
JYVASKYLA STUDIES IN COMPUTING

------- 81

Ferrante Neri

Fitness Diversity Adaptation
in Meinetic Algoritluns

JYV ASKYLAN I YLIOPISTO

JYVÄSKYLÄ STUDIES IN COMPUTING 81

Ferrante Neri

UNIVERSITY OF

JYVÄSKYLÄ 2007

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Villa Ranan Paulaharjun salissa

marraskuun 30. päivänä 2007 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the building Villa Rana, Paulaharju Hall, on November 30, 2007 at 12 o'clock noon.

JYVÄSKYLÄ

in Memetic Algorithms
Fitness Diversity Adaptation

Fitness Diversity Adaptation
in Memetic Algorithms

JYVÄSKYLÄ STUDIES IN COMPUTING 81

JYVÄSKYLÄ 2007

Fitness Diversity Adaptation

UNIVERSITY OF JYVÄSKYLÄ

Ferrante Neri

in Memetic Algorithms

URN:ISBN:978-951-39-8043-6
ISBN 978-951-39-8043-6 (PDF)
ISSN 1456-5390

ISBN 978-951-39-2979-4
ISSN 1456-5390

Copyright © 2007, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2007

Editors
Tommi Kärkkäinen
Department of Mathematical Information Technology, University of Jyväskylä
Irene Ylönen, Pekka Olsbo
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Neri, Ferrante
Fitness Diversity Adaptation in Memetic Algorithms
Jyväskylä: University of Jyväskylä, 2007, 80 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 81)
ISBN 978-951-39-2979-4
Finnish summary
Diss.

This work proposes novel tailored implementations of Memetic Algorithm for
some specific classes of problems and, at the same time, proposes novel gen-
eral ideas in Computational Intelligence algorithmic philosophy. Much em-
phasis is given to adaptation and coordination of the local searchers. Several
adaptive schemes have been designed; all of them resorting to a measurement
of the fitness diversity as an estimation of the diversity amongst individuals
of the population. According to the philosophy common to the algorithms in-
cluded in this thesis, the algorithm should behave like an intelligent structure,
thus able to analyze online the optimization process and then apply counter-
measures necessary for continuing and efficiently finalizing the search.

This thesis includes eight articles addressing applications having vari-
ous natures such as biology, image processing, telecommunication, and elec-
trical engineering. Each problem has been analyzed by considering the fea-
tures of each fitness landscape being handled and each fitness function being
optimized. The resulting algorithms seem to have promising performance in
terms of final solution detected and convergence velocity. Extended numerical
experiments have been carried out in each case in order to show the statistical
significance of results.

Keywords: Memetic Algorithms, Multimeme Algorithms, Adaptive System,
Fitness Diversity, Population Diversity, Computational Intelligence,
Evolutionary Algorithms, Local Search, Noisy Fitness Landscapes,
Human Immunodeficiency Virus, Image Processing, Peer to Peer,
Electric Drives

Author Dr. Ferrante Neri
Department of Mathematical
Information Technology,
University of Jyväskylä
Finland

Supervisors Professor Raino A. E. Mäkinen
Department of Mathematical
Information Technology,
University of Jyväskylä
Finland

Dr. Jari Toivanen
Department of Mathematical
Information Technology,
University of Jyväskylä,
Finland

Reviewers Prof. Pablo Moscato
School of Electrical Engineering and
Computer Science,
Faculty of Engineering and Built Environment
University of Newcastle,
Australia

Dr. William Rand
Northwestern Institute on Complex Systems,
Evanston, IL,
USA

Opponent Dr. Jouni Lampinen
Department of Computer Science,
University of Vaasa,
Finland

ACKNOWLEDGEMENTS

I am deeply grateful to Prof. Raino Mäkinen for having believed in me and the
constant and generous support he gave me during my doctoral studies at the
University of Jyväskylä. I would like to give special thanks to Dr. Jari Toivanen
for his invaluable suggestions and his scientific help.

I would like to give deepest thanks to Mr. Ville Tirronen for his pre-
cious scientific work and his indefatigable and constant cooperation and Prof.
Tuomo Rossi for his generous scientific and human support.

I would like to express my sincere gratitude to Prof. Tommi Kärkkäinen
and Dr. Kirsi Majava for their useful corrections and discussions.

I would also like to thank Dr. Yew-Soon Ong, Dr. Giuseppe Leonardo
Cascella, Mr. Mikko Vapa, Mr. Niko Kotilainen, Dr. Nadia Salvatore and Prof.
Silvio Stasi for having acted as co-author for some articles included in this
thesis.

I would like to give special thanks to Ms. Anna Kononova for the fre-
quent and useful discussions and the constant and inspiring presence.

I also thank my family for the patience they had and their daily encour-
agement.

Last but not least, I wish to give special thanks to my true friend Paolo
Matelloni for his loyalty, faithfulness and constant presence during my stay in
Finland.

”The reasonable man adapts himself to the world; the unreasonable one
persists in trying to adapt the world to himself. Therefore all progress depends
on the unreasonable man.”

George Bernard Shaw

LIST OF FIGURES

FIGURE 1 General pseudo-code of a MA 14
FIGURE 2 Graphical representation of the No Free Lunch Theorem . 15
FIGURE 3 LS pseudocode . 17
FIGURE 4 Source image . 25
FIGURE 5 Label image . 25
FIGURE 6 HJA pseudo-code . 29
FIGURE 7 SLS pseudo-code . 29
FIGURE 8 Simulated Annealing pseudo-code 30
FIGURE 9 Local searcher performance for bad performing initial can-

didate solutions . 32
FIGURE 10 Local searcher performance for mediocre performing initial

candidate solutions 33
FIGURE 11 Local searcher performance for good performing initial can-

didate solutions . 33
FIGURE 12 HJA vs SLS for good performing initial candidate solutions

(zoom detail) . 34
FIGURE 13 Average trend of ν for a plain DE framework 35
FIGURE 14 EMDE pseudo-code 38
FIGURE 15 First image belonging to the training set. From the upper

left corner source image, label image, filtered image by So-
bel mask, GA, ES, SA, DE, MDE and EMDE 40

FIGURE 16 Second image belonging to the training set. 41
FIGURE 17 First image not belonging to the training set. 42
FIGURE 18 Second image not belonging to the training set. 43
FIGURE 19 Algorithmic performance 44
FIGURE 20 Trend of ν . 45
FIGURE 21 Comparison of the SFMDE and DE during early genera-

tions for the Rastrigin function 50
FIGURE 22 Comparison of the SFMDE and DE during early genera-

tions for the Schwefel function 51
FIGURE 23 Comparison of the SFMDE and DE during early genera-

tions for the Griegwangk’s function 51
FIGURE 24 Graphical Representation of the Probabilistic Scheme for

Activating Local Searchers 56
FIGURE 25 SFMDE pseudo-code 58
FIGURE 26 Block diagram of a DC motor control 60
FIGURE 27 Training test is a combination of speed commands and load

torque . 61

FIGURE 28 jth speed step of the training and values for objective func-
tion evaluation . 62

FIGURE 29 Speed response of the best performing solutions 63
FIGURE 30 Speed step response 64
FIGURE 31 Load torque response 64
FIGURE 32 Performance comparison of SFMDE, GA, and PSO 65
FIGURE 33 Performance comparison of SFMDE, DE and SDEA . . . 66
FIGURE 34 Image belonging to the training set. 68
FIGURE 35 Image not belonging to the training set. 68
FIGURE 36 Algorithmic performance 69

LIST OF TABLES

TABLE 1 Design parameters 26
TABLE 2 Optimization results 39
TABLE 3 DC Motor Nameplate 58
TABLE 4 Best Solutions 62
TABLE 5 Numerical Results 63
TABLE 6 Optimization results 67

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 13
1.1 Tailored Algorithmic Design.. 14
1.2 An Introduction to Local Search ... 16
1.3 Baldwinianism vs. Lamarckianism... 17
1.4 Intelligent Operators... 18
1.5 Lifetime Learning, Memetic and Multimeme Algorithms 19
1.6 Measurement of the Diversity .. 20
1.7 Contents of the Thesis ... 20

1.7.1 Contribution of the Author in Joint Publications 22
1.8 Further Developments .. 22

2 AN ENHANCED MEMETIC DIFFERENTIAL EVOLUTION IN FIL-
TER DESIGN FOR DEFECT DETECTION IN PAPER PRODUCTION 23
2.1 Features of the Filter and Problem Formulation 24
2.2 Enhanced Memetic Differential Evolution 27

2.2.1 Differential Evolution Framework 27
2.2.2 Local Searchers.. 28
2.2.3 Functioning of the Local Searchers 31
2.2.4 Adaptive Coordination of the Local Searchers 35

2.3 Numerical Results .. 38
2.3.1 Experimental Setup.. 38
2.3.2 Optimization Results ... 39
2.3.3 Analysis of the Performance 44

2.4 Conclusion... 46

3 SUPER-FIT CONTROL ADAPTATION IN MEMETIC DIFFEREN-
TIAL EVOLUTION FRAMEWORKS ... 47
3.1 Super-Fit Memetic Differential Evolution................................ 49

3.1.1 Generation of the Super-Fit Individual by Particle Swarm
Optimization... 49

3.1.2 Differential Evolution Framework 52
3.1.3 Local Searchers.. 52

3.1.4 Comparative Analysis of the Local Searchers 54
3.1.5 Adaptation.. 54
3.1.6 Coordination of the Local Searchers............................. 55

3.2 Application 1: Design of a DC Motor Speed Controller 57
3.3 Application 2: Digital Filter Design for Defect Detection in

Paper Production.. 65
3.4 Conclusion... 69

YHTEENVETO (FINNISH SUMMARY) .. 70

REFERENCES ... 71

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI F. Neri, J. Toivanen, and R. Mäkinen, An Adaptive Evolutionary Al-
gorithm with Intelligent Mutation Local Searchers for Designing Mul-
tidrug Therapies for HIV, Applied Intelligence, Special Issue on Computa-

tional Intelligence in Medicine and Biology, Volume 27, Issue 3, pages 219-

235, December 2007

PII F. Neri, J. Toivanen, G. L. Cascella, and Y.-S. Ong, An Adaptive Multi-
meme Algorithm for Designing HIV Multidrug Therapies, IEEE/ACM

Transactions on Computational Biology and Bioinformatics, Special Issue on

Computational Intelligence Approaches in Computational Biology and Bioin-

formatics, Volume 4, Issue 2, pages 264-278, April 2007

PIII V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi, A Memetic
Differential Evolution in Filter Design for Defect Detection in Paper Pro-
duction, Applications of Evolutionary Computing, Lectures Notes in Com-

puter Science, Volume 4448, pages 320-329, (EvoIASP Best Paper Nomina-

tion), April 2007

PIV F. Neri, V. Tirronen, T. Kärkkäinen, and T. Rossi, Fitness Diversity Based
Adaptation in Multimeme Algorithms: A Comparative Study, Proceed-

ings of the IEEE Congress on Evolutionary Computation, Special Session on

Memetic Algorithms, Singapore, pages 2374-2381, September 2007

PV V. Tirronen and F. Neri, A Fast Randomized Memetic Algorithm for
Highly Multimodal Problems, to appear on Evolutionary Methods in De-

sign Optimization and Control, P. Neittaanmäki, J. Periaux, T. Tuovinen eds.

PVI F. Neri, N. Kotilainen, and M. Vapa„ An Adaptive Global-Local
Memetic Algorithm to Discover Resources in P2P Networks, Applica-

tions of Evolutionary Computing, Lectures Notes in Computer Science, Vol-

ume 4448, pages 61-70, (EvoCOMNET Best Paper Nomination), April 2007

PVII F. Neri, G. L. Cascella, N. Salvatore, and S. Stasi, An Adaptive Prudent-
Daring Evolutionary Algorithm for Noise Handling in On-line PMSM
Drive Design, Proceedings of the IEEE Congress on Evolutionary Computa-

tion, Special Session on Evolutionary Computation in Dynamic and Uncertain

Environments, Singapore, pages 584-591, September 2007

PVIII F. Neri and R. Mäkinen , Hierarchical Evolutionary Algorithms and
Noise Compensation Via Adaptation, Evolutionary Computation in Dy-

https://doi.org/10.1007/s10489-007-0069-8
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTCBB.2007.070202
https://doi.org/10.1007/978-3-540-71805-5_35
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCEC.2007.4424768
https://doi.org/10.1007/978-3-540-71805-5_7
https://doi.org/10.1109/CEC.2007.4424523
https://doi.org/10.1007/978-3-540-49774-5_15

namic and Uncertain Environments, S. Yang, Y-S. Ong, Y Jin eds., Studies in

Computational Intelligence, pages 345-369, (book chapter), April 2007

1 INTRODUCTION

Memetic Algorithms (MAs) are a class of computational intelligence algorithms
which combine global search features of an evolutionary framework with Lo-
cal Search (LS) to improve the solutions. MAs were introduced in [1] and [2]
which established a new metaphor, where the concept of gene transmission,
widely used in evolutionary computing, is replaced by the concept of meme
which is defined as the ”unit of imitation in cultural transmission” [3]. The
main idea behind a MA is that the solutions belonging to a population within
an Evolutionary Algorithm (EA) framework are supposed not only to generate
offspring but also to communicate with each other in order to transmit ideas
useful for improving their quality. This concept is algorithmically translated
by means of an hybridization of population-based algorithms with exact meth-
ods [2] and later systematically defined as an evolutionary framework which
employs within its generation cycle some local searcher components (deter-
ministic or stochastic) [4]. Thus, the solutions represent the individuals of an
evolving population and the local search is a lifetime learning for the individ-
uals [5]. In the fashion of the metaphor, the individuals go to school, study and
improve their fitness; thus allowing them to perform better and better. In addi-
tion, the individuals communicate amongst themselves thus transmitting their
achieved learning. Although there exist several kinds of hybridization, e.g. in-
telligent crossover, intelligent initial sampling [4] as will be shown later, in
general a MA is composed of an evolutionary framework and a LS employed
to improve a subset solution during the evolutionary process. If not one, but a
set of LSs is employed, the algorithm is named Multimeme Algorithm. Figure
1 shows the pseudo-code of a general MA implementation.

14

generate initial population;
evaluate each candidate solutions;
while termination conditions

select parents;
recombination of the parents;
improve offspring via local search;
mutation on the resulting offspring;
evaluate offspring;
improve offspring via local search;
survivor selection for the next generation;

end-while

FIGURE 1 General pseudo-code of a MA

1.1 Tailored Algorithmic Design

During the 20th century the development of numerical analysis and computers
led to the implementation of optimization algorithms which were supposed to
allow the machines to take over the work normally done by humans. On the
other hand, the strict requirements in the hypotheses of such methods usu-
ally did not match the engineering problems. Thus, in the 60s and 70s some
algorithms that do not require a deep a priori knowledge of the optimization
problems were developed (e.g. Rosenbrock [6] or Hooke-Jeeves [7]). Never-
theless, due to their inner structure, these algorithms make an implicit use of
information about the gradient (perform the so called ”hill-climb”) and thus
present the drawback of being inefficient for solving global optimization prob-
lems and thus handling the multi-modalities.

During those years some algorithms inspired by nature i.e. Evolutionary
Programming [8], Evolution Strategy [9], [10], and Genetic Algorithms [11]
were designed. These methods, under the umbrella name of Evolutionary Al-
gorithms (EAs), were making use of an analogy with evolution in order to
perform the global search of an optimum. Since no implicit information about
the gradient is used in EAs and no specific hypotheses are required EAs have
been widely used in engineering problems during the 80s and 90s. The capa-
bility of EAs to handle multi-modalities and since they often outperform clas-
sical methods and hill-climbers allowed a massive diffusion of such algorithms
amongst scientists and practitioners leading to the common sense notion that
EAs are ”universal optimizers” and thus better than the other algorithms.

The idea that EAs are better than other algorithms and that in general

15

FIGURE 2 Graphical representation of the No Free Lunch Theorem

an algorithm A might be better than another algorithm B entered into crisis
when a probabilistic approach was employed in order to compare the perfor-
mance of two generic algorithms. The theoretical conclusion of such study is
summarized in the No Free Lunch Theorem theory [12].

