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Whitney forms are widely known as finite elements for differential forms. Whitney’s
original definition yields first order functions on simplicial complexes, and a lot of
research has been devoted to extending the definition to nonsimplicial cells and higher
order functions. As a result, the term Whitney forms has become somewhat ambiguous
in the literature. Our aim here is to clarify the concept of Whitney forms and explicitly
explain their key properties. We discuss Whitney’s initial definition with more depth
than usually, giving three equivalent ways to define Whitney forms. We give a compre-
hensive exposition of their main properties, including the proofs. Understanding of these
properties is important as they can be taken as a guideline on how to extend Whitney
forms to nonsimplicial cells or higher order functions. We discuss several generalisations
of Whitney forms and check which of the properties can be preserved.
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1. Introduction

Whitney forms first appeared in the book of Hassler Whitney [1], which did not originally have any relation to
umerical mathematics or to finite element and finite difference kind of approaches. Instead, Whitney formulated a theory
f p-dimensional integration in n-dimensional affine space with chains and cochains. In a proof relating the cohomology

of flat cochains to simplicial cohomology, he introduced elementary flat cochains and the corresponding differential
forms [1, VII, §11]. Jozef Dodziuk used these forms (or their generalisations onto a manifold, to be precise) to approximate
continuous Hodge theory with combinatorial Hodge theory and introduced the name Whitney forms in his thesis [2].
Unlike Whitney’s work, Dodziuk’s ideas were closely related to finite difference approaches.

Whitney forms became popular within the computational electromagnetics community in late 1980s and early 1990s
after the pioneering work of Alain Bossavit [3–8]. He revealed their immediate relation to mixed finite elements [9,10] and
emphasised the benefits of presenting the field equations in terms of differential forms instead of scalar and vector fields.
Thereafter cochains and Whitney forms were shown to yield a natural framework to explain the finite difference method
and its relation to the finite element method [11–14]. Differential forms have since been accepted as an appropriate tool
to present both of these methods [15–20], and Whitney forms are widely used to build finite-dimensional subspaces of
differential forms; for more examples of the use of Whitney forms (or their proxy fields) in the literature, see e.g. [21–27].

Whitney’s original definition yields first order functions on simplicial complexes. In practice, the assumption of sim-
plices behind Whitney forms is restrictive. Hence, in the literature one can find extensions to other cell types [18,28,29].
Furthermore, there have also been attempts to generalise them to higher order functions [30–32]. While the literature
recognises several extensions of Whitney forms, the usage of the term ‘‘Whitney forms’’ is not unambiguous. The term is
used for different type of objects by different authors, and the other way around, some instances of Whitney forms are
sometimes called with a completely different name.

In this paper we clarify the concept of Whitney forms and create a synthesis of papers published on them. Our aim is to
explain explicitly the key properties of Whitney forms and provide foundations for extending Whitney forms beyond their
original assumptions. For this, in Section 3, we discuss Whitney’s initial definition in more depth than usually and give
three equivalent definitions, each emphasising a certain aspect of Whitney forms. In Section 4 we give a comprehensive
exposition of their main properties, including the proofs. To further clarify the concept of Whitney forms, in Section 5 we
consider generalisations that are called Whitney forms in the literature and check which of the properties are preserved.
This reveals the trade-offs involved in extending Whitney forms to non-simplicial complexes and higher order functions.
That is, to bypass assumptions involved in Whitney’s initial setting, one also has to give up on some properties.

Regarding our contribution to the scientific literature, there is no prior paper which systematically lists all the key
properties of Whitney forms with proofs. Although the results included in this paper can be considered as known, there
are new aspects and some technical details that have not been published before. Our definitions and results are given in
the spirit of Whitney’s book and do not require Lebesgue theory or Sobolev spaces. This includes Theorems 4.9 and 5.1,
which bring the approximation property of finite element theory into Whitney’s setting. The proof of Theorem 4.3 has
also not appeared elsewhere. This theorem could also be shown using Proposition 4.4 and the known fact that constants
are in the span of Whitney forms, but the authors are not aware of such a proof – or even the proof of Proposition 4.4 –
in the literature.

2. Preliminaries and notation

In this section some of the prerequisite concepts are briefly recalled. We expect the reader is familiar with exterior
algebra and differential forms (see e.g. [1, Chapters I–III]).

Standard Whitney forms are differential forms in a simplicial complex. Simplicial complex K is a finite set of simplices
such that

• each face of every simplex in K is also in K .
• The intersection of two simplices in K is either a common face of theirs or the empty set.

Complexes consisting of more general cells can be defined similarly. As in the initial context of Whitney forms [1], we
assume that the simplices are embedded in affine space and tile a domain Ω . For simplicity, we may take Rn as the affine
space, keeping in mind that only the affine structure of Rn is required, so that Ω is a polyhedron in Rn. The general case
where Ω is a manifold is covered in Section 5, which discusses generalisations of Whitney forms. We denote simplices
by labels σ and τ , and σ = x0 . . . xp means that σ is the oriented p-simplex whose vertices are x0, . . . , xp and whose
orientation is implied by this order of vertices. Sp denotes the set of p-simplices and vect(σ ) the vectorial volume of σ
(i.e. the p-vector of σ , see [1, III, §1]).

Recall that to each 0-simplex xi of K corresponds a barycentric function λi — it is the unique function which is affine in
each simplex and whose value is one at xi and zero at other 0-simplices. Barycentric functions are the main building block
for Whitney forms. We remark that they are exclusive to simplicial complexes, but we will discuss the generalisation of
barycentric coordinates for other cells than simplices when considering extensions of Whitney forms.

Differential p-form in a complex K [1, p. 226] is a set of smooth p-forms ωσ in the cells σ of K satisfying the following
patch condition: if τ is a face of σ , then the trace ω | of ω equals ω in τ . In other words, ⟨ω (x), α⟩ = ⟨ω (x), α⟩ for all
σ τ σ τ σ τ
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x ∈ τ and all p-vectors α in the plane of τ . (Here and throughout the paper, we denote the action of a p-covector ω on a
p-vector α by ⟨ω, α⟩.) This means that if τ is the cell for which x ∈ τ −∂τ and α is in the plane of τ , then ⟨ωσ (x), α⟩ is the
same for all σ containing x. Hence the set of p-forms ωσ induces a single p-form ω such that ⟨ω(x), α⟩ is single-valued
(i.e. well-defined) for such p-vectors α.

The patch condition ensures that differential p-forms in K can be integrated over p-cells in K . Denote by F p(K ) the
space of differential p-forms in K . Note that since the exterior derivative d commutes with trace, we have dω ∈ F p+1(K )
if ω ∈ F p(K ), but the Hodge star ⋆ω is not necessarily in F n−p(K ).

When K is a simplicial complex, formal sums
∑

σi∈Sp
aiσi of oriented p-simplices with real coefficients are called

p-chains of K [1, App. II, §6]. These form a vector space Cp(K ) for which the p-simplices σi constitute a natural basis
(here σi = 1σi, the sum in which aj = δij, the Kronecker delta). The elements of the dual space C∗

p (K ) are p-cochains of K .
Following [1], we use σi to denote also the cochain whose value is δij at the chain σj. Then the p-simplices σi constitute the
dual basis for C∗

p (K ), and also cochains can be written as formal sums of simplices. Negative coefficients indicate change
of orientation so that −σ is the simplex σ with opposite orientation. Chains and cochains for more general cell complexes
are defined similarly.

Since p-forms can be integrated over p-cells, each p-form ω yields a p-cochain whose values on chains are determined
by integration of ω. Namely, the de Rham map C : F p(K ) → C∗

p (K ) is a linear map defined by

Cω(
∑

i

aiσi) =

∫
∑

i aiσi

ω =

∑
i

ai

∫
σi

ω,

here the second equality is the definition of integration on p-chains. Coboundary operator d : C∗
p (K ) → C∗

p+1(K ) is a
inear map defined by d X(c) = X(∂c). We use the same notation d as for the exterior derivative of forms. Stokes’ theorem
hen implies that C d = d C.

. Three equivalent definitions of Whitney forms

Whitney p-forms are a finite-dimensional subspace of differential p-forms in a simplicial complex K . To each p-simplex
corresponds a Whitney p-form Wσ . Since σ also denotes a basis cochain of C∗

p (K ) (and linear maps are uniquely
etermined by their action on basis elements), this correspondence defines a linear map W : C∗

p (K ) → F p(K ). W is
nown as the Whitney map, and Whitney forms are its images. This is made precise in the following definition.

efinition 3.1. The Whitney 0-form corresponding to the 0-simplex xi is the barycentric function Wxi = λi. For p > 0,
he Whitney p-form corresponding to the p-simplex x0 . . . xp is [1, VII, 11.16]

W(x0 . . . xp) = p!
p∑

i=0

(−1)iλi d λ0 ∧ · · · ∧ d̂ λi ∧ · · · ∧ d λp, (3.1)

here ˆ indicates a term omitted from the product.
For each p, the Whitney map W : C∗

p (K ) → F p(K ) is defined by setting

W(
∑
σi∈Sp

aiσi) =

∑
σi∈Sp

aiW(σi).

he image W(C∗
p (K )) = span{Wσ | σ ∈ Sp} ⊂ F p(K ) is the space of Whitney p-forms and denoted by W p.

