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23.1 Introduction14

15
Diplostomum spp. (Trematoda) are widespread parasites of freshwater and brackish water16
fishes (Chappell, 1995), and they infect different parts of the fish eyes such as lens, humour17
and retina (Marcogliese et al., 2001a; Karvonen et al., 2006b; Désilets et al., 2013; Padros et18
al., 2018). In the ecological literature, species infecting the lens are commonly grouped as a19
single species, Diplostomum spathaceum. However,  morphological  (Niewiadomska, 1984,20
1986; Niewiadomska and Kiseliene, 1994) and particularly  molecular studies  (Niewiadomska21
and Laskowski, 2002; Locke et al., 2010a; Locke et al., 2010b; Rellstab et al., 2011; Blasco-22
Costa et al., 2014; Locke et al., 2015) indicated that Diplostomum is a species complex with a23
number of different species infecting specific parts of fish eyes. However, details of life24
histories and ecological differences of many of the species are not known. Our present focus is25
on species infecting the lens and causing diplostomiasis. Most of the published literature is on26
D. spathaceum (in the light of the current knowledge possibly including more than one species)27
or D. pseudospathaceum (the species was described  by Niewiadomska (1984) and verified by28
Niewiadomska and Laskowski (2002) using molecular techniques). For simplicity and due to29
the lack of data, we assume here that effects of all parasite species possibly co-infecting a lens30
are similar and they respond roughly the same way to climate change.31

32
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2
The life cycle of lens-infecting Diplostomum spp. includes an avian definitive host, a molluscan33
first intermediate host and fish second intermediate host (Chappell et al., 1994; Karvonen,34
2012) (Fig. 23.1). Parasites reproduce sexually in the gut of the bird and start producing eggs35
in three days after establishment (Chappell et al., 1994). Eggs are released into the aquatic36
environment through bird faeces. They hatch to free-swimming miracidia that are non-feeding37
and short-lived stages, which infect the molluscan intermediate host. This is typically a snail38
of the genus Lymnaea. Within a snail, each miracidium gives rise to a mother sporocyst, which39
then replicates asexually to multiple daughter sporocysts. Larval cercariae are formed in the40
sporocyst through asexual reproduction. Thus, cercariae from a single-miracidial infection in a41
snail are genetically identical. However, one snail can be infected with multiple miracidia42
(Rauch et al., 2005; Louhi et al., 2013) and produce cercariae of different genotypes at the43
same time. Cercariae are released from an infected snail to surrounding water in very high44
numbers (Lyholt and Buchmann, 1996; Karvonen et al., 2004a). Free-swimming cercariae in45
the water column do not feed after leaving the snail, but rely on glycogen reserves, which last46
for approximately 24 hours (Karvonen et al., 2003). Afterwards, cercariae lose their infectivity47
and die. If a cercaria encounters a fish, it penetrates gills or skin and migrates as a48
diplostomulum to the eye lens. Details of the route and mechanisms of migration are unknown49
(Ratanarat-Brockelman, 1974). The migration typically takes place within 24 h, but this50
depends on the water temperature (Lyholt and Buchmann, 1996). Diplostomulum that fails to51
complete the migration exhausts its energy reserves and is eliminated by the fish immune52
system. Those that reach the lens are at least partly protected from the host immune system, as53
the eye lens is not directly connected to blood circulation of the fish. In the lens, parasites54
develop to the final larval stages, metacercariae, within a few weeks and afterwards can55
probably survive in the lens for years. Consequently, numbers of metacercariae in fish tend to56
increase with time (Marcogliese et al., 2001b). The life cycle is completed when a fish-eating57
bird consumes an infected fish.58

59
INSERT FIGURE 23.1 HERE60
Figure 23.1 Life cycle of Diplostomum spp. includes three hosts. Parasites mature in the61
intestine of a definitive host (1) and release eggs (2) into the aquatic environment with faeces.62
Eggs hatch into miracidia (3) that seek the first intermediate host, an aquatic snail. Within the63
snail (4), parasites reproduce asexually producing high numbers of cercariae (5) that are64
released to water. Cercariae are short-lived and await a fish host. They penetrate the epithelium65
of the fish, migrate to the eye lenses, and develop to metacercariae (6). The life cycle is66
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completed when the definitive host consumes an infected fish. Reproduced with permission67
from Karvonen (2012).68

69
Diplostomum spathaceum has been reported from eye lenses of over 100 fish species in Europe70
(Chappell, 1995), while the global distribution of the Diplostomum spp. probably includes71
many more host species. Thus, the genus is considered one of the most common and abundant72
parasites of freshwater fishes. Species belonging to Cyprinidae, Percidae, Salmonidae,73
Coregonidae, Catostomidae, and Gasterosteidae which inhabit littoral waters are commonly74
infected  (Margolis and Arthur, 1979; McDonald and Margolis, 1995; Valtonen and Gibson,75
1997; Seppälä et al., 2011). Diplostomum spp. have also been reported from marine fish species76
in brackish waters including Gadidae and Pleuronectidae (Buchmann, 1986; Koie, 1999).77
However, the prevalence and abundance of the infection is typically highly variable and can78
depend, in addition to fish species, on the geographical location, type of water body, habitat79
within a water body, season, host age and community structure of all the other hosts in the life80
cycle (Pennycuick, 1971; Sweeting, 1974; Burrough, 1978; Balling and Pfeiffer, 1997;81
McKeown and Irwin, 1997; Valtonen and Gibson, 1997; Valtonen et al., 1997; Marcogliese82
and Compagna, 1999; Marcogliese et al., 2001a; Marcogliese et al., 2001b; Karvonen et al.,83
2004b; Karvonen et al., 2015). For example, locations within a single lake can have different84
infection levels (Balling and Pfeiffer, 1997), possibly reflecting on factors such as differences85
in abundance of infected snails. Also, infections in the higher latitudes are seasonal and mainly86
take place during summer months (McKeown and Irwin, 1997; Marcogliese et al., 2001a;87
Karvonen et al., 2004b), which results in first infections in eye lenses of young fish and88
accumulation of infections with fish age.89

90
23.2 Diagnosis91

92
Metacercariae of Diplostomum spp. are soft-bodied, flat, bilateral and round or oval-shaped,93
with a body length of approximately 0.3-0.4 mm when fully-developed (note that the94
morphology and size strongly depend on the age of the metacercaria, (see Sweeting (1974)).95
Infections are clearly visible from a dissected eye lens under a microscope (Fig. 23.2) and96
identification is straightforward as all parasite species in eye lenses of a fish belong to this same97
genus. However, identification at species level is notoriously difficult. Different species are98
morphologically very similar, especially as larval stages (miracidium, cercaria, metacercaria),99
and their identification requires particular expertise and experience (Niewiadomska, 1986;100
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Niewiadomska and Kiseliene, 1994). More recently, species identification has been aided using101
molecular techniques (Niewiadomska and Laskowski, 2002; Moszczynska et al., 2009), while102
these have resulted in a significant increase in the number of Diplostomum species (Locke et103
al., 2010b; Blasco-Costa et al., 2014).104

