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PL 35 (Agora)

Jyväskylä
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Abstract

This Work in Progress Paper studies student and exercise mod-
elling based on pass/fail log data gathered from an introductory pro-
gramming course. Contemporary education capitalizes on the com-
munications technology and remote study. This can create distance
between the teacher and students and the resulting lack of awareness
of the difficulties students encounter can lead to low student satisfac-
tion, dropout and poor grades. In many cases, various technological
solutions are used to collect individual exercise submissions, but there
are little resources for indexing or modelling the exercises in depth.
Exercise specific feedback from students may not be easily obtainable
either. In the present study, we attempt to create student-exercises
models solely on pass/fail log data by using statistical techniques. We
conclude that such data is insufficient for student modelling, but that
it can be used to credibly estimate the difficulty of programming ex-
ercises.

1 Introduction

Many programming courses include online learning environments where stu-
dents can complete exercises and write code. Such systems can practically
ensure the functional correctness of student programs [1] and some of them
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provide quality feedback on exercise specific items [2]. However, such sys-
tems, by design, reduce the dialogue between the teacher and the students
by doing tasks that would have been previously carried out by the teacher
(e.g., grading exercises). Relating this to the concepts of Transactional Dis-
tance Theory [3], automated systems are liable to reduce teacher-student
dialogue and at the same time to increase the structure, or the inflexibility
of the course, as the programs that assess student code do not often ne-
gotiate for partial credit. These factors increase the psychological distance
between students and the teacher. For the students, this can amount to
increasing learning difficulties, while, for the teacher, it can impede adjust-
ing the course progression, correcting faulty exercises and evaluating student
progress. Thus, there is a need for additional tools to help in monitoring
the course and abridging the transactional distance by tailoring content to
student progress.

In, general, it has been argued that the difficulty of programming ex-
ercises can be hard to assess and that the difficulty can be unintentional
consequence of, e.g. the choice of required program constructs [4]. There
are several approaches in the computing education community for provid-
ing tools to estimate exercise difficulties in automated fashion. For example,
Ihantola et al. [5] attempt to derive exercise difficulty from observing student
behaviour down to key press level detail. Similarly, Francisco and Paula [6]
apply data mining techniques to estimate exercise difficulty using program
metrics drawn from student submissions. Further, Alvarez and Scott [7] have
studied the student perception of exercise difficulty and identified factors that
contribution to it.

However, we believe that the exercise difficulty analysis has been most
effectively tackled in field of intelligent tutoring systems (ITS). ITS employ
precise modelling of exercises and construct statistical models of student
performance (see e.g. [8, 9]). When course exercises are modelled with high
precision, the precise modelling elements can be used to build statistical
models of student performance and learning. Techniques such as Bayesian
knowledge tracing [10], Matrix factorization techniques [11] and Learning
Factors Analysis (see [12, 13]) can be used to model student knowledge and
the difficulty of the learning items without any explicit feedback from the
student. Further, such models can, and have been used to estimate difficulty
of exercises and the difficulty program constructs required to solve them [14].

Although there are several high quality ITS systems available [15], they
appear to be mostly employed in the institution from which they originate.
Adopting new pedagogical tools and techniques is conditioned on teachers
time and the confidence of successful implementation [16]. Further, computer
science teachers are prone to perceive issues in making tools from different
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institutions ’fit’ their pedagogies [17], making elements such as ITS systems
unlikely to be adopted if they require large upfront investment such as in
depth modelling of exercises, or large changes in pedagogy.

In contrast to tutoring systems, which have a detailed model of the ex-
ercise structure (e.g., [8, 9]), many contemporary learning environments are
built around test suites and student programs are constructed in a similar
way that software is built in the industry. This is both convenient and cost
effective, as is evident in a number of such systems in production today.
Retrofitting student modelling on this kind of a system can be challenging.
Instead of large number of clear knowledge components acquired from the
precise modelling of the exercises, the log files for test suite based systems
contain information on much less precise level. Often, such logs contain only
‘pass/fail’ information for submission attempts.

In this article we study application of statistical student models to coarse
pass-fail data that is likely to be available from any learning management
system. Although we found it unworkable to build a predictive student model
based on such data, we were successful in building a credible model of exercise
difficulties with it; the model and the teacher observations are well aligned.
Due to simplicity and minimal requirements on the input data, we propose
that, with some further work, this system would be simple, and unintrusive
enough to be adopted by other programming educators.

2 Previous work

Modern student modelling approaches originate from the Carnegie Mellon
Cognitive Tutors [8,10]. The Cognitive Tutors are a group of intelligent tutor
systems that target multiple different fields such as basic level mathematics
and programming. The Cognitive Tutors are modelled according to the ACT-
R theory of human cognitive architecture [18]. In practice, Cognitive Tutors
are formalized as production rule systems which guide the student in different
tasks.