Note that although the λi are not globally smooth, they are smooth in each simplex, so (3.1) defines a p-form in each
implex of K . The patch condition holds because barycentric functions in σ restrict to barycentric functions on the faces
f σ (and trace commutes with ∧ and d). Hence (3.1) yields a well-defined differential form in K . Note also that the right
and side of (3.1) changes sign when the orientation changes, so W(−σ ) = −Wσ and the Whitney map is well-defined.
Since the definition of Whitney forms is the main issue here, we cover it in more detail than usually and from different

iewpoints. First, we give an alternative but equivalent definition. Set Wσ = 0 in τ if σ is not a face of τ . If it is, say
= x0 . . . xp and τ has vertices {x0, . . . , xp, xp+1 . . . , xq}, set [1, VII, 11.12]

⟨Wσ (x), α⟩ = p!
α ∧ (xp+1 − x) ∧ (xp+2 − xp+1) ∧ · · · ∧ (xq − xp+1)

(x1 − x0) ∧ · · · ∧ (xq − x0)
in τ ; (3.2)

hat is, the value of the p-form Wσ at point x ∈ τ is the p-covector whose value on a p-vector α is defined as the ratio
f the two q-vectors in the plane of τ . This can be written equivalently as

⟨Wσ (x), α⟩ =
p!(q − p)!

q!
α ∧ vect(xxp+1 . . . xq)
vect(x0 . . . xp . . . xq)

,

from which we see that Wσ in τ does not depend on the orientation of τ but changes sign when the orientation of σ
changes. For x ∈ y0 . . . yp ⊂ τ , (3.2) becomes

⟨Wσ (x), vect(y0 . . . yp)⟩ =
vect(y0 . . . ypxp+1 . . . xq)

. (3.3)

vect(x0 . . . xq)
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Fig. 1. Illustration of (3.3) in tetrahedron τ = x0x1x2x3 for the cases σ = x0 , σ = x0x1 , σ = x0x1x2 , and σ = x0x1x2x3 . In each case,
⟨Wσ (x), vect(y0 . . . yp)⟩ is the ratio of the highlighted volume and the volume of the whole tetrahedron. This holds for all x ∈ y0 . . . yp .

To see this, note that vect(y0 . . . yp) ∧ (xp+1 − x) = vect(y0 . . . yp) ∧ (xp+1 − yp − (x − yp)) = vect(y0 . . . yp) ∧ (xp+1 − yp)
since x − yp is in the plane of y0 . . . yp.

Although volumes depend on the metric, their ratios do not, and the above formula is meaningful in affine space.
This definition beautifully illustrates the geometric character of Whitney forms (see Fig. 1), while Definition 3.1 offers an
explicit formula in terms of barycentric functions. Whitney showed that these two definitions are indeed equivalent.

Proposition 3.2. The definition with the geometric formula (3.2) is equivalent to Definition 3.1.

Proof. Let σ = x0 . . . xp ∈ Sp and τ ∈ Sq, and denote by W1σ the Whitney form of σ given by (3.1) and by W2σ that
given by (3.2). To show that W1σ = W2σ in τ , we first note that both W1σ and W2σ zero in τ if σ is not a face of τ .
Moreover, both are affine in τ , are zero at those vertices of τ that are not in σ , and change sign when the orientation of
σ changes. Hence it suffices to consider the case τ = x0 . . . xpxp+1 . . . xq and show that W1σ (x0) = W2σ (x0).

Since the edge vectors xi−x0 span the plane of τ , all p-vectors in τ can be written as linear combinations of their wedge
products. Hence it suffices to show ⟨W1σ (x0), α⟩ = ⟨W2σ (x0), α⟩ for p-vectors α of the form α = (xi1 −x0)∧· · ·∧ (xip −x0)
for i1 < · · · < ip. Since λi(x0) = 0 and ⟨d λi(x0), xj − x0⟩ = δij if i ̸= 0, we have

⟨W1σ (x0), (xi1 − x0) ∧ · · · ∧ (xip − x0)⟩ = 0 if any of the indices ij are not in {1, . . . , p}
⟨W1σ (x0), (x1 − x0) ∧ · · · ∧ (xp − x0)⟩ = p!

By (3.2) the same is true for W2σ (x0); hence W1σ (x0) = W2σ (x0). □

At this point, it is instructive to briefly discuss Whitney’s book [1] and the role of Whitney forms there. The book is
about p-dimensional integration in n-dimensional space. What we call chains (and cochains) of K are called algebraic
chains (and cochains) in [1] where p-chains have a more general meaning as p-dimensional domains of integration.
Whitney starts from polyhedral p-chains – formal sums of polyhedral p-cells with real coefficients and invariance under
subdivision – which form an infinite-dimensional vector space. This space can be equipped with a norm and then
completed with respect to that norm; for example, the flat norm [1, V, §3] yields the space of flat p-chains C ♭

p . Its
(continuous) dual space C ♭∗

p is the space of flat p-cochains and consists of bounded linear functionals C ♭
p → R. Similarly,

the sharp norm [1, V, §6] yields the spaces of sharp p-chains C♯
p and sharp p-cochains C♯∗

p .
We saw that Whitney forms correspond to (algebraic) cochains of a simplicial complex K , but they also correspond to

certain flat cochains in K . This explains why Whitney forms are sometimes called flat forms. A correspondence between
flat forms and flat cochains is made precise in Wolfe’s theorem [1, IX, Theorem 7C]. Without going into details, p-form ω
and p-cochain X correspond if

∫
σ

ω = X(σ ) for all p-cells σ . In his work [1, VII, §11], Whitney defined a linear injection φ
from the algebraic cochains of K to flat cochains in K , which he used to prove that the cohomology ring of flat cochains
is isomorphic to that of algebraic cochains. The images of φ he called elementary flat cochains in K , and these are in
correspondence with Whitney forms.

Whitney’s theory of p-chains as p-dimensional domains of integration had some shortcomings. For instance, sharp
chains do not have a continuous boundary operator, while the Hodge star of a flat form is not flat. The theory has since
been extended by Jenny Harrison [33]. We need not go deeper into this. However, now that we have mentioned chains,
we can briefly discuss another way to look at the definition of Whitney forms, as emphasised by Alain Bossavit [14,29,34]:
approximating p-chains with algebraic p-chains.

To explain this, we extend the notation ⟨ω, c⟩ :=
∫
c ω for differential forms ω and chains c . This expression is bilinear

and can be interpreted either as the evaluation of ω on c or (by duality) as the evaluation of c on ω. Similarly, denote
⟨X, c⟩ = X(c) for cochains X and chains c. Whitney forms have the property ⟨Wσj, σi⟩ = δij and hence enable one to
approximate a p-form ω in W p with ω̃ =

∑
σi∈Sp

⟨ω, σi⟩Wσi. The approximation ω̃ has the property that ⟨ω̃, c⟩ = ⟨ω, c⟩
— not for all p-chains c , but for algebraic chains, namely those in Cp(K ). This has a dual viewpoint: one can approximate
a p-chain c in Cp(K ) with c̃ =

∑
σi∈Sp

⟨Wσi, c⟩σi, and the approximation c̃ has the property that ⟨ω, c⟩ = ⟨ω, c̃⟩ — not for
all p-forms ω, but for those in W p. Letting W t denote the map c ↦→ c̃ , we have ⟨WX, c⟩ = ⟨X,W tc⟩ for all p-chains c and
all X ∈ C∗(K ).
p
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On the other hand, if we have such a map W t to approximate p-chains in Cp(K ), this defines a map W from C∗
p (K ) to

p(K ) by requiring that ⟨WX, c⟩ = ⟨X,W tc⟩ hold for all p-chains c and all X ∈ C∗
p (K ). This approach to the definition of

hitney forms is used e.g. in [14,29,31,34,35]. When suitable conditions are imposed for the map W t , this approach leads
o the following, yet another equivalent definition of Whitney forms, which first appeared in [34]. Setting Wxi = λi for
= 0, the Whitney form corresponding to p-simplex σ for p > 0 is obtained recursively by

Wσ =

∑
τ∈Sp−1

dσ
τ λσ−τ dWτ , (3.4)

here dσ
τ is the incidence number relating τ and σ (which is 0 if τ is not a face of σ and ±1 if it is, the sign depending

n whether the orientations agree or not) and σ − τ denotes the vertex opposite to the (p − 1)-face τ of σ .
It is easy to show that this definition is equivalent to Definition 3.1, after we first note that the exterior derivative of

he Whitney p-form W(x0 . . . xp) for any p-simplex x0 . . . xp ∈ Sp is

dW(x0 . . . xp) = p!
p∑

i=0

(−1)i d λi ∧ d λ0 ∧ · · · ∧ d̂ λi ∧ · · · ∧ d λp = (p + 1)! d λ0 ∧ · · · ∧ d λp. (3.5)

roposition 3.3. The definition with the recursive formula (3.4) is equivalent to Definition 3.1.

roof. First note that writing σ = x0 . . . xp we get∑
τ∈Sp−1

dσ
τ λσ−τ dWτ =

p∑
i=0

(−1)iλi dW(x0 . . . x̂i . . . xp).

or σ = x0x1 this becomes λ0 dWx1 −λ1 dWx0 = λ0 d λ1 −λ1 d λ0, which is the same as Wx0x1 of Definition 3.1, proving
he claim for 1-simplices. Suppose as induction hypothesis that it holds for (p − 1)-simplices, and let σ = x0 . . . xp be a
-simplex. By (3.5) we get∑

τ∈Sp−1

dσ
τ λσ−τ dWτ =

p∑
i=0

(−1)iλi dW(x0 . . . x̂i . . . xp)

=

p∑
i=0

(−1)iλip! d λ0 ∧ · · · ∧ d̂ λi ∧ . . . d λp = W(x0 . . . xp). □

.1. Proxy fields

The definition of Whitney forms does not require the notion of metric; only the affine structure of the ambient space is
nvoked. However, metric structure allows one to identify certain differential forms with scalar or vector fields, so-called
roxy fields. Indeed, Whitney forms are often presented in terms of these proxy fields. To clarify such seemingly different
efinitions, let us look at the 3-dimensional case with Euclidean metric and standard orientation (so that right-hand rule
s used for cross product).

