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ABSTRACT
Moving from experiments to industrial level AI software develop-
ment requires a shift from understanding AI/ ML model attributes
as a standalone experiment to know-how integrating and operating
AI models in a large-scale software system. It is a growing demand
for adopting state-of-the-art software engineering paradigms into
AI development, so that the development efforts can be aligned with
business strategies in a lean and fast-paced manner. We describe AI
development as an “unknown unknown” problem where both busi-
ness needs and AI models evolve over time. We describe a holistic
view of an iterative, continuous approach to develop industrial AI
software basing on business goals, requirements and Minimum Vi-
able Products. From this, five areas of challenges are presented with
the focus on experimentation. In the end, we propose a research
agenda with seven questions for future studies.

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods.
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1 INTRODUCTION
Recent technological advancements with computing resources, big
data, algorithmic maturities and scientific tools have enabled a
lot of opportunities with AI for business, industries and societies.
Almost all organizations today, from private to public sectors, have
some forms of AI initiatives [3]. Despite increased interest in and
adoption of AI, 85% of AI projects ultimately fail to deliver on their
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intended promises to business. One of the most serious risks in
software development is building features that no one wants or
needs [5, 15].

In a typical AI software development project, AI scientists and
software engineers need to do different types of tasks, not only
scientific work, but also business-relevant, for instance, defining
Key performance indicator (KPI) metrics, hypothesis testing, and
applying models to business [8]. Many AI projects employ a poly-
math scientist, who “do it all”, without any specific guidelines. It is
a growing interest to systematically address business value at the
engineering level of AI software projects. Moreover, in many cases,
AI software development is an “unknown unknown” problem. Many
companies develop different AI models without really knowing
how to realize their business value. Another issue is understanding
and expectations from an AI project might be vague and slowly
elicited [12].

In such an “unknown unknown” domain, both applied domain
knowledge and algorithmic understanding of AI models are both
needed to elicit and validate feasible scenarios of AI software usage.
Contemporary Software Engineering research has several frame-
works for this type of project, such as continuous experimentation
[5], Minimum Viable Product frameworks [4] and Lean startup [15].
The main idea is to perform several experiments about the develop-
ing products and conduct hypotheses to test the fitness between the
product and the customer or market needs. Such approaches will
shape the software’s implementation in the way that customers can
frequently involve in AI software releases, continuously accept or
reject a release according to their business metrics, and make roll-
back possible before wasted efforts become significant. To contrast
with much research currently focusing on verification activities of
AI, i.e. model testing and debugging [19], we propose a conceptual
model of continuous experimentation of AI software, with the focus
on acceptance and suitability with external stakeholders.

The paper is organized as follows, Section 2 presents the research
background, Section 3 presents the conceptual framework of con-
tinuous experimentation, Section 4 presents the research gaps and
Section 5 discusses and concludes the paper.

2 BACKGROUND
2.1 Systematic approaches for development of

AI software
We refer to AI software research as studies about engineering meth-
ods for software systems that integrate with, or enabled by AI/
Machine Learning (ML) models, data, and its surrounding infras-
tructure. Although AI/ ML are often modules in larger systems,
they require a substantial resource, infrastructure and data to be
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included [16]. AI software research does not only deal with AI/ ML
models themselves but also cover processes, infrastructure, data
and engineering approaches that could lead to better AI software
[11].

Methodological work on AI software development includes a
process reported fromMicrosoft [2], a five-step “stairway to heaven”
for AI model development [10], or a maturity framework for AI
development [1] and continuous delivery for AI software [14]. The
common shortage of thesemodels is a vague description of customer
needs and the connection between the business and development
aspects of AI software. SE research starts to reveal SE challenges for
developing AI software, such as challenges of managing datasets,
building models, training and evaluating models, and deploying
models [10]. AI Engineering specifies particular SE tasks, such as
managing multiple AI models, resuse of AI models, model and soft-
ware integration, monitoring and logging, A/B testings of models
and data quality management [3]. All these tasks are relevant in
technical space, but they are currently disconnected to business
and domain knowledge space.