105
INSERT FIGURE 23.2 HERE106
Figure 23.2 Three metacercariae of Diplostomum sp. in an eye lens of Atlantic salmon. Photo107
courtesy of Ines Klemme.108

109
23.2.1 Parasitic cataracts (diplostomiasis)110

111
The most notable sign of infection in an eye lens is cataract formation due to metacercarial112
movement and metabolism which damage the structure of the lens. If there are many113
metacercariae, the damage accumulates and can result in the chronic stage of infection, known114
as diplostomiasis. A severe condition can be observed visually as the eye lens becomes opaque,115
grey or whitish. In extreme cases, the lens capsule can rupture or the lens becomes dislocated,116
when the fish host loses its eyesight. Fewer cataracts (e.g. small clouds of granules or thread-117
like formations (Shariff et al., 1980)) and their early stages following development of the118
metacercariae can be seen reliably only using a microscope, such as an ophthalmoscope119
(Karvonen et al., 2004c). This type of infections occur in most of the infected fish species120
worldwide.121

122
Cataracts gradually impair the vision of fish and the degree of impairment is linearly related to123
the number of parasites in the lens (Karvonen et al., 2004c) (Fig. 23.3). In other words, few124
parasites rarely cause severe cataracts, except in small fishes, although parasites can remain in125
the lens for years. However, there are no detailed data on long-term dynamics of cataracts126
recorded from individual fish. Development of cataracts is also related to the size of the fish127
and, consequently, size of the eye lens. In a small fish, even a low number of parasites can be128
sufficient to cause severe pathology (Karvonen and Lindström, 2018). Further, recent evidence129
suggest that fish may also show differences in their ability to tolerate the deleterious effects of130
the parasites, i.e., the same number of parasites results in different degree of cataract formation131
(Klemme and Karvonen, 2017). Infection can also decrease the lens size directly (Karvonen132
and Seppälä, 2008a), but the significance of such effects for visual ability of fish needs further133
study.134
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135

INSERT FIGURE 23.3 HERE136
Figure 23.3 Relationship between cataract coverage and the number of Diplostomum137
pseudospathaceum in the eye lenses of whitefish (Coregonus lavaretus). Data from Karvonen138
and Seppälä (2008b). Reproduced with permission from Karvonen (2012).139

140
Infections in the eye lens and the subsequent cataract formation can have significant141
implications for the well-being of fish. Gradual deterioration of eyesight with increasing142
infection intensity can cause several physiological and behavioural effects in fish. One notable143
phenotypic sign of infection is darkening of the fish skin as the light intensity entering the eye144
decreases. This impairs the cryptic colouration of the fish particularly against a light145
background (Seppälä et al., 2005a), which can lead to increased detection by predators. Eye146
infection can also decrease the efficiency of fish to detect and harvest prey items (Crowden and147
Broom, 1980; Owen et al., 1993), which can result in decreased growth (Karvonen and148
Seppälä, 2008b). Impaired visual abilities have also a range of other effects that relate to social149
interactions of fish and susceptibility to avian predation, the latter of which is essential for150
completion of the parasite life cycle. For example, infection reduces group cohesion of shoaling151
fish (Seppälä et al., 2008), which can render individual fish detectable by predators. Infected152
fish may also swim closer to the water surface (Crowden and Broom, 1980), although this153
evidence is not conclusive (Seppälä et al., 2004). Further, infection and cataracts increase154
catchability of fish in experiments mimicking predation from fish-eating birds plunging into155
water from the air. These effects also coincide with the metacercariae becoming fully156
developed (Seppälä et al., 2004, 2005b), which supports the idea that cataracts can enhance157
parasite transmission to the definitive hosts.158

159
23.2.2 Implications of climate change for the parasite life cycle160

161
Parasitism and disease in aquatic animals may increase with climate change, principally in162
response to rising temperatures that accelerate parasite development (Marcogliese, 2001, 2008;163
Lõhmus and Björklund, 2015), although general predictions are difficult to make as effects are164
species specific, context dependent and may vary among hosts (Marcogliese, 2008; Rohr et al.,165
2011; Marcogliese, 2016). The existence of extreme weather events, confounding factors, and166
non-linear thresholds further complicate matters (Marcogliese, 2008; Rohr et al., 2011; Altizer167
et al., 2013; Marcogliese, 2016) and some diseases may actually decrease in occurrence with168
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climate change (Lafferty, 2009; Karvonen et al., 2010b). Nevertheless, temperature is169
considered the most important abiotic factor that influence  parasitic platyhelminths in170
ectothermic hosts, including fish (Chubb, 1979). In parasites with complex life cycles, such as171
Diplostomum spp., temperature affects all free-living life cycle stages as well as those in172
ectothermic hosts. Higher temperatures are generally expected to lead to faster growth,173
development and reproduction, earlier transmission and development in the spring, prolonged174
transmission in the autumn and more generations per year. However, it may also increase175
mortality rate among parasites in the aquatic environment (Marcogliese, 2001). Thus, it is176
important to consider the net effects of temperature within the entire parasite life cycle. As177
there are no data on relationships between temperature and cataracts (diplostomiasis) per se,178
and because cataracts are related to parasite numbers (Fig. 23.3), it is relevant to consider179
temperature-related factors that control the latter.180

181
Our current discussion includes the effects of temperature on potential spread of Diplostomum182
spp., followed by temperature effects on production and transmission of the life cycle stages.183
Throughout, we will explore evidence on temperature effects on Diplostomum spp. and other184
trematode taxa and on general trematode biology, while discussing the net effects of increasing185
temperature for the parasite life cycle. We will also consider ecological evidence from field186
studies, and explore effects of temperature on the physiology and the resistance of snails and187
fish. Besides temperature, we will also focus on other environmental changes that are188
associated with climate change and likely to either increase or decrease parasite population.189
Finally, we will discuss the implications of climate warming for parasite prevention strategies190
in aquaculture.191

192
23.3 Potential spread of Diplostomum spp. with increasing water temperature193

194
Range shifts of aquatic biota are expected with climate change (Settele et al., 2014). However,195
given that Diplostomum spp. are already widespread in the northern hemisphere (e.g., see Fig.196
1 in Locke et al. (2015)), large range shifts are unlikely. Lens-infecting Diplostomum spp. are197
generalists infecting a range of fish species (Locke et al., 2010a; Locke et al., 2010b; Rellstab198
et al., 2011; Locke et al., 2015), so changes in fish species composition as a result of fish host199
range expansion or contraction should not have large effects on the parasite’s distribution.200
However, the host spectrum in any given habitat could change. For example, increasing201
temperatures are predicted to have significant negative effects on cold-water stenotherms, such202
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as salmonids and coregonids, contracting their range (Marcogliese, 2001; Chen et al., 2016).203
These high-latitude cold-water stenotherms may experience an increase in their northern range,204
but a contraction of their southern boundaries with the expansion northward of temperate fishes205
(Ficke et al., 2007; Settele et al., 2014). In addition, warm- and cool-water fishes may displace206
native species as they migrate into higher latitudes in the northern hemisphere and lower207
latitudes in the southern hemisphere (Ficke et al., 2007). Another potential complicating factor208
is that snail intermediate host populations may be at risk because freshwater molluscs are209
predicted to be unable to track high rates of climate change (Settele et al., 2014). Their210
populations are further compromised by invasive species, habitat modification, and211
contaminants (Settele et al., 2014).212

