrates on the surface, which were observed at 405 eV in the N12p XPS spectrum.  

XPS verified the successful addition of metals in the case of impregnated (thermal treatment 

and unreduced) catalysts. XPS data for the Cu2p and Ni2p spectra revealed the presence of metal 

oxides (such as CuO and NiO) in thermally treated, unreduced catalysts (Table S2). The Cu2p scans 

revealed peaks at ~932 and ~933 eV for all catalysts, which were attributed to Cu metal and metal 

oxides of Cu2O and CuO, respectively [56]. Owing to similar BE of Cu (932.6 eV) and Cu2O (932.7 

eV), XRD measurements were also carried out to identify the phases. For the S1 (HNO3 and 

H2SO4)-supported catalyst, satellites at ~943 eV were detected, indicative of the presence of Cu(II) 

(Fig. S5(a) S1_A2_Cu/Ni). This result was in agreement with XRD results (Fig. S3): CuO was 
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present (at 2 = 35.5° and 38.7°), and a metal copper phase was absent. For S2-supported catalysts, 

satellite peaks at 943 eV were not detected, indicative of the presence of Cu(I) or the Cu metal (Fig 

S5(b) S2_A2_Cu/Ni); this result was also in agreement with the XRD results: CuO and Cu2O peaks 

were not observed. From Ni2p scans (Fig. S6), the main peak at ~854 eV and the broad satellite at 

860 eV revealed the presence of nickel oxide NiO and/or Ni in all catalysts [57]. In addition, for S3 

and commercial AC-supported catalysts, the presence of copper and nickel oxides was verified. 

Compared with that of S1_A2, the O1s scan of S1_A2_Cu/Ni revealed an increased peak 

intensity at a BE range of 529–530 eV, indicative of the presence of M–O bonds. Compared with 

the O1s (BE = 531.2 eV) of S1_A2 (5.6 atom%, Table S1), the O1s (BE = 531.2 eV) of 

S1_A2_Cu/Ni was 11.7 atom% (Table S2), indicative of the increase in the number of M–O bonds 

by the impregnenation of Cu and Ni. XRD analysis was conducted for seven catalyst samples. Fig 

S3 in Supplementary Material shows the results. Cu (ICDD 04-002-8854) and Ni (ICDD 04-004-

2759) metals were partly oxidized in all catalysts, except in the case of S1_A2_Cu/Ni, where total 

oxidation was observed. CuO (ICDD 00-048-1548), Cu2O (ICDD 04-016-6875), and NiO (ICDD 

04-023-3539) were formed. Additional peaks were observed at 41.7°, 48.6°, and 71.2° for 

S1_A1_Cu/Ni, which were not identified. 

 

3.6. Electron microscopy measurements 

 
 

The morphology of the thermally treated, unreduced catalyst particles was investigated by 

EFTEM in the STEM mode and by scanning electron microscopy (SEM). On the surface of 

supports, which were treated with acids A1 and A2, metals appeared to be quite evenly distributed 

(Fig. S2 in Supplementary Material). In all catalysts, especially nickel catalysts, homogeneously 

distributed particles (10–40 nm) were observed with a smaller particle size variation over the 

support than that observed for copper, where larger aggregates (25–250 nm) were observed, and the 
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variation in the particle size was broader. On the S1 support, metal particle sizes for S1_A1_Cu/Ni 

were 60–70 nm and 10–20 nm for copper and nickel, respectively, and for S1_A2_Cu/Ni, particle 

sizes were 100–200 nm and 20–40 nm for copper and nickel, respectively. Particle sizes for 

S2_A1_Cu/Ni (Fig. 2c) were 25–50 nm and 7–10 nm for copper and nickel, respectively. On 

S2_A2_Cu/Ni (Fig. 2d), the variation in particle sizes for copper and nickel was 50–125 nm and 

10–20 nm, respectively. Overall, the particles seemed to be smaller on support S2 than on support 

S1.  

