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Abstract 

Industry 4.0 systems are extensively using artificial intelligence (AI) to enable smartness, automation and flexibility 
within variety of processes. Due to the importance of the systems, they are potential targets for attackers trying to 
take control over the critical processes. Attackers use various vulnerabilities of such systems including specific 
vulnerabilities of AI components. It is important to make sure that inappropriate adversarial content will not break 
the security walls and will not harm the decision logic of critical systems. We believe that the corresponding 
security toolset must be organized as a trainable self-protection mechanism similar to immunity. We found certain 
similarities between digital vs. biological immunity and we study the possibilities of Generative Adversarial 
Networks (GANs) to provide the basis for the digital immunity training. We suggest the taxonomy of GANs 
(including new architectures) suitable to simulate various aspects of the immunity for Industry 4.0 applications. 
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1. Introduction and related work 

Generative Adversarial Network (GAN) is a popular research concept and efficient (adversarial) machine 
learning (ML) paradigm. According to this concept, two neural networks are trained towards contradictory 
objectives (both useful for various applications), compete with each other, co-evolve while training and mutually 
facilitate each other`s training process. Since [1], where GANs are used for generating samples in an unsupervised 
way, a large number of GAN modifications and corresponding algorithms have been proposed. Gui et al. [2] 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2021 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufacturing 

International Conference on Industry 4.0 and Smart Manufacturing 

Taxonomy of generative adversarial networks for digital immunity 
of Industry 4.0 systems 

Vagan Terziyan a, Svitlana Gryshko b, Mariia Golovianko c 
aFaculty of Information Technology, University of Jyväskylä, Jyväskylä, 40100,  Finland 

 bDepartment of Economic Cybernetics, Kharkiv National University of Radioelectronics, Kharkiv, 61166, Ukraine 
cDepartment of Artificial Intelligence, Kharkiv National University of Radioelectronics, Kharkiv, 61166, Ukraine 

Abstract 

Industry 4.0 systems are extensively using artificial intelligence (AI) to enable smartness, automation and flexibility 
within variety of processes. Due to the importance of the systems, they are potential targets for attackers trying to 
take control over the critical processes. Attackers use various vulnerabilities of such systems including specific 
vulnerabilities of AI components. It is important to make sure that inappropriate adversarial content will not break 
the security walls and will not harm the decision logic of critical systems. We believe that the corresponding 
security toolset must be organized as a trainable self-protection mechanism similar to immunity. We found certain 
similarities between digital vs. biological immunity and we study the possibilities of Generative Adversarial 
Networks (GANs) to provide the basis for the digital immunity training. We suggest the taxonomy of GANs 
(including new architectures) suitable to simulate various aspects of the immunity for Industry 4.0 applications. 
© 2021 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart 
Manufacturing 
Keywords: Industry 4.0; Generative Adversarial Networks; cybersecurity; artificial digital immunity  

1. Introduction and related work 

Generative Adversarial Network (GAN) is a popular research concept and efficient (adversarial) machine 
learning (ML) paradigm. According to this concept, two neural networks are trained towards contradictory 
objectives (both useful for various applications), compete with each other, co-evolve while training and mutually 
facilitate each other`s training process. Since [1], where GANs are used for generating samples in an unsupervised 
way, a large number of GAN modifications and corresponding algorithms have been proposed. Gui et al. [2] 
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recently published a review on various GANs methods from the perspectives of algorithms, theory, and applications. 
They also combined GANs with other ML algorithms (semi-supervised learning, reinforcement learning, and 
transfer learning) to be used in popular applications (processing image, speech, music and audio for generic data 
science and medicine in particular). The most promising artificial intelligence solutions and architectures, including 
GANs, are being successfully applied in Industry 4.0, which indicates the emerging trend of the digital (data-driven) 
transformation of manufacturing enterprises. Such applications working for industrial diagnostics, fault detection 
and predictive maintenance require essential amount of data about faults, which is not always available but may be 
generated using GANs [3]. GANs present a way to learn deep representations without extensively annotated training 
data. As shown in [4], this feature can be used in several applications (image style transfer, synthesis, semantic 
editing, super-resolution and classification). GANs can be also useful in the context of digital twins [5] or 
simulation-based decision support tools used for optimization and resilience of future factories [6]. Integrated with 
proper simulation environments [7, 8, 9, 10], where challenging (complex and adversarial) conditions can be 
modelled and digitally applied against various industrial assets and processes, the GAN-driven digital twins may 
essentially improve security and productivity of industrial processes.  Good review of GANs with particular 
applications presented in [11]. For example, image synthesis could be handled by DCGAN [12]; engineering design 
could be addressed by GANs enhanced by augmented human intelligence and creativity [13]; for the imbalanced 
data classification, a class expert GAN (CE-GAN) can be useful [14]; various data quality issues could be handled 
by ACGAN as an auxiliary classifier GAN [15]; surface inspection could be provided using, e.g., LSGAN 
architecture, i.e., modified least-square GANs [16]; condition monitoring could be addressed by GANs with the 
denoising autoencoder as a discriminator as suggested in [17]; anomaly detection by f-AnoGAN architecture [18]; 
security of cyber-physical systems by novel CGAN (conditional GAN) architecture GAN-Sec [19], etc. 

Domains related to security, remain the natural application area where GANs could be applied with the major 
impact. [20] published an interesting review on the application of GANs in cybersecurity. They observe two major 
approaches within cybersecurity studies: (a) use of GANs to improve generalization to unforeseen adversarial 
attacks, by generating novel adversarial samples as training data for ML models (i.e., improving the “defence” 
mechanism); (b) training GANs aiming to generate realistically looking adversarial data that can fool a security 
system (i.e., improving the “attack” mechanism). Most of the currently discussed cybersecurity strategies follow the 
paradigm of the proactive security, i.e., attempting to prevent potential attacks before they occur. As noticed in [21], 
many real-world applications still follow a reactive security approach (i.e., systems are updated when novel attacks 
are observed). The GAN concept enables proactive security solutions up to the extent of the digital immunity. 
Usually term “immunity” is applied in biology to define the balanced state of an organism, which is capable to apply 
adequate defences to fight unwanted biological invasion. Termanini [23] contributed to applying the immunization 
legacy to the digital world. He described the Cognitive Early Warning Predictive System as a digital immune 
system, which inoculates critical systems with the vaccination as a service and considers so-called “smart vaccine” 
(autonomous AI robot) as a holy grail of digital immunity. The early warning predictive component in the system is 
the AI reasoning engine that acquires knowledge from past attacks and predicts, probable incoming cyberattacks. 
Such approach to digital immunity applies top-down (expert-driven) AI (ontological representation of knowledge 
and inference engine). In this paper, we suggest an opposite, bottom-up (computational intelligence) AI approach to 
digital immunity and smart vaccination, which can be obtained as a result of adversarial GAN-driven learning. 