213
In addition to range shifts of resident fish and invertebrate species, increasing temperature is214
expected to lead to the invasion of new and potentially susceptible hosts (Marcogliese, 2001;215
Altizer et al., 2013), including those for Diplostomum spp. For example, there have already216
been numerous introductions of warm-water fish species into the lower Great Lakes, expanding217
their distributions northward (Marcogliese, 2001). Further warming should facilitate the218
introduction and expansion of warm-water invaders (Collingsworth et al., 2017). There are at219
least two possible outcomes. First, invasive species can facilitate parasite transmission by220
effectively acting as new susceptible hosts and boost the life cycle completion. Second, new221
hosts can be resistant to infections and act as sinks of infection while diluting infection risk222
among the native hosts. In Europe, round gobies (Neogobius melanostomus) and bighead223
gobies (Ponticola kessleri) were heavily infected with Diplostomum spp. in their introduced224
range in the Danube River, the Rhine River, and parts of the south-western Baltic Sea,225
potentially enhancing transmission of Diplostomum spp. to piscivorous birds (Ondračková et226
al., 2009; Muhlegger et al., 2010; Francová et al., 2011; Kvach and Winkler, 2011; Ondračková227
et al., 2015). In contrast, following the introduction of the round goby in the St. Lawrence228
River, Canada, abundance of Diplostomum spp., which at one time was one of the most229
common fish parasites in that river, declined to extremely low levels within five years or less230
in yellow perch, Perca flavescens, golden shiner (Notemigonus crysoleucas) and the spottail231
shiner, Notropis hudsonius (Gendron and Marcogliese, 2017). The authors suggested this was232
due to gobies acting as incompetent decoy hosts for cercariae and diluting the risk of infection233
to the native fish. The difference between the capacity of gobies as hosts for Diplostomum spp.234
in Europe and North America may be because invasive gobies in Europe were exposed to235
widespread European species, while those in North America were exposed to new parasites236
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with which they had no previous experience. This idea is supported by the increase in237
abundance of Diplostomum spp. in round gobies over time (15 years) since their initial invasion238
into the Great Lakes (Gendron et al., 2012).239

240
23.4 Implications of increasing temperature for the parasite life cycle stages241

242
23.4.1 Effects of elevated temperature on life cycle stages243

244
Life cycle stages of Diplostomum spp. outside the endothermic avian host (miracidia, cercariae,245
and the larval forms residing in ectothermic snails and fish) are potentially influenced by246
increasing water temperature. However, it is important to note that in general, physiological247
tolerance of parasites to temperature not only varies among species, but also among stages of248
the same species (Chubb, 1979; Marcogliese, 2001). Overall, there are a few experimental249
studies on effects of temperature on different life cycle stages of D. spathaceum and related250
species (Table 23.1), although much more information is needed to make reliable predictions.251
For example, swimming velocity of the miracidia hatching from eggs increased at higher252
temperatures, but the life span declined (Harris, 1986). While the latter result is likely due to253
faster depletion of the finite glycogen reserves, the net effects on transmission are unknown.254
Considering these effects alone, an increase in temperature should likely promote the encounter255
between miracidia and potential snail hosts, but decrease the infective time-period. Further256
evidence on the snail host has shown that the time to patency decreased and cercarial output257
increased at higher temperatures (Harris, 1986; Waadu and Chappell, 1991), both of which258
should promote transmission to the fish host. However, both cercarial activity time and life259
span were reduced at higher temperatures, which should limit transmission (Harris, 1986; Sous,260
1992; Lyholt and Buchmann, 1996). Moreover, cercarial penetration and speed of migration to261
the eyes increased at higher temperatures (Whyte et al., 1988; Lyholt and Buchmann, 1996),262
but infectivity peaked at the mid-range of the experimental exposure temperatures (Stables and263
Chappell, 1986b). The latter results suggest that infection success would decrease eventually264
as temperature increases. To sum up, the contrasting effects of higher temperature would265
increase parasite reproduction, but decrease longevity and infectivity of the transmission266
stages. Consequently, it is at present difficult to predict the overall effects of temperature on267
the parasite transmission success (Fig. 23.4).268

269
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Table 23.1 Experimental studies on effects of temperature on free-living stages of Diplostomum270
spathaceum and other species as well as on those stages in gastropod (Lymnaea spp.) and271
rainbow trout (Oncorhynchus mykiss). Parasites are D. spathaceum unless otherwise indicated.272

273
Trait Temperature Comment Reference
Egg hatch Delayed at 4 °C in D.

phoxini
At 4 °C, 6 d delay in
hatch, but equals rate
at 20 °C by 14 d

Harris (1986)

Miracidial
swimming
velocity

Increases with
temperature to a
maximum at 25 °C,
then declines in D.
phoxini

Examined velocity
between 5 and 40 °C

Harris (1986)

Miracidial life
span

Maximum at 4 °C,
then declines with
increasing temperature
in D. phoxini

No survival at 40 °C Harris (1986)

Miracidial
infectivity to
snails

Declines if exposed at
lower temperatures
(<14 °C) and switched
to 20 °C

Effect lost if snails
all exposed at same
temperature (20 °C),
then switched to
lower temperatures

Waadu and Chappell
(1991)

Time to
patency in
snails

Faster at higher
temperatures in D.
phoxini

75h at 10 °C vs. 40
hr at 20 °C

Harris (1986)

Affected by snail
maintenance
temperature

Delayed in snails
infected at 20 °C if
held at 14 °C, not 20-
25 °C

Waadu and Chappell
(1991)

Cercarial
shedding
(minimum
temperature)

None < 10 °C Bauer (1959)
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Occurs at 4-6 °C Stops at 3-5 °C Lyholt and Buchmann

(1996)
None < 9 °C Field-based study Sous (1992)

Cercarial
output

Increases with
temperature, peaks at
18 °C

Bauer (1959)

Declines at
temperatures < 10 °C

Gradual decline to 5-
6 °C, then drops
rapidly.

