
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Understanding and Controlling Food Protein Structure and Function in Foods :
Perspectives from Experiments and Computer Simulations

© 2020 Annual Reviews Inc.

Accepted version (Final draft)

da Silva, Fernando Luís Barroso; Carloni, Paolo; Cheung, David; Cottone, Grazia;
Donnini, Serena; Allen Foegeding, E.; Gulzar, Muhammad; Jacquier,  Jean
Christophe; Lobaskin, Vladimir; MacKernan, Donal; Naveh, Zeynab; Mohammad
Hosseini; Radhakrishnan, Ravi; Santiso, Erik E.

da Silva, Fernando Luís Barroso, Carloni, Paolo, Cheung, David, Cottone, Grazia, Donnini, Serena,
Allen Foegeding, E., Gulzar, Muhammad, Jacquier,  Jean Christophe, Lobaskin, Vladimir,
MacKernan, Donal, Naveh, Zeynab, Mohammad Hosseini, Radhakrishnan, Ravi, Santiso, Erik E.
(2020). Understanding and Controlling Food Protein Structure and Function in Foods :
Perspectives from Experiments and Computer Simulations. Annual Review of Food Science and
Technology, 11, 365-387. https://doi.org/10.1146/annurev-food-032519-051640

2020



Understanding and Controlling Food Protein Structure and 
Function in Foods: Perspectives from Experiments and 
Computer Simulations

Fernando Luís Barroso da Silva1, Paolo Carloni2,3, David Cheung4, Grazia Cottone5, 
Serena Donnini6, E. Allen Foegeding7, Muhammad Gulzar11, Jean Christophe Jacquier11, 
Vladimir Lobaskin8, Donal MacKernan8, Zeynab Mohammad Hosseini Naveh9, Ravi 
Radhakrishnan10, Erik E. Santiso12

1School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, BR-14040-903, 
Ribeirão Preto, São Paulo, Brazil 2Institute for Computational Biomedicine (IAS-5/INM-9), 
Forschungszentrum Jülich, 52425 Jülich, Germany 3Department of Physics, RWTH Aachen 
University, 52062 Aachen, Germany 4School of Chemistry, National University of Ireland Galway, 
Galway, Ireland 5Department of Physics and Chemistry, University of Palermo, 90128 Palermo, 
Italy 6Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 
40014, Finland 7Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State 
University, Raleigh, North Carolina 27695, USA 8UCD School of Physics, University College 
Dublin, Dublin 4, Ireland 9Kashmar Higher Education Institute, Kashmar, Iran 10Department of 
Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA 11UCD 
School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland 
12Department of Chemical and Biomolecular Engineering, North Carolina State University, 
Raleigh, North Carolina 27695, USA

Abstract

The structure and interactions of proteins play a critical role in determining the quality attributes 

of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding 

of the structure–function relationships of proteins can provide greater insight into, and control of, 

the relevant processes at play. Combining data from experimental measurements, human sensory 

panels, and computer simulations through machine learning allows the construction of statistical 

models relating nanoscale properties of proteins to the physicochemical properties, physiological 

outcomes, and tastes of foods. This review highlights several examples of advanced computer 

simulations at molecular, mesoscale, and multiscale levels that shed light on the mechanisms at 

play in foods, thereby facilitating their control. It includes a practical simulation toolbox for those 

new to in silico modeling.
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INTRODUCTION

The food industry is faced with multiple challenges to meet demands for new food products 

that are safe, enjoyable, healthy, nutritious, and sustainable. An understanding of 

fundamental structure–function relationships of food components is key to the rational 

design of new foods. A relatively recent approach to deal with the complexity of food 

products is provided by soft matter physics (Boire et al. 2019) (Figure 1). Molecules 

assemble through biological, physicochemical, or manufacturing processes into structures 

that give foods their particular properties. Oral processing and sensory stimulation followed 

by digestion lead to the disassembly of macroscopic structures down to the molecular level, 

ultimately making them bioavailable to cells. All these processes can be studied using soft 

matter physics techniques.

Multiscale Approach to Modeling Food Assembly and Disassembly

A key aspect of this approach is the identification of corresponding length scales and 

timescales (Figure 1). Small changes at the molecular level can induce dramatic structural 

changes with repercussions from the mesoscale to the macroscale. Consider ice cream as an 

example. It starts as an oil-in-water emulsion that is frozen while incorporating air to 

produce a final structure with water and sugar crystals dispersed in a mixed emulsion/foam 

structure. The folding and unfolding of proteins at the oil–water interface during this process 

occur at nanometer scales, whereas the creation and cleavage of disulfide bonds entailed in 

protein adsorption at the surface occur on Ångstrom scales. Altering the protein state or 

solvent environment (e.g., pH or mineral content) can result in dramatic changes in protein 

conformation and folding at the emulsion interface. This in turn may lead to large changes in 

ice cream macroscale appearance, stability, rheology, and mouthfeel. Another example 

relates to how aroma and taste compounds are perceived. One needs to consider the 

breakdown of mesoscopic and macroscopic food structural elements by mastication and how 

that controls nanoscale interaction between food tastant and neuroreceptors at the tongue 

surface. The digestion of the food bolus as it passes through the gut is another example of a 

multiscale phenomenon, from the physical breakdown of a macroscale bolus to the 

mesoscale reorganization of fat globules with bile salts or protein hydrolysis by specific 

digestive enzymes and the molecular-scale transport of nutrients across the gut membrane.

Although a solely multiscale simulation approach to predict the properties of food products 

with specific appearance, taste, and nutritive quality is feasible in principle, in practice the 

sheer complexity of food renders such an approach unrealistic. However, multiscale 

approaches combined with data from, for example, human tasters and statistical and machine 

learning methods, such as quantitative structure–activity relationships (QSARs) and 

quantitative structure–property relationships (QSPRs), can connect the molecular scale with 

physiological outcomes (Roy et al. 2015) and perceptions of taste (Kier 1972, Shallenberger 
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& Acree 1967). Similar approaches are used in biomedical contexts, such as relating the 

multiscale properties of nanomaterials to physiological outcomes in toxicology (Kar & 

Leszczynski 2019).

In Silico Approaches

Particle-based simulation of soft matter using supercomputers can be used to explore the 

phenomena and length scales of interest. In this context, the notion of a particle depends on 

the simulation method(s) and models appropriate to each length scale and process as 

follows.