Student modelling became prominent alongside Cognitive Tutors, when
Anderson et al. provided a Bayesian model of students performance. Since
Cognitive Tutors were formulated as production systems, it was possible to
precisely model student performance with individual and atomic, produc-
tion rules [10]. After refinements, this model was able to predict student
performance accurately [19]. Besides being used as a key part of ITS, the
student model was also used to perform other studies, such as learning curve
analysis [20].

The student modelling approach proposed by Anderson et al. is called

3



Bayesian Knowledge Tracing (BKT). BKT tracks student learning by mod-
elling student knowledge in a Hidden Markov Model as a latent variable,
student responses forming the output. The properties of BKT are well un-
derstood [21] and the method is commonly used in ITS.

Other student modelling approaches have appeared since. For our pur-
poses one of the most interesting developments occurred in 2006 when Cen
et al. proposed a method called Learning Factors Analysis (LFA) [22]. LFA
consists of a logistic regression model augmented with a model searching
technique for determining proper knowledge components for the model. The
authors suggest that the heuristic search allows more precise tutoring as well
as automatic discovery of domain models. The same article also introduces
a simplified version of LFA, called the Additive Factors Model (AFM).

In 2009, Pavlik et al. proposed a method called Performance Factors
Analysis (PFA), [13]. PFA is based on logistic regression similar to LFA
and can be, considered as a further development of LFA. PFA adopts only
the statistical model from LFA while the domain modelling heuristics are
considered external to the method. As such, PFA is flexible and easy to
adapt to different predictors. In later studies by Gong et al. PFA is also
found to be more accurate than BKT [23]. Further, Gong et al. observe that
PFA produces more plausible parameter estimates than BKT. Finally, Beck
and Xiong claim in their study about limits of student modelling precision,
that PFA is quite near to the maximum attainable in precision [24].

However, contrary to claim by Beck and Xiong, there are further accuracy
gains to be had with PFA. In 2014, Galyardt and Goldin [25, 26] improve
upon PFA by noticing that more recent data of student performance has more
predictive value than older data (similar observation is also made earlier by
Gong et al. [23]). Based on their observation, Galyardt and Goldin propose
a method called R-PFA, which represents the practice history as a proportion
of recent correct responses.

3 Modelling

For the purpose of model selection, we begin by comparing the Additive
Factors Model (AFM) [22], Performance Factors Analysis (PFA) [27] as well
as its recency-weighted modification [23] and the Recent-Performance Factors
Analysis (R-PFA) [25]. We also include modifications of these models, S-only,
R-only and R-AFM, introduced in [25], in our study.

AFM, PFA and their modifications aim to predict whether or not a stu-
dent will answer an item correctly based on the student’s history of practice.
While AFM considers the total number of attempts, in PFA the number of
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successes and failures are regarded as separate explanatory variables. The
decay-weighted PFA represents the practice history as a recency-weighted
number of correct and incorrect responses while in R-PFA the key idea is to
represent the history as a proportion of correct responses.

In this study, the AFM reads as

logit(pijt) = αi + βj + γjTijt, (1)

where

logit(p) = log

(
p

1− p

)
(2)

and
pijt = P

(
Xijt = 1

)
(3)

with Xijt being a binary variable denoting a correct/incorrect response of the
student i at trial t of the exercise j, while the quantity (3) is the probability
of obtaining a success. The coefficients αi and βj represent the initial student
knowledge and exercise difficulty, respectively. The γj represents the learning
rate of given item. In (1), the variable Tijt denotes the count of past attempts
(the sum of successes and failures) up to trial t.

Similarly, PFA reads as

logit(pijt) = αi + βj + γjSijt + θjFijt, (4)

where Sijt and Fijt are the counts of past successes and failures, respectively.
Here, the coefficient θj is to be interpreted as rate of learning from failed
attempts.

In the model formulation by Gong et al. [23], a decay factor is introduced
in (4). This factor updates the counts by decreasing the importance of prior
performances. This is obtained by replacing Sijt by

Sijt(d) =
t−1∑
p=1

dt−pXijp, (5)

where d ∈ (0, 1] is a decay factor. Similar modification is also applied for
Fijt. The same value of d is used for the counts of failures and successes.

