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Abstract: Deficiency of correctly implemented and robust defence leaves Internet of Things devic-
es vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial 
examples when attacking Machine Learning models used in a cloud data platform service. Adver-
sarial examples are malicious inputs to ML-models that provide erroneous model outputs while 
appearing to be unmodified. This kind of attack can fool the classifier and can prevent ML-models 
from generalizing well and from learning high-level representation; instead, the ML-model learns 
superficial dataset regularity. This study focuses on investigating, detecting, and preventing adver-
sarial attacks towards a cloud data platform in the cyber-physical context.

Keywords: Artificial Intelligence, Cloud Data Platform, Adversarial Attacks, Defence Mecha-
nisms, Machine Learning

Introduction
Artificial Intelligence (AI) is a widespread concept indicating the potential for significant societal 
impact. The term ‘AI’ has been in use for decades. AI can process a large quantity of data, and it 
has novel applications. AI has been utilized in various fields, for example, in construction, educa-
tion, healthcare, and transportation. In the healthcare sector, AI has provided accurate diagnoses 
to prevent skin cancer, as well as treatment recommendations and surgical aid. In the field of 
Cyber-Physical Systems (CPS), AI can assist in finding anomalies and in providing predictions to 
reduce maintenance costs. It can also function as a defence against cyberattacks.

Accessible and correct data is paramount to have a properly functioning AI. Cybersecurity provides 
means to access the data in different ways. Effective cybersecurity controls provide a cyberspace 
infrastructure that is reliable and resilient. Lacking or absent controls lead to insecure cyberspace. 
Cybersecurity is applied to prevent, detect, and recover from damage to Confidentiality, Integrity, 
and Availability (CIA) of information in cyberspace. To use all these factors, people, processes, 
and technologies are used (Bayuk et al. 2012).

In a CPS, smart sensors automatically measure usage, functions, and variables describing the state 
of a building (Schmidt & Åhlund 2018). Due to decreased costs of cloud computing, IoT sensors, 
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and sensor networks, these techniques are becoming more common. Through provided benefits, 
they are gaining a foothold in a CPS context. The ample data gathered, such as water consumption, 
from CPS provides a significant asset to smart-service providers. The services provide added value 
and benefits to end-users, and they might increase cost savings and gains to organizations. Smart 
services can be, for example, an AI-based predictive heating or air conditioning system, or a digital 
caretaker. The possible advantages of the gathered data in implementing smart services are almost 
endless.

Cybercriminals will have a difficult time if the architecture of services is designed well, and data 
CIA issues have been taken seriously. Unfortunately, a significant amount of IoT devices and 
sensors are neither secure nor encrypted. They are not easily seen as vulnerable devices as a re-
markable amount of them do not have any user interface. These rather new attack surfaces act as 
entry points from which cybercriminals conduct different kinds of cyberattacks. To be sure, these 
attackers are continuously looking for new ways to exploit vulnerabilities; and in looking for vul-
nerabilities to exploit, these perpetrators can find and can utilize even more sophisticated attack 
vectors (for example, AI-based attacks).

Several defence mechanisms presented in studies mainly focus on computer vision, and there exist 
only some mechanisms designed for the cybersecurity applications in mind. There is an acute need 
for developing defensive mechanisms to detect and to prevent cyberattacks, for example, Adver-
sarial Attacks (AA), targeting Machine Learning (ML) model classifiers used in the CPS context. 
The increase of AAs towards ML-models has revealed the security and privacy issues of ML. In 
the smart-building context, for example, there exists a chance that, with AA, a perpetrator could 
fool the ML-model and gain entry to a building.

This paper is constructed in the following way. This first section, the introduction, presents the 
main concerns caused by adversarial attacks in the smart building’s context. In the following sec-
tion, the authors present the background of Artificial Intelligence and Machine Learning. Next, an 
explanation of cybersecurity is followed by a discussion of smart buildings and smart services. 
The authors then review by explaining the adversarial attack methods and their defensive methods, 
respectively. Finally, they discuss their findings and conclude.