Mesoscale properties of food colloids, such as sols, foams, emulsions, and gels, can be 

explored using coarse-grained (CG), particle-based simulations, in which each particle may 

represent a few atoms [such as each individual amino acid (AA)] to hundreds of AAs (such 

as globular proteins treated as rigid bodies). CG models bring simulations closer to 

experimentally accessible temporal and spatial scales, provided that the dimensionality 

reduction does not entail the loss of a key detail or underlying mechanism. In particular, 

food rheology and microstructure can be conveniently studied at the mesoscale level. 

Simulations can address, for example, the coalescence of emulsion droplets and the 

influence of adsorbing amphiphilic molecules on these processes (Morris & Grove 2013, 

Pink & Razul 2014) and the phase behavior of microemulsions, and provide data on 

interfacial tension and morphology of the mesoscopic aggregates (Liu et al. 2015) and 

molecular adsorption at interfaces.

Molecular processes such as the unfolding or denaturation of proteins occurring in thermal 

processing or the noncovalent binding of tastants to receptors in the tongue can be explored 

using classical molecular dynamics (MD), where particles represent individual atoms and 

the relevant length scales are Ångstroms. For example, the binding of ligands to sweet or 

bitter taste receptors can trigger conformational changes and downstream chemical/

molecular signaling that eventually lead to taste perception. Molecular-level modifications of 

the tastant can greatly affect such perceptions.

At even finer length scales the particles may be electrons, protons, and nuclei, and a 

paradigm shift of physical method to elucidate the phenomena is required, as quantum-

mechanical (QM) effects may occur. These include the creation and cleavage of covalent 

bonds in the hydrolysis of sugars, fats, and proteins and the Maillard browning reaction 

between AAs and reducing sugars that gives many foods their distinctive colors and flavors. 

It can also be used to determine the protonation and deprotonation of titratable sites of 

proteins during food processing and digestion. Hybrid approaches are also possible, such as 

QM/MD (Bolnykh et al. 2019, Guest 2012) or CG/MD, which combine a fine-scale level of 

description with a much coarser one.

• As one might expect, as particle size is reduced, the number of particles needed 

to simulate a complex system increases, as does the computational cost of the 

simulation. Consider the ubiquitous example of pH regulation of protein 

aggregation. As pH changes, protons transfer from solvent to acidic or basic 

titratable sites, but this can also allow proteins to fold. Thus, many different 
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length scales may be involved. Quantum mechanics is in principle relevant, but 

often approximations are necessary. MD is much more suited to modeling 

protein folding, and for large protein complexes, mesoscale modeling is often 

more useful. At the densities typical of food complexes, MD is usually the most 

efficient means to perform realistic simulations. An MD simulation involves 

numerically integrating Newton’s equation of motion over typically millions to 

billions of small time-steps. For this, the forces on the particles (typically atoms) 

of the system must be known. In biology (and therefore food science), the most 

frequently used models for interatomic forces, called force fields (FFs), include 

CHARMM (MacKerell 2004, MacKerell et al. 1998) and Amber (Ponder & Case 

2003). Depending on the system, Monte Carlo (MC) methods (Binder 1997, 

Frenkel et al. 2001) can often provide a more efficient means to simulate 

equilibrium properties of biophysical systems, particularly when water can be 

treated implicitly. Unlike MD, MC simulation only requires total energies of a 

system and is free to move particles in ways that may appear unphysical, 

provided they are consistent with the system’s thermodynamic constraints.

• The food scientist armed with suitable simulation methods also has to address 

the issue of timescales. This issue can be appreciated using the example of the 

folding or unfolding of food proteins, which may take place during drying or 

hydration of food and for which classical MD is appropriate. In this case, the 

smallest timescale, associated with the vibrations of bonds involving hydrogen, is 

on the order of femtoseconds and determines the size of the simulation-

integrating time-step. However, the timescales associated with folding or 

complex formation can be on the order of milliseconds or even seconds. A host 

of statistical sampling techniques known as rare-event methods exist to address 

problems involving such different timescales, whether the simulation method 

used is quantum, classical, or mesoscale. They surmount the rare-event problem 

through the application of biasing forces or energies to place the system in 

configurations where such events are likely and then correct mathematically for 

the effects of the bias. This requires a set of order parameters that determine the 

locations of such events. When the number of order parameters is no more than 

three or so, a variety of statistical techniques can be used to build the 

corresponding free-energy surface. One such technique is well-tempered 

metadynamics (Barducci et al. 2008). When the number of order parameters is 

large, a method known as temperature-accelerated MD (TAMD) (Abrams & 

Vanden-Eijnden 2010) may be appropriate. This method couples the order 

parameters to a hot thermostat to pull the system out of free-energy wells where 

it might otherwise be stuck. Another approach that can be combined with 

experimental data having molecular resolution, such as nuclear magnetic 

resonance (NMR), is steered MD, which dynamically guides the system to the 

regions that need to be sampled. Several sophisticated algorithms, such as the 

String method (Maragliano et al. 2006, Vanden-Eijnden & Venturoli 2009), also 

exist to find the most likely reaction path of thermodynamic processes. An 

important and complementary methodology comes from computer science: 

Machine learning is increasingly being combined with particle-based simulation 
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at all the above length scales. Not only is it facilitating the modeling of complex 

phenomena themselves but, in some cases, allows particle-based properties to be 

related to physiological outcomes such as toxicity or perception of taste as 

expressed by panels of human tasters.

Quantitative Structure–Activity Relationships and Physiological Models for Predicting 
Complex Functionalities

The molecular-level interactions that determine food component association, transport, and 

absorption at long timescales are complex and difficult to model in full detail. An 

increasingly viable alternative is to relate molecular features to the specific functionality, 

such as taste, using QSARs. QSARs are analytical expressions representing correlations 

between the activity of a substance and quantitative chemical attributes representing the 

molecular features of the substance (Roy et al. 2015). The term QSPR is also used. QSARs 

and QSPRs are often developed using statistical techniques, with some modern QSARs/

QSPRs being derived using machine learning methods. The features that can serve as inputs 

to QSAR/QSPR models range from very simple zero-dimensional (0D) features, such as 

those based on the empirical chemical formula (e.g., number of atoms, number of bonds, 

molecular weight), all the way to 7D features involving real target-based receptor model data 

(Kar & Leszczynski 2019, Roy et al. 2015). The increasing feature dimensionality is a 

measure of the complexity of the data required (see Figure 2). For example, 1D features 

involve information based on the chemical fragments that make up the molecule (similar to 

classical group-contribution methods), 2D features include information based on the 

molecular connectivity, 3D methods use information based on the three-dimensional 

structure of the molecule, and descriptors beyond 3D use more complex information such as 

sets of molecular conformations, solvation, protonation states, and even models containing 

information about the biological targets involved. Other descriptors used in describing 

molecule reactivity, or adsorption on solid surfaces or interfaces, include the electronic 

properties (highest occupied/lowest unoccupied molecular orbitals, polarizability), charge, 

van der Waals (VDW) surface energy, or binding energies of selected sets of representative 

molecule fragments. These have been used to predict nanoparticle (NP) cell uptake and 

toxicity (Kamath et al. 2015, Liu et al. 2015, Xia et al. 2011).

