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Abstract. In this paper, we study variational solutions to parabolic equations of the type
∂t u−divx (Dξ f (Du))+Dug(x, u) = 0, where u attains time-independent boundary values
u0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-
Rado type theorem: If the boundary values u0 admit a modulus of continuity ω and the
estimate |u(x, t)−u0(γ )| ≤ ω(|x−γ |) holds, then u admits the samemodulus of continuity
in the spatial variable.

1. Introduction

In this article, we are concerned with establishing a Haar-Rado type theorem for
the following kind of Cauchy-Dirichlet problem:{

∂t u − divx (Dξ f (Du)) + Dug(x, u) = 0 in �T ,

u = u0 on ∂P�T ,
(1.1)

for a time-independent boundary datum u0 : � → R. For T > 0, the set�T :=�×
(0, T ) is a space-time cylinder with a bounded domain � ⊂ R

n , n ≥ 2. As usual,
by ∂P�T := (� × {0}) ∪ (∂� × (0, T )) we denote the parabolic boundary of �T ,
use the operator symbol ∂t to express a derivative with respect to the time variable,
and write divx for the spatial divergence operator.

The classical Haar-Rado theorem (see e.g. [15, Prop. 2.11] and the references
therein) was originally formulated in an elliptic setting, which is concerned with
the minimization problem

min

{∫
�

f (Du) dx : u ∈ Lipφ(�)

}
, (1.2)
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where f is strictly convex and Lipφ(�) denotes the space of Lipschitz functions
having boundary values equal to the given Lipschitz function φ on the boundary
∂� of an open and bounded set � ⊂ R

n . The theorem then states that a minimizer
u fulfills the property

sup
x,y∈�

|u(x) − u(y)|
|x − y| = sup

x∈�,γ∈∂�

|u(x) − φ(γ )|
|x − γ | . (1.3)

As seen in [15, Prop. 11.41], this can be used to obtain global gradient estimates
on � from mere boundary estimates on ∂� and it also plays a fundamental role in
the existence proof (cf. [16, Lemma 1.3]) for Lipschitz minimizers to (1.2) when-
ever the boundary datum φ fulfills a barrier condition, such as the quite restrictive
bounded slope condition (see Definition 2.7 and [19,27] for some discussion). This
condition has a long tradition within a sub-field of Calculus of Variations, which is
now known asHilbert-Haar theory and is based on papers fromHaar [17], Hartman
and Nirenberg [20], Stampacchia [28], Miranda [27], and Hartman and Stampac-
chia [21]. In recent years, many authors were investigating questions considering
existence and regularity of minimizers to a more general class of problems of the
form

min

{∫
�

f (Du) + g(x, u) dx : u ∈ W 1,p
φ (�)

}
, (1.4)

where – for a suitable domain � ⊂ R
n and p ≥ 1 – W 1,p

φ (�) denotes the space of

Sobolev functions u ∈ W 1,p(�) having trace equal to φ on ∂�. For a selection of
results covering the case g = 0, we refer the interested reader to [6,10–12,24,25],
as well as to [7–9,14,23] for some results about the general case g �= 0. In this
context, the bounded slope condition was also considerably weakened in a few
ways, one of them being a one-sided bounded slope condition (see [12]).

Following this approach, in [26] Mariconda and Treu reformulated and gener-
alized the classical Haar-Rado theorem (1.3) to the new setting (1.4) for p = 1,
even allowing φ to admit a general modulus of continuity ω.

More precisely, they showed that if, among other assumptions,

|u(x) − φ(γ )| ≤ ω(|x − γ |) for a.e. x ∈ � and for all γ ∈ ∂�,

this estimate can be extended to the interior of �, i.e. u has an ω-continuous
representative. Note that this is a reformulation of (1.3) in the case that ω is a
Lipschitz-modulus.

Ourmain goal in this paper is to extend this statement to the parabolic setting, in
terms of variational solutions. For a given variational solution u to (1.1), attaining
ω-continuous and time-independent boundary data u0 on the parabolic boundary,
we show that if

|u(x, t) − u0(x0)| ≤ ω(|x − x0|) for a.e. (x, t) ∈ �T and for all x0 ∈ ∂�,

then, as before, this estimate can be extended slice-wise to the interior of the space-
time cylinder�T , provided that the intersection of�with a shifted version of itself
has a Lipschitz boundary.
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Wepoint out again thatwe treat time-independent boundarydata. Fromour point
of view the investigation of boundary data which depend on time, i.e. u0 = u0(x, t)
requires further investigation and could be an interesting subject for future studies.

Following the tradition of Hilbert-Haar theory, we will not suppose any growth
conditions from above on f or g. For this reason we cannot use the notion of
weak solutions and instead take the so called variational approach in the spirit of
Lichnewsky and Temam [22]. This approach to evolutionary equations has become
increasingly popular in the last several years and the existence of variational solu-
tions has been obtained to rather general equations, see for example [1–3].

Regularity of variational solutions was studied by Bögelein, Duzaar, Marcellini
and Signoriello [4], who obtained the spatial Lipschitz continuity of solutions to
(1.1) when g ≡ 0 and u0 satisfies the bounded slope condition. Older results
regarding regularity proofs of weak solutions via the bounded slope condition in an
evolutionary setting with functionals of linear growth can for example be found in
Hardt and Zhou [18, Chapter 4].Moreover, recently Bögelein and Stanin [5] proved
local Lipschitz continuity in spacetime of variational solutions under an evolution-
ary variant of the previously mentioned one-sided bounded slope condition.

Our article will be structured as follows: In Sect. 2 we present the setting and
our main result. Several lemmata, which are useful for our purposes, are collected
in Sect. 3. Then we proceed with the proof of our main result, which can be summa-
rized as follows: We compare the variational solution u with the shifted variational
solution, defined on a shifted space-time cylinder. Topic of Sect. 4 is the proof that
this shift retains the property of being a variational super- or sub-solution. In the
main step, which is carried out in Sect. 5, we can thus apply a comparison principle
on the intersection of the original cylinders. Finally, in Sect. 6 we apply our main
result to obtain the spatial Lipschitz continuity of variational solutions in the setting
of the bounded slope condition.

2. Definitions and main result

Throughout this article, we denote by �T :=� × (0, T ) a spacetime cylinder with
T > 0 and a bounded Lipschitz domain � ⊂ R

n . For a function v ∈ L1(�T ) ≡
L1([0, T ]; L1(�)), we will often adopt the abbreviation v(t):=v(·, t) to denote
the evaluation of the function v at time t ∈ [0, T ], which is to be understood in a
suitable sense.