Our generic objective or the meta-goal (for the former, present and future research) is further empowerment of 
the GAN models as an instrument capable to address the academic challenges related to strong AI, digital cloning, 
collective intelligence, etc., and also real world, practical and emerging challenges of Industry 4.0. The specific 
objective addressed in this paper is to suggest a set of GAN modifications suitable for the use as a proactive security 
(digital immunity) enabler for intelligent components within Industry 4.0. 

The rest of the paper is organized as follows: In Section 2, we discuss on the analogy of GANs as abstract models 
with the immunity and vaccination as proactive security mechanism; in Section 3, we present the major modification 
for traditional GAN architecture by introducing the “Reality” component as the third one neural-net-driven player; in 
Section 4, we describe reasonable updates regarding traditional GAN players (“Discriminator” and “Generator”); in 
Section 5, we used the new properties of all the three GAN players to get the structural representation (taxonomy) of 
the potential new GAN architectures suitable to address the proactive security challenges; and we conclude in 
Section 6. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.01.290&domain=pdf
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2. Digital immunity and generative adversarial networks 

The brief story, on how we came to the immunity concept as a motivation to update further the GAN framework, 
is as follows. Our team (mainly AI experts) was interested in GAN as such because it has been one of the major 
inventions in AI and ML for the last decade. We worked out some techniques on using GANs to design digital 
cognitive clones of humans capable to replace the latter ones in some industrial processes [24]. Later, when we meet 
the challenges of NATO SPS project “Cyber-Defence for Intelligent Systems” (http://recode.bg/natog5511) and 
particularly security of AI/ML-supervised supply-chain and logistics, we discover that one of the most dangerous 
vulnerabilities of such systems (allowing the most insidious attacks) is the intelligent component and ML in 
particular [25]. Successful adversarial attacks to ML may cause huge impact as shown in [26], and, as indicated in 
[27] industry practitioners are still not equipped to protect, detect and respond to such attacks. ML systems are 
vulnerable both at the learning phase of the model design (e.g., data poisoning attack) or when the trained model 
start making predictions (evasion attacks). A common way to force the models to make wrong predictions is to 
design adversarial examples as discovered in [28] and such design involves perturbations that are almost 
indistinguishable to humans, yet force ML models to make wrong predictions. An adversarial example is an input to 
ML model that is intentionally designed by an attacker to fool the model into producing an incorrect output.  
Effective defenses as response to the new types of attacks appear slower than the new attacks are being invented. 
There is just one example among many similar ones: the popular and effective ML-based malware detection 
techniques (e.g., the ones based on Random Forest, Support Vector Machine, and Convolutional Neural Networks) 
has been shown to completely fail under the novel adversarial texture malware perturbation attack presented in [29]. 
Therefore, a reactive security paradigm cannot be exploited alone without adding also some proactive security 
efforts to be prepared for potential attacks before they occur, by incorporating knowledge of the attacker’s strategy 
into the defense mechanism [21]. We believe that good analogy for the proactive security in real world would be an 
immune system of a human and its interaction with the vaccines as proactive security measures. Such interaction can 
be modelled with GANs, which is a good instrument to represent and pre-train two coevolving counterparts 
(artificial attacker and artificial defender). Our interests on GANs development and the need for proactive security 
solution for our projects meet at that point, and we discovered several updates to the traditional GAN architecture, 
which might be suitable to design some sort of digital immunity for the intelligent systems. 

The core of the GAN-driven generic abstract skeleton for the digital immune system is the basic filtering 
element, which we call a "Debunker", which corresponds to the Discriminator (D) in GAN model. The task of it is 
to address an input (e.g., incoming “stranger”) from the external environment and to make a decision about the 
origin and the intentions of the input (either true / real input (“welcome guest”) from the environment or a falsified 
input (“intruder”) from an attacker pretending to be a real one). To train the “immunity” in such adversarial 
situations, D must have some supervised interaction experience with the two external players: (a) “Reality” 
component, which represents the real external environment and selects true (“healthy”) inputs (data samples) from 
it. In some cases, we need the Reality to generate inputs as challenging as possible for further processing by other 
components; and (b) Fake component, which corresponds to the Generator (G) in GAN architecture, acts as an 
attacker and generates intruders or false inputs (artificially generated data samples) aiming to fool D, break into the 
system and make harm there. It is assumed that D does not know the origin of the inputs (Reality or Fake) during 
training process and must decide itself, whether it is a real or a fake input. The training is possible due to the 
mechanism of feedbacks for all the players (D, Reality and G). This mechanism enables players to constantly 
improve own performance in achieving their competing goals. Therefore, after the training, D will be trained to 
protect (aka immunity), G – to attack (aka vaccine) and Reality – to be as challenging as possible for both rivals. 

Consider the classical formulation of the GAN problem. D gets samples from two sources: (a) from Reality, 
assuming existence of {x(�), … , x(�)} minibatch of reality samples with probability distribution p����(x); (b) from G, 
assuming existence of  {z(�), … , z(�)} minibatch of fake samples with probability distribution p�(z). Discriminator 
is trained to distinguish between the fake and the reality samples. Generator tries to generate samples from scratch 
aiming at the same distribution as the reality samples distribution. It learns to capture the reality samples distribution 
and therefore to fool the Discriminator. The fundamental mathematical model of GANs in the classical formulation 
reproduces the minimax game between a generator (G) and a discriminator (D) with the objective function 𝑉𝑉(𝐷𝐷, 𝐺𝐺). 
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In game theory terms, the GAN model converges when D and G reach a Nash equilibrium, which is the optimal 
point for the minimax equation below: 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉(𝐷𝐷, 𝐺𝐺) = 𝐸𝐸�~�����(�)[𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙(𝑥𝑥)] + 𝐸𝐸�~��(�)[𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��.                                                (1) 