0-forms are scalar functions, so there is no distinction between a 0-form and its proxy field. In each simplex of K , flat
ap ♭ from vector fields to 1-forms is defined by ⟨♭u(x), v⟩ = u(x) · v; that is, the value of ♭u at point x is the covector
hose value on vector v is the dot product u(x) ·v. This is an isomorphism with inverse ♯, and the proxy field of a 1-form
is the vector field ♯ω. Similarly, if u is a vector field, the rule v1 ∧ v2 ↦→ u(x) · v1 × v2 defines a 2-form, and this yields
correspondence between vector fields and 2-forms. The proxy field of a 2-form ω can be written as ♯ ⋆ ω, where ⋆ is

he Hodge star. Finally, a scalar field f defines a 3-form by the rule v1 ∧ v2 ∧ v3 ↦→ f (x)det(v1, v2, v3), and any 3-form is
btained this way from a scalar field f , its proxy field. When considered globally in K , the proxy fields of 1- and 2-forms
n K have a well-defined tangential and normal component on inter-element boundaries (respectively).

In this case the proxy fields are perhaps more easily explained in terms of standard coordinates. The proxy field of the
-form ω1 d x1 + ω2 d x2 + ω3 d x3 is the vector field (ω1, ω2, ω3), the proxy field of the 2-form ω12 d x1 ∧ d x2 + ω13 d x1 ∧

x2 + ω23 d x2 ∧ d x3 is the vector field (ω23, −ω13, ω12), and the proxy field of the 3-form ω123 d x1 ∧ d x2 ∧ d x3 is the
calar field ω123. (This holds more generally when Ω is an oriented Riemannian manifold and {x1, x2, x3} is any positively
riented orthonormal frame.) When ω is a differential form, denote by ω♯ its proxy field.

heorem 3.4. In a tetrahedron x0x1x2x3, the proxy fields of Whitney forms are

(Wx0x1)♯ = λ0∇λ1 − λ1∇λ0

♯
(Wx0x1x2) = 2(λ0∇λ1 × ∇λ2 − λ1∇λ0 × ∇λ2 + λ2∇λ0 × ∇λ1)

5
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(Wx0x1x2x3)♯ = 6
(

λ0(∇λ1 × ∇λ2) · ∇λ3 − λ1(∇λ0 × ∇λ2) · ∇λ3

+ λ2(∇λ0 × ∇λ1) · ∇λ3 − λ3(∇λ0 × ∇λ1) · ∇λ2

)
nd their values at x ∈ x0x1x2x3 can be written as

(Wx0x1)♯(x) = a × x + b

(Wx0x1x2)♯(x) = cx + d

(Wx0x1x2x3)♯(x) = ±
1

|x0x1x2x3|
,

where the vectors a = ±
x3−x2

6|x0x1x2x3|
, b = ∓

x3−x2
6|x0x1x2x3|

× x2, and d = ±
1

3|x0x1x2x3|
x3 and the scalar c = ∓

1
3|x0x1x2x3|

are constants
nd the signs depend on whether {x1 − x0, x2 − x0, x3 − x0} is a right-handed frame or not.

roof. Since the gradient ∇f of a function f is (d f )♯ and for 1-forms ω, η, and ξ we have

(ω ∧ η)♯ = ω♯
× η♯, (ω ∧ η ∧ ξ )♯ = (ω♯

× η♯) · ξ ♯,

the first part follows from Definition 3.1. Since the gradients of barycentric functions are constants, we omit the variable
x from them and write

(Wx0x1)♯(x) = λ0(x)∇λ1 − λ1(x)∇λ0 = ∇λ0 · (x − x2)∇λ1 − ∇λ1 · (x − x2)∇λ0

= (∇λ0 · x)∇λ1 − (∇λ1 · x)∇λ0 − (∇λ0 · x2)∇λ1 + (∇λ1 · x2)∇λ0

= (∇λ0 × ∇λ1) × x − (∇λ0 × ∇λ1) × x2.

ere we used the identity

(a × b) × c = (a · c)b − (b · c)a. (3.6)

ote that in place of x2 in the vector b we could use any point of x2x3.
For any permutation i1i2i3i4 of 1234, the vector (xi2 − xi3 )× (xi4 − xi3 ) is orthogonal to xi2xi3xi4 and has length equal to

|xi2xi3xi4 |. On the other hand, ∇λi1 is orthogonal to xi2xi3xi4 and has length equal to the reciprocal of the height of the
tetrahedron with respect to the face xi2xi3xi4 . Hence we have

∇λi1 = ±
(xi2 − xi3 ) × (xi4 − xi3 )

6|x0x1x2x3|
.

The sign is + if {xi2 − xi3 , xi4 − xi3 , xi1 − xi3} is a right-handed frame and − otherwise. Using (3.6) again we get

∇λi1 × ∇λi2 = ±
(xi2 − xi3 ) × (xi4 − xi3 )

6|x0x1x2x3|
× ∇λi2 = ±

xi4 − xi3
6|x0x1x2x3|

,

(∇λi1 × ∇λi2 ) · ∇λi3 = ±
xi4 − xi3

6|x0x1x2x3|
· ∇λi3 =

∓1
6|x0x1x2x3|

,

the signs depending as above. Using the handedness of {x1−x0, x2−x0, x3−x0} to determine the signs for each permutation,
these formulas yield

(Wx0x1)♯(x) = (∇λ0 × ∇λ1) × x − (∇λ0 × ∇λ1) × x2 = a × x + b,

(Wx0x1x2)♯(x) = 2(λ0(x)∇λ1 × ∇λ2 − λ1(x)∇λ0 × ∇λ2 + λ2(x)∇λ0 × ∇λ1)

= 2
(

λ0(x)
(

±
x3 − x0

6|x0x1x2x3|

)
− λ1(x)

(
±

x1 − x3
6|x0x1x2x3|

)
+ λ2(x)

(
±

x3 − x2
6|x0x1x2x3|

))
= ±

1
3|x0x1x2x3|

((
λ0(x) + λ1(x) + λ2(x)

)
x3 − λ0(x)x0 − λ1(x)x1 − λ2(x)x2

)
= ±

1
3|x0x1x2x3|

((
1 − λ3(x)

)
x3 − λ0(x)x0 − λ1(x)x1 − λ2(x)x2

)
= ±

x3 − x
3|x0x1x2x3|

= cx + d,

(Wx0x1x2x3)♯(x) = 6
(

λ0(x)(∇λ1 × ∇λ2) · ∇λ3 − λ1(x)(∇λ0 × ∇λ2) · ∇λ3

+ λ2(x)(∇λ0 × ∇λ1) · ∇λ3 − λ3(x)(∇λ0 × ∇λ1) · ∇λ2

)
= 6

(
λ0(x)

±1
6|x0x1x2x3|

− λ1(x)
∓1

6|x0x1x2x3|
+ λ2(x)

±1
6|x0x1x2x3|

− λ3(x)
∓1

6|x0x1x2x3|

)
= ±

1
|x0x1x2x3|

. □
6



J. Lohi and L. Kettunen Journal of Computational and Applied Mathematics 393 (2021) 113520

e
f
d

4

l
n
w

P

e
T
⟨

{

o
p
s
o

P

D
ω

a

P

d
t

The proxy fields of Whitney forms first appeared in [10] and are sometimes called Whitney elements or Nedelec
lements; 1-forms correspond to ‘‘edge elements’’. Be aware that in some places the proxy fields are called just Whitney
orms and are given as the definition of Whitney forms. We make the distinction that Whitney forms are always
ifferential forms and Whitney elements mean their proxy fields.

. Properties of Whitney forms

In this section we discuss the main properties of Whitney forms. Although these are mostly well-known, the kind of
ist that we have compiled is not easily found in the literature. In particular, we include proofs for all properties that are
ot evident from the discussion of Section 3. We also try to put emphasis on why these properties are relevant, to explain
hy one would like to preserve them for generalisations of Whitney forms.

roperty 1: Whitney forms are differential forms in a complex

‘‘Whitney forms are differential forms in a complex’’ concisely summarises their conformity properties on inter-
lement boundaries. Whitney p-form is an element of the space F p(K ), so it is a set of p-forms ωσ in the cells σ of K .
hanks to the patch condition in the definition of F p(K ), we can consider this set of p-forms as a single p-form ω such that
ω(x), α⟩ is well-defined for p-vectors α in the plane of the cell τ for which x ∈ τ − ∂τ . This reflects how finite element
spaces for differential forms are built in FEEC theory [19,36] by first constructing them in each cell and then assembling
the local constructions together.

This property ensures that Whitney forms can be used as conforming finite elements and p-forms can be integrated
over p-cells in K . Perhaps most importantly, it prescribes what type of objects Whitney forms are in the first place. Hence
we propose that all generalisations of Whitney forms should at the very least be differential forms in a complex to be
called Whitney forms.

Property 2: W p is isomorphic to C∗
p (K )

That Whitney forms correspond to the cells of K can already be seen from Definition 3.1: to the cochain σ corresponds
the Whitney form Wσ , and Whitney p-forms are the images of the map W : C∗

p (K ) → F p(K ). The following proposition
makes the correspondence more precise.

Proposition 4.1. The map W : C∗
p (K ) → F p(K ) is an isomorphism onto its image W p. Moreover, CWX = X for all X ∈ C∗

p (K ).

Proof. For the first claim it suffices to show that W is injective, which follows from the second claim. To prove CWX = X
for all X ∈ C∗

p (K ) it suffices to show that
∫

σi
Wσj = δij, whence the claim follows by linearity.

That
∫

σi
Wσj = δij is perhaps most easily seen using (3.2) or (3.3) and Proposition 3.2. □

Because of this property, integrals on p-cells of K serve as unisolvent degrees of freedom for Whitney p-forms. This
means that values of the integrals are in one-to-one correspondence with elements of W p. Moreover, this correspondence
is the simplest possible since

∫
σi
Wσj = δij. Note that

∑
σi∈Sp

aiWσi = 0 implies aj =
∫

σj

∑
σi∈Sp

aiWσi = 0 ∀j, so the set
Wσi | σi ∈ Sp} is linearly independent. Since it also spans W p, it constitutes a basis for W p.