2.2 Continuous Software Experimentation
Continuous software engineering movement closely resembles the
concept of flow found in lean manufacturing and product devel-
opment [6]. Continuous development is a state-of-the-art method-
ological approach to developing software products, constantly con-
ducting systematic experiments to validate user needs hypotheses.
Continuous development consists mainly of engineering activities,
such as integration, delivery, deployment, and evolution. The ideal
development process should also cover business and operation as-
pects. Involving customers and business stakeholders in iterations
of software development lead to business-driven experimentation
with repeated Build-Measure-Learn [5]. The central artifact of the
approach is Minimum Viable Products (MVPs), a version of a new
product that realizes a product idea and facilitates the collection
of user feedback on it. Techniques such as A/B testing are widely
used where features such as text, layouts, images and colors are
manipulated systematically and customer reaction is monitored
[13]. A continuous experimentation system has been adopted for
building, testing and operating software as they are adopting in
large companies, such as Ericsson, Google and Microsoft.

3 THE CONCEPTUAL FRAMEWORK OF
CONTINUOUS EXPERIMENTATION FOR
ARTIFICIAL INTELLIGENCE

In an experimentation system, software engineers will proceed
iteratively and propose specifications of both functional and non-
functional AI software requirements, develop MVPs, and then com-
municate to stakeholders to see whether they have gotten the spec-
ifications right. Each iteration might provide insights about what
was missing in the previous specification and how we might de-
velop with a better one. If the AI/Machine Learning (ML) model
is sufficiently specified, its implementation against specified prop-
erties is straightforward. However, customers often do not know
what they want initially; hence communication of their needs is
often an iterative process. Due to the system’s complexity, require-
ments need to go through a lower-level specification and analysis,

which is often a part of AI model development. From these ideas,
we propose a conceptual model of continuous experimentation of
AI software. As shown in Figure 1, there are four pillar artifacts in
a continuous validation loop:

• Customer needs represents the expectation of relevant stake-
holders, often the project owner (customers or internal de-
mands). Customer needs can be expressed as a wanted busi-
ness use case.

• Requirement specification is a detailed description of the
software system to be developed with its functional and non-
functional requirements. The specification of AI software
non-functional requirements is a consistent, complete and
verifiable semantic representation of customer needs.

• Lower-level specification and analysis is a formal description
of non-functional requirements, their constraints and the
relationships among them.

• Minimum Viable Products is a viable set of software release,
AI models and associated data that can be demonstrated to
external stakeholders.

Activities such as model evaluation, deployment, and monitor-
ing can be represented as major blocks in the holistic model too.
However, we keep them as sub-tasks inside the MVP for AI soft-
ware block to highlight the focus on validating business goals and
ethical attributes. The process from customers to a release of MVP
can occur at different levels. We propose three levels of experiment
relating to how an AI model is designed and constructed:

• Experiments with idealizing models: the first level feedback
loop when the AI model is planned and designed. Alternative
artifacts, i.e. Wizard of Oz or piecemeal MVPs [4, 15] are
built to simulate the expected functions of the AI software

• Experiments with training models: the second level feedback
loopwhen the AImodel is built with training dataset. Various
model development is conducted to understand the model
capacity.

• Experiments with operating models: the third level feedback
loopwhen the AImodel is under operation. Experimentation-
compatible quality metrics are needed to detect abnormali-
ties and trace to model output and input.

4 RESEARCH AGENDA
Five research topics are identified, naming from C1 to C5.

4.1 C1 - Specifying quality and ethical
requirements of AI software

Many customer problems solved by AI/ ML are only specified im-
plicitly by their technical characteristics. Business goals are often
not specified in a typical Software Engineering manner. Current
AI software development processes loosely connect to business
context, vaguely mention customer needs as “business understand-
ing”, “model requirement” or “understanding of application domain”.
The specifications of these attributes, as quality requirements or
in other formats, needs to reflect customer needs, or connecting to
business goals. Moreover, they should be detailed and measurable
to guide downstream SE activities, such as design, database storage,
model building and verification. Applied AI research focuses much
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Figure 1: A holistic view of continuous experiment loops for AI software

on testing AI model quality attributes, such as accuracy, explain-
ability, fairness, dependability, or trustworthiness [19]. However,
these quality attributes are often taken for granted without ques-
tioning why customers need them and to what extent they should
be achieved. Furthermore, research starts to look at methodological
approach to identify, specify and include ethical requirements into
AI software [17].