Artificial Intelligence and Machine Learning
Artificial intelligence estimates a function that can include complex representations based on the 
data. Sometimes the results of well-made AI systems seem to mimic human-like functioning; 
nonetheless, the use and performance of AI depend on the quantity and quality of the data available 
and the desired target outcome. These systems work in a specific limited domain of input and out-
put values and can be used to automate tasks to a certain degree. To further automate the processes 
of AI-systems, research fields called Machine Learning and Deep Learning (DL) have arisen. ML 
attempts to make AI systems more generalizable, allowing the system to learn and to adapt dynam-
ically during the model’s lifetime (Jordan & Mitchell 2015). DL is a subfield of Machine Learning. 
‘DL’ refers to algorithms that attempt to capture the higher concepts of data.

There exist many algorithms used for AI development and learning, such as Neural Networks 
(NN). NN are the go-to mathematical construct to create Artificial Intelligence solutions for var-
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ious tasks. This is a model that consists of interconnected nodes, which have weights associated 
with each connection and organized layers called the input layer, hidden layer, and output layer. 
Simplistically, data flows from the input layer, where it gets transformed into the model’s inter-
nal representation to the hidden layer. The hidden layers operate on these values by changing the 
weights of the nodes with activation functions, which then direct the results to the next layers. The 
output layer presents the results in a more human-readable form.

Given a small sample, Generative Adversarial Neural networks (GAN) can be used to increase 
the amount of data to a larger one where the samples are similar the original samples. GANs are 
a Machine Learning system of at least two NN models put against each other. According to Rad-
ford, Metz & Chintala (2016), one of the NNs (a generator) creates outputs, and the other NN 
(discriminator) classifies inputs it gets from the generator and database. In an attempt to raise their 
performance metrics score, they will eventually improve: the classifier will label input data more 
accurately, and the distribution of the output of the generator will shift closer to the distribution of 
the original data.

Cybersecurity
The word ‘cyber’ comes from the Greek word κυβερεω (kybereo) meaning to direct, guide, and 
control. ‘Cyber’ refers to the digital world, including the surroundings and being present in our 
daily lives. Cybersecurity measures are associated with risk management, vulnerability patching, 
and improving system resilience. There are various research topics available in cybersecurity that 
include techniques associated with detecting network behaviour anomalies, malware, and IT se-
curity. (Lehto 2015). Cybersecurity is a collection of tools, policies, security concepts, security 
safeguards, guidelines, risk-management approaches, actions, training, best practices, assurance, 
and technologies that can be used in protecting an organization’s assets (von Solms & van Niekerk 
2013).

There is no globally accepted definition of ‘cybersecurity’, although the term is widely used. ‘Cy-
bersecurity’ can be defined as a range of actions taken in defence against cyberattacks and their 
consequences and includes implementing the required countermeasures. Cisco (2020) defined 
cybersecurity as a practice of protecting systems, networks, and programs from digital attacks. 
Kaspersky (2020) defines cybersecurity as follows: “Cybersecurity is the practice of defending 
computers, servers, mobile devices, electronic systems, networks, and data from malicious at-
tacks”. Paloalto Networks (2020) defines cybersecurity as follows: “Cybersecurity refers to the 
preventative techniques used to protect the integrity of networks, programs and data from attack, 
damage, or unauthorised access”.

Cyberattacks are often focused on accessing, changing, or destroying sensitive or critical infor-
mation, blackmailing, or interrupting normal business operations. Cybersecurity is built on the 
threat analysis of an organization or institution. The structure and elements of an organization’s 
cybersecurity strategy and its implementation program are based on the estimated threats and risk 
analyses. In many cases, it becomes necessary to prepare several targeted cybersecurity strategies 
and guidelines for an organization (Lehto 2015).

Preparations to counter cyber threats are essential and must focus on building sufficient protection 
towards the adverse effects of threats. Successful preparations can be implemented by increas-
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ing common knowledge, improving operational capability, and maintaining security. Cyberattacks 
may not be prevented entirely. Therefore, the critical issues are being able to maintain the ability to 
function under attack, being able to stop the attack quickly, and being able to restore the organiza-
tion’s functions to its pre-incident healthy state. Finding a solution to these issues requires proper 
legislation and widely open discussion (Limnéll, Majewski & Salminen 2014).