Lyholt and Buchmann
(1996)

Rate of output
increases between 10
and 20 °C in D.
phoxini

Harris (1986)

Rate of output
increases between 10
and 27 °C

<100/hr at 4-14 °C
20-1100/hr at 15-20
°C
100-4700 at 20-27 °C

Sous (1992)

Cercarial
activity

None < 9-10 °C Move to upper
waters at 18-22°C

Bauer (1959)

Peaks at intermediate
temperatures in D.
phoxini

None at 4 °C,
maximum at 15 °C,
then declines

Harris (1986)

Cercarial life
span

Shorter at higher
temperatures (e.g., 72
hr at 20 °C vs. 240 hr
at 4 °C

Consistent decline
between 4 and 25 °C

Harris (1986); Sous
(1992); Lyholt and
Buchmann (1996)

Cercarial
penetration

Increases at higher
temperatures

In vitro system;
occurs as low as 4 °C

Whyte et al. (1988)

Occurs at 7.5 °C Stables and Chappell
(1986b)

Cercarial
migration to
fish eyes

Faster at higher
temperature

Lyholt and Buchmann
(1996)
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Inhibited at <10 °C Stables and Chappell

(1986b)
Cercarial
establishment
in eyes

Highest at > 18 °C Occurs at 13-16 °C Bauer (1959)

Maximum in mid-
range (17.5 °C)

No infections at < 10
°C if fish maintained
at < 10 °C, but
infections obtained at
5 °C if fish
maintained at 15 °C

Stables and Chappell
(1986b)

Greater at high
temperature (15 °C)

No infections at 5 °C Lyholt and Buchmann
(1996)

274
INSERT FIGURE 23.4 HERE275
Figure 23.4 A dense swarm of cercariae of Diplostomum pseudospathaceum released from276
snail (Lymnaea stagnalis). Production and release of cercariae increase significantly from 10277
to 20 °C. However, cercarial infectivity and lifespan deplete faster at higher temperatures.278
Photo by Anssi Karvonen.279

280
An early meta-analysis by Poulin (2006) suggested that cercarial emergence could increase281
200-fold with a 10°C increase in temperature, prompting the author to suggest climate change282
could have a huge influence on parasite populations. However, in a subsequent meta-analysis283
that accounted for the minimum emergence temperature threshold (the temperature where284
emergence rates decrease to almost zero) and acclimation status of infected molluscs,285
temperature above a particular threshold actually does not appear to affect cercarial286
development (Morley and Lewis, 2013). In addition, cercarial emergence from molluscan hosts287
shows a peaked pattern with temperature, at first increasing within low temperature ranges. It288
was unaffected within the optimum temperature ranges (thermostability), which correspond to289
the latitudinal range inhabited, but then declined at higher temperatures (Morley and Lewis,290
2013). However, there were also geographic strain-specific differences in thermostability291
within D. spathaceum in two lymnaeid species (Morley and Lewis, 2013), which underscores292
the complexity of making predictions and establishing general rules for Diplostomum spp.293
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294

Thermostability over a range equivalent to typical summer temperatures for a particular species295
also was observed for most trematode species in cercarial mortality and glycogen utilization296
rate over normal temperature ranges encountered (Morley, 2011). A more recent meta-analysis297
of over 30 trematode species including D. spathaceum demonstrated an optimal temperature298
for both cercarial output and infectivity, while mortality was directly related to temperature299
(Studer and Poulin, 2014). Specifically, cercarial mortality and glycogen utilization rate300
increased linearly with temperature in D. phoxini (Morley, 2011). Furthermore, temperature301
had little influence on miracidial survival and metabolism over normal temperature ranges,302
suggesting that miracidia are more resistant to temperature changes than cercariae (Morley,303
2012). Interestingly, there was little correlation in thermal responses between miracidia and304
cercariae within geographic strains of the same species (Morley, 2012). Using metabolic305
measures, Morley and Lewis (2015) showed that in general, trematode miracidia and cercariae306
show increased infectivity with temperature, maximizing over optimal temperature ranges and307
then declining at higher temperatures. Infectivity of metacercariae to definitive hosts, in308
contrast, was highest at low temperatures and declined as temperature increased. The overall309
conclusion is that temperature is not hugely important for the survival and function of310
trematode free-living transmission stages. Rather, transmission may depend more on thermal311
effects of climate change on the target hosts, among other factors (Morley and Lewis, 2015).312
For example, it is possible that any higher production of infective stages with temperature313
would be compensated for by their higher mortality, resulting in a roughly stable risk of314
infection to fish regardless of temperature. Under such conditions, factors such as host age, size315
and physiological state may affect infectivity more than direct effects of temperature on316
miracidia or cercariae (Morley and Lewis, 2015).317

318
23.4.2 Ecological evidence from field studies319

320
Comparisons of parasite infections in fish inhabiting areas of elevated temperatures with those321
under ambient conditions may provide insight into effects of temperature increases at the scale322
of an entire host-parasite relationship (Marcogliese, 2001, 2008). For example, infection of323
European perch (Perca fluviatilis) by D. baeri occurred earlier in Biotest Lake, a semi-enclosed324
area in the Baltic Sea heated by nuclear power plant thermal effluent, than at an ambient site,325
and infections accumulated there to a higher degree at an increased prevalence in 1986-87326
(Höglund and Thulin, 1990). Additionally, fish were presumed to show increased mortality in327
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the heated area due to selective predation on heavily infected hosts. In another example of a328
similar system, the release of cercariae by infected snails (Helisoma trivolvis) and recruitment329
of metacercariae of the eyefluke Tylodelphys scheuringi in the mosquitofish (Gambusia affinis)330
were prolonged into the winter months in a thermally-altered reservoir compared to ambient331
areas in South Carolina, USA (Aho et al., 1982). Cercarial release also ceased during the332
warmest months (e.g. July and August), implying an upper thermal limit to this trait, in333
agreement with Morley and Lewis (2013). The trematode Ornithodiplostomum ptychocheilus334
released cercariae from infected Physa sp. year-round in the same thermally altered reservoir,335
also with the exception of the warmest months (Camp et al., 1982). However, recruitment by336
mosquitofish did not differ between the thermally altered and ambient areas, showing that there337
can be distinct different responses to temperature between phylogenetically related parasites in338
the same fish host at the same sites.339

340
Systems with natural elevation in water temperature compared to that in the ambient341
environment may also provide interesting comparisons on the effect of temperature. Karvonen342
et al. (2013) examined Diplostomum spp. in threespine sticklebacks (Gasterosteus aculeatus)343
from two Icelandic lakes that possess natural temperature gradients due to groundwater inflow344
and geothermic activity. In both lakes, sticklebacks from the warm areas showed a much higher345
abundance of D. baeri than those from cold regions. A second species of Diplostomum also346
had much higher prevalence and abundance in the warm part of one lake compared to the colder347
part, although it was absent from the second lake (Karvonen et al., 2013).348