1st No Free Lunch Theorem: For a given pair of algorithms A and B

∑
f

P (xm| f , A) = ∑
f

P (xm| f , B), (1)

where P (xm| f , A) is the probability that algorithm A detects the optimal solu-
tion xm for a given objective function f (i.e. optimization problem). P (xm| f , B)
is the analogue probability for algorithm B. This probability expresses the per-
formance of the algorithm under analysis. In other words, the 1st No Free
Lunch Theorem states that the average performance, over all possible opti-
mization problems, is the same for every arbitrary pair of algorithms. Thus,
there does not exist either an optimal optimizer or a universal optimizer.

For the sake of completeness, the 2nd No Free Lunch extends the result to
time variant objective functions and states that if one algorithm outperforms
another for certain kinds of cost function dynamics, then the reverse must be
true on the set of all other cost function dynamics.

Figure 2 shows a graphical representation of the No Free Lunch Theo-
rem. More specifically, the dashed line represents the behavior of an algorithm
which has mediocre performance for a wide spectrum of problems while the
solid line has very good performance in a limited amount of cases and quite
poor performance otherwise. A graphical representation of the No Free Lunch
Theorem shows that the areas below the two lines are the same.

Usually classical EAs (e.g. GA) have a performance of the kind shown by
the dashed line, meaning that they are likely able to lead to some improvement

16

upon initial sampling but in real-world optimization problems (e.g. highly
multi-modal, noisy etc., see [13]) they are often unable to detect a satisfactory
solution.

Thus, the approach in this thesis considers each optimization problem as
something whose features are unique and therefore must be analyzed before-
hand; subsequently a tailored algorithm for the specific class of problems must
be designed in order to have high performance for the specific application.

1.2 An Introduction to Local Search

A Local Searcher (LS) is an algorithm which applies an iterative process of
examining the set of points in the neighborhood of a candidate solution, and
replacing it with a better neighbor. The principal components that affect the
workings of a LS are the following:

• The explorative structure of the local searcher is the logic, employed by
the LS, of generating a new candidate solution to be analyzed. It can be
deterministic or stochastic

• The order of the LS defines the required knowledge of the fitness func-
tion and it is restricted to continuous optimization problems. More specif-
ically the LS is said to be order zero if it does not require the calculation
of the derivatives, order one if it requires the calculation of the first order
derivatives, order two if it requires the second order derivatives

• The pivot rule of a LS defines the criteria for accepting an improving
point. A steepest ascent (descent) pivot rule terminates the exploratory
loop only after the entire neighborhood has been searched, A greedy

pivot rule terminates the exploratory loop as soon as an improvement
is found.

• The depth of the local searcher defines its termination condition. It could
stop at the first improvement (first iteration), only when no better solu-
tion can be found or in an intermediate situation (e.g. a few improve-
ments)

• The neighborhood generating function defines the set of points that can
be reached from the current best solution by application of the move op-
erators.

Fig 3 shows the pseudocode of a general LS.

17

iteration=0;
while condition on the depth

while condition on the pivot rule
generate a neighbor;
evaluate the neighbor and compare it with the current best;

end-while

update the current best;
iteration=iteration+1;

end-while

FIGURE 3 LS pseudocode

1.3 Baldwinianism vs. Lamarckianism

When a local search is applied and possibly an improvement upon the start-
ing point is achieved, the subsequent problem is how to use the new solution
within the evolutionary system and in which way the novel genotypic infor-
mation should perturb the system.

In scientific literature two different philosophies have been proposed re-
garding lifetime learning:

• Lamarckian: the improvement acquired by an individual during its life-
time causes a genotypic mutation and thus can be transmitted to its off-
spring

• Baldwinian: the improvement acquired by an individual does not affect
its genotype but only its fitness value and thus cannot be transmitted to
its offspring

It should be mentioned that although the Lamarckian philosophy seems not
to have any validity in human genetics, its metaphorical employment in MAs
can turn out to be very successful. In fact, the Baldwinian philosophy pro-
poses that application of the local searcher must be an instrument suggesting
promising direction search but the actual improvement of the genotypes must
occur only by means of the variation operator. More specifically, when a lo-
cal searcher is applied, its fitness is replaced with the fitness after the learning
while the genotypic information (the chromosome) is not modified. Thus, dur-
ing the selection process a chromosome will survive when its fitness after the
learning process is better. If this chromosome can survive for a sufficient num-
ber of generations, then it will be possible to evolve by genetic operations, into

18

the actual chromosome corresponding to the fitness after the learning. It is
shown in [14] that the Baldwinian learning can efficiently direct the genotypic
changes. It is obvious that the Lamarckian approach is definitely more aggres-
sive than the Baldwinian one. Better performance of one or the other basically
depends, in accordance with the No Free Lunch Theorem, on the nature of the
problem and the kind of hybridization implemented. For example, if only a
small number of solutions undergo lifetime learning a Lamarckian approach
can be preferable and if the fitness landscape contains very wide suboptimal
basins of attraction a Baldwinian approach is probably more efficient.

1.4 Intelligent Operators

A simple way to design a MA is to generate hybrid components by hybridizing
the standard operators of an EA with a LS.

A first example of this class of MAs is the intelligent initialization. The
usual initialization of an EA is carried out by performing a pseudo-random
sampling with uniform distribution function within the decision space. For
some problems, e.g. when the global optimal basin of attraction is narrow
and rather small, it may turn out beneficial in terms of convergence velocity to
perform a sampling which is as spread out as possible. This is done in order
to cover the maximum possible width of the decision space. In such cases it
might be wise to execute the initial sampling by using a deterministic tech-
nique (e.g. Latin Hypercube [15], [16]). Moreover, in highly multivariate cases
an initial sampling which explores the entire decision space is not applicable
due to an excessive computational effort. Thus, an analysis on the influence of
each design variable on the fitness values can be beneficial in detecting the sub-
set of variables which dramatically influence the fitness behavior of mediocre
solutions (initial sampling solutions) and therefore deserve application of a
deterministic process at the beginning of the algorithm.

In other cases, it might be known that a fairly performing suboptimal so-
lution exists (e.g. in control problems [17]) or it might be possible to detect it
by preliminarily applying a heuristic. In these conditions, the goal of the initial
sampling might be to massively sample the neighborhood of the suboptimal
solution but still have a small portion of the population spread out elsewhere.
For such a problem a randomized sampling by means of a non-uniform distri-
bution could be applied.

A second example of local search integration within standard evolution-
ary operators is the implementation of intelligent variation operators i.e. in-
telligent crossover or intelligent mutation. In [18] a crossover hill-climber is

19

designed. This operator, according to a steepest descent pivot rule, explores all
possible offspring before accepting those that perform best. In [19] a tailored
intelligent crossover for protein structure prediction has been designed mak-
ing use of knowledge of the physics of the problem. In paper [20] a distance-
preserving crossover has been introduced with application to the Travelling
Salesman Problem (TSP). This crossover imposes that the offspring edges are
inherited from both parents (and not only one parent) and applies a nearest-
neighbor heuristic to combine the chromosome sections in the most convenient
way. In [21] several implementations of MAs applying greedy local search in
the initialization and crossovers are extensively analyzed with reference to the
application to the TSP.

1.5 Lifetime Learning, Memetic and Multimeme Algorithms

The most common way to perform hybridization is with so called lifetime
learning which is the application of the local search to individuals of the pop-
ulation during the evolution. Plenty of different solutions have been proposed
in the literature about the way in which the hybridization can be executed. In
some cases it is proposed to apply the LS to the best individual, in other cases
the LS is applied to the worst or to a subpopulation; in some cases the local
search is applied many times with a limited depth while in other cases it is
applied a few times with a high depth value.

Although a proper choice strictly depends on the employed algorithmic
components and the problem under study (see [2], [18] and, [22]), a general
guideline has been given in [23] where it is proven that a local search whose
move operator is not the same as those in evolutionary recombination and
mutation is beneficial at least in reducing worst-case run times. In MAs, one
crucial concept is that algorithmic components (both evolutionary and local
search), having different features and natures, should explore the decision
space from different perspectives and interact with each other in a competitive
and cooperative logic (see [2] and [1]). This concept leads to the coordinated
employment of different LSs within the same evolutionary framework as pro-
posed in [24] which proposes different LSs for the TSP and [25] where several
types of Tabu Search are used by each agent. In [26] the distinction between
MAs and Multimeme Algorithms (MmAs) is systematically given, meaning
that the former uses only one (usually complex) local search while the latter
employs a set of (usually simple) local searchers. In both cases, for MAs and
MmAs, LSs have to interact with evolutionary components and thus need to
be efficiently integrated within the system.

20

1.6 Measurement of the Diversity

As previously stated, when a MA or a MmA is designed, the problem re-
garding how the hybridization can efficiently be performed arises i.e. how
the evolutionary framework can intelligently execute the coordination of local
searchers. Since the first implementations of MAs (see [2] and [25]), the idea
that coordination of the algorithmic components requires an adaptive scheme
was proposed. In addition, in [2], it was mentioned that the cooperation and
competition within a MA could be naturally coordinated by means of a di-
versity measurement. This concept has been revisited in [24] and the term
”diversity crisis” in the context of adaptation has been introduced. The ne-
cessity of controlling the diversity amongst individuals of the population is
due to the fact that MAs might be subject to diversity loss since the applica-
tion of LSs could lead to focusing on a restricted number of good solutions.
Moreover, if the LS is executed with a high depth (up to the local optimum),
it is fundamental that new basins of attraction are constantly detected; if the
LS is executed with a low depth, the MA search could become focused only
on the basin of attraction of a few solutions. In recent years, high demand
of sophisticated engineering simulators required the application of algorithms
able to handle highly multivariate and highly multi-modal fitness landscapes,
therefore the necessity of designing algorithms able to avoid stagnation and
premature convergence, notwithstanding a limited population size (with re-
spect to the dimensionality of the problem) became fundamental. Therefore,
several adaptation schemes aiming at controlling and preserving the popula-
tion diversity have been designed. In [4] and [27] it is shown how a simu-
lated annealing-like adaptive scheme can help in maintaining the population
diversity. In [28] a similar logic but based on the entropy variation has been
proposed for adaptation. In [29] the diversity is implicitly controlled by the
application of LSs coordinated by a probabilistic criterion. In [30] a memory
based approach is used for tracking the operator moves and preserving the
diversity. In [31] two diversity-based probabilistic criteria for determining the
frequency of local search activation are proposed for parallel MAs.

1.7 Contents of the Thesis

This thesis, in accordance with the No Free Lunch Theorem, proposes tailored
MAs for solving some specific classes of problems. The general algorithmic
philosophy employs the idea of cooperation and competition amongst algo-

21

rithmic components and proposes novel adaptive schemes for executing coor-
dination of LSs and parameter setting. The adaptive schemes are based on the
design of several indexes that measure fitness diversity and their use within
the evolutionary framework.

More specifically, the fitness diversity is used as an index to monitor
the algorithmic process and then intelligently apply and coordinate the local
search components and execute an adaptive parameter setting. As a general
guideline over the papers included in this thesis, when the diversity is high,
the evolutionary framework is supposed to exploit the available genotype by
searching in the promising directions. On the contrary, when the diversity is
low the framework can efficiently be assisted by local search components in
order to offer alternative perspective to the search of the optimum. In addi-
tion, LSs with different features are used in dependance of the diversity level.
If the diversity is moderately low, rather explorative LSs are employed in or-
der to detect new promising search directions; if the diversity is extremely low,
highly exploitative LSs are employed in order to quickly detect the optimum
of the corresponding basin of attraction and thus end the game.

The diversity measurement is also employed in the case of noisy envi-
ronment in order to perform the coordination of the averaging components.

Eight original articles are included in the thesis. In Article PI, a MmA has
been applied for designing the optimal Human Immunodeficiency Virus (HIV)
therapy. The algorithm executes the coordination of the LSs and parameter
setting by means of an index, namely ξ, which measures the fitness diversity
amongst individuals of the population by computing the difference between
best and average fitness normalized to the best fitness.

In Article PII, for a different HIV model another kind of MmA has been
implemented employing another kind of measurement of fitness diversity,
namely ψ. The index ψ has been designed taking into account the specific
features of the fitness landscape being optimized.

In Article PIII, a MmA employing a Differential Evolution framework
and local searchers has been proposed for an image processing application and
a third kind of measurement of fitness diversity, namely ν, has been employed.

In Article PIV, a comparative analysis of the three adaptive schemes from
articles PI, PII and PIII is performed by integrating the adaptive rules within
the Fast Adaptive Memetic Algorithm (FAMA) proposed in [17] and applying
the three variants of FAMA to a large set of different test functions. In Article
PV, the results shown in Article PIV are extended by adding the comparison
with a FAMA employing a pseudo-random number instead of the diversity
index.

In Article PVI, another MmA employing a fitness diversity adaptation

22

based on the measurement proposed in Article PII has been applied for the
neural network training with reference to a telecommunication problem. The
noise in the fitness landscape has been considered in the algorithmic design by
an online averaging of the results.

The problem of the optimization in presence of uncertainties has been an-
alyzed in depth in Article PVII and Article PVIII for the Gaussian noise with
reference to a control engineering problem and for a non-Gaussian algorithmic
noise with reference to structural optimization, respectively. The noise han-
dling has been performed by adaptive implicit and explicit averaging of the
fitness values and by the aid of two cooperative/competitive survivor selec-
tion schemes adaptively coordinated by means of the diversity index proposed
in Article PI.

1.7.1 Contribution of the Author in Joint Publications

The author contributed by designing each algorithm, experimental setup and
statistical test presented in the publications. The joint publications have been
done in cooperation with experts of either the application problem or the math-
ematical modelling. In addition the author significantly contributed to the
writing and organization of all the papers.

1.8 Further Developments

The study on fitness diversity adaptation in MAs has recently been extended
by combining the concept of fitness diversity measurement with a probabilis-
tic scheme for coordinating the LSs. In particular, Chapter 2 proposes an en-
hancement of the algorithm in Article PIII for filter design for defect detection
in paper production while Chapter 3 proposes a novel MmA which employ
an adaptation based on the measurement of the super-fit performance with
respect to performance of the other individuals. Two applications are shown:
the first is for design of a control system for a Direct Current Motor, the second
is the same filter design as in Chapter 2 and in Article PIII. Both the algorithms
proposed in the following sections employ a Differential Evolution framework
and a set of local searchers. This combination seems to be very promising in
many applications.

2 AN ENHANCED MEMETIC DIFFERENTIAL

EVOLUTION IN FILTER DESIGN FOR DEFECT

DETECTION IN PAPER PRODUCTION

In recent years, machine vision systems for quality inspection and fault detec-
tion have become standard in the paper industry. These systems monitor the
paper web for structural defects such as holes and for defects in quality such as
faint streaks, thin spots, and wrinkles [32]. Detection of weak defects is crucial
in quality paper production since their presence in paper sheets raises difficul-
ties in, for example printing, thus leading to significant monetary losses. The
paper web inspection is a challenging task since it must be executed under
strict real time constraints. In fact, paper machines can achieve a speed of over
25 m/s, while the defects are barely a few millimeters in size.

Defect detection is in the spectrum of low-level vision since it is related to
both edge detection and textural analysis and can be seen as a pre-segmentation
technique for identifying defects and insulate them from the background.

In order to solve this class of problems several solutions have been pro-
posed over the years in the literature and industrial applications. Classical
edge detection methods and simple segmentation schemes, such as plain thre-
shold have been widely studied in the literature [33] and have become the
toolbox of machine vision engineering. These methods, in spite of their pop-
ularity with the industry, are often fragile and need to be tuned by human
experts for each new condition.

Thus, Computational Intelligence (CI) approaches have been successfully
applied in low-level vision during recent years. For example, such approaches
aim at executing machine learning by means of neural networks [34], [35] or
employing evolutionary algorithms to derive high performance operators for
specific applications [36], [37], [38], [39], [40]. The latter approach is very

24

promising due to the fact that these operators are potentially adaptable in dif-
ferent situations without human expert decision making [41].

