
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

All congruences below stability-preserving fair testing or CFFD

© 2020 the Author(s)

Published version

Valmari, Antti

Valmari, A. (2020). All congruences below stability-preserving fair testing or CFFD. Acta
Informatica, 57(3-5), 353-383. https://doi.org/10.1007/s00236-019-00364-4

2020

Acta Informatica (2020) 57:353–383
https://doi.org/10.1007/s00236-019-00364-4

ORIG INAL ART ICLE

All congruences below stability-preserving fair testing
or CFFD

Antti Valmari1

Received: 24 April 2019 / Accepted: 30 December 2019 / Published online: 6 May 2020
© The Author(s) 2020

Abstract
In process algebras, a congruence is an equivalence that remains valid when any subsystem
is replaced by an equivalent one. Whether or not an equivalence is a congruence depends
on the set of operators used in building systems from subsystems. Numerous congruences
have been found, differing from each other in fine details, major ideas, or both, and none
of them is good for all situations. The world of congruences seems thus chaotic, which is
unpleasant, because the notion of congruence is at the heart of process algebras. This study
continues attempts to clarify the big picture by proving that in certain sub-areas, there are
no other congruences than those that are already known or found in the study. First, the
region below stability-preserving fair testing equivalence is surveyed using an exceptionally
small set of operators. The region contains few congruences, which is in sharp contrast with
an earlier result on the region below Chaos-Free Failures Divergences (CFFD) equivalence,
which contains 40 well-known and not well-known congruences. Second, steps are taken
towards a general theory of dealing with initial stability, which is a small but popular detail.
This theory is applied to the region below CFFD.

1 Introduction

This study is motivated by a striking difference: in the case of sequential computation, the
notion of the result of a computation at the highest level of abstraction is simple, clear and
widely agreed upon, whereas in the case of concurrent computation, many alternatives are
widely used and numerous more alternatives are known to exist. Let us discuss this a bit.

It is universally agreed that a deterministic sequential programcomputes a partial function.
The function is partial, because with some inputs the programmay fail to terminate. This nice
picture is slightly complicated by the fact that sequential programs may contain intentional
nondeterminism, such as in the Miller–Rabin probabilistic primality test [1,13]; or unwanted

Congratulations to Rob van Glabbeek on his 60th birthday!.

B Antti Valmari
antti.valmari@jyu.fi

1 Faculty of Information Technology, University of Jyväskylä, P.O. Box 35,
40014 University of Jyväskylä, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-019-00364-4&domain=pdf
http://orcid.org/0000-0002-5022-1624

354 A. Valmari

nondeterminism, such as in i = i++ + 1; (a Wikipedia example of undefined behavior).1

This issue could be taken into account by declaring that a sequential program executes a
relation from the set of inputs to the set of outputs union {⊥}: (i, o) is in the relation if and
only if, for the input i , o is a possible output or o =⊥ denoting failure to terminate. These
abstract views to sequential programs are simple, natural, and widely accepted. At their level
of abstraction, they have no rivals.

The situation is entirely different with concurrent programs. A concurrent program
computes a behaviour.Behavioursmaybe—andhavebeen—comparedwith branchingbisim-
ilarity [8], weak bisimilarity [10], CSP failures divergences equivalence [15], Chaos-Free
Failures Divergences (CFFD) equivalence [20], and numerous other equivalences. None of
them is widely considered as the “most natural” or “right” notion of “similar behaviour”. If
there is any agreement, it is that the choice of the most appropriate equivalence depends on
the situation. Even the same users keep on switching between different equivalences depend-
ing on the task at hand, such as in [15], where, for instance, stable failures equivalence is
used when the so-called catastrophic divergence phenomenon prevents the use of failures
divergences equivalence.

The famous survey [5], among others, has improved our understanding a lot by presenting
many equivalences in a systematic framework. However, such surveys do not provide full
information, because they only discuss known equivalences. They leave it openwhether there
could be unknown useful equivalences with interesting properties.

In many situations the equivalence must be a congruence with respect to the operators that
are available for building systems fromsubsystems. This requirement is so strong that itmakes
it possible to survey certain regions of equivalences, list all congruences in them, and prove
that they contain no other congruences. Chapters 11 and 12 of [15] survey two regions and
prove that there are three congruences in each. In [17], all congruences that are implied by the
CFFD equivalence were found. This fairly large region contains 40 congruences, including
stable failures equivalence, CSP failures divergences equivalence, and trace equivalence. Five
kinds of failures, four kinds of infinite traces, two kinds of divergence traces, and two kinds of
traces were needed, some of them new. Perhaps none of the previously unknown congruences
among the 40 is interesting, but if so, thenwe know that no interesting congruences are lurking
in that region.

A task that is somewhat similar in spirit to fully surveying a region is to choose a property
such as deadlock-freedom and find the weakest congruence that preserves the property. Such
results have been published in, e.g., [2,4,6,7,9,11,12,14,16]. As explained in [17], knowing
the weakest congruence helps in designing compositional verification algorithms for the
property.

The congruence property depends on the set of operators for building systems. Perhaps the
most well known example of this deals with the common choice operator “+”. Branching
bisimilarity, weak bisimilarity, CSP failures divergences equivalence, CFFD equivalence,
and many other equivalences are not congruences with respect to it. In CSP, the congruence
property was obtained by rejecting the common choice operator and introducing two other
choice operators instead. In most other theories, the common choice operator was kept and
the equivalence was refined so that it became a congruence.

At this point it is worth mentioning that if we are only interested in so-called safety prop-
erties of systems (that is, whatever the system does must be acceptable), then there is a single
very widely agreed “right” congruence: trace equivalence. Furthermore, it was proven in

1 The C and C++ specifications allow it to do just anything. In practice, the value of i grows by either 1 or
2. The assigned value i+1 is computed using the original value of i, but the assignment = may be executed
before or after the post-increment i++.

123

All congruences below stability-preserving fair testing or CFFD 355

[18] that any operator that satisfies a rather natural weak assumption can be constructed from
parallel composition and hiding modulo trace equivalence, implying that trace equivalence
is a congruence with respect to every “reasonable” operator. This situation is comparable to
sequential programs in simplicity and clarity.

Things become problematic indeed, when also so-called liveness properties are of interest
(the system must eventually do something useful, or at least not lose the ability to nondeter-
ministically choose to eventually do something useful). The problems are so severe that they
have led to wide adoption of an equivalence that does not imply trace equivalence, that is,
CSP failures divergences equivalence.

The above-mentioned results in [15] use a fairly large set of operators. In particular, they
use a “throw” operator that rules outmany equivalences that would otherwise be congruences.
The results in [17] only use parallel composition, hiding, relational renaming, and action
prefix. Therefore, where the regions considered by [15] and [17] overlap, [17] gives additional
congruences.

In [19], of which the present study is an extension, all congruences were found that are
implied by the stability-preserving fair testing equivalence of [14]. This equivalence is a
congruence. It is interesting for many reasons. It is the weakest congruence that preserves the
property AG EF a, that is, “in all futures always, there is a future where eventually a occurs”.
It offers an alternative approach to the verification of liveness properties. With the traditional
approach, it is often necessary to explicitly state so-called fairness assumptions, which may
be a burden. With fair testing equivalence this is unnecessary, because, so to speak, it has a
built-in fairness assumption that is acceptable in many cases. Unlike other congruences for
a significant subset of liveness properties, it has a very well-working partial order reduction
method [21]. On the theoretical side, its definition is an interesting exception, because it
seems somewhat ad-hoc instead of following a familiar pattern.

An important feature of [19] is that only parallel composition, hiding, and functional
renaming were used for proving the absence of more congruences. This is a strictly smaller
set of operators than in [15] and [17]. In [17] it was proven that if a congruence is implied by
strong bisimilarity (this is a very weak assumption) and preserves anything, then it preserves
at least the alphabet. It was shown with two counter-examples that the result depends on the
availability of the action prefix and relational renaming operators. In [19], one of the counter-
examples was encountered again, and six new (albeit uninteresting) congruences were found
that do not preserve the alphabet.

The most important finding of [19] was that there is only one congruence between the
not stability-preserving fair testing equivalence and the congruence that only preserves the
alphabet: trace equivalence. If one wants to have something like fair testing, then one must
go all the way to fair testing. There are no intermediate stops. This is in sharp contrast to
[17]. It is also somewhat surprising, because the definition of fair testing seems quite ad-hoc,
and because fair testing preserves AG EF a which is a well-known example of a property
that is not linear-time (e.g., [3, p. 32]). The importance of this result is strengthened by the
fact that it was obtained in the presence of only parallel composition, hiding, and functional
renaming. Also this is different from [17].

A widely used way to make an equivalence a congruence with respect to the common
choice operator is to add information on initial stability: systems that can initially execute an
invisible action are deemed inequivalent to systems that cannot. The study [19] was the first
one that fully covers a region induced by a stability-preserving congruence. Also the weak-
est stability-preserving congruence was found. Some unexpected or at least unconventional
congruences were found, but they may be considered uninteresting, because they rely on the
absence of the action prefix operator.

123

356 A. Valmari

The present study makes two contributions. First, the conference paper [19] had a strict
page limit, leading to dense proofs that are hard to read. The present study attempts to make
the results in [19] more readable. Second, it develops a theory that greatly simplifies the
treatment of initial stability when proving the absence of unknown congruences, at the cost
of assuming the congruence property with respect to more operators than [19]. Therefore, it
gives less general results on fair testing equivalence than [19]. On the other hand, it applies
to CFFD equivalence.

Section 2 presents the necessary background concepts. The congruences that are implied
by stability-preserving fair testing equivalence are introduced inSect. 3. InSect. 4, theweakest
stability-preserving congruence is found. That stability-preserving fair testing equivalence
does not imply more congruences is proven in Sect. 5. The new theory on adding initial
stability checking is presented in Sect. 6, and applied to CFFD equivalence in Sect. 7 resulting
in 79 congruences. This study is concluded by a discussion section.

2 LTSs and their operators

In this section we list many widely known concepts needed in this study, pointing out little
facts that are useful to remember when reading our proofs. We also pay attention to details
that vary in the literature, discussing the motivation of our choice.

The empty string is denoted with ε. The set of strings on A is denoted with A∗, and
A+ = A∗\{ε}. If π and σ are strings, then π � σ denotes that π is a prefix of σ , that is,
there is a string ρ such that σ = πρ. If π is a string and K is a set of strings, then π � K
denotes that there is σ ∈ K such that π � σ . We have ε � K if and only if K �= ∅. We
define π−1K = {ρ | πρ ∈ K }. It is nonempty if and only if π � K . Trivially ε−1K = K .

The invisible action is denoted with τ . It denotes the occurrence of something that the
outside world does not see. This is different from the occurrence of nothing, thus τ �= ε. An
alphabet is any set Σ such that ε /∈ Σ and τ /∈ Σ . Its elements are called visible actions.

A labelled transition system or LTS is a tuple (S,Σ,Δ, ŝ) such that Σ is an alphabet,
Δ ⊆ S × (Σ ∪ {τ })× S, and ŝ ∈ S. Elements of S and Δ are called states and transitions,
respectively, and ŝ is the initial state. The transition (s, a, s′) may also be denoted with
s −a→ s′. By s −a→ we mean that there is s′ such that s −a→ s′.

If an LTS is shown as a drawing, then, unless otherwise stated, its alphabet is the set
of the visible actions along the transitions in the drawing. The alphabet may be specified
explicitly in the text or near the bottom right corner of the drawing. For instance, the alphabet
of τ a is {a} and the alphabet of τ a {a,b} is {a, b}. In particular, we will frequently

use and τ , their alphabets being ∅.
In the constructions of this study, we will often need elements that are not in a given

alphabet or in a given set of states. Such entities exist because, by the axiom of foundation
in set theory, if X is a set, then X , {X}, {{X}}, and so on are not elements of X . Sometimes
in the literature, instead of each LTS having an alphabet of its own, there is a single global
alphabet. That convention would make things difficult in the present study, because elements
that are not in the alphabet would not be available. We will return to this issue in Sect. 8.

We use L , M , L ′, M ′, L1, M1, and so on to denote LTSs. Unless otherwise stated,
L = (S,Σ,Δ, ŝ), L ′ = (S′,Σ ′,Δ′, ŝ′), L1 = (S1,Σ1,Δ1, ŝ1), and so on. Because this con-
vention is sometimes unclear, we also use Σ(L) to denote the alphabet of L . By s −a→i s′
we mean that (s, a, s′) ∈ Δi .

123

All congruences below stability-preserving fair testing or CFFD 357

Researchers widely agree that at the detailed level, it is appropriate to compare behaviours
using the following notion. Two LTSs L1 and L2 are bisimilar, denoted with L1 ≡ L2, if
and only if Σ1 = Σ2 and there is a relation2 “∼” ⊆ S1 × S2 with the following properties:

1. ŝ1 ∼ ŝ2.
2. If s1 −a→1 s′1 and s1 ∼ s2, then there is s′2 such that s2 −a→2 s′2 and s′1 ∼ s′2.
3. If s2 −a→2 s′2 and s1 ∼ s2, then there is s′1 such that s1 −a→1 s′1 and s′1 ∼ s′2.
It is easy to check that if L1 and L2 are isomorphic, then they are bisimilar.

The reachable part of an LTS (S,Σ,Δ, ŝ) is (S′,Σ,Δ′, ŝ), where S′ and Δ′ consist of
those states and transitions to which there is a path from ŝ. Any LTS is bisimilar with its
reachable part.

Next we define the six operators that this study will focus on.

Parallel composition L1‖L2 It is the reachable part of (S,Σ,Δ, ŝ), where S = S1 × S2,
Σ = Σ1 ∪Σ2, ŝ = (ŝ1, ŝ2), and (s1, s2) −a→ (s′1, s′2) if and only if

– a /∈ Σ2, s1 −a→1 s′1, and s′2 = s2 ∈ S2,
– a /∈ Σ1, s2 −a→2 s′2, and s′1 = s1 ∈ S1, or
– a ∈ Σ1 ∩Σ2, s1 −a→1 s′1, and s2 −a→2 s′2.

That is, if a belongs to the alphabets of both components, then an a-transition of the parallel
composition consists of simultaneous a-transitions of both components. If a belongs to the
alphabet of one but not the other component, then that component may make an a-transition
while the other component stays in its current state. Also each τ -transition of the parallel
composition consists of one component making a τ -transition without the other participating.
The result of the parallel composition is pruned by only taking the reachable part.