This article is intended as an overview of the possibilities of particle-based simulation and 

its combination with the QSAR/QSPR models to address problems in food science. We 

review the simulation toolbox for the food scientist and briefly describe particle simulation 

methods along with the most popular and potent open-source, freely available software 

packages. These methodologies are illustrated with representative cutting-edge examples. 

We conclude our discussion by surveying some of the current challenges for particle-based 

simulation in food science.

MOLECULAR SIMULATION TOOLBOX FOR FOOD SCIENTISTS

The previous discussion has summarized how different simulation methods can help address 

problems involving different length scales and timescales within food science and how they 

can be augmented/complemented by QSAR/QSPR models. In practice, simulating systems 
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consisting of hundreds, thousands, or even millions of particles for a billion time-steps is 

daunting. Although the brave may choose to develop their own in-house simulation engines, 

most users and, indeed, developers rely on free, community-developed software packages, 

which are becoming increasingly user-friendly and adaptable, including the Groningen 

Machine for Chemical Simulations (GROMACS) (Berendsen et al. 1995, Pronk et al. 2013), 

Amber (Case et al. 2005, Salomon-Ferrer et al. 2013), Open Molecular Mechanics 

(OpenMM) (Eastman et al. 2017), Nanoscale Molecular Dynamics (NAMD) (Phillips et al. 

2005), and the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

(Plimpton 1995). All of these can run on hardware ranging from good laptops to massively 

parallel supercomputers. The first four engines are used primarily for biosystems and 

include tools to facilitate biosystem preparation, simulation, and analysis. LAMMPS, 

although capable of simulating biosystems, is more often used for advanced materials and, 

recently, even quantum problems in the context of machine learning. All are capable of 

simulating both thermodynamic equilibrium properties (i.e., free-energy properties) and 

dynamical/kinetic properties. Most of the MD engines mentioned above are also capable of 

running CG and MC simulations. In addition, several other engines have been built 

specifically for CG and multiscale/hybrid simulations, including Espresso (Weik et al. 2019) 

and the Daresbury Labs mesoscale simulation package (DL-MESO). Hybrid molecular CG 

schemes have also been developed (Krekeler et al. 2018, Tarenzi et al. 2019) in which 

critically important fine-scale details are treated atomistically, with all other features treated 

at a CG or even continuum level. Many MD engines include rare-event software and can 

also be interfaced with software such as the Plugin for Molecular Dynamics (PLUMED) 

developed specifically for rare-event methods (Bonomi et al. 2009). In addition to their use 

for characterizing thermodynamic equilibrium properties, rare-event methods can be used 

for kinetics such as estimating reaction and nucleation rates (Casasnovas et al. 2017, 

Swenson et al. 2019).

The power of simulation to investigate the molecular and mesoscale mechanisms taking 

place in food materials is best shown through practical examples. As a first example, 

consider the case of pH-controlled immobilization and release of biomolecules.

pH-Controlled Immobilization and Release of Biomolecules in Whey Protein Isolate–Based 
Microgels

Whey protein isolate (WPI) can be formed into microgels used as matrices to immobilize 

and release a variety of bioactives. These mesoscale structures can function as smart delivery 

systems in which uptake and release of bioactives are facilitated by environmental pH 

changes (Egan et al. 2014). A semiempirical analytical model to predict the conditions of 

attractive and repulsive interactions between the constituents of the microgel–bioactives 

complex can be made based on the electrostatic charge expected for each constituent given 

their pKa values and the solution pH. Although uptake by these microgels of single AAs 

(histidine, arginine, and lysine) was adequately described by this simple model, interactions 

with either cationic KHIQK or anionic WENGE peptides were only partially described. In 

particular, although the maximum experimental interaction is well predicted, some attractive 

interaction is observed when both WPI microgel and peptide carry a similar net charge, in 

sharp contradiction with Coulomb’s law. This attraction on the wrong side of the isoelectric 
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point (pi) has been reported for other experimental systems, such as quinoa proteins–

carrageenan (Montellano et al. 2018).

Simulations can improve our ability to control and release bioactives from microgels, or any 

microencapsulation process, in several ways. First, predicting the pKa value of large proteins 

can be extremely difficult experimentally, particularly if they can fold/unfold as solution 

conditions change. Second, important interactions take place through different electrostatic 

mechanisms, such as charge fluctuation (Barroso da Silva & Jönsson 2009; Barroso da Silva 

et al. 2006, 2014; Jönsson et al. 2007) and dipole interactions (Barroso da Silva et al. 2016), 

that are difficult to elucidate experimentally. Conversely, molecular simulation methods that 

incorporate pH effects can address these problems, including the puzzle of complexation on 

the wrong side of pI (Barroso da Silva & Dias 2017, Barroso da Silva et al. 2019, Chen et al. 

2014), in good agreement with experiment.

The first few steps of simulation.—The first step of a simulation is preparing its initial 

conditions. For simulations at the molecular level, the best initial structures are usually 

experimentally determined, either by X-ray or NMR, and are available in the Protein Data 

Bank (PDB) (Berman et al. 2014). When experimental structural information is lacking, 

estimates can often be obtained using bioinformatics, usually through homology modeling 

(Leach 1996) or machine learning applied to PDB libraries, to statistically predict likely 

structures employing software/servers such as I-TASSER (Yang et al. 2014), SWISS-

MODEL (Biasini et al. 2014), and INTFOLD (McGuffin et al. 2019). Large proteins and 

protein adducts are generally too complex to predict using bioinformatics in isolation, but 

they can often be built from smaller ones predicted from bioinformatics. These are then 

stitched (i.e., bonded) together using homology tools such as Modeller (https://salilab.org/

modeller/), although the task of determining the native structure can be very complex. For 

example, beta-lactoglobulin (β-lac), a milk protein, consists of 160 AAs, each comprising 

some 20 atoms, and is already too complex to be realistically simulated from arbitrary initial 

configurations.