We consider theCauchy-Dirichlet problem (1.1)with two variational integrands
f, g, which we impose different conditions on. For the (only gradient-dependent)
variational integrand f : Rn → R we require that

{
f is convex,

f is p-coercive, i.e. f (ξ) ≥ μ|ξ |p + ν for all ξ ∈ R
n, some μ > 0 and ν ∈ R,

}
(2.1)
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with an exponent p > 1. For the (x- and u-dependent) variational integrand
g : � × R → R we require that⎧⎨

⎩
x 
→ g(x, u) is measurable for all u ∈ R,

u 
→ g(x, u) is convex for almost every x ∈ �,

g(x, u) ≥ −k(x)(1 + |u|) for a.e. x ∈ � and every u ∈ R,

⎫⎬
⎭ (2.2)

where k ∈ L p′
(�;R≥0) with p′:= p

p−1 denoting the conjugate Hölder exponent of
p. Due to convexity, the right derivative of g with respect to the second variable
exists, is monotonically non-decreasing and we denote it by g+

u . Furthermore, we
impose the following conditions on the boundary datum u0:{

u0 ∈ W 1,p(�) ∩ L2(�),∫
�

f (Du0) + g(x, u0) dx < ∞
}

(2.3)

As mentioned, we do not demand any growth conditions from above on neither f
nor g, and therefore we cannot use the notion of weak solutions in this context.
Instead, we use variational solutions – a notion going back to the article [22]
of Lichnewsky and Temam – whose existence to (1.1) is guaranteed due to our
structural assumptions on f, g and u0 (cf. Theorem 2.2). If f and g are suitably
regular, then variational solutions coincide with weak solutions [2].

In order to define variational solutions, we first restate the definition of
typical function spaces in the parabolic setting: The parabolic Sobolev space
L p([0, T ];W 1,p(�)) is the set of all measurable functions u : �T → R such
that x 
→ u(x, t) is in W 1,p(�) for a.e. t ∈ (0, T ) and further∫

�T

|u|p + |Du|p dz < ∞. (2.4)

Similarly, for v ∈ L p([0, T ];W 1,p(�)) we denote by v + L p([0, T ];W 1,p
0 (�))

the set of all measurable functions such that x 
→ u(x, t) − v(x, t) belongs to
W 1,p

0 (�) for almost every t ∈ (0, T ) and (2.4) is fulfilled.
Since we will also need weaker versions of the mentioned variational solutions

later on, we define them in the following lines as well:

Definition 2.1. (Variational (sub-/super-) solution) We call a function

u ∈ L p([0, T ];W 1,p(�)) ∩ L2(�T ) with ∂t u ∈ L2(�T )

a variational sub-solution (respectively a variational super-solution) on �T if∫
�T

f (Du) + g(x, u) dz < ∞

and the inequality∫
�T

f (Du) + g(x, u) dz ≤
∫

�T

∂tv(v − u) + f (Dv) + g(x, v) dz

− 1

2

∫
�

(v − u)2(x, ·) dx
∣∣∣T
0

(2.5)
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holds true for any v ∈ u + L p([0, T ];W 1,p
0 (�)) ∩ L2(�T ) with v ≤ u almost

everywhere in �T (resp. v ≥ u almost everywhere in �T ), additionally satisfying
∂tv ∈ L2(�T ). Furthermore, we call u a variational solution if it is both variational
sub- and super-solution. In this case, any v ∈ u + L p([0, T ];W 1,p

0 (�)) ∩ L2(�T )

with ∂tv ∈ L2(�T ) is an admissible test function. Finally, such u is called a
variational solution to the Cauchy-Dirichlet problem (1.1) if u(x, t) = u0(x) on
the lateral boundary ∂� × (0, T ) in the sense of traces and u(·, 0) = u0(·).

Note that for a variational solution one usually demands that

u ∈ L p([0, T ];W 1,p(�)) ∩ C0([0, T ]; L2(�)),

where C0([0, T ]; L2(�)) denotes the Bochner space of continuous functions u :
[0, T ] → L2(�) such that

max
t∈[0,T ]

∫
�

|u(x, t)|2 dx < ∞.

However, it is worth citing the existence and regularity result obtained in [2, The-
orem 1.2]. It ensures existence of variational (sub- and super-)solutions and also
includes important regularity properties. For the sake of completeness, we include
the statement, adapted to our setting,which is a special case of the original Theorem.

Theorem 2.2. Let f satisfy the conditions given in (2.1), g the assumptions in (2.2)
and suppose u0 to fulfill the constraints in (2.3). Then, there exists a variational
solution (and thus also a sub- resp. super-solution) u ∈ L p([0, T ];W 1,p(�)) ∩
C0([0, T ]; L2(�)) to (1.1), that further fulfils u ∈ C0,1/2

([0, T ]; L2(�)
)
and

admits a weak time derivative ∂t u ∈ L2(�T ).

The property ∂t u ∈ L2(�T ) will be an important technical tool in the proofs.
Thus,we impose this condition in the definition above. Further note that the property
u ∈ C0([0, T ]; L2(�)) follows from ∂t u ∈ L2(�T ) by using a standard mollifier
argument.

Definition 2.3. (Modulus of continuity) A continuous and increasing function ω :
[0,∞) → [0,∞) with ω(0) = 0 is called a modulus of continuity. For a set X ⊂
R
n , a function φ : X → R is called ω-continuous if |φ(x) − φ(y)| ≤ ω(|x − y|)

for all x, y ∈ X .

Later, wewill need the fact that shifting leaves the property of being a variational
super-solution invariant (cf. Theorem 4.2). Due to the x-dependency of the function
g, mere convexity is not enough to obtain this. We need the following stronger
assumption: For h ∈ R

n , x ∈ R and a modulus of continuity ω, we demand

v ≥ u + ω(|h|) ⇒ g+
u (x − h, v) ≥ g+

u (x, u) ∀x ∈ R
n,∀u, v ∈ R. (Hh,ω)

If g does not depend on x and is convex, then this property is fulfilled. For
another sufficient condition, see [26, Prop. 4.1].
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We define the shifted set �h := {x + h : x ∈ �} and denote the corresponding
shifted spacetime cylinder by �h,T := �h × (0, T ). Additionally, for a function
u : �T → R, we define the associated shifted function uh : �h,T → R via

uh(x, t) := u(x − h, t). (2.6)

Now we are able to formulate our main result, which is the following:

Theorem 2.4. (Haar-Rado type) Suppose that the conditions (2.1) - (2.3) and
(Hh,ω) hold. Further suppose u to be a variational solution to (1.1) and assume u0
to be ω-continuous on � with a given modulus of continuity ω.
Additionally, let ∂(� ∩ �h) be Lipschitz for all h ∈ R

n and suppose that the
estimate

|u(x, t) − u0(x0)| ≤ ω(|x − x0|) (2.7)

holds true for any x0 ∈ ∂� and almost every (x, t) ∈ �T . Then, u satisfies

|u(y, t) − u(x, t)| ≤ ω(|y − x |),
whenever (x, t) and (y, t) ∈ �T are Lebesgue points of u.