It is easy to check that L1‖L2 is isomorphic to (and thus bisimilar with) L2‖L1, and
(L1‖L2)‖L3 is isomorphic to L1‖(L2‖L3). This means that “‖” can be considered commu-
tative and associative.

Hiding L\A Let A be a set. The hiding of A in L is (S,Σ ′,Δ′, ŝ), where Σ ′ = Σ\A and
Δ′ = {(s, a, s′) ∈ Δ | a /∈ A} ∪ {(s, τ, s′) | ∃a ∈ A : (s, a, s′) ∈ Δ}. That is, labels of
transitions that are in A are replaced by τ and removed from the alphabet. Other labels of
transitions are not affected.

Relational renaming LΦ Let Φ be a set of pairs such that for every (a, b) ∈ Φ we have
τ �= a �= ε and τ �= b �= ε. The domain of Φ is D(Φ) = {a | ∃b : (a, b) ∈ Φ}.
Let the predicate Φ(a, b) hold if and only if either (a, b) ∈ Φ or b = a /∈ D(Φ). The
relational renaming of L with Φ is (S,Σ ′,Δ′, ŝ), where Σ ′ = {b | ∃a ∈ Σ : Φ(a, b)} and
Δ′ = {(s, b, s′) | ∃a : (s, a, s′) ∈ Δ ∧Φ(a, b)}.

That is, Φ renames visible actions to visible actions. A visible action may be renamed to
more than one visible action. In that case, the transitions labelled by that action are duplicated
as needed. If Φ specifies no new names for an action, the transitions labelled by it remain
unchanged. In particular, τ -transitions remain unchanged. The alphabet of the result consists
of the new names of the original visible actions where such have been defined, and of the
remaining original visible actions as such. Pairs in Φ whose first component is not in Σ

have no effect. This design makes it simple to specify the intended changes without causing
accidental removal of the transitions that are not intended to change.

2 When a relation symbol is used as a relation, it returns a truth value and must be between an element of the
domain and an element of the codomain. When a relation symbol is used as a set of pairs, usually neither of
these holds. This significantly affects the intended parsing and interpretation of the expression. To reduce the
risk of mis-interpretation, the author tends to point out uses as a set of pairs with double quotes.

123

358 A. Valmari

Functional renaming φ(L) Functional renaming is the subcase of relational renaming where
Φ specifies at most one new action name for each action. It is denoted with φ(L), where
φ(a) = b if (a, b) ∈ Φ, and φ(a) = a, otherwise. It is included in our list of six operators,
because we will encounter some equivalences that are congruences with respect to it but not
with respect to relational renaming.

We will frequently use the following two special cases of functional renaming as helpful
notation in proofs. They attach and remove an integer i to visible actions. They will make
it easy to ensure that in a parallel composition, precisely those actions synchronize whom
we want to synchronize. In the notation, A is an alphabet, ε �= a �= τ , and ε �= a j �= τ for
1 ≤ j ≤ n. Without loss of generality we assume that always ε �= a[i] �= τ .

a[i] := (a, i)
(a1a2 · · · an)[i] := a[i]1 a[i]2 · · · a[i]n

A[i] := {a[i] | a ∈ A}
�L�[i] := LΦ, where Φ = {(a, a[i]) | a ∈ Σ}
�L�[i] := LΦ, where Φ = {(a[i], a) | a[i] ∈ Σ}

Action prefix a.L . Let a �= ε. Let Σ ′ = Σ ∪ {a} if a �= τ , and Σ ′ = Σ otherwise. The
operator a.L yields (S′,Σ ′,Δ′, ŝ′), where ŝ′ is a new state (that is, ŝ′ /∈ S), S′ = S ∪ {ŝ′},
and Δ′ = Δ ∪ {(ŝ′, a, ŝ)}. That is, a.L starts by executing a, after which it is in the initial
state of L .

Choice L1 + L2 Roughly speaking, the choice between L1 and L2 starts by executing an
initial transition of L1 or an initial transition of L2. This transition represents a choice between
L1 and L2. Then L1 + L2 continues like the chosen LTS continues after the corresponding
transition.

This may be formalized by taking a disjoint union of L1 and L2, and adding a new state
that acts as the initial state of the result. For each initial transition of L1 and of L2, a copy is
made that starts at the new state. Indexing of state names is used to ensure that the union is
disjoint. That is, L1 + L2 = (S′,Σ ′,Δ′, ŝ′), where S′ = S[1]1 ∪ S[2]2 ∪ {ŝ′}, Σ ′ = Σ1 ∪Σ2,

Δ′ = Δ′1 ∪Δ′′1 ∪Δ′2 ∪Δ′′2, and ŝ′ /∈ S[1]1 ∪ S[2]2 , where Δ′i = {(s[i], a, s′[i]) | (s, a, s′) ∈ Δi }
and Δ′′i = {(ŝ′, a, s′[i]) | (ŝi , a, s′) ∈ Δi } for i ∈ {1, 2}.

Also “+” can be considered commutative and associative (up to bisimilarity).
Let “∼=” and “∼=′” be equivalences on LTSs. We say that “∼=” implies “∼=′” or “∼=′” is at least
as weak as “∼=” if and only if “∼=” ⊆ “∼=′”. This is equivalent to the following: for any LTSs
L1 and L2 we have L1 ∼= L2 ⇒ L1 ∼=′ L2.

Let “∼=” be an equivalence on LTSs and op be a unary operator on LTSs. We say that “∼=”
is a congruence with respect to op if and only if for every L and L ′, L ∼= L ′ implies op(L) ∼=
op(L ′).Whenwe say that an equivalence is a congruencewith respect to parallel composition,
we mean that it is a congruence with respect to the two unary operators op1(L) := L1‖L and
op2(L) := L‖L2. Because “‖” is commutative, this is equivalent to saying that the equiva-
lence is a congruencewith respect toop1(L). The similar convention and remark apply to “+”.

It is easy to show with induction that if f (L1, . . . , Ln) is an expression, Li ∼= L ′i for 1 ≤
i ≤ n, and “∼=” is a congruence with respect to all operators used in f , then f (L1, . . . , Ln) ∼=
f (L ′1, . . . , L ′n).

3 Stability-preserving fair testing and the region below it

In this section we define 4 times 5 equivalences in a two-dimensional fashion. Stability-
preserving fair testing equivalence is the strongest equivalence among them. We prove that

123

All congruences below stability-preserving fair testing or CFFD 359

17 of these equivalences are congruences with respect to parallel composition, hiding, and
functional renaming. We investigate the congruence properties of these 17 also with respect
to relational renaming, action prefix, and choice. We will see that the remaining three equiv-
alences are not congruences with respect to parallel composition.

An LTS L is unstable if and only if ŝ −τ→, and stable otherwise. If L is stable we
define en(L) := {a ∈ Σ | ŝ −a→}, that is, the set of visible actions that L can execute in
its initial state. If L is unstable, then the value of en(L) is not important. By defining it as
en(L) := {τ } we get the handy property that if L is stable and L ′ is unstable, then certainly
en(L) �= en(L ′). The following lemma tells how stability and en behave in LTS expressions.

Lemma 1 – L1‖L2 is stable if and only if both L1 and L2 are stable.
Then en(L1‖L2) = (en(L1)\Σ2) ∪ (en(L2)\Σ1) ∪ (en(L1) ∩ en(L2)).

– L\A is stable if and only if L is stable and en(L) ∩ A = ∅.
Then en(L\A) = en(L).

– LΦ is stable if and only if L is stable.
Then en(Φ(L)) = {b | ∃a ∈ en(L) : Φ(a, b)}.

– φ(L) is stable if and only if L is stable.
Then en(φ(L)) = {φ(a) | a ∈ en(L)}.

– a.L is stable if and only if a �= τ .
Then en(a.L) = {a}.

– L1 + L2 is stable if and only if both L1 and L2 are stable.
Then en(L1 + L2) = en(L1) ∪ en(L2).

If s ∈ S, s′ ∈ S, and σ ∈ Σ∗, then s =σ⇒ s′ denotes that L contains a path from s to s′
such that the sequence of visible actions along it is σ . In particular, s =ε⇒ s holds for every
s ∈ S. The notation s =σ⇒ means that there is s′ such that s =σ⇒ s′. The set of traces of
L is Tr(L) := {σ | ŝ =σ⇒}. If L is stable, then en(L) = Tr(L) ∩Σ .

A state s of L refuses the string ρ if and only if s =ρ⇒ does not hold. That is, refusing
a string means inability to execute it to completion. Refusing a set means refusing its every
element. A tree failure of L is a pair (σ, K) where σ ∈ Σ∗ and K ⊆ Σ+ such that there is
s such that ŝ =σ⇒ s and s refuses K [14]. The empty string ε is ruled out from K because
s =ε⇒ holds for every state s. In the failures of CSP [15] or CFFD [17], K is a set of visible
actions, while now it is a set of strings of visible actions.

The set of the tree failures of L is denoted with Tf(L). The following lemmas express
simple properties of tree failures that will be used in the sequel.

Lemma 2 1. If Σ = ∅, then Tr(L) = {ε} and Tf(L) = {(ε,∅)}.
2. If σ ∈ Tr(L), then (σ,∅) ∈ Tf(L).
3. If σ /∈ Tr(L), then, for every π and K , (σπ, K) /∈ Tf(L).

Proof The first two claims are immediate from the definitions. The third claim follows from
the fact that if σ /∈ Tr(L), then σπ /∈ Tr(L). ��

Lemma 3 Assume that ŝ =σ⇒ s and, for every a ∈ Σ , ¬(s =a⇒). Then (σ, K) ∈ Tf(L) if
and only if K ⊆ Σ+.

Proof It is immediate from the definition that if (σ, K) ∈ Tf(L), then K ⊆ Σ+. If K ⊆ Σ+,
the state s guarantees that (σ, K) ∈ Tf(L) by blocking the first action of every element in K .

��

123

360 A. Valmari

In particular, Tf(τ) = Tf(), implying Tf(L‖ τ) = Tf(L). This is a major difference
between tree failures and the failures in CSP or CFFD theories. In CSP failures divergences
equivalence divergence is catastrophic [15], meaning, among other things, that for every L
and L ′ with Σ = Σ ′, we have L + τ ∼=CSP L ′ + τ and L‖ τ ∼=CSP L ′‖ τ . Also
CFFD equivalence is sensitive to divergence, but in a much less dramatic fashion [17]. We
mention already now that fair testing equivalence is insensitive to divergence.

Lemma 4 Assume that L is stable and K ⊆ Σ+. We have (ε, K) ∈ Tf(L) if and only if
K ∩ Tr(L) = ∅.
Proof Because L is stable, ŝ =ε⇒ s implies s = ŝ. Therefore, (ε, K) ∈ Tf(L) if and only if
ŝ refuses K . Furthermore, ŝ refuses ρ if and only if ρ /∈ Tr(L). ��
The notation L1 � L2 denotes that for every (σ, K) ∈ Tf(L1), either (σ, K) ∈ Tf(L2) or there
is π such that π � K and (σπ, π−1K) ∈ Tf(L2). The latter condition is motivated by the
following example. If L = a a a , then (ε, {aa}) /∈ Tf(L). Even so, (L‖a.a.b.) \ {a}
may fail to execute b. Here (σπ, π−1K) ∈ Tf(L), where σ = ε, π = a, and π−1K = {a}.
For a more detailed discussion, please see [14].

The condition (σ, K) ∈ Tf(L2) is only needed to deal with the case K = ∅, because when
K �= ∅ it is obtained from the latter condition by choosing π = ε. The LTSs L1 and L2 are
fair testing equivalent, if and only if Σ1 = Σ2, L1 � L2, and L2 � L1 [14].

If A and B are sets, let A # B := (A\B) ∪ (B\A).

Lemma 5 The following relation is an equivalence on sets: A ≈ B if and only if A # B is
finite.

Proof Because A # A = ∅, “≈” is reflexive. Because A # B = B # A, “≈” is symmetric.
To prove transitivity, assume that A ≈ B and B ≈ C . That is, A # B and B # C are finite.
If a ∈ A\C , then a ∈ A\B or a ∈ B\C . So A\C ⊆ (A\B) ∪ (B\C). A symmetric claim
holds if a ∈ C\A. Thus A # C ⊆ (A # B) ∪ (B # C). Therefore, also A # C is finite, that
is, A ≈ C . ��
Lemma 6 Let f1(L), . . . , fn(L) be functions from LTSs to some sets D1, . . . , Dn, and let
“≈i ” be equivalences on Di for 1 ≤ i ≤ n. Assume that “∼=” has been defined via L ∼= L ′
if and only if for 1 ≤ i ≤ n, fi (L) ≈i fi (L ′). Then “∼=” is an equivalence.

Proof For any L and for 1 ≤ i ≤ n, fi (L) ≈i fi (L), because “≈i” is reflexive. Therefore,
L ∼= L , that is, “∼=” is reflexive. If L1 ∼= L2, then, for 1 ≤ i ≤ n, fi (L1) ≈i fi (L2). The
symmetry of “≈i” yields fi (L2) ≈i fi (L1). So L2 ∼= L1 and “∼=” is symmetric. If L1 ∼= L2

and L2 ∼= L3, then, for 1 ≤ i ≤ n, fi (L1) ≈i fi (L2) ≈i fi (L3), yielding fi (L1) ≈i fi (L3)

by the transitivity of “≈i”. This means L1 ∼= L3. Therefore, “∼=” is transitive. ��
We now define a number of equivalences, of which twenty will be discussed in detail. The
twenty will be shown in Fig. 1. Five of them do not preserve initial stability. The remaining
15 are defined by using one of the five to compare unstable LTSs, one of three equivalences
to compare stable LTSs, and declaring that a stable and an unstable LTS are never equivalent.
Eight of these 20 equivalences do not preserve the alphabet. If theywere not congruences, they
would be uninteresting indeed. However, they are congruences, and thus serve as examples
of oddities that may be found when studying all congruences. The reader can skip them by
skipping everything that contains # or ⊥.

