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Abstract 

Toiviainen, Petri 
Modelling musical cognition with artificial neural networks 
Jyvaskyla: University of Jyvaskyla, 1996. 40 p. 
(Jyvaskyla Studies in the Arts, 
ISSN 0075-4633; 51) 
ISBN 951-34-0655-5 
Diss. 

As a highly abstract form of human activity, music is a challenging realm 
to study. During the last ten years, the connectionist paradigm has pro­
vided insights into many domains of human behaviour, including musi­
cal activity and experience. Artificial neural networks, or connectionist 
systems, can be characterized as strongly idealized models of networks 
formed by biological neurons: consisting of a bulk of simple intercon­
nected processing units, they employ parallel distributed processing and 
are capable of learning and self-organizing. 

The present study focuses on aspects of musical cognition such as per­
ceptual learning, self-organization, feature extraction, sequential process­
ing, autoassociative recall, and short-term memory. More specifically, pro­
cesses related to the classification and recognition of musical timbre and 
the learning and generation of melodies are modelled using artificial 
neural networks. 

The results support the view that the connectionist paradigm pro­
vides a plausible alternative for modelling the dynamics of certain music­
related cognitive processes. Being inherently capable of generalizing, asso­
ciating on the basis of content, and tolerating noisy or distorted input, arti­
ficial neural networks exhibit functions characteristic of the human way of 
perceiving, thinking, and acting. 

Keywords: music, cognition, artificial neural networks, self-organization, 
sequential processing, musical timbre, improvisation 



FOREWORD 

"That [jazz] music gets on my nerves!" 
Aarni Toiviainen (1987-) 

This dissertation is a collection of my attempts to understand what hap­
pens when a human interacts with his musical environment. In this chal­
lenging task I have leaned mainly on my education in physics and my 
practical experience as a jazz musician and lecturer in music. 

Most of this work was carried out at the Department of Musicology, 
University of Jyvaskyla during the period 1990-1995, as part of two re­
search projects, "Receiving, learning and producing music as a cognitive 
process" and "Physicalism, connectionism, and representation", both 
funded by the Academy of Finland. 

Three of the publications on which this thesis is based are joint arti­
cles. Publication II was co-written by Mauri Kaipainen. He wrote the first 
half of the Introduction and the Discussion, while I wrote the rest. Study V 
was performed together with Topi Jarvinen. Apart from the sections that 
dealt with our own previous research, both of us contributed significantly 
to each part of the study. The actual writing was, however, divided, so that 
Jarvinen wrote the sections on the results, while I was responsible for the 
mathematical discussions. My contribution to study VI consists of the de­
sign and implementation of the preprocessing stage. In the publication 
concerned I have written the sections "Turning musical flow into pitch 
vectors by autocorrelation" and "Turning pitch vectors into short-to-long­
term inhibitory memory pools". 

Since computer simulations were an essential part of my studies, I 
have included source codes (in C language) of the two most important 
neural network simulators I have used: the Kohonen map simulator used 



in studies II and III (Appendix 1) and the jazz improvisation model used 
in studies IV and V (Appendix 2). 

This work was made possible by a great deal of help and support from a 
number of people. First of all, I would like to express my deepest gratitude 
to Professor Jukka Louhivuori, the director of the two aforementioned re­
search projects. I think he demonstrated considerable liberality by asking 
me, a novice in cognitive musicology, to join his research projects. His 
continuous support and enthusiasm for my work as well as his far-sighted 
and creative attitude have been crucial during the course of this project. 

I am much indebted to Dr. Marc Leman who has in the course of the 
entire research process offered many valuable critical remarks on my 
work. In autumn 1993, I had the opportunity to work as a visiting re­
searcher at his institute (IPEM, University of Ghent, Belgium). This period 
turned out to be very important for this project. 

I am grateful to Professor Matti Vainio for his sympathetic attitude 
towards my work and also for backing my applications in various commit­
tees. Professor Jussi Timonen was the supervisor of my master's thesis in 
theoretical physics (1987). My gratitude to him for leading me into the 
world of non-linear dynamical systems. 

Mauri Kaipainen and Topi Jarvinen have on several occasions of­
fered many valuable comments on drafts of my papers and on my work in 
general. Moreover, I wish to thank them for their smooth collaboration 
when preparing our joint articles. My gratitude also to John Richardson 
for proof-reading a number of my articles and guiding me in the subtleties 
of the English language. 

This work would not have been possible without the financial sup­
port given by the Academy of Finland. Moreover, I am indebted to the 
University of Jyviiskylii for providing me with research facilities and fi­
nancing some conference trips I have made. The financial support given 
by Ellen ja Artturi Nyyssosen siiiitio is also gratefully acknowledged. 

Finally, I would like to express my gratitude to my wife Tuija and my 
sons Maunu, Aarni, and Leo for their love, support, and patience. 

Jyviiskylii, 2 January, 1996 
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1 INTRODUCTION 

Artificial neural networks, also referred to as connectionist or parallel dis­
tributed processing (PDP) systems1, can be characterized as strongly ideal­
ized models of networks formed by biological neurons: although the basic 
principles of their mechanisms and structures have been adopted from bi­
ological neural networks, they are generally not intended to model the 
physiological processes in the neural tissue. Technically, they are nonlin­
ear dynamic systems consisting of a multitude of simple, interconnected 
processing units, frequently referred to as (artificial) neurons. They have 
three important properties. First, they are parallel, i.e., the processing units 
interact simultaneously and independent of each other2. Second, they are
distributed, i.e., their knowledge resides in the strengths of intemeuronal 
connections; and the data manipulated by them is represented as patterns 
of neuronal activation. Third, they are adaptive, i.e., when exposed to data 
from the environment, they are capable of learning by adjusting the 
strengths of their interneuronal connections. 

A variety of types of artificial neural networks have been developed 
for a wide range of purposes. They can be categorized, for instance, on the 
basis of their architecture, dynamics, the type of data they process, or learn­
ing algorithm. Two important partitions will be briefly discussed here, 

1 

2 

The terms 'artificial neural network' and 'connectionist system' will subsequently be 
used as synonyms. 
Artifial neural networks are mostly simulated on traditional serial computers. 
Consequently, the processing is in fact serial - on the lowest level of description. On 
a higher level of description it is, however, parallel. 
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viz., dynamic vs. static networks and supervised vs. unsupervised learn­
ing. 

The behaviour of static networks is characterized by equations that 
are memoryless. Their output is a function of the current input only, not 
of past inputs or outputs. This category embraces, a.o., the perceptron 
(Rosenblatt, 1958) and the multilayer perceptron (Rumelhart, Hinton & 
Williams, 1986) network. The latter, also referred to as the back-propaga­
tion network, is perhaps the most used and studied type of artificial neural 
network. In such a network, the neurons are organized in layers - an in­
put layer, one or more hidden layers, and an output layer - and have 
feedforward connections from each layer to the next one. Such a network 
is usually trained by the back-propagation of error algorithm (Rumelhart, 
Hinton & Williams, 1986), in order to produce a desired mapping from the 
input space to the output space. This algorithm is actually an optimization 
procedure: the goal is to minimize the error between desired and obtained 
outputs by means of the gradient descent method. Applications of multi­
layer perceptron networks include pattern recognition and functional ap­
proximation. 

Dynamic networks are systems with memory. Their dynamical be­
haviour is described by differential or difference equations. Dynamic net­
works can be further divided into two subcategories: networks with output 
feedback and those with state feedback. 

Networks with output feedback can be used for processing sequential 
data. Under this category belongs the network architecture proposed by 
Jordan (1986): a multilayer perceptron network which has feedback con­
nections from the output layer to the input layer. Variants of this architec­
ture have been used for musical applications (see below). 

Networks with state feedback are typically single-layer networks with 
feedback connections between nodes. In the most extreme case the neu­
rons are completely interconnected, i.e., every neuron is connected to ev­
ery other. Networks with state feedback can be used, for instance, for con­
straint satisfaction, i.e., for solving problems where one has to take into ac­
count many concurrent local constraints. Such networks can find a solu­
tion to a given problem which in the best possible way takes into account 
the given constraints. They are set in operation by presenting them with a 
pattern of neuronal activations which represents the problem being 
solved. This disturbs the equilibrium state of the network and starts a 
flow of activation between neurons - a process referred to as relaxation. 
The flow continues until the network settles to a stable state. This equilib­
rium can be conceived of as a solution to the problem in question. The 
state of the network can be characterized using a global function which de­
scribes how well the network satisfies the given constraints. This function 
is referred to as the energy function (Hopfield, 1984), harmony function 
(Smolensky, 1986), or goodness function (McClelland & Rumelhart, 1988). 
Solving problems is equivalent to minimizing the energy function or 
maximizing the harmony or goodness function. Besides problem solving, 
networks with state feedback can be utilized for pattern completion 
through auto-association: each pattern of activation the network has 
memorized corresponds to a minimum of energy in its state space. When 
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being presented with a noisy or distorted version of a memorized pattern, 
these networks are capable of recollecting the original pattern through re­
laxation. Examples of networks with state feedback are the interactive acti­
vation model (Rumelhart, Hinton & McClelland, 1986), Hopfield network 
(Hopfield, 1984), Boltzmann machine (Hinton & Sejnowski, 1986), and 
harmony theory network (Smolensky, 1986). 

Artificial neural networks can be further categorized, on the basis of 
the type of learning they employ, into supervised and unsupervised learn­
ing networks. The networks discussed so far belong under the former cate­
gory: they are intended to produce a desired output from a given input. 
The latter category, unsupervised learning networks, is probably the most 
interesting class of artificial neural networks, because their way of extract­
ing knowledge about the environment resembles that of biological sys­
tems. Such networks are presented with only input samples; these are 
grouped into classes which are self-similar through a process referred to as 
self-organization. Examples of self-organizing networks are the Adaptive 
Resonance Theory (ART) networks - ART 2 (Carpenter & Grossberg, 
1987) and ART 3 (Carpenter & Grossberg, 1990) - and Kohonen's self-or­
ganizing feature map (Kohonen, 1989); all of these belong under the cate­
gory of static networks. Whereas the ART networks perform an automatic 
categorization of the input data set, the Kohonen network maps the input 
vectors onto a two-dimensional surface while retaining their topological 
relationships. 

Connectionist models have been successfully applied to a wide range 
of domains, ranging from physics, mathematics, computer science, and 
engineering to the biological, medical and cognitive sciences, and artificial 
intelligence. Processing vectors, they have showed themselves to be par­
ticularly fit for handling ill-defined, continuous-valued target domains. 
These include, e.g., optimization, control, prediction, pattern recognition, 
and diagnosis. 

Until now, a serious shortcoming of cognitive modelling has been its 
narrow focusing on explicit knowledge and symbolic processing. While 
the existence of a symbol-based mode of thinking in certain cognitive pro­
cesses probably cannot be totally disputed, a great proportion of mental 
phenomena, for instance, creativity, intuition, and humour, cannot be ac­
counted for on the basis of such rational, atomistic, and explicit reasoning. 
Moreover, there is evidence that cognitive processes such as perception, 
memory, thinking, judgement, and problem-solving can all occur implic­
itly, i.e., outside conscious awareness (Valentine 1995). While it seems un­
likely that models based on the orthodox AI could explain such processes, 
the connectionist paradigm, where mental activity is seen as a holistic pro­
cess and information is represented implicitly, may provide means for 
elucidating processes behind these mental phenomena. Besides exhibiting 
behaviour similar to that observed in human information processing, 
connectionist systems are appealing because of their neural realism: they 
can be regarded as more than merely functional models of mind. While 
plausible connectionist models of certain aspects of human mental action, 
in particular those related to memory and perception, have been proposed, 
some aspects may prove to be difficult to model within this paradigm; the 
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latter include, for instance, those related to consciousness, volition, and 
subjective experience. 

The strengths of connectionist systems, from the point of view of cog­
nitive modelling, are summarized below (McClelland, Rumelhart & 
Hinton, 1986; Rumelhart & McClelland, 1986; Gutknecht, 1992): 

• Learning capability. Connectionist systems are usually not pro­
grammed but trained by presenting them with examples. On the basis
of those examples, they adapt to their environment. In supervised
learning, the network is trained to produce a desired output for each
input vector. In unsupervised learning, the network produces,
through self-organization, a categorical or topographical representa­
tion of the input.

• Generalization capability. Connectionist systems are capable of ex­
tracting significant features from the training set and using them for
processing a novel input pattern. Mathematically, the network is ca­
pable of successfully extrapolating an intended function from its
training sample.

• Content-addressability. When presented with a part of a learned in­
put pattern, the network can retrieve, or associate, the whole pattern.
Any learned pattern can thus be addressed by its content rather than
its location in the memory.

• Noise tolerance. Connectionist systems are robust against noisy or in­
complete input patterns.

• Tolerance towards overloading of information. Connectionist sys­
tems do not have a fixed storage capacity: when a network is over­
loaded with input data, similar components of information tend to
blend together, resulting in generalization of features.

The aforementioned strong points of connectionist systems make them 
well suited for modelling sectors of human cognition such as perceptual 
learning and information processing at a subconscious level. 

On the other hand, connectionist systems have been purported to 
lack some capabilities, mostly related to high level reasoning and problem 
solving, which traditional symbol-based models have (Fodor & Pylyshyn, 
1988). According to Gutknecht (1992), limitations of connectionist models 
include: 

• Poor explanation capabilities. Attempts have been made to explain
the behaviour of connectionist networks by, for instance, analyzing
the structure of the connection strength matrix learned. These expla­
nations are, however, at the level of primitive features of the net­
work, such as activation functions and energy landscapes.
Explanations on a higher level of knowledge are difficult to achieve.

• Difficulties with structured representation. Structured knowledge,
such as concept hierarchies or inference nets, is difficult to represent
in connectionist systems, contrary to traditional AI models.

• Lack of compositionality. Connectionist systems are usually designed
for one particular kind of applications and consist of one
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'monolithic' network. As a consequence, it is more difficult than in 
traditional systems to reuse and recombine pieces of their knowledge. 

While these claims certainly are not trumped-up, one can question 
whether the listed weaknesses are inherent properties of connectionist sys­
tems or caused by methodological problems. The ability of a neural net­
work to represent and deal with structured knowledge depends to a great 
extent on the degree of hierarchy and modularity of the network's archi­
tecture; the same applies to compositionality. On the other hand, study VI 
shows that even a relatively simple connectionist system can satisfactorily 
process temporally structured data, if the latter has been preprocessed so 
that it is hierarchical itself. Furthermore, the explanation capability varies 
between different types of networks: whereas a multi-layer perceptron 
network, for instance, contains a great deal of implicit knowledge which is 
often difficult to explain, a Kohonen network is by its nature much more 
explicit. 

An essential aspect which affects the performance of an artificial neu­
ral network is how the input data is represented. According to a general 
view, a distributed representation seems to better exploit the strengths of 
those networks than a local one. A distributed representation can be de­
fined from several points of view. For instance, it may imply representing 
the data as a vector, each component of which stands for a specific micro­
feature of the represented domain. Or, it may denote representing many 
items at once over the same set of processing units or connection weights. 
It must be noted that there is no clear distinction between local and dis­
tributed representation, but rather there exists a continuum between those 
two extremes. If an item is represented as a collection of microfeatures, 
each of those features can again be represented either in a local or a dis­
tributed manner. For example, the most local way of representing chords 
in a connectionist system is to designate one neuron for representing each 
chord. A more distributed representation is obtained by representing each 
chord as the tones it is composed of. The degree of distribution can be fur­
ther increased by representing each of those tones as a harmonic or sub­
harmonic series of frequencies. 

Local and distributed representations are frequently referred to as 
symbolic and subsymbolic, respectively. A distributed representation may, 
however, be composed of a collection of symbolic microfeatures; calling 
such a representation subsymbolic is somewhat inconsistent. According to 
Leman (1993), a genuine subsymbolic representation of sound should be 
based on the way the brain codes information received by the auditory sys­
tem. Yet, as he further points out, it is mostly necessary to use simplified 
forms of representations, i.e. hybrid ones, because of the extreme complex­
ity of the representations the brain uses. 

The use of the connectionist paradigm for modelling musical cogni­
tion can be justified from several points of view. To construct a rule-based 
expert system, an expert is needed who can verbalize the rules which de­
fine the solutions of the problem in question. These rules must be correct 
and consistent. A large part of our musical activities is, however, not ver­
balizable. The ability to play music, for instance, is learned to a great extent 
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by example or through mimicking other players, rather than through 
memorizing explicit rules concerning the musical style in question. 
Furthermore, musicians themselves often find it difficult or even impos­
sible to analyze their own performances. Connectionist models, being ca­
pable of extracting implicit knowledge from examples, offer a more plausi­
ble alternative for modelling these kinds of cognitive processes. 

Many tasks of musical cognition involve low-level processing of of­
ten noisy or distorted sound data. These include, for instance, the percep­
tion of pitch, the recognition of timbre (i.e., sound colour), and the local­
ization and segregation of sound sources. Attempts to model these kinds 
of processes with traditional AI systems may prove to be intricate: in order 
to be capable of properly dealing with noisy or distorted input data, such 
models should probably be equipped with a multitude of rules. Even rela­
tively simple connectionist systems, on the other hand, have been shown 
to tolerate noise and distortions present in such low-level tasks of musical 
cognition. 



2 CONNECTIONIST MODELLING OF MUSIC: 

A REVIEW OF LITERATURE 

2.1. Overviews 

General directions of connectionist modelling of music have been out­
lined at least by Bharucha (1988), Camurri, Haus, and Zaccaria (1986), 
Leman (1988, 1989), Lischka (1991), Loy (1991), and Marsden and Pople 
(1989a, 1989b). Bharucha (1988) discusses several models of music cogni­
tion, including a constraint satisfaction network for Western harmony, an 
auto-associative network simulating cross-cultural differences in tonal 
implications, and back-propagation networks that learn sequential musical 
schemata and specific musical sequences. Camurri et al. (1986) outline how 
musical processes can be described and performed by means of Petri nets. 
Leman deals with the question how sequential musical information can 
be stored and processed in a connectionist network (1988), and outlines a 
general background for the application of connectionist systems to music 
(1989), as well as presenting examples of musical applications of spreading 
activation networks, constraint-satisfaction networks, supervised learning 
networks, and self-organizing networks. A survey of current research 
paradigms in cognitive musicology is provided by Lischka (1991), followed 
by a critique of their basic assumptions and a suggestion for an alternative, 
more biologically-based, approach. Loy (1991) presents an informal 
overview of some of the traditional interests and problems of music re­
search in the computer music community and describes the influence of 
connectionist theories on them. A distributed framework of rule-based 
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systems for modelling musical behaviour is proposed by Marsden and 
Pople (1989a, 1989b). 