Variation in particle sizes between S1 and S2 supports can be partly explained by different PV 

and PSD (Table 1). The PV and pore size of S1 were less than those of the S2 support, possibly 

resulting in the agglomeration of metal particles on the catalyst surface as some micropore 

entrances can be blocked by large metal hydroxides [58]. In addition, notably, compared to H2SO4-

treated supports, HNO3-treated S1 and S2 supports exhibited smaller metal particles, indicating that 

a higher surface oxygen content might be beneficial for the metal distribution; hence, the particle 

size is affected [59]. From the S3-supported catalyst, particle sizes for copper and nickel were 100–

250 nm and 15–40 nm, respectively. Particle sizes for copper in Norit_S_Cu/Ni and Norit_A_Cu/Ni 

were 15–45 nm and 25–80 nm, respectively; the corresponding values for nickel were 7–15 nm and 

15–25 nm. Surface structures of the supports S1 and S2 were examined by SEM. The SEM images 

(Fig. S7 in the Supplementary Material) clearly revealed the presence of large ordered pores in both 

supports (S1 and S2). Fig. S8 in the Supplementary Material summarizes the size distribution, 

including Ni and Cu particles, which is calculated from the TEM images shown in Fig. 2. As an 

example, for S1_A1_Cu/Ni, 82.2% of the particle sizes were observed in the range of 8–28 nm, and 

11.0% of the particles were observed in the range of 68–88 nm.  
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3.7. Conversion of furfural to 2-methylfuran 

 
 

Scheme 1a and Scheme 1b show the furfural hydrotreatment and observed condensation 

products, respectively. The hydrotreatment of furfural to produce MF as the target product was 

investigated with the prepared 5–5% CuNi catalysts on ACF (S1_Cu/Ni, S1_A1_Cu/Ni, 

S1_A2_Cu/Ni, S2_Cu/Ni, S2_A1_Cu/Ni, and S2_A2_Cu/Ni). In addition, 5–5% CuNi catalysts 

were prepared on two commercial AC supports (i.e., Norit_S_Cu/Ni and Norit_A_Cu/Ni, 

respectively) and on biobased AC from spruce (S3_Cu/Ni) and tested in the reaction just for 

comparison. The main interest is in the carbon foams. In addition to MF, FA, THFA, MTHF, and 

furan were obtained. Moreover, furfural ring-opening products, namely 5-hydroxy-2-pentanone 

(HPN), 1,4-pentanediol (PDOL), and 2-pentanone (PN), were observed. In addition, acetone was 

formed, which can be produced by 2-propanol via dehydrogenation or hydrogenation transfer, 

where 2-propanol acts as a hydrogen donor and concurrently forms acetone [60]. Two condensation 

products, i.e., furanmethanol acetate (FMA) and 2-(2-furylmethyl)-5-methylfuran (FMMF), were 

also obtained.  
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Fig. 3a shows the conversion of furfural as a function of the batch residence time (τ, defined as 

the catalyst mass divided by the reagent mass and multiplied with the reaction time) for the ACF-

supported catalysts. Fig. 3b shows the conversion of furfural over the acid-washed ACF catalysts, 

and Fig. 3c shows the conversion over the reference catalysts. From the ACF supports, S1 was more 

active, leading to a furfural conversion of 100% after a reaction time of 300 min. The higher 

activity of the S1_Cu/Ni catalyst compared with that of the S2_Cu/Ni catalyst was slightly 

surprising as the surface area of S1 was significantly lower (Table 2), and most of the pores in S1 

were micropores, where the reaction can suffer from mass-transfer limitations; however, this was 

not observed for the reference catalysts. Overall, the selectivity of MF over ACF-based catalysts 

was not desirable. 
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Acid washing exhibited an interesting effect on the catalytic activity (Fig. 3b). With HNO3 

washing, the activity of the S1-supported catalyst decreased in the beginning of the reaction; this 

activity decrease was possibly related to the adverse effect of the acid treatment on the SSA and PV 