123

All congruences below stability-preserving fair testing or CFFD 361

Definition 7 Let L1 and L2 be LTSs, and let {x, y} ⊆ {⊥, #,Σ, en, tr, ft}. We define

– L1 ∼=⊥ L2 holds for every L1 and L2,
– L1 ∼=# L2 if and only if Σ1 # Σ2 is finite,
– L1 ∼=Σ L2 if and only if Σ1 = Σ2,
– L1 ∼=en L2 if and only if Σ1 = Σ2 and en(L1) = en(L2) (this one will not be used on

unstable LTSs),
– L1 ∼=tr L2 if and only if Σ1 = Σ2 and Tr(L1) = Tr(L2) (trace equivalence),
– L1 ∼=ft L2 if and only if Σ1 = Σ2, L1 � L2, and L2 � L1 (fair testing equivalence),

and
– L1 ∼=x

y L2 if and only if

– L1 ∼=x L2 and L1 and L2 are both stable, or
– L1 ∼=y L2 and L1 and L2 are both unstable (stability-preserving equivalences).

For instance, “∼=ft
tr” compares stable LTSs with fair testing equivalence and unstable LTSs

with trace equivalence. It also preserves initial stability, that is, L1 ∼=ft
tr L2 implies L1 ∼=⊥⊥ L2.

The relation “∼=Σ
Σ” equates two LTSs if and only if they have the same alphabet and either

both or none of them is stable.

Lemma 8 If “∼=x” is an equivalence on stable LTSs and “∼=y” is an equivalence on unstable
LTSs, then “∼=x

y” is an equivalence on all LTSs.

Proof If L is stable then L ∼=x L holds and yields L ∼=x
y L . Otherwise L ∼=y L holds and

yields L ∼=x
y L .

Assume L1 ∼=x
y L2. If L1 is stable, then L2 is as well and L1 ∼=x L2. It implies L2 ∼=x L1

and L2 ∼=x
y L1. If L1 is unstable, similar reasoning applies with “∼=y”.

To prove that “∼=x
y” is transitive, let L1 ∼=x

y L2 and L2 ∼=x
y L3. If L2 is stable, then L1 is

as well by L1 ∼=x
y L2, and L3 by L2 ∼=x

y L3. So L1 ∼=x L2 ∼=x L3, yielding L1 ∼=x L3 and
L1 ∼=x

y L3. Similar reasoning applies if L2 is unstable. ��
Lemma 9 The relations in Definition 7 are equivalences.

Proof The claim is trivial for “∼=⊥”. It follows for “∼=Σ”, “∼=en”, and “∼=tr” from Lemma 6.
The claim for “∼=ft” has been proven in [14]. The claim for “∼=#” follows from Lemma 5 and
Lemma 6, and the remaining claim from Lemma 8. ��
The 17 equivalences that will be proven congruences are shown in Fig. 1, together with three
equivalences that arise from Definition 7 but are not congruences. There is a path downwards
from an equivalence to an equivalence in the figure if and only if the former implies the
latter. This holds because of the following. In [14] it was shown that “∼=ft” implies “∼=tr”. The
same follows easily from Lemma 2(2) and (3). Clearly L1 ∼=tr L2 ⇒ L1 ∼=Σ L2 ⇒ L1 ∼=#
L2 ⇒ L1 ∼=⊥ L2 and L1 ∼=en L2 ⇒ L1 ∼=Σ L2. Furthermore, if L1 and L2 are stable, then
L1 ∼=tr L2 ⇒ L1 ∼=en L2, because then en(L) = Tr(L)∩Σ . Clearly “∼=x

x” implies “∼=x”. If
“∼=y” implies “∼=z”, then “∼=x

y” implies “∼=x
z ” and “∼=y

x” implies “∼=z
x”.

Let L1 = a and L2 = a a . We have L1 ∼=en
ft L2 and L1 ∼=en

tr L2 but L1‖ τ �en
ft

L2‖ τ and L1‖ τ �en
tr L2‖ τ . If L3 = a a a , then L2 ∼=tr

ft L3 but L2‖ τ �tr
ft

L3‖ τ . That is, the grey equivalences in Fig. 1 are not congruences with respect to “‖”.
It is also easy (but lengthy) to show with examples that all equivalences in the figure are
different.

123

362 A. Valmari

Fig. 1 The congruences (black
solid) in Theorem 12 and three
related non-congruences (grey) ∼=tr

ft
∼=en

ft

∼=en
tr

∼=ft
ft

∼=ft

∼=ft
tr ∼=tr

tr

∼=tr

∼=ft
Σ

∼=tr
Σ

∼=en
Σ

∼=Σ

∼=ft
#

∼=tr
#

∼=en
#

∼=#

∼=ft
⊥

∼=tr
⊥

∼=en
⊥

∼=⊥

We now investigate the congruence properties of the black equivalences in Fig. 1 with
respect to the six operators defined in Sect. 2. The next lemma formulates a principle that is
very useful in proving that certain equivalences are congruences.

Lemma 10 Let f1(L), . . . , fn(L) be functions from LTSs to some sets D1, . . . , Dn. Assume
that “∼=” has been defined via L ∼= L ′ if and only if for 1 ≤ i ≤ n, fi (L) = fi (L ′). Let op
be a unary LTS operator. If, for 1 ≤ i ≤ n, there are functions gi : D1 × · · · × Dn → Di

such that fi (op(L)) = gi (f1(L), . . . , fn(L)), then “∼=” is a congruence with respect to op.

Proof By Lemma 6, “∼=” is an equivalence. Let L ∼= L ′. For 1 ≤ i ≤ n we have fi (op(L)) =
gi (f1(L), . . . , fn(L)) = gi (f1(L ′), . . . , fn(L ′)) = fi (op(L ′)), because f j (L) = f j (L ′)
for 1 ≤ j ≤ n. As a consequence, op(L) ∼= op(L ′). ��
For instance, the alphabets of the results of the six operators defined in Sect. 2 were defined
via functions on only the alphabets of the argument LTSs. Therefore, “∼=Σ” is a congruence
by Lemma 10.

Lemma 11 Let op be any unary LTS operator such that if L is unstable, then also op(L) is
unstable. Assume that “∼=x

y” and “∼=z” are congruences with respect to op, and that “∼=y”
implies “∼=z”. Then “∼=x

z ” is a congruence with respect to op.

Proof By Lemma 9, “∼=x
z ” is an equivalence. To show that “∼=x

z ” is a congruence with respect
to op, assume that L1 ∼=x

z L2.
If L1 and L2 are both unstable, then by definition L1 ∼=z L2. This implies op(L1) ∼=z

op(L2). Because L1 and L2 are unstable, also op(L1) and op(L2) are unstable. These yield
op(L1) ∼=x

z op(L2).
Otherwise L1 and L2 are both stable. We have L1 ∼=x L2, L1 ∼=x

y L2, and op(L1) ∼=x
y

op(L2). If one ofop(L1) andop(L2) is stable, then also the other one is stable andop(L1) ∼=x

op(L2). These yield op(L1) ∼=x
z op(L2). Otherwise op(L1) and op(L2) are unstable and

op(L1) ∼=y op(L2). These yield op(L1) ∼=z op(L2) and op(L1) ∼=x
z op(L2). ��

123

All congruences below stability-preserving fair testing or CFFD 363

Table 1 Congruence properties
of the black equivalences in Fig. 1

‖ \ φ Φ . +
∼=ft
ft

√ √ √ √ √ √
∼=ft

√ √ √ √ √
∼=ft
tr

√ √ √ √ √
∼=tr
tr

√ √ √ √ √ √
∼=tr

√ √ √ √ √ √
∼=ft
Σ

√ √ √ √ √

∼=tr
Σ

√ √ √ √ √

∼=en
Σ

√ √ √ √ √ √

∼=Σ
√ √ √ √ √ √

∼=ft
#

√ √ √ √
∼=tr
#

√ √ √ √
∼=en
#

√ √ √ √
∼=#

√ √ √ √ √
∼=ft⊥

√ √ √ √ √
∼=tr⊥

√ √ √ √ √
∼=en⊥

√ √ √ √ √
∼=⊥ √ √ √ √ √ √

Theorem 12 An equivalence labelling a row in Table 1 is a congruence with respect to the
operator labelling a column in the table if and only if the intersection of the row and colum
contains

√
.

Proof The claim is trivial for “∼=⊥”, and for “∼=Σ” it was shown above using Lemma 10. For
“∼=tr”, a proof using Lemma 10 is common knowledge. For “∼=ft” with “‖”, “\”, and “.” (and
“φ”), the claim has been shown in [14], and with “Φ” in [18]. The classic counter-example

a ≡ + a versus τ + a ≡ τ a works for “∼=ft” with “+”.
Next we deal with “∼=#”. The essence of the proof is that “Φ” can make the difference

between alphabets grow from finite to infinite, while the other five operators cannot (they
cannot make the difference grow at all).

Let Φ := {(0, i) | i ∈ N}. We have τ ∼=# (τ){0} but (τ)Φ = τ �#

(τ)N = (τ){0}Φ. Because τ is unstable, this counter-example also works for “∼=ft
”,

“∼=tr
”, and “∼=en

”.
For each of the remaining operators, we provide an injection fromΣ(op(L1))\Σ(op(L2))

to Σ1\Σ2. This shows that if Σ1\Σ2 is finite, then Σ(op(L1))\Σ(op(L2)) is finite as well.
The case of Σ(op(L2))\Σ(op(L1)) is similar. Because the union of two sets is finite if and
only if the sets are finite, the result generalizes to Σ(op(L1)) # Σ(op(L2)).

– If a ∈ Σ(L1‖L)\Σ(L2‖L), then a ∈ Σ1\Σ2 (and a /∈ Σ).
– If a ∈ Σ(L1\A) \Σ(L2\A), then a ∈ Σ1\Σ2 (and a /∈ A).
– If a ∈ Σ(φ(L1))\Σ(φ(L2)), then there is b ∈ Σ1\Σ2 such that a = φ(b). Furthermore,

each such a has its own b, because φ(b1) �= φ(b2) implies b1 �= b2.
– If a ∈ Σ(L1 + L)\Σ(L2 + L), then a ∈ Σ1\Σ2 (and a /∈ Σ).
– If a ∈ Σ(b.L1)\Σ(b.L2), then a ∈ Σ1\Σ2 (and a �= b).

123

364 A. Valmari

If L1 ∼=ft
ft L2, then L1 ∼=ft L2 and L1 ∼=⊥⊥ L2. If L1 and L2 are both stable, then also

L1Φ and L2Φ are both stable. If L1 and L2 are both unstable, then also L1Φ and L2Φ are
both unstable. By the congruence properties of “∼=ft”, we have L1Φ ∼=ft L2Φ. Therefore,
L1Φ ∼=ft

ft L2Φ. The remaining claims for “∼=ft
ft” can be taken from [14] or proven similarly

using Lemma 1. The claims for “∼=tr
tr” can be proven similarly and are widely known.

The claims for “∼=en
Σ” follow from Lemmas 1, 10, and the fact that “∼=en” implies “∼=Σ”

which is a congruence.
The remaining claims follow by Lemma 11, except for “.”. If L1 := τ a and L2 :=

τ a , then L1 ∼=ft
tr L2 but a.L1 �ft

tr a.L2. If L3 = (τ){a}, then L1 ∼=ft
Σ L3 and L1 ∼=tr

Σ
L3, but a.L1 �ft

Σ
a.L3 and a.L1 �tr

Σ
a.L3. Furthermore, L1 ∼=x

y τ when x ∈ {ft, tr, en}
and y ∈ {#,⊥}, but Σ(b.L1) �= Σ(b. τ) when b /∈ {a, τ, ε}, so b.L1 �x

y b. τ . ��

4 The weakest stability-preserving congruence

In this section we find the weakest stability-preserving congruence both in the presence and
absence of the action prefix operator. This result is central in the study of stability-preserving
congruences. It does not assume the congruence property with respect to renaming, so it
makes weaker assumptions than the rest of this study.

Theorem 13 The weakest congruence with respect to parallel composition and hiding that
never equates a stable and an unstable LTS is “∼=en⊥ ”. The weakest congruence with respect
to parallel composition, hiding, and action prefix that never equates a stable and an unstable
LTS is “∼=en

Σ”. Both are also congruences with respect to relational renaming and choice.

Proof It is immediate from the definition that “∼=en⊥ ” and “∼=en
Σ” never equate a stable and an

unstable LTS. Theorem 12 says that they indeed are congruences as promised.
It remains to be proven that they are the weakest possible. That is, if a congruence does

not imply “∼=en⊥ ”, then it equates a stable and an unstable LTS, and similarly with “∼=en
Σ”. So,

for x ∈ {⊥,Σ}, we assume that L1 ∼= L2 and L1 �en
x L2, and prove the existence of L ′1 and

L ′2 such that one of them is stable, the other is unstable, and L ′1 ∼= L ′2.
There are three ways how L1 �en

x L2 may occur.
First, one of L1 and L2 is stable while the other is unstable. Then they can be used as L ′1

and L ′2.
Second, L1 and L2 are stable and L1 �en L2. The latter means that there is a such that

a ∈ en(L1)\en(L2) or a ∈ Σ1\Σ2 (or the same with the roles of L1 and L2 swapped).
If a ∈ en(L1)\en(L2), then L2\{a} is stable and L1\{a} is unstable, so they qualify

as L ′1 and L ′2. The same argument applies when a ∈ Σ1\Σ2 and a ∈ en(L1), because
a /∈ Σ2 implies a /∈ en(L2). The case remains where a ∈ Σ1\Σ2 and a /∈ en(L1). Then
(L1‖ a) \ {a} is stable and (L2‖ a) \ {a} is unstable, and thus qualify as L ′1 and L ′2.

Third, L1 and L2 are unstable and L1 �x L2. If x = ⊥, this is impossible by the
definition of “∼=⊥”. So let x = Σ. There is a such that a ∈ Σ1 and a /∈ Σ2 (or the same
with the roles of L1 and L2 swapped). Let b /∈ {a, τ, ε}. Then b.L1 and b.L2 are stable and
a ∈ Σ(b.L1)\Σ(b.L2). So the case has been reduced to an earlier case. ��

123

All congruences below stability-preserving fair testing or CFFD 365

MA
1

A

τ

MA
2

τ
A

MA
3

A A

τ

MA
4

A MA
5

A

Fig. 2 The LTSs MA
1 to MA

5 . A thick arc denotes a transition for every element of A

τ · · · τ
A[1]σ[2]

ŝσ
A

sε sσ sτ

A[1] · · · τ
A[1]σ[2]

ŝσ
A

sε sσ sτ

Fig. 3 The two versions of the LTS Lσ
A in the proof of Lemma 14

5 Proof that Fig. 1 contains all congruences in the region

In this section we assume that the alphabets of LTSs are finite or countably infinite, and prove
that Fig. 1 contains all equivalences that are implied by “∼=ft

ft” and are congruenceswith respect
to parallel composition, hiding, and functional renaming. The assumption of countability is
only needed for equivalences that do not imply “∼=#” (and thus not “∼=Σ”). The author believes

that similarly to “∼=ft
”, “∼=tr

”, “∼=en
”, and “∼=#”, there are four congruences for each infinite

cardinal number in place of “#”, and, accepting the axiom of choice, that is all. However, the
author felt that studying them would have meant going too far from concurrency theory.