As stated above, connectionist systems lend themselves especially 
well to modelling low-level cognitive processes such as perceptual learn­
ing and subconscious processing of information. Attempts to model such 
musical processes have been carried out by a number of researchers. These 
studies cover such fields of musical cognition as the perception of pitch, 
harmony, tonality, timbre, melody, rhythm, metre, and musical se­
quences. 

2.2. Pitch 

The perception of pitch has been modelled within the connectionist 
paradigm by Sano and Jenkins (1989), Laden (1994), and Taylor and 
Greenhough (1994). Sano and Jenkins (1989) use a feedforward network to 
reduce the level of information from a spectral (cochlear) representation 
through a semitone bucket representation to a unified pitch representa­
tion, consisting of the octave and the normalized pitch. Their model 
works only with single complex tones. In a later article, they (Jenkins, 
1991) suggest how their model could be extended to process multiple tone 
inputs. Laden (1994) describes a parallel learning algorithm based on the 
notion that a stimulus does not need to be physically present for a re­
sponse to be learned. In the algorithm, exposing the network to a stimulus 
at one pitch only is enough to specify the harmonic template; the rest of 
the pitches are learned by a simple copy-and-translate procedure. Taylor 
and Greenhough (1994) utilize a self-organizing network architecture 
called ARTMAP, which is based on adaptive resonance theory (ART) net­
works. According to them, their model is capable of developing a great in­
sensitivity to phase, timbre, and loudness when classifying pitch. 

2.3. Harmony, key, and tonality 

Connectionist studies on the perception of harmony, key, or tonality have 
been carried out by a number of researchers (Bharucha, 1987, 1991, 1994; 
Bharucha & Todd, 1989; Scarborough, Miller & Jones, 1989; Laden & Keefe, 
1989; Beyls, 1990; Gjerdingen, 1989, 1990, 1992; Leman, 1990, 1991, 1992a, 
1992b; Griffith, 1993, 1994). Bharucha (1987, 1991) presents a constraint sat­
isfaction network called MUSACT, which is capable of extracting chords 
from tones and keys from chords. He also (Bharucha, 1991) discusses dif­
ferent possibilities for the representation of pitch as well as their strengths 
and weaknesses. Bharucha and Todd (1989) explore how connectionist sys­
tems can be employed to model the acquisition of tonal expectations 
through passive exposure (see also Bharucha, 1994). Using a back-propaga­
tion network with a decaying memory and a cascading algorithm 
(McClelland & Rumelhart, 1988), they found that their model learned to 
absorb cultural schematic expectancies, even though it was trained to pro­
duce only specific veridical expectancies. 

Scarborough et al. (1989) present a feedforward network which identi­
fies tonality from temporally integrated input data, represented as notes of 
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the chromatic scale. They also suggest a network architecture to map pitch 
nodes into scale degrees. Laden and Keefe (1989) discuss alternatives for 
representing pitch in a neural net model for pitch classification, including 
pitch-class, harmonic complex, and subharmonic complex representations. 
Beyls (1990) explores how complex dynamical systems and self-organizing 
systems can be used for modelling the emergence of musical morpholo­
gies. 

Gjerdingen (1989, 1990) describes a self-organizing network architec­
ture, based on ART 2 networks (Carpenter & Grossberg, 1987), intended to 
extract high-level concepts from a stream of musical data. When exposed 
to some early works of Mozart, the network is capable of achieving a mu­
sically sound material categorization of chords and chord pairs. In an at­
tempt to address the so-called 'temporal chunking problem', Gjerdingen 
(1992) employs a masking field (Cohen & Grossberg, 1987) embedded in an 
ART 3 architecture. After having been trained on a sample of 535 chords 
from solo sonatas by Handel, the network was found to be capable of ex­
tracting the varying-scale embedded temporal patterns of chords that char­
acterize harmonic syntax. 

Leman (1990, 1991) outlines a model for the study of the ontogenesis 
of tonal functions. He uses a distributed representation of chords, based on 
Terhadt's psychoacoustical theory of tone perception (Terhardt, Stoll & 
Seewann, 1982), and Kohonen's self-organizing neural network 
(Kohonen, 1989). The network is found to organize basically in terms of 
the circle of fifths. Furthermore, when the statistical distribution of the 
chords is set to correspond to that in the music of Beethoven, Schubert, 
and Brahms, the network is found to give the most stable response, in 
terms of the error between the input vector and the synaptic vector of its 
characteristic neuron, to those chords that have the highest frequency of 
occurrence. While chords in the aforementioned studies are considered as 
static, time-independent objects, in later studies Leman (1992a, 1992b) 
adopts a dynamic approach: from a stream of input data, he creates a tone 
context by temporal integration. When trained on the thus obtained input 
vectors, the Kohonen network is found to develop a response structure 
which correlates strongly with Krumhansl's (1990) psychological data. 

Griffith (1993,1994) aims to model how people establish a sense of 
tonality and encode pitch invariance. Comprising modular combinations 
of various forms of shunting, adding, and tracking memory, as well as 
ART 2 networks, Kohonen feature maps, and feedforward nets, his model 
self-organizes to categorize both stable tonal centres and scale degrees. 

2.4. Timbre 

For timbre recognition and classification, connectionist systems have been 
designed by Bertelli et al. (1991), Feiten, Frank, and Ungvary (1991), De 
Poli, Prandoni, and Tonella (1993), Cosi, De Poli, and Lauzzana (1994), 
Feiten and Giinzel (1994), and Casey (1994). Bertelli et al. (1991) present a 
model for recognizing sound sources, based on FFT, a simple ear model, 
and the Kohonen feature map. Feiten et al. (1991) used the spectra of 102 
synthetic random sounds of six different categories as input to a Kohonen 
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feature map. They found that the network was able to map the sounds in 
agreement with the predefined categories. They also describe a time de­
layed neural net for recognizing sonic oppositions as verbal attributes. De 
Poli et al. (1993) used a three-dimensional version of the Kohonen feature 
map. As input they used the sound stimuli of Grey (1975), in order to re­
construct Grey's timbre space. According to them, the analogies with 
Grey's results were encouraging. Cosi et al. (1994) used an auditory model 
and the Kohonen network to map the sounds of 12 acoustic instruments 
in both clean and noisy conditions. The obtained map showed a topologi­
cal organization which was found to agree with subjective classification of 
those sounds. Moreover, the Kohonen network was able to recognize 
noisy versions of the sounds. Employing two hierarchical Kohonen net­
works, Feiten and Giinzel (1994) treated dynamic sounds as sequences of 
steady-state components. The first Kohonen network mapped the steady­
state spectra; the trajectories obtained were then used as input to the sec­
ond Kohonen network. Casey (1994) makes use of feedforward networks 
in an approach to parameter estimation for physical models of sound-gen­
erating systems. He shows that such network models are appropriate for 
learning to map sounds to parametric representations. 

2.5. Rhythm and metre 

The processing of temporal aspects such as rhythm and metre plays an im­
portant role in music. However, the mechanisms behind it are not yet 
well understood. Maybe for this reason the connectionist studies dealing 
with these aspects are not as numerous as those related to pitch, harmony, 
and tonality. Attempts to model the perception of rhythm and metre 
(Desain & Honing, 1989; McGraw, Montante & Chalmers, 1991; 
Scarborough, Miller & Jones, 1992; Large & Kolen, 1994; McAuley, 1994) re­
late to broader topics such as musical expectancy (Bharucha & Todd, 1989) 
and time series prediction (Dirst & Weigend, 1993). Desain and Honing 
(1991) have developed a connectionist quantizer which is capable of infer­
ring the metre from input data containing timing variations. Their model 
works to adjust perceived inter-onset intervals so that every pair of those 
intervals is adjusted toward an integer ratio, if it is already close to one. 
McGraw et al. (1991) trained various recurrent networks as beat detectors; 
they found that a network trained on one melody at different tempi may 
not correctly respond to the same melody played at a tempo not included 
in the training set. Scarborough et al. (1992) applied the parallel constraint 
satisfaction paradigm in their model of metre perception called BeatNet. It 
consists of an array of idealized low-frequency oscillators with different pe­
riods that operate to synchronize their output with event onsets, produc­
ing a metrical grid of the style suggested by Lerdahl and Jackendoff (1983). 
Large and Kolen (1994) introduce a novel connectionist unit capable of 
phase- and frequency-locking to periodic components of incoming rhyth­
mic patterns. Networks of these units can self-organize temporally struc­
tured responses to rhythmic patterns. McAuley (1994) uses a network of 
integrate-and-fire oscillators capable of synchronizing with incoming 
rhythmic data. 
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2.6. Perception and generation of musical sequences 

While the previously mentioned studies can be regarded as attempts to 
model musical perception and cognition, many of the connectionist ap­
proaches to the generation of musical sequences do not emphasize this as­
pect, but rather aim to exploit the strengths of connectionist systems for 
more straightforward musical applications, such as algorithmic composi­
tion. 

Connectionist models of algorithmic composition have been pro­
posed by Todd (1989, 1991), Lewis (1991), Mozer (1991, 1994), Stevens and 
Wiles (1993), and Bellgard and Tsang (1994). Todd's (1989) approach is 
based on Jordan's (1986) sequential network architecture: a three-layer 
back-propagation network processing one note at a time, with feedback 
connections from the output layer to the input layer. Temporal context is 
provided by integrating the activation values of the input units. The com­
positions produced by this network suffer from lack of global structure; to 
overcome that, Todd (1991) suggests an architecture with two hierarchi­
cally connected sequential networks. A similar note-by-note technique has 
been used by Stevens and Wiles (1993). Lewis (1991) presents a connection­
ist approach to algorithmic composition which he calls Creation by 
Refinement. The network is trained by a supervised gradient descent algo­
rithm (back-propagation of error) to be a "music critic". To compose 
melodies, the input units are first randomly initialized. The input vector 
is then refined, using a second gradient descent search, so that the output 
vector obtained will satisfy the desired criteria. Bellgard and Tsang (1994) 
demonstrate how Boltzmann machine networks (Hinton & Sejnowski, 
1986) can be used for harmonizing chorales. 

Mozer (1991, 1994) utilizes a recurrent network trained by a variation 
of the back-propagation of error algorithm, referred to as the unfolding of 
time procedure (Rumelhart, Hinton & Williams, 1986), for note-by-note 
composition. In his model, he uses the distributed representation of pitch 
suggested by Shepard (1982): pitch is represented in a five-dimensional 
space. In this space, each pitch is specified by the pitch height as well as 
points on the chroma circle and the circle of fifths. Owing to this more ad­
vanced representation his model seems to perform better than that of 
Todd (1989), but the melodies produced still lack coherence and structure. 

The aforementioned studies employ networks which are trained us­
ing variants of the back-propagation of error algorithm. While having 
manifested its power in a number of connectionist applications, this algo­
rithm might be regarded as farfetched from a cognitive point of view: it is 
difficult to imagine how such a supervised learning procedure would cor­
respond to the way humans adapt to the environment. More plausible 
models of the perception and generation of musical sequences have been 
proposed by Page (1994) and Kaipainen (1994); both are based on self-orga­
nization. Page (1994) criticizes previous connectionist approaches to algo­
rithmic composition for being inappropriate as models of perception. His 
criticism is based on the following arguments: the networks are not self­
organizing; they do not allow incremental learning; they require the train­
ing set to be presented to them hundreds of times before learning is 
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achieved; they are not able to perform melody recognition; they do not 
lend themselves to the formation of network hierarchies; and the back­
propagation of error learning algorithm lacks biological plausibility. His 
own approach is based on hierarchical ART 2 networks (Carpenter & 
Grossberg, 1987) furnished with masking fields (Cohen & Grossberg, 1987). 
Having been trained on simple nursery-rhyme melodies, the network was 
probed with short musical sequences; the elicited musical expectations 
were found to correspond strongly with those suggested by the training set. 

Kaipainen (1994) utilizes his self-organizing model, MuSeq, for 
demonstrating his dynamic theory of musical knowledge ecology. He pos­
tulates two directions of interaction, i.e., knowledge-acquisition and 
knowledge-use, and two kinds of knowledge, i.e., "knowing-what" for the 
recognition of the current musical situation and "knowing-how" for the 
determination of the consequences that actualize music. By varying the 
degree of dominance of the knowing-how, he is able simulate a contin­
uum of musical behaviours: from an "autistic" repetitor at one extreme to 
a passive pattern-recognizer at the other. 

2. 7. Performance

Connectionist attempts to model musical performance have been carried 
out by Baggi (1992), Battel et al. (1993), Bresin et al. (1991), and Sayegh 
(1989). With his NeurSwing network, Baggi (1992) aims to investigate the 
constituents of swing in jazz music. Generating piano, bass, and drum 
output through MIDI in real time, his network consists of a harmonic net 
which produces chord substitutions for a given harmonic structure, and a 
stylistic net through which the degree of intensity, consonance, and inter­
action of the virtual rhythm section can be controlled. Battel et al. (1993) 
and Bresin et al. (1991) have carried out experiments on a back-propaga­
tion network trained to perform musical scores. In a listening test, the net­
work was found to produce deviations in loudness, duration, and timbre 
which led to meaningful interpretations of the given compositions. 
Sayegh (1989) formulates the problem of fingering for string instruments 
as an optimization problem. He uses a connectionist system for minimiz­
ing a given cost function in order to find the best fingering for a given 
melodic phrase. 



3 AIM OF THE STUDIES 

The studies on which this thesis is based aim to explore certain music-re­
lated cognitive processes, using connectionist modelling. These processes 
include the classification and recognition of musical timbre (I, II, III) and 
pitch (VI), as well as the learning and generation of melodies (IV, V, VI). 
In more general terms, the studies attempt to investigate such processes as 
perceptual learning (I, II, III, VI), self-organization (I, II, III, VI), feature ex­
traction (I, II, III, VI), sequential processing (I, IV, V, VI), autoassociative 
recall (IV, V), and short-term memory (I, IV, V, VI). 

In connectionist modelling of timbre perception, the evaluation of 
the suggested models has until now remained half-finished; it has been 
mostly based on the researchers' intuitive interpretations of the responses 
of the networks. Studies II and III attempt to address this problem by com­
paring the timbre maps obtained with similarity ratings concerning the 
same set of stimuli. While the spectral content of a tone certainly has a 
significant role in timbre perception, there is evidence that other factors, 
such as attack transients, spectral gradients, and frequency and amplitude 
modulations, may be important as well. Until now, these factors have 
been neglected in connectionist timbre research. Study III endeavours to 
investigate the significance of these elements in timbre perception. 

Within the rule-based paradigm, there have been several studies on 
improvisation (e.g., Fry, 1980; Ames and Domino, 1992; Bel & Kippen, 
1992). While the models proposed in these studies perform rather well, 
they have a fundamental problem: their function is totally dependent on 
the personal views of the modeller about what are the essential aspects of 
improvisation. Study IV attempts to approach this modelling problem 
from a connectionist perspective. There the process of improvisation is de­
scribed as a structured sequence of temporal associations; the latter are 
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produced by an auto-associative neural network. The network learns how 
to improvise in a given style by being exposed to excerpts of improvisa­
tions in that style. 

Since music is fundamentally a temporal phenomenon, the question 
of how time is represented in a model of musical processing is essential. 
Within the connectionist paradigm, where all data is represented as vec­
tors, the most straightforward way is to transform time into a spatial di­
mension: the temporal development of a quantity is represented by one 
large vector consisting of several subvectors, each of which represents the 
state of that quantity within a short period of time. Representations of this 
type have been used at least by Cosi et al. (1994), De Poli et al. (1993), and 
Feiten et al. (1991); this approach has also been adopted in studies II, III, IV, 
V. Such a representation of time can certainly be criticized for being rigid
and farfetched from a neurophysiological point of view. Compromising
the biological faithfulness of some aspects of the model, however, often al­
lows the modeller to focus on other, more relevant ones without making
the model too complicated. Another, often used (e.g., Gjerdingen, 1989,
1990, 1992; Scarborough et al., 1992; Todd, 1989) method of providing tem­
poral context to sequential musical data is that of using leaky integrators: a
given portion of the previous input vector is added to the current one.
While this approach seems to correspond better to the way biological sys­
tems deal with temporal data, it still has some drawbacks, which are dis­
cussed more closely in article VI. In that article, we suggest a method of
implementing short-term memory in a connectionist system which, we
believe, combines the good temporal resolution of the time-window ap­
proach with the elasticity and biological plausibility of the simple leaky in­
tegrator method.

Due to its distributed nature, the behaviour of a connectionist system 
is often difficult to interpret. Perhaps for this reason many of the reports 
about connectionist studies concentrate on describing the details of the 
network used, while neglecting the analysis of the response of the system 
almost totally. The output of a connectionist model should, however, be 
compared with that of the system it aims to model in order to evaluate its 
performance. Accordingly, we have compared the responses of self-orga­
nizing networks on tone stimuli with those of human subjects on the 
same stimuli (II, III); a further way of evaluating the model would be to lo­
calize the responses on the auditory cortex to the stimuli used (III). 
Additionally, we have compared certain statistical properties of the output 
generated by a sequential autoassociative network with those of the mate­
rial it was trained on (V). 



4 MATERIALS, METHODS, AND RESULTS 

The materials, methods, and results are described in detail in the original 
publications I-VI. 

4.1. Self-organization of musical timbre (I-III) 

The studies on musical timbre (I-III) are based on the Kohonen self-orga­
nizing map (KSOM) (Kohonen, 1989). Based on the assumption that lat­
eral inhibition and redistribution of synaptic resources are responsible for 
self-organization in biological systems, the KSOM is capable of identifying 
the most salient features of the set of input vectors it has been exposed to, 
and mapping them onto a two-dimensional space while retaining the 
topological relationships of the vectors. 

Study I introduces a hierarchical architecture of KSOMs, where as­
pects related to time and frequency are processed on different levels. It at­
tempts to provide a neurobiologically more plausible, dynamic, alterna­
tive to the common, static way of processing the input vectors.3 In the 
simulations, the network was found to be capable of mapping the 128 FM 
synthetic sounds of the training set in a way which mostly corresponded to 
the perceived similarities of the sounds. 

While the acoustic preprocessing in study I was based on the Fast 
Fourier Transform, in studies II and III an advanced auditory model, de­
signed by Van Immerseel and Martens (1992) and modified by Leman 
(1994), was used. In these studies, the set of input stimuli consisted of 27 
sounds produced using additive synthesis. The responses of the KSOM to 

3 A similar method has subsequently been used by Feiten and Giinzel (1994). 
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these sounds were compared with similarity rating (SR) data, obtained us­
ing the same set of stimuli, by calculating Pearson's correlations. The cor­
relation between the SR and KSOM data was of the same order of magni­
tude as the inter-subject correlations, supporting the hypothesis that it is 
appropriate to describe the timbre similarity rating behaviour in terms of a 
metric, analogous to that of the KSOM (II). 