349
23.5 Population dynamics of the hosts350

351
Since fish growth is temperature-dependent, an extended growing season and reduction in352
overwintering stress could lead to increases in fish productivity in temperate fishes that are353
currently limited by sub-optimal temperatures for their growth (Ficke et al., 2007). This,354
however, assumes that temperatures remain within optimal ranges and other conditions are355
adequate and food is not limiting. However, reproduction could be negatively affected in those356
fishes requiring low overwintering temperatures for spawning, such as salmonids (Ficke et al.,357
2007). However, the duration of optimal temperatures for growth will likely increase for all358
thermal guilds of fishes (Collingsworth et al., 2017). Furthermore, recruitment and production359
of spring and summer spawners can be promoted (Collingsworth et al., 2017). Fish populations360
also could be negatively affected not only by increased temperatures, but by decreased levels361
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of dissolved oxygen, and changes in contaminant concentrations, disease dynamics, and362
hydrography, along with any other associated habitat modifications (Ficke et al., 2007;363
Collingsworth et al., 2017). Besides fish, similar processes could apply also to other hosts in364
parasite life cycles, such as snails in case of Diplostomum spp. Without long-term data or365
epidemiological modelling, however, it is not possible to predict how these changes could366
affect levels of Diplostomum spp. in fishes. Nevertheless, given that most lens-infecting species367
of Diplostomum are generalists, any decrease in the availability of fish intermediate hosts likely368
will be offset by increases in others.369

370
23.6 Effect of temperature on parasite mortality371

372
Diplostomum spp. metacercariae are generally well protected within the fish eye lens, both373
from the host immune attacks and from the external environment, and there are no experimental374
data showing metacercarial mortalities in fish directly following environmental perturbations.375
Thus, effects of the ambient environment on the parasite population are more likely to concern376
the free-living infective stages, miracidia and cercariae, as well as processes related to host377
physiology and resistance. As discussed earlier, increasing temperature tends to decrease the378
longevity of the infective stages as their finite energy reserves are exhausted more rapidly in379
higher water temperatures (Table 23.1). Similarly, temperature could enhance host immune380
function to prevent parasites migration in host tissues towards the eye (see below). Whether381
this results in negative net effects on the parasite population given the probable increase in382
parasite replication with temperature needs elucidation.383

384
23.6.1 Effects of climate warming on host physiology and immunological resistance385

386
Temperature also controls the physiological functions (e.g. immunity) in the fish hosts, some387
of which have direct relevance to parasite infections. Early work examining the immune388
response in fish to Diplostomum spp. used the rainbow trout (Oncorhynchus mykiss)-D.389
spathaceum system, while more recent studies have explored ecological immunology in390
threespine stickleback. In general, immune responses in the eye lenses of fish are considered391
weak or non-existent as the lens is not directly connected to blood circulation (Sitjá-Bobadilla,392
2008). Therefore, the time window for fish to fight off an initial infection is very narrow and393
consists of the time diplostomules are migrating to the lens, typically within 24 hr from394
exposure (Chappell et al., 1994; Sitjá-Bobadilla, 2008). Given that not all diplostomules reach395
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the eye in an initial exposure, non-specific immune responses of the fish are likely responsible396
for partly preventing the infection (Whyte et al., 1991). In rainbow trout, these responses397
include, for example, activity of the alternative-pathway of the complement cascade (Whyte et398
al., 1988, 1989) as well as macrophages (Whyte et al., 1989; Chappell et al., 1994).  Fish also399
display antibody-mediated specific responses to infection with Diplostomum spp. that develop400
within a few weeks from the first exposure and significantly reduce the number of parasites401
establishing in subsequent exposures (Stables and Chappell, 1986a; Höglund and Thuvander,402
1990; Whyte et al., 1990; Karvonen et al., 2005; Karvonen et al., 2010a; Rellstab et al., 2013).403
In sticklebacks, in vitro experiments have demonstrated that head kidney leucocytes (HKL)404
exhibit a strong respiratory burst when exposed to antigens of D. pseudospathaceum (Franke405
et al., 2014). However, the HKL respiratory burst activity also drops 1.5 days after exposure,406
implying that phagocytic cell activation is important for the immune response to D.407
pseudospathaceum (Scharsack and Kalbe, 2014). These authors suggested that the innate408
immune response, but not the acquired immune response, was activated to defend against D.409
pseudospathaceum in threespine sticklebacks (Scharsack and Kalbe, 2014). There was also410
evidence supporting parasite genotype-specific innate immune activity in G. aculeatus (Haase411
et al., 2014), while other studies found no evidence of genotype-specificity in the acquired412
responses (Rellstab et al., 2013; Haase et al., 2016). Further, the immune response in threespine413
sticklebacks against Diplostomum spp. varies among populations and habitats (Scharsack and414
Kalbe, 2014; Scharsack et al., 2016). For example, fish sympatric with D. pseudospathaceum415
show a stronger innate response against initial infection than those from uninfected populations416
(Kalbe and Kurtz, 2006).417

418
Temperature basically affects all physiological functions in ectotherms (Bowden, 2008). In419
fish, the immune response is stimulated or at least positively correlated with temperature, as420
shown by lysozyme activity, concentration of circulating IgM, and major histocompatibility421
complex and cytokine gene expression (Tort et al., 2003; Bowden, 2008; Martin et al., 2010;422
Uribe et al., 2011). Circulating IgM concentration increases in salmonids when acclimated to423
19 °C (Uribe et al., 2011). However, it is not known if these processes play a role in defence424
against Diplostomum spp. In contrast, temperature effects on complement activity are425
inconclusive, effects on haematology vary with cell type, and phagocytosis is not greatly426
affected (Bowden, 2008; Uribe et al., 2011), processes and functions which do play a role in427
the immune response against Diplostomum spp. In most fish species examined, acquired428
immune activity and immune gene expression are enhanced while innate immune activity is429
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suppressed at the highest temperatures tested (Dittmar et al., 2014). Nevertheless, one might430
expect resistance to parasites such as Diplostomum spp. to increase with climate change431
(Scharsack et al., 2016). However, higher temperatures also accelerate parasite growth,432
development and life cycle completion, and it is not clear whether the host or the parasite433
benefits more under these circumstances (Scharsack et al., 2016). Again, the above aspects434
well illustrate the complex nature of temperature effects; they potentially elevate transmission435
and can result in higher parasite numbers (Fig. 23.5), but also interact with different types of436
temperature effects on the host as well as with many other ecological and evolutionary factors437
determining host resistance.438

439
INSERT FIGURE 23.5 HERE440
Figure 23.5 Timing and temperature-dependence of transmission of Diplostomum spp. to fish441
in natural conditions. Data show the mean number of new Diplostomum spp. infections (±SD)442
in eye lenses of fish caged in an oligotrophic lake during two-week periods in May-October.443
The solid line indicates water temperature of the lake. Infections peak naturally in July-August444
when water temperature exceeds 15 °C. Climate warming could potentially enhance parasite445
reproduction in the snail intermediate hosts and transmission to fish resulting in higher number446
of infections within the current window on transmission. Additionally, higher water447
temperatures in spring and autumn could prolong the optimal infection period from both ends448
of the range. Reproduced with permission from Karvonen et al. (2004b).449