For each equivalence “≈” in Fig. 1, we will prove that any congruence that implies “≈”
but implies neither the nearest equivalence above nor the nearest equivalence above left “≈”
in the figure, is “≈”. To be able to do so, we first develop ten lemmas. Figure 2 shows five
LTSs that are referred to in them. Many of the lemmas use the following assumption:

Assumption A. “∼=ft
ft” implies “∼=” and “∼=” is a congruence with respect to parallel

composition, hiding, and functional renaming.

We first prove a lemma that starts with an arbitrary difference between the sets of traces of
two equivalent LTSs that have the same alphabet, and, so to speak, amplifies it to the maximal
such difference. This result will later be used to prove that if the congruence does not preserve
full information on traces, then, both in the case where stability does not matter and in the
case where it matters and the LTSs are unstable, it does not preserve any information on
traces at all. When stability matters and the LTSs are stable, a similar claim does not hold,
because “∼=en

Σ” is a congruence. For that case, the lemma presents another result that can be
used to show that information on traces beyond the first visible action does not matter.

Lemma 14 Assume A. If there are L1, L2, and σ such that L1 ∼= L2, Σ1 = Σ2, σ ∈ Tr(L1),
and σ /∈ Tr(L2), then for every alphabet A we have MA

1
∼= (τ)A. If L1 and L2 are stable,

then MA
3
∼= MA

4 .

Proof Let Σ := Σ1 = Σ2, and let Lσ
A be the following LTS (shown in Fig. 3 left):

Sσ
A := {sπ | π � σ } ∪ {ŝσ

A, sτ } (all mentioned states are distinct),

Σσ
A := A[1] ∪Σ [2], and

Δσ
A := {(sπ , a[2], sπa) | a ∈ Σ ∧ πa � σ } ∪

{(sσ , a[1], sσ) | a ∈ A} ∪

123

366 A. Valmari

τ · · · τ
· · ·
· · ·

A[1] A[1] A[1]

A[1]

· · ·

σ[2]
K [2]

ŝ
(σ,K)
A

sσ
ε sσ

σ sK
ε

Fig. 4 The LTS L(σ,K)
A in the proof of Lemma 15

{(ŝσ
A, τ, sε), (sσ , τ, sτ)}.

Let

f (Li) := �(�Li�[2]‖Lσ
A)\Σ [2]�[1] .

We have Σ(f (L1)) = Σ(f (L2)) = Σ(MA
1) = Σ((τ)A) = A. Furthermore, all these

four LTSs are unstable.
Becauseσ ∈ Tr(L1), f (L1) can reach a state of the form (s, sσ). This happenswithout exe-

cuting visible actions, becauseΣ [2] is hidden in f (Li). Then f (L1) can execute any member
of A, getting back to (s, sσ). As a consequence, Tr(f (L1)) = A∗. Because (sσ , τ, sτ) ∈ Δσ

A,

f (L1) can continue to (s, sτ). Because sτ has no outgoing transitions, Tf(f (L1)) = A∗×2A
+

by Lemma 3. Also Tf(MA
1) = A∗ × 2A

+
by Lemma 3. So Tf(f (L1)) = Tf(MA

1) and
f (L1) ∼=ft

ft M
A
1 .

Because σ /∈ Tr(L2), f (L2) cannot reach any state of the form (s, sσ), and thus cannot
ever execute any member of A. We have Tr(f (L2)) = {ε} and Tf(f (L2)) = {ε} × 2A

+

= Tf((τ)A). So f (L2) ∼=ft
ft (τ)A.

By the congruence property, f (L1) ∼= f (L2). We have proven MA
1
∼=ft

ft f (L1) ∼=
f (L2) ∼=ft

ft (τ)A. It implies MA
1
∼= (τ)A, because by Assumption A, “∼=ft

ft” implies
“∼=” and “∼=” is an equivalence.

From now on assume that L1 and L2 are stable. Let g be defined similarly to f , except
that the transition ŝσ

A −τ→ sε is replaced by ŝσ
A −a[1]→ sε for every a ∈ A in Lσ

A, resulting
in the version shown in Fig. 3 right. We have g(L1) ∼= g(L2) and Σ(g(L1)) = Σ(g(L2)) =
Σ(MA

3) = Σ(MA
4) = A. Furthermore, all these four LTSs are stable.

For any stable L , g(L) starts by executing an arbitrary member of A and then continues
like f (L). As a consequence, g(L1) ∼=ft

ft M
A
3 and g(L2) ∼=ft

ft M
A
4 , yielding MA

3
∼= MA

4 . ��
The next lemma is similar in spirit to the previous one, but this time an arbitrary not alphabet-
related violation against fair testing equivalence is used as the starting point, and the results
concern information on the K parts of tree failures.

Lemma 15 Assume A. If there are L1, L2, σ , and K such that L1 ∼= L2, Σ1 = Σ2, (σ, K) ∈
Tf(L1), (σ, K) /∈ Tf(L2), and (σπ, π−1K) /∈ Tf(L2) for every π � K, then for every
alphabet A we have MA

1
∼= MA

2 . If L1 and L2 are stable, then MA
3
∼= MA

5 .

Proof Let Σ := Σ1 = Σ2, and let L
(σ,K)
A be the following LTS (shown in Fig. 4):

S(σ,K)
A := {sσ

π | π � σ } ∪ {sKπ | ε �= π � K } ∪ {ŝ(σ,K)
A , sKε }

(all mentioned states are distinct, sKε exists even if K = ∅),
Σ

(σ,K)
A := A[1] ∪Σ [2], and

123

All congruences below stability-preserving fair testing or CFFD 367

Δ
(σ,K)
A := {(sσ

π , a[2], sσ
πa) | a ∈ Σ ∧ πa � σ } ∪

{(sKπ , a[2], sKπa) | a ∈ Σ ∧ πa � K } ∪
{(sσ

π , a[1], sσ
π) | a ∈ A ∧ π � σ } ∪

{(sKπ , a[1], sKπ) | a ∈ A ∧ π ∈ K } ∪
{(ŝ(σ,K)

A , τ, sσ
ε), (sσ

σ , τ, sKε)}.
Similarly to the previous proof,

f (Li) := �(�Li�[2]‖L(σ,K)
A)\Σ [2]�[1] .

We have Σ(f (L1)) = Σ(f (L2)) = Σ(MA
1) = Σ(MA

2) = A. Furthermore, all these four
LTSs are unstable.

Let i ∈ {1, 2}. Trivially Tr(f (Li)) ⊆ A∗. Without Li moving, f (Li) can move invisibly
from its initial state (ŝi , ŝ

(σ,K)
A) to (ŝi , sσ

ε). Then it can execute any member of A∗, getting
back to (ŝi , sσ

ε) after each transition. Therefore, Tr(f (L1)) = Tr(f (L2)) = A∗.
Because (σ, K) ∈ Tf(L1), L1 can executeσ and then be in a state s′where it cannot execute

any element of K . So f (L1) can continue invisibly from (ŝ1, sσ
ε) to the state (s′, sKε), but

cannot continue from there to any state of the form (s, sKπ), where π ∈ K . That is, f (L1) can
execute any element of A∗ and then invisibly move to a state from which it cannot continue
to a state where it can execute an element of A. As a consequence, Tf(f (L1)) = A∗ ×2A

+ =
Tf(MA

1). So f (L1) ∼=ft
ft M

A
1 .

If f (L2) is in a state of the form (s, sσ
π), then it can execute anymember of A immediately.

If f (L2) is in a state of the form (s, ŝ(σ,K)
A), then it can execute τ and enter a state of the

previous form. If f (L2) is in a state of the form (s, sKπ) where ε �= π � K or ε = π � K ,
then by (σπ, π−1K) /∈ Tf(L2) it can execute invisibly at least one member of π−1K . That
takes it to a state of the form (s′, sKκ) where κ ∈ K . There it can execute any member of
A. The case remains where f (L2) is in a state of the form (s, sKε), where ε �� K . Then L2

has executed σ , implying (σ,∅) ∈ Tf(L2). On the other hand, K = ∅ because ε �� K . This
contradicts (σ, K) /∈ Tf(L2), showing that this case is impossible.

Therefore, f (L2) cannot reach a state from which it cannot continue to a state where it
can execute any member of A. We have Tf(f (L2)) = A∗ × {∅} and f (L2) ∼=ft

ft M
A
2 .

By the congruence property, f (L1) ∼= f (L2). We have proven MA
1
∼=ft

ft f (L1) ∼=
f (L2) ∼=ft

ft M
A
2 . It implies MA

1
∼= MA

2 , because “
∼=ft

ft” implies “∼=”.
From now on assume that L1 and L2 are stable. Let g be defined similarly to f , except

that the transition ŝ(σ,K)
A −τ→ sσ

ε is replaced by ŝ(σ,K)
A −a[1]→ sσ

ε for every a ∈ A. We
have g(L1) ∼= g(L2) and Σ(g(L1)) = Σ(g(L2)) = Σ(MA

3) = Σ(MA
5) = A. Furthermore,

all these four LTSs are stable.
For any stable L , g(L) starts by executing an arbitrary member of A and then continues

like f (L). As a consequence, g(L1) ∼=ft
ft M

A
3 and g(L2) ∼=ft

ft M
A
5 , yielding MA

3
∼= MA

5 . ��
In the congruences of the form “∼=x

y” in Fig. 1, x can only be ft, tr, or en. When proving that
they suffice, the next two lemmas and Theorem 13 will be used.

Lemma 16 Assume A. If there are stable L ′1 and L ′2 such that L ′1 ∼= L ′2, Σ ′
1 = Σ ′

2, and
L ′1 �ft L ′2, then for any stable L1 and L2 such that L1 ∼=tr L2 we have L1 ∼= L2.

Proof For any stable L , let f (L) := L‖MΣ
3 . Clearly L ≡ L‖MΣ

5 . By Lemma 15 and the
congruence property, L‖MΣ

5
∼= L‖MΣ

3 . So L ∼= f (L). Clearly f (L) is stable, Σ(f (L)) =
Σ , and Tr(f (L)) = Tr(L).

123

368 A. Valmari

By Lemma 4, (ε, K) ∈ Tf(f (L)) if and only if K ∩ Tr(f (L)) = ∅. The LTS MΣ
3 may

deadlock after any nonempty trace. Therefore, byLemma3, ifσ �= ε, then (σ, K) ∈ Tf(f (L))

if and only if σ ∈ Tr(f (L)) and K ⊆ Σ(f (L))+. As a consequence, Tf(f (L)) is determined
by Σ(f (L)) and Tr(f (L)), that is, Σ and Tr(L).

Let L1 and L2 be stable and L1 ∼=tr L2. We have Σ1 = Σ2 and Tr(L1) = Tr(L2). These
imply Tf(f (L1)) = Tf(f (L2)). Furthermore, f (L1) and f (L2) are stable. As a consequence,
f (L1) ∼=ft

ft f (L2).
Hence L1 ∼= f (L1) ∼=ft

ft f (L2) ∼= L2, implying L1 ∼= L2. ��
Lemma 17 Assume A. If there are stable L ′1 and L ′2 such that L ′1 ∼= L ′2, Σ ′

1 = Σ ′
2, and

L ′1 �tr L ′2, then for any stable L1 and L2 such that L1 ∼=en L2 we have L1 ∼= L2.

Proof For any stable L , let f (L) := L‖MΣ
4 . Because “∼=ft” implies “∼=tr”, the assumptions

of Lemma 15 hold. By Lemmas 14 and 15, L ≡ L‖MΣ
5
∼= L‖MΣ

3
∼= L‖MΣ

4 . So L ∼=
f (L). Clearly f (L) is stable and Σ(f (L)) = Σ . Because Tr(MΣ

4) = Σ ∪ {ε}, we have
Tr(f (L)) = en(L) ∪ {ε}. It implies en(f (L)) = en(L).

By Lemma 4, (ε, K) ∈ Tf(f (L)) if and only if K ∩Tr(f (L)) = ∅. By Lemma 3, if σ �= ε,
then (σ, K) ∈ Tf(f (L)) if and only if σ ∈ Tr(f (L)) and K ⊆ Σ(f (L))+. As a consequence,
Tf(f (L)) is determined by Σ(f (L)) and en(f (L)), that is, Σ and en(L).

Let L1 and L2 be stable and L1 ∼=en L2. We haveΣ1 = Σ2 and en(L1) = en(L2). These
imply Tf(f (L1)) = Tf(f (L2)). Furthermore, f (L1) and f (L2) are stable. As a consequence,
f (L1) ∼=ft

ft f (L2).
Hence L1 ∼= f (L1) ∼=ft

ft f (L2) ∼= L2, implying L1 ∼= L2. ��
In the sequel, we will have to deal with cases where stability does not matter, and with cases
where it matters and the LTSs in question are unstable. To exploit results on the latter when
dealing with the former, we define a simple operator that, given an LTS, yields an unstable
“∼=ft”-equivalent LTS. We let

us(L) := L‖ τ .

The following lemma tells some properties of us(L).

Lemma 18 Assume A. For every L we have the following.

1. us(L) is unstable.
2. us(L) ∼=ft L.
3. If L is unstable, then us(L) ∼=ft

ft L and us(L) ∼= L.
4. If there are L1 and L2 such that L1 ∼= L2, Σ1 = Σ2, and L1 �ft L2, then us(L) ∼=

L‖MΣ
1 .