The main concern of study III was to explore to what degree certain 
dynamic aspects of sound, such as transients during the onset period, spec­
tral gradients, and frequency and amplitude modulations, contribute to 
the perception of timbre. The method used was that of (1) constructing 
gradient images, which were supposed to qualitatively represent responses 
of auditory neurons sensitive to frequency and amplitude modulation; (2) 
varying the degree of emphasis on the onset of tones in the auditory im­
ages; and (3) varying the distance metric used in training the KSOM. The 
matrices of interstimulus distances, obtained both from the auditory im­
ages and the responses on the KSOM, were compared with the SR data by 
calculating Pearson's correlations. Using the methods mentioned above, a 
significant increase in correlation was achieved both for the auditory im­
ages and the responses of the KSOM; the main contributor to this was 
found to be the emphasizing of onset. The correlations obtained from the 
responses on the KSOM were found to be lower than the respective ones 
obtained from the auditory images; this would imply that it is not possible 
to project timbre onto two dimensions without distorting the metrical re­
lationships between stimuli. 

4.2. Sequential processing of melodies (IV-VI) 

A sequential connectionist network which models the target-note tech­
nique of bebop jazz is presented in study IV. The model is based on a re­
current autoassociative network which receives external activation from 
context modules representing the harmonic context. It is taught by pre­
senting it with melodic patterns together with the harmonic context. 
Having learned improvised jazz solos played by the trumpet player 
Clifford Brown, the network was found to be capable of applying its 
knowledge to a new harmonic context and producing stylistically fairly 
consistent melodies on the micro level. It was, however, unable to cope 
with larger structures such as melodic phrases. To overcome this, a hierar­
chical network architecture has been suggested elsewhere (Toiviainen, 
1993). It comprises (1) a higher-level network, which would learn and pro­
duce the target notes of a longer harmonic progression; and (2) a short­
term memory network capable of storing information about the melody 
produced earlier. 

While the analysis of the output of the network in study IV was 
based mainly on the author's intuitive views and experience of bebop jazz, 
a more objective analysis was carried out in study V. The objective was to 
examine to what degree the network is able reproduce the tonal hierarchy 
which can be found in the improvisation it was trained on. The method of 
analysis, suggested by Jarvinen (1995), is based on calculating the statistical 
distribution of the twelve tones in the chromatic scale on several metrical 
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levels. The tone profiles of the input and output of the network, obtained 
using this method, were compared by examining the frequencies of indi­
vidual tones on each metrical level. The input and output were compared 
also on a more general level using the direction cosine as the measure of 
similarity. It was found that while the network successfully reproduced 
the local tonal characteristics of the training set, it was to a large extent un­
able to extract the information about the global tonal tendencies. 

Study VI introduces a sequential self-organizing model which is capa­
ble of recognizing and generating melodies. The input data to the model is 
extracted from an acoustical stream of live music. The author's contribu­
tion to this study consists of the design and implementation of the prepro­
cessing stage. In the first stage, the instantaneous pitch of the sound signal 
used as input is extracted by means of a method based on running autocor­
relation. In the second stage, the stream of pitch vectors obtained is con­
verted into another stream of vectors, where each vector concatenates an 
array of several subvectors, corresponding to a queue of memories with 
different time spans; the contents of these memories - referred to as 
short-to-long-term inhibitory memory pools (SLIMP) - are generated by 
temporal integration and an excitation-inhibition mechanism. We believe 
that the SLIMP method provides a neurally more plausible way of build­
ing a hierarchical memory in connectionist systems than the traditional 
time windowing praxis. The SLIMP preprocessing allows any number of 
memory pools to be chosen; the relative weights of them can be controlled 
parametrically. After exposure to ten test melodies, the model was found 
to be capable of both identifying the melodies, and making generalizations 
about classes of musical situations. The SLIMP preprocessing was found to 
provide, on one hand, a better temporal resolution than is obtained using 
the simple leaky integrator method, and, on the other hand, a better ro­
bustness with respect to minor tempo variations than is obtained using 
sharp time windowing. 



5 CONCLUSIONS 

The goal of the studies on which this thesis is based was to model music­
related cognitive processes such as (1) perceptual learning and feature ex­
traction in the classification of musical timbre; and (2) sequential process­
ing, autoassociative recall, and memory in the recognition and generation 
of melodies. An essential part of the studies was the evaluation of the 
models; this was carried out by comparing the output of the networks ei­
ther with the training set (V) or corresponding psychological data (III, IV). 

The results of the studies support the view that the connectionist 
paradigm provides a plausible alternative for modelling the dynamics of 
certain cognitive processes, especially those involving perceptual learning 
by self-organization. Being inherently capable of generalizing, associating 
on the basis of content, and tolerating noisy or distorted input, artificial 
neural networks exhibit functions characteristic of the human way of per­
ceiving, thinking, and acting. 

The results of the experiments suggest that in constructing connec­
tionist models which aim to extract knowledge from an acoustical input, 
one should pay a good deal of attention to the design of the preprocessing 
stage. Using the auditory model designed by Van Immerseel and Martens 
(1992), for instance, resulted in timbre maps which correlated with the 
similarity ratings much stronger than those obtained by representing the 
stimuli as physical amplitudes of the partials (II). Emphasizing the onsets 
of the stimuli and adding gradient images resulted in a further significant 
increase of that correlation (III). The SUMP preprocessing stage used in 
study VI was also found to ameliorate the performance of the model no­
tably, as compared to using simple leaky integrators. 

While artificial neural networks fluently process static data, dealing 
with sequential input and output is a more arduous task. When choosing 
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between different representations of time, one often has to compromise 
between the performance of the network and the biological plausibility of 
the representation. For instance, in studies IV-V the former has been 
stressed at the expense of the latter. A crucial problem in artificial neural 
networks applied to music is how high-level features can be extracted 
from time-varying input data. According to our view, the SUMP prepro­
cessing method presented in study VI provides a means of constructing a 
hierarchical memory from a stream of acoustical data which combines 
good performance with neural plausibility. 

The task of constructing exhaustive models of certain high-level cog­
nitive processes of music, using the connectionist framework exclusively, 
may prove to be a challenging one. The improvisation of melodies, for in­
stance, involves simultaneous processing on several hierarchical levels, 
such as melodic patterns, phrases and choruses. One possible way of ad­
dressing this type of problem would be to use hybrid models, or mixed 
connectionist-symbolic models (see, e.g., Clark, 1989; Hendler, 1989; 
Minsky, 1991; Gutknecht, 1992). While this approach seems to exploit the 
strengths of both paradigms, it may, however, bring about philosophical 
problems. A large part of human cognition can probably not be explained 
as based on the manipulation of symbols. Consequently, in any modelling 
approach striving for an increased psychological and biological plausibility, 
the justification of applying the rule-based paradigm should be carefully 
pondered. Research on modelling high-level cognitive processes with 
modular and hierarchical artificial neural networks is still in its infancy. 
This approach would deserve more attention in the future. 
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YHTEENVETO 

Musiikin kogniti.on mallintaminen keinotekoisilla hennoverkoilla 

Keinotekoiset hermoverkot eli konnektionistiset systeemit ovat biologis­
ten hermosolujen muodostamien verkkojen vahvasti idealisoituja 
malleja: niiden rakenteen ja toiminnan perusperiaatteet on lainattu biol­
ogisista hermoverkoista, mutta ne eivat yleensa pyri mallintamaan 
hermokudoksen fysiologisia prosesseja. Ne koostuvat useista toisiinsa 
kytketyista yksinkertaista prosessointiyksikoista 1. keinotekoisista neu­
roneista. Keinotekoiset hermoverkot ovat rinnakkaisia: prosessointiyk­
sikot vuorovaikuttavat yhtaaikaisesti ja toisistaan riippumattomasti. Ne 
ovat hajautettuja: niiden tietamys sijaitsee neuronien valisissa kytken­
tavoimakkuuksissa, ja niiden kasittelema tieto esitetaan neuronien akti­
vaatiokuvioina. Ne ovat myos adaptiivisia: ne pystyvat oppimaan muut­
tamalla neuronien valisten kytkentojen voimakkuuksia. 

Kognition mallintamisessa on perinteisesti kaytetty symboli- ja saan­
topohjaisia tekoalyjarjestelmia. Suurta osaa kognitiosta on kuitenkin vai­
kea selittaa rationaaliseksi, atomistiseksi ja eksplisiittiseksi jarkeilyksi. On 
havaittu, etta sellaiset kognitiiviset prosessit kuten havaitseminen, 
muisti, ajattelu, arvostelu ja ongelmanratkaisu voivat kaikki tapahtua 
implisiittisesti, tiedostamatta. Tallaisten ilmioiden mallintaminen perin­
teisen tekoalyn keinoin voi olla ongelmallista. Keinotekoisia her­
moverkkoja kayttava mallintaminen, joissa mielen toiminnot 
nahdaan holistisena prosessina ja tieto esitetaan implisiittisessa muo­
dossa, voi valottaa paremmin naiden mielen ilmioiden takana olevia 
prosesseja. 
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Keinotekoiset hermoverkot luontuvat hyvin monien musiikin kog­
nitiivisten prosessien tutkimiseen. Suuri osa musiikillisesta toiminnas­
tamme ei ole kielellisesti kuvattavissa. Esimerkiksi soittamaan opimme 
enimmakseen esimerkin avulla tai matkimalla sen sijaan etta opetteli­
simme suuren joukon kyseiseen musiikkityyliin liittyvia eksplisiittisia 
saantoja. Muusikoiden on usein myos vaikeaa tai jopa mahdotonta analy­
soida omia esityksiaan. Monissa musiikin kognitiivisissa toiminnoissa 
kasitellaan aanitietoa, joka usein sisaltaa kohinaa tai on muuten 
vaaristynytta. Musiikin kognitiota on tutkittu keinotekoisten her­
moverkkojen avulla monesta nakokulmasta: verkoilla on mallinnettu 
mm. aanenkorkeuden, aanenvarin, rytmin ja metrin havaitsemista,
tonaliteetin kehkeytymista seka musiikillisten sekvenssien havaitsemista
ja tuottamista.

Tama tyo perustuu kuuteen erilliseen julkaisuun. Niissa on tutkittu 
keinotekoisten hermoverkkomallien avulla useita musiikin kognitioon 
liittyvia prosesseja: aanenvarin ja savelkorkeuden tunnistusta seka melo­
dioiden oppimista, tunnistusta ja tuottamista. Yleisemmin sanoen tyossa 
on tutkittu mm. aistinvaraista oppimista, itsejarjestaytymista, piirreirroi­
tusta, sarjallista prosessointia, autoassosiatiivista muistamista ja lyhytkes­
toista muistia. 

Aanenvarin tunnistukseen liittyvat tutkimukset (I-III) perustuvat 
Kohosen itsejarjestaytyvaan piirrekarttaan. Tama perustuu sille oletuk­
selle, etta itsejatjestaytyminen biologisissa systeemeissa on lateraalisen in­
hibition ja synaptisten resurssien uudelleenjakautumisen tulos. Kohosen 
piirrekartta kykenee loytamaan annetusta vektorijoukosta silmiin­
pistavimmat piirteet ja kuvaamaan ne kaksiulotteiselle pinnalle sailyt­
taen vektorijoukon topologiset suhteet. 

Tutkimuksessa I esitellaan Kohosen piirrekarttoihin perustuva hier­
arkkinen aanenvarintunnistusmalli, jossa aikaan ja taajuuteen liittyvat 
tekijat prosessoidaan eri tasoilla. Tarkoituksena on tatjota neurobiologis­
esti uskottavampi, ajan suhteen dynaaminen vaihtoehto perinteisille 
staattisille aanenvarintunnistusmalleille. Tehdyissa simulaatiossa mallin 
havaittiin pystyvan kuvaamaan sille syotetty aineisto tavalla, joka enim­
makseen vastasi aaniesimerkkien havaittuja samankaltaisuuksia. 

Tutkimuksessa I aanien esikasittely perustui nopeaan Fourier­
muunnokseen, kun taas tutkimuksissa II ja III kaytettiin laskennallista 
korvan mallia. Viimeksimainituissa tutkimuksissa kaytettiin 27 additi­
ivisella synteesilla tuotettua aanistimulusta. Kohosen piirrekartan 
vasteita naihin aaniin verrattiin Pearsonin korrelaatiokertoimen avulla 
yhdeksan koehenkilon samalla stimulusjoukolla tekemiin 
samankaltaisuusarviointeihin. Tulosten havaittiin korreloivan merkit­
sevasti. Taman tulkittiin tukevan hypoteesia, etta aanenvarien 
samankaltaisuuden arviointia voidaan kuvata Kohosen piirrekartan 
kanssa analogisella metriikalla. 

Tutkimuksen III tavoitteena oli selvittaa, missa maarin tietyt aanen 
dynaamiset ominaisuudet, kuten syttymisvaiheen transientit, spektrin 
gradientit seka taajuus- ja amplitudimodulaatiot, vaikuttavat aanenvarin 
havaitsemiseen. Tata tutkittiin muuntelemalla kaytettyjen aanies­
imerkkien esikasittelya ja vertaamalla nain saatuja Kohosen piirrekartan 
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vasteita vastaaviin samankaltaisuusarviointeihin. Aanistimuluksista 
tehtiin gradienttikuvia, joiden oletettiin kvalitatiivisesti esittavan taa­
juus- ja amplitudimodulaatioille herkkien kuuloaivokuoren neuronien 
vasteita; aanistimulusten alukkeiden korostusta muunneltiin; Kohosen 
piirrekartan opetuksessa kaytettya metriikkaa muunneltiin. Naita 
menetelmia kayttaen saavutettiin merkittava korrelaation kasvu 
Kohosen kartan vasteiden ja samankaltaisuusarviointien valilla. 
Merkittavin tahan vaikuttanut tekija oli aanien alukkeiden sopiva ko­
rostaminen. Alukkeet olivat siis tarkeita aanien samankaltaisuutta 
arvioitaessa. Sen sijaan gradienttikuvilla ei havaittu olevan suurta merki­
tysta korrelaation kasvussa. Kohosen kartan vasteista saadut korrelaatiot 
olivat saannollisesti matalampia kuin kartalle syotetyista vektoreista las­
ketut. Tama puoltaisi sita, etta aanenvaria ei voida projisoida kahteen 
ulottuvuuteen vaaristamatta arsykkeiden valisia metrisia suhteita. 

Tutkimuksessa IV esitetaan dynaaminen hermoverkko, joka mallin­
taa bebop-tyyliselle jazzimprovisaatiolle olennaista maalisaveltekniikkaa. 
Simulaatioissa mallin havaittiin kykenevan soveltamaan esimerkki­
aineistosta oppimaansa materiaalia uusiin sointurakenteisiin ja tuotta­
maan pintatasolla melko tyylinmukaista improvisaatiota. Se ei 
kuitenkaan kyennyt kasittelemaan laajempia musiikillisia rakenteita. 
Mallin tuottamia improvisaatioita analysoitiin tilastollisesti tutkimuk­
sessa V. Vertailemalla naiden savelprofiileja esimerkkiaineiston vas­
taaviin profiileihin havaittiin, etta malli kykeni toistamaan esimerkki­
aineiston tonaaliset piirteet sointutasolla muttei pystynyt loytamaan 
aineiston globaalia tonaalista rakennetta. 

Tutkimuksessa VI mallinnetaan melodioiden tunnistamista ja gene­
roimista itsejarjestaytyvalla keinotekoisella hermoverkolla. Mallille 
syotettava akustinen aanisignaali esikasitellaan kahdessa vaiheessa. Ensin 
signaalin kulloinenkin aanenkorkeus paatellaan autokorrelaatioon perus­
tuvalla menetelmalla. Nain saadusta aanenkorkeusvektorijonosta raken­
netaan aikaintegraation ja eksitaatio-inhibitiomekanismin (SLIMP) avulla 
hierarkkisen muistijaljen sisaltava vektorijono; tama syotetaan 
keinotekoiseen hermoverkkoon. SLIMP-menetelma on neuraalisesti 
uskottavampi tapa rakentaa hierarkkinen muisti tiimankaltaisiin sys­
teemeihin kuin perinteiset aikaikkunointiin perustuvat menetelmat. 
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CONNECTIONIST JAZZ AND 
TONAL HIERARCHY: 

A STATISTICAL MULTILEVEL ANALYSIS 

Topi Jarvinen & Petri Toiviainen 

ABSTRACT 

A set of methods of analysis by which the output and functionality of a 
connectionist system can be evaluated is presented. By using these meth­
ods, the input and output of an artificial neural network designed to learn 
and produce jazz improvisation was analyzed and evaluated. 

First, the statistical distribution of the tones in the chromatic scale 
was measured both over single chords and whole chord progression on 
four metrical levels. The obtained tone-frequency profiles were examined 
by comparing the frequencies of individual tones on each level. The input 
and output materials were compared also on a more general level by 
measuring the similarity of the tone profile vectors by computing inter­
vectorial direction cosines. 

The network was found to reproduce successfully the local tonal 
characteristics. It was, however, unable to extract the information about 
the global tonal hierarchy from the input that it was given. On the basis of 
the obtained evidence, improvements were suggested for both the net­
work model and the method of analysis. 



Connectionist jazz and tonal hierarchy 3 

1 INTRODUCTION 

Computer simulations have gained a relatively important position in 
music related research. Especially since the late 1980's a paradigm known 
as connectionism has been widely used for modeling various musical 
processes (e.g., Bharucha 1988, Leman 1988, Desain & Honing 1989, 
Gjerdingen 1989, Todd 1989, Bharucha & Todd 1989, Leman 1989, 
Gjerdingen 1990, Baggi 1992, Leman 1992, Gjerdingen 1992); connectionist 
models are neurally inspired non-linear dynamic systems. This approach 
has broadened our knowledge on the cognitive basis of different musical 
activities, such as listening, playing, and composing. With the aid of con­
nectionist systems, or artificial neural networks, it has been possible to test 
the validity of theories of cognition regarding music. For example, with a 
connectionist system that has been designed to learn and produce music 
in a given style, it is possible to find aspects that are essential in learning 
the style in question. The behavior of neural networks is, however, often 
difficult to interpret, contrary to rule-based expert systems, in which the 
reasoning chain can always be followed. And perhaps due to this ambigu­
ity the technical details of the models have often become the main inter­
est: as a consequence the evaluation of the output in reference to the 
input has received less attention. 