There are two consequences. Firstly, we can interpolate the cochain X ∈ C∗
p (K ) with the p-form WX , and the integrals

f this interpolant match with the values of the cochain on p-simplices: CWX = X . Secondly, we can approximate the
-form ω ∈ F p(K ) with the Whitney form WCω, and the integrals of this approximation match with those of ω on p-
implices: CWCω = Cω. Indeed, Whitney p-forms are commonly considered as a tool for either interpolating p-cochains
r approximating differential p-forms.

roperty 3: Whitney forms are first order polynomials in each cell

In each cell, barycentric functions are affine and hence their exterior derivatives are constant, so we see from
efinition 3.1 that Whitney forms are affine. Hence they are at most first order polynomials in each cell. (That is, if
∈ W p, the function x ↦→ ⟨ω(x), α⟩ is a first order polynomial for each p-vector α.) This of course implies that they are

lso smooth in each cell.

roperty 4: Whitney forms are affine invariant

In addition to being affine in each cell, Whitney forms are affine objects in the following two senses. First, their
efinition is meaningful in affine space without any choice of metric. Furthermore, they are invariant under affine
ransformations.
7
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Proposition 4.2. Let σ = x0 . . . xn and τ = y0 . . . yn be two n-simplices and ϕ : σ → τ affine map such that ϕ(xi) = yi.
Then

W(x0 . . . xp) = ϕ∗(W(y0 . . . yp)) in σ .

Proof. Let λi denote the barycentric coordinates in σ and µi those in τ . Since µi ◦ ϕ is affine in σ and (µi ◦ ϕ)(xj) = δij,
t follows that ϕ∗(µi) = µi ◦ ϕ = λi. Hence by the naturality of pullback with respect to wedge product and exterior
erivative we have

ϕ∗(W(y0 . . . yp)) = ϕ∗(p!
p∑

i=0

(−1)iµi dµ0 ∧ · · · ∧ d̂µi ∧ · · · ∧ dµp)

= p!
p∑

i=0

(−1)iµi dϕ∗(µ0) ∧ · · · ∧ ˆdϕ∗(µi) ∧ · · · ∧ dϕ∗(µp) = W(x0 . . . xp). □

This property is useful because computations done in a reference simplex transfer to all simplices by affine transfor-
ations and hence need be done only once. For example, using (3.3),∫

ϕ(z0z1)
Wy0y1 =

∫
z0z1

ϕ∗(Wy0y1) =

∫
z0z1

Wx0x1 =
vect(z0z1x2 . . . xn)
vect(x0 . . . xn)

for z0z1 ⊂ σ .

This equality is also seen from (3.3), since volume ratios are preserved by affine transformations.

Property 5: locality

Whitney form Wσ is nonzero only on those simplices that include σ as a face. Locality is needed to make system
matrices sparse in numerical methods that utilise Whitney forms.

Property 6: Whitney forms constitute a partition of unity

Barycentric functions sum up to one, forming a partition of unity. The following theorem generalises this property for
other Whitney forms.

Theorem 4.3. In any q-simplex τ ∈ Sq, for all points x and all p-vectors α in τ ,∑
σi∈Sp

⟨Wσi(x), α⟩ vect(σi) = α.

Proof. Suppose τ = x0 . . . xq ∈ Sq and x ∈ τ . Since the edge vectors xi − x0 span the plane of τ , all p-vectors in τ can be
written as linear combinations of their wedge products. Hence it suffices to consider the case α = (x1−x0)∧· · ·∧(xp−x0),
whereafter the claim follows by linearity.

At all points of τ

⟨d λi, xk − xj⟩ =

{ 0 if i /∈ {j, k}
1 if i = k

−1 if i = j

and hence for i1 < · · · < ip we have

⟨d λi1 ∧ · · · ∧ d λip , (x1 − x0) ∧ · · · ∧ (xp − x0)⟩ =

{
0 if {i1, . . . , ip} ̸⊂ {0, . . . , p}

(−1)k if {i1, . . . , ip} ⊂ {0, . . . , k̂, . . . , p}

Using this we see that

⟨W(xi0 . . . xip )(x), α⟩ = 0 if at least two of the indices ij are not in {0, . . . , p}

⟨W(x0 . . . xk−1xikxk+1 . . . xp)(x), α⟩ = p!(−1)kλik (x)(−1)k = p!λik (x) for ik /∈ {0, . . . , p}

⟨W(x0 . . . xp)(x), α⟩ = p!
p∑

(−1)jλj(x)(−1)j = p!
p∑

λj(x)

j=0 j=0

8
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Recalling that Wσi = 0 in τ if σi is not a face of τ , we can therefore write∑
σi∈Sp

⟨Wσi(x), α⟩ vect(σi)

= p!
p∑

j=0

λj(x) vect(x0 . . . xp) +

q∑
j=p+1

p!λj(x)
( p∑

k=0

vect(x0 . . . xk−1xjxk+1 . . . xp)
)

After rewriting the first term of the inner sum as

vect(xjx1 . . . xp) =
1
p!

(x1 − xj) ∧ · · · ∧ (xp − xj)

=
1
p!

(
x1 − x0 − (xj − x0)

)
∧ · · · ∧

(
xp − x0 − (xj − x0)

)
=

1
p!

(x1 − x0) ∧ · · · ∧ (xp − x0)

−
1
p!

p∑
l=1

(x1 − x0) ∧ · · · ∧ (xl−1 − x0) ∧ (xj − x0) ∧ (xl+1 − x0) ∧ · · · ∧ (xp − x0)

= vect(x0 . . . xp) −

p∑
l=1

vect(x0 . . . xl−1xjxl+1 . . . xp)

the other terms cancel, and we find out that∑
σi∈Sp

⟨Wσi(x), α⟩ vect(σi) = p!
p∑

j=0

λj(x) vect(x0 . . . xp) +

q∑
j=p+1

p!λj(x) vect(x0 . . . xp)

= p! vect(x0 . . . xp) = (x1 − x0) ∧ · · · ∧ (xp − x0) = α. □

As we show next, this partition of unity property actually amounts to saying that W p contains all constant forms.

Proposition 4.4. Let W̃ : C∗
p (K ) → F p(K ) be any linear map such that CW̃X = X for all X ∈ C∗

p (K ), and denote by W̃ p its
image in F p(K ). Then

i. a p-form ω ∈ F p(K ) is in W̃ p if and only if W̃Cω = ω.
ii. The partition of unity property of Theorem 4.3 holds for W̃ if and only if W̃ p contains all constant p-forms.

Proof. i: If W̃Cω = ω, then ω is in the image of W̃ , while if ω ∈ W̃ p, then ω = W̃X for some X ∈ C∗
p (K ), so

W̃Cω = W̃CW̃X = W̃X = ω.
ii: Suppose first that the partition of unity property holds, and let ω be a constant p-covector. For all points x and all

p-vectors α

⟨W̃Cω(x), α⟩ =

⟨∑
σi∈Sp

(∫
σi

ω

)
W̃σi(x), α

⟩
=

∑
σi∈Sp

(∫
σi

ω

)
⟨W̃σi(x), α⟩

=

∑
σi∈Sp

⟨ω, vect(σi)⟩⟨W̃σi(x), α⟩ =

⟨
ω,

∑
σi∈Sp

⟨W̃σi(x), α⟩ vect(σi)
⟩

= ⟨ω, α⟩.

Since this holds for all p-vectors α, the p-covectors W̃Cω(x) and ω are the same, and since this holds for all x, we have˜Cω = ω. Hence ω ∈ W̃ .
Suppose then that W̃ p contains all constant p-forms, and take any point x and any p-vector α. Since constants are in˜ p, we have W̃Cω = ω for all p-covectors ω, and hence

⟨ω, α⟩ = ⟨W̃Cω(x), α⟩ =

⟨∑
σi∈Sp

(∫
σi

ω

)
W̃σi(x), α

⟩
=

∑
σi∈Sp

(∫
σi

ω

)
⟨W̃σi(x), α⟩

=

∑
σi∈Sp

⟨ω, vect(σi)⟩⟨W̃σi(x), α⟩ =

⟨
ω,

∑
σi∈Sp

⟨W̃σi(x), α⟩ vect(σi)
⟩
.

ince this holds for all p-covectors ω, we have α =
∑

σi∈Sp
⟨W̃σi(x), α⟩ vect(σi), so the partition of unity property holds. □

orollary 4.5. W p contains all constant p-forms.

This property ensures that approximating constants with Whitney forms yields exact approximations. It is useful in
rror analysis [29] and may be needed in convergence proofs [34].
9
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Property 7: exactness

The exactness property or exact sequence property makes precise the good behaviour of Whitney forms with respect
o the exterior derivative. We first state a closely related result. Recall that Stokes’ theorem implies C dω = d Cω for all
ω ∈ F p(K ). Similar property holds for the map W .

Proposition 4.6. W d X = dWX for all p-cochains X ∈ C∗
p (K ).

roof. By linearity it is sufficient to consider the case X = σ = x0 . . . xp. Let xi1 , . . . , xim be the vertices opposite to σ

in those (p + 1)-simplices that have σ as a face. Then the coboundary d σ can be written as d σ =
∑m

j=1 xijx0 . . . xp. By
locality property W d σ = 0 = dWσ in those simplices that do not have σ as a face, and in σ itself all (p + 1)-forms are
zero. Hence it suffices to show W d σ = dWσ in any q-simplex τ ∈ Sq of the form τ = x0 . . . xpxp+1 . . . xq for q > p.

In τ we have

W d σ = W
( q∑

i=p+1

xix0 . . . xp

)

=

q∑
i=p+1

(p + 1)!
(

λi d λ0 ∧ · · · ∧ d λp −

p∑
j=0

(−1)jλj d λi ∧ d λ0 ∧ · · · ∧ d̂ λj ∧ · · · ∧ d λp

)

= (p + 1)!
( q∑

i=p+1

λi d λ0 ∧ · · · ∧ d λp −

p∑
j=0

(−1)jλj d
( q∑

i=p+1

λi

)
∧ d λ0 ∧ · · · ∧ d̂ λj ∧ · · · ∧ d λp

)

= (p + 1)!
( q∑

i=p+1

λi d λ0 ∧ · · · ∧ d λp +

p∑
j=0

(−1)jλj d
( p∑

i=0

λi

)
∧ d λ0 ∧ · · · ∧ d̂ λj ∧ · · · ∧ d λp

)

= (p + 1)!
( q∑

i=p+1

λi d λ0 ∧ · · · ∧ d λp +

p∑
j=0

λj d λ0 ∧ · · · ∧ d λp

)
= (p + 1)! d λ0 ∧ · · · ∧ d λp

By (3.5), this is the same as dWσ . □

The exactness property follows from Proposition 4.6. The statement can be formulated as follows.