The second step involves adjusting components of the complex, such as the inclusion of 

counterions, solvation, and protonation/deprotonation of titratable sites [constant-charge or 

constant-pH (CpH) approach (Barroso da Silva & Dias 2017)]. Also needed for a more 

realistic description of the real systems is the possible creation of bonds that may exist 

within and between proteins, such as between cysteine residues in the case of WPI microgels 

or between glycans and proteins. Although it is often difficult to know which titratable sites 

should be protonated or deprotonated, or where bonds should be created or broken, powerful 

user-friendly software tools to make such changes are available for constant-charge 

simulations, including PROPKA (Olsson et al. 2011) and/or the CHARMM-GUI (Jo et al. 

2008).

The third step is the actual simulation of the complex. Molecular simulations require 

interaction energy models (FFs), as mentioned above (see also van Gunsteren & Berendsen 

1990, Leach 1996, Schlick 2010), and suitable molecular simulation software. In some 

instances, steps 2 and 3 can be intertwined, as illustrated below.
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Constant-pH simulation methods for food proteins.—Predicting molecular-level 

changes to protein complexes or other macromolecules occurring as pH and salt 

concentration change can be extremely difficult, from both experimental and simulation/

theoretical perspectives, as the binding/unbinding and transport of protons between titratable 

sites are fundamentally quantum effects. Even assuming that these effects can be adequately 

modeled considering only the quantum ground state, a realistic quantum simulation can 

handle at most a tiny peptide consisting of 1–3 residues together with water and relevant 

ions (such as Na+, K+, Cl−). Because proteins of interest are generally far larger, a wide 

variety of approximate simulation methods have been developed over the past two decades 

to describe their molecular properties and the conditions that control their aggregation as 

complexes. A great variety of CpH simulation methods are available to study biomolecular 

phenomena (Barroso da Silva & Dias 2017; Barroso da Silva & MacKernan 2017; Barroso 

da Silva et al. 2019; Bennett et al. 2013; Chen & Roux 2015; Delboni & Barroso da Silva 

2016; Donnini et al. 2016, 2011). Here, we describe two methods that involve different CG 

levels. In both methods, each titratable site is either an acid or a base. In the absence of 

interactions between sites, the probability of a site being deprotonated or protonated is 

entirely determined by the pKa value of the isolated site and the pH of the solvent. In reality, 

titratable sites interact primarily through Coulomb interactions and are affected by all other 

charges. In the first approach, a mesoscale semiempirical description, several physical 

chemistry features are considered, including the empirical pKa values of the isolated sites 

(usually pKa values of the free AA in solution), the charges due to possible transfers of 

protons to/from sites, the location of sites, the salt concentration (treated implicitly), the 

temperature, and, as a phenomenological parameter, the solution pH (Barroso da Silva et al. 

2006, Srivastava et al. 2017, Teixeira et al. 2010). The second approach, known as CpH MD 

simulations, uses a finer level of description in which the partial charges and dynamical/

instantaneous positions of each atom are considered. The approach uses an atomistic 

representation of water, added salt, protons, and counterions, ensuring that the system 

remains charge neutral overall (Donnini et al. 2016, 2011).

Although the two approaches have certain similarities, in practice they are very different. 

The statistics for the first approach are generated through MC sampling and, unlike the 

second, cannot account for structural changes such as protein folding/unfolding, because of 

the use of a fixed protein structure. However, it has three distinct advantages. First, empirical 

data can be easily incorporated; second, the system size that can be investigated is very 

large; and third, the convergence rate of sampling can be rapid, enabling the calculation of 

interaction free energies at different experimental conditions (Srivastava et al. 2017). 

Furthermore, notwithstanding its simplicity, it turns out to be surprisingly accurate for 

several (but not all) proteins, RNA, and DNA systems (Barroso da Silva & Dias 2017, 

Barroso da Silva & MacKernan 2017).

The second approach has a distinct advantage over the first when working with flexible 

macromolecules. An example is the implementation of a CpH MD (Donnini et al. 2011, 

2016) based on the λ-dynamics approach (Kong & Brooks 1996, Lee et al. 2004). The 

protonation coordinate (λ) is a continuous degree of freedom, varying between 0 

(protonated site) and 1 (deprotonated site). λ can be imagined as a particle that is 
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incorporated in the interaction potential of the system and fluctuates between the protonation 

states of a site. The pH dependency of protonation/deprotonation is included in the potential 

function using a phenomenological description dependent on the experimentally determined 

pKa values of the isolated sites. At each step during the simulation, the force acting on λ is 

computed as it is for other particles in the system. The coupling of sites is directly accounted 

for through the potential energy of the system.

In this approach, protons are not modeled explicitly. Therefore, when the protonation state of 

a site changes, the total charge of the system (protein and solvent) changes as well, and the 

system is no longer neutral. Because this may lead to artifacts in MD simulations (Hub et al. 

2014), protonation of a site on the protein is usually coupled to deprotonation of a 

counterion in solution (Chen & Roux 2015, Chen et al. 2013, Dobrev et al. 2017). Such an 

approach becomes laborious when the number of titratable sites is large. In proteins with 

many sites, however, the fluctuation of the overall protein charge is typically much smaller 

than the number of titratable sites. Therefore, a small proton buffer can be introduced such 

that a change in the total number of protons of the protein is compensated by an opposite 

change in the number of protons in the buffer. This reduces the computational effort without 

affecting the relative free energies of the different charge states. Successful examples of 

applications can be found in the literature (Bennett et al. 2013, Donnini et al. 2016).

Taste Receptors and Glycophores

One key molecular event contributing to consumers’ likes and dislikes of foods is the 

interaction between tastants and their target receptors in the tongue. Taste, combined with 

the other senses of smell, sight, hearing, and touch (texture), provides an overall sensory 

evaluation of food. In addition, bitter taste receptors have also been found elsewhere in the 

human body, for example, in the palate, brain, upper esophagus, and larynx, and are 

associated with a variety of diseases (Alfonso-Prieto et al. 2019). The five basic tastes salty, 

sweet, bitter, sour, and umami are sensed through different receptors. Ion channels are 

responsible for the perception of saltiness, whereas the nature of the receptors for sour 

tastants is still an object of debate. G-protein-coupled receptors (GPCRs) detect sweet, 

bitter, and umami. GPCRs are transmembrane proteins composing three domains: the 

extracellular domain (ECD), which is outside the cell (ligands such as tastants or odorants 

bind to it); the transverse membrane domain (TMD); and the intracellular domain (ICD), to 

which cognate G-proteins are attached. Agonist ligands (e.g., tastants) binding to the 

receptor result in conformational changes that may lead to release from the ICD of parts of 

the G-protein, leading to a complex set of downstream intracellular signaling events. As 

GPCRs function at a molecular level, simulation can be used to reveal aspects of structure 

and function and facilitate the development of new tastants.