In this paper we present some statistical and mathematical methods 
by which the output of an artificial neural network can be analyzed and 
evaluated. The system the input and output of which is examined is a 
network designed to learn and produce bebop styled jazz improvisation 
(see, Toiviainen 1995). In particular, by calculating the statistical distribu­
tion of the twelve tones in the chromatic scale it is examined to what ex-
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tent the network is able to extract the tonal hierarchy from the input it re­
ceived; this is measured over both single chords and the whole chord 
progression. The notion of tonal hierarchy is an appealing way to ap­
proach this type of problem, for it allows us to study more general quali­
ties, which may not be apparent in the surface level. Also in addition to 
the psychological proof for its existence (see, Krumhansl 1990) there is also 
evidence based on a large body of materials that it is an important factor 
in bebop styled jazz improvisations as well (Jarvinen 1995). Consequently, 
a computer model simulating this type of music should also display 
comparable qualities. The goals of this study are, then, two-fold. First, to 
present a set of methods of analysis by which the output and functionality 
of a sequential connectionist system can be evaluated. Second, to analyze 
and evaluate the input and output of one particular model with the 
presented methods, and to suggest some ways in which it can be 
improved on the basis of the obtained evidence. 
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2 TONAL HIERARCHIES 

2.1 Krumhansl's studies on tonal hierarchy 

5 

Although some music theorists have claimed that listeners perceive the 
tones in the chromatic scale to be hierarchically ordered (e.g., Meyer 1956, 
214-215), only after Carol L. Krumhansl's and Roger N. Shepard's (1979)
empirical tests has this claim been substantiated. By using a method re­
ferred to as probe-tone technique they were able to determine the relative
perceived stability of the twelve chromatic tones in the given tonal con­
text.

The results of this experiment can be seen in Figure 1, which repre­
sents the key profile in the C major context. The graph indicates clearly 
that there are differences in the perceived stability of the tones: highest 
ratings are given to the tonic (C) and the other two tones of the tonic triad 
(G, E), which are followed first by the rest of the diatonic scale (F, A, D, B) 
and finally by the non-diatonic tones (F#/Gb, G�/Ab, �/Eb, A#/Bb, d!!Db) 
(Krumhansl 1990, 25-31). - There is also some data on the statistical dis­
tribution of the 12 chromatic tones in actual European art music, and 
those findings are also consistent with the empirical data (see Krumhansl 
1990, 69-70; also cf. Knopoff & Hutchinson 1983, 95). 
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FIGURE 1. Probe tone ratings for major key context. The graph illustrates the results 
in reference to C major (Knimhansl 1990, 31). 

Another study that further clarifies the nature of tonal hierarchy was 
made by Krumhansl and Edward J. Kessler (1982). They investigated how 
listeners' sense of key develops and changes while a given chord sequence 
progresses. The results suggest that the listeners develop a sense of key 
that is partly independent of the individual chords. At some point in the 
chord sequence, however, there seemed to be local effects of tonicization. 
Thus, sometimes the prevailing key was much stronger than the underly­
ing chord, and sometimes the individual chords assumed a much greater 
role than their place in the tonal hierarchy would imply. (See Krumhansl 
& Kessler 1982, 356-357). 

2.2 Tonal hierarchy in actual bebop styled jazz improvisations 

The tonal hierarchy of bebop styled jazz was investigated in a study by 
Jarvinen (1995) by analyzing the statistical distribution of the twelve 
chromatic tones in 56 improvised choruses1 based on the so called 
Rhythm Changes -chord progression. In order to examine the effect meter 
has on the tonal hierarchy, the frequencies of tones were also contem­
plated on quarter (first, second, third, and fourth beat), half (first and third 
beat) and whole note level (first beat)2• Figure 2 shows the obtained global 

1 In jazz the term chorus means an improvisation one time through the chord 
progression of the song; the length of the chorus depends on the song, but usually it is 
12- or 32-bars long (blues or AABA, respectively).

2 Empirical evidence suggests that the tones on different metrical beats have different 
perceptual importance for the listener (Palmer & Krumhansl 1990, 734-736); it would 
seem plausible that the same holds true also for the improviser. 
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(chorus level) tone-frequency profile. These results indicate that in the 
analyzed improvisations there is a clear tonal hierarchy in which the 
tonic triad and the rest of the diatonic tones are favored over the non-dia­
tonic tones. This is consistent with the perceived tonal hierarchy obtained 
in Krumhansl's psychological tests in which the same pattern of prefer­
ence was found. 
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--+- 1/8-level --e- 1/2-level 

---&- 1/4-level - 1/1-level

FIGURE 2. Weighted average chorus level profiles Garvinen 1995). 

Furthermore, the results indicated that there is a clear tendency to use the 
meter to emphasize or de-emphasize scale degrees depending on their 
tonal function. The important scale degrees of the C major tonality, 
namely the tones C and G, are used more frequently in the highest level 
(whole note) compared to the lower levels. The sixth scale degree (A), on 
the other hand, is sounded more frequently on the lower levels, which 
emphasizes its melodic function. 

In addition to the global tonal hierarchy also the individual hierar­
chies of four chord functions (CM7, Dm7, FM7, and G7)3 were investi­
gated by analyzing thirty improvised choruses. It was found that each 
chord has its own tonal hierarchy in which chord tones are favored. Still, 

3 The following chord type notations have been used (shown here in reference to the 
tone c): CM7 denotes major seventh chord, C7 dominant seventh chord, Cm7 minor 
seventh chord and C07 diminished seventh chord. 
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the results for every chord were not as clear, for different chord functions 
were given unequal treatment. In the case of this particular chord se­
quence, namely the Rhythm Changes -progression, CM7 and FM7 were 
given more attention than Dm7 and G7. It appears that in the chord pro­
gression the improvisers have certain reference points that are outlined 
more carefully than the rest of the chords. The result of this is that in 
these reference points the hierarchical ordering of the tones is determined 
by the underlying chord (strong local hierarchy) whereas in other places 
the hierarchy is effected by the global tonal orientation of the chord pro­
gression (weak local hierarchy). This explanation is also in concordance 
with Krumhansl and Kessler's findings. - Furthermore, the role of the 
metrical structure was found to be important also in the chord level hier­
archies. 



Connectionist jazz and tonal hierarchy 

3 CONNECTIONIST MODEL OF BEBOP STYLED 
JAZZ IMPROVISATION 

9 

This chapter describes cursorily the structure of the neural network model 
used in this study. A more thorough description can be found in 
Toiviainen (1995). Examples of the kind of improvisations that the net­
work produces are presented in the same article. The model is based on 
target or goal note technique (see, e.g., Mehegan 1959, Berg 1990), which is 
a common way of explaining the production of an improvised jazz 
melody on the surface level. This technique can be described as follows: 
(1) it is based on the harmonic structure of the composition; (2) the notes
of a four-note chord, and possibly its upper structure (9, 11, 13) are re­
garded as principal tones; (3) when approaching a chord, one of its princi­
pal tones is chosen as a target note; (4) the target note is reached through a
melodic pattern. Usually the target note is preceded by a leading tone, i.e.,
a pitch neighbor along either the diatonic or the chromatic scale.

In order to achieve continuity in the improvised melodic lines, it is 
essential to be able to aim at target notes in advance. As the great jazz pi­
anist Hal Galper (1982) puts it: 

There is an illusion going on in jazz that when you hear a cat playing a melody 
or a solo line the solo comes out sounding where it was played ... , but in ac­
tuality, the player conceived it in advance of where he played it. If you start 
conceiving your ideas where you are, you will be late. (p. 63) 
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It would seem that in any approach aiming at modeling the process of 
jazz improvisation, this "forward motion" must be taken into account4. 

The target note technique bears a resemblance to J. J. Bharucha's 
(1984) concept of melodic anchoring. By this he means a principle of per­
ceptual organization by virtue of which the listener assimilates unstable 
tones to the tonal schema. The basic idea of melodic anchoring is that an 
unstable, or dissonant, tone does not interfere with the tonal schema, if it 
is resolved into a tonally stable tone, or anchor, the two tones being prox­
imal in pitch. According to Bharucha, there are two types of melodic an­
choring, immediate and delayed. In immediate anchoring, a non-chord 
tone is immediately resolved into a chord tone that is a neighbor in either 
the diatonic or chromatic scale. In delayed anchoring, a nonchord tone is 
followed by another nonchord tone that satisfies immediate anchoring. 

According to a general view among brain researchers, information 
processing operations within the brain can be expressed in terms of adap­
tive filter functions (Kohonen 1989, 14). Autoassociative recall is a partic­
ular type of adaptive filter operation. As Kohonen (1989, 15) puts it, an au­
toassociative memory is a system which can memorize a set X;,i = l, ... ,n,

of vectors, and produce the copy of a particular vector x
k 

to the outputs, 
whenever the inputs are excited by a vector y in which a specified subset 
of components matches with the corresponding subset of components in 
x

k
. An autoassociative memory can, thus, recollect memorized informa­

tion from a distorted or imperfect input pattern. 
From an information theoretical point of view, the target note tech­

nique can be described as a series of temporal associations. Furthermore, 
the sequences of recollections are structured, i.e., they may branch into al­
ternative sequences depending on the context information, provided by 
the harmonic structure. Temporal recall can be implemented by autoasso­
ciative memories using a system model depicted in Figure 3. The central 
block of the system is an autoassociative memory, receiving input from 
three sources: external input (K), context input (C), and feedback input (F). 
The system also has an output for recollection (R) . 

K 

C 

F 

... 

.... 

... 

.... 

... 

.... 

Memory 
... 

.... 
R 

delay 

FIGURE 3. Associative memory for structured sequences (after Kohonen 1989). 

4 The present model is only concerned with short-term targeting or forward motion. In 
actual jazz improvisation these phenomena can be found in relatively long time 
spans - it is only limited by the confines of the human memory. 
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In this approach, the autoassociative memory is implemented as an artifi­
cial neural network , which is a collection of completely interconnected 
simple processing units, or artificial neurons. Each neuron is associated 
with an activation value. The time evolution of the state of the network 

(1) 

i.e., the ordered set of activation values of all neurons, is determined by
the connection strengths w

ij 
between neurons. The learning of melodic

patterns is carried out by strengthening the connections between active
neurons, whereas the memorized patterns are recollected by a relaxation
process, or flow of activation between neurons (e.g., Rumelhart &
McClelland 1986, van Hemmen & Kuhn 1991, Hecht-Nielsen 1990).

The learning and recollecting behavior of an autoassociative net­
work can be described in terms of the energy function (Forrest & Wallace 
1991, van Hemmen & Kuhn 1991): 

(2) 

The learning process shapes the energy function so that local minima 
emerge at the locations of the patterns being memorized. During the re­
laxation process, the state of the network develops so that the energy func­
tion decreases monotonically; consequently, it finally reaches a local min­
imum corresponding to one of the memorized patterns. The ability of an 
auto-associator to recollect a memorized pattern from a distorted input 
depends on the size of the basin of attraction of that pattern, i.e., the part 
of the state space where the state of the network is attracted to that pattern. 

The architecture of the network model is presented in Figure 4. The 
core of the model is an autoassociative network having six columns of 
neurons, each representing an eighth note of the melodic patterns. Each 
column further consists of 14 neurons, representing rest, ligature, and the 
12 notes of the chromatic scale. The neurons within a same column have 
inhibitory interconnections in order to guarantee that, in the relaxed state, 
only one neuron in every group is active. An example of the representa­
tion of melodic patterns is presented in Figure 5. As can be seen, the net­
work stores and recollects melodic patterns every half measure, with an 
overlap of two eighth notes between successive patterns. 

The auto-associator receives input from three sources: (1) context input 
(C) provides information about the types of present (PC) and following
(FC) chords; (2) feedback input (F) joins the melodic patterns together by
providing a simple short-term memory; (3) external input (E) feeds a
small random bias into each neuron in order to add variation to the se­
quences of output patterns. The input C deforms the energy function of
the auto-associator so as to increase the sizes of the basins of attraction for
those melodic patterns which are frequently used with the harmonic con­
text in question.
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FIGURE 4. The architecture of the network model. 
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FIGURE 5. The representation of melody in the network model. 

During the learning phase, one melodic pattern at a time is pre­
sented to the network: the neurons representing the notes of the melodic 
pattern are activated, together with the neurons representing the types of 
the present and the following chord. The learning occurs in two distinct 
groups of neurons: (1) the melodic patterns are learned through strength­
ening the connections between the active neurons of the auto-associator, 
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according to the Hebbian learning rule; (2) the relationship between the 
melodic patterns and the harmonic context is learned through strength­
ening the connections between the active neurons of the auto-associator 
and the active neurons of the context module. 

The recollection of melodic patterns starts with activating the neu­
rons representing the present and following chords, and the starting note. 
The network then relaxes, until a stable state (energy minimum) is 
reached; the melodic pattern represented by this state is fed into the out­
put. After resetting the network to zero activation values, feeding back the 
last two notes of the melodic pattern into the starting notes of the next 
pattern, and updating the chords, the relaxation process is started again. 

There are three parameters affecting the shaping of the energy func­
tion during the learning process and, thus, the time evolution of the sys­
tem during recollection. These are (1) the strength of the inhibitory con­
nections within each column ( w;nh); (2) the learning rate inside the auto­
associator ( 11

m
); and (3) the learning rate between the auto-associator and 

the context module ( 11
c
).

The network parameters can be thought to correspond to certain 
cognitive factors present in real improvisation. According to simulations, 
done with the model, high values of winh deform the energy surface of the 
auto-associator so that it has steep gradients. This causes the network to 
settle down quickly into a stable state, often producing new melodic pat­
terns and target notes which never occurred in the training set. With low 
values of winh' again, the relaxation process takes a long time, and the rec­
ollection of learned melodic patterns is more accurate. Parameter winh 

could, thus, be called the "spontaneity" or "creativity" parameter. The ra­
tio of parameters 11

m 
and 11

c 
contributes to the degree of emphasis on 

melodic and harmonic aspects of improvisation. With high values of 
11

m 
I 11

c
, the melodic patterns are recollected accurately, while they may not 

fit in the harmony. With low values of 11
m 

I 11
c
, the output is faithful to 

the harmonic context, whereas the recollected melodic patterns often are 
modified versions of those in the training set. 
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4 MATERIALS, TRAINING PROCESS, AND 
METHODOLOGY 

4.1 Description of the materials 

As an input the artificial neural network received nine A-sections (72 
measures) from an improvisation played by Hank Mobley on a chord pro­
gression known as Rhythm Changes (Mobley et al. 1956; Campbell 1989, 6-
8). This particular progression, which is based on a popular composition 
called I Got Rhythm by George Gershwin, was used widely by jazz musi­
cians in the bebop and hardbop eras. As was customary, Mobley did not 
use the original melody with the chord progression. Instead he substi­
tuted it with his own melody - hence the new title Tenor Conclave.

Harmonically the Rhythm Changes progression is a very simple, major 
key progression, and it uses many of the same devices as most of the tonal 
jazz compositions. There are many alternative ways to play this particu­
lar progression; Figure 6 illustrates approximately how Mobley inter­
preted the basic chord changes. 

Although the Rhythm Changes is a 32-bars long AABA form, the 
improvisations played on the B-section (Fig. 6) have been excluded. The 
reason is that the B-section is based on the circle of fifths -progression on 
dominant seventh chords, and thus no stable tonal center emerges. On 
the other hand, there are many chord substitutions in the actual improvi­
sations in the B-sections: if the local hierarchies of individual chords were 
investigated, it would have distorted the results, because the body of ma-
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terials is so small. Also, handling those substitutions would probably 
have been problematic with the present connectionist model. 

6.1. f CM7 A7 iDm7 G7 ICM7 A7 10m7 G7 I 

Gm7 C7 IFM7 F#07 ICM7 A7 10m7 G7 II 

6.2. 4 E7 IA7 I4 

D7 IG7 II 

FIGURE 6. An approximation of Hank Mobley's interpretation of the Rhythm 
Changes -chord progression. Figure 6.1 shows the A-section and Figure 6.2 the B­
section. 

4.2 Network parameter values 

Using the input material described in the previous section, a series of 
simulations was carried out. In each simulation, a differing set of values 
for the network parameters was used. The range of network parameter 
values was chosen experimentally, so that the output would, to a suffi­
cient degree, be stylistically consistent with the input, while at the same 
time a sufficient amount of variation of melodic style could be achieved. 
Using these criteria the parameter values were limited within the ranges 

0.10 < winh < 0.70, 
0.04 < T/

m 
< 0.28, 

0.03 < T/
c 

< 0.21. 

Furthermore, the number of values of each parameter was set to four, 
those being 

W;nh = 0.10, 0.30, 0.50, 0.70; 
TJm 

= 0.04, 0.12, 0.20, 0.28; 
TJc 

= 0.03, 0.09, 0.15, 0.21. 

This yielded 64 values for the triplet ( winh' TJm
, TJc

). With each value of the 
parameter triplet, the network produced melody on two A-sections of the 
Rhythm Changes -progression, i.e., 16 measures. The total output was, 
thus 64 x 16, or 1024 measures. 

4.3 Analysis procedures 

The principles behind the methods of analysis that were used in this 
study are explained in detail in Jarvinen (1995); only the analytic proce­
dures will be explained in the following. The basic idea is to count the fre­
quency of each tone of the chromatic scale in the given piece of music. 
This is done on four metrical levels, namely the eighth, quarter, half and 
whole note levels. The eighth note level consists of all the sounded tones 
in a given piece of music. On the quarter note level the tones falling on 
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first, second, third and fourth beats are taken into account. Further, the 
half note level is obtained by counting the frequencies of the tones on first 
and third beats. Finally, on the whole note level only the tone on the first 
beat of each bar is included. The global level tone-frequency profiles are 
derived from the A-sections found in the body of materials, whereas the 
local (chord) level tone-frequency profiles are measured over five chords 
found in the same sections, namely CM7 (I), A7 (V /ii), Dm7 (ii), G7 (V), 
and FM7 (IV). 

The same basic statistical procedures were performed on both the in­
put material (Tenor Conclave) and on the output that the artificial neural 
network produced. The obtained tone-frequency profiles were examined 
by comparing the frequencies of individual tones on each level. The pro­
files were also compared on a more general level. A frequently used tool 
for comparing tone profiles is Pearson's correlation coefficient5. It, how­
ever, is somewhat problematic with this kind of material. The basic idea 
of Pearson's correlation coefficient is to estimate, on the basis of a sample 
of values of two random variables, to what degree it is possible to predict 
the values of one variable from those of the other (see, e.g., Harnett 1982). 
The frequencies of different tones, however, are clearly not sampled val­
ues of one and the same variable, but rather components of a vector-val­
ued variable. 

The problems caused by using the correlation coefficient for measur­
ing the degree of similarity between profiles are not merely theoretical. 
From any profile, it is possible to construct another profile, such that the 
two profiles have a correlation value + 1, but differ significantly from each 
other. This can be done, for instance, by shifting the values of the compo­
nents away from their mean; see Appendix 1. The correlation coefficient 
is, thus, not an adequate similarity measure for analyzing the present 
data. 