The equation above includes two addends that reflect the competing goals of the players: (a) the entropy of the 
real data samples passing through D (i.e., the probability of the “successful” job of D when it allows the flow of data 
from the reality (𝑝𝑝����(𝑥𝑥)); (b) the entropy of the random data samples fed to D, i.e. the “failure” level of D when it 
allows the flow of fake data created by G (𝑝𝑝�(𝑧𝑧)). Naturally, D works to maximize the function (1) trying to increase 
the first term (i.e., successfully recognize the real data inputs) and also increase the second one (i.e., uncover the 
fake inputs from G). G has an opposite task. Its cheating is aimed at ensuring that D is making mistakes: misses the 
“correct” samples (minimizing the first addend) and allows the flow of fakes (minimizing also the second term). 
Therefore, G works to minimize the function (1). Loss function for D (provided as a feedback for update of D) 
considers the own misclassification error and, therefore, the generation success of G: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷) = �
�

∙ ∑ �log 𝐷𝐷�𝑥𝑥(�)� + log �1 − 𝐷𝐷 �𝐺𝐺�𝑧𝑧(�)�����
��� .                                                                                      (2) 

Loss function for G (provided as a feedback for update of G) takes into account the own generation error 
(uncovered samples) and, therefore, the discrimination success of D: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺) = �
�

∙ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧(�))))�
��� .                                                                                                        (3) 

Training GANs means training simultaneously two competing neural networks using the loss values as a 
feedback for the backpropagation [30]. Training algorithm for D starts with fixing (temporally “freezing”) the 
weights of G and taking samples from both real world and generated images. Then D is being trained to distinguish 
between the R and G images. Then the time is given for G to learn. At the first stage, training algorithm for G 
freezes the weights of D. Then samples from G are created. The backpropagation error through D is used to update 
the weights of G. There can be several iterations of such asynchronous (D-G) training. At each iteration, the gradient 
of the loss function is updated, as well as the parameters to min (max) the loss function (gradient descent / ascent). 
These two steps iterate until convergence. G is “perfect” if it is impossible to discriminate between real and 
generated input samples (D accuracy ≈ 0.5). In this paper, we show that the basic principles of GANs are well suited 
for creation of different digital “immunity” and “vaccination” models for the AI-driven Industry 4.0 systems. 

3. Reality as the third player in GAN architecture 

Unlike in the classical GAN-architecture with two major players (G vs. D), a third full-fledged independent 
player representing reality is needed to model the immunity. In such architectures, the “Reality” would be an 
independent, proactive and learnable player, as the two others. The Reality component is responsible for supplying 
the real-world data as a training content for G and D. We distinguish three main ways of organizing such a delivery: 

 Method (A) “Reality as Such”, when an unsupervised flow of data from the natural environment is fed to the 
system (similar to traditional GAN architecture); 

 Method (B) “Filtered Reality”, when a controlled flow of data from the natural environment is fed to the system. 
To do this, a new player “Reality Recruiter” is introduced within the GAN architecture. Its task is to select the 
appropriate data set (correct from the point of view of the “immune response” creation) from the environmental 
data samples (from either the most representative or the “trickiest” ones); 

 Method (C) “Generated Reality”, when the generated data flow from the simulated or artificial environment is 
fed to the system. “Reality as Such” (А) version, in which the “Reality” component is not an intelligent one 
(neither learnable, nor a neural network driven). This component serves as the “Reality” model according to the 
“Closed World Assumption”. Most ML algorithms process training sets as “closed world” systems. Following 
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2. Digital immunity and generative adversarial networks 

The brief story, on how we came to the immunity concept as a motivation to update further the GAN framework, 
is as follows. Our team (mainly AI experts) was interested in GAN as such because it has been one of the major 
inventions in AI and ML for the last decade. We worked out some techniques on using GANs to design digital 
cognitive clones of humans capable to replace the latter ones in some industrial processes [24]. Later, when we meet 
the challenges of NATO SPS project “Cyber-Defence for Intelligent Systems” (http://recode.bg/natog5511) and 
particularly security of AI/ML-supervised supply-chain and logistics, we discover that one of the most dangerous 
vulnerabilities of such systems (allowing the most insidious attacks) is the intelligent component and ML in 
particular [25]. Successful adversarial attacks to ML may cause huge impact as shown in [26], and, as indicated in 
[27] industry practitioners are still not equipped to protect, detect and respond to such attacks. ML systems are 
vulnerable both at the learning phase of the model design (e.g., data poisoning attack) or when the trained model 
start making predictions (evasion attacks). A common way to force the models to make wrong predictions is to 
design adversarial examples as discovered in [28] and such design involves perturbations that are almost 
indistinguishable to humans, yet force ML models to make wrong predictions. An adversarial example is an input to 
ML model that is intentionally designed by an attacker to fool the model into producing an incorrect output.  
Effective defenses as response to the new types of attacks appear slower than the new attacks are being invented. 
There is just one example among many similar ones: the popular and effective ML-based malware detection 
techniques (e.g., the ones based on Random Forest, Support Vector Machine, and Convolutional Neural Networks) 
has been shown to completely fail under the novel adversarial texture malware perturbation attack presented in [29]. 
Therefore, a reactive security paradigm cannot be exploited alone without adding also some proactive security 
efforts to be prepared for potential attacks before they occur, by incorporating knowledge of the attacker’s strategy 
into the defense mechanism [21]. We believe that good analogy for the proactive security in real world would be an 
immune system of a human and its interaction with the vaccines as proactive security measures. Such interaction can 
be modelled with GANs, which is a good instrument to represent and pre-train two coevolving counterparts 
(artificial attacker and artificial defender). Our interests on GANs development and the need for proactive security 
solution for our projects meet at that point, and we discovered several updates to the traditional GAN architecture, 
which might be suitable to design some sort of digital immunity for the intelligent systems. 