5. If there are L1 and L2 such that L1 ∼= L2, Σ1 = Σ2, and L1 �tr L2, then us(L) ∼=
(τ)Σ .

Proof The first three claims are obvious.
For any L , us(L) ∼=ft

ft L‖MΣ
2 , because they both have Σ as the alphabet, they are both

unstable, and MΣ
2 never blocks actions of L . With the assumptions of the fourth claim,

Lemma 15 and the congruence property yield L‖MΣ
2
∼= L‖MΣ

1 . As a consequence, us(L) ∼=
L‖MΣ

1 .

With the assumptions of the last claim, for any L , Lemma 14 yields L‖MΣ
1
∼= L‖(τ)Σ .

Clearly L‖(τ)Σ ≡ (τ)Σ , because (τ)Σ blocks all visible actions of L . Because
“∼=ft” implies “∼=tr”, claim 4 yields us(L) ∼= L‖MΣ

1 . So us(L) ∼= (τ)Σ . ��

123

All congruences below stability-preserving fair testing or CFFD 369

The next lemma tells that if the congruence equates a stable and an unstable LTS, then stability
does not matter at all.

Lemma 19 Assume that “∼=ft
ft” implies “

∼=” and “∼=” is a congruence with respect to parallel
composition and hiding. If there are a stable LTS Ls and an unstable LTS Lu such that
Ls ∼= Lu, then

1. ∼= τ , and
2. for any L, L ∼= us(L).

Proof Let Σ := Σ(Ls) ∪ Σ(Lu) and f (L) := (L‖ Σ) \ Σ . Clearly f (Ls) ≡ . The
alphabet of f (Lu) is ∅ = Σ(τ), and Tf(f (Lu)) = {(ε,∅)} = Tf(τ) by Lemma 2(1).
Furthermore, f (Lu) is obviously unstable. So f (Lu) ∼=ft

ft
τ . These yield ≡ f (Ls) ∼=

f (Lu) ∼=ft
ft

τ . Therefore, ∼= τ .

Let L be any LTS. Clearly L ≡ L‖ ∼= L‖ τ = us(L), so L ∼= us(L). ��
The next lemma says that if the congruence does not preserve the alphabet, then, in the case
of unstable LTSs, it throws away all information on traces and tree failures.

Lemma 20 Assume A. If “∼=” does not imply “∼=Σ”, then, for any L, us(L) ∼= (τ)Σ .

Proof Because “∼=” does not imply “∼=Σ”, there are L1, L2, and a such that L1 ∼= L2,
a ∈ Σ1, and a /∈ Σ2. Let Σ := (Σ1 ∪Σ2)\{a}.

If L1 =a⇒, then choose any b /∈ {a, τ, ε} and let f (L) := φ(L‖ {b}) \ Σ , where
φ(b) := a and φ(x) := x if x �= b. We have f (L1) =a⇒ but ¬(f (L2) =a⇒). Although
a /∈ Σ2, we have Σ(f (L2)) = {a} thanks to {b} and φ.

If ¬(L1 =a⇒), then let f (L) := (L‖ a) \ Σ . We have ¬(f (L1) =a⇒) but
f (L2) =a⇒.
In both cases, f (L1) ∼= f (L2), Σ(f (L1)) = Σ(f (L2)) = {a}, and Tr(f (L1)) �=

Tr(f (L2)). By Lemma 18(5), for any L , us(L) ∼= (τ)Σ . ��
If L1 ∼= L2 where ∼= is a congruence with respect to parallel composition, then us(L1) =
L1‖ τ ∼= L2‖ τ = us(L2), yieldingus(L1) ∼= us(L2). Nextwe proveus(L1) ∼= us(L2)

under five different assumptions, without assuming L1 ∼= L2.

Lemma 21 Assume A. In each of the following situations we have us(L1) ∼= us(L2).

1. If L1 ∼=ft L2.
2. If L1 ∼=tr L2, and “∼=” implies “∼=Σ” but not “∼=ft”.
3. If L1 ∼=Σ L2, and “∼=” implies “∼=Σ” but not “∼=tr”.
4. If L1 ∼=# L2, and “∼=” does not imply “∼=Σ”.
5. If the alphabets of L1 and L2 are countable, and “∼=” does not imply “∼=#”.

Proof 1. By Lemma 18(2), us(L1) ∼=ft L1 ∼=ft L2 ∼=ft us(L2). So us(L1) ∼=ft us(L2). This
implies us(L1) ∼=ft

ft us(L2), because us(L1) and us(L2) are unstable by Lemma 18(1). By
assumption A, this implies us(L1) ∼= us(L2).
2. Let L ∈ {L1, L2} and f (L) := L‖MΣ

1 . It is unstable because ofMΣ
1 , so f (L1) ∼=⊥⊥ f (L2).

We have Σ(f (L)) = Σ . Because MΣ
1 may deadlock after any trace, Lemma 3 yields

Tf(f (L)) = {(σ, K) | σ ∈ Tr(L) ∧ K ⊆ Σ+}. Because L1 ∼=tr L2, we have Σ1 = Σ2

and Tr(L1) = Tr(L2). These yield f (L1) ∼=ft
ft f (L2), implying f (L1) ∼= f (L2). The part

123

370 A. Valmari

of the condition after “and” justifies the use of Lemma 18(4), implying us(L1) ∼= f (L1) ∼=
f (L2) ∼= us(L2).
3. The condition L1 ∼=Σ L2 means that Σ1 = Σ2. By Lemma 18(5), us(L1) ∼= (τ)Σ1 =
(τ)Σ2

∼= us(L2).
4. The condition L1 ∼=# L2 means thatΣ1 # Σ2 is finite. Because “∼=” does not imply “∼=Σ”,
there are L ′1, L ′2, and a such that L ′1 ∼= L ′2, a ∈ Σ ′

1, and a /∈ Σ ′
2. LetΣ := (Σ ′

1∪Σ ′
2)\{a}. By

Lemma 20, τ ∼= us(L ′2 \Σ) ∼= us(L ′1 \Σ) ∼= (τ){a}, where us(L ′2\Σ) ∼= us(L ′1\Σ)

follows from L ′1 ∼= L ′2. Therefore, τ ∼= (τ){a}.
Choose any b such that τ �= b �= ε. Let φ(a) := b and φ(x) := x when x �= a. We have
τ ≡ φ(τ) ∼= φ((τ){a}) ≡ (τ){b}. So τ ∼= (τ){b}. Let A = {a1, . . . , an}

be any finite alphabet. For 0 ≤ i < n, we have (τ){a1,...,ai } ≡ (τ){a1,...,ai }‖ τ

∼= (τ){a1,...,ai }‖(τ){ai+1} ≡ (τ){a1,...,ai+1}. By induction, τ ∼= (τ)A.
If Σ1 # Σ2 is finite, then also Σ1\Σ2 and Σ2\Σ1 are finite. By Lemma 20, us(L1) ∼=

(τ)Σ1 ≡ (τ)Σ1∩Σ2‖(τ)Σ1\Σ2
∼= (τ)Σ1∩Σ2‖ τ ∼= (τ)Σ1∩Σ2‖(τ)Σ2\Σ1 ≡

(τ)Σ2
∼= us(L2).

5. By the assumption, there are L ′1 and L ′2 such that L ′1 ∼= L ′2 and Σ ′
1 \Σ ′

2 is infinite. By

Lemma 20, τ ∼= us(L ′2 \Σ ′
2)
∼= us(L ′1 \Σ ′

2)
∼= (τ)Σ ′

1\Σ ′
2
.

Let A be any countable alphabet. If A = ∅, then τ = (τ)A.
Otherwise there is a ∈ A. Because every infinite set contains a countably infinite subset,

there is a bijection f from A to a subset of Σ ′
1\Σ ′

2. A surjection φ from Σ ′
1\Σ ′

2 to A is
obtained by letting φ(x) := b if x = f (b) and φ(x) := a if there is no b such that x = f (b).
We have τ ≡ φ(τ) ∼= φ((τ)Σ ′

1\Σ ′
2
) = (τ)A.

So both A = ∅ and A �= ∅ yield τ ∼= (τ)A. We conclude us(L1) ∼= (τ)Σ1
∼=

τ ∼= (τ)Σ2
∼= us(L2). ��

We now have sufficient machinery to prove the main result. We deal first with the case where
stability matters.

Lemma 22 Let x be any of ft, tr, and en, and let prev(x) be the previous one (if x �= ft).
Let y be any of ft, tr, Σ, #, and ⊥, and let prev(y) be the previous one (if y �= ft). Assume
A and that “∼=” implies “∼=x

y”. If x �= ft, assume also that “∼=” does not imply “∼=prev(x)
y ”.

If y �= ft, assume also that “∼=” does not imply “∼=x
prev(y)”. If y = ⊥, assume also that the

alphabets of the LTSs are countable. Then “∼=” is “∼=x
y”.

Proof That “∼=” is “∼=x
y” means that “∼=” implies “∼=x

y” and “∼=x
y” implies “∼=”. The former

was given in the assumption part of the lemma. Our task is to prove the latter for each x and
y. So we assume that L1 and L2 are arbitrary LTSs such that L1 ∼=x

y L2, and we have to
prove that L1 ∼= L2.

The definition of “∼=x
y” implies that L1 and L2 are both stable or both unstable.

If L1 and L2 are stable, then L1 ∼=x L2. There are three cases.

– If x = ft, then L1 and L2 are stable and L1 ∼=ft L2. By definition, L1 ∼=ft
ft L2. It implies

L1 ∼= L2 by assumption A.
– If x = tr, then L1 ∼=tr L2 and there are L ′1 and L ′2 such that L ′1 ∼= L ′2 but L ′1 �ft

y L ′2.
Because L ′1 ∼= L ′2 implies L ′1 ∼=tr

y L ′2, this means that L ′1 and L ′2 are both stable,
L ′1 �ft L ′2, and Σ ′

1 = Σ ′
2. Lemma 16 yields L1 ∼= L2.

123

All congruences below stability-preserving fair testing or CFFD 371

– If x = en, then L1 ∼=en L2 and there are L ′1 and L ′2 such that L ′1 ∼= L ′2 but L ′1 �tr
y L ′2.

Because L ′1 ∼= L ′2 implies L ′1 ∼=en
y L ′2, this means that L ′1 and L ′2 are both stable,

L ′1 �tr L ′2, and Σ ′
1 = Σ ′

2. Lemma 17 yields L1 ∼= L2.

If L1 and L2 are unstable, then Lemma 18(3) yields L1 ∼= us(L1) and us(L2) ∼= L2. We
will soon show that the assumptions of Lemma 21 hold. By it, us(L1) ∼= us(L2), yielding
L1 ∼= L2.

Because L1 and L2 are unstable, L1 ∼=x
y L2 implies L1 ∼=y L2. This gives the first

condition of Lemma 21(1) to (4). The first condition of (5) is in the assumptions of the
current lemma. When y = tr or y = Σ, then “∼=” implies “∼=x

y” implies “∼=Σ”, because both
“∼=x” and “∼=y” imply “∼=Σ”. This is needed by (2) and (3). When y �= ft, then there are L ′1
and L ′2 such that L ′1 ∼= L ′2 yielding L ′1 ∼=x

y L ′2, but L ′1 �x
prev(y) L ′2. They are unstable and

satisfy L ′1 �prev(y) L ′2. So “∼=” does not imply “∼=prev(y)”. This gives the last condition of
(2) to (5) and completes the checking of the assumptions of Lemma 21. ��
Before continuing, it is perhaps a good idea to discuss a bit the fact that Lemma 22 refers to
three equivalences that are grey in Fig. 1. First, in some cases “∼=x

prev(y)” or “
∼=prev(x)

y ” is grey.
This is not a problem, because the lemma does not assume that it is a congruence. It only
assumes that there are L ′1 and L ′2 such that L ′1 ∼= L ′2 but L ′1 �x

prev(y) L
′
2 and L ′1 �

prev(x)
y L ′2.

Second, the lemma may claim that “∼=” is “∼=x
y” also when “∼=x

y” is grey. This is not a
problem, because the lemma does not promise but assumes that “∼=” is a congruence. The
lemma says that if there is a congruence with the assumed properties, then it is “∼=x

y”. If “∼=x
y”

is not a congruence, then, with the chosen x and y, no congruences satisfy the assumptions
of the lemma.

The case remains where stability does not matter.

Lemma 23 Let y be any of ft, tr, Σ, #, and⊥, and let prev(y) be the previous one (if y �= ft).
Assume A and that “∼=” implies “∼=y” but not “∼=y

y” or not “∼=en
y ”. If y �= ft, assume also

that “∼=” does not imply “∼=prev(y)”. If y = ⊥, assume also that the alphabets of the LTSs
are countable. Then “∼=” is “∼=y”.

Proof We first show that there are L ′′1 and L ′′2 such that one of them is stable, the other is
unstable, and L ′′1 ∼= L ′′2. By the assumptions, there are L ′1 and L ′2 such that L ′1 ∼= L ′2 and
either L ′1 �

y
y L ′2 or L ′1 �en

y L ′2. Because “∼=” implies “∼=y”, we have L ′1 ∼=y L ′2. If one of L ′1
and L ′2 is stable and the other is unstable, then they qualify as L ′′1 and L ′′2. Because L ′1 ∼=y L ′2,
the only remaining possibility is that L ′1 and L ′2 are both stable and L ′1 �en L ′2. The latter
implies L ′1 �en⊥ L ′2, so “∼=” does not imply “∼=en⊥ ” and Theorem 13 gives the claim.

As a consequence, for every L , Lemma 19(2) yields L ∼= us(L). If L1 ∼=y L2, then
L1 ∼= us(L1) ∼= us(L2) ∼= L2 by Lemma 21 and the fact that “∼=tr” implies “∼=Σ”. Therefore,
“∼=y” implies “∼=”. It was assumed that “∼=” implies “∼=y”. Hence “∼=” is “∼=y”. ��
Theorem 24 Assume that “∼=ft

ft” implies “∼=” and “∼=” is a congruence with respect to
parallel composition, hiding, and functional renaming. If “∼=” does not imply “∼=#”, then
also assume that the alphabets of the LTSs are countable. Then “∼=” is one of the black
equivalences in Fig. 1.

Proof The congruence “∼=” implies at least “∼=⊥”. Therefore, among the “∼=y” where y ∈
{ft, tr,Σ, #,⊥} that it implies, there is a first one. For this y, if “∼=” does not imply the next
black equivalence to the left of “∼=y” in Fig. 1, then Lemma 23 applies, saying that “∼=” is
“∼=y”.