Smart Buildings and Services
Smart buildings are structures that optimize energy consumption with the use of sensors and a 
smart meter. The meter relays information between the building and smart grid, which is a con-
ventional grid that is utilizing IT for the optimization of energy consumption (Alam, Reaz & Ali 
2012). Smart buildings with their corresponding IoT devices can be perceived as a type of CPS. 
According to Legatiuk and Smarsly (2018), sensors, actuators, and the building structure itself 
belong to the physical domain, and the functioning of the structure with proper controlling actions 
calculated in the cloud is known as the cyber domain of the CPS. There are different types of build-
ings with various kinds of usages; therefore, there are many different kinds of users. Thus, smart 
buildings are a CPS utilizing IoT technology to minimize energy consumption and to maximize 
inhabitants’ satisfaction under various decision criteria.

Smart services might be best thought of as applications that automate the handling of data and 
somehow benefit the entire system or subsystem—be it a CPS or just a cloud-based system. The 
underlying technology for smart services, besides web technologies, are smart contracts. These 
services should consume and produce semantic data, while having elements, such as context-based 
adaptation and rules, which make these services smart (Maleshkova et al. 2019).

To rationalize the use of smart buildings, the mass of data generated by the buildings and the users 
ought to be used. The big data holds valuable information, such as information about the condition 
of a structure and utilization information, for example. The big data might be stored locally, or in 
the cloud; however, access to it tends to be limited, and the data is rarely used. For the designed 
smart services, the Data-as-a-Service platform might offer a possible solution for the data access 
and use. The DaaS platform operates by indexing the different data sources, such as databases, and 
enabling access to their data. Data does not need to be moved, which means companies and inhab-
itants can simultaneously offer their data for use or sale while guarding it. This would guarantee 
the data necessary for the development of smart services and the continued usage of the services.

Adversarial Attacks and Defence
Adversarial attacks
An adversarial attack happens when an adversarial example is sent as an input to a machine-learn-
ing model. An adversarial example can be seen as an instance to the input with features that delib-
erately cause a disturbance in an ML-model to deceive the ML-model into acting incorrectly and 
into making false predictions (Ibitoye, Shafiq & Matrawy 2019). Deep learning applications are 
becoming more critical each day, but they are vulnerable to AA. Szegedy et al. (2013) argues that 
making tiny changes in an image can allow someone to cheat a deep-learning model to classify the 
image incorrectly. The changes can be minimal and invisible to the human eye and can eventually 
lead to considerable differences in results between humans and trained ML-models.
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The perpetrator may have perfect, limited, or zero-knowledge concerning the adversarial setting. 
In the case of perfect knowledge, the perpetrator has complete knowledge about features and 
trained models, including classifier type. When the knowledge is limited, features and the classifier 
are known, but not the training data of the classifier. When the knowledge is zero, the type of the 
classifier and the detector’s model parameters are unknown. This kind of attack type is considered 
a black-box attack (Biggio et al. 2013).

Adversarial attack type can be exploratory, evasive, or causative (poisoning). Exploratory attacks 
are so-called white-box attacks, in which the adversary knows the classifier algorithm or training 
data. Exploratory attacks can also be black-box attacks, where the adversary does not know the 
classifier algorithm or have any knowledge about training data. In evasion attacks, the adversary 
focuses on specifying the data samples, which may be already misclassified by the target classifier. 
An example of an evasive attack is spam email generation to evade spam detection filters. The 
original classifier may be trained with limited training data and then retrained with an additional 
one. The causative attack manipulates the data at the training time and causes misclassification 
consequences. These attacks can be used together or individually (Sagduyu, Shi & Erpek 2019).