of the S1 catalyst; hence, the catalytic activity decreases. However, with support S2, a similar trend 

was not observed. For the support S2, HNO3 washing led to the increase in the catalytic activity 

throughout the range of the batch residence time. On the other hand, washing with H2SO4 led to the 

significant decrease in the activity of the S1 supported catalyst. Acid washing with H2SO4 can 

create anchoring sites for metal particles, leading to large agglomerates; the formation of these 

agglomerates could also decrease the activity. The loss in activity is also speculated to result from 

the sulphur-containing groups from the support after the washing step. In case of the S2 support, 

washing with H2SO4 did not affect the catalytic activity. For both supports, compared to H2SO4 

washing, washing with HNO3 led to a more active catalyst. 

For comparison, the activities of CuNi on commercial supports and biobased AC were 

measured. Compared to most of the ACF-based catalysts, the reference catalysts exhibited higher 

activity (Fig. 3). Only CuNi supported on S1 (without acid washing) exhibited activity similar to 

those of the reference catalysts. Norit_A_Cu/Ni was the most active reference catalyst at low batch 

residence times, which is an acid-washed AC. At high batch residence times, a furfural conversion 

of almost 100% was achieved over all of the reference catalysts. 

Fig. 4 shows the MF selectivity as a function of conversion. Compared to the S1_Cu/Ni 

catalyst, the S2_Cu/Ni catalyst exhibited higher MF selectivity even though the catalyst was less 

active (Fig. 3a). In general, the acid-washed catalysts were more selective toward MF. Among the 

acid-washed catalysts, HNO3-washed S2 exhibited the highest selectivity for MF as evidenced by a 

similar conversion of ~90% (Fig. 3b). However, for the H2SO4-washed catalysts, a conversion of 

~60% (Fig. 3b) led to a similar MF selectivity. At a conversion of greater than 90%, the 

Jo
ur

na
l P

re
-p

ro
of



  
  

 

 

 

 

 

S2_A1_Cu/Ni catalyst exhibited MF selectivity almost similar to those of the reference catalysts. In 

addition, the S2_A2_Cu/Ni catalyst exhibited an MF selectivity of >40%, but as the catalyst was 

less active, the conversion was less than 90%. 

 

 

 

 

 

 

 

Table 6 
Furfural conversion at the highest observed MF yield, the corresponding reaction time, and the main side-product yields.[a] 

Catalyst X 

[%] 

t 

[min] 

τ 

[gcat greactant
1 

min] 

YFA 

[%] 

YMF 

[%] 

YTHFA  

[%] 

YMTHF 

[%] 

YFuran 

[%] 

YFMA 

[%] 

S1_Cu/Ni 99 300 60 71 14 18 0.0 4.9 0.1 

S2_Cu/Ni 86 300 60 5.1 18 6.6 17 0.0 6.3 

S1_A1_Cu/Ni 93 300 60 16 37 6.6 3.4 3.8 4.2 

S2_A1_Cu/Ni 91 300 60 3.6 48 3.3 2.9 0.7 5.3 

S1_A2_Cu/Ni 66 300 60 13 20 1.7 1.9 0.2 5.6 

S2_A2_Cu/Ni 85 300 61 5.5 38 1.3 2.3 0.1 6.1 

Norit_S_Cu/Ni 96 120 23 8.0 61 7.2 2.2 4.1 0.2 

Norit_A_Cu/Ni 98 120 24 1.1 57 3.2 10 5.1 0.3 

S3_Cu/Ni 99 300 61 2.9 58 8.1 3.0 4.5 0.0 
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Table 6 summarizes the product distribution at the highest observed MF yield for each catalyst. 