123

372 A. Valmari

Otherwise, “∼=” implies some “∼=x
y” in Fig. 1. If “∼=” also implies the next equivalence to

the left (if x �= ft) or the next equivalence above (if y �= ft), go there even if it is grey. Repeat
this until it is possible to go neither left nor up. Now Lemma 22 applies, saying that “∼=” is
“∼=x

y”.
As a consequence, the 20 equivalences in Fig. 1 contain all congruences that are implied

by “∼=ft
ft” (making the countability assumption where needed). In Sect. 3 we proved that the

black ones among them are congruences and the grey ones are not. ��

6 A somewhat general theory on adding stability preservation

Let “∼=o” be a congruence that does not preserve initial stability.Here “o” stands for “original”.
The goal is to find all congruences that are implied by “∼=o

o” (that is, “∼=o” ∩ “∼=⊥⊥”), in terms
of the congruences that are implied by “∼=o”. (There is no point in studying the case where
“∼=o” preserves initial stability, for then “∼=o

o” and “∼=o” coincide.)
The first part of our work only needs very weak assumptions:

Assumption B. “∼=o” and “∼=” are congruences with respect to parallel composition and
hiding, “∼=o” does not preserve initial stability, and “∼=o

o” implies “∼=”.
The following simple lemma will be used often.

Lemma 25 Assume B. If L1 ∼=o L2 and L1 ∼=⊥⊥ L2, then L1 ∼= L2.

Proof The definitions of “∼=o
o” and “∼=” yield L1 ∼=o

o L2 and L1 ∼= L2. ��
We first deal with the case that also “∼=” does not preserve initial stability.
Lemma 26 If “∼=” is a congruence with respect to “‖” and “\” and does not preserve initial
stability, then there is an unstable LTS U such that ∼= U.

Proof By the assumption, there are a stableLTS Ls and anunstableLTS Lu such that Ls ∼= Lu.
Let Σ = Σ(Ls). We have Σ ≡ Ls‖ Σ

∼= Lu‖ Σ , so = Σ \Σ ∼= (Lu‖ Σ) \Σ . The
latter is unstable. ��
Theorem 27 Assume B. If “∼=” does not preserve initial stability, then “∼=o” implies “∼=”.
Proof Assume that L1 ∼=o L2. We have to show L1 ∼= L2.

Let U be like in Lemma 26. Because “∼=o” is a congruence, we have L1‖U ∼=o L2‖U .
Both L1‖U and L2‖U are unstable because U is unstable. Therefore, Lemma 25 yields
L1‖U ∼= L2‖U .

Because “∼=” is a congruence, L1 ≡ L1‖ ∼= L1‖U and similarly L2 ∼= L2‖U . Altogether
L1 ∼= L1‖U ∼= L2‖U ∼= L2 giving L1 ∼= L2. ��
In the rest of this section “∼=” does preserve initial stability. Therefore, “∼=” can be represented
in the form “∼=x

y”, where “∼=x” is a binary relation such that for stable LTSs L1 ∼=x L2 ⇔
L1 ∼= L2, and “∼=y” is a binary relation such that for unstable LTSs L1 ∼=y L2 ⇔ L1 ∼= L2.
We now show that for every “∼=”, “∼=y” can be chosen so that it is a congruence that is implied
by “∼=o”.

Application of Lemma 26 to “∼=o” in place of “∼=” tells that there is an unstable Uo such
that ∼=o Uo. We define L1 ∼=τ L2 :⇔ L1‖Uo ∼= L2‖Uo, and prove that “∼=τ ” qualifies as
“∼=y”.

123

All congruences below stability-preserving fair testing or CFFD 373

Lemma 28 Assume B. Then “∼=τ” is a congruence.

Proof Because “∼=” is an equivalence, Lemma 6 implies that “∼=τ ” is an equivalence as well.
Let op(L) be any operator with respect to which “∼=” is a congruence. We assume that
L1 ∼=τ L2 and show that op(L1) ∼=τ op(L2).

By the definition, L1‖Uo ∼= L2‖Uo. Because “∼=” is a congruence, we have op(L1‖Uo) ∼=
op(L2‖Uo) and op(L1‖Uo)‖Uo ∼= op(L2‖Uo)‖Uo.

Let L ∈ {L1, L2}. Because ∼=o Uo and “∼=o” is a congruence, we have L ≡ L‖ ∼=o

L‖Uo and op(L)‖Uo ∼=o op(L‖Uo)‖Uo. Both op(L)‖Uo and op(L‖Uo)‖Uo are unstable,
so Lemma 25 yields op(L)‖Uo ∼= op(L‖Uo)‖Uo.

We have op(L1)‖Uo ∼= op(L1‖Uo)‖Uo ∼= op(L2‖Uo)‖Uo ∼= op(L2)‖Uo. Therefore,
op(L1) ∼=τ op(L2). ��
Lemma 29 Assume B. Then “∼=o” implies “∼=τ”.

Proof Assume that L1 ∼=o L2. Because “∼=o” is a congruence, we have L1‖Uo ∼=o L2‖Uo.
Since L1‖Uo and L2‖Uo are unstable, Lemma 25 yields L1‖Uo ∼= L2‖Uo, that is, L1 ∼=τ L2.

��
Lemma 30 AssumeBand that L1 and L2 are unstable. Then L1 ∼= L2 if and only if L1 ∼=τ L2.

Proof Assume that L1 ∼= L2. Because “∼=” is a congruence, we have L1‖Uo ∼= L2‖Uo, that
is, L1 ∼=τ L2.

Assume that L1 ∼=τ L2. That is, L1‖Uo ∼= L2‖Uo. Like above, we have
L1 ≡ L1‖ ∼=o L1‖Uo. Because L1 and L1‖Uo are unstable, Lemma 25 yields L1 ∼= L1‖Uo.
Similar reasoning yields L2 ∼= L2‖Uo. Altogether L1 ∼= L1‖Uo ∼= L2‖Uo ∼= L2. ��
Theorem 31 Assume B. If “∼=” preserves initial stability, then “∼=” can be represented as
“∼=x

y” for some “∼=x” and “∼=y” such that “∼=y” is a congruence that is implied by “∼=o”.

Proof “∼=y” is “∼=τ ”. ��
The fact that “∼=en

Σ” is a congruence tells that a corresponding theorem for “∼=x”must bemore

complicated. This is because the congruence “∼=en
Σ” is implied by “∼=tr

tr”, but no congruence
implied by “∼=tr” matches “∼=en

Σ” on stable LTSs. Therefore, in the place of “∼=x” we will
use a relation that checks that L1 ∼=en L2 and, roughly speaking, for each a ∈ en(L1), the
behaviours of L1 after a and L2 after a are in a congruence that is implied by “∼=o”. Our proof
relies on much stronger assumptions than assumption B. The first part of the assumptions is
shown below, and the second part will be presented after we have developed the necessary
notions.

Assumption C. “∼=o” and “∼=” are congruences with respect to parallel composition,
hiding, relational renaming, and action prefix; “∼=o” does not but “∼=” does preserve
initial stability; and “∼=o

o” implies “∼=”.
We now define the congruence that is implied by “∼=o”.

Definition 32 For any LTSs L1 and L2, we define L1 ∼=• L2 if and only if there is x /∈
Σ1 ∪Σ2 ∪ {τ, ε} such that x .L1 ∼= x .L2.

Lemma 33 Assume C. If L1 ∼=• L2, then a.L1 ∼= a.L2 holds for all a /∈ {τ, ε}.

123

374 A. Valmari

Proof Let x be like in Definition 32. Because “∼=” is a congruence with respect to “Φ”,
x .L1 ∼= x .L2 implies (x .L1){(x, a)} ∼= (x .L2){(x, a)}. Because x /∈ Σ1 ∪ Σ2 we have
a.L1 = (x .L1){(x, a)} ∼= (x .L2){(x, a)} = a.L2, yielding a.L1 ∼= a.L2. ��
Lemma 34 Assume C. The relation “∼=•” is a congruence with respect to “‖”, “\”, “Φ”,
and “a.”.

Proof Let L1, L2 and L3 be LTSs, a a visible action, A a set of visible actions, and Φ a set
of pairs of visible actions. Let x be a visible action that is not in A ∪ {a} ∪ Σ1 ∪ Σ2 ∪ Σ3

and not in any pair of Φ. By Lemma 33, whenever L ∼=• L ′ holds below for some L and L ′,
we have x .L ∼= x .L ′.

Because “∼=” is an equivalence, we have the following. Obviously x .L1 ∼= x .L1. So
“∼=•” is reflexive. If L1 ∼=• L2, then x .L1 ∼= x .L2. So x .L2 ∼= x .L1 and L2 ∼=• L1. Thus
“∼=•” is symmetric. If L1 ∼=• L2 and L2 ∼=• L3, then x .L1 ∼= x .L2 and x .L2 ∼= x .L3, so
x .L1 ∼= x .L3. Therefore, L1 ∼=• L3 and “∼=•” is transitive.

Because x /∈ Σ1 ∪Σ2 ∪Σ3 ∪ {τ, ε}, we have x .(Li‖L3) ≡ (x .Li)‖(x .L3) when i = 1 or
i = 2. If L1 ∼=• L2, then x .L1 ∼= x .L2. Because “∼=” is a congruence with respect to “‖”, we
have (x .L1)‖(x .L3) ∼= (x .L2)‖(x .L3). So x .(L1‖L3) ∼= x .(L2‖L3) and L1‖L3 ∼=• L2‖L3.
Similar reasoning proves L3‖L1 ∼=• L3‖L2. Therefore, “∼=•” is a congruence with respect
to “‖”.

Because x /∈ A, we have x .(Li\A) ≡ (x .Li)\A when i = 1 or i = 2. If L1 ∼=• L2,
then x .L1 ∼= x .L2. Because “∼=” is a congruence with respect to “\”, we have (x .L1)\A ∼=
(x .L2)\A. So x .(L1\A) ∼= x .(L2\A) and L1\A ∼=• L2\A. Therefore, “∼=•” is a congruence
with respect to “\”.

By the choice of x , we have x .(LiΦ) ≡ (x .Li)Φ when i = 1 or i = 2. If L1 ∼=• L2,
then x .L1 ∼= x .L2. Because “∼=” is a congruence with respect to “Φ”, we have (x .L1)Φ ∼=
(x .L2)Φ. So x .(L1Φ) ∼= x .(L2Φ) and L1Φ ∼=• L2Φ. Therefore, “∼=•” is a congruence with
respect to “Φ”.

If L1 ∼=• L2, then a.L1 ∼= a.L2 by Lemma 33. Because “∼=” is a congruence with
respect to “x .”, we have x .(a.L1) ∼= x .(a.L2). So a.L1 ∼=• a.L2. Therefore, “∼=•” is a
congruence with respect to “a.”. By choosing a so that it is not in Σ1 ∪ Σ2 we also get
τ.L1 = (a.L1)\{a} ∼=• (a.L2)\{a} = τ.L2, because we have already shown that “∼=•” is a
congruence with respect to “\”. Thus “∼=•” is a congruence with respect to “τ.”. ��
Lemma 35 Assume C. Then “∼=o” implies “∼=•”.
Proof Assume that L1 ∼=o L2. Let x /∈ Σ1 ∪ Σ2 ∪ {τ, ε}. By the congruence property, we
have x .L1 ∼=o x .L2. Since x .L1 and x .L2 are stable, Lemma 25 yields x .L1 ∼= x .L2. That
is, L1 ∼=• L2. ��
We will soon make it precise what we mean by the behaviour of a stable LTS after a visible
action. As a preparatory step, letΣ be a set of visible actions and x a visible action.We define

x Σ as the two-state LTS whose alphabet is Σ ∪ {x} and transitions are {(ŝx , x, sx)} ∪
{(sx , a, sx) | a ∈ Σ}.

Let L = (S,Σ,Δ, ŝ) be a stable LTS, a ∈ Σ , and x /∈ Σ ∪ {τ, ε}. We will soon use
the LTS La

x = L{(a, x)(a, a)}‖ x Σ . To get intuition for it, we now show that it is
isomorphic to the reachable part of L ′ = (S′,Σ ′,Δ′, ŝ′), where ŝ′ is a new state (that is,
ŝ′ /∈ S), S′ = S ∪ {ŝ′}, Σ ′ = Σ ∪ {x}, and Δ′ = Δ ∪ {(ŝ′, x, s) | (ŝ, a, s) ∈ Δ} (Fig. 5).

The LTS x Σ has two states ŝx and sx . The states of La
x are of the form (s, s′),

where s ∈ S and s′ ∈ {ŝx , sx }. Because the alphabet of both L{(a, x)(a, a)} and x Σ is

123

All congruences below stability-preserving fair testing or CFFD 375

L

La
x

x x x

a
a a b

b

. . .
.

.

L

a b

idf (L)

τ τ τ τ τ

a
a a b

b

. . .
.

.

a−1L b−1L

Fig. 5 Illustrating Lax (left), a−1L , and idf (L) (right)

Σ ∪ {x}, and because x Σ has no τ -transitions, the transitions of La
x are of three forms:

(s, ŝx) −x→ (s′, sx) where (thanks to the renaming) (s, a, s′) ∈ Δ; (s, sx) −b→ (s′, sx)
where b ∈ Σ and (s, b, s′) ∈ Δ; and (s, s′x) −τ→ (s′, s′x) where (s, τ, s′) ∈ Δ and
s′x ∈ {ŝx , sx }. Once ŝx has been left, it cannot be re-entered. Furthermore, L is stable.
Therefore, the states of the form (s, ŝx) where s �= ŝ are unreachable. The states of the form
(s, sx) and their outgoing transitions constitute a copy of the reachable part of L , in addition
to which there is the transition (ŝ, ŝx) −x→ (s, sx) for every (ŝ, a, s) of the reachable part
of L .

The LTS La
x\{x} is otherwise similar, but it lacks x in its alphabet and its initial transitions

are labelledwith τ instead of x . It is independent of the choice of x (as long as x /∈ Σ∪{τ, ε}).
In structural operational semantics,

L −a→ L ′

La
x\{x} −τ→ L ′

and that is all La
x\{x} can do. From now on we denote it with a−1L . That is, if L is a stable

LTS, a ∈ Σ , and x /∈ Σ ∪ {τ, ε}, then we define

a−1L = (L{(a, x)(a, a)}‖ x Σ) \ {x}.
It is easy to check that Σ(a−1L) = Σ .