450
Extreme weather events are also predicted to increase with climate change (Marcogliese,451
2001). Examination of how host-parasite systems respond to extreme weather such as heat452
waves and drought may provide insight into how climate change will affect outbreaks of453
diseases in ecosystems (Hudson et al., 2006; Poulin and Mouritsen, 2006; Morley and Lewis,454
2014). Studies have shown that acute temperature changes experienced during heat waves can455
cause immunosuppression in fish (Uribe et al., 2011; Scharsack et al., 2016). Generally, in456
ectotherms, such changes can suppress various immune functions such as phagocytosis,457
respiratory burst and antibody production (Martin et al., 2010). Immune function is more458
efficient if fish are acclimated to higher or varying temperatures (Martin et al., 2010; Scharsack459
et al., 2016). Indeed, in simulated heat wave experiments, innate and adaptive immune460
functions were optimal at 13-17 °C compared to 18-24 °C in threespine stickleback (Dittmar461
et al., 2014). Exposure to a simulated heat wave also caused long-lasting deleterious effects on462
immune function, but less so if fish were from presumably better-adapted populations (Dittmar463
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et al., 2014). Sticklebacks maintained in artificial enclosures with the lowest parasite load and464
an intermediate level of MHC class IIb sequence variation survived best, while those with the465
highest parasite burdens perished during the 2003 European heat wave. This suggests a link466
between MHC diversity and fitness (Wegner et al., 2008).467

468
In addition to fish, higher water temperatures can influence resistance of the other469
poikilothermic intermediate host of Diplostomum spp., the snail. Compared to fish, however,470
there is little information on the immune response of snails to the infection. It has been471
established that the susceptibility of Lymnaea stagnalis to D. spathaceum varies with age -472
young snails being susceptible and older snails more resistant to infection (Chappell et al.,473
1994). Haemocyte profiles also differ between infected and uninfected snails with haemocytes474
from infected snails displaying reduced phagocytotic capability, and serum showing lower475
opsonic and agglutinating abilities  (Riley and Chappell, 1992). This is consistent with the476
suggestion that the initial infection decreases immune function in snails, making them more477
susceptible to accumulate further infections (Louhi et al., 2013).478

479
Evidence on the effect of temperature on snail immune function comes mostly from parasite480
systems other than Diplostomum spp. For example, exposure of L. stagnalis to simulated heat481
waves of 25 °C increased infection success of the trematode Echinoparyphium aconiatum482
(Leicht and Seppälä, 2014). Exposure of the snails to 23.5-25 °C for more than one week also483
reduced their haemocyte concentration and phenoloxidase-like activity, an oxidative defence484
against parasites (Leicht et al., 2013; Leicht et al., 2017; Salo et al., 2017). It is likely that485
similar processes could influence also infections of Diplostomum spp. in L. stagnalis and in486
other lymnaeids. Overall, this evidence suggests that increasing temperature could impair the487
ability of snails to prevent infections, likely resulting in increasing prevalence of Diplostomum488
spp. and other trematode infections. As these infections typically castrate the host, increased489
likelihood of parasitism would undoubtedly influence also the snail populations, which again490
would be reflected in the net effects of temperature on the parasite life cycle.491

492
23.6.2 Net effects of increasing temperature on the parasite life cycle493

494
Overall, there are no detailed studies on the net effects of temperature on transmission and495
pathology of Diplostomum spp. However, studies on a similar host-parasite system may shed496
some light on the question of net effects. Ribeiroia ondatrae has a three-host life cycle,497
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infecting snails and birds. One fundamental difference is that amphibian tadpoles are second498
intermediate hosts, where the parasite causes limb malformations. Nevertheless, the second499
intermediate host is a freshwater ectothermic vertebrate with pathological consequences.500
Studies on net effects of temperature on different life history aspects of R. ondatrae may501
provide informative for Diplostomum spp. Paull and Johnson (2011) and Paull et al. (2012)502
demonstrated differential effects on different parasite and host life history characteristics (see503
Marcogliese (2016)). For example, cercarial survival and establishment in the tadpole peaked504
at low temperatures, while egg development rate, cercarial development rate and cercarial505
penetration to tadpoles peaked at high temperatures, but metacercarial numbers in the tadpoles506
were lowest at high temperatures. Growth of snails (Planorbella trivolvis), infected or not, and507
Pacific chorus frog (Pseudacris regilla) tadpoles peaked at high temperatures, along with snail508
fecundity. However, fecundity of infected snails peaked at intermediate temperatures. Their509
crucial finding was that pathology in the snail in terms of castration and gigantism peaked at510
high temperatures, but malformations in the tadpoles were maximised at intermediate511
temperatures and were lowest at high temperatures (Paull and Johnson, 2011; Paull et al.,512
2012). In a year-long mesocosm study, a temperature increase of 3 °C induced snails to release513
cercariae of R. ondatrae nine months earlier than at ambient conditions and increased snail514
mortality four-fold (Paull and Johnson, 2014). However, infections in bullfrog (Lithobates515
catesbeianus) tadpoles peaked two months earlier. In chorus frogs (Pseudacris triserata),516
infections were reduced by half and malformations by two-thirds (Paull and Johnson, 2014).517
After one year, 92% fewer adult snails were releasing cercariae in the thermally-altered518
mesocosm compared to the ambient one (Paull and Johnson, 2014). These results suggest that519
changes in the impact of parasites on their hosts following global warming depend on the520
timing and temporal overlap of the temperature-driven changes in the host and parasite521
populations.522

523
To conclude, the above examples highlight the need to understand the net effects of temperature524
increases on parasite transmission in general and on Diplostomum spp. in particular (Altizer et525
al., 2013; Marcogliese, 2016). It seems clear that elevated temperatures will influence both526
parasites and hosts, patterns that could show contrasting effects on parasite prevalence and527
abundance. Untangling these relationships requires rigorous experimental approaches in528
laboratory and under field conditions. Due to multiple underlying factors, interpreting the529
overall effect of climate warming also emphasises the importance of long-term time-series data530
on parasite population dynamics. Such data are not available for most systems, but would be531



19
invaluable as they capture the outcome of the entire process within a host-parasite interaction.532
Furthermore, the current evidence on temperature effects needs to be interpreted with caution,533
as they may not have accounted for acclimation of both hosts and parasites, in addition to534
infected hosts, or variation in temperature (Morley and Lewis, 2013; Raffel et al., 2013; Rohr535
et al., 2013; Raffel et al., 2015; Altman et al., 2016). This is important, as organisms generally536
acclimate their performance after a temperature shift, which could change the interpretation of537
the temperature effects. Moreover, natural temperatures are rarely constant but variable and538
even a short-term variation in temperature will change the outcome of a host-parasite539
interaction (Paaijmans et al., 2010; Raffel et al., 2013). Indeed, variation in temperature is540
expected to increase with climate warming (Jiménez Cisneros et al., 2014; IPCC, 2018), which541
emphasises the importance of incorporating temperature dynamics into studies on disease542
occurrence. Undoubtedly, short-term temperature variation plays an important role in543
epidemics of directly transmitted pathogens. However, implications of the temperature544
variation for macroparasites with complex life cycles, such as Diplostomum spp., may be545
challenging and difficult to predict.546

547
23.7 Other associated consequences of climate change548

549
Freshwater ecosystems can be expected to undergo numerous changes aside from increased550
temperature associated with climate change. These include changes in precipitation, salinity551
eutrophication, acidification, hydrology and water levels, reduced ice cover, habitat loss,552
fragmentation, pollution, ultraviolet (UV) radiation, and invasive species (Marcogliese, 2001,553
2008, 2016), all of which could affect the distribution and abundance of Diplostomum spp.554
(Table 23.2). There is no general unidirectional effect of these environmental changes; they555
can lead to parasite population increases or declines, emphasizing the importance of556
confounding factors and context dependency (Rohr et al., 2011; Altizer et al., 2013).557

558
Table 23.2 Putative effects of environmental or biological changes associated with climate559
change derived from Table I in Marcogliese (2008) on populations of Diplostomum spp. in560
fishes based on information in Marcogliese (2001, 2004, 2005, 2008), Marcogliese et al. (2010)561
and Tully et al. (2019).562

563
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Environmental or
biological change

General response of
Diplostomum spp.