MF was the main product over the acid-washed ACF-based catalysts and the reference catalysts. As 

MF can further react to other products, the selectivity typically started to decrease after the 

maximum selectivity was reached. Only the catalysts on the commercial supports, i.e., Norit_S and 

Norit_A, exhibited the maximum MF yields during a 120-min reaction. The highest MF yield 

(61%) was obtained for the Norit_S_Cu/Ni catalyst, the support of which is steam-activated 

commercial AC. The acid-washed commercial AC catalyst (Norit_A_Cu/Ni), steam-activated 

spruce-based AC (S3_Cu/Ni), and HNO3-washed ACF (S2_A1_Cu/Ni) also exhibited high MF 

yields of 57%, 58%, and 48%, respectively. Compared to the ACF-supported catalysts, both acids 

(i.e., HNO3 and H2SO4) led to increased yield of the MF even though the conversions decreased in 

some cases. Better MF yields were probably related to the higher amount of surface oxygen groups 

in the catalysts (Supplementary Material Table S2), which are known to affect adsorption properties 

of ACs [31,61]. Although elemental and XPS analyses revealed a higher oxygen content for the 

support S1 compared to the support S2 even after acid washing, the MF yields over S1-based 

catalysts were lower. The considerably higher SSA and PV values for the mesoporous S2-based 

catalysts, as well as the microporous reference catalysts, seemed to be beneficial for the conversion 

of furfural to MF. Moreover, the furan yield over the S1-supported catalysts decreased after 

washing with acids, indicating that acid washing suppresses the undesired decarbonylation reaction. 

Without acid washing, ACF catalysts produced significant amounts of THFA or MTHF. All of the 

ACF-based catalysts (except S1_Cu/Ni) afforded FMA as a significant side product, whereas the 

reference catalysts afforded FMA only as a minor side product. 

Previous studies have reported the highest MF yields of near 100% [13,31], which are obtained 

over Cu or Ir catalysts supported on charcoal-based ACs. However, ACs also can be prepared from 

[a] Reaction conditions: 503 K, 40 bar H2, stirring at 800 rpm, 0.2 g catalyst, 1 mL furfural, and 15 mL of 2-propanol. 
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renewable residual biomass materials [62]. Recently, the hydrotreatment of furfural over noble 

metals (such as Pt or Ru) and Ni supported on wood-based ACs [49] has been investigated. The 

highest MF yields (50%) are obtained over noble-metal catalysts. To increase the mechanical 

strength [39] of the support material, biobased carbon foams were examined as a catalyst support 

for the hydrotreatment of furfural for the first time. The MF yield over the S2_A1_Cu/Ni catalyst 

was similar to that over the noble-metal catalysts on biobased AC reported previously [49]. 

However, a higher MF yield was obtained in this study with the biobased AC support (S3_Cu/Ni). 

The visual observation of the liquid product recovered from the reactor after each experiment 

qualitatively revealed that the least and highest amounts of carbon dust are observed on the ACF 

catalysts and biobased AC (S3), respectively, indicative of the higher mechanical strength of carbon 

foams. Thus, further research is suggested to combine the activity of an AC-supported catalyst and 

the mechanical strength of ACFs.  

In addition, non-noble metal catalysts for furfural hydrotreatment have been investigated. In 

our previous study, monometallic Ni catalysts are less active than noble metals, leading to the 

maximum MF yield of less than 40% [49]. However, the addition of Cu is known to significantly 

increase the catalytic activity of Ni [11,43]. Gong et al. [31] have reported the beneficial 

combination of CuOx and Cu species on AC for MF production. They reported that the coexistence 

of Cu0, Cu+, and Cu2+ species can be controlled by the calcination temperature and time. In our XPS 

analysis, metallic Cu and CuO were found on most of the catalyst surfaces (Table S2 in the 

Supplementary Material); however; the XPS measurement was performed prior to catalyst 

reduction; thus, the presence of CuO after reduction is not known. Sitthisa and Resasco [63] have 

compared furfural hydrotreatment with silica-supported Ni and Cu. With Ni catalysts, furan was the 

main product at all of the tested temperatures (483–523 K), but FA was the main product over Cu. 

