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Abstract
We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside 
by uniform domains.
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1  Introduction

We provide an approximation of bounded domains from 
inside and from outside by uniform domains in doubling 
quasiconvex metric spaces. A metric space (X, d) is called 
(metrically) doubling, if there exists a constant Cd so that 
for all r > 0 , any ball of radius r can be covered by Cd balls 
of radius r/2. A metric space is called quasiconvex, if there 
exists a constant Cq < ∞ such that any x, y ∈ X can be con-
nected by a curve � in X with the length bound

A domain Ω ⊂ X is called uniform, if there exists a constant 
Cu < ∞ such that for every x, y ∈ Ω, there exists a curve 
𝛾 ⊂ Ω such that

and for all z ∈ � it holds

where �x,z and �z,y denote the shortest subcurves of � joining 
z to x and y, respectively.

With the definitions now recalled we can state the result 
of this paper.

Theorem 1.1  Let (X, d) be a doubling quasiconvex metric 
space and Ω ⊂ X a bounded domain. Then for every 𝜀 > 0, 
there exist uniform domains ΩI and ΩO such that

ΩO ⊂ B(Ω, 𝜀), and X ⧵ΩI ⊂ B(X ⧵Ω, 𝜀).

In the above theorem we have used the notation

for the open r-neighbourhood of a set A ⊂ X , with r > 0 , 
and B(x, r) denoting the open ball of radius r centred at a 
point x ∈ X.

Although there are characterizations of uniform domains 
in metric spaces, for instance via tangents [6], we are 
not aware of previous general existence results such as 
Theorem 1.1.

The setting of Theorem 1.1 is motivated by Sobolev- 
and BV-extension domains in complete metric measure 
spaces with a doubling measure and supporting a  (1, p)
-Poincaré inequality ( p-PI spaces for short). A measure � 
on (X, d) is doubling, if there exists a constant C > 0 such 
that �(B(x, 2r)) ≤ C�(B(x, r)) for every x ∈ X and r > 0 . 

�(�) ≤ Cqd(x, y).

�(�) ≤ Cud(x, y)

min
{
�(�x,z),�(�z,y)

} ≤ Cu dist (z,X ⧵Ω),

ΩI ⊂ Ω ⊂ ΩO,

B(A, r) =
⋃

x∈A

B(x, r)
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Recall that a metric space supporting a positive and locally 
finite doubling measure � is doubling in the metric sense. 
The metric measure space (X, d,�) supports a (1, p)-Poincaré 
inequality if there exist constants C, � ≥ 1 so that the follow-
ing holds: for any x ∈ X and r > 0 the ball B(x, r) ⊂ X has 
positive and finite �-measure and 

holds for any measurable function u and its upper gradient 
� , with uB(x,r) being the average of u in B(x, r) . On one hand, 
p-PI spaces [5] are known to be quasiconvex [3, 10]. On the 
other hand, in [2] it was shown that uniform domains in p
-PI-spaces are N1,p-extension domains, for 1 ≤ p ≤ ∞ , for 
the Newtonian Sobolev spaces, and in [11] it was shown that 
bounded uniform domains in 1-PI-spaces are BV-extension 
domains. See [13] for the definitions of upper gradients and 
Newtonian Sobolev spaces and [1, 12] for the BV space.

The main purpose of this paper is to increase the appli-
cability of the results in [2, 11] by providing a large collec-
tion of uniform domains. As a straightforward corollary, 
we have the following approximation result by extension 
domains.

Corollary 1.2  Let 1 ≤ p ≤ ∞ let (X, d,�)  be a complete met-
ric measure space, with �  doubling, supporting a  (1, p)
-Poincaré inequality, and let Ω ⊂ X be a bounded domain. 
Then Ω can be approximated (as in Theorem 1.1) by N1,p

-extension and, in the case p = 1 , also by BV-extension 
domains.

Notice also that in the case, when Ω is unbounded, we can 
for example fix a point x0 ∈ Ω and for each i ∈ ℕ approxi-
mate the connected component of B(x0, i) ∩ Ω containing 
x0 from inside by Ωi using Theorem 1.1 with the choice 
� = 1∕i , and thus obtain

with Ωi uniform for all i ∈ ℕ.