White-box attacks require perpetrators to understand the exact structure and parameters of the 
victim model in decision-time attacks or learning algorithms in poisoning attacks. In the white-
box scenario, the perpetrator has full access to the victim’s model, and he or she knows the ML 
algorithm being used, including the model’s required parameters. In the poisoning attacks, he or 
she knows the hyperparameters of the learning algorithm. In reality, to have such detailed knowl-
edge of the learning system seems suspicious. There may be indirect ways to obtain an adequate 
amount of knowledge about a learned model to apply a successful attack scenario. In case of mal-
ware evasion attack, a set of features may be public through published work. Datasets used to train 
the detector might be public, or there might be similar ones publicly available. The learner might 
use a standard learning algorithm to learn the model, such as deep NN, random forest, or Support 
Vector Machine (SVM) by using standard techniques to adjust hyperparameters. This may lead to 
the situation that the perpetrator can get a similar working detector as the actual one (Vorobeychik 
& Kantarcioglu 2018).

One of the emerging threats is a model extraction attack, in which a perpetrator steals a remote-
ly deployed service provider’s black-box ML-model, is given oracle prediction access, by ‘re-
verse-engineering’ it to reproduce a target model which almost perfectly replicates the victim’s 
model (Khrishna & Papernot 2020). According to Kundu (2019), the perpetrator only requires 
access to predictions to conduct the attack, and the goal is to learn close approximation f’ of f by 
extracting model parameters via querying the model with the minimal number of queries. The 
service provider’s prediction APIs are used when performing the attack. The stolen copy of the 
ML-model can be used, for example, as a reconnaissance step to inform attacks in the future, to 
extract private information contained in the training data, to misuse paid prediction services, or to 
develop transferable adversarial examples to degrade the prediction quality of prediction services 
concerned (Khrishna & Papernot 2020). This kind of attack can pose a significant threat to CPS 
using ML-based predictions adjusting, for example, HVAC.

When conducting the model extraction attack, the perpetrator sends a substantial number of que-
ries to the service provider’s API. Queries are unlabeled inputs, which the perpetrator is looking 
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to have labelled. The API will return the victim model’s prediction. The perpetrator needs to have 
access to the model’s label, and then he or she is able to collect the predicted outputs returned by 
API. These queries and outputs form a pair, which can be used by the perpetrator as a training 
dataset to build a copy of the extracted victim model. In general, the training data is not known 
to the perpetrator beforehand. In model extraction, perpetrators have limited access to the victim 
model, and, usually, they have access to the label predicted by the model. The perpetrator is the 
most interested in the accuracy of the victim-extracted model (Khrishna & Papernot 2020).

ML-models are also vulnerable against Model Inversion Attacks (MIA), in which a perpetrator 
tries to extract private and sensitive inputs by leveraging the outputs and ML-model (Aïvodji, 
Gambs & Ther 2020). According to Yang et al. (2020), the perpetrator is expected to have either 
white-box or black-box access to the model. In the case of white-box access, the perpetrator knows 
both the internal structure of the model and the clear-text model without stored feature vectors. If 
the perpetrator has only black-box access, he or she can solely make prediction queries on selected 
feature vectors of the model and can collect the responses. The goal of the perpetrator is to extract 
the training data or feature vectors of the training data from the model concerned. Zheng et al. 
(2019) state that the perpetrator may conduct a model extraction attack before a model inversion 
attack to restore model parameters, such as model type or prediction confidence provided by ser-
vice provider’s API. After the model is extracted, the perpetrator can then conduct MIA to learn 
the training dataset, which compromises the privacy of data contributors. In addition to model 
inversion attack, the perpetrator can conduct an evasion attack to avoid a prediction result by mod-
ifying its query or by trying to learn a similar model utilizing query-response pairs to simulate the 
original model (Yang et al. 2020).

In the most realistic attack scenario, the perpetrator has access to the victim model’s parameters 
only through a limited interface. Therefore, there is a need to utilize additional strategies to imple-
ment attacks without a way to access the victim model’s gradients. For example, the model’s gradi-
ents are not available in the case of black-box attacks. The perpetrator can train another substitute 
model that is different from the target model to compute the gradients needed for the attack. If the 
substitute and targeted models operate similarly, there is a high probability that the targeted model 
will misclassify the adversarial example of the substitute model.