Such reasoning led us to treat the resulted pitch profiles as 12-dimen­
sional vectors. This enabled us also to utilize various similarity and dis­
tance measures which better preserve the information content of the pro­
files. There are two commonly used approaches to measure the similarity 
of two vectors. (1) The distance between them can be calculated by using a 
given metric; usually either Euclidean or city-block metric is used. (2) A 
computationally simpler way, however, is to use the so-called direction 
cosine, which is the cosine of the mutual angle of the vectors. A more 
thorough description of the similarity measures can be found in 
Appendix 2 (see also Kohonen 1989, 59-67). The applicability of all three 
was tested, but no significant differences were found. It should be noted 
that in order to obtain reliable results with a given metric, the sizes of the 
materials being compared should be of similar magnitude. If the body of 

5 Krumhansl, for example, has used Pearson's correlation coefficient for measuring the 
degree of similarity between key profiles (1990, 31-40). On p. 35 she states: "One 
method for assessing the degree of similarity between profiles is the statistical 
measure called correlation. This statistic takes a value from -1 (for patterns that are 
exactly opposite) to 1 (for patterns that are exactly the same)." This is not true, as 
has been proved in Appendix 1: the correlation of two profiles can be 1 even when the 
profiles differ significantly from each other. 
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materials is small, the distribution is highly quantized; this tends to de­
crease the degree of similarity between profiles. - To facilitate the com­
parisons between the different levels, the obtained tone-frequency profiles 
were normalized with respect to Euclidean metrics. 
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5 RESULTS 

5.1 Global level tone-frequency profiles 

The output material of a connectionist model of jazz improvisation was 
investigated by analyzing the statistical distribution of the tones of the 
chromatic scale within the C major context. The same procedures were 
also performed on the input material (an improvisation by tenor saxo­
phonist Hank Mobley) that the neural network received. The input and 
output results will be compared on each of the four metrical levels, and 
also an average profile of both will be shown. 

Figure 7 presents the tone-frequency profiles for both input (IP) and 
output (OP) on the eighth note level. The IP profile seems to have similar 
general characteristics that were found in Krumhansl's and her col­
leagues' tests as well as in Jarvinen's study on actual improvisations: the 
most emphasis is given to the tonic triad, which is followed first by the 
rest of the diatonic scale and finally by the non-diatonic tones. While the 
OP profile also displays comparable properties, it differs in some crucial 
respects. First of all, the structurally important tones of the C major tonal­
ity, namely C and G, are used less frequently in the OP than in the IP; on 
the other hand, the tones D and A, which have more melodic function in 
C major are used quite frequently in the OP. Secondly, the neural network 
seems to amplify the differences between the frequencies of the tones that 
can be found in the input material: the non-diatonic tones D#, F#, G#, and 
A#, for example, are used less in OP than in IP, whereas tones c#, E, F, and 
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A are used more frequently by the neural network. The most notable ex­
ceptions to this are the tones C, G, and B which receive relatively little 
emphasis. As a result, despite the distinctive hierarchy, the distribution of 
the tones in the input material is more equal (i.e. the approach is more 
chromatic) than in the output produced by the network. 
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FIGURE 7. The global tone-frequency profile for the input(•) and output (o) mate­
rials on the eighth note level. 
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FIGURE 8. The global tone-frequency profile for the input(•) and output (o) mate­
rials on the quarter note level. 

The IP and OP profiles for the quarter and half note levels (Fig. 8 and Fig. 
9, respectively) show overall tendencies similar to the ones found in the 
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eighth note level. There are, however, some things that deserve atten­
tion. The artificial neural network seems to emphasize the tone C# metri­
cally much more than the human improviser; especially on the quarter 
note level of OP it seems to hold a relatively stable position in the hierar­
chy. On the other hand, the network de-emphasizes metrically the other 
non-diatonic tones, most notably F#, G#, and A#. The frequencies of the 
tones C and G are close, but unlike on the eighth and quarter note levels 
they are emphasized more in the OP than in the IP. Also the high fre­
quency of the tone F in the OP should be noted. The whole note level pro­
files in Figure 10 are well in concordance with each other. Both, however, 
have some distinctive characteristics, although they show a clear and sim­
ilar tonal hierarchy. The OP profile is diatonic with little emphasis on the 
non-diatonic tones, while the IP profile shows that on the whole note 
level there is relatively much chromatism. 

(1) 0.6 
u 

(1) 

u 

0 
..... 

0.4 0 

>. 
u 

(1) 

(1) 

0.2 

pitch class 

FIGURE 9. The global tone-frequency profile for the input(•) and output (o) mate­
rials on the half note level. 

The weighted average profiles for both the IP and OP shown in Figure 11 
summarize well the aforementioned points. It seems clear that the artifi­
cial neural network was able to produce a tonal hierarchy that is similar to 
the one that can be found in the input material and also in the earlier 
studies (see, e.g., Krumhansl 1990; Jarvinen 1995). 
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FIGURE 10. The global tone-frequency profile for the input(•) and output (o) ma­
terials on the who1e note level. 
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FIGURE 11. Weighted average tone-frequency profiles for the input(•) and output 
(o) materials.

Some of the divergencies can be probably explained by the linear nature of 
the learning algorithm used in this model: it may have caused some 
rarely used tones to occur even more infrequently in the OP (e.g., Dt F#, 
G#, and A#) and some frequently used tones to occur even more fre­
quently (e.g., D, E, and A). As far as the IP is concerned the source of the 
relatively frequently occurring non-diatonic tones may be the blues scale 
(see Jarvinen 1995), linear chromatic patterns, or chord substitutions (e.g., 
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D7 is substituted for Dm.7). From this it seems obvious that the global sta­
tistical distribution of the tones does not give clear enough indications of 
the possible similarities and differences the IP and OP may have. To in­
vestigate this further, we analyzed what kind of hierarchies are formed on 
individual chords - the results are presented in the next section. 

5.2 Local level tone-frequency profiles 

The individual hierarchies of five chord functions were investigated by 
analyzing the materials with the same statistical procedures that were 
used in the previous section; the only difference is that the whole note 
level is excluded, because in this progression each chord lasts for only two 
beats at a time. The chords are CM7 (I), A7 (V /ii), Dm7 (ii), FM7 (IV), and 
G7 (V).Figure 12 presents the weighted average values for the CM7 chord. 
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FIGURE 12. Chord level tone-frequency profiles obtained from the input ( •) and 
output (o) materials for the CM7 chord. 

The IP and OP profile follow each other very closely, and there are no sig­
nificant differences. The priority of the tonic triad (C, E, and G) is clear in 
both profiles, for all other tones, diatonic and non-diatonic, are used con­
siderably less often. The results for the next chord, namely A7, seem 
much more ambiguous (Fig. 13). The network clearly preferred tones A 
and c#, i.e. the root and the third of the chord. On the other hand the IP
profile shows a dissimilar pattern of preference with emphasis put on the 
chord tone c#, but also on C and G, the important tones of the underlying
tonality. Also there is fair amount of emphasis on the tone B, but in the 
improvisation it is used as an upper neighbor tone for the root of the 
chord. 
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FIGURE 13. Chord level tone-frequency profiles obtained from the input ( •) and 
output (o) materials for the A7 chord. 

Q) 
u 
i:: 

� 
u 
u
0 ._ 
0 

>, 
u 
i:: 
Q) 

g.. 
Q) 

-t: 

0.6 

0.4 

0.2 

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B 

pitch class 

FIGURE 14. Chord level tone-frequency profiles obtained from the input ( •) and 
output (o) materials for the Dm7 cnord. 

The results for the Dm7 chord are in Figure 14. The OP profile is domi­
nated by three tones, D, E, and A, two of which are chord tones in Dm7. 
The third tone E can also be explained as an upper neighbor tone for the 
root D. In fact, the network seems to have got stuck at some point, because 
the motive E-C#-D-E is used quite frequently. This may also be the reason 
why the third of Dm7, F, is used so little. The high frequency of the tone E 
in IP seems to be the result of a similar leading motion from E to D. 
Compared to the chord tones the central tones of the tonality are used in 
IP relatively frequently as was the case also in the A7 chord profile. 
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FIGURE 15. Chord level tone-frequency profiles obtained from the input ( •) and 
output (o) materials for the G7 chord. 
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FIGURE 16. Chord level tone-freguency profiles obtained from the input ( •) and 
output (o) materials for the FM7 cnord. 

Figure 15 represents the G7 profiles. The tone frequencies for the IP show 
a fairly chromatic approach, where non-chord tones and even non-dia­
tonic tones are used quite frequently. Interestingly, instead of the root, the 
third of the chord, B, is the reference point for the improviser. The OP 
shows quite frequent use of most of the diatonic tones. Still, the most em­
phasis is put on F, which is partly attributable to a certain frequently used 
motive (F-G-A-Gij). The OP profile for the FM7 chord (Fig. 16) shows that 
the network used primarily the tones C and F. The IP profile shows a 
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more varied choice of tones, although the tones of the basic triad (F, A, 
and C) are clearly present. Again, the tone G is an upper leading tone 
which is resolved to F in the improvisation. These results, however, 
should be contemplated more cautiously than the ones on CM7, A7, Dm7, 
and G7, for there are three times fewer FM7 chords in the Rhythm 
Changes -chord progression. 

To summarize these results, it seems that in the actual improvisa­
tion that was used as input there is a tendency to take both the underlying 
chord and the global tonality into account (cf., Jarvinen 1995). In the out­
put produced by the artificial neural network, however, the underlying 
chord seems to be the main factor that affects the use of tones. This is 
probably the cause of the discrepancies between the global IP and OP pro­
files: in the output produced by the network there is too much emphasis 
on the local hierarchies of the individual chords. As a result some tones 
(e.g., dL D, and A) occupy much higher place in the OP than in the IP 
tonal hierarchy. On the other hand, since the network does not take the 
global tonality into account, there is less emphasis on the central tones of 
the C major tonality, namely C and G. 

5.3 Similarity of the profiles 

While the profiles examined in the preceding section give us a lot of de­
tailed information about the IP and OP, a more general and objective 
method seems to be needed to complement the previously made observa­
tions. In this section we will show one possible way to approach the IP 
and OP materials in a more comprehensive manner. The profiles are 
treated as 12-dimensional vectors the mutual similarity of which is com­
puted by a mathematical measure referred to as direction cosine. 

Figure 17 illustrates the obtained profile vector distances for the four 
metrical levels of the global tonal hierarchy. In addition to the direction 
cosine there are also the two distance measures that were introduced ear­
lier for the sake of comparison. As is evident from the graph, all three 
give congruous results. 

The direction cosine value is high for each metrical level: the IP and 
OP profiles are remarkably similar. Especially on the whole note level the 
difference is almost non-existent. The slightly lower values on the other 
levels are mainly due to the more frequent use of non-diatonic tones in 
the IP material. In fact, as the tone-frequency profiles showed in the pre­
vious section, the non-diatonic tones are used infrequently in the OP ma­
terials on every metrical level. On the other hand, it is customary in be­
bop styled jazz to play diatonic tones on the strong metrical positions es­
pecially on the downbeat of a measure. Consequently, on the whole note 
level both profiles demonstrate emphasis on the diatonic tones, and 
therefore the direction cosine shows high similarity on that particular 
level. 
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FIGURE 17. The similarity of the global input and output profiles on the four metri­
cal levels. The results are given with three similarity measures, namely the Euclidean 
distance, the city-block distance, and the direction cosine. The values of the 
Euclidean and city-block distances are shown on the vertical axis on the left side, 
whereas those of the direction cosine can be read on the vertical axis on the right 
side. 

The direction cosine values were also computed for five chords (CM7, A7, 
Dm7, FM7, and G7) found in the Rhythm Changes chord progression. 
Although all values are high as Figure 18 shows, the chord profiles do not 
match as neatly as the global profiles. The IP and OP profiles for the CM7 
chord seem to be almost identical, for the similarity measure is almost 1. 
The direction cosine values are also high for the other chords, but the re­
sults are, nevertheless, markedly lower than the ones for the tonic chord. 
The secondary dominant for the Dm7 chord, namely A7, gets the lowest 
direction cosine value (less than 0.8), which may be due to the fact that it 
is the only chord in this five chord set that includes a non-diatonic tone as 
a chord tone (C#). Consequently, since the network, unlike the human, 
seems to be unable to take the global tonality into account, there is dis­
crepancy between the IP and OP profiles. The direction cosines for the 
Dm7, G7, and FM7 chords are slightly over 0.8. The reason for this dis­
crepancy may be the extensive use of certain motives along with the em­
phasis on the local hierarchy of the underlying chord in the OP materials. 
It should be noted, however, that direction cosine for the FM7 chord is 
not totally comparable with the other direction cosines, because the body 
of materials is smaller than for the other chords. 
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FIGURE 18. The direction cosines calculated between the input and output chord 
level tone-frequency profiles. 

The results obtained with direction cosine measurement are similar to 
the ones reported in the previous section. They support the findings that 
the output produced by the artificial neural network appears to be similar 
to the input that was used in the training period. Furthermore the results 
show clearly that the network reproduces the global tonal hierarchy most 
successfully on the whole note level; on other levels there is more dis­
crepancy. The distance cosine values for the various chord functions indi­
cate that this divergence may be partly due to the network's inability to 
take the global tonal hierarchy into account. This is well demonstrated by 
the fact that the direction cosine value for the tonic chord (CM7) is higher 
than the values for the other chords. In other words, the network was 
most successful when it only had to be concerned with the tonal hierarchy 
of the underlying chord. 

5.4 The effect of the network parameters 

In order to analyze the effect of network parameter values on the output, 
tone profiles were also calculated separately for each parameter value 
combination. These were then compared with the corresponding input 
profiles by means of direction cosines. This yielded, for each metrical 
level, direction cosine values for 64 points of the three-dimensional net­
work parameter space. As an example, Figures 19.1-19.3 present direction 
cosine values of input vs. output profiles on half-note level in three sub­
sets of the network parameter space, keeping each time one parameter 
constant: (1) w

inh
= 0.30; (2) TJ

m
= 0.12; (3) TJ

c
= 0.09. From Figure 19.1, for in­

stance, it can be seen that, when w
inh

had a constant value 0.3, the best 
match between the input and output tone profiles on half-note level was 
achieved with parameter values TJ

m
= 0.04 and TJ

c
= 0.15; moving away 

from this point of the parameter space resulted in a worse correspondence 
between the profiles. In a similar manner the optimal set of parameter 
values in both Figures 19.2 and 19.3 is w

inh
= 0.30, TJ

m
= 0.12, and TJ

c
= 0.09. 



28 

0.21 
Fig. 19.1. 

0.15 

0.09 

0.03 
0.04 0.12 Ti

m 
0.20 0.28 

0.21 
Fig. 19.2. 

0.15 

0.09 

0.03 
0.1 0.3 w

inh 
0.5 

0.28 
Fig. 19.3. 

0.80 0.82 

0.20 

0.12 

0.04 
0.1 

0.84 0.86 

0.3 w
inh 0.5 0.7 

0.88 0.90 0.92 0.94 

0.7 

0.96 

FIGURE 19. Three examples of the effect of network parameter values on the output. 
Each figure represents how the direction cosine calculated between the input and output 
profiles changes, when two network parameters are changed and one is kept constant. 
The constant parameters and their respective values are: w

inh
= 0.30 (Fig. 19.1); 'llm = 0.12 

(Fig. 19.2); and 'llc = 0.09 (Fig. 19.3). The direction cosines are calculated on the half note 
level. For the ease of reading, the direction cosine values have been linearly interpolated 
between the actual points that were used in the simulations. 
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In principle, this method could be used for finding the set of parameter 
values with highest similarity of tone profiles with the input data, and 
thus tuning the network to optimum performance. The present material, 
however, was found to be insufficient for that purpose: since the output 
with each parameter value combination consisted of only 16 measures, 
the relevant information was greatly obscured by statistical fluctuations. 
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6 SUMMARY AND DISCUSSION 

The input and output of an artificial neural network designed to learn 
and produce jazz improvisation were compared by using statistical and 
mathematical methods. First, the statistical distribution of the tones in the 
chromatic scale was measured both over single chords and whole chord 
progression on four metrical levels. The obtained tone-frequency profiles 
were contemplated by comparing the frequencies of individual tones on 
each level. The input and output materials were compared also on a more 
general level by computing the intervectorial distances of the tone pro­
files with a similarity measure referred to as direction cosine. - As an in­
put the network received an improvisation by tenor saxophonist Hank 
Mobley. 

When the statistical distribution of the tones in the input and output 
materials were compared it was found that on the global level the general 
characteristics of the tone-frequency profiles were similar6: the tonic triad 
and the rest of the diatonic tones were favored over the non-diatonic 
tones. There were, however, some divergencies, for the input material 
displayed clear emphasis on the tones of the tonic chord whereas the net­
work used most of the diatonic tones relatively frequently along with the 
tonic triad. These differences illustrated well how the approach used by 
the present computer model differs from the one that the human impro-

6 It is noteworthy that these hierarchies resemble also the kind of hierarchical 
ordering of the tones found in empirical (eg., Krumhansl 1990) and statistical 
(Jarvinen, 1995; see also Knopoff & Hutchinson 1983) studies. 
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viser seems to utilize. Namely, the comparisons between the chord level 
tone-frequency profiles of five chord functions (CM7, A7, Dm7, FM7, and 
G7) indicated that in the output the local hierarchy of underlying chord 
was the main factor that affected the use of tones whereas the actual im­
provisation played by the musician (input) shows awareness of both the 
underlying chord and global tonality. Although the network reproduced 
successfully the local tonal characteristics, it was unable to extract the in­
formation about the global tonal tendencies from the input that it was 
given. Therefore it lacked the kind of overall tonal coherence that is char­
acteristic of real jazz improvisations (cf., Jarvinen 1995). 

The similarity of the tone-frequency profiles was calculated with a 
similarity measure known as direction cosine. The results confirmed the 
aforementioned findings, for the direction cosines calculated for the 
global profiles yielded high values, although inconsistencies were appar­
ent on the eighth, quarter, and half note levels. At least partly this can be 
explained by the way the artificial neural network and the musician han­
dled the chords. The direction cosines for the chords show that the pro­
files for the tonic chord (CM7) are the most similar - the profiles for the 
other chords show considerably more discrepancy. In other words, the 
network was most successful when it only had to be concerned with the 
tonal hierarchy of the underlying chord. Another reason may be that the 
output displayed clear emphasis on the diatonic tones on all metrical lev­
els. On the whole note level of the global tone-frequency profile the dif­
ferences are not as evident, for there also the musician usually empha­
sizes diatonic tones more than on the lower levels. 