This section aims to study the defect detection in paper production by
means of image processing techniques. In this application, the high real time
requirements pose a serious limitation to applicable techniques. In addition,
the defects studied in this application are rather faint and masked by the nat-
ural structure of the paper which varies by time and process state. Moreover,
compared to other fields of defect detection, we lack regular texture or es-
timable background, such as is encountered with, for example, textiles [42].

Defect detection in paper production has been studied over the years
and several solutions have been proposed in industries and the literature. The
most commonly used approaches in industrial applications are based on sim-
ple threshold techniques, [43]. Since these techniques are inadequate for weak
defects, more sophisticated methods are required. A popular approach is to
utilize texture-based techniques. In [44] the defects are characterized as de-
viations from the background texture, the problem is encoded as a two class
classification problem by means of local binary patterns as source of features
and a Self Organizing Map (SOM) as a clustering/classification tool. However,
wrinkles and streaks are often quite faint perturbations of texture, and can be
easily missed with texture analysis.

This work proposes an approach which employs Finite Impulse Response
(FIR) filters, parameterized by a Gabor function, specifically optimized for the
task of weak defect detection. The problem oriented design of the FIR filters
seems very promising for similar image processing problems with other fields
of application, for example in [45] for texture segmentation and in [46] for a
vehicle tracking problem. Paper [46] also proposed a hybrid evolutionary al-
gorithm in order to perform the filter design. FIR filters are flexible and have
relatively efficient machine implementations which makes them applicable for
the task. Gabor functions are useful for filter formulation in cutting down the
number of parameters and are presumed applicable due to similarities with
mammalian vision cortex responses. One important difficulty related to this
approach is that the problem oriented design of a FIR filter requires the solu-
tion of an often challenging optimization problem characterized by a multi-
variate fitness function.

2.1 Features of the Filter and Problem Formulation

Paper inspection is realized using transillumination. The images acquired in
this way contain noisy characteristics as the whole paper structure is imaged.

25

FIGURE 4 Source image FIGURE 5 Label image

Images may vary by a different background noise field (paper formation), il-
lumination and defect shape. Training of the filter is based on a set of source
images supplied by Viconsys Oy 1 and a corresponding set of label images.
These two sets constitute the training set. Images are taken in a static situation
with a resolution of approximately 0.6 mm/pixel. Figure 4 shows an image
belonging to the training set with the corresponding label image Figure 5.

The employment of Gabor Filters [47] has been proposed since they turned
out to be very successful in similar applications of machine vision for defect
detection [48] [49] and edge detection [50]. In particular, the following Gabor
function [47] is proposed:

Gb[θ, ψ, σx, σy, λ](x, y) = exp
(

(x cos θ+y sin θ)2

2σ2
x

)

exp

(

(−x sin θ+y cos θ)2

2σ2
y

)

cos
(2π

λ + ψ
)

,
(2)

where θ is the angle perpendicular to parallel stripes of the filter, ψ is the phase
offset (the filter is symmetrical when ψ = 0 and antisymmetrical when ψ = π

2).
Furthermore, σx, σy specify both the size of the filter and it’s ellipticity and λ is
the wavelength of the filter. In other words we use a directed bandpass filter
with bandwidth determined by λ and the ratio σx/σy.

Gabor filters are limited by their relatively high computational cost. The
real time requirements of our application rule out the use of Fast Fourier Trans-
form (FFT) and computation of filters via convolution theorem. To satisfy real
time requirements in spatial domain, we sample the Gabor function into a 7× 7
discrete kernel. This will limit the available scales and frequencies. However
since the problem is empirical, we allow the filter to be truncated to kernel
size, trading accuracy to overcome aforementioned limits [51].

1 http://www.viconsys.fi/

26

TABLE 1 Design parameters

parameter description range of variability

α (1) , α (7) weight [−100, 100]

α (2) , α (8) θ [0, 2π]

α (3) , α (9) ψ [0, 2π]

α (4) , α (10) σx [0, 20]

α (5) , α (11) σy [0, 20]

α (6) , α (12) λ [0, 20]

Since the defects tend to contain large variations in angle and the filter is
direction dependent, the outputs of two different filters are combined. The co-
ordination of the filters is carried out by assigning a weight coefficient to each
filter and then selecting that which produces maximal intensity for a given
pixel. A post-filtering stage, by means of a gaussian filter, is included in or-
der to mitigate the effect of spurious responses due to noise [52]. Thus, for a
given image I, α indicating the vector of 12 elements representing the design
parameters of the two filters, the filter formula is given by:

F (α, I) = G15,15 ? max [(α (1) Gb (α (2) , ...α (6)) ? I) ,
(α (7) Gb (α (8) , ...α (12)) ? I)]

(3)

where α (1) and α (7) are the weights for both filters, ? denotes the two dimen-
sional discrete convolution and Gr,t represents an ordinary gaussian kernel of
size r × t. The design parameters of the Gabor filters are shown in Table 1.

The problem of the filter design thus consists of finding a proper set of
design parameters α. In order to estimate the fitness of a candidate solution α,
the following procedure is carried out.

Let us indicate with S the source image and with L the corresponding
label image. The filtered images F are divided into three regions based on the
label images: the defect region D defined as the set of those pixels (x, y) of the
image F such that L(x, y) = 1, the clean region C defined as the set of those
pixels (x, y) such that L(x, y) = 0, and the non-interesting region characterized
by other colors (grey in Figure 5). Then let us define the similarity function sim

as follows:

sim(S, L) = aσ(D) + bσ(C) + c
√

|µ(D) − µ(C)|, (4)

where µ and σ denote mean and standard deviation over the set of pixels and
a, b, c are weight coefficients. The first term in (4) measures uniformity of the

27

defect region, the second term measures the noise in background (C region)
and the third term measures separation of the two regions. The weight coeffi-
cients have been set as a = 1, b = 2 and c = −3 taking into consideration that it
is highly desirable that the filter clearly separates defects from the background,
it is also important that noise in the background does not lead to detection of
false defects. Finally, the fitness function f is given by:

f (α) =
1
nI

nI

∑
k=1

sim (F (α, Sk) , Lk), (5)

where nI is total number of images in the training set, Sk and Lk are respec-
tively the kth source and label image from the training set. The filter design is
thus stated as the minimization of f over H = [−100, 100]2 × [0, 2π]4 × [0, 20]6.
For the sake of clarity, it can be highlighted that the optimization problem un-
der examination is defined in a multi-dimensional continuous space character-
ized by 12 dimensions where some of them characterize some the real-valued
parameters and the others characterize the angular parameters.

2.2 Enhanced Memetic Differential Evolution

In order to minimize the fitness f shown in (5) an EMDE is proposed here.
The description of algorithmic components constituting the EMDE and their
operation is given in the following.

2.2.1 Differential Evolution Framework

An initial sampling of Spop = 100 individuals is executed pseudo-randomly
with a uniform distribution function over the decision space H. At each gen-
eration, for Spop times, four individuals α1, α2, α3 and α4 are extracted from the
population pseudo-randomly. Recombination according to the logic of a DE
occurs at first by generating α′o f f according to the following formula [53], [54]:

α′o f f = α1 + K (α2 − α3) , (6)

where K = 0.7 is a constant value set according to the suggestions given in
[53]. Then, in order to increase the exploration of this operator, a casuality is
introduced by switching some design parameters of α′o f f with the correspond-
ing genes of α4. Each switch occurs with a uniform mutation rate pm = 0.3, as
suggested in [55], and the offspring αo f f is thus generated. The fitness value of
αo f f is calculated and, according to a steady-state strategy, if αo f f outperforms
α4, it replaces α4, if on the contrary f

(

αo f f

)

> f (α4), no replacement occurs.

28

2.2.2 Local Searchers

The EMDE employs the following three local searchers which assist the evolu-
tionary framework (DE) by offering alternative exploratory perspectives.

The Hooke Jeeves Algorithm

The HJA [7], [56] initializes the exploratory radius hHJA−0, an initial candidate
solution α and a 12 × 12 direction exploratory matrix U = diag(w(1), w(2), ..
.., w(12)), where w (m) is the width of the range of variability of the mth vari-
able. Let us indicate with U(m, :) the mth row of the direction matrix m =
1, 2, ..., 12.

The HJA consists of an exploratory move and a pattern move. Indicat-
ing with α the current best candidate solution and with hHJA the generic ra-
dius of the search, the HJA during the exploratory move samples solutions
α (m) + hHJAU(m, :) (”+” move) with m = 1, 2, ..., 12 and the solutions α (m)−
hHJAU(m, :) (”-” move) with m = 1, 2, ..., 12 only along those directions which
turned out unsuccessful during the ”+” move. If a new current best is found α

is then updated and the pattern move is executed. If a new current best is not
found, hHJA is halved and the exploration is repeated.

The HJA pattern move is an aggressive attempt of the algorithm to ex-
ploit promising search directions. Rather than centering the following explo-
ration at the most promising explored candidate solution (α), the HJA tries to
move further [57]. The algorithm centers the subsequent exploratory move at
α± hHJAU(m, :) (”+” or ”-” on the basis of the best direction). If this second ex-
ploratory move does not outperform f (α) (the exploratory move fails), then an
exploratory move with α as the center is performed. The HJA stops when the
budget condition of 500 fitness evaluations is reached. The initial exploratory
radius hHJA−0 is adaptively set as later explained. For the sake of clarity, the
pseudo-code of the HJA for a given current best solution α is shown in Figure
6.

The Stochastic Local Searcher

The SLS [58] picks up a solution α and initializes a parameter σSLS−0. Then,
24 (m = 1, 2, ..., 24) perturbation vectors hSLS (m) are generated; these vectors
having the same length of α and each gene being a random number of a normal
distribution having mean value in α (m) and standard deviation σSLSw (m).
Number of perturbations is chosen so that SLS and HJA have similar compu-
tational costs. For each of these perturbation vectors, α + hSLS is calculated
and the related fitness value is saved. If the most successful perturbation has a

29

while budget condition
EXPLORATORY MOVE

for m = 1 : 12
compute and save f (α + hHJAU(m, :));
if f (α + hHJAU(m, :)) > f (α)

compute and save f (α − hHJAU(m, :));
end-if

end-for

PATTERN MOVE
detect the best performing candidate solution among those explored;
if the best performing is α

halve hHJA;
else

α = best performing candidate solution over those explored;
calculate f (α ± hHJAU(m, :));
if f (α ± hHJAU(m, :)) > f (α)

α = α ± hHJAU(m, :);
end-if

end-if

end-while

FIGURE 6 HJA pseudo-code

while budget condition
for m = 1 : 24

generate perturbation vector hSLS (m) ∼ N (α, σSLSw (m));
calculate and save α + hSLS (m) and f (α + hSLS (m));

end-for

pick up the best performing perturbed solution α + hSLS;
if f (α + hSLS) ≤ f (α);

α = α + hSLS;
else

σSLS = σSLS
2 ;

end-if

end-while

FIGURE 7 SLS pseudo-code

30

while budget conditions
Perturb the current best solution thus generating αper;
Calculate the fitness value of the perturbed solution;
if f (αper) < f (α)

Accept the perturbed solution as a new current best solution (α = αper);
else

Calculate the probability p = e
f (α)− f (αper)

Temp ;
Generate a pseudo-random value u ∈ [0, 1];
if u < p

Accept the perturbed solution as a new current best solution;
else

Keep α as the current best solution;
end-if

end-if

Reduce Temp;
end-while

FIGURE 8 Simulated Annealing pseudo-code

better performance than the starting solution, the perturbed solution replaces
the starting one, otherwise σSLS is halved and the process is repeated. The
algorithm stops when the budget on the number of fitness evaluations (500)
is exceeded. The setting of σSLS−0 is adaptively performed as it will be later
described in adaptation subsection. Figure 7 shows the pseudo-code of the
SLS.

Simulated Annealing

The SA metaheuristic [59], [60] offers a third exploratory perspective in the de-
cision space which can choose a search direction leading to a basin of attraction
different from that where starting candidate solution α0 is. The exploration is
performed by using the same perturbation logic as was described in the SLS.
This local searcher, as well as the others, is run each time for 500 fitness evalua-
tions (budget condition). Initial temperature Temp0 is adaptively set following
the necessity of the evolutionary process (see below in adaptation subsection).
The temperature Temp is reduced according to a hyperbolic law following the
suggestions in [61]. For sake of clarity, the pseudo-code of the SA for a given
current best solution α is shown in Figure 8.

31

2.2.3 Functioning of the Local Searchers

As highlighted in [26] the crucial problems when a Memetic (or Multimeme)
Algorithm is designed are the choice of which local searchers are employed
and how the hybridization with an evolutionary framework is efficiently per-
formed. This section aims to address these two topics explaining reasons be-
hind the choice of these specific local searchers and thus propose the integra-
tion within the Differential Evolution Framework.

In [54] it is shown that that the DE, despite its simplicity, can be very
efficient in many applications and can outperform classical metaheuristics (e.g.
Genetic Algorithms and Evolution Strategies). For the present application, [62]
and Article PIII prove the effectiveness of DE. On the other hand, it is known
from literature [55] that the DE is subject to stagnation problems due to its
highly explorative features.

In order to enhance the DE algorithmic performance for the class of prob-
lems under study, we aim to propose an adaptive Multimeme Algorithm [63],
[64] which hybridizes the potentials of the DE with a list of local searchers
which are supposed to assist the evolutionary framework. This list of local
searchers is composed of algorithmic components having various features in
terms of exploration logic and pivot rule and offer alternative perspectives [26]
for exploring the decision space and handle the fitness landscape. In addition,
the local searchers, integrated within the DE framework, are supposed to com-
pete and cooperate [2] in the spirit of Meta-Lamarckian learning [65].

The HJA is a fully deterministic local searcher characterized by a steepest
descent pivot rule [4] with high exploitative features. Thus, it is clear that the
HJA can be employed for executing the hill-descent of a promising basin of
attraction and is less likely to ”jump out” from it as remarked in [17].

The SLS also has very exploitative features since it attempts to improve
a given solution in the neighborhood of a given solution and is also charac-
terized by a steepest descent pivot rule since it chooses, at each step, the best
solution only after having calculated the fitness value of 24 potential candi-
dates. On the other hand, the SLS differs from the HJA in the neighborhood
generating function [4] since the SLS, unlike the HJA, has a stochastic structure
for generating new candidate solutions. In this sense the SLS, notwithstanding
its mainly local features, contains a mild explorative logic.

The well-known structure of the SA allows, with a certain probability
which decreases over time, to accept less satisfactory solutions in order to
eventually improve the starting candidate solution [59], [60]. This feature
makes the SA rather explorative and allows the algorithm to significantly im-
prove bad performing solutions. On the other hand, its application to a so-
lution which is already performing good can lead to the loss of a promising

32

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400

A
ve

ra
ge

 b
es

t f
itn

es
s

Number of fitness evaluations

Bad initial solution

HJA
SLS
SA

FIGURE 9 Local searcher performance for bad performing initial candidate solu-
tions

genotype and in the worst case of a promising basin of attraction.
In order to better understand the functioning of the three local searchers

for the problem under study and then have some hints about an efficient hy-
bridization the following test has been designed. On the basis of the study
carried out in Article PIII, 10 candidate solutions having low performance,
10 having mediocre performance and 10 having good performance have been
sampled. For each set of 10 solutions, we attempted to improve the genotypes
by applying the HJA, SLS and SA for 500 fitness evaluation. For each local
searcher, the performance has been averaged (Average Best Fitness) over the
10 experiments carried out.