Note that the requirement that � has a Lipschitz boundary does not imply that
∂(� ∩ �h) is Lipschitz. The reason for imposing the conditions on the boundary
is to ensure the existence of the trace operator. For further details, see [26, Section
3.2].

Corollary 2.5. Suppose that the conditions (2.1) - (2.3) and (Hh,ω) hold. Let ∂(�∩
�h) be Lipschitz. Suppose that u is a variational solution to (1.1) on�T with initial
and boundary data u0. Suppose that u0 is ω-continuous in �. Suppose that there
exist l1, l2 ∈ W 1,p

u0 (�) that are ω-continuous on � and

l1 ≤ u ≤ l2 in �T .

Then we have

|u(y, t) − u(x, t)| ≤ ω(|y − x |)
whenever (x, t), (y, t) ∈ �T are Lebesgue points of u.

A straight-forward situation in which ∂(� ∩ �h) is Lipschitz for any h > 0,
is if � is bounded and convex. We thus formulate the following corollary, with the
often used Hölder-continuity:

Corollary 2.6. Suppose that the conditions (2.1) - (2.3) and (Hh,ω) hold. Let� be a
bounded and convex domain. Suppose that u is a variational solution to (1.1) in�T

with initial and boundary data u0. For α ∈ (0, 1) let u0 be α-Hölder-continuous
on �. Assume that

|u(x, t) − u0(x0)| ≤ |x − x0|α
holds true for any x0 ∈ ∂� and almost every (x, t) ∈ �T . Then, u satisfies

|u(y, t) − u(x, t)| ≤ |y − x |α,

whenever (x, t) and (y, t) ∈ �T are Lebesgue points of u.
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As an application of our main result, we obtain the spatial Lipschitz continuity
of variational solutions to (1.1) under certain assumptions. In particular, we suppose
the so called bounded slope condition on the initial and boundary data u0.

Definition 2.7. (Bounded slope condition) A function u0 : ∂� → R satisfies the
bounded slope condition with constant Q > 0 if for any x0 ∈ ∂� there exist affine
functionsa1, a2 : Rn → R such that |Da1|, |Da2| < Q,a1(x0) = u0(x0) = a2(x0)
and a1 ≤ u0 ≤ a2 on ∂�.

The bounded slope condition forces u0 to be an affine function on flat parts
of ∂� and � to be convex unless u0 is an affine function. If � is a uniformly
convex and bounded C2 domain, then u0|∂� satisfies the bounded slope condition
whenever u0 ∈ C2(Rn), see [16,27] for more details.

Note that Corollary 2.5 cannot be immediately applied in the setting of the
bounded slope condition, since in general the non-linearity g prevents affine func-
tions from being variational sub- or super-solutions and thus from being admissible
comparison functions. It is hence not possible, in this manner, to obtain an inequal-
ity of the form a1 ≤ u ≤ a2 in �T with a1, a2 affine functions. One way to deal
with this problem is to assume that the Lagrangian is uniformly convex in a suit-
able sense. The strategy is then to bend the affine functions in space so that the
divergence term dominates the lower order term g in the Euler-Lagrange equation,
causing the bent functions to be suitable barriers. This kind of ideas were previously
used in the time-independent setting, see for example [28] and [8].

Definition 2.8. Let 
 : [0,∞) → [0,∞) be a continuous function such that

lim
s→∞ s
(s) = +∞.

We say that f ∈ C2(Rn) is 
-uniformly convex if

D2 f (η)ξ · ξ = tr(D2 f (η)ξ ⊗ ξ) ≥ 
(|η|) |ξ |2

for all ξ, η ∈ R
n . Here ξ ⊗ ξ denotes the n × n matrix whose (i, j) entry is ξiξ j .

Note that this condition can be interpreted as a generalization of a coercivity
condition imposed on thematrix D2 f (η)or the bilinear form (ζ, ξ) 
→ D2 f (η)ζ ·ξ ,
respectively. In particular, for a constant function 
, this condition reduces to a
usual coercivity condition well-known from elliptic PDE theory and Definition 2.8
demands f to be a strongly convex function.

Proposition 2.9. Suppose that the conditions (2.1) - (2.3) hold. Further suppose
that � is convex, (Hh,ω) holds with a Lipschitz modulus of continuity and that
f ∈ C2(Rn) is 
-uniformly convex. Suppose moreover that u0 is Lipschitz in �

and u0|∂� satisfies the bounded slope condition with Q > 0. Then there is L > 0
such that a variational solution u to the Cauchy-Dirichlet problem (1.1) satisfies

|u(x, t) − u(y, t)| ≤ L|x − y|
whenever (x, t), (y, t) ∈ �T are Lebesgue points of u.
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3. Preliminary and auxiliary results

In this section, we state some important results which will be used in our proofs in
the later chapters. We start by proving both spatial and time localization principles.
For the convenience of the reader, we will also give the proofs.

Lemma 3.1. (Spatial localization principle)Let �̃ ⊂ � ⊂ R
n be boundedLipschitz

domains. Suppose u : �T → R to be a variational sub-solution (resp. a variational
super-solution) on �T , Then, u|�̃T

: �̃T → R is a variational sub-solution (resp.

a variational super-solution) on �̃T .

Proof. We choose a function w ∈ u
∣∣
�̃T

+ L p([0, T ];W 1,p
0 (�̃)) ∩ L2(�T ) with

w ≤ u|�̃T
a.e. on �̃T (resp. w ≥ u|�̃T

a.e. on �̃T ) and ∂tw ∈ L2(�̃T ). Observe
that

v:=
{

w in �̃T ,

u in (� \ �̃)T ,

is a valid test function in the inequality (2.5) of the variational sub-solution u (resp.
the variational super-solution u) on �T . Inserting this test function immediately
leads to∫

�̃T

f (Du) + g(x, u) dz ≤
∫

�̃T

∂tw(w − u) + f (Dw) + g(x, w) dz

− 1

2

∫
�̃

(w − u)2(x, ·) dx
∣∣∣T
0
.

Since w was chosen arbitrarily at the beginning, the last inequality proves that
u|�̃T

is a variational sub-solution (resp. a variational super-solution) on �̃, which
concludes the proof. ��
Lemma 3.2. (Temporal localization principle) Let� ⊂ R

n be a bounded Lipschitz
domain, 0 < t1 < t2 < T , and define �t1,t2 :=� × (t1, t2). Suppose u : �T → R

to be a variational sub-solution (resp. a variational super-solution) on �T . Then,
the restriction u|�t1,t2

is a variational sub-solution (resp. super-solution) on �t1,t2 .