The core of the GAN-driven generic abstract skeleton for the digital immune system is the basic filtering 
element, which we call a "Debunker", which corresponds to the Discriminator (D) in GAN model. The task of it is 
to address an input (e.g., incoming “stranger”) from the external environment and to make a decision about the 
origin and the intentions of the input (either true / real input (“welcome guest”) from the environment or a falsified 
input (“intruder”) from an attacker pretending to be a real one). To train the “immunity” in such adversarial 
situations, D must have some supervised interaction experience with the two external players: (a) “Reality” 
component, which represents the real external environment and selects true (“healthy”) inputs (data samples) from 
it. In some cases, we need the Reality to generate inputs as challenging as possible for further processing by other 
components; and (b) Fake component, which corresponds to the Generator (G) in GAN architecture, acts as an 
attacker and generates intruders or false inputs (artificially generated data samples) aiming to fool D, break into the 
system and make harm there. It is assumed that D does not know the origin of the inputs (Reality or Fake) during 
training process and must decide itself, whether it is a real or a fake input. The training is possible due to the 
mechanism of feedbacks for all the players (D, Reality and G). This mechanism enables players to constantly 
improve own performance in achieving their competing goals. Therefore, after the training, D will be trained to 
protect (aka immunity), G – to attack (aka vaccine) and Reality – to be as challenging as possible for both rivals. 

Consider the classical formulation of the GAN problem. D gets samples from two sources: (a) from Reality, 
assuming existence of {x(�), … , x(�)} minibatch of reality samples with probability distribution p����(x); (b) from G, 
assuming existence of  {z(�), … , z(�)} minibatch of fake samples with probability distribution p�(z). Discriminator 
is trained to distinguish between the fake and the reality samples. Generator tries to generate samples from scratch 
aiming at the same distribution as the reality samples distribution. It learns to capture the reality samples distribution 
and therefore to fool the Discriminator. The fundamental mathematical model of GANs in the classical formulation 
reproduces the minimax game between a generator (G) and a discriminator (D) with the objective function 𝑉𝑉(𝐷𝐷, 𝐺𝐺). 
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In game theory terms, the GAN model converges when D and G reach a Nash equilibrium, which is the optimal 
point for the minimax equation below: 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉(𝐷𝐷, 𝐺𝐺) = 𝐸𝐸�~�����(�)[𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙(𝑥𝑥)] + 𝐸𝐸�~��(�)[𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��.                                                (1) 

The equation above includes two addends that reflect the competing goals of the players: (a) the entropy of the 
real data samples passing through D (i.e., the probability of the “successful” job of D when it allows the flow of data 
from the reality (𝑝𝑝����(𝑥𝑥)); (b) the entropy of the random data samples fed to D, i.e. the “failure” level of D when it 
allows the flow of fake data created by G (𝑝𝑝�(𝑧𝑧)). Naturally, D works to maximize the function (1) trying to increase 
the first term (i.e., successfully recognize the real data inputs) and also increase the second one (i.e., uncover the 
fake inputs from G). G has an opposite task. Its cheating is aimed at ensuring that D is making mistakes: misses the 
“correct” samples (minimizing the first addend) and allows the flow of fakes (minimizing also the second term). 
Therefore, G works to minimize the function (1). Loss function for D (provided as a feedback for update of D) 
considers the own misclassification error and, therefore, the generation success of G: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷) = �
�

∙ ∑ �log 𝐷𝐷�𝑥𝑥(�)� + log �1 − 𝐷𝐷 �𝐺𝐺�𝑧𝑧(�)�����
��� .                                                                                      (2) 

Loss function for G (provided as a feedback for update of G) takes into account the own generation error 
(uncovered samples) and, therefore, the discrimination success of D: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺) = �
�
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Training GANs means training simultaneously two competing neural networks using the loss values as a 
feedback for the backpropagation [30]. Training algorithm for D starts with fixing (temporally “freezing”) the 
weights of G and taking samples from both real world and generated images. Then D is being trained to distinguish 
between the R and G images. Then the time is given for G to learn. At the first stage, training algorithm for G 
freezes the weights of D. Then samples from G are created. The backpropagation error through D is used to update 
the weights of G. There can be several iterations of such asynchronous (D-G) training. At each iteration, the gradient 
of the loss function is updated, as well as the parameters to min (max) the loss function (gradient descent / ascent). 
These two steps iterate until convergence. G is “perfect” if it is impossible to discriminate between real and 
generated input samples (D accuracy ≈ 0.5). In this paper, we show that the basic principles of GANs are well suited 
for creation of different digital “immunity” and “vaccination” models for the AI-driven Industry 4.0 systems. 

3. Reality as the third player in GAN architecture 

Unlike in the classical GAN-architecture with two major players (G vs. D), a third full-fledged independent 
player representing reality is needed to model the immunity. In such architectures, the “Reality” would be an 
independent, proactive and learnable player, as the two others. The Reality component is responsible for supplying 
the real-world data as a training content for G and D. We distinguish three main ways of organizing such a delivery: 

 Method (A) “Reality as Such”, when an unsupervised flow of data from the natural environment is fed to the 
system (similar to traditional GAN architecture); 

 Method (B) “Filtered Reality”, when a controlled flow of data from the natural environment is fed to the system. 
To do this, a new player “Reality Recruiter” is introduced within the GAN architecture. Its task is to select the 
appropriate data set (correct from the point of view of the “immune response” creation) from the environmental 
data samples (from either the most representative or the “trickiest” ones); 

 Method (C) “Generated Reality”, when the generated data flow from the simulated or artificial environment is 
fed to the system. “Reality as Such” (А) version, in which the “Reality” component is not an intelligent one 
(neither learnable, nor a neural network driven). This component serves as the “Reality” model according to the 
“Closed World Assumption”. Most ML algorithms process training sets as “closed world” systems. Following 
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the “Closed World Assumption”, one concludes that this information is false due to the lack of information about 
the sample. That means the unknown simply cannot be true by default. An alternative to it is the Open World 
Assumption, according to which lack of information does not imply the missing information to be false. 

Assume we have a complete set of the Real-World samples (e.g. images), which have some distribution 𝜃𝜃 =
𝑝𝑝����(𝑥𝑥). The “Reality as Such” component randomly selects samples from the Real World with respect to the 
distribution 𝜃𝜃. This component is the same as the one used in the classical GAN and it is not an active player in the 
“game”: Fake (G) vs. Debunker (D), i.e., it does not depend on the feedback from this game. 

“Filtered Reality” (В) version of the “Reality” component is an intelligent one (capable of learning and neural 
network driven). This component intends to represent the “Reality” so that it would be difficult to learn how to fake 
it. It also follows the Closed World Assumption (see Figure 1). 

Fig. 1. GAN with Filtered Reality (enhanced with the trainable “Recruiter”). 