Figure 9 shows the performance of the local searcher for bad perform-
ing initial solutions. It can be noted that for a bad performing initial solution,
the SA outperforms both the SLS and the HJA and leads to a significant and
quick enhancement in the fitness value. Moreover, the comparison between
SLS and HJA shows that the HJA outperforms the SLS. According to our inter-
pretation, this result is due to the fact that the HJA performs an efficient local
optimization in a not so promising basin of attraction while the SLS, due to the
combination of stochastic structure and local features, improves the solution

33

-1.2
-1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

 0 200 400

A
ve

ra
ge

 b
es

t f
itn

es
s

Number of fitness evaluations

Mediocre initial solution

HJA
SLS

SA

FIGURE 10 Local searcher performance for mediocre performing initial candidate
solutions

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0 200 400

A
ve

ra
ge

 b
es

t f
itn

es
s

Number of fitness evaluations

Good initial solution

HJA
SLS

SA

FIGURE 11 Local searcher performance for good performing initial candidate solu-
tions

34

-1.485
-1.484
-1.483
-1.482
-1.481
-1.48

-1.479
-1.478
-1.477

 0 200 400

A
ve

ra
ge

 b
es

t f
itn

es
s

Number of fitness evaluations

Good initial solution

HJA
SLS

FIGURE 12 HJA vs SLS for good performing initial candidate solutions (zoom de-
tail)

within the basin of attraction without succeeding in the hill-descent.

Figure 10 shows the performance of the local searcher for mediocre per-
forming initial solutions. For a mediocre initial solution, it is clear that SLS and
HJA clearly outperform the SA and the SLS detects better solutions than the
HJA. Results in Figure 10 thus show that application of SA can be very benefi-
cial for poorly performing initial solutions but not for solutions which have a
rather good performance.

Figure 11 shows the performance of the local searcher for good perform-
ing initial solutions. In this case, it is clear that the SA tends to lose a good
genotype and after does not manage to find a new solution having better per-
formance than the initial one. On the contrary, as shown in the zoom detail
in Figure 12, the SLS and HJA perform well in further enhancing a solution
which already has a very low fitness value, see Article PIII. SLS and HJA have
rather similar performance and converge to a similar solution but once again,
SLS seems to be more promising than the HJA. It is interesting to consider that
HJA, for all the three sets of experiments carried out, has intermediate perfor-
mance with respect to the other two local searchers. For bad initial solutions
it performs better than the SLS but worse than the SA whilst for good initial
solutions worse than the SLS but better than the SA.

35

2.2.4 Adaptive Coordination of the Local Searchers

In order to perform coordination of the local searchers, an adaptive function-
ing is proposed. Every 1000 DE fitness evaluations the following index is cal-
culated (see Article PIII):

ν = min

{

1,
σf
∣

∣ favg

∣

∣

}

, (7)

where
∣

∣ favg

∣

∣ and σf are respectively the average value and standard deviation
over the fitness values of individuals of the population. The parameter ν can
vary between 0 and 1 and can be seen as a measurement of the fitness diversity
and distribution of the fitness values within the population [66], [17]. More
specifically, if ν ≈ 0, the fitness values are similar amongst each other, on the
contrary if ν ≈ 1, the fitness values are different amongst each other and some
individuals thus perform much better than the others (see also Articles PI, PII

and PVIII). Moreover, Article PIII shows that in early generations the value
of ν is high and that over the generations it decreases. In other words, for
a high value of ν, the population likely contains bad initial solutions for the
application of local searchers and for a low value of ν, the population likely
contains good initial solutions for the application of local searchers (see Figure
13 for the case of a plain DE).

The reason behind the choice of ν as a measurement of the population
diversity instead of ξ proposed in [17] and Article PI or ψ proposed in Article
PII can be explained in the following way. Articles [17], PI and PII propose for
various applications and fitness landscapes adaptive multimeme algorithms
which employ a plus strategy in the spirit of the Evolution Strategy framework
[10]. On the contrary, the DE framework in the EMDE employs a steady-state

logic.
Indexes ξ and ψ are both proportionate to the absolute value of the dif-

ference between the best and average fitness values and are thus very sensitive
indexes to variations in population diversity. This feature of ξ and ψ was de-
signed on purpose since the survivor selection in a plus strategy logic leads
to a loss of genotypical information, therefore it was fundamental to detect
abrupt variations in population diversity in order to prevent stagnation and
premature convergence. The steady-state logic of the DE is not strongly sub-
ject to premature convergence; on the other hand, DE is mainly subject to stag-
nation [55]. Although stagnation is in general an undesirable situation, the
generation of a super-fit individual is not necessarily to be avoided over the
entire evolutionary process. Therefore, our aim is to apply an index which is
less sensitive to fitness diversity variations (ν) and, moreover, depends on the

36

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50000 100000 150000 200000

ν
va

lu
e

Number of fitness evaluations

ν value averaged over 30 DE runs

ν

FIGURE 13 Average trend of ν for a plain DE framework

standard deviation and thus on the fitness distribution over all individuals of
the population.

More specifically, our algorithmic philosophy aims, at each evolutionary
stage, to detect the most suitable local searcher by analyzing the effect of the
various algorithmic components on the optimization process. In addition, the
assistance of the local searchers is supposed to prevent stagnation by offering
alternative exploratory perspectives. For example, if one individual has, by
chance, been improved by the DE and has much better performance than the
others, the Meta-Lamarckian employment of the SLS to a mediocre individual
would lead to its enhancement offering a fresh genotype for the subsequent
DE 1000 fitness evaluations.

Considering the preliminary study shown above, the index ν is used to
activate local searchers. A value ε is sampled by means of a uniform distribu-
tion function within the interval [0, 1]. Then, the following exponential distri-
bution function is considered [67]:

P
(

µp, σp, ν
)

= exp

(

−
(

ν − µp

)

2σ2
p

)

, (8)

where σp = 0.1 and µp ∈ {0.1, 0.2, 0.3, 0.4}. Taking into account the prelim-
inary results shown above, the following novel probabilistic scheme is pro-
posed.

37

(a) if ε < P
(

0.4, σp, ν
)

, one individual is pseudo-randomly extracted from
the population and the SA is applied for 500 fitness evaluations

(b) if ε < P
(

0.3, σp, ν
)

, the HJA is applied for 500 fitness evaluations to the
individual having the best performance

(c) if ε < P
(

0.2, σp, ν
)

, one individual is pseudo-randomly extracted from
the population and the SLS is applied for 500 fitness evaluations

(d) if ε < P
(

0.1, σp, ν
)

, the SLS is applied for 500 fitness evaluations to the
individual having the best performance

Conditions (a) and (c) mean that alternative exploratory perspectives are of-
fered to the DE framework and it is taken into account that for a bad initial
solution (early stage of the evolution) the SA performs better than the SLS
and conversely for a good initial solution (late stage of the evolution) the SLS
performs better than the SA. Conditions (b) and (d) are related to the best indi-
vidual of the population. Condition (b) states that a promising basin of attrac-
tion must be immediately descended by means of a highly exploitative local
searcher (HJA). On the contrary, condition (d) is related to the late stages of
the evolution and states that finalization of the optimization process can be
more efficiently performed by a local searcher rather than by an evolutionary
framework [68].

In addition, two heuristic rules have been employed. According to the
first one, if the application of SA does not lead to any improvement, the initial
solution is not replaced. According to the second one, the HJA is never applied
twice to the same individual if a previous HJA application did not already lead
to any improvement.

The index ν is also used to execute the parameter setting of the local
searchers. Concerning HJA and SLS, σSLS−0 = ν/2 and hHJA−0 = ν/2. This
choice means that the initial radius of exploration of the local searchers should
be large when the fitness diversity is high and small when the fitness diversity
is low. More specifically, since the smaller ν is, the nearer the end of the op-
timization process is (see articles PVIII, PI and PII), when ν is small the local
searchers attempt to detect a better performing solution within the neighbor-
hood of the starting solution, when ν is large the local searchers have a more
explorative behavior. Regarding the SA, the initial temperature Temp0 is adap-
tively set to be Temp0 = ν. This means that the probability to accept a worse
solution depends on the fitness diversity. In other words, the algorithm does
not accept worse solutions when the fitness diversity is low and thus the SA
does not attempt, with a high probability, to accept solutions which have per-
formance worse than the initial one.

38

generate initial population pseudo-randomly;
while budget condition

initialize fitness counter to 0;
while fitness counter< 1000

execute DE recombination and offspring generation;
end-while

compute ν = min
{

1, σf

| favg|

}

;

sample ε ∈ [0, 1]

if ε < e
−(ν−0.4)

2σ2
p

execute SA on an individual pseudo-randomly selected;
end-if

if ε < e
−(ν−0.3)

2σ2
p

execute HJA on the individual having the best performance;
end-if

if ε < e
−(ν−0.2)

2σ2
p

execute SLS on an individual pseudo-randomly selected;
end-if

if ε < e
−(ν−0.1)

2σ2
p

execute SLS on the individual having the best performance;
end-if

end-while

FIGURE 14 EMDE pseudo-code

The algorithm stops when 200000 fitness evaluations have been executed.
Figure 14 shows the EMDE pseudo-code.

2.3 Numerical Results

2.3.1 Experimental Setup

For the EMDE 30 simulation experiments have been executed. Each experi-
ment has been stopped after 200000 fitness evaluations. Every 100 fitness eval-
uations, the best fitness value has been saved. The average over the 30 exper-
iments defines the Average Best Fitness (ABF). Analogously, 30 experiments
have been carried out with a Genetic Algorithm (GA), an Evolution Strategy

39

TABLE 2 Optimization results
GA ES SA DE MDE EMDE

Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2

wgh -9.873 8.164 -5.893 -41.058 0.492 41.483 2.026 91.448 68.139 -18.267 7.108 79.172

θ 0.709 1.937 0.918 2.320 2.882 1.581 1.014 1.512 1.521 1.763 2.925 1.510

ψ 1.518 2.710 1.008 4.622 0.187 0.594 2.838 4.092 1.724 4.135 5.300 4.185

σx 1.213 1.629 1.952 5.875 3.681 1.585 1.000 1.519 7.802 4.713 1.573 17.329

σy 1.593 1.816 4.552 13.751 2.001 3.160 1.000 15.737 3.064 3.116 6.333 9.484

λ 4.650 4.058 2.330 0.944 0.465 3.713 0.684 3.522 3.549 1.751 2.332 3.469

f b -1.056 -1.273 -1.361 -1.491 -1.526 -1.514

<f> -1.031 -1.139 -1.181 -1.472 -1.491 -1.491

f w -0.987 -1.050 -0.978 -1.433 -1.462 -1.462

σexp 0.035 0.064 0.116 0.016 0.013 0.012

(ES), a SA metaheuristic, a plain DE and the Memetic Differential Evolution
(MDE) proposed in Article PIII in order to perform a comparison of the per-
formance between the EMDE and other popular meta-heuristics.

A standard generational Genetic Algorithm (GA) [69] with Spop = 100
has been implemented. The GA employs a pseudo-random initial sampling,
linear ranking parent selection with stochastic universal sampling, and arith-
metic crossover, Gaussian mutation [5].

An Evolution Strategy (ES) with Spop = 100 for our problem has been
implemented. As a standard ES, this ES does not contain any parent selection
and, thus, it considers all populations as a population of parents [10]. A stan-
dard intermediate recombination has been chosen and the Gaussian mutation
has been implemented resorting to the 1/5 success rule [9]. Finally, a (µ + λ)
strategy has been chosen.

The same SA explained in Section 2.2 with initial temperature Temp0 = 1
and hyperbolical reduction of the temperature has been run 30 times for 200000
fitness evaluations. The same DE explained in Section 2.2 and employed in the
DE framework has been applied as well.

2.3.2 Optimization Results

Table 6 shows results of the optimization process for the six algorithms under
study. Table 6 shows the design parameters obtained at the end of the most
successful experiments for both the filters Fil 1 and Fil 2, the corresponding
fitness value f b, the worst (f w) and the average (<f>) fitness values over the 30
experiments carried out and the corresponding standard deviation σexp.

Results in Table 6 show that the the EMDE outperforms, in terms of final
value, GA, ES, SA and DE. Moreover, the EMDE reaches final values which

40

FIGURE 15 First image belonging to the training set. From the upper left corner
source image, label image, filtered image by Sobel mask, GA, ES, SA,
DE, MDE and EMDE

perform approximately as good as for the MDE. Moreover, the algorithms
based on a DE framework outperform the standard metaheuristics (GA, ES
and SA) for the problem under analysis. This result confirms and extends the
study in [70] which proves the superiority of the DE with respect to GAs for a
similar application.

Figure 15, Figure 16, Figure 17 and Figure 18 show the source image, label
image, image filtered by an horizontal Sobel mask [33] and the filtered image
obtained by the best performing solutions obtained from each algorithm (the
filter parameters are shown in Table 6). Figure 15 and 16 refer to two images
belonging to the training test whilst Figure 17 and 18 refer to two images not
belonging to the training test.

Figures 15, 16, 17, and 18 show that the performance of the Sobel mask is
clearly inferior to all solutions derived by optimization methods.

41

FIGURE 16 Second image belonging to the training set.

42

FIGURE 17 First image not belonging to the training set.

43

FIGURE 18 Second image not belonging to the training set.

44

-1.4

-1.2

-1

-0.8

-0.6

-0.4

 0 50000 100000 150000 200000

A
ve

ra
ge

 b
es

t f
itn

es
s

Number of fitness evaluations

GA
ES
SA
DE

EMDE
MDE

FIGURE 19 Algorithmic performance

2.3.3 Analysis of the Performance

Figure 19 shows the comparison of the algorithmic performance for the six
algorithms under study. Results in Table 6 and Figure 19 confirm that the
algorithms employing the DE logic clearly outperform the other three meta-
heuristic. The comparison between the MDE and the DE shows that the MDE
is slightly slower in reaching the optimum but eventually outperforms the DE.
According to our interpretation, the presence of local searchers softens the ex-
plorative feature of the DE framework thus temporarily slowing down the
optimization process. On the other hand, local searchers exploit the available
genotypes and give a better chance for the DE framework to detect promising
search directions. Regarding the proposed algorithm, the EMDE outperforms
the MDE in terms of convergence velocity since it is almost as quick as the
plain DE and converge to final values as good as the MDE. In the first half
of the evolution, the SA efficiently assists the DE framework and balances the
slowdown due to exploitative local searchers (HJA and SLS). This effect leads
to a slight improvement, with respect to MDE, in convergence velocity per-
formance. In the second half of the evolution, as well as the MDE, the EMDE
exploits the available genotypes by means of HJA and SLS and finalizes the
optimization process outperforming the plain DE.

Figure 20 shows the trend of ν averaged over 30 experiments vs the num-

45

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50000 100000 150000 200000

ν
va

lu
e

Number of fitness evaluations

EMDE
MDE

DE

FIGURE 20 Trend of ν

ber of fitness evaluations for DE, MDE and EMDE. Since, as highlighted above,
ν is a measurement of fitness diversity and distribution over the individuals
of the population, it follows that if the trend of ν takes on a constant non-null
value for a large portion of the evolution, the algorithm is probably stagnat-
ing. Moreover, the higher the value of ν the less possibility the algorithm has
of eventually converging. On the basis of this analysis, Figure 20 shows that
the EMDE reaches a lower value of ν than the DE and MDE and is thus better
performing in terms of stagnation prevention. The non-monotonous behavior
of ν for the MDE is due to the fact that the significant improvement of some
solutions caused by the exploitative local searchers is not properly transmit-
ted to the other solutions during the functioning of the DE framework. On the
contrary, the EMDE seems to be more promising in this sense because ν tends
systematically to decrease and reaches a much lower value. We believe that a
proper control in the behavior of ν and population diversity is a crucial point
in order to execute properly a successful hybridization between DE and local
searchers.

According to our interpretation, the improvement in terms of stagna-
tion prevention with respect to the MDE is due to the proposed probabilistic
scheme and the shorter runs of local searchers. In fact in PIII the local searchers
were run for 1000 fitness evaluations and their coordination was executed by
means of a threshold based adaptation. The shorter local searcher runs allow

46

the DE framework, for this application, to better transmit the improvement
gained by a single solution to the other individuals of the population. The
probabilistic adaptive scheme gives a chance, although with a low probabil-
ity, to apply all three of the local searchers during the whole of the evolution
process. This fact introduces a casuality in the system which seems to lead
some improvements in the algorithmic performance for the class of problems
under study.