The statistical and mathematical methods of analysis that were used 
in this study seem to be well suited for the evaluation of an artificial neu­
ral network designed to learn and produce music in a given style. These 
methods enable us to approach the atemporal qualities of music in a pre­
cise and relatively objective manner. The tone-frequency profiles, which 
were derived from the input and output materials, present us precise evi­
dence about the tone preferences with respect to both single chords and 
the whole chord progression. Furthermore, the direction cosine gives eas­
ily accessible and reliable information about the overall similarity of the 
input and output profiles without getting into too much detail. The un­
derlying consumptions of this study were closely related to the notion of 
western tonal hierarchy put forward most notably by Carol L. Krumhansl. 
The network that was contemplated in this study was designed to simu­
late bebop styled improvisation, which is a relatively tonal style of music. 
Therefore for our purposes Krumhansl's empirical findings along with 
statistical data on the tonal hierarchy in bebop styled jazz provided a good 
foundation. Hierarchical differentiation of musical elements, however, 
seems to be a basic cognitive principle regarding music in many cultures 
(see e.g., Castellano, Bharucha, & Krumhansl 1984, 411-412; Krumhansl 
1990, 268-270), and in principle it seems reasonable to assume that a simi­
lar method could be used to evaluate connectionist systems designed to 
learn and produce other western as well as non-western musics. 

Since one goal of this study was to find methods of analysis for the 
output of an artificial neural network, the extent of the input material 
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was kept relatively small. For this reason some of the actual results, how­
ever, should be considered cautiously. In particular, the differentiation be­
tween the four metrical levels is problematic, because even small motives 
which occur a few times can have an affect on the tone profiles. For ex­
ample, the small three note motive in Figure 20.1 presents one such a 
case. 

Fig. 20.1 
FM7 

Fig. 20.2 

-�►1 · f

FIGURE 20. Neighbor tone motive. Figure 20.1 shows how it is written in standard 
musical notation, and Figure 20.2 illustrates how a listener may perceive it. 

If we consider the local tonal context, which is the FM7 chord, the first 
two tones, namely E and G, are clearly neighbor tones for the tone F that is 
played on the second eighth note of the measure. The musician both pre­
pares the new chord by these neighbor tones and creates tension by delay­
ing the root. Figure 20.2 illustrates the way a listener would probably per­
ceive it: the tone F is the goal or target note of the first two tones or in 
Bharucha's terms E and G are be anchored to F (1984). In the statistical 
analysis, however, the tone G, which is on the downbeat of the measure 
gets eight times more emphasis than the tone F. Small idiosyncrasies of 
this kind are evened out in a large body of materials, but in small ones 
they may distort the results. 

Another similar problem which might have distorted the tone pro­
files is that the network sometimes got stuck at some point and always 
produced the same melodic motive on a given chord. This behavior 
might be partly due to the linear learning algorithm. An autoassociative 
neural network which uses the Hebbian learning rule is somewhat lim­
ited in its ability to store patterns. When the number of patterns to be 
stored exceeds a critical storage ratio of about 0.15N (where N is the num­
ber of neurons), a perfect recall of patterns cannot be ensured. Above this 
limit the stored patterns start to interfere with each other, resulting in 
unpredictable behavior. The critical storage ratio can be improved by us­
ing non-linear error-correcting learning algorithms such as perceptron 
learning (Forrest & Wallace 1991, 132-133). Another essential aspect in the 
performance of an autoassociative network is the degree of its content-ad­
dressability, i.e., how distorted initial patterns it can tolerate. This ability 
depends on the sizes of basins of attraction of the stored patterns, and can 
be improved, for instance, by training the network with noisy patterns 
(Forrest & Wallace 1991, 140). 

The aforementioned analysis results indicate that the present artifi­
cial neural network model, while being able to reproduce the tonal char­
acteristics of the input material on a local level, fails in extracting the 
global tonality. The reason for this may be the limited temporal range of 
operation, as well as the lack of hierarchical structure in the model. In or-
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der to be able to process events of longer temporal range, a short-term 
memory should be added to the model. In the connectionist paradigm 
this can be done, for instance, by means of tapped delay lines or leaky in­
tegrators. The contents of the short-term memory would then enable the 
model to better connect the output to the global tonality. 

The ability of a neural network to extract global features from a given 
input depends to some extent on its architecture: in general, multi-layer 
networks seem to perform this task better than single-layer ones. Hence, a 
natural improvement to the present network model would be to add lay­
ers operating on greater time scales; as a first step, a layer operating with 
target notes within a melodic phrase of four bars could be added. A fur­
ther possibility would be a hybrid model: the connectionist system could 
be connected with a rule-based symbolic system operating on a higher 
level of abstraction. 

An essential aspect which affects the performance of a neural net­
work is how the data is represented. According to a general view, making 
data representation more distributed seems to better exploit connectionist 
systems' important inherent properties, such as content-addressability, 
generalization capability, and noise tolerance. In the present model, there 
are several ways to improve the representation of data. For example, the 
representation of chords is localist: a given chord type is represented by ac­
tivating one neuron. This could be made more distributed by using acti­
vation patterns representing the tones the chord is composed of. 

The statistical methods themselves also require some additions, be­
cause the ones used in this study give only atemporal evidence about the 
music. In other words, they are unable to give information about how the 
music unfolds in time; how and to what extent, for example, motives in­
fluence the tone profiles must be determined subjectively by analyzing 
the music. While this is mandatory at any case, there still should be some 
more objective way to examine the temporal surface level events. One 
way to do this would be to use an n-dimensional transition matrix which 
would enable us to examine the statistical properties of a given piece of 
music on a note-to-note level. A two dimensional matrix, for example, 
would give us to the relative percentages by which a given tone is pre­
ceded by the other tones in the chromatic scale. Further, if a third dimen­
sion were added, we would get the transitions between any three note 
groups. These would give a plethora of information about the voice-lead­
ing, intervals, and small motives. On the other hand, this would require a 
very large body of materials in order to obtain a transition matrix with 
sufficient density. 
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APPENDIX 1: Why is Pearson's correlation coefficient 
not an adequate similarity measure for tone profiles? 

37 

Let x = (xp
x

2 , ... ,xN ) denote a tone profile. Let us construct tone profile 
Y = (Yi,Y2 , ... ,yN ) by using the equation 

(3) 

where x, the mean of x;, is by definition 

(4) 

It can be seen from (3) that when a= 0, the two tone profiles are identical. 
When a > 0, profile y is constructed from profile x by increasing those x; 
which are greater than their mean, and decreasing those which are 
smaller than their mean; the opposite holds true for a< 0. Further, it is 
obvious that the smaller the absolute value of a, the closer profile y is to 
profile x. In Figure 21, y is constructed from x by using the value a= I. 

By combining (3) and (4) we get 

(5)
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i.e., the means of the two profiles are equal. By using (3) and (5) we furtherget 

The Pearson's correlation coefficient for x and y is by definition

Combining (7) and (6) yields
(l+a)I,(x;-x)2 

corr(x,y) = _ 112 _ 112 ll + al(I,(x; -x)2 ) (I,(x; -x)2 )

(l+a) { 1 ,ifa>-l = ll+al = -1 ,ifa<-l.

(6) 

(7) 

(8) 

Pearson's correlation coefficient, thus, does not depend on the magnitudeof a (except the step at a =-1). Consequently, it does not provide an ade­quate similarity measure for tone profiles. See also Figure 21 and Table l. 
TABLE 1. Data for profiles presented in Figure 21. 

tone profile x profiley profile z 

C 6.35 10.65125 6.9 
c#!D� 2.23 0.35125 2.68 
D 3.48 3.47625 3.83 
D#/E� 2.33 0.60125 2.58 
E 4.38 5.72625 4.53 
F 4.09 5.00125 4.14 
F#/G� 2.52 1.07625 2.47 
G 5.19 7.75125 5.04 
G#/A� 2.39 0.75125 2.14 
A 3.66 3.92625 3.31 
A#/B� 2.29 0.50125 1.84 
B 2.88 1.97625 2.33 
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FIGURE 21. Gra:ehical re:eresentation of the tone :erofiles in Table 1. Profile x is the 
C major key profile after Krumhansl (1990, 37, Table 2.3.). The values of Pearson's 
correlation coefficient for the pairs (x,y) and (x,z) are 1 and 0.973, respectively. 
These values clearly conflict with the perceived degrees of similarity between the 
profiles. On the other hand, the values of the direction cosine (see Appendix 2) are 
consistent with that: cos(x,y) = 0.925, cos(x,z) = 0.996. 
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APPENDIX 2: On distance and similarity measures of 
vectors 

Let p and q denote two n-dimensional real-valued vectors: 

(9) 

The magnitude, or norm, of p can be defined in several ways. The two 
most commonly used are the Euclidean norm, JJpJJ

2
, and the city-block 

norm, JJpJJ
1
, defined as 

(10) 

and 

IIP!l1 = I,i;J (11) 
i=l 

Both are special cases of the Minkowski norm 

(12).
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The distance of vectors p and q is defined as the norm of their difference: 

d(p,q) = llp-qll- (13) 

Combining definition (13) with definitions (10) and (11), we get, respec­
tively, two frequently used distance measures for vectors: the Euclidean 
distance [ n 

]

1/2 
d2(p,q)= llp-qll2= 

�(i;;-11;)
2 

(14) 

and the city-block distance 

dl(p,q) = llp-qlJ1 = Iii;; -11J (15) 
i=I 

In addition, the similarity of vectors p and q can be measured in terms of 
the cosine of their mutual angle, or direction cosine, defined as 

(16) 

where the scalar product (p,q) has the form 

(p,q) = Ii;;11;- (17) 
i=I 

The value cos0 = 1 represents an exact match: vector p is then equal to 
vector q multiplied by a scalar a, i.e., p= aq. 
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APPENDIX 1: 
C source code for the 
Kohonen Map Simulator 
used in studies II and ill 
(contains Macintosh-specific functions) 
Petri Toiviainen 1995 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

I*• • • • • • • • • • • • • • • • • • File "Kohos.h" • • • • • • • • • • • • • • • • • • • • • • • • * / 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <stdarg.h> 
#include <string.h> 
#include <console.h> 

MACRO DEFINITIONS 

#define BEEP printf("\7"); 

*/ 

#define getParam(x,y,z) {printf(y);printf(": ");scanf(z, &x);} 
#define mError {printf("Out of memory. \n"); exit(0);} 
#define foError(x) {printf("Can't open file %s.\n", x); return;} 
#define noNetAlert {printf("Build a net first.\n"); return;} 
#define noPattAlert {printf("Read patterns first. \n"); return;} 

void 

FUNCTION DECLARATIONS 

say Hello(), 
buildNet(void), 
readPatterns(void), 
goTesting(void), 
saveNet(void), 
readNet(void), 
wayOut(void), 
whatNext(int numFuncs, ... ), 
goTraining(void), 
train(void), 
free Weights(), 
allocate Weights(), 
randomize Weights(); 

extern void train(void), 
test(void); 

/*• • • •• • •• • •••••••••File "Kohos.c0

• • • • • • • • • • • •• • • • • • •• • • ••* /

#include "Kohos.h" 

char *dots="••••••••••••••••••••••••••••••••••••••••••••••••••••••••"; 

int inputDim, 
xSize, 
ySize, 
torus =0, 
noNet = 1, 

/* dimension of input vectors * / 
/* horizontal dimension of the map * / 
/* vertical dimension of the map * / 
/* =l, if toroidal architecture * / 
/* =l, if no network has been read or created * / 
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noPatterns = 1; 

float ***weight, 
**tmpValue, 
**iPatt, 
minkExp; 

/* =l, if no patterns have been read */ 

/* pointer to synaptic vectors * / 

/* pointer to input vectors * / 
/* Minkowski exponent * / 

int nPatts; /* number of input vectors * / 

FILE *ifp, *ofp; 
char ifName[128], 

ofName[128]; 

/* input/ output file pointers * / 
/* file 

names */ 

/*••···············································••*/ 

void main() { 

say Hello(); 
while(l) /* choose next action */ 

whatNext(7, 
"Build network", buildNet, 
"Read network from file", readNet, 
"Read input patterns", readPatterns, 
"Train", goTraining, 
"Test", goTesting, 
"Save network to file", saveNet, 
"Exit", wayOut); 

/*••···············································••*/ 

void whatNext(int numFuncs, ... ) { 
#define MAXNFUNCS 10 

/* 

char 

void 
void 
int 

funcName[MAXNFUNCS][ 64], 

*tmp;
*funcPtr[MAXNFUNCS];
(*theFunc)(void);
i, 

funcNum; 
va_list ap; 

get the arguments 

va_start(ap, numFuncs); 
for (i=0; i<numFuncs; i++) { 

*/ 

tmp = va_arg(ap, char*); strcpy(funcName[i], tmp); 
funcPtr[i] = va_arg(ap, void*); 

I 
va_end(ap); 

choose the next action */ 

printf("\n%s\n%s\n", dots, "Choose the next action:"); 
for (i=0; i<numFuncs; i++) 

printf("%d) %s\n", i+l, funcName[i]); 
printf("%s\n\n", dots); 

scanf("%d", &funcNum); 

A endix 1 
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theFunc = funcPtr[funcNum-1]; 

call the chosen function */ 

(*theFunc)(); 

/*••···············································••*/ 

void buildNet() { 
register int i, j; 

free Weights(); 
getPararn(inputDim, "inputDim", "%d"); 
getParam(xSize, "xSize", "%d"); 
getParam(ySize, "ySize", "%d"); 
getParam(torus, "torus (1/0)", "%d"); 
getParam(minkExp, "Minkowski exponent", "%f"); 

allocateWeights(); 
randomize Weights(); 
noNet= 0; 

/*••···············································••*/ 

void readPatterns() { 
register int i, j, eof; 

/* 

float trnp; 

if(noNet) noNetAlert; 

getParam(ifName, "Pattern file name", "%s"); 
if((ifp=fopen(ifName, "r")) == NULL) foError(ifNarne); 

free pattern pointers 

if(iPatt != NULL) { 
for(i=0;i<nPatts;i++) free(iPatt[i]); 
free(iPatt); 

count the number of patterns 

nPatts = 0; eof = 0; 
while(l) { 

for(i=0; i<inputDim; i++) 

*/ 

*/ 

if(fscanf(ifp, "%f", &tmp) == EOF) eof = 1; 
if( eof) break; 
nPatts++; 

I 
fclose(ifp ); 

allocate memory for the patterns */ 

if((iPatt=(float**)calloc(nPatts, sizeof(float*)))==NULL) mError; 
for(i=0;i<nPatts;i++) 

3 
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/* 

if((iPatt[i]=(float*)calloc(inputDim, sizeof(float)))==NULL) 
mError; 

read the patterns */ 

if((ifp=fopen(ifName, "r")) == NULL) foError(ifName); 
for(i=0; i<nPatts; i++) for(j=0; j<inputDim; j++) 

fscanf(ifp, "%f", &iPatt[i][j]); 
fclose(ifp ); 
printf("%d patterns read from file %s. \n", nPatts, ifName); 
noPatterns = 0; 

/*••···············································••*/ 

void saveNet() { 
register int i,j,k; 

if(noNet) noNetAlert; 
getParam(ofName, "Output file name", "%s"); 
if((ofp=fopen(ofName, "w")) == NULL) foError(ofName); 
printf("Writing to file %s. \n", ofName); 
fprintf(ofp, "%d\t%d\t%d\n", xSize, ySize, inputDim); 
for(i=0; i<xSize; i++) 

for(j=0; j<ySize; j++) { 
for(k=0; k<inputDim; k++) 

fprintf( ofp, "%.3f\ t", weight[i][j][k]); 
fprintf(ofp, "\n"); 

} 
fclose(ofp); 

/*••···············································••*/ 

void readNet() { 
register int i, j, k; 

getParam(ifName, "Network file name", "%s"); 
if((ifp=fopen(ifName, "r")) == NULL) foError(ifName); 
printf("Reading from file %s. \n", ifName); 
fscanf(ifp, "%d%d%d", &xSize, &ySize, &inputDim); 
printf("xSize: %d \nySize: %d \ninputDim: %d \n", xSize, ySize, 
inputDim); 
printf("Allocating ... \n"); allocate Weights(); 
for(i=0; i<xSize; i++) 

for(j=0; j<ySize; j++) 
for(k=0; k<inputDim; k++) 

fclose(ifp ); 
noNet = 0; 

fscanf(ifp, "%f", &weight[i][j][k]); 

/*••···············································••*/ 

void freeWeights() { 
int i, j; 

if(weight!=NULL) 

A endix 1 
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for(i=O ;i <xSize;i ++) 
for(j =0 ;j<ySize� ++) 

free(weight[i][j]); 
for(i=O;i<xSize;i++) 

free(weight[i]); 
free(weight); 

/*••···············································••*/ 

void allocateWeights() 
int i, j; 

if( (weight=(float***)calloc(xSize, sizeof(float**)) )==NULL) 
mError; 

for(i=O;i<xSize;i++) 
if((weight[i]=(float**)calloc(ySize, sizeof(float*)))==NULL) 

mError; 
for(i=O;i<xSize;i++) for(j=O;j<ySize;j++) 

if((weight[i][j]=(float*)calloc(inputDim, 
sizeof(float)))==NULL) 

mError; 

if( (tmp Value=(float**)calloc(xSize, sizeof(float*)) )==NULL) 
mError; 

for(i=O;i<xSize;i++) 
if( (tmp Value[i] =(float*)calloc(ySize, sizeof(float)) )==NULL) 

mError; 

/*••···············································••*/ 

void randomizeWeights() { 
register int i,j,k; 
srand((unsigned int) clock()); 

for(i=O;i<xSize;i++) 
for(j=O;j<ySize;j++) 

for(k=O; k<inputDim; k++) 
weight[i][j][k] = (float) rand()/(float) RAND_MAX; 

/*••···············································••*/ 

void goTraining() { 
if(noNet) noNetAlert; 
if(noPattems) noPattAlert; 
train(); 

/*••···············································••*/ 

void goTesting() { 
if(noNet) noNetAlert; 
if(noPattems) noPattAlert; 
test(); 

5 
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/*••···············································••*/ 

void wayOut() { 
BEEP; 
exit(l); 

void sayHello() { 
console_options.title = "\pMinkowski-Kohonen simulator"; 
console_options.pause_atexit = 0; 

printf("%s\n%s\n%s\n%s\n%s\n", 
"• •••••••••••••••••••••••••••••••••••••••••••••••••••••• •'1

, 

Kohonen Map Simulator", 
Petri Toiviainen 1995", 
internet: ptoiviai@jyu.fi", 

''••····················································••''); 

A endix 1 

I*• • • • • • • • • • • • • • • • • • File 11KohosTrain.h" • • • • • • • • • • • • • • • • • • • • • • • • * /

