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Abstract. In this talk, we shortly report results from our recent global DGLAP analysis of
nuclear parton distributions. This is an extension of our former EKS98-analysis improved with
an automated χ

2 minimization procedure and uncertainty estimates. Although our new analysis
show no significant deviation from EKS98, a sign of a significantly stronger gluon shadowing
could be seen in the RHIC BRAHMS data.

1. Introduction

The global analysis of nuclear parton distributions (nPDFs) is driven by the experimental fact
that the deep inelastic structure functions F2(x, Q2) measured from nuclear targets show a
significant deviation from the free proton ones [1, 2].

Perhaps the most simple theoretical approach to this observation is to make use of the
factorization theorem of QCD that has proven to provide excellent description of inclusive cross-
sections in free-nucleon collisions. In this approach, the cross-sections are of the generic form

σAB→h+X =
∑

ij

fA
i (x1, Q

2) ⊗ fB
j (x2, Q

2) ⊗ σi+j→h+X , (1)

where where σi+j→h+X is the perturbative QCD (pQCD) matrix element squared and fis are
the non-perturbative parton densities whose scale evolution obeys the DGLAP equations [3].

The purpose of the global analysis of nPDFs is to find out whether the observed differences
in the structure functions, the nuclear modifications, can consistently be absorbed in to the
input parton densities — in other words, do the nuclear modifications effectively factorize. If
they do, the resulting nPDFs are of great practical interest, since they can be used as a input
in any process that can be factorized as in eq. (1). In this framework the deep question about
the dynamical origin of nuclear modifications is not addressed, on the contrary, one must be as
unbiased to any model as possible.

Indeed, three independent groups have shown that this approach works quite well:

• EKS98 [4, 5] was the first global analysis demonstrating that using the leading-order (LO)
pQCD formalism, requiring momentum and baryon number conservation, one can reproduce
the data from measurements of deep inelastic lepton-nucleus scattering (DIS) and Drell-Yan
dilepton production (DY) in proton-nucleus collisions. The fit was done only by eye.
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• HKM [6] & HKN [7] which are LO QCD analyses as well, were the first ones to exploit the
automated χ2-minimization procedure and to estimate nPDF uncertainties.

• nDS [8] brought the global analysis of nPDFs to the next-to-leading order level in pQCD.

Based on our earlier work, EKS98, we have performed a global reanalysis of nPDFs published
in [9] and reported here. What was new compared to the EKS98 were the automated χ2-
minimization procedure and a first attemp for estimating the uncertainties. Although our main
objective was to see whether we can improve the EKS98-fit and study the uncertainties, this
was anyway a necessary stepping stone for us before we can extend our analysis to NLO-level.

Motivated by the BRAHMS data [10] on inclusive hadron production in D+Au collision,
which show a systematic suppression relative to p+p at forward rapidities, we raise an intriguing
question about the possibility of having clearly stronger gluon shadowing than what has been
hitherto seen in the global DGLAP analyses.

2. The framework

We define the PDFs fA
i (x, Q2) of bound protons in a nucleus with mass number A as

fA
i (x, Q2) = RA

i (x, Q2)fCTEQ6L1
i (x, Q2), (2)

where fCTEQ6L1
i refers to the latest free proton PDFs by the CTEQ collaboration [11]. For

the bound neutrons we assume the isospin symmetry dproton = uneutron and vice versa.
What we actually parametrize, are the nuclear modifications RA

i (x, Q2) at the initial scale
Q2

0 = 1.69 GeV2. At present, the lack of precision data forces us to consider only three different
modifications: RA

V (x, Q2
0) for all valence quarks, RA

S (x, Q2
0) for all sea quarks, and RA

G(x, Q2
0) for

gluons.
The fit functions are parametrized in three pieces (c.f. Fig. 3):

RA
1 (x) = cA

0 + (cA
1 + cA

2 x)[exp(−x/xA
s ) − exp(−xA

a /xA
s )], x ≤ xA

a

RA
2 (x) = aA

0 + aA
1 x + aA

2 x2 + aA
3 x3, xA

a ≤ x ≤ xA
e (3)

RA
3 (x) =

bA
0 − bA

1 x

(1 − x)βA
, xA

e ≤ x,

The first one covers the region from shadowing to anti-shadowing maximum at xA
a , the second

comes down to EMC-minimum at xA
e , and the third is for the Fermi-motion part.

The A-dependence of the fit parameters is assumed to follow a power law

zA
i = zAref

i (
A

Aref

) pzi , (4)

where we have chosen Carbon (Aref = 12) as a reference nucleus.
After fixing the continuity of RA

i s and their first derivatives at xA
a and xA

e , one is still left with
42 free parameters of which the baryon number and momentum conservation eat only 4 away.
This was still too much in order to obtain converging fits, and lots of manual work was needed
too see which parameters were the most relevant ones. At the end there was 16 fit parameters.