To implement this scenario, the perpetrator needs to collect and label his or her own training set. 
The scenario is relatively expensive to implement due to the need for a great number of real input 
examples and the effort required to label each example, but the benefit is a lack of need to have 
access to the victim’s model. If the perpetrator can send queries to the victim’s model by sending 
it inputs and by watching the returned outputs, he or she can send inputs generated by suitable 
algorithms to reverse engineer a target model with small (or no) amount of training data. The per-
petrator does not need to know the architecture used to create a victim’s ML-model, which can be 
based on technologies, such as utilizing an SVM or a NN (Papernot et al. 2017).

In the case of black-box attacks, selecting and reducing the number of inputs the perpetrator sends 
to API to evade detection can be challenging. Papernot et al. (2017) presented a strategy (Paper-
not-attack) to produce synthetic inputs by using some collected real inputs. Many studies are fo-
cusing on research utilizing images as datasets (MNIST or CIFAR). In such a case, the perpetrator 
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can, for example, fetch several pictures of the target dataset and use the augmentation technique 
for each of the pictures to find new inputs that should be labelled with the API. The next step is to 
train a substitute by sequentially labelling and augmenting a set of training inputs. After the substi-
tute is accurate enough, the perpetrator can launch white-box AAs, such as FGSM (Fast Gradient 
Sign Method) or JSMA (Jacobian Saliency Map Approach), to produce adversarial examples to be 
transferred to the targeted model (Goodfellow, McDaniel & Papernot 2018).

A white-box attack uses the target model’s gradients in producing adversarial perturbations. FGSM 
was introduced by Goodfellow, McDaniel & Papernot (2018) to generate adversarial examples 
against NN. FGSM can be used against any ML-algorithms using gradients and weights, thus pro-
viding low computational cost. The gradient needed can be calculated by using backpropagation; 
and if internal weights and learning algorithm architecture is known, FGSM is efficient to execute 
(Co 2018). FGSM fits well for crafting many adversarial examples with major perturbations, but 
it is also easier to detect than L-BFGS and JSMA; therefore, L-BFGS and JSMA are stealthier 
perturbations, but their drawback is higher computational cost than FGSM. Defence mechanisms 
can prevent a relatively considerable number of FGSM and JSMA attacks, but L-BFGS is a brute-
force-based white-box method, which has a high success rate despite a defence technique if time 
is not a critical asset (Goodfellow, McDaniel & Papernot 2018).

The perpetrator might attack against the CPS (smart building) using an AA, assuming that the 
defending AI system is capable of learning. For example, slowly inputting false data will eventu-
ally change the distribution of data used in the training of the new and ‘improved’ defensive AI. 
The defensive AI-model will continue to encounter like data used in training during its operation. 
If the AI were to protect, for example, an intelligent heating system of the CPS, it would end up 
functioning poorly. Depending on what is the perpetrator’s end-goal, the heater could stop heating 
on the minimum acceptable level during times when indoor heating would be most desired in the 
inhabitant’s view. The perpetrator might also try to fool the smart building’s entry control if it re-
lies on image data. For example, Sharif et al. (2016) managed to pose as another person by wearing 
specially designed adversarial glasses.

Adversarial attack defence mechanisms
Defending from adversarial attacks is challenging. Empirical studies state that conventional reg-
ularization strategies—such as dropout, weight decay, and distorting training data with random 
noise—do not present a solution to the problem. According to Samangouei, Kabkab & Chellappa 
(2018), several defences have been presented to reduce the effect of adversarial attacks. Defences 
against adversarial attacks can be divided into the following areas: 1) modifying the training data 
to make the classifier more robust against attacks (adversarial training augmenting the training 
data of the classifier with adversarial examples), 2) adjusting the classifier training process to de-
crease the size of gradients, and 3) reducing adversarial noise from the input samples. These meth-
ods are efficient against white-box or black-box attacks but cannot cover both types of attacks. In 
addition, they are designed to avert specific attack models and, therefore, are not effective against 
new types of attacks.

Adversarial training injects perturbed inputs, such as adversarial examples, into training data to 
increase the robustness of the ML-model. The goal of adversarial training is to defend from ad-
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versarial perturbations by training a classifier with adversarial examples. This method can also be 
applied to large datasets when perturbations are crafted using fast single-step methods. Adversarial 
training generally attains adversarial examples by utilizing an attack, such as FGSM, and then 
trying to build adequate defence targeting such an attack. The trained model can indicate poor gen-
eralization capability on adversarial examples originated from other adversaries. When combining 
adversarial training on FGSM adversary with unsupervised or supervised domain adaptation, the 
robustness of the defence could be improved. Unfortunately, the robustness of adversarial training 
is possible to evade by applying a joint attack with indiscriminate perturbation from other models 
(Song et al. 2019).