Proposition 4.7. dW p
⊂ W p+1, so we may consider the sequence

0 → R
⊂
−→ W 0 d

−→ W 1 d
−→ . . .

d
−→ W n d

−→ 0.

In addition, if Ω has trivial homology, then this sequence is exact, so ker dp = im dp−1 for p > 1.

Proof. Any Whitney p-form is the image WX of some X ∈ C∗
p (K ), and dWX = W d X then says that dWX is the image

of d X and hence a Whitney (p + 1)-form. Thus dW p
⊂ W p+1.

Trivial homology implies that also the cohomology groups are trivial, so every p-cochain X ∈ C∗
p (K ) for p > 0 such

that d X = 0 is a coboundary of some (p − 1)-cochain Y . Suppose WX is a Whitney p-form such that dWX = 0. Then
W d X = dWX = 0, and d X = 0 by injectivity of W . Hence X = d Y for some Y ∈ C∗

p−1(K ), and WX ∈ im dp−1 since
dWY = W d Y = WX . Thus ker dp ⊂ im dp−1, and by d2

= 0 we get ker dp = im dp−1. □

This property is a standard requirement for finite element spaces in FEEC theory [19,36], and it may be decisive
for the convergence of numerical methods. For example, in the case of computational electromagnetism it is useful in
eliminating finite-dimensional solutions that do not correspond with solutions of Maxwell’s equations in cavity resonators,
as emphasised by Alain Bossavit [7,29,34].

Property 8: convergence

As discussed before, we can approximate a p-form ω with WCω, and the integrals of this approximation match with
those of ω on all p-simplices of K . We also saw by Proposition 4.4 that this approximation is exact if and only if ω is in
W p. We have yet to show the desired property that WCω converges to ω when the mesh is refined.

This is indeed true, as long as the simplices are not allowed to flatten limitlessly during the refinement process. To
make this precise, we employ the metric of Rn to define the fullness Θ(σ ) of the p-simplex σ as the ratio

Θ(σ ) =
|σ |

.

diam(σ )p

10
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The simplices do not flatten limitlessly if there is a uniform lower bound for their fullness. Properties of fullness are
discussed in [1]. We need only the following lemma.

Lemma 4.8. Let σ = x0 . . . xp be a p-simplex, and denote by hi the distance from vertex xi to the plane of the opposite
p − 1)-face of σ . Let x =

∑n
i=0 λixi be any point in σ . Then

hi ≥ p!Θ(σ ) diam(σ ), dist(x, ∂σ ) ≥ p!Θ(σ ) diam(σ ) min
i∈{0,...,p}

λi.

Proof. Let τi be the (p − 1)-face opposite to vertex xi. Since |τi| ≤
1

(p−1)! diam(τi)p−1 and |σ | =
1
p |τi|hi,

hi =
p|σ |

|τi|
≥

p|σ |

1
(p−1)! diam(τi)p−1

≥ p!Θ(σ ) diam(σ ).

he distance from x to the plane of τi is λihi, so also the second claim follows. □

Now we are ready to prove the convergence property. A similar result has been proved by Jozef Dodziuk [2,
Theorem 3.7], but our statement is slightly different and does not restrict to standard subdivisions. We are also in a
position to give a much simpler proof using previous results. Below we use the Euclidean metric, as in the definition of
fullness, but the choice of metric will only affect the result by up to a constant.

Theorem 4.9. Let ω be a smooth p-form in Ω . There exists a constant Cω such that

|WCω(x) − ω(x)| ≤
Cω

Cp
Θ

h for all x ∈ τ in all τ ∈ Sn

whenever h > 0, CΘ > 0, and K is a simplicial complex in Ω such that diam(σ ) ≤ h and Θ(σ ) ≥ CΘ for all simplices σ of K .

roof. It suffices to prove this for ω = ωI d xi1 ∧ · · · ∧ d xip where 1 ≤ i1 < · · · < ip ≤ n. Since ω is smooth in the
olyhedron Ω , ωI admits a smooth extension to a neighbourhood of Ω . The partial derivatives of ωI are hence bounded
n Ω , and we can find a constant CI such that |ωI (x) − ωI (y)| ≤ CI |x − y| whenever yx ⊂ Ω .

Fix τ ∈ Sn and y ∈ τ . We can write

ω(x) = ωI (x) d xi1 ∧ · · · ∧ d xip = (ωI (y) + g(x)) d xi1 ∧ · · · ∧ d xip , where

g(x) = ωI (x) − ωI (y), |g(x)| ≤ CI |x − y| ≤ CIh if x ∈ τ .

sing Proposition 4.4 and Corollary 4.5,

WCω(x) = ωI (y) d xi1 ∧ · · · ∧ d xip + WC(g d xi1 ∧ · · · ∧ d xip )(x),

WCω(x) − ω(x) = WC(g d xi1 ∧ · · · ∧ d xip )(x) − g(x) d xi1 ∧ · · · ∧ d xip .

When σ is a p-face of τ , we have |
∫

σ
g d xi1 ∧ · · · ∧ d xip | ≤ |σ |CIh, and hence in τ

|WC(g d xi1 ∧ · · · ∧ d xip )(x)| =

⏐⏐⏐⏐∑
σ⊂τ

(∫
σ

g d xi1 ∧ · · · ∧ d xip
)
Wσ (x)

⏐⏐⏐⏐ ≤

∑
σ⊂τ

|σ |CIh|Wσ (x)|,

where the sum is over the p-faces σ of τ .
Now the affine invariance property proves useful since we can work in the standard n-simplex ∆n

= y0y1 . . . yn,
here y0 = (0, . . . , 0) and yi = (0, . . . , 0, 1, 0, . . . , 0) has 1 in the ith slot for 1 ≤ i ≤ n. Consider one of the p-faces σ

nd label the vertices of τ = x0x1 . . . xn such that σ = x0 . . . xp. Let ϕ be the affine map from τ to ∆n such that ϕ(xi) = yi.
roposition 4.2 and the pullback inequality |f ∗ω(x)| ≤ |Df (x)|p · |ω(f (x))| of p-forms [1, II, 4.12] give

|Wσ (x)| = |W(x0 . . . xp)(x)| = |ϕ∗(W(y0 . . . yp))(x)| ≤ |Dϕ(x)|p|W(y0 . . . yp)(ϕ(x))|.

Next we find a bound for |Dϕ(x)|. Denote by z =
∑n

i=0
1

n+1xi the barycentre of τ , and take v such that |v| = 1 and
|Dϕ(z)v| = max|w|=1 |Dϕ(z)w|. Let t = dist(z, ∂τ ); by Lemma 4.8 we have t ≥

n!
n+1Θ(τ ) diam(τ ). Now z and z + tv are

oth in τ , so ϕ(z) and ϕ(z + tv) are in ∆n, which has diameter
√
2. Since ϕ is affine,

|Dϕ(x)| = |Dϕ(z)| = |Dϕ(z)v| =
|ϕ(z + tv) − ϕ(z)|

t
≤

√
2

n! Θ(τ ) diam(τ )
.

n+1

11
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To compute W(y0 . . . yp) we note that the barycentric coordinates in ∆n are λi = xi for 1 ≤ i ≤ n and λ0 = 1−
∑n

i=1 x
i.

ence

W(y0 . . . yp)

= p!
(
(1 −

n∑
i=1

xi) d x1 ∧ · · · ∧ d xp +

p∑
j=1

(−1)jxj d(1 −

n∑
i=1

xi) ∧ d x1 ∧ · · · ∧ d̂ xj ∧ · · · ∧ d xp
)

= p!
(
(1 −

n∑
i=p+1

xi) d x1 ∧ · · · ∧ d xp +

p∑
j=1

n∑
i=p+1

(−1)p+jxj d x1 ∧ · · · ∧ d̂ xj ∧ · · · ∧ d xp ∧ d xi
)

and

|W(y0 . . . yp)| = p!

√(
1 −

n∑
i=p+1

xi
)2

+ (n − p)
p∑

i=1

(xi)2 ≤ p!
√
1 + n − p in ∆n.

Using these estimates and the facts that diam(τ ) ≥ diam(σ ) and |σ | ≤
1
p! diam(σ )p, we get∑

σ⊂τ

|σ |CIh|Wσ (x)| ≤

∑
σ⊂τ

|σ |CIh
( √

2
n!

n+1Θ(τ ) diam(τ )

)p

p!
√
1 + n − p

≤

∑
σ⊂τ

CIh
( √

2
n!

n+1Θ(τ )

)p√
1 + n − p =

CI
(n+1
p+1

)(√
2(n+1)
n!

)p√1 + n − p

Θ(τ )p
h.

This holds for all τ ∈ Sn, so we may choose Cω = CI
(n+1
p+1

)(√
2(n+1)
n!

)p√1 + n − p + CI , and then

|WCω(x) − ω(x)| ≤ |WC(g d xi1 ∧ · · · ∧ d xip )(x)| + |g(x) d xi1 ∧ · · · ∧ d xip |

≤

∑
σ⊂τ

|σ |CIh|Wσ (x)| + CIh ≤
Cω

Cp
Θ

h for all x ∈ τ in all τ ∈ Sn,

which concludes the proof of the theorem. □

5. Generalisations of Whitney forms

To further clarify the concept of Whitney forms, we consider what other possibilities go by this name in the literature.
In contrast to the three equivalent definitions given in Section 3, the Whitney forms considered in this section are
generalisations of Whitney forms. By this we mean that they are not equivalent to the standard Whitney forms but are
sufficiently related so that calling them by the same name is justified. As we shall see, they also preserve certain properties
of standard Whitney forms.