Proof. In the following, we will use the convenient abbreviation ut1,t2 :=u|∂P�t1,t2
.

We choose a functionw ∈ u+L p([t1, t2];W 1,p
0 (�))∩L2(�t1,t2)withw ≤ u|�t1,t2

a.e. in �t1,t2 (resp. w ≥ u|�t1,t2
a.e. in �t1,t2 ), ∂tw ∈ L2(�t1,t2). Additionally, we

define for ϑ ∈ (0, t2−t1
2 ) a cutoff function ζϑ ∈ W 1,∞([0, T ]) with respect to time

via

ζϑ(t):= t − t1
ϑ

1[t1,t1+ϑ)(t) + 1[t1+ϑ,t2−ϑ](t) + t2 − t

ϑ
1(t2−ϑ,t2](t)

and set

v:=ζϑw + (1 − ζϑ)u.
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Since v ∈ u + L p([0, T ];W 1,p
0 (�)) ∩ L2(�T ) with ∂tv ∈ L2(�T ) and v =

ζϑw + (1 − ζϑ)u ≤ ζϑu + (1 − ζϑ)u = u (resp. v ≥ u), v is a valid test function
in the variational inequality (2.5). Therefore, testing (2.5) with v first leads to

∫
�T

f (Du) + g(x, u) dz

≤
∫

�T

ζ ′
ϑζϑ(w − u)2 + ζ 2

ϑ∂t (w − u)(w − u) + ζϑ∂t u(w − u) dz

+
∫

�T

f (ζϑ Dw + (1 − ζϑ)Du) + g(x, ζϑw + (1 − ζϑ)u) dz,

(3.1)

where the boundary term vanishes due to ζϑ(T ) = ζϑ(0) = 0.

In the following steps, we will split up the temporal region of integration [0, T ]
into five distinct parts, given by the definition of the cut-off function ζϑ . We will
then analyze the behaviour of each integral as we send ϑ ↓ 0. To guarantee a good
overview of this process, we will perform this procedure on each of the two integral
terms above separately. We start with the integral involving f - and g-terms:

Due to convexity of both ξ 
→ f (ξ) as well as u 
→ g(x, u) for almost every
x ∈ � and ζϑ ∈ [0, 1], we have

∫
�T

f (ζϑ Dw + (1 − ζϑ)Du) + g(x, ζϑw + (1 − ζϑ)u) dz

≤
∫

�T

ζϑ f (Dw) + (1 − ζϑ) f (Du) + ζϑg(x, w) + (1 − ζϑ)g(x, u) dz

=
∫

�

∫ t1

0
f (Du) + g(x, u) dt dx

+
∫

�

∫ t1+ϑ

t1

t − t1
ϑ

( f (Dw) + g(x, w))

+
(
1 − t − t1

ϑ

)
( f (Du) + g(x, u)) dt dx

+
∫

�

∫ t2−ϑ

t1+ϑ

f (Dw) + g(x, w) dt dx

+
∫

�

∫ t2

t2−ϑ

t2 − t

ϑ
( f (Dw) + g(x, w))

+
(
1 − t2 − t

ϑ

)
( f (Du) + g(x, u)) dt dx

+
∫

�

∫ T

t2
f (Du) + g(x, u) dt dx .



R. Rainer et al.

Looking at the second integral when sending ϑ ↓ 0, we find using Lebesgue’s
differentiation theorem:∫ t1+ϑ

t1

t − t1
ϑ

( f (Dw) + g(x, w)) dt

= −
∫ t1+ϑ

t1
(t − t1) ( f (Dw) + g(x, w)) dt −→ 0,

∫ t1+ϑ

t1

(
1 − t − t1

ϑ

)
( f (Du) + g(x, u)) dt

=
∫ t1+ϑ

t1
f (Du) + g(x, u) dt

− −
∫ t1+ϑ

t1
(t − t1) ( f (Du) + g(x, u)) dt −→ 0.

Similarly, one can treat the fourth integral term and receive the same result. For the
third term, we make the simple observation:

∫ t2−ϑ

t1+ϑ

f (Dw) + g(x, w) dt −→
∫ t2

t1
f (Dw) + g(x, w) dt,

as ϑ ↓ 0. Splitting up the time interval of the integral term of the term on the
left-hand side of (3.1) into [0, t1], [t1, t2], and [t2, T ] and cancelling out the two
integral terms appearing on either side, leaves us with the term∫

�t1,t2

f (Du) + g(x, u) dz

remaining on the left-hand side of (3.1).
Now, we treat the integral terms involving time derivatives in (3.1). Using the

product rule of differentiation backwards, inserting the term ζϑ∂tw(w − u), and
integrating by parts, as well as splitting up the domain of integration the same way
as before yield∫

�T

ζ ′
ϑζϑ(w − u)2 + ζ 2

ϑ∂t (w − u)(w − u) + ζϑ∂t u(w − u) dz

=
∫

�T

1

2
∂t (ζ

2
ϑ(w − u)2) + ζϑ∂tw(w − u) − ζϑ∂t (w − u)(w − u) dz

= 1

2

∫
�

ζ 2
ϑ(·)(w − u)2(x, ·) dx

∣∣∣T
0

+
∫

�T

ζϑ∂tw(w − u) − 1

2
ζϑ∂t (w − u)2 dz

=
∫

�T

ζϑ∂tw(w−u) dz−1

2

∫
�

ζϑ(·)(w−u)2(x, ·) dx
∣∣∣T
0

+ 1

2

∫
�T

ζ ′
ϑ(w − u)2 dz

=
∫

�

−
∫ t1+ϑ

t1
(t − t1)∂tw(w − u) dt dx + 1

2

∫
�

−
∫ t1+ϑ

t1
(w − u)2 dt dx

+
∫

�

∫ t2−ϑ

t1+ϑ

∂tw(w − u) dt dx
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+
∫

�

−
∫ t2

t2−ϑ

(t2 − t)∂tw(w − u) dt dx − 1

2

∫
�

−
∫ t2

t2−ϑ

(w − u)2 dt dx .

Sending ϑ ↓ 0 and using Lebesgue’s differentiation theorem results in
∫ t2−ϑ

t1+ϑ

∂tw(w − u) dt −→
∫ t2

t1
∂tw(w − u) dt,

−
∫ t1+ϑ

t1
(t − t1)∂tw(w − u) dt −→ 0,

−
∫ t1+ϑ

t1
(w − u)2 dt −→ (w − u)(·, t1),

which implies the last sum of integral terms to converge to∫
�t1,t2

∂tw(w − u) dz − 1

2

∫
�

(w − u)2(x, ·) dx
∣∣∣t2
t1
.