Further, Galyardt and Goldin [25,26] use a proportion of recent successes
in their R-PFA model, replacing (5) with

Sexp
ijt (d) =

∑t−1
p=1 d

(t−p)Xijp∑t−1
p=1 d

(t−p)
. (6)
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In (6), responses are weighted with an exponential kernel. While other kernels
were considered by Galyardt and Goldin, the exponential kernel was found
to give the most accurate results [26]. Further, we study a model in which
the recent count of failures is also replaced by their proportion, F exp

ijt (d). We
follow the strategy used by Galyardt and Goldin [26] and compare R-PFA
models with different decay factors for successes (ds) and failures (df ). To
make a fair comparison between the models, we use different decay factors
for successes and failures also in the PFA model.

Similarly to Galyardt and Goldin [25,26], we also consider a reduced PFA,

logit(pijt) = αi + βj + γjSijt(d) (7)

(S-only), and its counterpart in which Sijt(d) is replaced by Sexp
ijt (d) (R-only)

as well as a modification of AFM where Sexp
ijt (d) is added to set of explanatory

variables (R-AFM).
Finally, we introduce prior belief through ghost attempts (cf. [25, 26]).

That is, we stipulate g unobserved attempts Xij(1−g), . . . , Xij0 and set them
to be incorrect. This corresponds to the assumption that at time 0, a student
does not already master the exercise. Introducing ghost attempts does not
have an effect on PFA but it enables computing Sexp

ij1 . We choose g = 3 that
is smaller than the mean length of the non-empty practice histories in the
data sets.

4 Adaptation to coarse pass-fail data

The aforementioned student modelling methods assume that each task rep-
resents a single, clearly defined Knowledge Component (KC), whereas com-
mon programming exercises are most often composed of a large number of
intertwined concepts, or KCs [4]. Deducing KCs from either the functional
characteristics of a student program or the exercise text is a non-trivial task.
Multiple skills, such as mastery of programming language syntax or plan
composition skills [28] are always in play. Regardless, there are attempts to
automatically model the exercise content. These include mapping the student
solutions into sets of ontological concepts [29] used as KCs and estimating
KCs from syntactic elements present in the student submissions [14]. Nev-
ertheless, implementing approaches like these require adopting programming
language bound research software or implementing complex algorithms.

Since there are some hints that the student modelling systems presented
in previous section perform better when provided a less complex model of
exercise knowledge components [30], we propose to study simplified models
in which each exercise forms its own KC. For observing exercise difficulty,
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this choice can be justified with the assumption that, on average, all students
have similar skills when they reach a given exercise. While this can obscure
the difficulties faced by any individual student, it can effectively model the
average difficulty of the exercises.

Additionally, our choice is motivated by high availability of coarse pass-
fail data that can be used to build such models. If not ultimately accurate
in modelling the student, the system is immediately adoptable on existing
systems.

5 The data and course context

The data for this study was obtained from two eight-week elective intro-
ductory functional programming courses held during 2014 and 2015. Both
course instances followed standard course model with lectures and supervised
sessions, but also included a remote study option. The courses had program-
ming exercises that were implemented in the web browser and the submitted
answers were automatically assessed. These assessments form the data used
in this article and we call these data sets as Func1 (2014) and Func2 (2015),
respectively. Additionally, the courses followed a flexible format in which
students could attain a partial credit by completing any number of the five
available single credit modules.

The Func1 and Func2 data sets contain attempts by 129 and 179 students
on 17 and 23 different exercises, respectively. The total number of trials are
4393 and 9070, and the total number of trials per exercise ranges from 77 to
469 and from 108 to 1019 in the Func1 and Func2 data sets, respectively.

6 Results

The models discussed in Section 3 were fitted using glmer function in the R
package lme4. Both student and exercise effects in the models were fitted
as random effects.

For the Func1 and Func2 data sets, we fitted the S-only, R-only and R-
AFM models in the set {0.1, 0.2, . . . , 1.0} for the decay parameter ds. The
PFA and R-PFA models were fitted with both the decay parameters ds and
df in this set.

For the Func1 data set, the model with the lowest AIC [31] score (3692)
was R-PFA with ds = 0.6 and df = 0.3. For the Func2 data, the lowest AIC
score (8183) was obtained with R-PFA with ds = 0.5 and df = 0.4. However,
for the Func1 data, four other R-PFA models and one PFA model reached

7



AIC scores that differed from the lowest AIC score by less than two, which
indicates that there were no significant difference in performance between
these models. Similarly, for the Func2 data, the differences in AIC scores
between the model with the lowest AIC and five other R-PFA models and
one PFA model were two at maximum.

The precision in predicting submission success or failure is low for all of
the models. A low precision is to be expected due to requirement that the
exercise is correct as a whole before marking it as a success. There are many
ways for the exercise submission to fail and some of these are not related to
the student skill level nor exercise difficulty: even professional programmers
misspell names and forget parentheses [32]. Spurious errors add noise to the
input data.