Putative cause

Species introductions
with change in host
range

Population increase
or decrease

Introduction of host species should
increase generalist and specialist
Diplostomum species of introduced
hosts, but decrease specialist
Diplostomum species of native hosts at
risk

Loss of habitat due to
temperature

Population decline  Applies to specialist species whose
hosts lose habitat

Reduced  flow rates Population increase Retention of free-living infective
stages, increased infectivity of fish,
promotion of snail habitat

Eutrophication Population increase Promotes parasites, which use snails as
intermediate hosts and birds as
definitive hosts

Increased stratification Population decline Reduction in snail habitat due to
seasonal anoxia in bottom waters

Reduced ice cover Population increase Promotes transmission of Diplostomum
spp. to avian definitive hosts over
longer period

Increased acidification in
headwater streams

Population decline Reduced survival of snail intermediate
hosts sensitive to acidification

Decreased acidification
in lakes

Population increase Promotes survival of snail intermediate
hosts

Increased ultraviolet
(UV) radiation

Population decline Mortality of free-living infective stages

Decrease in salinity due
to increased precipitation

Population increase Increase in available habitat due to
lower salinity

Rise in sea level Population decline Loss of habitat due to saltwater
intrusion

Increased  concentration
of contaminants

Population decline Combined effects of contaminants and
Diplostomum spp. infection reduces
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fish health; transmission to fish
reduced through effects on cercariae

Socioeconomic
adaptation
(dam construction)

(modifying water
withdrawal or delivery)

Population increase

Population decrease

Replacement of lotic conditions with
still or slow-moving waters (see altered
hydrology above)
Increased stream flow

564
There are some examples of impacts of these factors on Diplostomum spp. that may be565
illuminating. For example, abundance of Diplostomum spp. in mudpuppies (Necturus566
maculosus) in the St. Lawrence River was highest in a regulated fluvial lake with stable water567
levels compared to two other fluvial lakes where levels fluctuated (Marcogliese et al., 2000).568
Experimental studies also demonstrated that transmission of D. spathaceum to rainbow trout569
was greatly reduced at higher flow rates, with a ten-fold increase in flow rate decreasing570
infections thirty-fold (Stables and Chappell, 1986b). Abundance of a similar parasite,571
Posthodiplostomum minimum, also increased under low-flow conditions, but was severely572
reduced under high flow conditions associated with snowmelt in Fundulus zebrinus in the573
Platte River, Nebraska (Janovy et al., 1997). Further, infection of eye flukes in the snail574
Lymnaea peregra plummeted in a reservoir after it was filled to maximum volume (Moody and575
Gaten, 1982). Thus, regulation of water bodies and flow rates, coupled with declining water576
levels, should potentially serve to increase infection levels of Diplostomum spp. Indeed,577
reservoir construction is considered a means of helping to mitigate or adapt to effects of climate578
change on streams, rivers and wetlands (Jiménez Cisneros et al., 2014; Muller, 2019).579

580
Contaminant concentration may increase under low water conditions and climate change581
(Johnson et al., 2009; Jiménez Cisneros et al., 2014; Landis et al., 2014; Morley and Lewis,582
2014). Lethal and sub-lethal effects of combined exposure of animals to both parasites and583
contaminants can be greater than the effects of either stressor alone (Marcogliese and Pietrock,584
2011). For example, the combined exposure to municipal, agricultural and industrial pollution585
and infection with Diplostomum spp. increased oxidative stress in yellow perch, Perca586
flavescens (Marcogliese et al., 2010). Moreover, exposure to increasing temperature587
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concurrently with another stressor may negatively impact an organism’s health, leading to588
population declines in ectotherms (Rohr and Palmer, 2013). Survival of naturally infected589
snails (L. stagnalis and L. peregra) was reduced when exposed to cadmium compared to590
controls (Morley et al., 2003a). Free-living stages of a parasite also are sensitive to591
environmental contaminants (Morley et al., 2003c; Pietrock and Marcogliese, 2003). Exposure592
of cercariae of Diplostomum spp. to cadmium, chromium, mercury and sediment extracts from593
the polluted Oder River reduced their life span (Pietrock et al., 2001; Pietrock et al., 2002a;594
Pietrock et al., 2002b). Exposure to mixtures of cadmium and zinc, however, increased survival595
in D. spathaceum (Morley et al., 2001, 2002). Notably, cercarial activity of D. spathaceum was596
reduced following exposure to zinc, cadmium, and zinc-cadmium mixture at all concentrations597
tested and were vulnerable during the period of maximal cercarial infectivity (Morley et al.,598
2003b). Infectivity of cercariae of both Posthodiplostomum minimum and Ornithodiplostomum599
ptychocheilus to fathead minnows (Pimephales promelas) was reduced following exposure to600
cadmium (Pietrock and Goater, 2005). Climate change can also increase the toxicity of601
chemical contaminants as well as their uptake and an animal’s susceptibility (Schiedek et al.,602
2007; Noyes et al., 2009; Hooper et al., 2013; Stahl et al., 2013). Furthermore, exposure to603
contaminants may decrease an organism’s thermal tolerance to increasing temperature (Noyes604
et al., 2009), as well interact with other climate-associated stressors (Moe et al., 2013). Thus,605
any increase in contaminants may decrease Diplostomum spp. infections in fish and snail606
intermediate hosts.607