The main preparatory steps required for such a simulation are the same as those described 

for WPI microgels. However, additional steps are often required to prepare a detailed taste-

receptor system, as accurate information regarding the 3D structure for most human GPCRs 

(hGPCRs) is unfortunately lacking. This is the case for some 400 receptors involved in 

chemical sensing, representing about half of all hGPCRs, and includes those devoted to taste 

and smell sensing. Bioinformatics predictions are poor here because of the lack of good 
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templates, as applying X-ray crystallography to transmembrane proteins is challenging 

(Fierro et al. 2017).

A receptor model may be built by stitching together the ECD, TMD, and ICD using 

homology modeling software such as Modeller, with individual domains extracted from 

either PDB, or using bioinformatics tools mentioned above (see Figures 3 and 4 for 

illustrations). Although some G-protein-coupled taste receptors function as monomers (e.g., 

for bitterness), others may function as dimers, and for such cases (Hiller et al. 2013) the 

corresponding GPCR pair may need to flank each other. Next, the membrane–GPCR 

complex must be built. The membrane is usually modeled as a lipid bilayer created with 

hundreds of lipid molecules, which must be appropriately placed about the transcellular 

domain of the GPCR dimer (or oligomer). Various packages, for example, Membrane 

Builder, are available to build protein membrane complexes (Wu et al. 2014). Third, water 

and salt at physiological levels are added and the protonation state of each residue is suitably 

adjusted using, for example, the PROPKA server (Rostkowski et al. 2011). After these steps, 

the receptor complex typically contains some 500 residues, a lipid bilayer, water, and salts, 

amounting to more than 200,000 atoms.

The next step is usually determining the equilibrium structure(s) of the GPCR complex, 

which is often very challenging, requiring sophisticated sampling methods and significant 

computational resources. We should mention, however, that there are ingenious ways to 

sometimes avoid some or all of the above tasks. One example is based on the fact that the 

general structure of GPCR proteins is known, and the ICDs are not thought to vary greatly 

within each GPCR family. Therefore, it can be argued that only the ECD needs to be known 

accurately, as it provides the binding sites for ligands and is typically much more variable 

than the other domains. Following this logic, one can use bioinformatics and multiscale 

simulation to predict the pose of bitter taste receptors’ agonists.

Alternatively, a multiscale, hybrid molecular mechanics (MM)/CG simulation approach 

tailored for GPCRs can be used (Alfonso-Prieto et al. 2019, Sandal et al. 2015), which 

describes explicitly the ligand, its binding site, and a solvation sphere, as illustrated in 

Figure 3. The rest of the protein and the bulk solvent are included using a simplified CG 

representation (Tarenzi et al. 2019, 2017). The method allows for sampling of longer 

timescales, crucial for GPCR homology models with low sequence identity with the 

template (Rayan 2010).

Probing the structure of G-protein-coupled receptors close to equilibrium.—
As discussed above, rare-event methods can be used to explore relevant conformations of the 

GPCR complex close to and at equilibrium through the application of artificial biasing 

forces, provided suitable order parameters are known. As an example, consider a complex 

consisting of two β-lac molecules in water and salt. Depending on the solvent conditions, the 

pair may bind together or may dissociate. The simplest order parameter to characterize this 

would be the distance between the centers of mass of the proteins, but others describing, for 

instance, the solvent structure in the vicinity of the pair may be needed to fully characterize 

the dissociation process. Identifying suitable order parameters for GPCR proteins is more 

difficult, as illustrated by a representative and important example, GPL-1R (see Figure 4), 

da Silva et al. Page 10

Annu Rev Food Sci Technol. Author manuscript; available in PMC 2020 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which is involved in the control of blood sugar via secretion of insulin. Patients with type 2 

diabetes have a reduced ability to produce GLP-1, and its administration to patients is not 

practical because of its very short half-life in the body. GLP-1 analogs with much longer 

lifetimes are currently used in treatment, but there are concerns that most effective ones may 

be carcinogenic. Interestingly, experimental findings from food and health sciences indicate 

that certain milk peptides may also act as GLP-1 analogs, but to be exploitable further 

confirmatory evidence is needed at a molecular level. Acquiring confirmatory evidence 

requires representative structures of the receptor that are close to equilibrium, which first 

entailed building the GPCR complex as described above.

As these are expected to be associated with very flexible regions of the receptor, we used 

TAMD applied to the most flexible regions (mass centers of five loops and the ECD) of the 

receptor (see Figure 4) and a schedule of heating and cooling of the TAMD temperature to 

drive the receptor to low-energy conformations (Lucid et al. 2013) and collect a very large 

number of representative snapshots of the complex. This data, in turn, allowed us to perform 

a demixed principal component analysis (DPCA) of the motion of dihedral angles of the 

protein backbone to extract the dominant (slowest) modes of DPCA, which were, in turn, 

used to estimate the corresponding free energy surface and the slowest dynamical modes of 

the receptor.

Glycophores and sweet taste.—A useful QSAR to study taste perception is the 

glycophore theory. The perception of sweetness involves complex molecular interactions 

between foods and taste receptors in the tongue. Nevertheless, there are known chemical 

motifs that lead to sweet taste, or glycophores. In 1967, Shallenberger & Acree (1967), 

introduced the AH-B theory of sweetness, an early QSAR positing that sweet taste results 

from a basic structural unit common to all sweet molecules. The unit consists of two 

electronegative atoms, A and B, one of which (A) has a hydrogen atom attached to it. AH is 

therefore a proton donor and B a proton acceptor. This theory was later refined by Kier 

(1972), who observed that a third, polarizable moiety X should also be present to produce a 

sweet taste. Glycophores provide a quick but powerful route to assess sweetness at the 

molecular scale without the need for dealing explicitly with taste receptors and can be used 

in combination with enhanced sampling and machine learning techniques to discover new 

sweeteners. In the language of descriptor dimensionality discussed above, this would be an 

example of a 3D descriptor.