2.4 Conclusion

Numerical results show that the DE based algorithms outperform other popu-
lar metaheuristics for the class of problems under study. The comparison with
a plain DE shows that the EMDE is able to reach solutions having slightly bet-
ter performance. The comparison with the MDE previously carried out by the
same authors shows that the EMDE outperforms the previous Memetic Dif-
ferential Evolution in terms of convergence velocity still reaching high quality
final values.

The enhancements with respect to the MDE are due to integration, be-
sides the HJA and the SLS, of the SA within the DE framework since it speeds
up the early stages of the evolutionary process. Moreover, the proposed adap-
tive scheme and the new parameter setting regarding the employment of local
searchers seems to be very promising in terms of stagnation prevention.

3 SUPER-FIT CONTROL ADAPTATION IN

MEMETIC DIFFERENTIAL EVOLUTION

FRAMEWORKS

Differential Evolution (DE) [53] is a reliable and versatile function optimizer.
DE, like most popular Evolutionary Algorithms (EAs), is a population based
tool. DE, unlike other EAs, generates offspring by perturbing the solutions
with a scaled difference of two randomly selected population vectors, instead
of recombining the solutions by means of a probability function. In addition,
DE employs a steady state logic which allows replacement of an individual
only if the offspring outperforms its corresponding parent.

Due to its algorithmic structure, over the optimization process DE gen-
erates a super-fit individual which leads the search until a better performing
individual is generated. As highlighted in [55], a DE population can be subject
to stagnation since in the case that no offspring individuals outperform the
corresponding parents for a large number of generations. On the other hand,
the persistence of a super-fit individual over a certain number of generations
does not necessarily imply poor functioning of the algorithm, this may be a
”natural” stage of the evolution if the other individuals are somehow updated
during the run. It is therefore fundamental to find a proper balance between
the enhancements of the search leader (super-fit individual) and the remaining
individuals of the population.

In order to prevent stagnation, several studies have been carried out in
recent years. In [55], on the basis of an experimental study, some suggestions
on how to perform the parameter setting are given. In [71] a dynamic para-
meter setting changing in accordance with time is proposed. A further study
on the proper parameter setting in a DE framework is performed in [72] and a
fuzzy logic based criterion in order to automatically solve this problem is pro-

48

posed in [73]. This fuzzy logic approach has been analyzed in more depth in
[74] and [75]. [76] proposes a fitness based adaptive setting of the scale factor.
[77] extends the work in [76] and proposes the concept of competition during
on-line parameter setting. In [78] randomizing the scale factor of the pertur-
bation vector is proposed. This operation leads to an increase in the pool of
potential trial vectors, thus reducing the risk of stagnation without increasing
the population size. Recently, a further parameter study with reference to real
world problems has been carried out in [79].

In order to enhance performance several approaches which hybridize the
DE with other optimization techniques have also been considered. In [80] the
DE framework is embedded with two additional operators which have the
role of increasing convergence velocity of the DE without jeopardizing the al-
gorithmic features in terms of population diversity. In [81] an enhancement
of the algorithm in [80] for solving constrained optimization problems is pro-
posed. [82] proposes a hybridization of the DE with the Powell method for
accelerating the DE performance with reference to an electrical engineering
problem. Other hybridizations with single local search algorithm are given in
[83] and [84]. In [85] the combination of the DE with Particle Swarm Optimiza-
tion Algorithm is shown. [86] proposes a hybrid DE for mixed integer-real
coded problems. [87] and [88] propose a co-evolutionary and an enhanced im-
plementation of the algorithm described in [86] respectively. In [89] the DE has
been hybridized with a multiplier updating method for constrained problems.
[90] proposes the hybridization of the DE with an Ant Colony Optimization al-
gorithm and [91] with the Salomon’s Evolutionary Gradient Search method. In
[92] a hybrid DE with a mutation local searcher based on the attract-repulsion
logic is proposed. PIII proposes a hybridization of a Differential Evolution
(DE) framework with two local searchers adaptively coordinated by means of
a rule based on fitness diversity. Moreover, PIII applies the resulting algorithm
to the design of a Finite Impulse Response (FIR) filter for defect detections in
paper production.

This section proposes a novel implementation of an adaptive Memetic
Algorithm (MA) [64] employing the DE as an evolutionary framework. This
algorithm, namely Super-Fit Memetic Differential Evolution (SFMDE) makes
use of a Particle Swarm Optimization (PSO) Algorithm, the Nelder Mead Al-
gorithm (NMA) and the Rosenbrock Algorithm (RA) within the DE frame-
work. Coordination of the local searchers is adaptively executed by means of
a parameter which measures the quality of the super-fit individual with re-
spect to other individuals of the population.

49

3.1 Super-Fit Memetic Differential Evolution

For a given minimization problem of an objective function f (x) where x is a
vector of n design variables x(1), x(2), . . . , x(i), . . . , x(n) in a decision space H,
the SFMDE consists of the following.

3.1.1 Generation of the Super-Fit Individual by Particle Swarm Optimiza-

tion

To begin with, the algorithm generates the initial population by pseudo-ran-
domly sampling (uniform distribution) Spop individuals within the decision
space. Fitness values of these individuals are calculated and the one having
the best performance is detected.

The best performing solution and SPSO
pop ≤ Spop individuals, pseudo-ran-

domly selected from the initial population, undergo PSO [93], [94]. The best
performing solution initializes the particle best xpb (the best overall solution
detected) while the best performing solution amongst the SPSO

pop individuals is
called the global best xgb. At each generation the individuals are perturbed by
means of a velocity vector. For a given solution xi the update rule is given by:

vi = vi + c1γ
(

xpb − xi

)

+ c2γ
(

xgb − xi

)

, (9)
xi = xi + vi, (10)

where γ is a pseudo-random value sampled in [0, 1] and c1, c2 are constant
parameters called learning factors. The fitness values of the new solutions are
calculated and, if an improvement upon the best individuals occurs, xpb and
xgb are also updated. The procedure is repeated until a budget condition is not
exceeded. The best overall solution detected by the PSO is reinserted in the
population made up of Spop individuals by replacing the individual having
the worst performance.

The main idea is that the PSO should quickly improve a solution having
poor performance and include it in the DE population. This solution should
therefore be a super-fit individual, with the role of leading the DE search. Ac-
cording to our algorithmic philosophy, the DE should then exploit the geno-
typic information of the solution returned by the PSO and at the same time
attempt to improve upon it by a massive exploration of the decision space.

In order to justify this algorithmic choice the following preliminary test
has been designed. Spop = 50 individuals have been sampled in [−5.12, 5.12]10,
the best individual has been saved and SPSO

pop = 20 individuals have been
pseudo-randomly selected. Next, the PSO has been run for 300 fitness eval-
uations with c1 = c2 = 2 in order to minimize the Rastrigin function

50

0 200 400 600 800 1000 1200
20

40

60

80

100

120

Number of fitness evaluation

F
it

n
es

s
va

lu
e

SFMDE
DE

FIGURE 21 Comparison of the SFMDE and DE during early generations for the Ras-
trigin function

R(x) = 10n +
n

∑
i=1

(

x (i)2 − 10 cos (2πx (i))
)

. (11)

The best resulting individual has been reinserted into the population by
replacing the worst individual and the DE has been run for an additional 650
fitness evaluations. A plain differential evolution with Spop = 50 has been
run for the same function for 1000 fitness evaluations. Each algorithm has
been run 30 times. Every 50 fitness evaluations the best fitness value has been
saved. Figure 21 shows the average algorithmic performance for the Rastrigin
function. With the same experimental setup, performance during the early
generations has been analyzed also for the Schwefel function

S (x) =
n

∑
i=1

−x (i) · sin
(

√

|x (i)|

)

(12)

in [−500, 500] and the Griegwangk’s function

G (x) =
n

∑
i=1

x (i)2

4000
−

n

∏
i=1

cos

(

x(i)
√

(i)

)

+ 1 (13)

in [−600, 600]. Comparison of the performance for these two test functions is
shown in Figure 22 and Figure 23 respectively.

Numerical results in Figure 21, Figure 22, and Figure 23 show that the
hybridization of the DE with the PSO in early generations leads to clear bene-
fits in terms of performance. It can be clearly noted, in Figures 21 and 23, that

51

0 200 400 600 800 1000 1200
2000

2200

2400

2600

2800

3000

Number of fitness evaluation

F
it

n
es

s
va

lu
e

SFMDE
DE

FIGURE 22 Comparison of the SFMDE and DE during early generations for the
Schwefel function

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

Number of fitness evaluation

F
it

n
es

s
va

lu
e

SFMDE
DE

FIGURE 23 Comparison of the SFMDE and DE during early generations for the
Griegwangk’s function

52

after application of the PSO (at 350 fitness evaluations) there is a significant
improvement in the fitness values which is followed by a mild improvement
for a certain portion of the optimization process and subsequently by a new
significant improvement. According to our interpretation, the super-fit at the
beginning of the process leads the search, enhancing the average fitness value
but does not improve upon the super-fit individual. After a certain number of
generations, the other individuals of the population manage to improve upon
the solution detected by the PSO and an overall advantage with respect to the
DE occurs.

3.1.2 Differential Evolution Framework

At each subsequent generation, for Spop times, four individuals x1, x2, x3 and
x4 are extracted from the population pseudo-randomly. Recombination and
mutation according to the logic of a DE explained in Section 2.2.1 occurs.

3.1.3 Local Searchers

The SFMDE also makes use of two local searchers which are supposed to
compete and cooperate [65] in order to assist the DE framework at detecting
promising search directions in a meta-Lamarckian logic.

The Nelder Mead Algortihm

The Nelder Mead Algorithm (NMA) [95] works on a set of n + 1 solutions in
order to perform a local search since it employs an exploratory logic based
on a dynamic construction of a polyhedron (simplex). More specifically, for a
given set of n + 1 solutions x0, x1, . . . , xn sorted in descending order according
to their fitness values (i.e. x0 is the best), the NMA attempts to improve xn. In
order to pursue this aim the NMA calculates the centroid xm of the polyhedral
identified by the remaining n points:

xm =
1
n

n−1

∑
j=0

xj (14)

Subsequently, the NMA generates a trial solution xr by reflecting xn through
the opposite face of the polyhedron. This operation, namely reflection is char-
acterized by:

xr = xm + F1 (xm − xn) (15)

where F1 is a weighting factor.

53

If a reflection is successful i.e. f (xr) < f (x0), NMA further exploits a
promising search direction by applying the expansion operation:

xe = xr + F2 (xm − xn) (16)

where F2 is a weighting factor. If the expansion is also successful xe replaces x0
and the new set of n + 1 points is used for the subsequent iteration. Conversely,
if the expansion fails then xr replaces x0.

If xr did not improve upon x0, NMA compares the performance of xr and
xn−1. If f (xr) < f (xn−1), then xr replaces xn. If this trial is also unsuccessful,
xr and xn are compared. If f (xr) < f (xn), however xr replaces xn and the
outside contraction operation is executed:

xc = xm + F3 (xm − xn) (17)

where F3 is a weighting factor. If xr does not outperform xn then the inside
contraction is executed:

xc = xm − F3 (xm − xn) (18)

The effect of the contraction is then analyzed: if the contraction was successful
i.e. f (xc) < f (xn) then xc replaces xn. If on the contrary contraction fails
the shrinking is executed. A set of n solutions xj = 0.5

(

x0 − xj

)

with j =
1, 2, . . . , n, is generated around x0.

The algorithm is repeated with these new n solutions and x0. F1, F2 and
F3 have been set equal to 1, 1, 0.5 as suggested in [96].

The Rosenbrock Algorithm

The Rosenbrock Algorithm (RA) works on a solution and attempts to improve
upon it by means of a local search logic [6]. From a starting point x0, a trial
is made in all the n orthogonal directions of the n-dimensional decision space.
When a solution that is better or equal (i.e., a success) in the objective function
to previous solutions is found, the changed variable vector is retained and
the step length is multiplied by a positive factor α > 1. For a failure, the
vector of variables is left unchanged and the step length is multiplied by a
negative factor −1 < β < 0. Following the Rosenbrock’s suggestion α = 3
and β = −0.5 has been set. This process is repeated until at least one success
followed by a failure is registered in each direction. When such a condition
is satisfied, the orthogonalization procedure of Gram and Schmidt (see [97])
is executed and the search, with the new set of directions, begins again. The
algorithm is stopped when a budget condition is exceeded.

54

3.1.4 Comparative Analysis of the Local Searchers

The choice of these two local searchers has been made taking into account their
features and features of the DE framework. At first glance, it can be seen that
both the NMA and RA are very exploitative compared to the DE. In fact, the
DE framework is very explorative and the two local searchers are supposed to
offer different perspectives in exploration of the decision space [26]. Secondly
the two local searchers are very different with respect to the pivot rule and
the neighborhood generating function [4]. It is clear that the RA, since at each
step it explores a number of points equal to the dimensionality of the problem
and only afterwards performs a movement, has a steepest descent pivot rule.
The NMA, on the other hand, tends to accept the first search direction which
leads to an improvement with respect to the previous best solution; thus the
NMA has a greedy descent pivot rule. It follows that the RA is very efficient
in performing the hill-climbing (hill-descending) and locally exploring a basin
of attraction. Regarding the neighborhood generating function, while the RA
explores the neighborhood of a given solution, the NMA attempts to explore
directions given by other solutions. The NMA neighborhood generating func-
tion thus allows detection of new points not belonging to the same basin of
attraction as the starting point. In this sense, it might be stated that the NMA
has more explorative features compared to the RA. Therefore, according to our
algorithmic philosophy, the NMA can be used to further improve some fairly
promising solutions while the RA can be used to finalize the hill-descent of the
basin of attraction at the end of the optimization process.

3.1.5 Adaptation

At the end of each DE generation the following parameter is calculated:

χ =

∣

∣ fbest − favg

∣

∣

max
∣

∣ fbest − favg

∣

∣

k

(19)

where fbest are favg are the fitness values of, respectively, the best and average
individuals of the population. max

∣

∣ fbest − favg

∣

∣

k
is the maximum difference

observed (e.g. at the kth generation), overall, beginning from the start of the
optimization process. It is clear that χ varies between 0 and 1; it scores 1 when
the difference between the best and average fitness is the biggest observed,
overall, and scores 0 when fbest = favg i.e. all the population is characterized
by a unique fitness value.

Besides considering it as a measurement of the fitness diversity (see [17]
and Article PII), χ is an estimation of the best individual performance with
respect to the other individuals. In other words, χ measures how much the

55

super-fit outperforms the remaining part of the population. More specifically,
the condition χ ≈ 1 means that one individual has a performance far above
the average and thus one super-fit individual is leading the search. Conversely,
the condition χ ≈ 0 means that the performance of the individuals are com-
parable and there is not a super-fit. As a general guideline, a DE population
which contains a super-fit individual needs to exploit the direction offered by
the super-fit in order to eventually generate a new individual that outperforms
the super-fit. Conversely, a DE population made up of individuals with com-
parable fitness values requires that one individual that clearly outperforms the
others is generated in order to have a good search lead.

3.1.6 Coordination of the Local Searchers

The parameter χ is employed to perform coordination of the local searchers.
According to our algorithmic design, the SFMDE adaptation (and coordina-
tion of the local searchers) is based on an attempt to intelligently balance the
DEs’ necessity to generate a super-fit individual and prevent stagnation due to
an excessive difference between the best performing individual and the others.
More specifically, for each local searcher a generalized beta distribution func-
tion is generated:

p (χ) =
1

B (α, β)
·
(χ − a)(α−1) (b − χ)(β−1)

(b − a)(α+β−1)
, (20)

where a and b are respectively the inferior and superior limits of the distrib-
ution; B (α, β) is the beta function; α and β are the shape parameters. For the
RA α and β have been set 2 and 5; for the NMA 2 and 2. Both the distribution
functions have been normalized with respect to the maximum of the distribu-
tion in order to have co-domain in [0, 1]. At each generation of the SFMDE, a
value of χ is used for determining the probability of activating each of the local
searchers. Each of the probability values are compared with a pseudo-random
number generated between 0 and 1. If this number is lower than the probabil-
ity value, the corresponding local search is performed. In addition, it has been
set that the RA is applied to the best performing individual of the population
while the NMA is applied to pseudo-randomly selected individual. For both
local searchers, the improved solution replaces the worst performing individ-
ual of the DE population.