Lemma 36 Assume C. If L1 ∼= L2 where L1 and L2 are stable, then Σ1 = Σ2, en(L1) =
en(L2), and a−1L1 ∼=• a−1L2 for every a ∈ en(L1).

Proof Theorem 13 yields L1 ∼=en L2, that is, Σ1 = Σ2 and en(L1) = en(L2). The con-
gruence properties of “∼=” and the definition of a−1L yield x .(a−1L1) ∼= x .(a−1L2), from
which the definition of “∼=•” yields the last claim. ��
To prove the converse of Lemma 36, we discuss the construction of L , when a−1L is given for
each a ∈ en(L). Then we present the assumptions we will use in addition to assumption C.

Let A be a set of visible actions and La be an LTS for each a ∈ A. If A is finite, then
it is of the form {a1, . . . , an}, where the ai are distinct from each other. We define finite
deterministic choice between a1.La1 , …, an .Lan as

∑
a∈A a.La = a1.La1 + · · · + an .Lan .

Infinite deterministic choice is the natural extension to infinite A, and deterministic choice is
finite or infinite deterministic choice. “Deterministic” signifies that

∑
a∈A a.La has precisely

one initial transition for each a ∈ A, and no other initial transitions.

Definition 37 If L is stable, then by its initially deterministic form we mean

idf (L) =
∑

a∈en(L)

a.(a−1L) .

123

376 A. Valmari

Assumption D. L ∼=o idf (L) holds for every stable L , and “∼=” is a congruence with
respect to infinite deterministic choice.

We need not assume that “∼=” is a congruence with respect to finite deterministic choice,
because Lemma 40 will tell that it is. However, we first focus on the big picture, and present
the result where Assumption D is needed.

Lemma 38 Assume C and D. If L1 and L2 are stable, en(L1) = en(L2), and a−1L1 ∼=•
a−1L2 for every a ∈ en(L1), then L1 ∼= L2.

Proof Clearly idf (L) is stable, so Assumption D and Lemma 25 imply L1 ∼= idf (L1) and
idf (L2) ∼= L2. Because a−1L1 ∼=• a−1L2 and a is visible, by Lemma 33, a.(a−1L1)∼= a.(a−1L2) for each a ∈ en(L1) = en(L2). Thus Lemma 40 (in the finite case) and
Assumption D (in the infinite case) yield idf (L1) ∼= idf (L2). ��

We can now prove a result that resembles Lemma 30 and can be used to characterize the
“∼=x” in Theorem 31.

Theorem 39 Let “congruence”meanwith respect to “‖”, “\”, “Φ”, and“a.”. Let “∼=o” and
“∼=” be congruences such that “∼=o

o” implies “∼=”, and “∼=o” does not but “∼=” does preserve
initial stability. Also assume D. There is a congruence “∼=•” implied by “∼=o” such that for
stable LTSs, L1 ∼= L2 if and only if Σ1 = Σ2, en(L1) = en(L2), and a−1L1 ∼=• a−1L2 for
every a ∈ en(L1).

Proof The assumptions in the theorem imply Assumption C. By Lemmas 34 and 35, the
relation in Definition 32 is a congruence implied by “∼=o”. Lemmas 36 and 38 give the last
claim. ��
The use of Assumption D reduces the generality of this theorem. The rest of this section
is devoted to a brief analysis on conditions where Assumption D holds. Based on it, we
will see in the next section that the first half of Assumption D is not a problem with CFFD
equivalence.

Next we show that if we restrict ourselves to LTSs L such that en(L) is finite whenever
L is stable, then the latter part of D need not be assumed. We do that by showing that the
choice operator can be constructed from parallel composition and functional renaming, if the
LTSs are stable. If A and B are sets of visible actions, we define C(A, B) := AA B B ,
where each thick arrow denotes a transition for each member of the label of the arrow.

Lemma 40 If L1 and L2 are stable, then

L1 + L2 ≡ � �L1�[1] ‖ �L2�[2] ‖ C(Σ
[1]
1 ,Σ

[2]
2) �[1,2] .

Proof Let the right hand side be called R. Because of the renaming, the alphabets of �L1�[1]
and �L2�[2] are disjoint and the alphabet of C(. . .) is their union. So all visible transitions of
R are either joint transitions by �L1�[1] and C(. . .) or joint transitions by �L2�[2] and C(. . .).
Thanks to �. . .�[1,2], they have the labels that are used in L1 and L2. Because C(. . .) has no
τ -transitions, all τ -transitions of R arise from τ -transitions of L1 or τ -transitions of L2.

Let the states of C(. . .) be called c1, ĉ, and c2. The initial state of R is (ŝ1, ŝ2, ĉ). It has no
τ -transitions, because L1 and L2 are stable. It has the transitions (ŝ1, ŝ2, ĉ) −a→ (s1, ŝ2, c1)
where ŝ1 −a→ s1 is a transition of L1, and (ŝ1, ŝ2, ĉ) −a→ (ŝ1, s2, c2)where ŝ2 −a→ s2 is
a transition of L2.When in c1,C(. . .) stays there forever, blocks L2 in ŝ2, and lets L1 proceed
freely. Therefore, states of the form (s1, ŝ2, c1) and their outgoing transitions constitute a copy
of L1. A similar claim holds about (ŝ1, s2, c2) and L2. ��

123

All congruences below stability-preserving fair testing or CFFD 377

This construction does not generalize to infinite choice, because infinite parallel composition
is a problematic thing. For instance, if L = a , then a ∈ Tr(L‖L‖ · · ·), but if L = τ a ,
then a /∈ Tr(L‖L‖ · · ·), because an infinite number of τ -transitionswould be needed to enable
a. This example warns that we cannot take extensions of the congruence property to infinite
operators for granted. InFig. 1, “∼=en

” is a congruencewith respect tofinite but notwith respect

to infinite (nondeterministic!) choice, because of the counter-example where Li = τ {2i}
and L ′i = τ {2i,2i+1} for i ∈ N. The author has found neither a proof nor a counter-example
to idf (L1) ∼= idf (L2) when L1 and L2 are stable, Σ1 = Σ2, en(L1) = en(L2) is infinite,
a−1L1 ∼= a−1L2 for each a ∈ en(L1), C is assumed, and D is not.

A relation that satisfies assumption C (and, by Lemma 40, is thus a congruence with
respect to finite choice) but is not a congruence with respect to deterministic infinite choice,
would be an oddity. So the inability of our theory to deal with such relations without an
extra assumption is perhaps not a big drawback. The first part of Assumption D is, however,
significant. It says that if L is stable, then L ∼=o idf (L). For instance, Milner’s observation
equivalence does not satisfy it.

The only difference between a stable L and idf (L) is that the choice between initial
transitions with the same label is postponed to a choice between τ -transitions after the initial
transition (see Fig. 5). This is formalized next.

Lemma 41 If L is a stable LTS, then idf (L) ≡ (S′,Σ,Δ′, ŝ′), where S′ = S ∪ {ŝ′} ∪
{sa | a ∈ en(L)}, the added states are distinct from each other and the states in S, and Δ′
is obtained from Δ by adding, for each a ∈ en(L), the transition ŝ′ −a→ sa and for each
(ŝ, a, s) ∈ Δ the transitions sa −τ→ s.

Proof For each a ∈ en(L), a−1L and a.(a−1L) have the same alphabet as L , and thus also
idf (L) has the same alphabet. The LTS characterization La

x\{x} of a−1L picks the part of L
that starts with a-transitions, and hides the initial a-transitions. The construction of idf (L)

adds an a-transition to the front of a−1L and puts the resulting a.(a−1L) together. ��

7 Application to CFFD equivalence

In this sectionwe apply the theory in the previous section to prove that the stability-preserving
CFFD equivalence implies precisely 79 congruences. Throughout this section the word “con-
gruence”means congruencewith respect to parallel composition, hiding, relational renaming,
action prefix, and infinite deterministic choice. To keep this section reasonably short, we skip
some proofs that consist of routine checking, and also skip the definitions that are only needed
in such proofs. The definitions can be found in [17].

The state s0 diverges, denoted with s0 −τω→, if and only if there are states si for every
i > 0 such that s0 −τ→ s1 −τ→ The set of divergence traces of L is Div(L) =
{σ ∈ Σ∗ | ∃s : ŝ =σ⇒ s −τω→}. The notation s =σ⇒ extends naturally to infinite
sequences of visible actions. The set of infinite traces of L is Inf(L) = {ξ ∈ Σω | ŝ =ξ⇒}.
If ŝ −a1→ s1 −a2→ . . . is an infinite path of L , then the projection of a1a2 · · · on visible
actions is either a divergence trace (if it is finite) or an infinite trace (if it is infinite).

The set of stable failures of L is Sf(L) = {(σ, A) ∈ Σ∗ × 2Σ | ∃s : ŝ =σ⇒ s ∧
∀a ∈ A∪{τ } : ¬(s −a→)}. That is, a stable failure is a pair consisting of a trace and a set of
visible actions such that L can execute the trace and then be in a stable state where it cannot
execute any element of the set. Assume that ŝ =σ⇒ s. If a stable state can be reached from

123

378 A. Valmari

Fig. 6 All congruences with
respect to a.L , L\A, LΦ, and
L‖L ′ that are implied by CFFD
equivalence. There is a path from
“∼=1” down to “∼=2” if and only if
“∼=1” implies “∼=2”. Each
congruence preserves all sets
listed along the paths from it
down to “∼=⊥”. However, the
definition of a congruence need
not mention those sets that can be
determined from the sets that are
mentioned [17]

∼=⊥

∼=Σ

∼=Tr,Tr

Inf

Sf

minD
anT
anI

Div
eanI

aenI

sanF

∼=CSP, anF

snF

nF

∼=NDFD

∼=CFFD

s via τ -transitions, then (σ,∅) is a stable failure of L , and otherwise σ is a divergence trace
of L . Therefore, Tr(L) = Div(L) ∪ {σ | (σ,∅) ∈ Sf(L)}.

The LTSs L1 and L2 are CFFD-equivalent, that is, L1 ∼=CFFD L2, if and only if Σ1 = Σ2,
Sf(L1) = Sf(L2), Div(L1) = Div(L2), and Inf(L1) = Inf(L2).

It is obvious from the definition and Lemma 41 that if L is a stable LTS, then L ∼=CFFD
idf (L). That is, the first part of Assumption D holds for CFFD equivalence. It is also clear
that L ∼=CFFD τ.L for any LTS L .

CFFD equivalence implies precisely 40 congruences with respect to parallel composition,
hiding, relational renaming and action prefix. They are shown in Fig. 6 [17]. The figure
shows “∼=⊥”, “∼=Σ” and “∼=tr” but not “∼=#”, because it is not a congruence with respect to
relational renaming. The figure also shows the CSP failures divergences equivalence [15].
For convenience, we call other congruences in the figure than “∼=⊥” and “∼=Σ” black, and
“∼=Σ” is grey.

The congruences use two kinds of traces, two kinds of divergence traces, four kinds of
infinite traces, and five kinds of failures. For instance, anT(L) and anI(L) are the traces and
infinite traces whose prefixes are not divergence traces; minD(L) is the divergence traces
whose proper prefixes are in anT(L); anF(L) is the stable failures whose trace part is in
anT(L); and sanF(L) is the same with the additional requirement that if (σ, {a}) ∈ sanF(L),
then σa /∈ Div(L). The CSP failures divergences equivalence results from requiring that
Σ1 = Σ2, anF(L1) = anF(L2), minD(L1) = minD(L2), and anI(L1) = anI(L2). When
this holds, then also anT(L1) = anT(L2) and sanF(L1) = sanF(L2). The set anI is needed
here although it is typically not used with CSP, beacuse there something is assumed to the
effect that the LTSs are finitely branching, which we do not assume.

123

All congruences below stability-preserving fair testing or CFFD 379

Lemma 42 If L is stable, then en(L) = Tr(L) ∩ Σ = {a ∈ Σ | (ε, {a}) /∈ Sf(L)} =
(minD(L) ∪ anT(L)) ∩Σ .

Proof Because¬(ŝ −τ→), we have Tr(L)∩Σ = {a ∈ Σ | ŝ −a→} = en(L). For the same
reason, only ŝ can introduce stable failures of the form (ε, A). Furthermore, ε /∈ minD(L)

because ¬(ŝ −τ→). Therefore, each a ∈ Tr(L) ∩Σ is either a minimal divergence trace or
an always nondivergent trace. ��

Wemention without proof that these 40 congruences are also congruences with respect to
choice between stable LTSs, and thus with respect to infinite deterministic choice. Intuitively,
this is because Tr(

∑
Li) = ⋃

Tr(Li); similarly with Div and Inf;minD has a similar formula
where only the minimal elements of the union are kept; anT, anI, eanI, and aenI have similar
formulas with (minimal) divergence traces used to fix the result; the failures of any kind of
the form (ε, A) are dealt with similarly to Lemma 42; and the failures (σ, A) with σ �= ε

have somewhat similar formulas as anT.
Furthermore, if “∼=x” is any of the black congruences, then “∼=x

x” is a congruence, because
by Lemma 42 it is the intersection of “∼=x” and “∼=en

Σ”. Because it preserves initial stability, it
is possible to reason the stable failures of the form (ε, A) of the result of the choice between
any LTSs from the stable failures of the component LTSs. Thus “∼=x

x” is a congruence also
with respect to both finite and infinite choice between any LTSs (stable and unstable).

By Theorem 27, the congruences implied by “∼=CFFD
CFFD” that do not preserve initial stability

are precisely the 40 congruences in Fig. 6. This result does not assume the congruence
property with respect to infinite deterministic choice.

We now turn our attention to congruences that preserve initial stability. By Theorem 31,
they can be represented in the form “∼=x

y”, where “∼=y” can only be one of the 39 black or
grey congruences (“∼=⊥” is ruled out by Theorem 13). Our analysis of what can be in the
place of “∼=x” starts with the following observation.

Lemma 43 All black congruences in Fig. 6 have the property that if L1 and L2 are stable,
then L1 ∼= L2 if and only if Σ1 = Σ2, en(L1) = en(L2), and a−1L1 ∼= a−1L2 for every
a ∈ en(L1).