The glycophore theory has been a powerful tool to understand sweet taste behavior, even in 

complex systems. A recent example is the work of Chopade et al. (2015) investigating the 

unusual behavior of the steviol glycoside rebaudioside-A (Reb-A), a high-potency 

noncaloric sweetener extracted from the leaves of Stevia rebaudiana. Reb-A exhibits a 

nonmonotonic dependence of sweetness with temperature, with maximum sweetness close 

to 0°C and minimum around 40°C, beyond which sweetness increases again. The work 

combined 2D NMR techniques and steered MD simulations, in conjunction with the 

glycophore theory, to show that changes in intramolecular hydrogen bonding patterns with 

temperature result in different numbers of AH-B-X motifs being presented by Reb-A in 

solution, following the same trend observed in taste panels with temperature (Figure 5). This 
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illustrates the power of combining molecular simulation, QSPR models, and experiments to 

link taste perception to the molecular physics of sweet molecules.

Protein-Interface Interactions and Nanoparticle Uptake

Liquid and gel-like foods as well as pharmaceutical products use protein-based emulsions 

(Ubbink 2012), in which proteins provide a biocompatible, stabilizing coating and the core 

can be used to encapsulate bioactive components. The behavior of these systems is 

determined in part by the properties of the stabilizing interfacial film. Understanding protein 

structure at liquid interfaces is key for controlling emulsion formation (He et al. 2013) and 

stabilizing the dispersed phase against flocculation and coalescence. In food processing, 

molecular adsorption and fouling on equipment can cause major problems, particularly in 

the dairy industry (Wilson 2018). Because of its ability to access length scales characterizing 

interfacial systems, mesoscale simulation is ideally suited to the study of essential food 

components at interfaces.

Molecular dynamics investigation of protein behavior at liquid interfaces.—The 

conformations that proteins adopt at liquid interfaces are a key factor determining the 

behavior of protein-based emulsions. Adsorption on interfaces affects the conformation, as 

hydrophobic AAs normally residing in the protein core partition into the hydrophobic 

medium. The resulting protein conformations determine their interfacial aggregation and 

assembly. To test the ability of molecular simulation to investigate protein structure at liquid 

interfaces, recent work studied the conformations of two peptides derived from myoglobin 

(PDB_ID 1MBN) at the air–water interface (Cheung 2016). Previous experimental work 

(Poon et al. 1999) showed that one of these peptides, consisting of the first 55 residues of 

myoglobin, was an effective emulsifier, whereas the other (residues 56–131) was less 

effective. MD simulation with GROMACS, using replica exchange and solute tempering to 

enhance conformational sampling in pure water at 25°C, showed that these two peptides 

adopt various different conformations at the air–water interface. Peptide 1–55 preferentially 

adopts extended conformations, allowing it to form a well-defined monolayer at the 

interface. Conversely, peptide 56–131 predominantly adopts compact conformations, which 

results in a less strongly bound interfacial layer, explaining its lower emulsification ability. 

Simulations of the globular proteins α-lactalbumin and lysozyme showed similar results 

(Cheung 2017), with α-lactalbumin (the more effective emulsifier) more frequently adopting 

extended states.

Another factor determining the behavior of proteins at interfaces is their interfacial 

adsorption strength. Simulation has been used to determine the adsorption strengths of the 

hydrophobins HFBI and HFBII at water–octane interfaces (Cheung 2012). The adsorption 

free energy for the hydrophobins was calculated using steered MD with LAMMPS 

(Plimpton 1995). This showed that the adsorption free energy was on the order of 102–103 

kJ/mol, indicating essentially irreversible adsorption. These proteins have similar sequences 

and solution structures but show different characters (HFBII being slightly hydrophilic and 

HFBI slightly hydrophobic). Like most hydrophobins, these proteins have a large 

hydrophobic patch on their surface. To determine the effect of this patch on their interfacial 

behavior, simulations of HFBII pseudo-proteins with identical interactions (either 
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hydrophilic, hydrophobic, or average) between all protein residues and both solvents were 

performed. Uniformly hydrophilic and hydrophobic pseudo-proteins preferentially resided in 

the water and octane phases, respectively. The average protein, however, was surface active 

but slightly hydrophobic, contrary to the native protein.

Protein–solid surface interactions.—In food processing equipment, adsorbed proteins 

may create an insulating layer between the heater and the bulk material, reducing the heating 

efficiency (Bansal et al. 2006). This leads to inefficient sterilization and pasteurization 

specifically in milk. Furthermore, in filtration processes, protein aggregates deposited on the 

surface of the filter can block the flow, thus greatly affecting the filter throughput capacity. 

Enabling control over these processes requires a quantitative understanding of the 

interactions between biomolecules and materials used in food processing.

Because of their large molecular size and surface charge, the electrostatic and VDW 

interactions of proteins with solid surfaces are very strong, with typical adhesion energies of 

102–103 kJ/mol (Power et al. 2019), thus making the adsorption process practically 

irreversible. Furthermore, the amount and diversity of adsorbed material prohibit its direct 

atomistic simulation. In these conditions, the size, shape, dipole, and charge distribution on 

the protein are the most important parameters determining its ability to stick to the surface. 

Protein conformations, in contrast, are not expected to strongly affect the binding process.

A wide variety of models have been proposed to describe competitive adsorption of proteins 

at solid interfaces (Bellion et al. 2008, Lopez et al. 2015, Oberle et al. 2015, Rabe et al. 

2011, Vilanova et al. 2016, Vilaseca et al. 2013). The simplest models treat proteins as single 

spherical beads with sizes reflecting their hydrodynamic radius. Although such models allow 

easier numerical and analytical solutions, they cannot provide any information on the 

preferred orientation of the molecule at the surface, which is needed to estimate the amount 

of adsorbed protein and of the structure of the corona. To achieve higher resolution without 

making the model too complex, one can use the fact that all proteins contain multiple copies 

of the same AAs, and multiple lipids contain the same alkyl groups. In this approach, one 

can precalculate the interactions of each repeat unit with the surface and quickly evaluate the 

potential energy for the entire protein as a sum of energies of nonbonded (VDW + excluded 

volume) and electrostatic interactions between the AA and segments of the surface. The 

outer layer on the solid surface is directly in contact with the solvent, and the interactions 

with the protein residues must include solvent effects and the chemical composition, charge, 

and hydrophilicity/hydrophobicity of the substrate. Therefore, the interaction of each residue 

with the nearest part of the surface should include these details (Brandt et al. 2015). The 

remaining part of the interaction, from the parts not in direct contact, can be evaluated using 

mean-field and continuum approaches from colloid science (Power et al. 2019).