Figure 24 gives a graphical representation of the probability functions
related to the local searcher activations.

Choice of performing the coordination of the local searchers by means of
a probabilistic criterion has been done taking into account that the introduction

56

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

χ

P
ro

b
ab

ilt
y

Rosenbrock
Nelder−Mead

FIGURE 24 Graphical Representation of the Probabilistic Scheme for Activating Lo-
cal Searchers

of random components within a DE framework seems to be beneficial in terms
of stagnation prevention, analogous with the studies in [78].

Choice of the generalized beta distribution is derived from the fact that
such distribution is two-side bounded and therefore is suitable for our aim.
Moreover, the shape parameters allow a detailed design of the probability dis-
tribution on the basis of the the corresponding local searcher features. In par-
ticular, as with the NMA, α = β = 2 leads to a symmetric distribution function
around an arranged value. This choice has been made due to consideration
that the NMA can lead to improvement of fairly good solutions by exploiting
a promising search direction and moderately exploring a region of the decision
space. An application in presence of a highly super-fit individual can lead to
a waste of computational efforts since the DE framework has not yet explored
the available promising search direction. An application in a very low fitness
diversity population can likely turn out to be ineffective since the population
would probably fall within the final basin of attraction and the NMA is not
very efficient in finalizing the optimization process (see [17]). Thus, the NMA
is supposed to work on a pseudo-randomly selected individual in presence of
a best performing individual having a fitness value fairly above the average.
The NMA, therefore, has the role of assisting the DE framework either by of-

57

fering alternative search directions or by outperforming the current super-fit.
The symmetric probability function can be justified as implementation with
the intention of having a maximum employment of the NMA around the con-
dition described above and a gradual decrease as long as the algorithm moves
from it in both the directions.

Regarding the RA, the idea is to utilize exploitative features of the algo-
rithm and its steepest descent pivot rule in order to improve quality of the
best performing individual, attempting to either restore a population led by a
super-fit or hill-descent in the final basin of attraction, thus ending the opti-
mization process. The asymmetrical shape of the distribution has been chosen
in order to achieve a high probability of RA activation in proximity of the zero
and a quick decrease as long as the χ value increases. Noteworthy is the right
handed tail of the distribution (see values around 0.2 in Figure 24). This shape
allows the algorithm to assign a low probability of executing the RA even in
low diversity conditions that are not so extreme. Thus, if the best performing
individual falls within a wide basin of attraction, the algorithm gives a chance
for the RA to quickly finalize the search. Finally, one heuristic rule has been
implemented in order to avoid a waste of computational overhead: the RA is
not run again on a solution if previously it failed in improving upon it. Figure
25 shows the SFMDE pseudo-code.

3.2 Application 1: Design of a DC Motor Speed Controller

Nowadays most motion actuators are set up by electric motors since they offer
high performance in terms power density, efficiency, compactness and light-
ness. On the other hand, in order to have satisfactory functioning of the mo-
tor, an effective control is needed. Basically, an efficient motor control can be
achieved either by applying a complex and expensive control system (see [98],
[99], [100], [101]) or by using a simple and cheap control system, e.g. Propor-
tional Integral (PI) based [102], which requires a design often very difficult to
implement. In the latter case, the control design of an electric motor consists
of detecting those system parameters that ensure a good system response in
terms of speed and current behavior. This leads to a multi-objective optimiza-
tion problem too complex for analytical solution [103]. Moreover, the applica-
tion of classical design strategy [104], [105], [106] likely leads to unsatisfactory
results. Thus, during recent years, interest in computational intelligence tech-
niques has increased (see [107], [108], and [17]).

This paper attempts to apply the SFMDE to the control design of the DC
Motor whose electrical and mechanical features are shown in Table 3.

58

generate initial population pseudo-randomly;
apply PSO to the best performing individual;
replace the PSO result with the worst performing individual of the population;
while budget condition

initialize fitness counter to 0;
execute DE generation;

compute χ =
| fbest− favg|

max| fbest− favg|k

;

sample ε ∈ [0, 1]

if ε <
1

B(2,2)
· (χ−a)(2−1)(b−χ)(5−1)

(b−a)(2+2−1)

execute NMA on an individual pseudo-randomly selected;
replace the NMA result with the worst performing individual of the population;

end-if

if ε <
1

B(2,5) ·
(χ−a)(2−1)(b−χ)(5−1)

(b−a)(2+5−1)

execute RA on the individual having the best performance;
replace the NMA result with the worst performing individual of the population;

end-if

end-while

FIGURE 25 SFMDE pseudo-code

TABLE 3 DC Motor Nameplate

Parameter Value

Armature resistance 2.13 Ω

Armature induction 0.0094 H

Moment of inertia 2.4e−6 Kg · m2

Rated armature voltage 12 V

Rated armature current 1.2 A

Rated load torque 0.0213 Nm

Rated speed 400 rad/s

59

Figure 26 shows the block diagram of the control scheme.
The control scheme is based on dynamic equations of the motor:

va = Ra · ia + La ·
dia

dt
+ e, (21)

v f = R f · i f + L f ·
di f

dt
, (22)

e = KΦ · ω, (23)

T = KΦ · ia, (24)

J ·
dω

dt
= T − Tr, (25)

where va is the voltage applied to the armature circuit, v f is the voltage applied
to the excitation circuit, Ra, R f , La, L f , ia, and i f are the resistance, inductance
and current for the armature and the excitement circuits respectively, T and Tr

are the electromagnetic and load torque respectively, KΦ is the torque constant,
ω is the rotor speed, J is the moment of inertia and e is the voltage generated
by the rotor of the electric machine while rotating.

The DC motor control system is composed of two PI controllers. The first
is used to control current and the second speed. The PIs transfer functions of
the current and the speed controls are respectively Kpi + Kii

s and Kpω + Kiω
s .

The speed reference is pre-filtered through a smoothing filter to reduce over-
shoot and the current required by the control in response to a speed step. The
transfer function of the smoothing filter is 1

(1+τsm)
.

With reference to Figure 26, the control design consists of determining
the parameters Kpi, Kii, Kpω, Kiω, and τsm which guarantee very small values
in rise and settling time, steady state error and overshoots. The decision space
H ⊂ <5 is a five dimensional hyper-rectangle given by the Cartesian product
constructed around solution x0 obtained by applying the classical symmetrical
optimum (SO) criterion to design the speed regulator and the absolute value
optimum (AVO) criterion to design the current regulator [109]. The lower and
upper bounds of each interval have been set according to the following equa-
tions:

xlb(i) = 10−6 · x0(i), (26)

xub(i) = 3 · x0(i). (27)

In order to evaluate the performance of each candidate solution, the four
speed and load torque step training test shown in Figure 27 is simulated by
means of Matlab/Simulink as a discrete time control drive in order to real-
istically emulate an industrial digital drive. The performance of a candidate

60

K
w

,
w

t
K

i,
t

i

+
-

D
u
ty

c
y
c
le

D
C

 m
o

to
r

L
o

a
d

E
n

c

S
p

e
e

d
c

a
lc

u
la

to
r

w
r*

+

-

L
E

M

w
r

i r*

i r

w
ri r

t
s
m

s
m

o
o
th

in
g
 f
ilt

e
r

s
p
e
e
d
 c

o
n
tr

o
lle

r
c
u
rr

e
n
t
c
o
n
tr

o
lle

r
H

-B
ri
d
g
e

E
n
c
o
d
e
r

FIGURE 26 Block diagram of a DC motor control

61

0.5 1 1.5 2.5 3.52 3 4

time, s

speed
reference

1

0.1

s
p
e
e
d
 a

n
d
 l
a
o
d
 t
o
rq

u
e
 r

e
fe

re
n
c
e
,
p
u

load
torque

FIGURE 27 Training test is a combination of speed commands and load torque

solution is given by:

f =
4

∑
j=1

(

a1 · oSj + a2 · trj + a3tsj + a4errj

)

(28)

where oSj is the overshoot, trj the rise time, tsj the settling time and errj the
sum of the absolute values of the speed error in settling condition during the
jth trial step.

Figure 28 illustrates oSj, trj, tsj, and errj for the generic jth step of the
training test. The weights are set to a1 = 1

50 , a2 = 1, a3 = 1, and a4 = 1
2000

so that any objective function has a value comparable to the others. Finally, it
must be remarked that, since each fitness evaluation requires a computation-
ally expensive simulation test (8 s each evaluation, see [110]), the problem is
very demanding in terms of computational overhead. The SFMDE has been
run in order to minimize, in the decision space H, the fitness function f shown
in (28). The performance of the SFMDE has been compared with a plain Dif-
ferential Evolution (DE), a Genetic Algorithm (GA), the Particle Swarm Opti-
mization (PSO) and the memetic PSO-DE namely Swarm Differential Evolu-
tion Algorithm SDEA proposed in [85].

In regard to the SFMDE, the PSO has been executed for 120 fitness evalu-
ations on a population of SPSO

pop = 20 individuals. Maximum velocity has been

62

w r,j-1
*

w r,j
* j-th speed step

speed response

5% w
r,j
*

95% w r,j
*

tr j

ts j

err j

o
S

j

FIGURE 28 jth speed step of the training and values for objective function evaluation

TABLE 4 Best Solutions

Algorithm Kpω Kpi Kiω Kii τsm

DE 1.6652 · 10−6 3.2192 2.8063 · 10−9 721.9234 4.5837 · 10−10

GA 3.2524 · 10−4 1.7102 2.8063 · 10−9 360.4331 4.2713 · 10−4

PSO 2.8632 · 10−4 1.9576 2.8063 · 10−9 425.7751 4.5837 · 10−10

SDEA 2.5748 · 10−4 2.1296 2.8063 · 10−9 469.8608 4.5837 · 10−10

SFMDE 4.3190 · 10−4 1.3973 3.1938 · 10−5 286.5198 2.6780 · 10−4

set 0.2(xub − xlb). Both, the RA and NMA are run for 100 fitness evaluations
each time they are activated. The DE framework works on a population size
Spop = 50 with K = 0.7 and pm = 0.3 as stated above. a and b in (20) have been
set equal to 0 and 0.3 for RA and 0.2 and 0.6 for NMA.

The DE has been run with the same parameter setting of the DE frame-
work in the SFMDE.

The GA has been run with a population size equal to 50, a crossover rate
0.8, gaussian mutation with 0.1 mutation rate and elitism equal to 2.

The PSO works on a population of 50 individuals with a maximum ve-
locity equal to 0.2(xub − xlb).

The SDEA has also been run on a population of 50 individuals and with
the same parameter setting of the PSO and the DE. Parameter T, defined as the
ratio of the DE runs divided by the PSO runs, has been set equal to 0.2.

Each algorithm has been run 50 times for 1500 fitness evaluations. The
best solutions detected by each algorithm are listed in Table 4.

Figure 29 shows the speed response of the best solution detected by the

63

0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

time

ω
 p

.u
.

ω
0

x
SFMDE

x
0

FIGURE 29 Speed response of the best performing solutions

TABLE 5 Numerical Results

Algorithm fmin fmax fmean σ

DE 1.1747 1.2486 1.2169 0.0279
GA 1.2601 1.9894 1.4852 0.2972
PSO 1.1697 1.3903 1.2263 0.0922
SDEA 1.1758 1.3877 1.2649 0.1059
SFMDE 1.1078 1.1901 1.1461 0.0360

SFMDE, xSFMDE and the initial solution x0. The SFDMA solution clearly pre-
sents better performance in terms of overshoot, rise and settling time and
steady state error.

Figure 30 and 31 show two zoom details of the speed response given in
Figure 29. Figure 30 shows the response to a speed step while Figure 31 shows
the response to the load torque.

The minimum fmin, the maximum fmax and the mean fmean final fitness
values over the 50 runs are listed in Table 5 for the five algorithms under study.
In addition, the related standard deviation values σ are also shown. It can be
seen that the SFMDE outperformed the other algorithms in terms of minimum,
maximum and mean fitness values.

64

2.4 2.5 2.6 2.7 2.8
0.7

0.8

0.9

1

1.1

1.2

time

ω
 p

.u
.

ω
0

x
SFMDE

x
0

FIGURE 30 Speed step response

0.7 0.8 0.9 1
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

time

ω
 p

.u
.

ω
0

x
SFMDE

x
0

FIGURE 31 Load torque response

65

0 500 1000 1500
1

1.5

2

2.5

3

3.5

Number of function evaluations

F
it

n
es

s
va

lu
e

SFMDE
GA
PSO

FIGURE 32 Performance comparison of SFMDE, GA, and PSO

Figure 32 and 33 show performance of the SFMDE with respect to the
other algorithms under study. The performance is expressed in terms of aver-
age fitness value (over the 50 runs) dependant on the number of fitness eval-
uations. As shown in Figure 32 the GA, for this problem, performs signifi-
cantly worse than the other algorithms. On the other hand DE, PSO, SDEA and
SFMDE offer a good performance. The SFMDE compared to the other meta-
heuristics seems to be very promising since it converges to better performing
solutions and it also has the best performance in terms of convergence velocity.

3.3 Application 2: Digital Filter Design for Defect Detection in
Paper Production

For the same image processing application described in Section 2 the SFMDE
has been applied. Performance of the SFMDE has been compared with a plain
Differential Evolution (DE), an Evolution Strategy (ES), the Simulated Anneal-
ing (SA) and the Memetic Differential Evolution (MDE) proposed in Article
PIII for solving the same problem.

The SFMDE has been run on a population of 100 individuals. The DE
framework setting has been executed as shown in Section 2. The PSO has

66

0 500 1000 1500
1

1.5

2

2.5

3

3.5

Number of function evaluations

F
it

n
es

s
va

lu
e

SFMDE
DE
SDEA

FIGURE 33 Performance comparison of SFMDE, DE and SDEA

been run for 800 fitness evaluations on a population of 20 individuals with a
maximum velocity equal to 15.5. The local searchers have been run for 500
fitness evaluations; with reference to (20), a = 0 and b = 0.6 for the NMA and
a = 0 and b = 0.2 for the RA respectively.

The DE has been executed with the same parameter setting used for the
DE framework.

The ES works on a population size made up of = 100 individuals. As a
standard ES, this ES does not contain any parent selection and, thus, it consid-
ers all populations as a population of parents [10]. A standard intermediate
recombination has been chosen and the Gaussian mutation has been imple-
mented resorting to the 1/5 success rule [9]. Finally, a (µ + λ) strategy has
been chosen.

SA has been run with an initial temperature equal to 1 and hyperbolical
reduction of the temperature as suggested in [61].

MDE is another kind of memetic differential evolution framework made
up of differential evolution and two highly exploitative local searchers adap-
tively coordinated by a fitness diversity control parameter. The same parame-
ter setting shown in Article PIII has been performed.

Each algorithm has been run 30 times for 100000 fitness evaluations. The
best solutions, overall, detected (parameters of the two filters Fil 1 and Fil 2

67

TABLE 6 Optimization results
ES SA DE MDE SFMDE

Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2 Fil 1 Fil 2

weight -5.893 -41.058 11.751 1.553 -1.507 94.995 21.479 91.568 82.701 -2.297

θ 4.330 0.408 0.643 1.613 3.530 1.519 2.135 4.658 3.104 2.919

ψ 4.552 5.099 0.819 3.318 4.912 3.122 6.042 3.153 3.104 4.725

σx 7.201 14.886 3.347 1.947 2.498 20 2.713 1.498 1.507 4.152

σy 1.008 10.905 6.023 7.128 1.512 20 3.609 20 20 20

λ 2.330 0.943 0.846 4.816 1.667 3.522 1.494 3.455 3.441 2.324

fmin -1.273 -1.361 -1.487 -1.509 -1.521

fmean -1.239 -0.978 -1.481 -1.493 -1.500

fmax -1.019 -0.732 -1.473 -1.339 -1.466

σ 0.0723 0.116 0.00382 0.0335 0.0081

respectively) by each algorithm are listed in Table 6. Moreover, the values
of minimum, mean and maximum fitness and the related standard deviation
values are also shown.