608
Nutrient pollution is also expected to increase in fresh waters (Ficke et al., 2007; Jiménez609
Cisneros et al., 2014; Collingsworth et al., 2017), which can have significant implications for610
parasitism. For example, occurrence of limb malformations and abundance of R. ondatrae in611
anurans in agricultural wetlands was associated with eutrophication through effects on snail612
species composition and biomass (Johnson and Chase, 2004; Johnson et al., 2007).613
Eutrophication combined with high temperatures leads to more frequent blooms of harmful614
algal blooms (HABs) of cyanobacteria (Paerl et al., 2011; Moe et al., 2013; Jiménez Cisneros615
et al., 2014). HABs produce toxins and hypoxic conditions, detrimental to aquatic life (Moe et616
al., 2013). Interestingly, exposure to low concentrations of the cyanobacterial toxin617
microcystin-LR (MC-LR) increased infection intensities of larval trematodes in leopard frogs,618
Rana pipiens (Milotic et al., 2018). While it did not affect growth or survival, exposure of the619
snail L. stagnalis, the intermediate host for Diplostomum spp., reduced fecundity of adult snails620
(Gérard et al., 2005). Therefore, eutrophication associated with climate change may promote621
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infections of Diplostomum spp. in fish, but if allowed to progress, resulting in anoxia and the622
proliferations of HABs, infections may decrease (see also Budria (2017)). Similar effects of623
more frequent and widespread hypoxia in the benthos is expected in several water bodies624
because of longer periods of stratification during summer (Ficke et al., 2007; Collingsworth et625
al., 2017). Such developments would also negatively affect populations of snail and fish626
intermediate hosts of Diplostomum spp. in deeper waters (Table 23.2).627

628
Exposure to ultraviolet (UV) radiation in freshwater ecosystems is expected to increase due to629
enhanced penetration under certain conditions, and it may be most problematic in clear, shallow630
waters (see Marcogliese (2001)). UV is harmful to invertebrates, including parasites, whose631
free-living stages such as cercariae are sensitive to environmental stressors (Pietrock and632
Marcogliese, 2003). While exposure to UV radiation may negatively affect free-living stages633
of Diplostomum spp., it also is immunosuppressive in fish. Exposure of rainbow trout to UV634
radiation led to increased numbers of D. spathaceum compared to controls, presumably635
because of reduced resistance (Markkula et al., 2007). Exposure to UV is expected to increase636
in streams with climate change following reduced discharge, lower stream depth, and reduced637
dissolved organic carbon (Clements et al., 2008; Moe et al., 2013). However, conflicting638
effects on parasites and hosts make any predictions problematic.639

640
Other abiotic parameters that may be affected by climate may also negatively or positively641
impact the immune response in fish (Uribe et al., 2011). For example, an increase in hypoxia642
decreased the respiratory burst activity of macrophages and lowered the level of circulating643
antibodies. In contrast, elevated salinity increased lytic enzyme activity, macrophage644
respiratory burst activity, HKL phagocytic activity, plasma lysozyme concentration and645
circulating IgM (Bowden, 2008; Uribe et al., 2011). Effects of pH on immune response, on the646
other hand, have provided conflicting results (Bowden, 2008; Uribe et al., 2011). Temperature647
stress combined with contaminants such as nickel and chlorine also causes immunosuppression648
in fishes, including reduced spleen cellularity, erythrocyte and leukocyte counts, and increased649
superoxide production (Prophete et al., 2006; Verma et al., 2007).650

651
23.8 Control and prevention of Diplostomum spp.652

653
The lens-infecting Diplostomum species also occur in pond-aquaculture as all the necessary654
hosts of the parasite are commonly present. For example, fish farms typically attract fish-eating655
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birds, the definitive hosts of Diplostomum spp., to feed. Earth ponds with vegetation used in656
rearing aquaculture fish also provide favourable habitats for snail intermediate hosts that657
become readily infected following parasite output from birds attracted to the ponds. Prevalence658
of infection in the snails can be high, which results in high infection also in fish (Stables and659
Chappell, 1986c; Field and Irwin, 1994; Karvonen et al., 2006a). Parasite cercariae can also be660
brought into a facility with incoming water from upstream water bodies, but this is considered661
not as significant source of infection in fish compared to transmission occurring within the662
facility (Field and Irwin, 1994; Karvonen et al., 2006a). High numbers of metacercariae and663
resulting pathology in the eyes of fish may become a problem if they reduce the desired growth664
in fish intended for market. Similarly, infected fish for stocking to support natural fish665
populations may have lower success in the wild, although detailed data on the effects of666
Diplostomum spp. infections in natural fish populations are not available.667

668
It is likely that problems associated with Diplostomum spp. in aquaculture are also likely to669
increase. These may be through increased rate of parasite replication, prolonged period of670
parasite transmission and metacercarial development, or impaired ability of cold-water species671
such as salmonids to resist the infection (Hakalahti et al., 2006). Such effects may be672
manifested as longer and later outbreaks of the disease in the autumn (Fig. 23.5), thus673
necessitating extra control measures. Control of Diplostomum spp. infections, however, can be674
challenging as  there is no effective treatment of the infection in fish and immunizing fish675
against the infection provides only partial protection against later infections (Höglund and676
Thuvander, 1990; Karvonen et al., 2005). Studies have shown that immunization alone does677
not protect fish from the deleterious effects of infection and other means of defence, such as678
behavioural avoidance of cercariae, may be needed to complement any immune-mediated679
response (Karvonen et al., 2004b; Karvonen et al., 2010a). However, such behavioural680
avoidance is often impossible in the confined space of aquaculture tanks and ponds. In addition,681
other types of control measures such as treatment or filtering of water are not feasible because682
of large water volumes and the continuous output of parasite cercariae during summer months.683
Removal or chemical eradication of snails from the rearing ponds is generally considered as684
the only viable option to control and prevent the infections in fish (Stables and Chappell, 1986c;685
Field and Irwin, 1994), although this can be system-specific and depends on the magnitude of686
cercarial input from upstream water bodies. Nevertheless, eradication of snails as the main687
preventative method should work equally well even with increasing water temperatures,688
although positive effect of temperature on reproduction of snails may necessitate more frequent689
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use of the eradication protocols. However, constructing the tanks and ponds in a way that limits690
establishment of vegetation and snail populations should help in longer-term prevention of691
infections.692

693
23.9 Conclusions694

695
The current evidence on the relationships between climate warming and infections of696
Diplostomum spp. strongly highlight the difficulty of determining the net effects on the697
complex parasite life cycle. This is because most, if not all, of the life cycle stages in the aquatic698
environment likely respond to temperature by increasing parasite replication and infectivity.699
However, elevated temperature will likely result in increased mortality of the infective stages,700
and possibly accompanied by higher resistance in the fish hosts. Increasing temperature also701
acts in concert with many other interrelated environmental changes such as alteration in702
hydrology, increasing eutrophication, pollution and UV-radiation, loss of habitats and higher703
risk of invasive species. All these factors working in concert illustrates the magnitude and scope704
of environmental effects on Diplostomum spp., and on many other host-parasite systems705
covered in this book. The high number of variables emphasises the importance of long-term706
time-series studies, which would adequately provide the influence of all related factors.707
Pinpointing the importance of individual factors, on the other hand, requires rigorous708
experimental approaches supported by mathematical models on parasite dynamics with709
changing temperature. One area of experimental research needed concerns the effect of710
temperature and the other related factors (Table 23.2) on the severity of Diplostomum spp.-711
induced pathology in fish, which has received relatively little attention. Alongside the effects712
on the parasite life cycle, it is one of the key factors determining the impact of the parasite on713
fish populations in nature and in units of intensive aquaculture.714
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