Although strong assumptions such as pairwise additivity of the AA-surface potentials may 

affect the absolute adsorption energies, they are still robust in relative terms and allow for 

screening thousands of molecules, ranking them on the basis of how strongly they attach to 

the specific surface. This ranking constitutes a unique fingerprint of the material’s surface, 

which can be related to its activity toward food components. Using the same bottom-up 

approach, one can engineer an ultra-CG model [united AA (UAA)] that closely reproduces 
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the total protein–protein interaction energy profiles obtained in the united-atom (UA) model 

(Power et al. 2020). The UAA model typically requires 5 to 30 UAAs to capture the 

geometry and reproduce the adsorption characteristics of the original protein. This second 

coarse graining can be based on the mass distribution in the complete protein and then be 

optimized by tuning the protein diffusion coefficients to those obtained using the UA model. 

The interaction potentials with the surface can be derived from the UA interaction map by 

least-squares minimization of the deviations between the UA and UAA models. The UAA 

model is then suitable for modeling competitive protein adsorption and formation of the 

protein corona. Examples of the all-atom, UA, and UAA models for the same protein are 

shown in Figure 6.

Recent studies using this technique have found mean adsorption free energies on metals like 

gold and silver, as well as on metal oxides of the order of 102–103 kJ/mol (Power et al. 

2019) for common globular proteins, and were in agreement with the Vroman effect, i.e., the 

replacement of small and abundant proteins on the surface by larger ones during the 

competitive adsorption process (Vroman & Adams 1969).

Nanotechnology in food.—Various nanoscale technologies are used to process, package, 

and enhance food materials (Chellaram et al. 2014). NP additives can be in the form of 

nanoemulsions for enhanced delivery of nutrients or nanoemulsions to serve as excipients 

(stabilizers) for longer shelf life and preservation of color, texture, and flavor. One of the 

primary factors in the design of NPs for food applications is the oral bioavailability (BA) of 

bioactive compounds in food. There is a need to better understand the fate of bioactive 

compounds during their passage through the gastrointestinal tract (GIT) to formulate optimal 

excipient foods to enhance their oral BA. The science behind NP transport through GIT is a 

multiscale problem. An integrated approach to describe the transport mechanism is to 

account for the main factors limiting the oral BA of bioactive compounds (He & Hwang 

2016, Salvia-Trujillo et al. 2016). The model can be expressed qualitatively through the 

equation BA = B* A* T*. Here, BA is the oral bioavailability of a particular bioactive 

compound, B* is the bioaccessibility, A* is the absorption, and T* is the molecular 

transformation (McClements et al. 2015). While the first two terms, B* and A*, describe the 

transport and thermodynamic factors in the accessibility and absorption processes, the third 

factor T* accounts for the fraction present in the active state after any changes in the 

molecular structure that might have occurred during digestion. Factors determining B*, A*, 

and T* are governed by the fundamental mechanisms by which NPs interact with human 

physiology. The mechanisms involve (a) overcoming transport barriers such as through 

mucus layer, tight junctions between epithelial cells, and bilayer membranes of cells; (b) 

interaction of NPs with active transporters and cellular efflux pumps; and (c) the 

transformation of bioactive compounds into more or less active forms because of 

biochemical or metabolic mechanisms. Analogous multiscale considerations in vascular 

transport of NPs for drug delivery have been discussed under the umbrella of 

pharmacokinetic and pharmacodynamic models (Ayyaswamy et al. 2013, Li et al. 2010). As 

shown in other fields such as drug delivery (Blanco et al. 2015), multiscale modeling 

(Farokhirad et al. 2017) can serve as a quantitative platform for mechanistic models that 

account for BA and help guide rational design of NPs in food nanotechnology. Finally, a 
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clearer view of the potential hazards associated with the functionality and applicability of 

NPs in food is imminently needed to establish regulatory policies on the safety of food 

nanotechnology (Dimitrijevic et al. 2015, Gallocchio et al. 2015). The progress in the safety 

assessment of nano-enabled foods can be achieved via knowledge of the relationships 

between structure and activity of the NPs.

Protein–Sugar Interactions

Two general types of interactions can occur between proteins and saccharides corresponding 

to the reducing and nonreducing nature of the sugar. The former, essentially the Maillard 

reaction, starts with a carbonyl (possibly from an aldo or keto sugar) interacting with a 

primary amine (often from a protein). This covalent interaction starts a cascade of reactions 

producing, e.g., aroma compounds, reducing compounds, and pigment. Conversely, 

noncovalent interactions between nonreducing sugars and proteins are involved in 

phenomena such as those that preserve protein structure under conditions of low water 

content. In this section, we discuss recent studies on dry heating of dairy proteins, where 

even residual amounts of reducing sugars can lead to dramatic changes in protein 

functionality. We then present MD studies exploring noncovalent protein-sugar interactions 

(specifically trehalose).

Reducing sugar–protein interactions.—As recently reviewed by Guyomarc’h et al. 

(2015), studies have shown that dry heat–induced denaturation/aggregation of whey proteins 

results in extensive protein aggregation, with the quality of the final protein ingredient 

depending on both the extent and size of protein aggregates formed during heat treatment, 

itself highly sensitive to the physicochemical conditions of the medium and potentially the 

protein ingredient history. For example, the extent of heat treatment (time and temperature; 

Norwood et al. 2017), the water activity, and the pH of the powder (Gulzar et al. 2011) all 

seem to dramatically affect the reaction rate and the nature of the end products formed. In 

this context, the impact of residual sugars found in protein ingredients has been scarcely 

investigated. Although industrial WPI have highly variable lactose contents, with most 

powders containing 2% lactose or less, most concentrates have lactose contents above 3.5%, 

with a few as high as 10%, and questions remain about the impact of these sugars on the 

protein aggregation mechanism (Gulzar & Jacquier 2018, Norwood et al. 2017). Although 

dry heating results in extensive protein aggregation, and the size and stability of aggregates 

depend on the sugar content and covalent crosslinks (X–X) other than disulfide bonds (S–S), 

the exact nature of these interactions is not known. This is illustrated in Figure 7.

The bond creation and cleavage associated with reducing sugar–protein interactions are QM 

in nature, yet the computational cost of a quantum simulation of an entire sugar–protein 

complex is prohibitive. Fortunately, indirect treatments are increasingly possible and include 

mixed QM/MM approaches (Lu et al. 2016), in which only a small region where quantum 

effects are important is treated at a quantum level, and the others are treated in the same way 

as a standard MD.

MD simulations using neural network–based potentials can also simulate large quantum 

systems (Singraber et al. 2019) but are currently limited to systems having no more than four 
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different atomic species, precluding their use for the Maillard reaction. However, this 

limitation may soon be overcome. It is also possible to glycolate specific residues within a 

protein using software such as the CHARMM-GUI (Jo et al. 2008) and explore the 

properties of the resulting system. Such a pragmatic approach is reasonable when one knows 

which residues are glycosylated.