Figure 34 shows the functioning of the filters obtained by the optimiza-
tion algorithms under analysis for an image belonging to the training set while
Figure 35 shows the functioning for an image not belonging to the training set.
From the upper left corner the source image, the label image, and the images
filtered by means the application of the ES, SA, DE, MDE, SFMDE, are shown
in order.

Figure 36 shows the average performance, over the 30 experiments for
the algorithms under scrutiny.

Numerical results show that the algorithms based on a DE framework
(DE, MDE, SFMDE) outperform the other algorithms considerably. The SFMDE
slightly outperforms DE and MDE in terms of final solution detected. In ad-
dition, Figure 36 shows that the SFMDE has much better performance than all
the other algorithms in terms of convergence velocity. It can be seen that, un-
like the DE and MDE, the SFMDE reached, during all 30 runs, reasonably good
results after only 30000 fitness evaluations. The high quality performance in
terms of convergence velocity is a remarkable property of the SFMDE for this
application since it allows a better match with the industrial demand of acquir-
ing a quite efficiently tailored filter bank in a reasonably short training time.

68

FIGURE 34 Image belonging to the training set.

FIGURE 35 Image not belonging to the training set.

69

-1.4

-1.2

-1

-0.8

-0.6

-0.4

 0 50000 100000

A
ve

ra
ge

 b
es

t f
itn

es
s

Number of fitness evaluations

ES
SA
DE

MDE
SFMDE

FIGURE 36 Algorithmic performance

3.4 Conclusion

The Super-Fit Memetic Differential Evolution (SFMDE), proposed in this pa-
per, is composed of a differential evolution framework and a list of three local
searchers having diverse features and employment within the algorithm. The
general algorithmic philosophy of the SFMDE is to adaptively balance the im-
provement of the super-fit individual and the rest of the population. In order
to pursue this aim, the local searchers assist the evolutionary framework in
various stages of the evolution and on both super-fit and other individuals.

Numerical results on both applications show that the early hybridization
with the PSO is beneficial for detecting a promising search direction within the
DE framework. The adaptive employment of the other two local searchers also
seems to be very beneficial in maintaining high convergence velocity perfor-
mance and detecting a final value better than the other meta-heuristics used
for a comparison.

YHTEENVETO (FINNISH SUMMARY)

Memeettiset algoritmit ovat evoluutiostrategioita ja paikallisia hakumenetel-
miä yhdistäviä globaalin optimoinnin menetelmiä. Väitöskirjassa esitetään
uusia, kehittyneitä memeettisiä algoritmeja sekä niiden tietokonetoteutuksia
ja sovelluksia. Kehitetyissä menetelmissä paikallishakua koordinoidaan älyk-
käällä logiikalla, joka ottaa huomioon laskettujen likiratkaisujen joukon (pop-
ulaation) monimuotoisuuden. Väitöskirjassa on esitetty useita uusia tapoja
monimuotoisuuden arviointiin ja menetelmien adaptiivisuuteen sovellettaessa
memeettisiä algoritmeja reaalimaailman ilmiöiden optimointiin. Esitetyille al-
goritmeille on yhteistä, että ne pyrkivät toimimaan älykkäästi, so. analyso-
imaan ajon aikana optimoinnin edistymistä ja tarvittaessa muuttamaan hakus-
trategioita, jotta optimointitehtävän ratkaisu saavutetaan tavoitellulla tarkku-
udella.

Väitöskirja koostuu kahdeksasta julkaistua ja niitä käsittelevästä yhteenve-
dosta. Kaksi julkaisuista käsittelee memeettisten algoritmien soveltamista HIV-
lääkityksen teoreettisen mallin optimisäätöön, yksi teollisuuden kuvankäsitte-
lyongelmaan, yksi resurssien hakuun tietoliikenneverkoista. Kaksi artikkeleista
koostuu esitettyjen adaptiivisten tekniikoiden teoreettisesta tarkastelusta. Kak-
si viimeistä artikkelia käsittelee kohdefunktion kohinan vaikutuksen elimi-
noimista adaptiivisin tekniikoin. Kohdefunktion normaalijakautunutta ko-
hinaa analysoidaan sähkömoottorin ohjausjärjestelmän optimoinnin tapauk-
sessa. Viimeisessä artikkelissa analysoidaan kohinaa, joka on peräisin kahden
evoluutioalgoritmin hierarkkisesta kytkennästä min-max ongelman ratkaisemi-
seksi. Kohina on luonteeltaan epätavanomaista, eikä sitä ole aikaisemmin
analysoitu kirjallisuudessa.

Väitöskirjan yhteenveto-osassa esitellään lisäksi kaksi uutta algoritmia,
jotka antavat viitteitä tutkimustyön jatkon suuntaviivoista. Molemmat algo-
ritmit käyttävät evoluutiostrategiana differentiaalievoluutiota, mutta hyödyn-
tävät eri adaptiivisia paikallishakutekniikoita. Uutuutena kahdeksaan väitös-
kirjaan sisällytettyihin artikkeleihin verrattuna on algoritmien erilainen tek-
niikka paikallishaun aktivoimiseksi. Uusissa algoritmeissa aktivointi tapah-
tuu todennäköisyyksiin perustuvalla kriteerillä kiinteän kynnysarvon sijaan.
Alustavien testien perusteella paikallishaun koordinointi tällä logiikalla, kyn-
nysarvoon perustuvan logiikan sijaan, antaa parempia tuloksia.

REFERENCES

[1] M. G. Norman and P. Moscato, “A competitive and cooperative ap-
proach to complex combinatorial search,” Tech. Rep. 790, Caltech Con-
current Computation Program, 1989. expanded version published at the
Proceedings of the 20th Informatics and Operations Research Meeting,
Buenos Aires, Aug. 1991.

[2] P. Moscato, “On evolution,search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms,” Tech. Rep. 826, Caltech Con-
current Computation Program, 1989.

[3] R. Dawkins, The selfish gene. Oxford Press, 1976.

[4] W. E. Hart, N. Krasnogor, and J. E. Smith, “Memetic evolutionary algo-
rithms,” in Recent Advances in Memetic Algorithms (W. E. Hart, N. Krasno-
gor, and J. E. Smith, eds.), pp. 3–27, Springer, 2004.

[5] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computation.
Springer-Verlag, 2003.

[6] H. H. Rosenbrock, “An automatic method for findong the greatest or
least value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–
184, 1960.

[7] R. Hooke and T. A. Jeeves, “Direct search solution of numerical and sta-
tistical problems,” Journal of the ACM, vol. 8, pp. 212–229, Mar. 1961.

[8] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through

Simulated Evolution. John Wiley, 1966.

[9] I. Rechemberg, Evolutionstrategie: Optimierung Technisher Systeme nach

prinzipien des Biologishen Evolution. Fromman-Hozlboog Verlag, 1973.

[10] H. Schwefel, Numerical Optimization of Computer Models. Chichester, Eng-
land, UK: Wiley, 1981.

[11] J. H. Holland, Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[12] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–
82, 1997.

72

[13] F. Neri, Advanced Optimization Algorithms in Electrical Engineering. PhD
thesis, Technical University of Bari, Italy, 2007.

[14] G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,”
Complex Systems, vol. 1, pp. 495–502, 1987.

[15] M. D. McKay, W. J. Conover, and R. J. Beckman, “A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, pp. 239–245, 1979.

[16] R. L. Iman, J. C. Helton, and J. E. Campbell, “An approach to sensitivity
analysis of computer models, part 1. introduction, input variable selec-
tion and preliminary variable assessment,” Journal of Quality Technology,
vol. 13, no. 3, pp. 174–183, 1981.

[17] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A
fast adaptive memetic algorithm for on-line and off-line control design
of pmsm drives,” IEEE Transactions on System Man and Cybernetics-part B,

special issue on Memetic Algorithms, vol. 37, no. 1, pp. 28–41, 2007.

[18] W. E. Hart, Adaptive Global Optimization with Local Search. PhD thesis,
University of California, San Diego, CA, USA, 1994.

[19] R. Unger and J. Moult, “A genetic algorithm for 3d ptotein folding sim-
ulations,” in Proceedings of the 5th International conference on Genetic Algo-

rithms (S. Forrest, ed.), pp. 581–588, Morgan Kauffman, 1993.

[20] B. Friesleben and P. Merz, “A genetic local search algorithm for solving
the symmetric and asymmetric travelling salesman problem,” in Proceed-

ing of the IEEE Conference on Evolutionary Computation, pp. 616–621, 1996.

[21] P. Merz and B. Freisleben, “Memetic algorithms for the travelling sales-
man problem,” Complex System, vol. 13, pp. 297–345, 2001.

[22] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina, “Real-coded
memetic algorithms with crossover hill-climbing,” Evolutionary Compu-

tation Journal, vol. 12, pp. 273–302, 2004.

[23] N. Krasnogor, Studies in the Theory and Design Space of Memetic Algo-

rithms. PhD thesis, University of West England, 2002.

[24] P. Moscato and F. Tinetti, “Blending heuristics with a population-based
approach,” tech. rep., Universidad Nacional de La Plata, Argentina,
1994.

73

[25] P. Moscato, “An introduction to population approaches for optimization
and hierarchical objective functions: A discussion on the role of tabu
search,” Annals of Operations Research, vol. 41, no. 1-4, pp. 85–121, 1993.

[26] N. Krasnogor, “Toward robust memetic algorithms,” in Recent Advances

in Memetic Algorithms (W. E. Hart, N. Krasnogor, and J. E. Smith, eds.),
pp. 185–207, Springer, 2004.

[27] N. Krasnogor, A. Aragón, and J. Pacheco, Memetic Algorithms, vol. 36 of
Operations Research/Computer Science Interfaces Series, pp. 225–248. 2006.

[28] J. Tang, M. H. Lim, and Y. S. Ong, “Adaptation for parallel memetic al-
gorithm based on population entropy,” in Proceedings of GECCO 2006,
pp. 575–582, Springer, 2006.

[29] P. Zou, Z. Zhou, G. Chen, and X. Yao, “A novel memetic algorithm with
random multi-local-search: a case study of tsp,” in Proceedings of the IEEE

Congress on Evolutionary Computation, vol. 2, pp. 2335–2340, 2004.

[30] M. Wiering, “Memory-based memetic algorithms,” in Proceedings of

the Thirteenth Belgian-Dutch Conference on Machine Learning (A. Nowe,
T. Lenaerts, and K. Steenhout, eds.), pp. 191–198, 2004.

[31] J. Tang, M. H. Lim, and Y. S. Ong, “Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization problems,”
Soft Computing Journal, vol. 11, pp. 873–888, July 2007.

[32] R. D. Smith, ed., Roll and Web Defect Terminology. TAPPI Press, 1995.

[33] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[34] C. Chang, “Contextual-based Hopfield neural network for medical
image edge detection,” Optical Engineering (Bellingham, Washington),
vol. 45, no. 3, pp. 37006–37006, 2006.

[35] G. Valli, R. Poli, S. Cagnoni, and G. Coppini, “Neural networks and prior
knowledge help the segmentation of medical images,” Journal of Comput-

ing and Information Technology, vol. 6, no. 2, pp. 117–133, 1998.

[36] R. Poli, “Genetic programming for feature detection and image segmen-
tation,” in Evolutionary Computing, no. 1143 in Lecture Notes in Com-
puter Science, pp. 110–125, Springer-Verlag, Apr. 1996.

[37] S. Cagnoni, A. Dobrzeniecki, R. Poli, and J. Yanch, “Genetic-algorithm-
based interactive segmentation of 3d medical images,” Image and Vision

Computing Journal, vol. 17, no. 12, pp. 881–896, 1999.

74

[38] B. Hernandez, G. Olague, R. Hammoud, L.Trujillo, and E. Romero, “Vi-
sual learning of texture descriptors for facial expression recognition in
thermal imagery,” Computer Vision and Image Understanding, vol. 106,
pp. 258–269, May 2007.

[39] G. Olague, E. Romero, L. Trujillo, and B. Bhanu, “Multiclass object recog-
nition based on texture linear genetic programming,” in Applications of

Evolutionary Computing, Lecture Notes in Computer Science, pp. 291–300,
Springer, 2007.

[40] G. Olague, F. Fernandez, C. Pérez, and E. Lutton, “The infection al-
gorithm: An artificial epidemic approach for dense stereo correspon-
dence,” Artificial Life, vol. 12, pp. 593–615, Oct. 2006. to appear.

[41] L. Trujillo and G. Olague, “Synthesis of interest point detectors through
genetic programming,” in GECCO 2006: Proceedings of the 8th annual

conference on Genetic and evolutionary computation (Keijzer, M. et al., ed.),
vol. 1, pp. 887–894, ACM Press, Jul. 2006.

[42] C. Chan and G. Pang, “Fabric Defect Detection by Fourier Analysis,”
IEEE Transactions on Industry Applications, vol. 36, no. 5, p. 1267, 2000.

[43] S. Parker and J. Chan, “Dirt counting in pulp: An approach using image
analysis methods,” in Signal and Image Processing (SIP 2002), 2002.

[44] J. Iivarinen, J. Pakkanen, and J. Rauhamaa, “A som-based system for
web surface inspection,” in Machine Vision Applications in Industrial In-

spection XII, vol. 5303, pp. 178–187, SPIE, 2004.

[45] D. Dunn and W. Higgins, “Optimal Gabor filters for texture segmen-
tation,” IEEE Transactions on Image Processing, vol. 4, pp. 947–964, July
1995.

[46] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using evolu-
tionary gabor filter optimization,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 6, pp. 125–137, June 2005.

[47] J. Daugman, “Uncertainty relation for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical
filters,” vol. 2, no. 7, pp. 1160–1169, 1985.

[48] D. Tsa and S. Wu, “Automated Surface Inspection Using Gabor Filters,”
The International Journal of Advanced Manufacturing Technology, vol. 16,
no. 7, pp. 474–482, 2000.

75

[49] T. Weldon, W. Higgins, and D. Dunn, “Efficient Gabor filter design for
texture segmentation,” Pattern Recognition, vol. 29, no. 12, pp. 2005–2015,
1996.

[50] Y. Ji, K. H. Chang, and C.-C. Hung, “Efficient edge detection and object
segmentation using Gabor filters,” in ACM-SE 42: Proceedings of the 42nd

annual Southeast regional conference, pp. 454–459, ACM Press, 2004.

[51] J. Ilonen, J. Kämäräinen, and H. Kälviäinen, “Efficient computation of
Gabor features,” Research Report 100, Lappeenranta University of Tech-
nology, Department of Information Technology, 2005.

[52] A. Kumar and G. Pang, “Defect detection in textured materials using
gabor filters,” IEEE Transactions on Industry Applications, vol. 38, no. 2,
pp. 425–440, 2002.

[53] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” Tech.
Rep. TR-95-012, ICSI, 1995.

[54] K. V. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization. Springer, 2005.

[55] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proceedings of 6th International Mendel Conference on Soft

Computing (P. Oŝmera, ed.), pp. 76–83, 2000.

[56] Kaupe, F., Jr., “Algorithm 178: direct search,” Communications of the

ACM, vol. 6, pp. 313–314, June 1963.

[57] C. T. Kelley, Iterative Methods of Optimization, pp. 212–229. Philadelphia,
USA: SIAM, 1999.

[58] H. H. Hoos and T. Stützle, Stochastic Local Search Foundations and Appli-

cations. Morgan Kaufmann / Elsevier, 2004.

[59] S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, no. 220, pp. 671–680, 1983.

[60] V. Cerny, “A thermodynamical aprroach to the traveling salesman prob-
lem,” Journal of Optimization, theory and Application, vol. 45, no. 1, pp. 41–
51, 1985.

[61] H. Szu and R. Hartley, “Fast simulated annealing,” Physiscs Letters A,
vol. 122, pp. 157–162, 1987.

76

[62] R. Storn, “Designing nonstandard filters with differential evolution,”
IEEE Signal Processing Magazine, vol. 22, no. 1, pp. 103–106, 2005.