Assume we have a complete set 𝑅𝑅 of the Real-World samples (e.g. images), which has some distribution  𝜃𝜃 =
𝑝𝑝����(𝑥𝑥). Such set can be divided into a number of subsets 𝑅𝑅� 𝑅𝑅�, … ,  𝑅𝑅� ∈ Ƥ(𝑅𝑅) so that each subset 𝑅𝑅�  has some 
distribution 𝜃𝜃� = 𝑝𝑝����

(�) (𝑥𝑥) . The core of Filtered Reality is a neural network “Reality Recruiter” (RR). Its 
configuration works as a filter, which recognizes a sample of a particular distribution 𝜃𝜃� and “recruits” it as a set 𝑅𝑅�  
to represent the Reality. After the set 𝑅𝑅�  is collected, the traditional “game”: G vs. D starts. It lasts as long as 
necessary for reaching the balance (i.e., G learns 𝜃𝜃� and is capable to fool D). Then RR gets the feedback from this 
game as a loss function, which is the inverse ratio to the time needed to reach the balance. After one cycle of the 
backpropagation, RR will be modified and will be capable to recruit the Reality samples with different distribution 
𝜃𝜃�, which will be harder to fake. After several iterations RR is expected to find such configuration 𝜃𝜃������ , which 
corresponds to the subset of samples 𝑅𝑅������   from the reality, which would be most difficult to forge. Loss function 
for RR has the following basic structure: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅) = �
��������

 ,                                                                                                                                  (4) 

where 𝑛𝑛������� is the amount of training (G vs. D) iterations needed to reach the balance. 
RR must function so that the distribution of the samples in the subset from the real world images created/updated 

by it would be as difficult as possible to forge, and, in case of such an attempt, it would be as easy as possible to 
recognize a counterfeit. D in such architecture tries to distinguish between real and fake images according to the 
discovered difference between corresponding distributions. G tries to guess the distribution of the current subset of 
the real-world images and generates fake images of the world according to that distribution. RR takes and constantly 
updates the subset of the real-world images and, therefore, updates the distribution of images (aiming to hide this 
distribution from G as long as possible). The Feedback loop for RR works as follows. First, G learns how to fool D 
(i.e., the distribution of generated images is almost the same as the distribution of the real images subset) forcing it 
to guess (fifty-fifty). Then R will get a feedback as a loss function proportional to G and D overall learning feedback 
during the last iteration. RR will update its weights so that the distribution of the new subset of the real-world 
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images increases the “hacking” (G) effort for the next iteration and decreases the “discriminating” (D) effort. RR 
forms (and later during training) constantly updates the selection criteria, which is an explicit specification of the 
features for the distribution 𝜃𝜃�. On the basis of the selection of the real-world images (with the distribution 𝜃𝜃�) the 
traditional GAN (with the two players: G vs. D) starts to work until the balance of G vs. D performances is reached. 
Assume that the balance is reached in 𝑛𝑛� iterations. RR, which is a neural network, receives the feedback from GAN 
(after the balance is reached). The feedback is a loss function 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅) value, which depends on how easy the 
previous selection made by RR can be hacked by G. Therefore, following the basic formulation (4): 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅) = �
��

.                                                                                                                                                  (5) 

The loss function initiates the backpropagation process in the RR network and, as the result, the network 
reconfigures the parameters of the distribution from 𝜃𝜃� to 𝜃𝜃��� . Then RR prepares a new group of training samples 
as a subset of all the real-world images according to the updated distribution 𝜃𝜃���. The specifics of the neural 
network training guarantees that this new selection will be more difficult to hack (𝑛𝑛��� ≥ 𝑛𝑛�) for G than the previous 
one. Therefore iteratively (after a number of iterations) RR will find an optimal (most protected against potential 
evasion attacks) subset of training data and also both D and G will be trained in the most challenging environment. 

The third possible player for the Reality role is the “Generated Reality”, which is also the learnable and neural 
network driven. This component intends to generate some new version of the “Reality” so that it would be as 
difficult as possible to learn how to fake. It follows the Open World Assumption, capable of working without the set 
of the Real-World samples (e.g., images). It has a new component Reality Generator (GR), which generates (at each 
iteration) a set of samples as the representation of the generated reality with some distribution 𝜃𝜃� = 𝑝𝑝�

(�)(𝑧𝑧). Then the 
traditional “game”: Fake (G) vs. Debunker (D) starts and lasts as long for reaching the balance as necessary (i.e., G 
learns 𝜃𝜃� and is capable to fool D with fakes). Then the neural network of the GR gets the feedback from this game 
as the loss function value, which is the aggregated difference between D (ally) losses and G (adversary) losses 
during the time needed to reach the balance. After one step of the backpropagation, the GR network will be 
modified and will be capable to generate the Reality samples with a different distribution 𝜃𝜃�, which is harder to fake. 
With the Open World Assumption this iterative process may continue infinitely or can be stopped on some 
satisfactory configuration 𝜃𝜃������ , which will correspond to the subset of the generated (difficult enough to forge) 
samples from the reality. The Reality Generator (𝐺𝐺𝐺𝐺) loss function is: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺𝐺𝐺) = ∑ [𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�(𝐷𝐷) − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�(𝐺𝐺)]
��������
��� ,                                                                                         (6) 

where 𝑖𝑖 indicates the iteration number and 𝑛𝑛�������  is the amount of training (G vs. D) iterations needed to reach the 
balance. To avoid the dependence of the 𝑛𝑛�������  in formulas (4) and (6) and 𝑛𝑛�  in formula (5) on the random 
weight initialization within D and potential mode collapse issues [31], GAN must be trained synchronously with 
several initializations for D and the obtained values 𝑛𝑛�������

(�) , 𝑛𝑛�������
(�) , … , 𝑛𝑛�������

(�)  for the discrete time (measured in 
iterations) needed to reach the balance can be aggregated using the harmonic mean function [32], which is less 
tolerant to the high valued outliers.   