5.1. Whitney forms on a manifold

In the initial context of Whitney forms, the simplicial complex K is embedded in affine space. In this subsection we
consider the generalisation to the case where K is a smooth simplicial complex on a compact smooth manifold Ω . Now
p-simplices are maps σ : ∆p

→ Ω from the standard p-simplex ∆p to Ω . The faces of σ are its restrictions σ |τ to the
aces τ of ∆p. Since the q-faces of ∆p can be identified with ∆q, each q-face of σ yields a map from ∆q to Ω . Hence the
q-faces of σ are q-simplices.

In this subsection we assume K is a finite set of simplices σ such that

• The restriction of each σ : ∆p
→ Ω to ∆p

− ∂∆p is a diffeomorphism onto its image, and each point x ∈ Ω is
contained in the image of exactly one such restriction

• Each face of every simplex in K is also in K
• The intersection of the images of two simplices in K is either the image of a common face of theirs or the empty set
• Each p-simplex has p + 1 distinct vertices (0-faces), and no other p-simplex has this same set of vertices

hains and cochains of K can be defined similarly as before. Now σ = x0 . . . xp means that the p-simplex σ maps the
vertices of ∆p to x0, . . . , xp. Differential p-form in K is a set of smooth p-forms ωσ in the images of the simplices σ of
K satisfying the following patch condition: if τ is a q-face of σ , then the trace ωσ |τ (∆q) equals ωτ in τ (∆q). The exterior
derivative and the de Rham map are well-defined.

Barycentric functions in Ω can be defined as follows. Let x ∈ Ω and let σ = x0 . . . xp be the p-simplex (p depending on
x) such that x is in the image of the restriction of σ to ∆p

− ∂∆p. Then the λi(x) for 0 ≤ i ≤ p are the barycentric
coordinates of σ−1(x) with respect to the corresponding vertices of ∆p. For other vertices λ (x) = 0. The Whitney
i

12
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p-form Wσ corresponding to a p-simplex σ of K can now be defined with the same formula (3.1). Define the map
: C∗

p (K ) → F p(K ) by extending linearly and the space of Whitney p-forms W p as its image. By the same arguments as
efore, Wσ is in F p(K ), so property 1 is fulfilled.
The definition given above amounts to taking pullback as follows. If σ ∈ Sp is a face of τ ∈ Sq and σ ′ is the p-face of

q such that σ = τ |σ ′ , then Wσ is the pullback τ−1∗(Wσ ′) in τ (∆q), where Wσ ′ is the Whitney p-form corresponding to
′ in ∆q. Hence∫

σi(∆p)
Wσj =

∫
τ (σ ′

i )
τ−1∗(Wσ ′

j ) =

∫
σ ′
i

Wσ ′

j = δij

f σi and σj are p-faces of τ , so our earlier discussion about property 2 applies here as well. If σ is not a face of τ , then
σ = 0 in τ (∆q), so property 5 holds too.
The same proof as before shows that property 7 holds. A convergence property similar to property 8 has been proved

n [2] using standard subdivisions. For this Ω is assumed to be a Riemannian manifold so that the Riemannian metric
nduces a norm for p-covectors at each point of Ω .

However, not all of the properties are preserved. On a manifold we do not have the affine structure of affine space.
e can no longer identify the tangent spaces of different points, so there are no such things as p-vector of σ or constant
-forms (for p > 0). Thus properties 3 and 6 do not make sense as such, and the partition of unity property only holds
or 0-forms. Property 4 is also lost, although Proposition 4.2 works if σ is a diffeomorphism that preserves barycentric
unctions.

Although most of the properties of Whitney forms hold also when the complex K is on a manifold Ω , the affine
haracter of Whitney forms – a central property in their initial context – is not visible on a manifold since there is no
ffine structure. This is the reason why we consider Whitney forms on a manifold to be generalisations of Whitney forms.

.2. Higher order Whitney forms

Higher order finite elements are appreciated for better accuracy and convergence properties. There are also higher
rder Whitney forms, or at least this term has appeared in the literature several times [30–32,34,36,37]. In this subsection,
e explain what these are and which properties of Whitney forms are preserved by their higher order generalisations.
he discussion is limited to higher order differential forms on simplices. In the literature one can find higher order finite
lements also on other cell types (see e.g. [38–43]). However, these are typically not called Whitney forms in the literature,
nd one would have to give up on even more of the properties, so we leave this kind of extensions out of scope of this
aper.
Higher order Whitney forms are differential forms in a simplicial complex K . (Here the complex K is again embedded

n affine space, and we assume Ω is a polyhedron in Rn.) Property 1 is hence to be fulfilled by construction. We denote
y W p

k the space of Whitney p-forms of order k. We will next define W p
k by giving a set of elements of F p(K ) that span

p
k .
Let I(n + 1, k) denote the set of multi-indices with n + 1 components that sum to k; that is, I(n + 1, k) consists of

rrays k = (k0, k1, . . . , kn) where the ki are nonnegative integers such that
∑n

i=0 ki = k. For a fixed n-simplex σ = x0 . . . xn,
enote by λk

σ the function
∏n

i=0(λi)ki . This is a continuous function in Ω , and hence its product with any Whitney p-form
s in F p(K ). We may therefore define for k ≥ 1

W p
k = span{λk

σWτ | σ = x0 . . . xn ∈ Sn, k ∈ I(n + 1, k − 1), and τ is a p-face of σ }. (5.1)

ote that W p
1 = W p.

The spaces of higher order Whitney forms could also be defined using the Koszul operator [19,36]. In terms of their
roxy fields, the 1-forms in 2D were first given in [9] and the 1- and 2-forms in 3D in [10]. They have subsequently been
tudied e.g. in [44–51]. It is shown in [52] that W p

k by our definition is the same as the space P−

k Λp in FEEC theory [19,36].
his space is constructed such that it includes all polynomials of order ≤ k − 1 and its elements are at most kth order
olynomials in each simplex. Property 3 hence takes the obvious form for kth order Whitney forms.
Since W p is already isomorphic to C∗

p (K ) and increasing the order increases the dimension of the space, one
immediately sees that property 2 cannot hold. The de Rham map C from W p

k to C∗
p (K ) is not injective, and we do not

even have the map W from C∗
p (K ) to W p

k . To approximate elements of F p(K ) in W p
k , one must first determine suitable

degrees of freedom, as the integrals over p-cells no longer define a unique element of W p
k . There are at least three ways

o do this [37]. We consider the so-called small simplices of [32], for this yields us at least some kind of map from cochains
o W p

k and enables us to interpret generalisations of properties that involved the map W .
Small simplices are homothetic images of the simplices of K . For a fixed n-simplex σ = x0 . . . xn, each multi-index
∈ I(n + 1, k − 1) defines a map, which we denote by kσ , from σ to itself such that the point x whose barycentric

oordinates are λi maps to the point whose barycentric coordinates are λi+ki
k . In other words, kσ is defined by

kσ : σ → σ , λ0x0 + · · · + λnxn ↦→
λ0 + k0 x0 + · · · +

λn + kn xn.
k k
13
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Fig. 2. Second and third order small simplices kσ (σ ) in the cases when σ is a triangle in two dimensions and a tetrahedron in three dimensions.

The set of kth order small p-simplices of K is

Spk = {kσ (τ ) | σ = x0 . . . xn ∈ Sn, k ∈ I(n + 1, k − 1), and τ is a p-face of σ }. (5.2)

ote from (5.1) and (5.2) that the small p-simplices of order k correspond exactly to the spanning p-forms of W p
k . When

required, we use label υ for elements of Spk and denote by w(υ) the corresponding p-form. See Fig. 2 for examples of small
simplices.

Although the small n-simplices do not pave Ω , we can form a subdivision of K that contains the kth order small
simplices of K as cells; denote this subdivision by Kk. Not all the cells of Kk are necessarily simplices, but it is a cell
complex nevertheless, and we may hence consider p-chains Cp(Kk), p-cochains C∗

p (Kk), and the de Rham map of Kk.
Integrals over the small simplices Spk serve as degrees of freedom forW p

k , but these are overdetermining, as the spanning
-forms in (5.1) are not linearly independent. To obtain unisolvent degrees of freedom, one can choose a subset of Spk such
hat the integrals over this subset uniquely determine an element ofW p

k by omitting redundant small simplices. This yields
linear map V : C∗

p (Kk) → W p
k such that the values of all cochains X ∈ C∗

p (Kk) match with the integrals of VX on the
hosen subset of Spk . Then we have CVX = X for all X ∈ C(W p

k ) and VCω = ω for all ω ∈ W p
k — this is closest to property

that one can get.
We immediately see that w(υ) is nonzero in n-simplex σ ∈ Sn only if υ ⊂ σ , so the spanning p-forms in (5.1) are local;

his is the counterpart of property 5. Likewise, the affine invariance property continues to hold, and Proposition 4.2 now
ays w(kσ (x0 . . . xp)) = ϕ∗(w(kτ (y0 . . . yp))). It has been proved e.g. in [19] that also the exact sequence property holds.
As for the partition of unity property, there are two interpretations. On one hand, Theorem 4.3 implies that in any

-simplex τ ∈ Sn, for all p-vectors α and all points x in τ∑
τ⊃σi∈S

p
k∈I(n+1,k−1)

(k − 1)!
k0!k1! . . . kn!