2 � Construction of the uniform domains

In the Euclidean setting, we could use closed dyadic cubes 
to construct the uniform domains. Using just the fact that 
a Euclidean cube is John (and not that it is in fact uni-
form), we could start with a finite union of cubes of some 
fixed side length, then take all the neighbouring cubes 
with a constant c ∈ (0, 1) times smaller side length than 

1

�(B(x, r)) �B(x,r)

|u − uB(x,r)| d� ≤ Cr

(
1

�(B(x, �r)) �B(x,�r)

�p
) 1

p

Ω =

∞⋃

i=1

Ωi,

the original ones and continue taking smaller and smaller 
cubes. The main thing one has to take care about is that 
two points near the boundary that are some small distance 
r from each other can be connected by going via cubes not 
much larger than r in side length. This is handled by taking 
the constant c small enough because of the nice property 
of closed Euclidean dyadic cubes: if two cubes of side 
length l do not intersect, then their distance is at least l.

We will use the above idea in the metric setting. How-
ever, none of the dyadic cube constructions that we have 
seen (for instance [4, 7–9]) take care about the separation 
of non-intersecting cubes but only about other properties 
such as nestedness and size. Luckily, we do not need a 
nested structure, nor a decomposition, so we will work 
with coverings by balls having the needed separation prop-
erty. The existence of such coverings is provided by the 
next lemma.

Lemma 2.1  Let (X, d) be a doubling metric space. Then 
there exists a constant c ∈ (0, 1) depending only on the dou-
bling constant so that for every r > 0, there exist r-separated 
points {xi} ⊂ X and radii ri ∈ [r, 2r] such that

and

Proof  Let {xi} be a maximal r-separated net of points in X. 
Because of the maximality of the net, the balls B(xi, ri) will 
cover X. We select the suitable radii by induction. Let r1 = r . 
Suppose that r1,… , rk have been selected. Since xi are r sep-
arated, by the metric doubling property of (X, d), there exists 
an integer N > 1 depending only on the doubling constant Cd 
so that there exist at most N−1 points xi ∈ {x1,… , xk} with 
d(xk+1, xi) ≤ 4r . Write

Then  Ik  contains at  most  N  −1 points.  Let 
𝜆1 < 𝜆2 < … < 𝜆M , with M < N , be so that

Denote �0 = r and �M+1 = 2r . Let m ∈ {0,⋯ ,M} be the 
smallest integer for which  �m+1 − �m ≥ r∕N . (If such m did 
not exist we would have

which is a contradiction.) We now define rk+1 = �m . In par-
ticular, we then have

X ⊂
⋃

i

B(xi, ri)

d(xi, xj) − ri − rj ∉ (0, cr) for all i, j.

Ik =
{
i ∶ d(xi, xk+1) − ri ∈ [r, 2r], i ≤ k

}
.

{�j}
M
j=1

=
{
d(xi, xk+1) − ri ∶ i ∈ Ik

}
.

r = 𝜆M+1 − 𝜆0 =

M∑

j=0

𝜆j+1 − 𝜆j < (M + 1)
r

N
≤ r,
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By the definition of m , we have

for all  i ∈ Ik  .  Now, if i ≤ k  with i ∉ Ik  ,  either 
d(xi, xk+1) − ri < r , in which case d(xi, xk+1) − ri − rk+1 < 0 , 
or  d(xi, xk+1) − ri > 2r  ,  in  which case we have 
d(xi, xk+1) − ri − rk+1 > r∕N. Thus,

for all i ∈ {1,… , k}. This shows that the claim holds with 
the constant c = 1∕N . 	�  ◻

With the replacement of the Euclidean dyadic cubes by 
balls given in Lemma 2.1, we can now follow the idea pre-
sented for the Euclidean case to prove the metric version.

Proof of Theorem 1.1  We start by noting that since our space 
(X, d) is quasiconvex, the induced length distance

satisfies d ≤ dl ≤ Cqd with the quasiconvexity constant Cq . 
If we would assume the space (X, d) to be complete, by the 
generalized Hopf-Rinow Theorem we would know that dl 
is in fact a geodesic distance. However, we want to avoid 
making the extra assumption on completeness. In any case, 
because the property of being a uniform domain is invariant 
under a biLipschitz change of the distance, we may then 
assume that (X, d) is a length space.

construction The constructions of ΩI and ΩO are similar. 
The only difference is the starting point of the construction. 
Fix a point x0 ∈ Ω and let � ∈ (0,min{ dist (x0, �Ω), 1}) . The 
choice of � will depend on � , and the estimate on how small 
� we need to select is postponed to the end of the proof. For 
constructing ΩO, we simply start with the set

and for ΩI , we take E1 to be the connected component of

containing the fixed point x0 . Let us consider the case ΩI . 
Thus E1 is defined via (2.1).