Proof Assume L1 ∼= L2. Any black congruence implies Σ1 = Σ2. It also implies either
Tr(L1) = Tr(L2), Sf(L1) = Sf(L2), orminD(L1) = minD(L2) and anT(L1) = anT(L2). By
Lemma 42, en(L1) = en(L2) in all three cases. The definition of a−1L only uses operators
with respect to which the congruence property was assumed. Therefore, a−1L1 ∼= a−1L2

for every a ∈ en(L1).
We now prove the opposite direction. Every congruence in question has been defined via

Σ1 = Σ2 and X1(L1) = X1(L2), …, Xn(L1) = Xn(L2), where X1, …, Xn are some sets in
Fig. 6. We assume Σ1 = Σ2, en(L1) = en(L2), and Xi (a−1L1) = Xi (a−1L2) for every
1 ≤ i ≤ n and every a ∈ en(L1), and have to prove Σ1 = Σ2 and X1(L1) = X1(L2), …,
Xn(L1) = Xn(L2).

Let Xi (a−1L) denote the function that maps each a ∈ en(L) to Xi (a−1L). Every set in
Fig. 6 has the property that if L is stable, then Xi (L) can be expressed as a function fi of
en(L) and Xi (a−1L). For instance, Tr(L) = {ε} ∪ {aσ | a ∈ en(L) ∧ σ ∈ Tr(a−1L)} and
anF(L) = {(ε, A) | A ∩ en(L) = ∅} ∪ {(aσ, A) | a ∈ en(L) ∧ (σ, A) ∈ anF(a−1L)}.
Because Xi (a−1L1) = Xi (a−1L2) for every a ∈ en(L1) = en(L2), we have Xi (L1) =
fi (en(L1),Xi (a−1L1)) = fi (en(L2),Xi (a−1L2)) = Xi (L2). ��
That is, if any of these 38 congruences is used as the “∼=•” of Theorem 39, then “∼=” is the
same congruence. The remaining two congruences compare at most the alphabets. For both
of them, Theorem 39 yields “∼=en” as “∼=”. We have thus 39 possibilities for “∼=x”.

123

380 A. Valmari

We have already argued that “∼=en
Σ” and the 38 “∼=x

x” are congruences with respect to the
five operators in question. It remains to be shown that no combination of the “∼=x” and “∼=y”
found above yields an additional congruence.

Lemma 44 If “∼=x” is a black congruence, “∼=y” is a black or grey congruence, and “∼=x
y”

is a congruence, then “∼=x” = “∼=y”.

Proof Assume L1 ∼=y L2. By the congruence property, τ.L1 ∼=y τ.L2. By the definition of
“∼=x

y”, τ.L1 ∼=x
y τ.L2. Let a /∈ Σ1∪Σ2∪{τ, ε}. Then a.τ.L1 ∼=x

y a.τ.L2⇒ a.τ.L1 ∼=x a.τ.L2

⇒ τ.τ.L1 = (a.τ.L1)\{a} ∼=x (a.τ.L2)\{a} = τ.τ.L2. Because τ.L ∼=CFFD L for any L ,
we have L1 ∼=CFFD τ.τ.L1 and τ.τ.L2 ∼=CFFD L2. Because “∼=CFFD” implies ∼=x , we have
L1 ∼=x L2.

Assume L1 ∼=x L2. Let a /∈ Σ1 ∪ Σ2 ∪ {τ, ε}. Then a.L1 ∼=x a.L2 ⇒ a.L1 ∼=x
y a.L2

⇒ τ.a.L1 ∼=x
y τ.a.L2 ⇒ τ.a.L1 ∼=y τ.a.L2 ⇒ τ.τ.L1 = (τ.a.L1)\{a} ∼=y (τ.a.L2)\{a} =

τ.τ.L2. Because “∼=CFFD” implies ∼=y , we have L1 ∼=y L2. ��
Lemma 45 If “∼=y” is a black or grey congruence and “∼=en

y ” is a congruence, then “∼=en
y ”

is the same congruence as “∼=en
Σ”.

Proof Because “∼=en
y ” preserves initial stability by definition, it implies “∼=en

Σ” byTheorem13.

On the other hand, if a �= b �= τ �= a, then a ∼=en
y

a b and L\{a} yields τ ∼=en
y

τ b . This rules out the black congruences. ��
We have proven the following.

Theorem 46 The stability-preserving CFFD equivalence implies precisely 79 congruences
with respect to parallel composition, hiding, relational renaming, action prefix, and infinite
deterministic choice. They are the 40 congruences in Fig. 6, the 38 congruences of the form
“∼=x

x” where x is a black congruence in Fig. 6, and “∼=en
Σ”.

8 Discussion

In Fig. 1, “∼=ft
ft” and “∼=ft” are interesting congruences introduced in [14]. The congruence

“∼=tr” is the good old trace equivalence. “∼=tr
tr” is its obvious extension with stability. It

seems unnecessary, because “∼=tr” is a congruence with respect to the choice operator. The
congruence “∼=Σ” is trivial. Being the weakest stability-preserving congruence with respect
to many widely used operators, “∼=en

Σ” may have some interest. The remaining congruences
of the form “∼=x

y” feel artificial and go away in the presence of the action prefix operator, so
they are probably unimportant.

The distinction of the eight congruences with the subscript # or ⊥ from the four con-
gruences with the subscript Σ is artificial, because it is a consequence of our choice of the
parallel composition operator, which requires that each LTS has an alphabet of its own. We
next comment on this decision.

Many authors use a global alphabet that is common to all LTSs. This convention needs a
different parallel composition operator. A widely used option is L1‖AL2, where A is a set
that does not contain τ or ε, and an action is executed jointly by L1 and L2 if and only if it
is in A. If a /∈ A and both L1 and L2 can execute it, then they execute it one at a time.

Themain reason for our convention is technical simplicity.Many of our constructions need
actions that are not in the alphabets of any of the LTSs in question. With a global alphabet,
an LTS may use all actions in it as labels of transitions, depriving us of outside actions.

123

All congruences below stability-preserving fair testing or CFFD 381

If the global alphabet is infinite, then actions can be liberated with a bijective renaming
operator that maps the alphabet to its proper subset. However, this would be a complication
in proofs that is not needed with our convention.

We now show that if the global alphabet consists of only one action, then there are addi-
tional congruences. Let a be that action. If L has arbitrarily long traces, then letml(L) := ω.
Then Tr(L) = {a}∗. Otherwise, let ml(L) denote the length of a longest trace of L . In this
case, Tr(L) = {an | n ≤ ml(L)}. For each n ∈ N ∪ {ω}, the following is a congruence
with respect to ‖∅, ‖{a}, and the six operators defined in Sect. 2: L1 ∼= L2 if and only if
ml(L1) = ml(L2) ≤ n or ml(L1) ≥ n ≤ ml(L2). This is an infinite sequence of distinct
congruences between the trace equivalence (obtained with n = ω) and the congruence that
preserves nothing (obtained with n = 0).

In conclusion, both our convention and the alternative introduce artificial congruences,
but our convention simplifies the study of interesting congruences.

With our convention, any two LTSs with different alphabets have different tree failures
for a vacuous reason. If a ∈ Σ1 but a /∈ Σ2, then L2 can neither execute nor refuse a, but
either a ∈ Tr(L1) or (ε, {a}) ∈ Tf(L1). Our results on congruences that do not preserve the
alphabet are not based on this trivial issue. Instead, Lemma 20 says that, roughly speaking,
where the alphabet is not preserved, no information on traces is preserved. The congruence
“∼=tr⊥” preserves some information on traces although it does not preserve the alphabet, but
these happen with different classes of LTSs: stable with the former, and unstable with the
latter.

In [17], all congruences implied by the not stability-preserving Chaos-Free Failures Diver-
gences (CFFD) equivalence were found, assuming the congruence property with respect to
parallel composition, hiding, relational renaming, and action prefix. Forty congruences were
found (the CSP failures divergences equivalence being one of them). All but one of them pre-
serve the alphabet. This is in sharp contrast with “∼=ft”, which implies only five congruences
with respect to a strictly smaller set of operators.

In Sect. 5, we combined the requirement of initial stability with tree failures, traces, and
alphabet preservation. To apply a similar strategy in the case of CFFDwould require repeating
the proofs in [17] also considering initial stability, which would be a huge amount of work
(the publication contains 33 dense pages). Therefore, in Sect. 6 we developed a theory of
dealing with initial stability as an add-on, and applied it in Sect. 7.

In Sect. 6, only the congruence property with respect to parallel composition and hiding
was needed to prove that no new congruences arise that either do not preserve initial stability,
or are used to compare unstable LTSs by a congruence that does preserve initial stability.
This is a very general result. The comparison of stable LTSs when preserving initial stability
proved much more difficult to deal with. As a consequence, we were unable to prove the
existence or non-existence of congruences with a very weird property (congruences with
respect to finite choice but not with respect to infinite deterministic choice) in the region
below stability-preserving CFFD equivalence. Other than that, Theorem 46 fully analyses
the region, finding 79 congruences.

A natural next topic would be to find all congruences that are implied by the intersection
of “∼=ft

ft” and CFFD equivalence, or less ambitiously, “∼=ft” and CFFD equivalence. The hard
part is to find out whether there are congruences that are not intersections of those in [17]
and the present study. Figure 1 may encourage to guess that this is impossible. However,
[17] contains counter-examples, as seen in Fig. 6. For instance, the CSP failures divergences
equivalence does not arise as an intersection of strictly weaker congruences in the figure.
Sections 6 and 7 can be seen as generalizing results on “∼=en

Σ” and CFFD equivalence to their
intersection. Judging from the difficulties encountered and from the fact that initial stability

123

382 A. Valmari

is perhaps the simplest add-on one can think of, generalizing results on “∼=ft” and CFFD
equivalence to their intersection will perhaps not be trivial..

Acknowledgements Open access funding provided by University of Jyväskylä (JYU). The author thanks
Walter Vogler for his comments on an early manuscript of the conference version of this study, and the
reviewers of the conference version for careful reading and good suggestions for improvements. Also the
reviewers of the journal version deserve great thanks for their hard work that led to many improvements to the
presentation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1989)
2. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995)
3. Emerson, E.A.: The beginning of model checking: a personal perspective. In: Grumberg, O., Veith, H.

(eds.) 25 Years of Model Checking-History, Achievements, Perspectives. Lecture Notes in Computer
Science, pp. 27–45. Springer, New York (2008)

4. GazdaM,FokkinkW(2010)Congruence from the operator’s point of view: compositionality requirements
on process semantics. In: Aceto, L., Sobocinski, P. (eds.) Proceedings Seventh Workshop on Structural
Operational Semantics, SOS 2010, Paris, France, 30 August 2010, vol. 32, pp. 15–25. EPTCS

5. van Glabbeek, R.J.: The linear time—branching time spectrum II. In: Best, E. (ed.) CONCUR ’93, 4th
International Conference on Concurrency Theory, Hildesheim, Germany, August 23–26, 1993, Proceed-
ings, Volume 715 of Lecture Notes in Computer Science, pp. 66–81. Springer (1993)

6. van Glabbeek, R.J.: The coarsest precongruences respecting safety and liveness properties. In: Calude,
C.S., Sassone, V. (eds.) Theoretical Computer Science—6th IFIP TC 1/WG 2.2 International Conference,
TCS 2010, Held as Part ofWCC 2010, Brisbane, Australia, September 20–23, 2010. Proceedings, Volume
323 of IFIP Advances in Information and Communication Technology, pp. 32–52. Springer (2010)

7. vanGlabbeek, R.J., Luttik, B., Trcka, N.: Computation tree logic with deadlock detection. Logic.Methods
Comput. Sci. 5(4:5), 1–24 (2009)

8. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM
43(3), 555–600 (1996)

9. Kaivola, R., Valmari, A.: Theweakest compositional semantic equivalence preserving nexttime-less linear
temporal logic. In: Cleaveland, R. (ed.) CONCUR ’92, Third International Conference on Concurrency
Theory, Stony Brook, NY, USA, August 24–27, 1992, Proceedings, Volume 630 of Lecture Notes in
Computer Science, pp. 207–221. Springer (1992)

10. Milner, R.: Communication and Concurrency. PHI Series in Computer Science. Prentice Hall, Upper
Saddle River (1989)

11. Puhakka, A.: Weakest congruence results concerning ‘’any-lock”. In: Kobayashi, N., Pierce, B.C. (eds.)
Theoretical Aspects of Computer Software, 4th International Symposium, TACS 2001, Sendai, Japan,
October 29–31, 2001, Proceedings, Volume 2215 of Lecture Notes in Computer Science, pp. 400–419.
Springer (2001)

12. Puhakka, A., Valmari, A.: Weakest-congruence results for livelock-preserving equivalences. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR ’99: Concurrency Theory, 10th International Conference, Eindhoven,
The Netherlands, August 24–27, 1999, Proceedings, Volume 1664 of Lecture Notes in Computer Science,
pp. 510–524. Springer (1999)

13. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory 12(1), 128–138 (1980)
14. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
15. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science. Springer, New York

(2010)
16. Valmari, A.: The weakest deadlock-preserving congruence. Inf. Process. Lett. 53(6), 341–346 (1995)

123

http://creativecommons.org/licenses/by/4.0/

All congruences below stability-preserving fair testing or CFFD 383

17. Valmari, A.: All linear-time congruences for familiar operators. Logic. Methods Comput. Sci. 9(4:11),
1–34 (2013)

18. Valmari, A.: On constructibility and unconstructibility of LTS operators from other LTS operators. Acta
Inf. 52(2–3), 207–234 (2015)

19. Valmari, A.: The congruences below fair testing with initial stability. In: Desel, J., Yakovlev, A. (eds.)
16th International Conference on Application of Concurrency to System Design, ACSD 2016, Torun,
Poland, June 19–24, 2016, pp. 25–34. IEEE Computer Society (2016)

20. Valmari, A., Tienari, M.: Compositional failure-based semantics models for basic LOTOS. Formal Asp.
Comput. 7(4), 440–468 (1995)

21. Valmari, A., Vogler, W.: Fair testing and stubborn sets. STTT 20(5), 589–610 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	All congruences below stability-preserving fair testing or CFFD
	Abstract
	1 Introduction
	2 LTSs and their operators
	3 Stability-preserving fair testing and the region below it
	4 The weakest stability-preserving congruence
	5 Proof that Fig. 1 contains all congruences in the region
	6 A somewhat general theory on adding stability preservation
	7 Application to CFFD equivalence
	8 Discussion
	Acknowledgements
	References