The robustness that can be reached by adversarial training leans on the strength of the adversarial 
examples utilized. Training a model by using a fast non-iterative FGSM-attack produces robust 
protection towards non-iterative attacks, but not against PGD-based adversarial attacks. PGD-
based adversarial training can be considered strong enough to sustain against powerful attacks 
and is considered a state-of-the-art defence model. Despite shortcomings of adversarial training, it 
stays among one of the few efficient methods to strengthen a network against attacks. However, its 
high computational complexity and cost can prevent or at least decrease utilizing it as a robust de-
fensive method (Shafahi et al. 2019). According to research, a deeper understanding of adversarial 
training and a clear direction for further improvements are also principally missing.

Defensive distillation can be considered one of the adversarial training techniques providing flex-
ibility to an algorithm’s classification process, making the model less prone to exploitation. For 
example, Papernot et. al. (2016) have presented a defence distillation method to reduce the input 
variations which make adversarial crafting process more difficult, helping DNN to generalize the 
samples outside the training set and to reduce the effectiveness of adversarial samples on DNN. 
The distillation method transfers the knowledge from one architecture to another by decreasing the 
size of DNN. In distillation adversarial training, one model can be trained to predict the output of 
probabilities of another model trained on an earlier baseline standard. Defence distillation provides 
the advantage of being compliant with unknown threats. Usually, the most efficient adversarial 
defence training methods demand interminable input of signatures of known vulnerabilities and 
attacks into the system. The distillation provides a dynamic method requiring less human interven-
tion. If a perpetrator has enough computing power available with the proper fine-tuning, he or she 
can utilize reverse engineering to find fundamental exploits. Defence distillation models are also 
vulnerable to poisoning attacks in which a malicious actor corrupts a preliminary training database 
(DeepAI).

Adversarial noise reduction from the input samples concerns the most image datasets and related 
applications. As time-series data, for example, weather or sensor data, is generally uni-variate or 
multi-variate data: the noise present in the data is in the form of missing values or different kinds 
of signs. In this case, missing value-related techniques, such as moving average or normalization, 
can be utilized. According to Moosavi-Dezfooli, Shrivastava & Tuzel (2019), measures to defend 
against adversarial perturbations have recently taken place by using stacked denoising auto-en-
coders to mitigate perturbations. The same method has been under research to denoise adver-
sarial examples. Alternative generative models (GAN) have also been used to project malicious 
samples of diverse datasets. Unfortunately, these methods have mainly been applied to datasets 
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such as MNIST, CIFAR, or ImageNet, and there is no guarantee that attack or defence strategies 
could work on other kinds of data. However, an interesting observation is that an ordinary JPEG 
or JPEG2000 compression algorithm can act as a potential defence measure against adversarial 
examples, and both increase the classification accuracy of adversarial images and efficiently work 
in defiance of Basic Iterative Method (BIM) and FGSM (Ayademir, Temizel, & Temizel 2018).

Defence against model extraction is a challenging problem. Khrishna & Papernot (2020) presented 
two defence strategies to defend ML APIs against model extraction from naïve adversaries, but the 
models concerned are effective only in limited settings and if they are working to some degree. 
The first of these defences is detecting queries to be used during the model extraction attack. An-
other strategy is watermarking predictions made by the service provider’s API to provide owner-
ship-extracted models. According to Takemura, Yanai & Fujiwara (2020), watermarking can only 
verify whether an original model has been stolen through a substitute one and whether, therefore, it 
cannot subvert the extraction process itself. A perpetrator can keep his or her own substitute model 
private, making the utilization of watermarking inadequate. The perpetrator with an advanced skill 
can predict these defences in order to modify a suitable attack to evade the defences.