The Ni catalyst afforded ring-opening products, which were not observed for the other catalysts 
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[63]. In addition, Fu et al. [11] have compared the performance of monometallic Cu and Ni 

catalysts supported on Al2O3. They reported that the Ni catalyst is active for decarbonylation as well 

as for hydrogenation, resulting in a complex reaction network. The Cu-based catalyst is less active, 

albeit highly selective for carbonyl hydrogenation, but the best selectivity for MF is achieved over 

10/10 w% CuNi on the Al2O3 support [11]. These observations further highlight the beneficial 

combination of Cu and Ni also used herein.  

The surface modification of Cu or CuNi catalysts have been reported in the literature. Gong et 

al. [64] have reported the modification of active carbon in the Cu/AC catalyst by the grafting of 

sulfonate groups and reported an increase in the activity. The modification leads to better metal 

dispersion and smaller particle size and different CuO+Cu+/Cu2+ ratios, and thus stronger furfural 

adsorption [64]. In addition, the formation of TFHA has been reported to depend on the surface 

modification of the support. Ni and CuNi catalysts can facilitate the hydrogenation of furfural to 

TFHA, but the introduction of basic sites can significantly increase the selectivity [16]. In contrast, 

the increase in the Lewis acidity has been found to increase the MF selectivity over the Cu catalyst 

[16]. Thus, the change in the acid–base characteristics of our CuNi catalysts on ACF after acid 

washing could partly explain the decrease in the THFA formation and the increase in MF formation.  

 
 

4. Conclusion 

 
 

In this study, mechanically stable activated carbon foams were demonstrated as catalyst 

supports for the batch hydrotreatment of furfural (503 K, 40 bar H2) to produce 2-methylfuran as 

the target product. The supports were prepared from commercial tannic acid (S1) and pine bark 

extracts (S2). For comparison, activated carbon support prepared from spruce sawdust (S3) was 

used. To enhance the MF selectivity over the catalysts, the prepared activated carbon foams were 
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washed with two acids, i.e., HNO3 or H2SO4. The pine-bark-extracts-based support exhibited the 

highest specific surface area and pore volume. In addition, its compressive strength was greater than 

that of the tannic-acid-based support due to the different compositions of raw materials. A high 

mechanical strength leads to less particle shattering in the reactor. In terms of furfural conversion to 

MF, several of the tested catalysts exhibited almost 100% conversion, but the most selective 

catalysts were Cu/Ni supported on pine-bark-extract-based activated carbon foam washed with 

HNO3 (48%) and Cu/Ni supported on commercial and spruce-sawdust-based activated carbon (57–

61% selectivity), which exhibited the smallest metal particle sizes. Acid washing led to the increase 

in the surface oxygen content on the activated carbon foams, thereby resulting in higher MF 

selectivity. Smaller metal particles were observed on the HNO3-washed support than on the H2SO4-

washed support, which explained the higher activity of the HNO3-washed catalysts. Based on the 

results, activated carbon foams are suitable catalyst support materials with potential to gain high 

catalytic activity and selectivity combined with high mechanical strength. 
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Figure captions:  

Fig. 1. Schematic of the preparation of the skeletal backbone for carbon-foam support materials using either tannic acid or pine bark 

extracts.   

Fig. 2. EFTEM photographs of the unreduced catalyst. a) S1_A1_Cu/Ni, b) S1_A2_Cu/Ni, c) S2_A1_Cu/Ni, d) S2_A2_Cu/Ni, e) 

S3_Cu/Ni, f) Norit_S_Cu/Ni, g) Norit_A_Cu/Ni. Notably, the scale of the photographs is different. 
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Fig. 3. Furfural conversion as a function of the batch residence time (τ). a) CuNi on ACFs, b) CuNi on acid-washed ACFs, and c) 

CuNi on reference materials. 

 

Fig. 4. MF selectivity as a function of the furfural conversion. a) CuNi on ACFs, b) CuNi on acid-washed ACFs, and c) CuNi on 

reference materials. 

Scheme captions: 

Scheme 1. a) Proposed reaction scheme for the hydrotreatment of furfural b) and the observed condensation products. 
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