Let c > 0 be the constant from Lemma 2.1. Define

We construct ΩI using induction as follows. Suppose Ek has 
been defined for a k ∈ ℕ . Let {xi} and {ri} be the points and 
radii given by Lemma 2.1 for the choice r = �k , and define

rk+1 ∈ [r, 2r − r∕N].

d(xi, xk+1) − ri − rk+1 ∉ (0, r∕N)

d(xi, xk+1) − ri − rk+1 ∉ (0, r∕N)

dl(x, y) = inf {�(�) ∶ the curve � joins x to y}

E1 = Ω,

(2.1){x ∈ X ∶ dist (x,X ⧵Ω) > 𝜏}

� = min
{

c

20 + c
,

�

5 + �

}
.

We then set

Finally, we define

uniformity Let us next show that ΩI is uniform. Take 
x, y ∈ ΩI with x ≠ y . Let kx and ky be the smallest integers 
such that x ∈ Ekx

 and y ∈ Eky
 . Without loss of generality, we 

may assume kx ≤ ky.
Suppose first that d(x, y) < 1

4
c𝛿 . Let n ∈ ℕ be such that

Notice that since in each construction step k + 1, we take a 
neighbourhood �k of the previous set Ek , we have that

Therefore, if kx < n , we may take � to be a curve connect-
ing x to y so that �(𝛾) < 2d(x, y) , in which case for all z ∈ � 
we have

and, consequently, we get uniformity with constant Cu = 2.
If kx ≥ n , we first connect x and y to En . We do this as 

follows. Starting with x, let B(z, r) ∈ Bkx−1
 be such that 

x ∈ B(z, r) , which exists by the definitions of kx and Ekx
 . Next 

take v ∈ B(z, r) ∩ B(Ekx−1
, �kx−1) and w ∈ Ekx−1

 with 
d(z,w) < r + 𝛿kx−1 , which we have by the definition of Bkx−1

 . 
Now we take the concatenation �x

kx
 of the curves α1 going 

from x to z, α2 going from z to v, and α3 going from v to w 
with the length bounds �(𝛼1),�(𝛼2) < r and �(𝛼3) < 𝛿kx−1 . 
Notice that  𝛾x

kx
⊂ Ekx

 and that the curve �x
kx

 has the length 
bound

and for the distance to the complement of ΩI we can estimate

by the fact that in the construction of Ekx+1
 we take a �kx

-neighbourhood of Ekx
 and the curve �x

kx
 is contained in Ekx

 . 

Bk =
{
B(xi, ri) ∶ B(xi, ri) ∩ B(Ek, �

k) ≠ �
}
.

Ek+1 =
⋃

B(x,r)∈Bk

B(x, r).

ΩI =

∞⋃

k=1

Ek.

1

4
c𝛿n+1 ≤ d(x, y) <

1

4
c𝛿n.

(2.2)dist (Ek,X ⧵ΩI) ≥
∞∑

i=k

�i =
�k

1 − �
≥ �k.

dist (z,X ⧵ΩI) ≥ dist (x,X ⧵ΩI) − d(z, x)

> 𝛿kx − �(𝛾) > 4d(x, y) − 2d(x, y) ≥ 2d(x, y),

�(𝛾x
kx
) < r + r + 𝛿kx−1 ≤ 5𝛿kx−1,

(2.3)dist (𝛾x
kx
,X ⧵ΩI) > 𝛿kx
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We then continue inductively connecting w to Ekx−2
 by �x

kx−1
 

and so on, until we have connected x to a point x′ in En.
The curve �x,x′ obtained by concatenating the previous 

curves �x
kx
, �x

kx−1
,… , �x

n+1
 has the length bound

With a similar construction, we connect y to a point y� ∈ En 
by a curve �y,y′ with length bounded from above by c�n−1∕4 . 
We can bound the distance between x′ and y′ by

Now we use the crucial separation property given by 
Lemma  2.1. Let B(zx, rx),B(zy, ry) ∈ Bn−1 be such that 
x� ∈ B(zx, rx) and y� ∈ B(zy, ry) . Since the collection Bn−1 
was defined via Lemma 2.1 with the radius �n−1 , we have

whereas (2.5) gives

Therefore, d(zx, zy) ≤ rx + ry, and thus, we can connect x′ to 
y′ by a curve �x′,y′ defined by going first with a curve β1 from 
x′ to zx , then with β2 from zx to zy and finally with  β3 from zy 
to y′ . By selecting the curves so that �(𝛽1) < rx,

 and �(𝛽3) < ry , the curve �x′,y′   has the length bound

and its distance to the complement of ΩI has the bound

Now, the curve � obtained by concatenating �x,x′ , �x′y′ and 
�y,y

′ has, by (2.4) and (2.6), length at most

(2.4)�(�x,x
�

) ≤
kx−1∑

i=n

5�i ≤ 5
�n

1 − �
≤ 1

4
c�n−1.