GR must function so that the distribution created/updated by it would be as difficult as possible to forge, and, in 
the case of the attempt, it would be as easy as possible to recognize a counterfeit. Tasks of D are the same as in the 
previous GАN architectures. D tries to distinguish between real and fake images according to the discovered 
difference between corresponding distributions. G tries to guess the distribution of the real-world images and 
generates fake images of the world according to that distribution. GR makes changes (“creatively”) in the real world 
and, therefore, updates the distribution of real-world images (aiming to hide this distribution from G as long as 
possible). The feedback loop for the GR works as follows. First, G finishes learning how to fool D (i.e., the 
distribution of generated images is almost the same as the distribution of real images) forcing it to guess (fifty-fifty). 
Then the GR gets feedback as a loss function proportional to the G’s D’s overall learning feedback during the last 
iteration. Finally, the GR updates its weights so that new distribution of the real-world images increases the 
“hacking” (G) effort for the next iteration and decreases the “discriminating” (D) effort. We name these adversarial 
learning techniques the Immunity Training. Each of three GAN components perform its tasks regarding the 
immunity development: 
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the “Closed World Assumption”, one concludes that this information is false due to the lack of information about 
the sample. That means the unknown simply cannot be true by default. An alternative to it is the Open World 
Assumption, according to which lack of information does not imply the missing information to be false. 

Assume we have a complete set of the Real-World samples (e.g. images), which have some distribution 𝜃𝜃 =
𝑝𝑝����(𝑥𝑥). The “Reality as Such” component randomly selects samples from the Real World with respect to the 
distribution 𝜃𝜃. This component is the same as the one used in the classical GAN and it is not an active player in the 
“game”: Fake (G) vs. Debunker (D), i.e., it does not depend on the feedback from this game. 

“Filtered Reality” (В) version of the “Reality” component is an intelligent one (capable of learning and neural 
network driven). This component intends to represent the “Reality” so that it would be difficult to learn how to fake 
it. It also follows the Closed World Assumption (see Figure 1). 

Fig. 1. GAN with Filtered Reality (enhanced with the trainable “Recruiter”). 

Assume we have a complete set 𝑅𝑅 of the Real-World samples (e.g. images), which has some distribution  𝜃𝜃 =
𝑝𝑝����(𝑥𝑥). Such set can be divided into a number of subsets 𝑅𝑅� 𝑅𝑅�, … ,  𝑅𝑅� ∈ Ƥ(𝑅𝑅) so that each subset 𝑅𝑅�  has some 
distribution 𝜃𝜃� = 𝑝𝑝����

(�) (𝑥𝑥) . The core of Filtered Reality is a neural network “Reality Recruiter” (RR). Its 
configuration works as a filter, which recognizes a sample of a particular distribution 𝜃𝜃� and “recruits” it as a set 𝑅𝑅�  
to represent the Reality. After the set 𝑅𝑅�  is collected, the traditional “game”: G vs. D starts. It lasts as long as 
necessary for reaching the balance (i.e., G learns 𝜃𝜃� and is capable to fool D). Then RR gets the feedback from this 
game as a loss function, which is the inverse ratio to the time needed to reach the balance. After one cycle of the 
backpropagation, RR will be modified and will be capable to recruit the Reality samples with different distribution 
𝜃𝜃�, which will be harder to fake. After several iterations RR is expected to find such configuration 𝜃𝜃������ , which 
corresponds to the subset of samples 𝑅𝑅������   from the reality, which would be most difficult to forge. Loss function 
for RR has the following basic structure: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅) = �
��������

 ,                                                                                                                                  (4) 

where 𝑛𝑛������� is the amount of training (G vs. D) iterations needed to reach the balance. 
RR must function so that the distribution of the samples in the subset from the real world images created/updated 

by it would be as difficult as possible to forge, and, in case of such an attempt, it would be as easy as possible to 
recognize a counterfeit. D in such architecture tries to distinguish between real and fake images according to the 
discovered difference between corresponding distributions. G tries to guess the distribution of the current subset of 
the real-world images and generates fake images of the world according to that distribution. RR takes and constantly 
updates the subset of the real-world images and, therefore, updates the distribution of images (aiming to hide this 
distribution from G as long as possible). The Feedback loop for RR works as follows. First, G learns how to fool D 
(i.e., the distribution of generated images is almost the same as the distribution of the real images subset) forcing it 
to guess (fifty-fifty). Then R will get a feedback as a loss function proportional to G and D overall learning feedback 
during the last iteration. RR will update its weights so that the distribution of the new subset of the real-world 
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images increases the “hacking” (G) effort for the next iteration and decreases the “discriminating” (D) effort. RR 
forms (and later during training) constantly updates the selection criteria, which is an explicit specification of the 
features for the distribution 𝜃𝜃�. On the basis of the selection of the real-world images (with the distribution 𝜃𝜃�) the 
traditional GAN (with the two players: G vs. D) starts to work until the balance of G vs. D performances is reached. 
Assume that the balance is reached in 𝑛𝑛� iterations. RR, which is a neural network, receives the feedback from GAN 
(after the balance is reached). The feedback is a loss function 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅) value, which depends on how easy the 
previous selection made by RR can be hacked by G. Therefore, following the basic formulation (4): 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅) = �
��
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The loss function initiates the backpropagation process in the RR network and, as the result, the network 
reconfigures the parameters of the distribution from 𝜃𝜃� to 𝜃𝜃��� . Then RR prepares a new group of training samples 
as a subset of all the real-world images according to the updated distribution 𝜃𝜃���. The specifics of the neural 
network training guarantees that this new selection will be more difficult to hack (𝑛𝑛��� ≥ 𝑛𝑛�) for G than the previous 
one. Therefore iteratively (after a number of iterations) RR will find an optimal (most protected against potential 
evasion attacks) subset of training data and also both D and G will be trained in the most challenging environment. 
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iteration) a set of samples as the representation of the generated reality with some distribution 𝜃𝜃� = 𝑝𝑝�

(�)(𝑧𝑧). Then the 
traditional “game”: Fake (G) vs. Debunker (D) starts and lasts as long for reaching the balance as necessary (i.e., G 
learns 𝜃𝜃� and is capable to fool D with fakes). Then the neural network of the GR gets the feedback from this game 
as the loss function value, which is the aggregated difference between D (ally) losses and G (adversary) losses 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺𝐺𝐺) = ∑ [𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�(𝐷𝐷) − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�(𝐺𝐺)]
��������
��� ,                                                                                         (6) 

where 𝑖𝑖 indicates the iteration number and 𝑛𝑛�������  is the amount of training (G vs. D) iterations needed to reach the 
balance. To avoid the dependence of the 𝑛𝑛�������  in formulas (4) and (6) and 𝑛𝑛�  in formula (5) on the random 
weight initialization within D and potential mode collapse issues [31], GAN must be trained synchronously with 
several initializations for D and the obtained values 𝑛𝑛�������

(�) , 𝑛𝑛�������
(�) , … , 𝑛𝑛�������

(�)  for the discrete time (measured in 
iterations) needed to reach the balance can be aggregated using the harmonic mean function [32], which is less 
tolerant to the high valued outliers.   