The protective effects on proteins of nonreducing disaccharides.—When 

proteins are embedded in highly concentrated solutions or glassy matrices of nonreducing 

disaccharides such as sucrose and, in particular, trehalose, they are preserved from damage 

due to freezing, heating (Ohtake & Wang 2011), or dehydration, resulting in the preservation 

of coloration and aroma in related products. As a consequence, trehalose is increasingly used 

in the food industry, pharmaceuticals, and medicine.

Trehalose effectiveness has been related to its high glass-transition temperature (Green & 

Angell 1989) or to specific interactions with biomolecules involving a substitution or 

modification of their hydration layers [e.g., water replacement (Carpenter & Crowe 1989) or 

entrapment (Belton & Gil 1994) hypotheses]. Furthermore, the high viscosity of sugar 

matrices inhibits large-scale protein motions that lead to structural damage, inactivation, and 

denaturation (Sampedro & Uribe 2004). The above mechanisms are not mutually exclusive 

and have been deduced from experimental observations on concentrated solutions or glassy 

host matrices containing trehalose, sucrose, maltose, and mono- and polysaccharides at 

different hydrations, temperatures, and compositions (Cordone et al. 2015, Giuffrida et al. 

2018). Kinetic and thermodynamic aspects have also been addressed (Semeraro et al. 2017), 

with the goal of understanding the preserving mechanisms from the atomistic level to the 

supramolecular and macroscopic levels.

The steps involved in simulating nonreducing sugar–protein complexes in solution are the 

same as those described in preceding sections. MD simulations have to date provided hints 

about the effects of trehalose on protein internal dynamics, indicating a key role of residual 

water on local flexibility. The analysis of solvent partitioning and hydrogen bond (HB) 

patterns at the protein–solvent interface (Cottone 2007) suggests that preservation 

effectiveness is mostly due to the sugar’s ability to anchor a thin water layer at the protein 

surface, preserving the native solvation. Here, water molecules bridge protein and matrix 

dynamics, reducing protein nonharmonic motions, which results in stabilization of the 

protein conformation compared to water-solvated systems. However, a few direct protein–

trehalose HBs have been detected at very low hydration, allowing visualization of the 

interchange between water entrapment and water replacement models, depending on 

hydration. To this end, standard sampling state-of-the-art MD simulations have proven 

adequate, provided a careful choice of FFs for all the components (Weng et al. 2019).

CONCLUSION AND OUTLOOK

The power of particle-based simulation to elucidate molecular processes taking place in 

food, from processing and storage to taste, BA, and digestion, has grown dramatically 

because of improvements in molecular and CG FFs, rare-event methods, mesoscale and 

multiscale representations, software and methods for system preparation, fast simulation 
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engines that scale extremely well with increasing numbers of computing cores/threads, and 

inexpensive massively parallel computers. A highly promising development is the emerging 

hybrid approaches that combine physics-based multiscale materials modeling with statistical 

modeling (QSARs). These approaches connect advanced molecular descriptors to the 

functionalities and action of food constituents and thus extend the reach of the traditional 

schemes. In this context, the role of machine learning is pervasive, ranging from 

improvements in FFs to the capability to relate atomic or molecular features to physiological 

effects. Notwithstanding this progress, a number of challenges remain:

• Obtaining equilibrium structures remains very challenging for large or 

transmembrane proteins even for NMR, X-ray, or cryo-electron microscopy.

• Mesoscale simulations of systems in which conformational changes take place 

and hydrogen bonding effects are important remain difficult.

• Simulations at constant pH are still challenging, particularly where 

conformational changes occur.

• Estimating kinetic properties from simulations longer than a millisecond is still 

challenging, although tremendous progress has been made in the field.

• Simulations of systems far from equilibrium (e.g., systems subject to flow) are 

difficult to justify theoretically yet important for processing.

• Simulating quantum effects for large biosystems relevant to food science 

(involving hundreds of AAs) remains a major challenge.

• Organic–inorganic interactions (e.g., protein–metal) are difficult when good FFs 

are not available.

• Machine learning applications in soft matter are in their infancy, and more work 

is needed, including systematic dimensionality reduction, a problem shared with 

order parameters and rare-event methods.

• Simulation is very powerful when combined with sophisticated sampling 

methods, but these are still very much the domain of experts, and much needs to 

be done to make them accessible to nonexperts.
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Figure 1. 
Molecular interactions accounting for food science phenomena across the length scale and 

timescale and appropriate particle-based simulation methods bridged by quality structure–

activity relationships (QSARs).
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Figure 2. 
A schematic showing some of the types of molecular descriptors, such as molecular 

connectivity, formula, geometry, chemical fragments, physicochemical properties, and 

biological activity, that can be used to fit a quantitative structure–activity relationship 

(QSAR)/quantitative structure–property relationship (QSPR) model to make predictions.
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Figure 3. 
Multiscale hybrid molecular mechanics (MM)/coarse-grained (CG) simulation approach for 

human G-protein-coupled receptors (hGPCRs). Here, a fine level of detail is retained for the 

binding region of the receptor and a coarser level of detail is used for the rest of the system. 

Figure courtesy of Ksenia Korshunova.
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Figure 4. 
The graphic representation of the GLP-1R (glucagon-like peptide-1 receptor). The red loops 

are accelerated by temperature-accelerated molecular dynamics. In addition to the loops, the 

mass center of the extracellular domain (ECD) is accelerated (yellow region), the 

intracellular domain (ICD) is the lower part of the protein in the vicinity of and including 

loops 2 and 4, and the transverse membrane domain lies between the ECD and ICD. The 

lipid membrane, water, and salt ions are not rendered for clarity.
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Figure 5. 
Snapshots from molecular dynamics simulations of rebaudioside-A, highlighting AH-B-X 

motifs presented at different temperatures. Motif 1 only appears at low temperature, whereas 

motif 2 is present at low and high temperatures, but not at the sweetness minimum.
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Figure 6. 
(a) All-atom, (b) united-atom, and (c) united–amino acid representations of bovine β-

lactoglobulin A (PDB_ID 1CJ5). The united-atom model is used to model the whole protein 

adsorption on solid foreign surfaces, while the united–amino acid model is necessary to 

model competitive adsorption of proteins. In a multiscale modeling framework, each coarse-

grained model is parametrized using the more detailed model to preserve their molecular 

specificity.
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Figure 7. 
Illustration of the impact of residual sugars on the size and extent of dry heat–induced 

denaturation/aggregation of whey proteins.
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