[63] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: model, taxonomy, and design issues,” IEEE Transactions on Evo-

lutionary Computation, vol. 9, pp. 474–488, 2005.

[64] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong, “Classification of adap-
tive memetic algorithms: A comparative study,” IEEE Transactions On

Systems, Man and Cybernetics - Part B, vol. 36, no. 1, pp. 141–152, 2006.

[65] Y. S. Ong and A. J. Keane, “Meta-lamarkian learning in memetic al-
gorithms,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 2,
pp. 99–110, 2004.

[66] F. Neri, G. L. Cascella, N. Salvatore, A. V. Kononova, and G. Acciani,
“Prudent-daring vs tolerant survivor selection schemes in control design
of electric drives,” in Applications of Evolutionary Computing (F. R. et al.,
ed.), vol. LNCS 3907, pp. 805–809, Springer, 2006.

[67] N. Balakrishnan and A. P. Basu, The Exponential Distribution: Theory,

Methods, and Applications. Gordon and Breach, 1996.

[68] A. E. Eiben and J. E. Smith, “Hybrid evolutionary algorithms,” in In-

troduction to Evolutionary Computing, Hybridisation with other Techniques:

Memetic Algorithms, Slides of the Lecture Notes, Chapter 10, 2003.

[69] D. Whitley, “The genitor algorithm and selection pressure. why rank-
based allocation of reproductive trials is best,” in Proceedings of the Third

International Conference on Genetic Algorithms, pp. 116–121, Morgan Kauf-
mann, 1989.

[70] N. Karaboga and B. Cetinkaya, “Performance comparison of genetic
and differential evolution algorithms for digital FIR filter design,” in
Advances in Information Systems LNCS, vol. 3261, pp. 482–488, Springer,
2004.

[71] I. L. Lopez Cruz, L. Van Willigenburg, and G. Van Straten, “Parame-
ter control strategy in differential evolution algorithm for optimal con-
trol,” in Proceedings of the IASTED International Conference Artificial In-

telligence and Soft Computing (ASC 2001) (M. Hamza, ed.), pp. 211–216,
ACTA Press, May 2001.

77

[72] J. Liu and J. Lampinen, “On setting the control parameter of the differ-
ential evolution algorithm,” in Proceedings of the 8th international Mendel

conference on soft computing, pp. 11–18, 2002.

[73] J. Liu and J. Lampinen, “Adaptive parameter control of differential evo-
lution,” in Proceedings of the 8th international Mendel conference on soft com-

puting, pp. 19–26, 2002.

[74] J. L. J. Liu, “A fuzzy adaptive differential evolution algorithm,” in Pro-

ceedings of the 17th IEEE region 10 international conference on computer, com-

munications, control and power engineering, vol. I, pp. 606–611, 2002.

[75] J. L. J. Liu, “A fuzzy adaptive differential evolution algorithm,” Soft Com-

puting - A Fusion of Foundations, Methodologies and Applications, Springer,
vol. 9, pp. 448–462, June 2005.

[76] M. M. Ali and A. Törn, “Population set based global optimization al-
gorithms: Some modifications and numerical studies,” Computers and

Operations Research, Elsevier, no. 31, pp. 1703–1725, 2004.

[77] J. Tvrdík, “Differential evolution: Competitive setting of control para-
meters,” in Proceedings of the International Multiconference on Computer

Science and Information Technology, pp. 207–213, 2006.

[78] D. Zaharie, “Critical values for control parameters of differential evolu-
tion algorithm,” in Proceedings of 8th International Mendel Conference on

Soft Computing (R. Matuŝek and P. Oŝmera, eds.), pp. 62–67, 2002.

[79] K. Zielinskiand, P. Weitkemper, R. Laur, and K.-D. Kammeyer, “Para-
meter study for differential evolution using a power allocation problem
including interference cancellation,” in Proceedings of the IEEE Congress

on Evolutionary Computation, pp. 1857–1864, 2006.

[80] J.-P. Chiou and F.-S. Wang, “A hybrid method of differential evolution
with application to optimal control problems of a bioprocess system,” in
The 1998 IEEE International Conference on Evolutionary Computation Pro-

ceedings, pp. 627–632, 1998.

[81] J.-P. Chiou and F.-S. Wang, “Hybrid method of evolutionary algorithms
for static and dynamic optimization problems with application to a fed-
batch fermentation process,” Computers and Chemical Engineering, Else-

vier, vol. 23, pp. 1277–1291, November 1999.

78

[82] R. Mydur, “Application of evolutionary algorithms and neural networks
to electromagnetic inverse problems.,” Master’s thesis, Texas A and M
University, Texas, USA, 2000.

[83] T. Rogalsky and R. W. Derksen, “Hybridization of differential evolution
for aerodynamic design,” in Proceedings of the 8th Annual Conference of the

Computational Fluid Dynamics Society of Canada, pp. 729–736, June 2000.

[84] F.-S. Wang and H.-J. Jang, “Parameter estimation of a bioreaction model
by hybrid differential evolution,” in Proceedings of the IEEE Congress on

Evolutionary Computation, vol. 1, pp. 410–417, 2000.

[85] T. Hendtlass, “A combined swarm differential evolution algorithm for
optimization problems,” in Lecture Notes in Computer Science, Springer-

Verlag, vol. 2070, pp. 11–18, 2001.

[86] Y.-C. Lin, F.-S. Wang, and K.-S. Hwang, “A hybrid method of evolu-
tionary algorithms for mixed-integer nonlinear optimization problems,”
in Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3,
pp. 2159–2166, July 1999.

[87] Y.-C. Lin, K.-S. Hwang, and F.-S. Wang, “Co-evolutionary hybrid dif-
ferential evolution for mixed-integer optimization problems, taylor and
francis,” Engineering Optimization, vol. 33, no. 6, pp. 663–682, 2001.

[88] C.-T. Su and C.-S. Lee, “Network reconfiguration of distribution sys-
tems using improved mixed-integer hybrid differential evolution,” IEEE

Transactions on Power Delivery, vol. 18, pp. 1022–1027, July 2003.

[89] Y.-C. Lin, K.-S. Hwang, and F.-S. Wang, “Hybrid differential evolution
with multiplier updating method for nonlinear constrained optimiza-
tion,” in Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 1, pp. 872–877, May 2002.

[90] J.-P. Chiou, C.-F. Chang, and C.-T. Su, “Ant direction hybrid differential
evolution for solving large capacitor placement problems,” IEEE Trans-

actions on Power Systems, vol. 19, pp. 1794–1800, November 2004.

[91] D. Neumann and H. X. de Araujo, “Hybrid differential evolution
method for the mixed h2/h robust control problem under pole assign-
ment,” in Proceedings of the 44th IEEE Conference on Decision and Control,

and 2005 European Control Conference, pp. 1319–1324, Dec.

79

[92] P. Kaelo and M. M. Ali, “Differential evolution algorithms using hybrid
mutation,” Computational Optimization and Applications, Springer, vol. 37,
pp. 231–246, June 2007.

[93] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the Sixth International Symposium on Microma-

chine and Human Science, pp. 39–43, 1995.

[94] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Pro-

ceedings of IEEE International Conference on Neural Networks, pp. 1942–
1948, 1995.

[95] A. Nelder and R. Mead, “A simplex method for function optimization,”
Computation Journal, vol. 7, pp. 308–313, 1965.

[96] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Conver-
gence properties of the nelder-mead simplex method in low dimen-
sions,” SIAM Journal on Optimization, vol. 9, pp. 112–147, 1998.

[97] G. Birkho and S. M. Lane, A Survey of Modern Algebra. Macmillan, 1953.

[98] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Prentice Hall,
1994.

[99] J.-J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, 1990.

[100] H. M. F. Khorrami, P. Krishnamurthy, Modeling and Adaptive Nonlinear

Control of Electric Motors. Springer, 2003.

[101] L. C. Jain and C. W. de Silva, Intelligent Adap.tive Control: Industrial Ap-

plications. CRC, 1998.

[102] K. J. Åström and T. Hägglund, “The future of PID control,” Control Engi-

neering Practice, vol. 9, no. 13, pp. 1163–1175, November 2001.

[103] H. Panagopoulos, K. J. Åström, and T. Hägglund, “Design of PID con-
trollers based on constrained optimisation,” IEE Proceedings - Control

Theory & Applications, vol. 149, pp. 32–40, 2002.

[104] W. Dury, Control Techniques Drives & Controls Handbook. Institution Elec-
trical Engineers, 2001.

[105] W. Leonhard, Control of Electrical Drives, 2nd ed. Springer, 2001.

[106] R. Krishnan, Electronic Motor Drives: Modeling, Analysis and Control.
Prentice-Hall, 2001.

[107] F. C. M. M. P. Zanchetta, M. Sumner and E. Mininno, “On-line and off-
line control design in power electronics and drives using genetic algo-
rithms,” in Proceedings of 11th IEEE Conference on Artificial Intelligence Ap-

plications, pp. 277–283, 1995.

[108] M. S. G. L. Cascella, N. Salvatore and L. Salvatore, “On-line simplex-
genetic algorithm for self-commissioning of electric drives,” in Proceed-

ings 11th European Power Electronics Conference, pp. 277–283, 2005.

[109] K. J. L. Szklarski, A. Horodecki, Electric Drive Systems Dynamics. Elsevier
Science Ltd, 1990.

[110] X. del Toro Garcia, F. Neri, G. L. Cascella, and N. Salvatore, “A surro-
gate assisted hooke-jeeves algorithm to optimize the control system of a
pmsm drive,” in Proceedings of IEEE International Symposium on Industrial

Electronics, vol. 1, pp. 347–352, 2006.

ORIGINAL PAPERS

PI

AN ADAPTIVE EVOLUTIONARY ALGORITHM WITH
INTELLIGENT MUTATION LOCAL SEARCHERS FOR

DESIGNING MULTIDRUG THERAPIES FOR HIV

by

F. Neri, J. Toivanen and R. Mäkinen

Applied Intelligence, Special Issue on Computational Intelligence in Medicine
and Biology, Volume 27, Issue 3, pages 219-235, December 2007

Reprinted with kind permission of Springer

https://doi.org/10.1007/s10489-007-0069-8

Sharing link: https://rdcu.be/cfnUP

https://doi.org/10.1007/s10489-007-0069-8
https://rdcu.be/cfnUP

PII

AN ADAPTIVE MULTIMEME ALGORITHM FOR
DESIGNING HIV MULTIDRUG THERAPIES

by

F. Neri, J. Toivanen, G. L. Cascella and Y.-S. Ong

IEEE/ACM Transactions on Computational Biology and Bioinformatics,
Special Issue on Computational Intelligence Approaches in Computational

Biology and Bioinformatics, Volume 4, Issue 2, pages 264-278, April 2007

Reprinted with kind permission of IEEE and ACM

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTCBB.2007.070202

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTCBB.2007.070202

PIII

A MEMETIC DIFFERENTIAL EVOLUTION IN FILTER
DESIGN FOR DEFECT DETECTION IN PAPER

PRODUCTION

by

V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava and T. Rossi

Applications of Evolutionary Computing, Lectures Notes in Computer
Science, Volume 4448, pages 320-329, (EvoIASP Best Paper Nomination),

April 2007

Reprinted with kind permission of Springer

https://doi.org/10.1007/978-3-540-71805-5_35

https://doi.org/10.1007/978-3-540-71805-5_35

PIV

FITNESS DIVERSITY BASED ADAPTATION IN
MULTIMEME ALGORITHMS: A COMPARATIVE STUDY

by

F. Neri, V. Tirronen, T. Kärkkäinen and T. Rossi

Proceedings of the IEEE Congress on Evolutionary Computation, Special
Session on Memetic Algorithms, Singapore, pages 2374-2381, September 2007

Reprinted with kind permission of IEEE

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCEC.2007.4424768

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCEC.2007.4424768

PV

A FAST RANDOMIZED MEMETIC ALGORITHM FOR
HIGHLY MULTIMODAL PROBLEMS

by

V. Tirronen and F. Neri

to appear on Evolutionary Methods in Design Optimization and Control, P.
Neittaanmäki, J. Periaux, T. Tuovinen eds.

PVI

AN ADAPTIVE GLOBAL-LOCAL MEMETIC ALGORITHM
TO DISCOVER RESOURCES IN P2P NETWORKS

by

F. Neri, N. Kotilainen and M. Vapa,

Applications of Evolutionary Computing, Lectures Notes in Computer
Science, Volume 4448, pages 61-70, (EvoCOMNET Best Paper Nomination),

April 2007

Reprinted with kind permission of Springer

https://doi.org/10.1007/978-3-540-71805-5_7

https://doi.org/10.1007/978-3-540-71805-5_7

PVII

AN ADAPTIVE PRUDENT-DARING EVOLUTIONARY
ALGORITHM FOR NOISE HANDLING IN ON-LINE PMSM

DRIVE DESIGN

by

F. Neri, G. L. Cascella, N. Salvatore and S. Stasi

Proceedings of the IEEE Congress on Evolutionary Computation, Special
Session on Evolutionary Computation in Dynamic and Uncertain

Environments, Singapore, pages 584-591, September 2007

Reprinted with kind permission of IEEE

https://doi.org/10.1109/CEC.2007.4424523

https://doi.org/10.1109/CEC.2007.4424523

PVIII

HIERARCHICAL EVOLUTIONARY ALGORITHMS AND
NOISE COMPENSATION VIA ADAPTATION

by

F. Neri and R. Mäkinen

Evolutionary Computation in Dynamic and Uncertain Environments, S.
Yang, Y-S. Ong, Y Jin eds., Studies in Computational Intelligence, pages

345-369, (book chapter), April 2007

Reprinted with kind permission of Springer

https://doi.org/10.1007/978-3-540-49774-5_15

https://doi.org/10.1007/978-3-540-49774-5_15

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Tailored Algorithmic Design
	1.2 An Introduction to Local Search
	1.3 Baldwinianism vs. Lamarckianism
	1.4 Intelligent Operators
	1.5 Lifetime Learning, Memetic and Multimeme Algorithms
	1.6 Measurement of the Diversity
	1.7 Contents of the Thesis
	1.8 Further Developments

	2 AN ENHANCED MEMETIC DIFFERENTIAL EVOLUTION IN FILTER DESIGN FOR DEFECT DETECTION IN PAPER PRODUCTION
	2.1 Features of the Filter and Problem Formulation
	2.2 Enhanced Memetic Differential Evolution
	2.3 Numerical Results
	2.4 Conclusion

	3 SUPER-FIT CONTROL ADAPTATION IN MEMETIC DIFFERENTIAL EVOLUTION FRAMEWORKS
	3.1 Super-Fit Memetic Differential Evolution
	3.2 Application 1: Design of a DC Motor Speed Controller
	3.3 Application 2: Digital Filter Design for Defect Detection in Paper Production
	3.4 Conclusion

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	PI AN ADAPTIVE EVOLUTIONARY ALGORITHM WITH INTELLIGENT MUTATION LOCAL SEARCHERS FOR DESIGNING MULTIDRUG THERAPIES FOR HIV
	PII AN ADAPTIVE MULTIMEME ALGORITHM FOR DESIGNING HIV MULTIDRUG THERAPIES
	PIII A MEMETIC DIFFERENTIAL EVOLUTION IN FILTER DESIGN FOR DEFECT DETECTION IN PAPER PRODUCTION
	PIV FITNESS DIVERSITY BASED ADAPTATION IN MULTIMEME ALGORITHMS: A COMPARATIVE STUDY
	PV A FAST RANDOMIZED MEMETIC ALGORITHM FOR HIGHLY MULTIMODAL PROBLEMS
	PVI AN ADAPTIVE GLOBAL-LOCAL MEMETIC ALGORITHM TO DISCOVER RESOURCES IN P2P NETWORKS
	PVII AN ADAPTIVE PRUDENT-DARING EVOLUTIONARYA LGORITHM FOR NOISE HANDLING IN ON-LINE PMSM DRIVE DESIGN
	PVIII HIERARCHICAL EVOLUTIONARY ALGORITHMS AND NOISE COMPENSATION VIA ADAPTATION