GR must function so that the distribution created/updated by it would be as difficult as possible to forge, and, in 
the case of the attempt, it would be as easy as possible to recognize a counterfeit. Tasks of D are the same as in the 
previous GАN architectures. D tries to distinguish between real and fake images according to the discovered 
difference between corresponding distributions. G tries to guess the distribution of the real-world images and 
generates fake images of the world according to that distribution. GR makes changes (“creatively”) in the real world 
and, therefore, updates the distribution of real-world images (aiming to hide this distribution from G as long as 
possible). The feedback loop for the GR works as follows. First, G finishes learning how to fool D (i.e., the 
distribution of generated images is almost the same as the distribution of real images) forcing it to guess (fifty-fifty). 
Then the GR gets feedback as a loss function proportional to the G’s D’s overall learning feedback during the last 
iteration. Finally, the GR updates its weights so that new distribution of the real-world images increases the 
“hacking” (G) effort for the next iteration and decreases the “discriminating” (D) effort. We name these adversarial 
learning techniques the Immunity Training. Each of three GAN components perform its tasks regarding the 
immunity development: 
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 RR (also GR) creates a variety of sophisticated “vaccines” against potential attacks on the “organism”; 

 D simulates the immune system of the organism, which helps the organism to perform its functionality correctly 
after the sophisticated attacks;  

 G helps the vaccine to attack the vulnerabilities of the organism in the most challenging way to activate the 
immune system towards positive evolution.  

4. Updating classical GAN players for immunity development 

The immune system is created in a repeated confrontation between a defender (D) and an attacker (G). G is a 
sparring partner for D and its role is to simulate the attacks to train D and strengthen the digital immune system as a 
whole. We distinguish two principal ways to model possible attacks with the help of the G, and, accordingly, two 
types of the "Fake"/G player (Figure 2 (left)): 

1) "Generated Fake", which generates fake samples; 
2) "Generated Noise", when the samples are real, but they are subjects to the poisoning by some noise. 
Fake-component of the first type is defined as “Generated Fake”. This version of the “Fake” component is 

exactly G from the traditional GAN architecture. This is an intelligent (learning and neural network driven) 
component. G tries to generate samples from scratch (from the random noise 𝑧𝑧) with the distribution  𝑝𝑝�(𝑧𝑧) aiming 
to bring this distribution as close as possible to the reality samples distribution. It trains to capture the reality 
samples distribution and, therefore, to fool D.  Therefore, its target is to minimize its own loss function (3). 

Fake-component of the second type is defined as “Generated Noise” (GN). Such component is not creating fakes 
as such, but it creates (generates) special signals (“noise”), which being mixed with the Reality samples, keep these 
samples to be naturally looking for humans and at the same time confusing for the artificial D (evasion attack). We 
consider two kinds of “noise”: the one, which is added as such to the reality samples; or the one, which is served as 
a “style”, i.e., set of features values, which are integrated to the deeper representation of the reality sample. 

Similarly, to the traditional G component, the GN trains to capture the reality samples distribution and therefore 
to fool any kind of D.  Therefore, its target is to minimize own loss function:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺𝐺𝐺) = �
�
∙ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷 �𝐺𝐺𝐺𝐺�𝑧𝑧(�)��� .�

���                                                                                               (7) 

Finally, let us consider the element, which ensures security functions of the digital immunity, i.e., the Debunker 
(D in terms of GAN). We distinguish two principal types of security modelling (Figure 2 (right)): 

I) “Traditional Discriminator” based on AI; 
II) “Turing Discriminator” based on collective intelligence. 

The Traditional Discriminator (I) version of the “Debunker” component is exactly the one, named D in the 
traditional GAN architecture. This is an intelligent (learning and neural network driven) component. D tries to 
distinguish between samples coming from the “Reality” channel from the ones coming from the “Fake” channel, 
i.e., it learns the decision boundary between real and fake samples. When trained, it can be used as a component, 
which “protects” the “organism” of an intelligent system from the dangerous alien instances. While training its 
target is to minimize its own loss function (2). 

The second type of the Debunker is an interesting, innovative and potentially very useful and multi-purpose 
component. The “Turing Discriminator” (TD) version of the “Debunker” component behaves, on the one hand, as a 
“black box”, i.e., similar to the traditional D, it has the same structure of the loss function, however, on the other 
hand, it has different semantics. TD is a collective intelligence, which includes at least one human (H), and at least 
one traditional learning neural (D) discriminator. Both (H and D) are differentiating between input samples (“real” 
or “fake”). The TD outputs the probability distribution between “Match” and “No match” of the H and D opinions, 
which is used as the loss function to train D. The D player in TD tries to learn to synchronize its own opinions on 
the inputs with the H’s opinions. Such schema allows training D to be resistant against potential evasion attacks. 
Sometimes it is possible to use a “strong previously trained artificial classifier” AI-H instead of H, and then D tries 
to learn to the level of AI-H. 
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GAN architecture encoded as (A) (2) (I) is a good illustration of a training model (aka “immunity against 
poisons”) for an Intelligent System. GN generates well camouflaged and constantly evolving noise (or style) to 
compromise data, and D improves own performance in the discovery (“poisoned” or “clean”) for every input. 