4.2 C2 - Modelling AI software quality and
ethical attributes

Once AI quality attributes are properly specified, it is necessary to
understand the relationship among these attributes and to software
system contexts. Common SE quality modelling approaches either
specify a prescriptive set of quality characteristics or metrics, or
follow a method to guide the derivation of quality models [9]. Either
approach would require an ontological and conceptual understand-
ing of the quality attributes. The holistic view of such relationships
between AI/ML models, their quality attributes (including compu-
tational cost) and business goals, constraints, and characteristics
of the datasets, as shown in Figure 2. Moreover, AI ethics should
aslo be integrated into a quality model as a quality attribute. While
such analysis is essential for guiding model development and test-
ing, recent work is only just beginning to explore some of these
tradeoffs in AI software. [3, 7].

4.3 C3 – Keep track of model traceability
From a software engineering perspective, traceability supports
demonstrating that each requirement has been satisfied and that
each system component satisfies a requirement, linking require-
ments to other development artifacts, such as model and data, un-
derstanding their source and rationales, capturing the information
necessary to understand the evolution of requirements and associ-
ated artifacts. In AI development, changes are made continuously
during data processing, hyperparameter optimization and model
experimentations. A versioning system for AI needs to keep track
of changes for both models and associated datasets [18]. It is not
known how these technical changes are traced to requirements,
project constraints, and how these links are maintained in the
phases of a experimentation process.

Figure 2: A holistic view of continuous experiment loops for
AI software

4.4 C4 –Defining MVPs for an AI model
The key element of MVPmethodology is to define the “minimum vi-
able” parts. Besides functional features, MVP for AI software needs
to capture the desired business value and ethical requirements in
a demonstrable release. This is an open research area as there is
currently unknown how to define minimum viable quality, particu-
larly ethical ones. Holistically, MVP for AI captures a version of AI
model, associated data and surrounding software components. Not
every experimental version of AI model can be seen as an MVP.
A set of minimum acceptance criteria should be defined so that
an MVP can be accepted or not according to business and ethical
requirements. The acceptance criteria can be formulated only when
quality specification and analysis is in place.

4.5 C5 – A toolset supporting continuous
experimentation

To build aMVP release for AI software, we need to go through a com-
plete development pipeline. Every step in the pipeline, such as data
preparation, model building, and model monitoring are essential for
achieving the model capacity. The importance of tools support for
AI software development, such as versioning control systems, issue
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tracking and automated testing frameworks, is recognized [2]. Hav-
ing a seamless development experience covering all different stages
of the software methodology is essential for automation. Compared
with traditional tools, the inherent uncertainty of data-driven learn-
ing algorithms and complex component entanglement caused by
hidden feedback loops impose substantial changes that were pre-
viously well understood in SE [16]. Recent work about tooling for
AI continuous integration [14, 18] is limited to model performance
(accuracy and precision) without considering business and ethical
concerns. Automating such a business-to-development pipeline can
only be achieved under a specific methodological framework. It is
possible to look at existing tools, i.e. Gitlab, Azure DevOps, Jenk-
ins, Azure ML, Cloud AutoML, Kubeflow and other open-source
frameworks, and leverage them on implementation of a complete
continuous experimentation pipeline.

5 DISCUSSION AND CONCLUSIONS
Adopting continuous experimentation for AI software development
highlights a number of Software Engineering challenges that need
to be overcome if the concept is to be successful. Finding the solu-
tions requires inter-disciplinary research, which goes beyond SE,
data science or AI themselves. The research intersecting SE and AI
is currently in an infant stage. Much of research attention now is
focusing on verification, i.e. testing of AI software. In comparison
to that, research about earlier SE activities, i.e. requirement specifi-
cation, analysis and evaluation, is overlooked. This research agenda
addresses several key scientific challenges that are road-blocking
for the integration of business value and ethical principles. Sev-
eral Research questions can be derived from the proposed research
agenda, for examples:

• RQ1: In which way AI software can be specified as software
requirements?

• RQ2: How can we improve communication during AI soft-
ware development among software engineers, data scientists,
domain experts and project owners?

• RQ3: How can AI software quality can be modelled in the
connection to AI algorithms, data and business goals?

• RQ4: How can the tradeoffs among AI quality can be traced
over time?

• RQ5: What are possible approaches to define MVPs for AI
software?

• RQ6: How do we capture feedback for AI MVPs?
• RQ7: How can toolsets be developed to support the continu-
ous experimentation of AI software?

Answering our RQs will require a revisit of existing SE knowl-
edge, i.e. processes, models, practices and tools. Current literature
shows mostly problem reports, with a few research about the eval-
uation of methodologies or toolsets. The research in this direction
will shed the way for future research by systematic approaches,
referencing conceptual models and benchmarking industrial best
practices.
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