3. Results & Error analysis

The experimental input in our analysis was about 500 points of DIS- and DY-data in a form

DIS :
1
A

dσlA/dQ2dx
1
2
dσlD/dQ2dx

LO
= RA

F2
(x, Q2), DY :

1
A

dσpA
DY /dx2dQ2

1
2
dσpD

DY /dx2dQ2

LO
= RA

DY (x2, Q
2). (5)
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These covered 11 different nuclei from Helium up to Lead. Figs. 1 and 2 show some of these
data and comparison to our result from minimization of

χ2 =
Ndata
∑

i=1

(

datai − theoryi

errori

)2

.
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Figure 1. Calculated RA
F2

(x, Q2) (filled symbols) are compared to SLAC [14], E665 [15], NMC
95 [17] and reanalysed NMC 95 data [16]. The asterisks denote our results calculated at the
initial scale Q2

0, these are for the smallest-x data points whose scales lie in the region Q2 < Q2
0.

The number that characterizes the goodness of the fit is χ2/d.o.f. (d.o.f ≡ Ndata −
Nfree parameters) which should be less than 1 if the fit is any good. In our case χ2/d.o.f. ∼ 0.8
indicating that the theory fits the data very well and that there is no serious sign why
pQCD could not be trusted — within the considered kinematical range — also in the nuclear
environment.

The obtained nuclear modifications at the initial scale for Lead are shown in Fig. 3. This
figure also presents our uncertainty estimates based on Hessian method of quantifying the
uncertainties [12], in which one expands the χ2 around the minimum w.r.t fit parameters ξ
as

∆χ2 = χ2(ξ̂ + δξ) − χ2(ξ̂) =
∑

i,j

Hijδξiδξj , (6)
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Figure 2. Calculated RA
DY (x, Q2) and F Sn

2 /FC
2 (filled symbols) are compared to E772 [13] and

NMC data [18]

and the uncertainty of any quantity F (ξ̂) depending on PDFs is then obtained from

[δF (ξ̂)]2 = ∆χ2
∑

i,j

(

∂F (ξ̂)

∂ξi

)

H−1
ij

(

∂F (ξ̂)

∂ξj

)

. (7)

For an ideal χ2-distribution ∆χ2 ≈ 18, which we used too, corresponds to “one sigma”-error.
Due to technical difficulties obtaining converging fits, the EMC minimum of gluons and sea

quarks was fixed to follow the valence quarks at Q2
0. This resulted as an unreliably small error

bands for gluons and sea quarks, and they had to be computed separately. They are the “Large-
x errors” in Fig. 3. The combined uncertainties are shown as a yellow bands. Interestingly, the
old EKS98 parametrization lies within these uncertainties and there is no reason to release a
new parametrization — EKS98 works just fine.

However, one should be very cautious about these error bands! First, below x ∼ 10−2

there is no experimental data above Q2 = 1.69 GeV2, and the behaviour at small-x region is
constrained only by the sum rules and is bound to the form of the fit function. Second, the PDFs
themselves depend on choices and conventions, like kinematical cuts, choosing the factorization
scale, treatment of heavy quarks, and choosing and weighting data sets in forming χ2. How these
choices affect the obtained PDFs is not seen in the error analysis performed here — the error
bands only reflect the experimental data and their errors. Third, there is no well-established
way to choose ∆χ2, and our choice ∆χ2 ≈ 18 is probably quite restrictive.
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4. Are the gluons different?

The DY and DIS data leave the gluons very unconstrained — gluon dependence comes only
through the DGLAP-evolution. One possible way to constrain the gluon sector could be the
inclusive hadron production at RHIC. Figure 4 shows data from the BRAHMS collaboration
[10] for RDAu, the ratio between charged hadron production in D+Au and p+p collisions as a
function of hadron’s pT . From the point-of-view of pQCD, this is computed via
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This Work
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Figure 4. Minimum bias inclusive hadron production cross sections in D+Au collisions divided
by that in p+p collisions at

√
sNN = 200 GeV at RHIC. The ratio RDAu is shown as a function

of hadrons transverse momentum at four different pseudorapidities. The BRAHMS data [10]
are shown with the statistical error bars and the shaded systematic error limits. A pQCD
calculation for h+ + h− production with the nuclear modifications from present work and KKP
fragmentation functions is shown by the black lines, and that with the strong gluon shadowing,
shown at right, by green lines.

σAB→h+X =
∑

ijkl

fA
i (x1, Q) ⊗ fB

j (x2, Q) ⊗ σi+j→k+l ⊗ Dk→h+X(z, Qf ), (8)
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where the D(z, Q2)s are the fragmentation functions. In Fig. 4 the pQCD calculation which
employs the nPDFs from the present analysis and KKP [19] fragmentation functions, is shown
by dark line. It is evident that, especially at very forward direction, our prediction is above the
data and the shape is not well reproduced.

Since hadron production at the kinematical corner of low-pT and forward rapidity reaches
the small-x region of PDFs where the gluon distributions are the dominant ones, this could be
signaling a larger uncertainty in our gluon modifications than seen in Fig. 3. For this reason
we present an example of gluon shadowing that is much stronger. This is shown on the right
hand side of Fig. 4, and it really helps: using this gluon modification the corresponding curve
for RDAu is brought clearly closer to the BRAHMS data.

However, it’s still too early to draw very strong conclusions from this observation, but a
systematic study in the context of global DGLAP analysis is needed [20]. One should also bear
in mind that here we are considering effects at very low-pT region, where the simple LO pQCD
picture is pushed to its very limits — although one can argue that in ratios like RdAu some higher
order effects would partially cancel. Anyway, one should be very careful when interpreting these
results. For example, it has been conjectured, that this particular BRAHMS data set could be
a sign of parton saturation at work [21].
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