⟨w(kτ (σi))(x), α⟩ vect(σi) = α;

this follows from the multinomial theorem. On the other hand, we have∑
υi∈S

p
k

⟨Vυi(x), α⟩ vect(υi) = α. (5.3)

To show (5.3), note that the requirement CW̃X = X for all X ∈ C∗
p (K ) in Proposition 4.4 can be replaced with CW̃X = X for

all X ∈ C(W̃ p) by requiring in addition that C be injective in W̃ p. Using this for the map V yields (5.3), since W p
k contains

all constant p-forms.
Finally, for the convergence property one expects an improvement: higher order Whitney forms should enable higher

order convergence. This is indeed true. The proof is similar as in the lowest order case, but we have included it below to
bring also the higher order approximation property into Whitney’s setting.
14
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Theorem 5.1. Let V : C∗
p (Kk) → W p

k be the linear map obtained with a choice of kth order small simplices as explained above,
and let ω be a smooth p-form in Ω . There exists a constant Cω,k such that

|VCω(x) − ω(x)| ≤
Cω,k

Cp
Θ

hk for all x ∈ τ in all τ ∈ Sn

whenever h > 0, CΘ > 0, and K is a simplicial complex in Ω such that diam(σ ) ≤ h and Θ(σ ) ≥ CΘ for all simplices σ of K .

roof. It suffices to prove this for ω = ωI d xi1 ∧ · · · ∧ d xip where 1 ≤ i1 < · · · < ip ≤ n. Denote by Ty the
k − 1)th order Taylor polynomial of ωI at y. Since ω is smooth in the polyhedron Ω , we can find a constant CI such
hat |ωI (x) − Ty(x)| ≤ CI |x − y|k whenever yx ⊂ Ω .

Fix τ ∈ Sn and y ∈ τ . We can write

ω(x) = ωI (x) d xi1 ∧ · · · ∧ d xip = (Ty(x) + g(x)) d xi1 ∧ · · · ∧ d xip , where

g(x) = ωI (x) − Ty(x), |g(x)| ≤ CI |x − y|k ≤ CIhk if x ∈ τ .

ince the constant d xi1∧· · ·∧d xip is inW p (by Corollary 4.5) and Ty is in the span of the products λk with k ∈ I(n+1, k−1)
it is a polynomial of order k − 1), we see from (5.1) that Ty d xi1 ∧ · · · ∧ d xip is in W p

k . Hence VC(Ty d xi1 ∧ · · · ∧ d xip ) =

Ty d xi1 ∧ · · · ∧ d xip and

VCω(x) = Ty(x) d xi1 ∧ · · · ∧ d xip + VC(g d xi1 ∧ · · · ∧ d xip )(x),

VCω(x) − ω(x) = VC(g d xi1 ∧ · · · ∧ d xip )(x) − g(x) d xi1 ∧ · · · ∧ d xip .

Denote by Ŝpk the chosen subset of Spk and by Ŝpk (τ ) its restriction to those small simplices that are in τ . The interpolant
VC(g d xi1 ∧ · · · ∧ d xip ) is a linear combination

∑
υi∈Ŝ

p
k
αiw(υi) of the spanning forms w(υi). Since w(υ) = 0 in τ if υ ̸⊂ τ ,

it suffices to consider
∑

υi∈Ŝ
p
k (τ )

αiw(υi). Each coefficient αi is a linear combination of the integrals
∫

υj
g d xi1 ∧ · · · ∧ d xip ,

υj ∈ Ŝpk (τ ). The coefficients of this latter linear combination are constant and affine-invariant quantities (determined by
the inverse of the matrix A with components Aij =

∫
υi

w(υj)). Hence there exists a constant Cα such that

|αi| ≤ Cα

∑
υj∈Ŝ

p
k (τ )

|

∫
υj

g d xi1 ∧ · · · ∧ d xip | ≤ Cα

∑
υj∈Ŝ

p
k (τ )

CIhk
|υj|

holds for all of the coefficients αi. Using the facts that diam(τ ) ≥ diam(υj) and |υj| ≤
1
p! diam(υj)p and denoting by Ck the

ardinality of Ŝpk (τ ), we get

|αi| ≤ CαCkCIhk 1
p!

diam(τ )p.

To find a bound for the |w(υi)|, suppose that υi is the image of the p-face σ ⊂ τ . Then clearly |w(υi)(x)| ≤ |Wσ (x)| ∀x ∈

, and hence using the affine map to the standard n-simplex exactly in the same way as in the proof of Theorem 4.9 we
ind

|w(υi)(x)| ≤

( √
2

n!
n+1Θ(τ ) diam(τ )

)p

p!
√
1 + n − p for all x ∈ τ .

Combining these estimates yields

|VC(g d xi1 ∧ · · · ∧ d xip )(x)| = |

∑
υi∈Ŝ

p
k (τ )

αiw(υi)(x)| ≤

∑
υi∈Ŝ

p
k (τ )

|αi||w(υi)(x)|

≤ C2
k CαCI

( √
2

n!
n+1Θ(τ )

)p√
1 + n − p · hk for all x ∈ τ .

This holds for all τ ∈ Sn, so we may choose Cω,k = C2
k CαCI

(
√
2

n!
n+1

)p
√
1 + n − p + CI , and then

|VCω(x) − ω(x)| ≤ |VC(g d xi1 ∧ · · · ∧ d xip )(x)| + |g(x) d xi1 ∧ · · · ∧ d xip |

≤ C2
k CαCI

( √
2

n!
n+1Θ(τ )

)p√
1 + n − p · hk

+ CIhk
≤

Cω,k

Cp
Θ

hk for all x ∈ τ in all τ ∈ Sn. □

.3. Whitney forms on other cells than simplices

Standard Whitney forms are differential forms in a simplicial complex. For flexibility in modelling and mesh generation,
lso other kind of cells should be allowed, and there have been several approaches to generalising Whitney forms for
onsimplicial cells. In this subsection, we consider the case where K is a cell complex of convex polyhedral cells.
15



J. Lohi and L. Kettunen Journal of Computational and Applied Mathematics 393 (2021) 113520

t
o
W
i
o
P

b
f
a
a
T

s
t
d

T
p
f
c
r
r
i
s

i
s
o
o

5

c
σ

g

N

b
c

v
c
i

W
w
a
t

t
9

When moving to nonsimplicial cells, we would like to preserve at least properties 1 and 2 of Whitney forms, so we take
hese as a guideline. Firstly, as stated earlier, all Whitney forms should be differential forms in the complex K — elements
f F p(K ). Secondly, there should be a Whitney p-form Wσ corresponding to each p-cell σ of K , so that we get a linear map

: C∗
p (K ) → F p(K ) whose image is the space of Whitney p-forms W p. In addition, W should be an isomorphism onto its

mage, so that integrals over p-cells uniquely determine an element of W p and serve as degrees of freedom. Without loss
f generality, we may then also require that

∫
σi
Wσj = δij, which is probably the best-known property of Whitney forms.

roperty 5, locality, will be fulfilled by all constructions without further mention.
In general, properties 3 and 4 as such will be lost. This is inevitable: a first order polynomial would already be fixed

y its values on n + 1 vertices, and there is no affine map like in Proposition 4.2 between more general cells. However,
or some cell types there is a same kind of canonical map (maybe not affine) and Whitney forms on one cell move onto
nother through taking pullback. For example, any cube is obtained from the reference cube [0, 1]3 with the obvious map
fter the image of one vertex is fixed, and to define Whitney forms on cubes it suffices to consider the reference cube.
he same applies to for example triangular prisms and pyramids.
To define Whitney forms for a convex polyhedral cell, we may consider the cell and its faces as the cell complex K

o that there is only one n-cell. In doing so, we must ensure that traces on faces depend only on the face itself, so that
he same Whitney forms belong to F p(K ) also in the case when K has many n-cells. The complex K may even contain
ifferent kind of cells, as long as traces on faces shared by two such cells are the same according to both constructions.
From the literature, we have chosen two constructions that we believe best preserve the properties of Whitney forms.

hese will be discussed below. More options can be found in the literature if one is willing to give up on more of the
roperties (see e.g. [53–56]). In particular we would like to mention [54], where the author shows a way to construct
inite-dimensional spaces of differential forms on arbitrary polytopes in any dimension such that the basis p-forms
orrespond to the p-cells and the spaces fulfil the exact sequence property. It requires auxiliary spaces on a simplicial
efinement of the complex, and as these one can use Whitney forms. However, the resulting forms are in F p(K ′) with
espect to the refinement K ′ and not necessarily in F p(K ) with respect to the initial complex K (discontinuities are allowed
n the cells of K ). Another downside is that explicit expressions for the basis forms are not given on general polytopes,
o they might not be easily computable.
The rest of this subsection is divided into parts as follows. First we briefly discuss two relevant approaches to general-

sing Whitney forms. The first approach is based on the construction of [57] and generalised barycentric coordinates. The
econd approach [29] is based on geometric conation and extrusion operations and constructs Whitney forms for cells
btained with these operations recursively. Finally, we summarise the Whitney forms resulting from these approaches
n cubes, triangular prisms, and pyramids in 3D.

.3.1. Construction based on generalised barycentric functions
Whitney forms in a simplicial complex were built using barycentric functions. These are exclusive to simplicial

omplexes, but for nonsimplicial cells there are generalised barycentric coordinates, which are no longer unique. Suppose
is a convex polyhedral p-cell in Rn with m vertices x1, . . . , xm. Any set of m nonnegative functions λi : σ → R are called
eneralised barycentric coordinates in σ if for all x ∈ σ

m∑
i=1

λi(x) = 1,
m∑
i=1

λi(x)xi = x. (5.4)

ote that generalised barycentric coordinates in σ restrict to generalised barycentric coordinates on its faces.
The functions λi are not uniquely determined by (5.4) for general cells, and there are different kind of generalised

arycentric coordinates (see the references in [56] and [57]). On simplices, these all reduce to the standard barycentric
oordinates. Generalised barycentric functions in K are defined after we choose barycentric coordinates in each cell such
that their restrictions agree on inter-element faces. This is typically ensured by using the same kind of coordinates on
incident cells [56].

In [56] and [57], Whitney forms are generalised for nonsimplicial cells by taking generalised barycentric functions as
Whitney 0-forms and using the same formula (3.1) (without the multiplier p!) for 1- and 2-forms. This gives the 1-form
λi d λj − λj d λi for any two vertices xi and xj and the 2-form λi d λj ∧ d λk − λj d λi ∧ d λk + λk d λi ∧ d λj for any three
ertices xi, xj, and xk. (In [56] and [57], the forms are given in terms of their proxy fields.) These do not correspond to the
ells of K , but they are used in [57] to construct finite elements in 2D and 3D that (although not called Whitney forms
n [57]) actually better fulfil the properties of Whitney forms.