(2.5)

d(x�, y�) ≤ d(x�, x) + d(x, y) + d(y, y�)

<
1

4
c𝛿n−1 +

1

4
c𝛿n +

1

4
c𝛿n−1

< c𝛿n−1.

d(zx, zy) − rx − ry ∉ (0, c�n−1),

d(zx, zy) − rx − ry ≤ d(zx, x
�) + d(x�, y�)

+ d(y�, zy) − rx − ry

≤ d(x�, y�) < c𝛿n−1.

�(𝛽2) < rx + ry +min
{
rx − �(𝛽1), 𝛿

n+1
}
,

(2.6)
�(�x

�,y� ) ≤ �(�1) + �(�2) + �(�3) ≤ 2rx + 2ry ≤ 8�n−1,

(2.7)dist (𝛾x
�,y� ,X ⧵ΩI) > 𝛿n.

(2.8)

𝓁(�) ≤ 1

4
c�n−1 + 8�n−1 +

1

4
c�n−1

≤ 9�n−1 =
36

c�2
⋅
1

4
c�n+1

≤ 36

c�2
d(x, y).

Let us check the uniformity for this curve. Let z ∈ � . Sup-
pose first that z ∈ �x

�,y� . Then by (2.7) and (2.8), we get

By symmetry, it then remains to check the case z ∈ �x,x
� . 

Then there exists k ≥ n such that z ∈ �x
k
 . Then by (2.3) and 

the same estimate as in (2.4), we get

By combining the estimates (2.8), (2.9) and (2.10), we see 
that � satisfies the uniformity condition with the constant 
Cu = 36∕(c�2).

We are still left with proving the uniformity in the case 
d(x, y) ≥ (1∕4)c� . For this, we first observe that we can con-
nect x to a point x� ∈ E1 , and y to a point y� ∈ E1 by curves 
having lengths bounded from above by c/4 and with point-
wise lower bounds for the distance to the boundary along 
the curves being enough for the uniformity condition. What 
remains to do is to connect x′ to y′ with a curve of which 
length is bounded by a constant (independent of x′ and y′ ) 
from above and of which distance to the boundary of ΩI is 
bounded by another constant from below. This is achieved 
directly by compactness: on one hand, any two points in the 
totally bounded set EI can be joined by a rectifiable curve 
inside B(E1, 𝛿∕2) ⊂ ΩI and the infimum over the lengths of 
curves joining two given points is a continuous function in 
terms of the endpoints and this function extends to the com-
pletion of EI as a continuous function. Thus, there exists the 
needed constant upper bound for the lengths of curves. On 
the other hand, the distance of these curves to the boundary 
of ΩI is at least �∕2.

closeness Let us then show that for every 𝜀 > 0, there 
exists 𝜏 > 0 so that using the � in the construction above we 
get X ⧵ΩI ⊂ B(X ⧵Ω, 𝜀).

In order to have the dependence on � , write now E1(�) to 
be the connected component of {x ∈ X ∶ dist (x,X ⧵Ω) > 𝜏} 
containing x0 . Since X ⧵ B(X ⧵Ω, �) is totally bounded, there 
exists a set of points {xi}Ni=1 ⊂ Ω so that

Each xi can be connected to x0 by a curve inside  Ω and so 
there exist ri > 0 for which xi ∈ E1(�i) . Consequently, with 
� = min{�∕2, �1,… , �N} we have X ⧵ B(X ⧵Ω, 𝜀) ⊂ E1(𝜏) , 
and thus, 

(2.9)
min

{
�(�x,z),�(�z,y)

} ≤ 1

2
�(�) ≤ 9

2
�n−1 =

9

2�
�n

≤ 9

2�
dist (z,X ⧵ΩI).

(2.10)
min

{
�(�x,z),�(�z,y)

} ≤5 �k

1 − �
≤ 10�k

≤10 dist (z,X ⧵ΩI).

X ⧵ B(X ⧵Ω, 𝜀) ⊂

N⋃

i=1

B(xi, 𝜀∕2).
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The final thing we still need to observe is that ΩI ⊂ Ω . By 
the construction procedure, we have

for every k ∈ ℕ . Thus, by the choice of � we get

This completes the proof for ΩI . The proof for ΩO goes 
almost verbatim. Only the argument for closeness becomes 
easier in this case. In particular, for ΩO, one can then take 
� = � . 	�  ◻
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X ⧵ΩI ⊂ X ⧵ E1(𝜏) ⊂ B(X ⧵Ω, 𝜀).

Ek+1 ⊂ B(Ek, 5𝛿
k)

ΩI ⊂ B(E1,

∞∑

k=1

5𝛿k) ⊂ B(E1, 𝜏) ⊂ Ω.
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