Juuti et al. (2019) presented a few defence strategies against model extraction. A first defence strat-
egy is to restrict information returned to a perpetrator by modifying model prediction. Prediction 
probabilities can be quantized or distracted to fool the perpetrator. The first practical strategy does 
not provide sufficient means of defence against model extraction attacks even without using pre-
diction probabilities. In the second strategy, the means of defence against an extraction attack is to 
gather requests from clients and to compute the feature space explored by the aggregated requests 
in order to detect the attack when the feature space exceeds a predetermined threshold. These tech-
niques do not apply to high-dimensional input spaces nor to DNN models, as they require linearly 
separated prediction classes applied to decision trees. The model extraction attack can be efficient-
ly identified by collecting stateful information of queries in ML prediction APIs. The advantage is 
that the defence does not need any information about the ML model or the training data, but it can 
be bypassed by mimicking deviations from benign distributions. Model confidentiality and stateful 
defence strategy can jointly protect ML models against adversarial ML attacks.

Model inversion attack is well-known in adversarial Machine Learning and is among the most 
malignant attacks. It contravenes data privacy providing means to infer information in the training 
dataset by taking advantage of confidence values disclosed with predictions from targeted models. 
Differential Privacy (DP) strategy has been one of the efficient countermeasures against black-box 
MIA, but the downside is that the strategy concerned mitigates the utility of the trained model 
(Evans 2018). The idea of DP is to ensure that the perpetrator cannot reckon private information 
from databases or from already disclosed models. DP impedes the perpetrator from perceiving the 
existence of specific data, for example record, by adding noise to the query responses (Bae et al. 
2019). Even if DP can be applied to protect NNs from unintended data exposure, it is not a state-of-
the-art plenary solution to stop all the threats. Homomorphic encryption combined with Bayesian 
NN have been developed among other options to endure MIA through secure NN inference (Yang 
et al. 2020). Reporting the rounded confidence values or predicted class labels without uncovering 
the confidence values could also act as a working solution.
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Conclusion
The merits of this paper are the following. The authors provided discreet background information 
concerning Artificial Intelligence and data as a platform service in the field of cybersecurity. They 
also conducted a literary review on adversarial attack methods, Machine Learning, and Artifi-
cial-Intelligence-based defences. In this conclusion, the findings are discussed in the smart build-
ings’ context and recommendations are offered to the threat posed by adversarial attacks.

Protecting smart buildings is necessary to avoid hazards caused by cyberthreats (for example, vio-
lations of privacy, data thefts, malicious acts of vandalism, insider threats, and more). Quality data 
from, for example, the cyber-physical system or IoT devices, is needed to train AI solutions. How-
ever, open-source IoT data for research purposes is difficult to attain. Data-as-a-Service platform 
and smart services might offer a solution to usability questions by helping to automate the flow of 
data and transactions related to it. Recently, vulnerabilities to input samples, such as adversarial 
examples, have been found in deep neural networks.

One way to defend dynamically is to use an ensemble of multiple differently made AI-models, 
which have been trained with quality data to combat either specific or generic attacks. The choice 
of training multiple models for the ensemble can, in some cases, improve robustness, as in the case 
of Ibitoye, Shafiq & Matrawy (2019). Use of ensemble and encryption methods, such as homo-
morphic encryption, in combination with differential privacy and neural networks, can also hinder 
model inversion attacks. In certain cases, model extraction attacks can be effectively recognized 
when stateful information is gathered from ML models or training data. Model confidentiality and 
stateful defence can together secure ML models against adversarial ML attacks.

The authors suggest that one might want to use defensive distillation to narrow the classification 
manifold. It would also be preferable to utilize GANs in the adversarial training to make the ML 
model learn the differences between real inputs and the adversarial attacks. Adversarial noise re-
moval, for example, with stacked denoising autoencoders, might also work to reduce malicious 
input effectiveness. However, applying powerful and robust defence mechanisms on ML classifi-
ers may cause high overhead that weakens the classifier performance. Challenges also arise when 
trying to transfer attacks generated for one model to other models. In the case of IoT devices, a 
dynamic and fit defence mechanism to detect and to prevent sophisticated adversaries should be 
explored. At the very least, the defence should be separated from the controlling systems.
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