The construction of [57] uses Wachspress coordinates [58]. In both two and three dimensions, we get linear maps
: C∗

p (K ) → F p(K ) such that the spaces of Whitney p-forms W p
= W(C∗

p (K )) constitute an exact sequence. Moreover,
e have

∫
σi
Wσj = δij, and integrals over p-cells serve as degrees of freedom. In 2D any convex nondegenerate polygons

re allowed, but in 3D the complex K is restricted by the additional requirement that the faces of the polyhedral cells be
riangles or parallelograms.

As Whitney 0-forms we take the generalised barycentric functions resulting fromWachspress coordinates. In 2D, define
he Whitney 1-forms corresponding to the edges of K such that their proxy fields are the qi in Lemma 3.1 of [57] rotated
0 degrees counterclockwise and divided by the edge length. In 3D, define the Whitney 1- and 2-forms corresponding to
16
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the edges and the faces of K such that their proxy fields are the pe and the qf in Lemmas 4.7 and 4.6 of [57] divided by the
dge length and the face area, respectively. Define the n-forms corresponding to the polygons/polyhedra of K such that
heir proxy fields equal the reciprocal of the area/volume in the corresponding polygon/polyhedron and zero elsewhere.

Then
∫

σi
Wσj = δij by Lemmas 3.1, 4.7, and 4.6 of [57]. In 2D, it follows from Lemma 3.4 of [57] that constants are

n W p, and hence the partition of unity property holds by Proposition 4.4. In 3D this holds for certain types of cells by
emma 4.14 of [57]. The counterpart to property 8 in 2D is Lemma 3.10 of [57], but we do not know if this has been
roved in 3D yet. As discussed, properties 3 and 4 are lost. In general, Wachspress coordinates are rational functions.
owever, we remark that in the case of simplices everything reduces to normal Whitney forms. Thus, the construction
f [57] truly generalises Whitney forms while preserving many of their properties.

.3.2. Construction based on conation and extrusion
To present how Whitney forms for polytopal cells are obtained systematically, one approach is to first consider a

ystematic construction of the cells themselves. In [29] Whitney forms are defined recursively for cells that are obtained
hrough conation and extrusion operations. Consider an n-dimensional cell σ with plane P in Rn+1, a point a ∈ Rn+1

outside P , and a vector v not parallel to P . Conation yields the (n + 1)-dimensional cell

cone(σ ) = {λa + (1 − λ)x | x ∈ σ , 0 ≤ λ ≤ 1},

and extrusion yields the (n + 1)-dimensional cell

extr(σ ) = {x + λv | x ∈ σ , 0 ≤ λ ≤ 1}.

In [29], it is shown how Whitney forms lift up onto either of these (n + 1)-dimensional cells, supposing we know them
on σ .

The requirements (1)–(3) on page 1570 of [29] ensure
∫

σi
Wσj = δij, the exact sequence property, and the inclusion of

constant p-forms in W p (which by Proposition 4.4 implies the partition of unity property). Properties 3 and 4 are again
understandably lost. In the case of simplices, this construction yields the usual Whitney forms (with repeated conation
starting from a 0-cell). In 3D, other cell types that fit this approach are parallelepipeds (conation, extrusion, extrusion),
pyramids (conation, extrusion, conation), and triangular prisms (conation, conation, extrusion).

Recently in [59], the authors combined these conation and extrusion techniques with their earlier construction [57]
to define Whitney forms on polygon-based prisms and cones. The work [59] covers both theoretical analysis and
implementation instructions. As mentioned in [59], any convex polyhedral cell can be divided into polygon-based cones
by connecting the vertices with a chosen interior point. Hence one could define Whitney forms for cell complexes of
arbitrary convex polyhedra by refining the complex this way — if one does not mind that the resulting forms are in F p(K ′)
only with respect to the refined complex K ′.

5.3.3. Formulas on cubes, triangular prisms, and pyramids
Finally, to show examples of Whitney forms on other cells than simplices, we give formulas of Whitney forms on

cubes, triangular prisms, and pyramids. These three cell types are suitable for examples since the Whitney forms on them
have sufficiently simple explicit formulas. In addition, both of the approaches we considered in this subsection yield these
Whitney forms.

In all of the examples, we use Cartesian xyz-coordinates. The cell σ is defined by giving its vertices xi in R3. Its edges
are oriented so that i < j for any edge xixj, and its facets are oriented such that the normal vector (prescribed by the right
hand rule) points outward.

Example 5.2 (Cubes). Consider the cube σ with vertices

x1 = (0, 0, 0) x2 = (1, 0, 0) x3 = (0, 1, 0) x4 = (1, 1, 0)
x5 = (0, 0, 1) x6 = (1, 0, 1) x7 = (0, 1, 1) x8 = (1, 1, 1)

The Whitney forms on σ are

Wx1 = (1 − x)(1 − y)(1 − z) Wx2 = x(1 − y)(1 − z) Wx3 = (1 − x)y(1 − z)
Wx4 = xy(1 − z) Wx5 = (1 − x)(1 − y)z Wx6 = x(1 − y)z
Wx7 = (1 − x)yz Wx8 = xyz
Wx1x2 = (1 − y)(1 − z) d x Wx3x4 = y(1 − z) d x Wx5x6 = (1 − y)z d x
Wx7x8 = yz d x Wx1x3 = (1 − x)(1 − z) d y Wx2x4 = x(1 − z) d y
Wx5x7 = (1 − x)z d y Wx6x8 = xz d y Wx1x5 = (1 − x)(1 − y) d z
Wx2x6 = x(1 − y) d z Wx3x7 = (1 − x)y d z Wx4x8 = xy d z
Wx5x6x8x7 = z d x ∧ d y Wx1x3x4x2 = −(1 − z) d x ∧ d y Wx1x2x6x5 = (1 − y) d x ∧ d z
Wx3x7x8x4 = −y d x ∧ d z Wx1x5x7x3 = −(1 − x) d y ∧ d z Wx2x4x8x6 = x d y ∧ d z
Wσ = d x ∧ d y ∧ d z

The proxy fields of the 1- and 2-forms above first appeared in [10].
17
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Example 5.3 (Triangular Prisms). Consider the triangular prism σ with vertices

x1 = (0, 0, 0) x2 = (1, 0, 0) x3 = (0, 1, 0)
x4 = (0, 0, 1) x5 = (1, 0, 1) x6 = (0, 1, 1)

The Whitney forms on σ are

Wx1 = (1 − y − x)(1 − z) Wx2 = x(1 − z) Wx3 = y(1 − z)
Wx4 = (1 − y − x)z, Wx5 = xz, Wx6 = yz
Wx1x4 = (1 − y − x) d z Wx2x5 = x d z Wx3x6 = y d z
Wx1x2 = (1 − y)(1 − z) d x + x(1 − z) d y Wx2x3 = −y(1 − z) d x + x(1 − z) d y
Wx1x3 = y(1 − z) d x + (1 − x)(1 − z) d y Wx4x5 = (1 − y)z d x + xz d y
Wx5x6 = −yz d x + xz d y Wx4x6 = yz d x + (1 − x)z d y
Wx1x2x5x4 = (1 − y) d x ∧ d z + x d y ∧ d z Wx2x3x6x5 = −y d x ∧ d z + x d y ∧ d z
Wx1x4x6x3 = −y d x ∧ d z − (1 − x) d y ∧ d z Wx1x3x2 = −2(1 − z) d x ∧ d y
Wx4x5x6 = 2z d x ∧ d y Wσ = 2 d x ∧ d y ∧ d z

The proxy fields of the 1- and 2-forms above first appeared in [60].

Example 5.4 (Pyramids). Consider the pyramid σ with vertices

x1 = (0, 0, 0) x2 = (1, 0, 0) x3 = (0, 1, 0) x4 = (1, 1, 0) x5 = (0, 0, 1)

The Whitney forms on σ are

Wx1 =
(1−z−x)(1−z−y)

1−z Wx2 =
x(1−z−y)

1−z Wx3 =
(1−z−x)y

1−z Wx4 =
xy
1−z Wx5 = z

Wx1x2 = (1 − z − y) d x +
x(1−z−y)

1−z d z Wx2x4 = x d y +
xy
1−z d z

Wx3x4 = y d x +
xy
1−z d z Wx1x3 = (1 − z − x) d y +

(1−z−x)y
1−z d z

Wx1x5 = (z −
yz
1−z ) d x + (z −

xz
1−z ) d y + (1 − x − y +

xy
1−z −

xyz
(1−z)2

) d z
Wx2x5 = (−z +

yz
1−z ) d x +

xz
1−z d y + (x −

xy
1−z +

xyz
(1−z)2

) d z
Wx3x5 =

yz
1−z d x + (−z +

xz
1−z ) d y + (y −

xy
1−z +

xyz
(1−z)2

) d z
Wx4x5 = −

yz
1−z d x −

xz
1−z d y + ( xy

1−z −
xyz

(1−z)2
) d z

Wx1x2x5 = z d x ∧ d y + (2 − y −
y

1−z ) d x ∧ d z −
xz
1−z d y ∧ d z

Wx1x5x3 = z d x ∧ d y +
yz
1−z d x ∧ d z + (−2 + x +

x
1−z ) d y ∧ d z

Wx2x4x5 = z d x ∧ d y +
yz
1−z d x ∧ d z + (x +

x
1−z ) d y ∧ d z

Wx4x3x5 = z d x ∧ d y + (−y −
y

1−z ) d x ∧ d z −
xz
1−z d y ∧ d z

Wx1x3x4x2 = −(1 − z) d x ∧ d y − y d x ∧ d z + x d y ∧ d z
Wσ = 3 d x ∧ d y ∧ d z

hitney forms on pyramids first appeared in [28].
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