Finally, collecting all remaining terms on both sides of (3.1), we are left with∫
�t1,t2

f (Du) + g(x, u) dz ≤
∫

�t1,t2

∂tw(w − u) + f (Dw) + g(x, w) dz

− 1

2

∫
�

(w − u)2(x, ·) dx
∣∣∣t2
t1
.

Since w was chosen arbitrarily, we have proven that u|�t1,t2
is a variational subso-

lution (resp. supersolution) in �t1,t2 which finishes the proof. ��
Lemma 3.3. (Comparison Principle) Let u and ũ be a variational sub-solution
and a super-solution on �T , respectively. Suppose that u(·, 0) ≤ ũ(·, 0) almost
everywhere in � and that

u(·, t) ≤ ũ(·, t) on ∂�

in the sense of traces for almost all t ∈ (0, T ). Then u ≤ ũ a.e. in �T .

Proof. Let τ ∈ (0, T ). Define the test functions

v := min(u, ũ) and w := max(u, ũ).

By Lemma 3.2, v andw are admissible test functions for u and ũ in their respective
variational inequality (2.5) in�τ . Adding up the variational inequalities, we obtain

0 ≤
∫

�τ

∂tv(v − u) + ∂tw(w − ũ) dz

+
∫

�τ

g(x, v) − g(x, u) + g(x, w) − g(x, ũ) dz

+
∫

�τ

f (Dv) − f (Du) + f (Dw) − f (Dũ) dz

− 1

2

∫
�

(v − u)2 + (w − ũ)2 dx
∣∣∣τ
0
.

(3.2)
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Observe that

g(x, v) − g(x, u) + g(x, w) − g(x, ũ)

= 1{u<ũ}(g(x, u) − g(x, u) + g(x, ũ) − g(x, ũ))

+ 1{ũ≤u}(g(x, ũ) − g(x, u) + g(x, u) − g(x, ũ))

= 0.

Similarly,

f (Dv) − f (Du) + f (Dw) − f (Dũ) = 0.

Using the last two displays and the identities v − u = −(u − ũ)+ and w − ũ =
(u − ũ)+, we obtain from (3.2)∫

�

(u − ũ)2+ dx
∣∣∣τ
0

≤
∫

�τ

∂t (w − v)(u − ũ)+ dz =
∫

�τ

∂t |u − ũ| (u − ũ)+ dz

=
∫

�τ

1

2
∂t (u − ũ)2+ dz = 1

2

∫
�

(u − ũ)2+ dx
∣∣∣τ
0
.

Since (u(·, 0) − ũ(·, 0))+ = 0 in �, the above yields

1

2

∫
�

(u(·, τ ) − ũ(·, τ ))2+ dx ≤ 0.

Thus u(·, τ ) ≤ ũ(·, τ ) almost everywhere in �. Since τ ∈ (0, T ) was arbitrary, we
obtain that u ≤ ũ a.e. in �T . ��

4. Shifted sub- and super-solutions

In this section we show that suitably shifted and lifted variational super-solutions
are still super-solutions on the intersection of the original domain and the shifted
domain. We begin with the following simple observation.

Proposition 4.1. Let ω be a modulus of continuity. Suppose that g fulfils (2.2) and
(Hh,ω) for any h ∈ R

n. Suppose further that w : �T → R is bounded. Then
(x, t) 
→ g+

u (x, w(x, t)) is bounded in �T .

Proof. Denote M := ‖w‖L∞(�T ) < ∞ and fix x0 ∈ �. Let x ∈ �. Recall that the
condition (Hh,ω) states that

v ≥ u + ω(|h|) �⇒ g+
u (y − h, v) ≥ g+

u (y, u) for all h, y ∈ R
n and v, u ∈ R.

Using the convexity of g, in particular that g+
u is monotonically non-decreasing,

and applying the above with v := −M , u := −M − ω(|h|), y := x0, h := x0 − x ,
we obtain

g+
u (x, w(x, t)) ≥ g+

u (x,−M) ≥ g+
u (x0,−M − ω(|x0 − x |))

≥ g+
u (x0,−M − ω(diam�)).

The upper bound is obtained analogously and thus (x, t) 
→ g+
u (x, w(x, t)) is

bounded. ��
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Theorem 4.2. Suppose that h ∈ R
n, � ∩ �h is Lipschitz and that ω is a modulus

of continuity. Let the assumptions (2.1) - (2.3) and (Hh,ω) hold. Let u be a bounded
variational super-solution on �T . Then

ũ(x, t) := u−h(x, t) + ω(|h|)

is a variational super-solution on (�∩�−h)T . Similarly, for a bounded variational
sub-solution w on �T , the function

w̃(x, t) := wh(x, t) − ω(|h|)

is a variational sub-solution on (� ∩ �h)T .

Here, �h and �−h denote the shifted sets and u−h , uh the shifted functions as
defined in (2.6).

Proof. (Step 1) Denote c := ω(|h|) > 0 and �̃ := � ∩ �−h . Let (x, t) ∈ �̃T . By
convexity of g,

g(x, ũ(x, t)) ≤ g(x, u(x, t)) + (ũ(x, t) − u(x, t))g+
u (x, ũ(x, t)).

Since u and ũ are bounded, it therefore follows from Proposition 4.1 that

∫
�̃T

g(x, ũ) dz ≤
∫

�̃T

g(x, u) dz +
∫

�̃T

|u − ũ| ∣∣g+
u (x, ũ)

∣∣ dz < ∞.

Consequently we have

∫
�̃T

g(x, ũ) + f (Dũ) dz < ∞

as required in the definition of variational super-solutions.

(Step 2) Let ṽ ∈ ũ + L p([0, T ];W 1,p
0 (�̃)) ∩ L2(�̃T ) be such that ṽ ≥ ũ in �̃

and ∂t ṽ ∈ L2(�̃T ). We need to show that ũ satisfies the variational inequality (2.5)
with respect to the test function ṽ. We may suppose that

∫
�̃T

f (Dṽ) + g(x, ṽ) dz < ∞ (4.1)

as otherwise the variational inequality holds trivially. We set

v(x, t) :=
{

ṽh(x, t) − c, x ∈ �̃h,

u(x, t), x ∈ � \ �̃h .