Although more practice, successful or unsuccessful, should increase the
probability of a correct response [26], we found that most of the exercises
had negative slopes (θj) for the weighted proportion of failures. Also, for
the Func2 data, the model with the lowest AIC score had one exercise with
negative γj. The negative coefficients may be due to different input data
than what is ordinarily used in student modelling systems. In our study,
each exercise had a difficulty coefficient that was independent from other
exercises and the exercises were composed of larger steps than what is usual
with ITS. One could postulate that there were two modes for completing the
exercises: easy initial success or starting off on a wrong path entirely. The
effect would be similar to the one exhibited by our model; failures would not
count as extra practice but as an indication that a wrong strategy has been
chosen.

7 Practical results

We found that the exercise difficulty coefficients (βj) correlated strongly with
our experiences during the supervised sessions of the course. Manual inspec-
tion of student session logs was also in line with the model estimates. The
exercises with low βj values did cause lot more issues to students than those
with higher values. Low βj sessions were also rife with errors and awkward
solutions.

Figure 1 shows the exercise difficulty coefficient (βj) of each exercise in the
order the exercises appeared during the course. The plot forms a ’difficulty
curve’ for the course, indicating difficulties experienced by the students at
the various points of the course.

The shape of the ’difficulty curve’ (Figure 1) reveals problems with sev-
eral of the exercises in forms of unexpected peaks and valleys in the graph.
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Func2 Difficulty
Func2 Trials

Func1 Difficulty
Func1 TrialsDifficulty #Trials

Cr. 1 Cr. 2 Cr. 3 Cr. 5

Figure 1: The estimated exercise difficulties (βj) for each exercise (j) scaled
to range [0,1] along with the average number of trials before success. The ex-
ercises appear in the same order as they were presented to the students during
the course and the shaded boxes indicate the credit level of the exercises. The
missing values on Func1 indicate exercises that were added between the two
courses. The exercise that was removed between the courses is not displayed.
The the stripes indicate a broken assessment program.

For example, the IncomeSavings (bolded in the figure) exercise had a mis-
behaving assessment system. We noticed minor difficulties with this exercise
during the supervised sessions but the majority of the students worked inde-
pendently and had greater difficulties without supervision.

The interpretation of the student model is complicated by the different
submission rates between students. As observed by [33], where one student
will submit the exercise repeatedly after every minor change, other may sub-
mit it only once or twice with large changes in between. Although the model
partially accounts for the different rates, the student performance coefficients
(αi) are thus not commensurate. Further, there is no data for the more dif-
ficult exercises by students who opted for partial credit, leading to inflated
performance co-efficients for those students. As the result of these difficulties,
we did not observe a correlation between the performance coefficients and the
number of credits earned by students. However, the observed performance of
students during supervised sessions did not seem a reliable indicator on how
far the students progressed, either. We believe that external factors, such
as workload from other courses, were a more deciding factor regarding the
number of credits attained than observed proficiency in course exercises.

8 Discussion

We fitted PFA and R-PFA models and their modified versions to a pass/fail
log file data obtained from two instances of an introductory functional pro-
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gramming course. Although student models are usually fitted to a more
precise data, we found that the resulting models provide credible informa-
tion on the exercise difficulties, but not for student outcomes on the course.
We suspect that the student models obtained are reasonable, but due to dif-
fering submission rates, they are not commensurate and thus cannot predict
student outcomes.

Several avenues of improvement suggest themselves based on this experi-
ment. Naturally, modelling the exercises with more precise KCs would likely
bring advantages, but we conjecture that so would small changes to the exer-
cises and student instructions. For example, to normalize submission rates,
the students should be guided towards repeat submissions with small changes
that aim to keep the code in state where it compiles, which is a good prac-
tise in general as well. Similarly, the exercises could record partial successes
such as moving from non-compiling state to a compiling state, or moving
from state with fewer passed tests into a state with more passed tests, which
would provide more information for the model. Finally, following the argu-
ment by Luxton-Reilly et.al. [15], the modelling could be focused to exercises
with the number of concepts (or KCs) limited to few at a time. Such exercises
may also prove to have other pedagogical value.

In practice, we have found that the modelling of exercise difficulties has
resulted in improvements to the course content. It has demonstrated mal-
functioning assessment systems and weak spots in the course material. The
obtained model was also used to re-arrange the exercises in to providing for
smoother student experience in future instances of the course. At this point
of the study, it could be argued that simply looking at average exercise scores
or number of trials could have led to the similar conclusions. However, the
modelling approach allows incorporating more information in the future and
possibility of obtaining a predictive student model as well.
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