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 

#define MAXPHASES 5 /* maximum number of training phases * / 

/* MACRO DEFINITIONS 

#define getParam(x,y,z) {printf(y);printf(": ");scanf(z, &x);} 
#define mError {printf("Out of memory. \n"); exit(0);} 
#define foError(x) {printf("Can't open file %s. \n", x); return;} 
#define min3(x,y,z) ((x)<(y) ? (x)<(z) ? (x) : (z) : (y)) 

/* square of topological distance between two neurons * / 
#define sqrOITopDist(xl,yl,x2,y2) torus? \ 

*/ 

(tmp = min3(abs(xl-x2),abs(xl+xSize-x2),abs(xl-xSize-x2))) * tmp + \ 
(tmp = min3(abs(yl-y2),abs(yl+ySize-y2),abs(yl-ySize-y2))) * tmp : \ 
abs(xl-x2)*abs( xl-x2)+abs(yl-y2 )*abs(yl-y2) 

/* neighbourhood function * / 
#define mexicanHat(r2,R2) exp(-(r2) / (R2)) 

/* adjust vector vl towards vector v2 * / 
#define adjust(vl,v2,a) {for(i=0;i<inputDim;i++) vl[i]+=a*(v2[i]-vl[i]);} 

I* 
extem float 

extern int 

EXTERNAL VARIABLES 
**iPatt, 
***weight, 
**tmpValue, 
minkExp; 
xSize, 
ySize, 

*/ 
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extem char 

inputDim, 
torus, 
nPatts; 
*dots;

I* 
int 
void 

float 

FUNCTION DECLARATIONS 
checklnterrupt(void); 
train( void), 
getTrainParams(void), 
leamPattern(void), 
pmErrors(void); 
minkDist(float*, float*); 

*/ 

/*• • • • • • • • • • • •••••••File "KohosTrain.c"• • • • • • • • • • • • • • • • • • • • • • • •* / 

#include "KohosTrain.h" 

int 

long 

float 

float 

phase, 
nPhases, 
ePeriod = 100, 
goOut = 0, 
tmp; 

I* 
I* 
/* 

counter */ 
number of training phases * /

/* 
number of training cycles between error reports * / 
flag */ 

cycle, /* 
nCycles[MAXPHASES], /* 
totCycles = 0; 

startLR[MAXPHASES], /* 
endLR[MAXPHASES], /* 
startRadius[MAXPHASES], 
endRadius[MAXPHASES], 
LR, 
radius, 
varLR, varRadius; 

errorlntegrator = 0.0, 

srnoothnesslntegrator = 0.0, 

decay; 

counter */ 
number of training cycles in each phase * / 

learning rates at the beginning ... 
... and at the end of each phase 
/* same for ... */ 
/* ... neighbourhood radii * / 
/* current learning rate ... 
/* ... and neighbourhood radii 
/* flags * / 

*/ 
*/ 

*/ 
*/ 

/* leaky integrator for computing a moving 
average of the errors between input and 
synaptic vectors * / 

/* leaky integrator for computing a moving 
average of the local smoothness of the 
map */ 

/* decay parameter of the integrators * / 

FILE *errfp;

EventRecord theEvent; 
clock_t clockl; 
time_t 
structtm 

now; 
*tmNow;

void train() { 

getTrainParams(); 
FlushEvents( every Event, 0); 

/* Apple OS stuff... * I
/* ... for calculating ... * /
/* ... the time elapsed . .. * /
I* ... in the training * /

clockl = clock(); totCycles = 0; 
for(phase=0; phase<nPhases; phase++) { 

LR = startLR[phase]; radius = startRadius[phase]; 
varLR = startLR[phase] == endLR[phase] ? 0 : 1; 
varRadius = startRadius[phase] == endRadius[phase] ? 0 : 1; 

7 
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for(cycle=0; cycle<nCycles[phase]; cycle++) { 
if(varLR) LR = startLR[phase]+((float)cycle/nCycles[phase])* 

(endLR[phase]-startLR[phase]); 
if(varRadius) radius = 

startRadius[phase] + ((float)cycle/nCycles[phase])* 
(endRadius[phase]-startRadius[phase]); 

learnPattern(); 

/* check if it is time to report the errors * / 
if(( ++totCycles % ePeriod) == 0) pmErrors(); 
if( checklnterrupt()) 

{goOut = 1; break;} 
} 
if(goOut) break; 

} 
fclose(errfp); 

/*••···············································••*/ 

void getTrainParams() { /* get training parameters * / 
int i ;  
char errfName[128]; 

getParam(nPhases, "Number of phases", "%d"); 
nPhases = nPhases<=MAXPHASES ? nPhases : MAXPHASES; 
printf("%s\n", dots); 
for(i=0; i<nPhases; i++) { 

printf("Phase %d:\n", i+l); 
getParam(startLR[i], "Leaming rate at start", "%f"); 
getParam(endLR[i], "Leaming rate at end", "%f'); 
getParam(startRadius[i], "Radius at start", "%f"); 
getParam(endRadius[i], "Radius at end", "%f"); 
getParam(nCycles[i], "Number of cycles", "%ld"); 
printf("¾s\n", dots); 

getParam(ePeriod, "Error functionals output interval", "%d"); 
decay= exp(-1.0/ePeriod); 
now = time(NULL); tmNow = localtime(&now); 
sprintf(errfName, "Errfuncs%2d%2d%2d%2d", 

tmNow->tm_mon,tmNow->tm_mday,tmNow->tm_hour,tmNow->tm_min); 
if((errfp=fopen(errfName,"w")) == NULL) 

foError(errfName); 

/*••···············································••*/ 

/* this function return the value 1 if a key has been pressed with the Command key * / 
int checklnterrupt() { 

int ok; 

ok = GetNextEvent(everyEvent, &theEvent); 
if( ok) 

switch(theEvent.what) 
case keyDown: 
case autoKey: 
if ((theEvent.modifiers & cmdKey) != 0) 

return 1; 
break; 
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return 0; 

/*••···············································••*/ 

void learnPattem() 
register int 
register float 

x,y,i; 
tmp, 
minErr = l.0e+l2, 
sOTD, /" square of topological distance "/ 
adjustAmount; /" amount of synaptic vector to be adjusted "/ 

9 

int pattNum = rand()%nPatts, /" number of current input vector "/ 
xFocus, /" coordinates of the ... "/ 
yFocus, /" ... focus of response "/ 
01t; 

for(x=O; x<xSize; x++) for(y=0; y<ySize; y++) 
if((tmpValue[x][y] = minkDist(weight[x][y], &iPatt[pattNum][0])) <minErr) { 

xFocus = x; yFocus = y; minErr = tmpValue[x][y]; 

for(x=0; x<xSize; x++) for(y=0; y<ySize; y++) 
if((sOTD = sqrOfTopDist(x,y,xFocus,yFocus)) < 4.0"radius"radius) { 

adjustAmount = LR " mexicanHat(sOTD, (radius"radius)); 
adjust(weight[x][y], iPatt[pattNum], adjustAmount); 

/" integrate error "I 
errorlntegrator "= decay; errorlntegrator += (1.0-decay)*minErr; 

/" integrate smootness •; 
smoothnesslntegrator "= decay; tmp = 0.0; cnt=0; 
for(x=xFocus-1; x<=xFocus+l; x++) for(y=yFocus-1; y<=yFocus+l; y++) { 

if(torus) I 

} 
else I 

} 

tmp += tmpValue[(x+xSize)%xSize][(y+ySize)%ySize]; 
cnt++; 

if(x>=0 && x<xSize && y>=0 && y<ySize) { 
tmp += tmpValue[x][y]; 
01t++; 

smoothnesslntegrator += (1.0-decay)*tmp / cnt; 

/*••···············································••*/ 

/" print the mean error and smoothness values to a file "/ 

void pmErrors() { 
fprintf(errfp,"%ld \ t%f\ t%f\n", totCycles, errorlntegrator, smoothnesslntegrator); 
now = time(NULL); 
printf("%ld \ t%f\ t%f\ t%.3lf\ t%s", totCycles, error Integrator, 

smoothnesslntegra tor, 
(float)( clock()-clockl) / ( ePeriod "(float)CLOCKS_PER_SEC), ctime( &now)); 

clockl = clock(); 

/*••···············································••*/ 
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this function returns the minkowski distance between vectors vl and v2 

float minkDist(float *vl, float*v2) 
register float sum = 0.0; 
register int i ;  

if(minkExp == 1) ( 

) 

for (i=0; i<inputDim; i++) 
sum += fabs(vl[i] - v2[i]); 

return sum; 

else if(minkExp == 2) ( 

) 
else ( 

for (i=0; i<inputDim; i++) 
sum += (vl[i] - v2[i]) * (vl[i] - v2[i]); 

return sqrt(sum); 

for (i=0; i<inputDim; i++) 
sum += pow(fabs(vl[i]- v2[i]), minkExp); 

return pow(sum, 1.0/minkExp); 

/*••••••••••••••••••File "KohosTest.h"••••••••••••••••••••••••*/ 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <string.h> 

#define getParam(x,y,z) (printf(y);printf(": ");scanf(z, &x);) 

#define foError(x) (printf("Can't open file %s.\n", x); return;) 

extem float 

extemint 

extem float 

extem float 

EXTERNAL VARIABLES 

***weight, 
**tmpValue, 
**iPatt; 
xSize, 
ySize, 
inputDim, 
torus, 
nPatts; 
minkExp; 

minkDist(float*, float*); 

*/ 

/*• • • • • • • • • • • •••••••File "KohosTest.c" • • • • • • • • • • • • • • • • • • • • • • • •* / 

#include "KohosTest.h" 

FILE *rffp, 
*cafp;

/* pointer to the file of response foci * / 
/* pointer to the file of centers of activation */ 

char prefix[128], 
rffName[128], 

A endix 1 
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cafName[128); 
int xFocus, yFocus; 
float minDist, 

act, 

r coordinates of the focus of response */ 

COAX, COA Y, /* coordinates of the center of activation * I
COA_NominX, COA_NominY, COA_Denomin; 

void test() { 
register int 
int 

x, y; 
pattNum, 
xFocus, yFocus; 
tmp, float 
min = l.0e+12; 

getParam(prefix, "Prefix of output file names", "%s"); 
strcpy(rffName, prefix);strcat(rffName, ".respFoci"); 
if((rffp=fopen(rffName, "w")) == NULL) foError(rffName); 
strcpy(cafName, prefix);strcat(cafName, ".centAct"); 
if((cafp=fopen(cafName, "w")) == NULL) foError(cafName); 
for(pattNum=0; pattNum<nPatts; pattNum++) { 

minDist = l.0e+ 12; 
COA_NominX = 0.0; COA_NominY = 0.0; COA_Denomin = 0.0; 
for(x=0; x<xSize; x++) for(y=0; y<ySize; y++) { 

) 

if((tmp Value[x][y) = minkDist(iPatt[pattNum], weight[x)[y))) 
< minDist) { 

) 

minDist = tmpValue[x][y); 
xFocus = x; yFocus = y; 

act = tmpValue[x)[y) == 0.0? 1.0: 
1.0 - tmpValue[x)[y) / 

(minkDist(iPatt[pattNum],iPatt[pattNum]) 
+ minkDist(weight[x)[y],weight[x][y)));

act = act>0.0 ? act: 0.0; 
COA_NominX += x * act; 
COA_NominY += y * act; 
COA_Denomin +=act; 

fprintf(rffp, "%d\t%d\n", xFocus, yFocus); 
COAX = COA_NominX I COA_Denomin; 
COA Y = COA_Nomin Y I COA_Denomin; 
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fprintf(cafp, "%f\t%f\n", COAX, COAY); 
printf("%d\t%d\t%f\t%f\t%f\n", xFocus, yFocus, COAX, COAY, minDist); 

) 
fclose(rffp); £close( cafp); 

/*• • • • • • • • • • • • • • • • • • THE END • • • • • • • • • • • • • • • • • • • • • • • •* / 



APPENDIX 2 

C source code of 
the jazz improvisation model 

used in studies IV and V 



/* 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

APPENDIX 2: 
C source code for the 
jazz improvisation model 
used in studies IV and V 
Petri Toiviainen 1995 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

*/ 

/*• • • • • • • • • • • • • • • • • File "StructDefs.h" • • • • • • • • • • • • • • • • • • • • • •* / 

#define NSLICES 8 
#define NCHORDTYPES 9 
#define NSUBSLICES 6 
#define NTONES 14 /* 12 tones+ sustain+ rest•/ 
#define DECAY 0 

typedef struct neurontype NEURON; 
struct neuron type { 

); 

double activation; 
double new _activation; 
double bias; 

typedef struct ctype CHORDtoMELODY; /* connection matrix between ... 
... chord and melody neurons • / 

struct ctype { 
int mel[NSLICES][NCHORDTYPES][NSUBSLICES][NTONES]; 

I; 

typedef struct m2type MtoM; 
struct m2type { 

int mel[NSUBSLICES][NSUBSLICES] [NTONES] [NTONES]; 

I; 

typedef struct mtype MELODYtoMELODY; 
neurons*/ 
struct mtype { 

MtoM* me[NSLICES]; 

); 

/* connection matrix between melody 

/*• • • • • • • • • • • • • • • • • File "Extemals.h11 
• • • • • • • • • • • • • • • •••••••*I

extem 
extem 
extem 
extem 
extem 
extem 

MELODYtoMELODY *m; 
CHORDtoMELODY *c; 
NEURON melody[NSUBSLICES][NTONES]; 
int chord[lO0],note[NSUBSLICES], output_to_file, output_to_MF; 
double CtoMscale,MtoMscale,inhibition; 
FILE *log_file, *MIDl_file; 
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I*• • • • • • • • • • • • • • • • • File "ActFunc.c11 
• • • • • • • • • • • • • • • • • • • • • • * /

double actfunc(double x) ( 

if (x<0) return 0; 

else if (x<l) return x; 

else return 1; 

I*• • • • • • • • • • • • • • • • • File "Conversions.c" • • • • • • • • • • • • • • • • • • • • • • * / 

#include "StructDefs.h" 

int chordtype(int chordnumber) { 

return chordnumber /12; 

int chordroot(int chordnumber) ( 

return chordnumber-12*chordtype( chordnumber); 

/*• • • • • • • • • • • • • • • • • File "Main.c" • • • • • • • • • • • • • • • •••••••*I

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include "StructDefs.h" 

MELODYtoMELODY *m; 

CHORDtoMELODY *c; 

NEURON melody[NSUBSLICES][NTONES]; 

int chord[l 00],note[NSUBSLICES]; 

double CtoMscale, MtoMscale, inhibition; 

extern int ermo; 

choose_procedure(i) 

int i; { 

switch(i) ( 

return; 

main() { 

case 1: learn(); break; 

case 2: test(); break; 

case 3: exit; 

#define n_menuitems 3 

int i,menuitem; 

static char *menu[] = { "Learn = 1 ", 

"Test 

"Exit 

= 2", 

= 3" }; 

A endix 2 



Source code for the iazz network 

if((m = calloc(l,sizeof(MELODYtoMELODY)) )  == NULL) ( 

printf("Out of memory!\n"); 

exit; 

if((c = calloc(l,sizeof(CHORDtoMELODY))) == NULL) ( 

printf("Out of memory!\n"); 

exit; 

for (i=0; i<NSLICES; i++) ( 

do{ 

if((m->me[i] = calloc(l,sizeof(MtoM))) == NULL) ( 

printf("Out of memory!\n"); 

exit; 

for(i = 0; i < n_menuitems; i++) printf("%s \n",menu[i]); 

if(scanf("%d",&menuitem) == 1) 

if ((menuitem > 0) && ( menuitem <= n_menuitems)) 

choose_procedure(menuitem); 

} while (menuitem != n_menuitems); 

/*• • • • • • • • • • • • • • • • • File "Leam.c" • • • • • • • • • • • • • • • •••••••*I

#include <stdio.h> 

#include <stdlib.h> 

#include "StructDefs.h" 

#include "Extemals.h" 

#define MAXSLICES 65 

learn() { 

int answer, 

i,j,k, 

chordnum, 

nslices, 

notenum[NSUBSLICES], 

interval[NSUBSLICES], 

chord[MAXSLICES], 

note[MAXSLICES][NSUBSLICES], 

slice; 
char *fname = "***************************"; 

FILE "fp; 

extem int chordtype(),chordroot(),ermo; 

do{ 

printf("Read matrices? (yes=l, no=0) \n"); 

while (scanf("%d",&answer) != 1); 

if(answer) read_matrices(); 

do( 
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printf("Reading example - give filename! (* to stop)\n"); 

scanf("%s",fname); 

if (*fname == '*') break; 

if((fp = fopen(fname,"r")) == NULL) { 

printf("Error in opening file, ermo %d\n",ermo); 

return; 

fscanf(fp,"%d",&nslices); 

note[0][0]= -1; 

note[nslices-ll[NSUBSLICES-1] = -1; 

for (i=0; i<nslices; i++) { 

fscanf(fp,"%d",&chord[i]); 

for (j=l; j<NSUBSLICES-1; j++) 

fscanf(fp,"%d",&note[i][j]); 

for(i=0; i<nslices-1; i++) note[i][NSUBSLICES-l]=note[i+l][l]; 

for(i=l; i<nslices; i++) note[i][0]=note[i-l][NSUBSLICES-2]; 

for(i=0; i<nslices; i++) { 

slice = i%NSLICES; 

/*Learn chord to melody*/ 

for (j=0; j<NSUBSLICES; j++) { 

if (note[i][j] >= 0) { 

interval[j] = note[il[j] - chordroot(chord[i)); 

if(interval[j]<0) interval[j] += 12; 

A endix 2 

else if (note[i][j] == -2) interval[j]=NTONES-2; /* REST * / 

else interval[j]=NTONES-1; /* SUSTAIN*/ 

c->mel[slice][ chord type( chord[i))][j][interval[j]] = l; 

/* Learn melody to melody */ 

for (j=0; j<NSUBSLICES; j++) 

fclose(fp); 

for (k=0; k<NSUBSLICES; k++) 

if (j!=k) 

m->me[slice]->mel[j][k][interval[j]][interval[kl] = l; 

) while (*fname != '*'); 

do{ 

printf("Save matrices? (yes=l, no=0) \n"); 

while (scanf("%d",&answer) != 1); 

if(answer) save_matrices(); 

/*• • • • • • • • • • • • • • • • • File "ReadSaveMatrices.c" • • • • • • • • • • • • • • • • • • • • • •* / 

#include <stdlib.h> 

#include <stdio.h> 

#include "StructDefs.h" 

#include "Extemals.h" 



Source code for the iazz network 

read_matrices() { 
int i,j,k,n,p,ermo; 
char *fname = "***************************"; 