Then v ∈ u + L p([0, T ];W 1,p
0 (�)) ∩ L2(�T ) with v ≥ u in �T . Using v as a test

function for u in the variational inequality (2.5), we obtain
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0 ≤
∫
�T

∂tv(v − u) + f (Dv) − f (Du) dz − 1

2

∫
�

(v − u)2 dx
∣∣∣T
0

+
∫
�T

g(x, v) − g(x, u) dz

=
∫
�̃h,T

∂t ṽh(ṽh − (u + c)) + f (Dṽh) − f (Du) dz − 1

2

∫
�̃h

(ṽh − (u + c))2 dx
∣∣∣T
0

+
∫
�̃h,T

g(x, ṽh − c) − g(x, u) dz

=
∫
�̃T

∂t ṽ(ṽ − (u−h + c)) + f (Dṽ) − f (Du−h) dz − 1

2

∫
�̃

(ṽ − (u−h + c))2 dx
∣∣∣T
0

+
∫
�̃h,T

g(x, ṽh − c) − g(x, u) dz

=
∫
�̃T

∂t ṽ(ṽ − ũ) + f (Dṽ) − f (Dũ) + g(x, ṽ) − g(x, ũ) dz − 1

2

∫
�̃

(ṽ − ũ)2 dx
∣∣∣T
0

+
∫
�̃h,T

g(x, ṽh − c) − g(x, u) dz −
∫
�̃T

g(x, ṽ) − g(x, ũ) dz.

If we can now show that the last two integrals together are non-positive, we have
established that ũ satisfies the variational inequality with respect to ṽ. This would
imply that ũ is a variational super-solution on �̃T , as desired. To this end, we first
observe that∫

�̃T

g(x, ṽ) − g(x, ũ) dz =
∫

�̃h,T

g(x − h, ṽh) − g(x − h, u + c) dz.

In the following, we omit the time point t . Observe that the previous equation
together with (4.1) guarantees also that

∫
�̃h,T

g(x, v) dz < ∞. Consequently, it
suffices to prove the following inequality:

g(x − h, ṽ(x − h)) − g(x − h, u(x) + c)

≥ g(x, ṽ(x − h) − c) − g(x, u(x)) a.e. in �̃h,T . (4.2)

To this end, fix (x, t) ∈ �̃h,T for which the above quantities are defined and finite.
Set

ψ(y) := g(x − h, y) and φ(y) := g(x, y − c)

for y ∈ [u(x) + c, ṽ(x − h)]. We remark that this interval is never empty since
ṽ ≥ ũ in �̃T implies that

ṽ(x − h) ≥ ũ(x − h) = u−h(x − h) + c = u(x) + c.

In particular, if it is a singleton, both sides of (4.2) are zero. Therefore we are left
with the case where u(x) + c < ṽ(x − h). Then ψ and φ have right-derivatives

ψ ′+(y) = g+
u (x − h, y) and φ′+(y) = g+

u (x, y − c),
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where g+
u denotes the right-derivative of g with respect to the second variable. We

insert c = ω(|h|), which allows us to use the assumption (Hh,ω) to obtain

ψ ′+(y) = g+
u (x − h, y) ≥ g+

u (x, y − c) = φ′+(y)

in [u(x) + c, ṽ(x − h)]. Thus, integration over this interval yields

ψ(ṽ(x − h)) − ψ(u(x) + c) ≥ φ(ṽ(x − h)) − φ(u(x) + c)),

which is exactly (4.2). Thus ũ fulfills the variational inequality and is a variational
super-solution. To obtain the respective result for sub-solutions, the calculations
are similar. In the assumption (Hh,ω) one can then replace x with x + h and set
v = y + c, u = c to come to the analogous conclusion. ��

5. Proof of the main result

This section is dedicated to proving the main result (Theorem 2.4) of this article.
We begin with a technical lemma which says that the Haar-Rado type condition
(2.7) implies that

uh(·, t) − ω(|h|) ≤ u(·, t) on ∂(� ∩ �)h

in the sense of traces for any h ∈ R
n . Since the shifted function at the left-hand side

is still a variational sub-solution by Theorem 4.2, while the boundedness will be
shown in Lemma 5.2, it follows from the comparison principle that the inequality
holds almost everywhere in � ∩ �h . Writing h = x − y then essentially yields
u(x, t) − u(y, t) ≤ ω(|x − y|) whenever (x, t) and (y, t) are Lebesgue points of
u.

Lemma 5.1. Let ∂(� ∩ �h) be Lipschitz. Suppose that u0 ∈ W 1,p(�) is ω-
continuous on � and let

u ∈ u0 + L p([0, T ];W 1,p
0 (�)) ∩ L2(�T ) with ∂t u ∈ L2(�T ).

Suppose moreover that

|u(x, t) − u0(γ )| ≤ ω(|x − γ |) for a.e. (x, t) ∈ �T and γ ∈ ∂�. (5.1)

Then

uh(·, t) − ω(|h|) ≤ u(·, t) on ∂(� ∩ �h)

in the sense of traces for almost all t ∈ (0, T ).

Proof. For the properties of the trace that we use in this proof, we once again refer
to [26, Section 3]. We proceed similar as in the proof for [26, Lemma 5.2]. Fix
t ∈ (0, T ) such that u(·, t) = u0(·) on ∂� in the sense of traces. We wish to show
that

lim
r→0

−
∫
Br (γ )∩�∩�h

uh(x, t) − u(x, t) dx ≤ ω(|h|) (5.2)
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for Hn−1-almost every γ ∈ ∂(� ∩ �h). To this end, let

γ ∈ ∂(� ∩ �h) ⊂ (∂� ∩ �h) ∪ (∂�h ∩ �) ∪ (∂� ∩ ∂�h).

First case: γ ∈ ∂� ∩ �h. Let r > 0 be so small that Br (γ ) ⊂ �h . Then

−
∫
Br (γ )∩�

uh(x, t) − u(x, t) dx = −
∫
Br (γ )∩�

uh(x, t) − u0(γ ) dx

+ −
∫
Br (γ )∩�

u0(γ ) − u(x, t) dx

= −
∫
Br (γ )∩�

u(x − h, t) − u0(γ ) dx

+ −
∫
Br (γ )∩�

u0(γ ) − u(x, t) dx

≤ −
∫
Br (γ )∩�

ω(|x − h − γ |) dx

+ −
∫
Br (γ )∩�

u0(γ ) − u(x, t) dx,

where the last inequality follows from (5.1). Sinceω is continuous, the first integral
at the right-hand side converges to ω(|h|) as r → 0. The second integral on the
other hand converges to zero forHn−1-almost every γ ∈ ∂�. Thus we obtain (5.2).