Architecture encoded as (A) (2) (II) naturally inherits the properties of both (A) (2) (I) and (A) (1) (II) 
architectures. Architecture encoded as (B) (1) (I) is similar to (A) (1) (I) architecture but with the better trained 
attacker and, as a result, the better trained immunity. G generates constantly evolving aliens (imitating different 
representations of the reality) for the poisoning attacks; therefore, the generic immunity driver D (after training) will 
have more advanced capability in the discovery (a “friend” or an “alien”) for every intruder. Architecture (B) (1) (II) 
naturally inherits the properties of both (A) (1) (II) and (B) (1) (I) architectures. Architecture (B) (2) (I) naturally 
inherits the properties of (A) (2) (I) and (B) (1) (I) architectures. Architecture (B) (2) (II) naturally inherits the 
properties of both (A) (2) (II) and (B) (2) (I) architectures. (C) (1) (I) is similar to (A) (1) (I) architecture but with 
the better trained attacker and, as a result, the better trained immunity. G generates constantly evolving aliens for the 
poisoning attacks (trying to capture not only the distribution of the reality samples but also the hidden model of how 
the reality is being modified by the GR component). Therefore, the generic immunity driver D will have more 
advanced capability after such training. Architecture (C) (1) (II) naturally inherits the properties of (C) (1) (I), (A) 
(1) (II) and (B) (1) (II) architectures.  Architecture (C) (2) (I) naturally inherits the properties of (C) (1) (I), (A) (2) 
(I) and (B) (2) (I) architectures. Architecture (C) (2) (II) naturally inherits the properties of (C) (2) (I), (A) (2) (II) 
and (B) (2) (II) architectures. This architecture assumes that the GN will learn how to generate a suitable poison for 
images of a self-creative smart reality aiming at a sophisticated evasion attacks on the test data of an intelligent 
system. TD in this case learns to detect sophisticated malicious inputs. 

As we see, different combinations of the key elements create 12 basic architectures of the АI-immunity. They 
cover a wide range of aspects to protect AI-driven Industry 4.0 systems from a variety of the reality manipulation 
attacks with varying degrees of difficulty.  

6. Conclusions 

Digital immunity as a basic trained self-protection mechanism is needed for Industry 4.0 systems. GAN is a 
suitable paradigm to simulate training environment needed for the digital immunity. We suggest a couple of 
modifications to the basic GAN schema, i.e., Reality as a proactive trained neural-network-driven player and Turing 
Discriminator, which enables human-in-the-loop. By combining various players in the GAN configuration (three 
options for the Reality role; two options for the Discriminator role and two options for the Generator role), we 
present 12 GAN architectures. Each of these architectures has certain specifics if applied for the purpose of security 
of Industry 4.0 systems. Tasks related to the immunity training against various sophisticated attacks (data poisoning, 
evasion, etc.) could be addressed by thorough choice of the appropriate GAN architecture. Smart and evolving 
adversarial components in the architectures essentially facilitate the immunity training. Basic GAN components can 
be multiplied (e.g., several Discriminators or Generators, or several humans within Turing Discriminator), which 
creates wide possibilities to create complex GANs for new challenging problems. Therefore, as the immediate goals 
for the future research would be constructing and testing GAN architectures with multiple human and AI 
components, i.e., with the embedded collective intelligence and checking the potential impact of such digitalized 
collaborative intelligence for a variety of industrial problems.    
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GAN architecture encoded as (A) (2) (I) is a good illustration of a training model (aka “immunity against 
poisons”) for an Intelligent System. GN generates well camouflaged and constantly evolving noise (or style) to 
compromise data, and D improves own performance in the discovery (“poisoned” or “clean”) for every input. 

Architecture encoded as (A) (2) (II) naturally inherits the properties of both (A) (2) (I) and (A) (1) (II) 
architectures. Architecture encoded as (B) (1) (I) is similar to (A) (1) (I) architecture but with the better trained 
attacker and, as a result, the better trained immunity. G generates constantly evolving aliens (imitating different 
representations of the reality) for the poisoning attacks; therefore, the generic immunity driver D (after training) will 
have more advanced capability in the discovery (a “friend” or an “alien”) for every intruder. Architecture (B) (1) (II) 
naturally inherits the properties of both (A) (1) (II) and (B) (1) (I) architectures. Architecture (B) (2) (I) naturally 
inherits the properties of (A) (2) (I) and (B) (1) (I) architectures. Architecture (B) (2) (II) naturally inherits the 
properties of both (A) (2) (II) and (B) (2) (I) architectures. (C) (1) (I) is similar to (A) (1) (I) architecture but with 
the better trained attacker and, as a result, the better trained immunity. G generates constantly evolving aliens for the 
poisoning attacks (trying to capture not only the distribution of the reality samples but also the hidden model of how 
the reality is being modified by the GR component). Therefore, the generic immunity driver D will have more 
advanced capability after such training. Architecture (C) (1) (II) naturally inherits the properties of (C) (1) (I), (A) 
(1) (II) and (B) (1) (II) architectures.  Architecture (C) (2) (I) naturally inherits the properties of (C) (1) (I), (A) (2) 
(I) and (B) (2) (I) architectures. Architecture (C) (2) (II) naturally inherits the properties of (C) (2) (I), (A) (2) (II) 
and (B) (2) (II) architectures. This architecture assumes that the GN will learn how to generate a suitable poison for 
images of a self-creative smart reality aiming at a sophisticated evasion attacks on the test data of an intelligent 
system. TD in this case learns to detect sophisticated malicious inputs. 

As we see, different combinations of the key elements create 12 basic architectures of the АI-immunity. They 
cover a wide range of aspects to protect AI-driven Industry 4.0 systems from a variety of the reality manipulation 
attacks with varying degrees of difficulty.  

6. Conclusions 

Digital immunity as a basic trained self-protection mechanism is needed for Industry 4.0 systems. GAN is a 
suitable paradigm to simulate training environment needed for the digital immunity. We suggest a couple of 
modifications to the basic GAN schema, i.e., Reality as a proactive trained neural-network-driven player and Turing 
Discriminator, which enables human-in-the-loop. By combining various players in the GAN configuration (three 
options for the Reality role; two options for the Discriminator role and two options for the Generator role), we 
present 12 GAN architectures. Each of these architectures has certain specifics if applied for the purpose of security 
of Industry 4.0 systems. Tasks related to the immunity training against various sophisticated attacks (data poisoning, 
evasion, etc.) could be addressed by thorough choice of the appropriate GAN architecture. Smart and evolving 
adversarial components in the architectures essentially facilitate the immunity training. Basic GAN components can 
be multiplied (e.g., several Discriminators or Generators, or several humans within Turing Discriminator), which 
creates wide possibilities to create complex GANs for new challenging problems. Therefore, as the immediate goals 
for the future research would be constructing and testing GAN architectures with multiple human and AI 
components, i.e., with the embedded collective intelligence and checking the potential impact of such digitalized 
collaborative intelligence for a variety of industrial problems.    
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