FILE *fp;

printf( "Give filename!\n"); 
if(output_to_file) fprintf(log_file, "Give filename!\n"); 
scanf("%s",fname); 
if (output_to_file) fprintf(log_file,"%s",*fname); 
if((fp = fopen(fname,"r")) == NULL) { 

printf("Error in opening file, errno %d\n",errno); 
return; 

for(i=0; i<NSLICES; i++) 
forQ=0; j<NCHORDTYPES; j++) 

for(k=0; k<NSUBSLICES; k++) 
for(n=0; n<NTONES; n++) 

fscanf(fp,"%d ",&c->mel[i][j](k][n]); 

for(i=0; i<NSLICES; i++) 
for(j=0; j<NSUBSLICES; j++) 

for(k=0; k<NSUBSLICES; k++) 
for(n=0; n<NTONES; n++) 

for(p=0; p<NTONES; p++) 
fscanf(fp,"%d ",&m->me[i]->mel[j][k](n] [p ]); 

fclose(fp ); 

save_matrices() { 
int i,j,k,n,p,errno; 
char *fname = "***************************"; 

FILE *fp;

printf("Give filename! \n"); 
scanf("%s",fname); 
if((fp = fopen(fname,"w")) == NULL) { 

printf("Error in opening file, errno %d\n",errno); 
return; 

for(i=0; i<NSLICES; i++) 
for(j=0; j<NCHORDTYPES; j++) 

for(k=0; k<NSUBSLICES; k++)

for(n=0; n<NTONES; n++) 
fprintf(fp,"%d ",c->mel[i][j][k](n]); 

for(i=0; i<NSLICES; i++) 
for(j=0; j<NSUBSLICES; j++) 

for(k=0; k<NSUBSLICES; k++) 
for(n=0; n<NTONES; n++) 

for(p=0; p<NTONES; p++) 
fprintf(fp,"%d ",m->me[i]->mel[j][k](n][p]); 
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fclose(fp ); 

/*• • • • • • • • • • • • • • • • • File 11Test.c" • • • • • • • • • • • • • • • • • • • • • •* / 

#include "StructDefs.h" 

#include <stdio.h> 

#include <stdlib.h> 

extem 

extem 

extem 

extem 

extem 

FILE 

char 

int 

MELODYtoMELODY *m; 

CHORDtoMELODY *c; 

NEURON melody[NSUBSLICES][NTONES]; 

int chord[lO0],note[NSUBSLICES]; 

double CtoMscale,MtoMscale,inhibition; 

int 

long int 

extem int 

*log_file, *MIDI_file;

*output_file_name, *MF _name;

output_to_file, output_to_MF;

oldMIDinote=60, rest=l;

delta_time=0,length;

ermo;

char *MFdata;

test() I 

int i,nchords,chordnumber,starting_note,oldMIDinote=-1; 

extem int input_starting_note(); 

if((MFdata = (char *) calloc(lO000,sizeof(char))) == NULL) I 

printf("Out of memory!\n"); 

exit; 

printf("Do you want output to text file (1/0) ?"); 

scanf("%d", &output_to_file); 

if(output_to_file) I 

printf("Give name of output text file!"); 

scanf("%s", output_file_name); 

if((log_file = fopen(output_file_name,"w")) == NULL) 

printf("Error in opening file, ermo %d\n",ermo); 

printf("Do you want output to MIDI file (1/0) ?"); 

scanf("%d", &output_to_MF); 

if(output_to_MF) I 

printf("Give name of output MIDI file!"); 

scanf("%s", MF _name); 

if((MIDI_file = fopen(MF _name,"w")) == NULL) 

printf("Error in opening file, ermo %d\n",ermo); 

if(output_to_MF) I 

writeMFHeaderChunk(MIDI_file); 

cakMFMeterChunk( &length,MFdata); 

A endix 2 



Source code for the iazz network 

writeMFChunk(MIDl_file,length,MFdata); 

length=l; 

nchords = read_testfile(); 

do{ 

scale_connections(); 

do{ 

if((starting_note = input_starting_note()) < 0) break; 

initialize( s tarting_note); 

for (chordnumber=0; chordnumber<nchords-1; chordnumber++) { 

relax( chordnumber); 

decode(chordnumber); 

reinitialize(chordnumber); 

} while (starting_note >= 0); 

} while (starting_note >= -1); 

MFdata[0] = 0; MFdata[l] = 0x90; 

delta_time += 48; 

if(!rest) {putVarLen(delta_time); 

MFdata[length++ ]=oldMIDinote; MFdata[length++ ]=0;} 

MFdata[length++ ]=0;MFdata[length++ ]=0xff; 

MFdata[length++]=0x2f; MFdata[length++]=0x00; /*end*/ 

if(output_to_MF) writeMFChunk(MIDI_file,length,MFdata); 

if(output_to_file) fclose(log_file); 

if(output_to_MF) fclose(MIDl_file); 

/*• • • • • • • • • • • • • • • • • File "ScaleConnections.c" • • • • • • • • • • • • • • • • • • • • • •* / 

#include <stdio.h> 

#include "StructDefs.h" 

#include "Externals.h" 

scale_connections() { 

int 

double 

i,j,k,n,p; 

sum=0,CtoMtotal,MtoMtotal; 

printf("Give CtoMtotal, MtoMtotal, inhibition!\n"); 

if( output_to_file) 

fprintf(log_file, "Give CtoMtotal, MtoMtotal, inhibition! \n"); 

scanf("%lf %lf %lf",&CtoMtotal,&MtoMtotal,&inhibition); 

if (output_to_file) 

fprintf(log_file,"%lf %lf %lf\n",CtoMtotal, MtoMtotal, inhibition); 

for(i=0; i<NSLICES; i++) 

for(j=0; j<NCHORDTYPES; j++) 

for(k=0; k<NSUBSLICES; k++) 

for(n=0; n<NTONES; n++) 

sum += (double) c->mel[i][j][k][n]; 

CtoMscale = NSLICES * CtoMtotal/(double) sum; 

sum=0; 
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for(i=0; i<NSLICES; i++) 
for(j=0; j<NSUBSLICES; j++) 

for(k=0; k<NSUBSLICES; k++) 
for(n=0; n<NTONES; n++) 

for(p=0; p<NTONES; p++) 

sum += (double) m->me[i]->mel[j][k][n][p] ; 

MtoMscale = NSLICES * MtoMtotal/(double) sum; 

/*• • • • • • • • • • • • • • • • • File "ReadTestFile.c" • • • • • • • • • • • • • • • •••••••*I

#include <stdio.h> 
#include <stdlib.h> 
#include "StructDefs.h" 
#include "Extemals.h" 

int read_testfile() { 
extem int chordtype(),chordroot(),ermo; 

int answer,i,j,k,nchords; 
char *fname = 11***************************'';

FILE *fp;

printf("Give filename!\n"); 
if(output_to_file) fprintf(log_file, "Give name of test file!\n"); 
scanf("%s",fname); 
if ( output_to_file) fprintf(log_file,"%s \n",fname); 
if((fp = fopen(fname,"r")) == NULL) { 

printf("Error in opening file, ermo %d\n",ermo); 
return; 

fscanf(fp,"%d",&nchords); 
for(i=0; i<nchords; i++) fscanf(fp,"%d",&chord[i]); 
fclose(fp ); 
return nchords; 

A endix 2 

/*• • • • • • • • • • • • • • • • • File "InputStartingNote.c" • • • • • • • • • • • • • • • • • • • • • • * /

#include <stdio.h> 
#include <stdlib.h> 
#include "StructDefs.h" 
#include "Extemals.h" 

int input_starting_note() { 
int starting_note; 
printf("Give starting note number! ( -1 to rescale, -2 to stop testing) \n"); 
if( output_to_file) 

fprintf(log_file, 
"Give starting note number! ( -1 to rescale, -2 to stop testing) \n"); 



Source code for the ;azz network 

scanf("%d",&starting_note); 
if (output_to_file) fprintf(log_file,"o/od \n",starting_note); 

return starting_note; 

/*• • • • • • • • • • • • • • • • • File "Initialize.c" • • • • • • • • • • • • • • • • • • • • • • * / 

#include <time.h> 

#include <stdlib.h> 

#include "StructDefs.h" 

#include "Externals.h" 

#define SHAKE_RANGE 0.1 

int maxcycles,errorperiod; 

initialize(int starting_note) { 

extern int chordtype(),chordroot(); 

int i,j; 

srand(clock()); 

printf("Give max number of cycles!\n"); 

if(output_to_file) fprintf(log_file, "Give max number of cycles!\n"); 

scanf("%d",&maxcycles ); 

if (output_to_file) fprintf(log_file,"o/od\n",maxcycles); 

for(i=O; i<NSUBSLICES; i++) 

forQ=0; j<NTONES; j++) 

melody[i][j].activation = SHAKE_RANGE* 

( double )rand()/ ( double )RAND _MAX; 

melody[l][starting_note].activation = 1; 

compute_biases(0); 

reinitialize(int chordnumber) { 

extern int chordtype(),chordroot(); 

int i,j,note0,notel,interval; 

for(i=O; i<NSUBSLICES; i++) 

for(j=0; j<NTONES; j++) 

melody[i][j].activation = SHAKE_RANGE* 

(double)rand()/(double)RAND_MAX; 

interval = chordroot( chord[ chordnumber ])-chordroot( chord[ chordnumber+ 1]); 

if(interval<0) interval += 12; 

if (note[NSUBSLICES-2] < 12) 

note0 = (note[NSUBSLICES-2]+interval)%(12); 

else 

note0 = note[NSUBSLICES-2]; 

if (note[NSUBSLICES-1] < 12) 

notel = (note[NSUBSLICES-l]+interval)%(12); 

else 

notel = note[NSUBSLICES-1]; 

melody[0][note0].activation = 1; 
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melody[l][notel].activation = 1; 

compute_biases( chordnumber+ 1 ); 

A endix 2 

/* • • • • • • • • • • • • • • • • • File "ComputeBiases.c" • • • • • • • • • • • • • • • • • • ••••*I 

#include <stdlib.h> 

#include "StructDefs.h" 

#include "Extemals.h" 

compute_biases(int chordnumber) { 

int i,j,k,slicel,slice2,interval; 

slicel = chordnumber%NSLICES; 

slice2 = (chordnumber+1)%NSLICES; 

for(i=l; i<NSUBSLICES-2; i++) { 

for(j=0; j<NTONES; j++) 

melody[i](j].bias = 

((double) c->mel[slicel][chordtype(chord[chordnumber])][i][j])* 

MtoMscale; 

interval = chordroot( chord[ chordnumber ])-chordroot( chord[ chordnumber+ 1 ]); 

if(interval<0) interval += 12; 

for(i=NSUBSLICES-1; i<NSUBSLICES; i++) { 

for(j=0; j<12; j++) 

melody[i][j].bias = 

( ( double) c->mel[ slice2] [ chord type( chord[ chordnumber+ 1])] 

[i-NSUBSLICES+2][(j+interval)%12])*CtoMscale; 

for(j=12; j<NTONES; j++) 

melody[i][j].bias += 

((double) c->mel[slice2][chordtype(chord[chordnumber+l])] 

[i-NSUBSLICES+2](j])*CtoMscale; 

/*• • • • • • • • • • • • • • • • • File "Relax.c" • • • • • • • • • • • • • • • • • • • • • • * / 

relax(int chordnumber) { 

int 

extem int maxcycles; 

for(i=0; i<maxcycles; i++) { 

compute_new _activations( chordnumber); 

update_activations(); 

/*• • • • • • • • • • • • • • • • • File "ComputeNewAct.c11 
• • • • • • • • • • • • • • • • • • • • • •* / 

#include <stdlib.h> 

#include "StructDefs.h" 



Source code for the ;azz network 

#include "Externals.h" 

compute_new _activations(int chordnumber) { 

extern int 

extern double 

int 

double 

chordroot() ,chord type(); 

actfunc(); 

i,j,k,n,slice,counter; 

excinput,inhinput; 

slice = chordnumber%NSLICES; 

for( counter=0; counter<(NSUBSLICES-2)*NTONES; counter++) 

11 

i = 2 + (int)((NSUBSLICES-2) * (double)(rand()-1) / (double) RAND_MAX); 

j = (int)( NTONES * (double)(rand()-1) / (double)RAND_MAX); 

excinput = melody[i)[j].bias;inhinput=0; 

for(k=0; k<NSUBSLICES; k++) /* from subslice */ 

if (i != k) 

for (n=0; n<NTONES; n++) /*from tone */ 

excinput += ((double) m->me[slice]->mel[k][i][n][j])* 

MtoMscale*melod y[k] [n] .activation; 

for(n=0; n<NTONES; n++) 

if (j != n) inhinput += melody[i][n].activation*inhibition; 

melody[i][j] .new _activation = 

actfunc((l-DECAY)* melody[i][j].activation +excinput-inhinput); 

melody[i)[j].activation = melody[i](j] .new _activation; 

/*• • • • • • • • • • • • • • • • • File "UpdateActivations.c" • • • • • • • • • • • • • • • • • • • • • • * / 

#include "StructDefs.h" 

#include "Externals.h" 

update_activations() 

int i,j; 

for(i=2; i<NSUBSLICES; i++) 

forQ=0; j<NTONES; j++) 

melody[i][j].activation = melody[i][j] .new _activation; 

/*• • • • • • • • • • • • • • • • • File "Decode.c" • • • • • • • • • • • • • • • • • • • • • •* / 

#include <stdio.h> 

#include <math.h> 

#include "StructDefs.h" 

#include "Externals.h" 

decode(int chordnumber) { 

int 

double 

i,j; 

maxact; 



12 

extem int oldMIDinote; 

static char *root[] = 
{"C ","Db","D ","Eb",11E 11,"F 11,"Gb 11,11G 11,"Ab11,11A 11,"Bb",11B "},

*type[] =

{"maj7 /I","maj7 /IV","m7 /Il","m7 /IIl","m7 /Vl","13#11", 

"13b9#11","alt","m7b5"}, 
*notechar = "****";

for (i=l; i<NSUBSLICES; i++) { 

maxact = 0; 

for (j=0; j<NTONES; j++) 

if (melody[i][j].activation > maxact) { 

note[i] = j; 

maxact = melody[i][j].activation; 

printf("%s%s: ",root[ chord root( chord[ chordnumber]) ], 

type[ chord type( chord[ chordnumber])]); 

if(output_to_file) 

fprintf(log_file, "%s%s: \ t",root[ chordroot( chord[ chordnumber])], 

type[chordtype(chord[chordnumber])]); 

for (i=l; i<NSUBSLICES-1; i++) { 

if (output_to_MF) 

oldMIDlnote = 
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decodeToMIDI(chord[chordnumber], note[i], oldMIDinote); 

if (note[i] == NTONES-2) notechar ="* "; 

else if (note[i] == NTONES-1) notechar ="+ "; 

else 

notechar = root[ (note[i]+chordroot( chord[ chordnumber]))%12]; 

printf ("%s ",notechar); 

if(output_to_file) fprintf(log_file, "%s ",notechar); 

printf("\n"); 

if(output_to_file) fprintf(log_file,"\n"); 

/*• • • • • • • • • • • • • • • • • File ''ComputeError.c" • • • • • • • • • • • • • • • • • • • • • • * /

#include <math.h> 

#include "StructDefs.h" 

#include "Extemals.h" 

double error() { 

extem double 

extem int 

int 

double 

actfunc(); 

chordroot() ,chord type(); 

i,j,k, interval; 

error=0; 

for(i=2; i<NSUBSLICES; i++) 

for (j=0; j<NTONES; j++) 



Source code for the ;azz network 

return error; 

error += fabs(melody[i][j].new _activation­

melody[i] [j] .activation); 

/*• • • • • • • • • • • • • • • • • File "WriteToMIDI.c" • • • • • • • • • • • • • • • • • • • • • • * / 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include "StructDefs.h" 

#include "Extemals.h" 

writeMFHeaderChunk(fPointer) 

FILE *£Pointer; 

char data[14]; 

int i; 

char *dStr = 

"4d 54 68 64 00 00 00 06 00 01 00 02 00 60 "; 

for(i=0; i<14; i++) data[i]=(char) strtol(&dStr[3*i],NULL,16); 

for(i=0; i<14; i++) fprintf(fPointer,"%c",data[i]); 

writeMFChunk(fPointer,length,data) 

FILE *£Pointer; 

char 

longint 

*data; 

length; 

char temp[8]; 

long int i, buffer; 

temp[0] = 0x4d; temp[l] = 0x54; temp[2] = 0x72; temp(3] = 0x6b; 

buffer = length; 

for(i=0; i<4; i++) { 

temp[7-i] = buffer&255; 

buffer/= 256; 

for(i=0;i<B;i++) 

fprintf(fPointer,"%c",temp[i]); 

for(i=0; i<length; i++) 

fprintf(fPointer, "%c",data[i]); 

calcMFMeterChunk(length,data) 

char 

long int 

*data; 

*length; 
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int i; 

char *dStr = 

"00 ff 58 04 04 02 18 08 00 ff 51 03 07 al 20 83 00 ff 2f 00 "; 

*length = (long int) strlen(dStr)/3;

for(i=0;i<*length;i++) data[i]=( char) strtol(&dStr[3*i],NULL,16);

Appendix 2

decodeToMIDI(chord, note, old_note) 

int chord, note, old_note; 

extem long int delta_time, length; 

extem char *MFdata; 

extem int rest; 

int temp; 

delta_time += 48; 

if (note == NTONES-2) { 

if(!rest) { 

/*REST*/ 

putVarLen(delta_time); 

MFdata[length++ ]=old_note; 

MFdata[length++ )=0; 

delta_time=0; note = old_note; rest = 1; 

note=old_note; 

else if (note == NTONES-1) { 

note=old_note; 

else { 

/* LIGATURE*/ 

put Var Len( del ta_time) ;MFdata[length ++] =old_note;MFda ta[length ++ ]=0; 

temp = (note+chordroot(chord))%12; 

while (abs(temp-old_note) > 6) temp += 12; 

if(temp<55) temp += 12; if(temp>85) temp -= 12; 

MFda ta[length++] =0 ;MFdata[length++ ]=temp ;MFda ta[length ++ )=64; 

delta_time = 0; note = temp; rest = 0; 

return note; 

putVarLen(value) register long int value; { 

extem char *MFdata; 

extem long int length; 

register long buffer; 

buffer = value & 0x7f; 

while ((value»=7) > 0) { 

buffer«=8;buffer I= 0x80;buffer+=(value & 0x7f); 



Source code for the iazz network 

while(TRUE) { 

MFdata[length++ ]=buffer; 

if(buffer & 0x80) buffer »= 8; 

else break; 

/*• • • • • • • • • • • • • • • • • THE END • • • • • • • • • • • • • • • • • • • • • •* / 
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