Second case: γ ∈ ∂�h ∩ �. Let r > 0 be so small that Br (γ ) ⊂ �. Then

−
∫
Br (γ )∩�h

uh(x, t) − u(x, t) dx

= −
∫
Br (γ−h)∩�

u(x, t) − u(x + h, t) dx

= −
∫
Br (γ−h)∩�

u(x, t) − u0(γ − h) dx

+ −
∫
Br (γ−h)∩�

u0(γ − h) − u(x + h, t) dx

≤ −
∫
Br (γ−h)∩�

u(x, t) − u0(γ − h) dx

+ −
∫
Br (γ−h)∩�

ω(|x + h − (γ − h)|) dx,

where the last inequality follows from (5.1) since γ − h ∈ ∂�. As r → 0, the first
integral at the right-hand side converges to zero for Hn−1-almost every γ ∈ ∂�

and the second integral converges to ω(|h|). Thus we obtain (5.2).
Third case: γ ∈ ∂� ∩ ∂�h ∩ ∂(� ∩ �h). By [26, Lemma 3.1] for Hn−1-almost
every γ ∈ ∂� ∩ ∂�h ∩ ∂(� ∩ �h) it holds that

tr�u(γ, t) = tr�∩�h u(γ, t) = u0(γ ),

tr�h u(γ − h, t) = tr�∩�h u(γ − h, t) = u0(γ − h).
(5.3)
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We have

−
∫
Br (γ )∩�∩�h

uh(x, t) − u(x, t) dx = −
∫
Br (γ )∩�∩�h

u(x − h, t) − u0(γ − h) dx

+ −
∫
Br (γ )∩�∩�h

u0(γ ) − u(x, t) dx

+ −
∫
Br (γ )∩�∩�h

u0(γ − h) − u0(γ ) dx .

As r → 0, the first two integrals on the right-hand side converge to zero by (5.3).
Moreover, we have u0(γ − h) − u0(γ ) ≤ ω(|h|) by ω-continuity. Thus we obtain
(5.2). ��
Lemma 5.2. Suppose the conditions (2.1) - (2.3) are in force. Further suppose that
u is a variational solution to the Cauchy-Dirichlet problem (1.1) on �T and that
u0 is bounded in �. Then u is bounded in �T .

Proof. We only show that u is bounded from above as a lower bound follows
analogously. Let M := supx∈� |u0(x)|. We show that for large enough β > 0, the
function

a(x, t) := M + βt

is a variational super-solution on �T . Since a ≥ u on ∂P�T , it follows from the
comparison principle (Lemma 3.3) that

u ≤ a ≤ M + βT a.e. in �T .

It now remains to show that a is a variational super-solution on �T . To this aim,
let v ∈ a + L p([0, T ];W 1,p

0 (�T )) ∩ L2(�T ), v ≥ a with ∂tv ∈ L2(�T ) be a test
function. By convexity of f for any ξ ∈ R

n there is λξ ∈ R
n such that

f (ξ + ζ ) ≥ f (ξ) + λξ · ζ.

We define ϕ(x, t) := v(x, t) − a(x, t) and use the above with ξ := Da(x, t) = 0
and ζ(x, t) := Dϕ(x, t) to obtain

f (Dv) = f (Da + Dϕ) ≥ f (Da) + λ · Dϕ.

Integrating this over �T we get
∫

�T

f (Dv) dz ≥
∫

�T

f (Da) + λ · Dϕ dz =
∫

�T

f (Da) dz, (5.4)

where the last identity follows from the Gauss-Green theorem since ϕ(·, t) ∈
W 1,p

0 (�) for almost all t (cf. [13, Theorem 4.6]). Observe then that

∂tv(v − a) = 1

2
∂t (v − a)2 + ∂t a(v − a).
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Thus ∫
�T

∂tv(v − a) + g(x, v) − g(x, a) dz − 1

2

∫
�T

(v − a)2(x, ·) dx
∣∣∣T
0

=
∫

�T

1

2
∂t (v − a)2 + ∂t a(v − a) + g(x, v)

− g(x, a) dz − 1

2

∫
�

(v − a)2(x, ·) dx
∣∣∣T
0

≥
∫

�T

∂t a(v − a) + (v − a)g+
u (a, x) dz, (5.5)

where in the last inequality we also used the convexity of g(x, ·). In the view of
(5.4) and (5.5) it now suffices to show that

∂t a(v − a) + (v − a)g+
u (a, x) = (β + g+

u (M + βt, x))(v − a) ≥ 0.

Since v − a ≥ 0 and by convexity g+
u (M + βt) ≥ g+

u (M), this follows by taking
β ≥ |g+

u (M)|. ��
We are now ready to finish the proof of our main theorem.

Proof of Theorem 2.4. Fix h ∈ R
n . Then by Lemma 5.1 we have

uh(·, t) − ω(|h|) ≤ u(·, t) on ∂(� ∩ �h)

in the sense of traces for almost all t ∈ (0, T ). Moreover, by ω-continuity of u0 we
have

uh(·, 0) − ω(|h|) ≤ u(·, 0) in � ∩ �h .

Since u is bounded in �T by Lemma 5.2, it follows from Theorem 4.2 that the
functionuh−ω(|h|) is a variational sub-solution on (�∩�h)T . Thus the comparison
principle (Lemma 3.3) implies that

uh − ω ≤ u a.e. in (� ∩ �h)T .

Let (x0, t0), (y0, t0) ∈ �T be Lebesgue points of u. Take r > 0 so small that
both Qr (x0, t0), Qr (y0, t0) ⊂ �T . Let h = x0 − y0. Then we have Qr (x0, t0) ⊂
(� ∩ �h)T . Thus

−
∫
Qr (x0,t0)

uh − u dz ≤ −
∫
Qr (x0,t0)

ω(|h|) dz,

that is,

−
∫
Qr (x0,t0)

ω(|x0 − y0|) dz ≥ −
∫
Qr (x0,t0)

u(x − x0 + y0, t) − u(x, t) dz

= −
∫
Qr (y0,t0)

u(x, t) dz − −
∫
Qr (x0,t0)

u(x, t) dz.

Letting r → 0, this implies that ω(|x0 − y0|) ≥ u(y0, t0) − u(x0, t0). ��
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Proof of Corollary 2.5. For (x, t) ∈ �T and γ ∈ ∂�, we have

u(x, t) − u0(γ ) ≤ l2(x) − u0(γ ) = l2(x) − l2(γ ) ≤ ω(|x − γ |).
Similarly,

u(x, t) − u0(γ ) ≥ l1(x) − u0(γ ) = l1(x) − l1(γ ) ≥ −ω(|x − γ |).
Thus

|u(x, t) − u0(γ )| ≤ ω(|x − γ |) for a.e. (x, t) ∈ �T and γ ∈ ∂�.

Thus we can apply Theorem 2.4, which shows the claim. ��

6. An application with the bounded slope condition

In this section we apply the Haar-Rado type theorem to obtain the spatial Lips-
chitz continuity of variational solutions, provided that f ∈ C2(Rn) is 
-uniformly
convex and u0 satisfies the bounded slope condition. We begin with the following
lemma, which says that affine functions can be bent so that they become suitable
barriers. The definition of the barrier function is in the spirit of Bousquet and Brasco
[8, Proposition 4.2].

Lemma 6.1. Let g be as in (2.2) and (Hh,ω). Suppose that � is convex and that
f ∈ C2(Rn) is uniformly 
-convex. Let x0 ∈ ∂� and let a : Rn → R be an affine
function. Then there is β > 0 and η ∈ R

n, |η| = 1, such that

â(x) := a(x) + β(x − x0) · η(3 diam� − (x − x0) · η),

is a variational super-solution in �T . Moreover, â ≥ a in �.

Proof. Since � is convex, we can rotate and translate it so that x0 = 0 and � ⊂
{x ∈ R

n : x1 > 0}. We set

â(x) := a(x) + βx1(3 diam� − x1).

Let v ≥ â be a test function for the variational inequality. To see that â is a variational
super-solution, we need to show that∫

�T

f (Dv) − f (Dâ) dz

+
∫

�T

∂tv(v − â) + g(x, v) − g(x, â) dz

− 1

2

∫
�

(v − â)2(x, ·) dx
∣∣∣T
0

≥ 0. (6.1)

Since ∂t â = 0, we have

∂tv(v − â) = 1

2
∂t (v − â)2,
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whence∫
�T

∂tv(v − â) + g(x, v) − g(x, â) dz − 1

2

∫
�

(v − â)2(x, ·) dx
∣∣∣T
0

=
∫

�T

g(x, v) − g(x, â) dz. (6.2)

Furthermore, since â ≤ v, it follows from convexity of g(x, ·) that
g(x, v) − g(x, â) ≥ (v − â)g+

u (x, â) almost everywhere in �T . (6.3)

Thus in the view of (6.1), (6.2) and (6.3) it suffices to show that
∫

�

f (Dv) − f (Dâ) + (v − â)g+
u (x, â) dz ≥ 0. (6.4)

Since f is C2 and convex, for any ξ ∈ R
n we have

f (ξ + ζ ) ≥ f (ξ) + ζ · Df (ξ) for all ζ ∈ R
n .

We set ϕ(x, t) := v(x, t) − â(x, t) and apply the above with ξ := Dâ(x) and
ζ := Dϕ(x, t). We obtain

f (Dâ(x) + Dϕ(x, t)) = f (ξ + ζ )

≥ f (ξ) + ζ · Df (ξ)

= f (Dâ(x)) + Dϕ(x, t) · Df (Dâ(x))

for almost all (x, t) ∈ �T . Integrating this over �T we get
∫

�T

f (Dv) dz =
∫

�T

f (Dâ + Dϕ) dz

≥
∫

�T

f (Dâ) + Dϕ · Df (Dâ) dz

=
∫

�T

f (Dâ) − ϕ divx D f (Dâ) dz

=
∫

�T

f (Dâ) − (v − â) divx D f (Dâ) dz, (6.5)

where the identity follows from the Gauss-Green theorem. By (6.4) and (6.5) it
now suffices to show that∫

�T

(g+
u (x, â) − divx D f (Dâ))(v − â) dz ≥ 0. (6.6)

Recall that the condition (Hh,ω) says that

c ≥ d + ω(|h|) �⇒ g+
u (y − h, c) ≥ g+

u (y, d) for all h, y ∈ R
n and c, d ∈ R.
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Wefixapoint z0 ∈ �whose choice does notmatter.Using the abovewith c := â(x),
d = â(x) − ω(|h|), h := z0 − x and y := z0, we obtain

g+
u (x, â(x)) ≥ g+

u (z0, â(x) − ω(|h|))
≥ g+

u (z0, a(x) − ω(diam�))

≥ g+
u (z0,−‖a‖L∞(�) − ω(diam�)),

where we also used that â ≥ a in �. Since v − â ≥ 0, condition (6.6) further
reduces to showing that

g+
u (z0,−‖a‖L∞(�) − ω(diam�)) − divx D f (Dâ(x)) ≥ 0 (6.7)

for almost all x ∈ �. We observe that Da is a constant vector and compute

Dâ(x) = D(a(x) + βx1(3 diam� − x1)) = Da + 3β(diam�)e1 − 2βx1e1

so that

D2â(x) = −2β(e1 ⊗ e1).

Hence by chain rule and 
-uniform convexity of f we have

− divx D f (Dâ(x)) = −tr(JD f ◦Dâ(x)) = −tr(JD f (Dâ(x))JDâ(x))

= 2βtr(D2 f (Dâ(x))e1 ⊗ e1)

≥ 2β
(|Dâ(x)|). (6.8)

Observe that

|Dâ(x)| = |Da + 3β(diam�)e1 − 2βx1e1| ≥ 3β diam� − 2βx1 − |Da|
= β(3 diam� − 2x1) − |Da| .

Thus we can make |Dâ| arbitrarily large in � by taking large enough β. Using the
condition s
(s) → ∞ as s → ∞ (with s = |Dâ|), it follows that there exists
β = β(�,
, g, ‖a‖W 1,∞(�)) such that

2β
(|Dâ(x)|) = 2β

|Dâ(x)| |Dâ(x)| 
(|Dâ(x)|)

≥ 2β

|Da| + 5β diam�
|Dâ(x)| 
(|Dâ(x)|)

≥ |g+
u (x0,−‖a‖L∞(�) − ω(diam�))|. (6.9)

The desired inequality (6.7) now follows from (6.8) and (6.9). ��
Proof of Corollary 2.9. By Corollary 2.5, it suffices to show that there exist Lips-
chitz continuous functions l1, l2 ∈ W 1,p

u0 (�) such that

l1 ≤ u ≤ l2 in �T .
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We will only construct the function l2 as the construction of l1 is analogical. Let
x0 ∈ ∂�. Since u0

∣∣
∂�

satisfies the bounded slope condition with a constant Q and
u0 is Lipschitz in �, there is an affine function ax0 : Rn → R such that

u0(x0) = ax0(x0) and u0 ≤ ax0 in �,

and additionally |Dax0 | ≤ max(Q, ||Du0||L∞(�)), see [4, Lemma 2.3]. Let âx0 be
the variational super-solution given by Lemma 6.1. Then we have

u0(x0) = a(x0) = âx0(x0) and u0 ≤ ax0 ≤ âx0 in �.

Thus it follows from comparison principle (Lemma 3.3) that u ≤ âx0 in �T .

Moreover, from the proof of Lemma 6.1 we see that ||Dâx0 ||L∞(�) depends only
on 
, g, �, sup∂� |u0| and |Dax0 |. In other words, the Lipschitz constant of âx0 is
independent of x0. Therefore the function

l2(x) := inf
x0∈∂�

âx0(x), x ∈ �,

is a desired Lipschitz continuous upper bound for u. Note that l2 is in fact Lipschitz
since it is the infimum of a family of Lipschitz functions with a uniform Lipschitz
constant. ��
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