
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Automatic content analysis in collaborative inquiry-based learning

© 2019 ESERA and the Authors

Published version

Espinoza, Catalina; Lämsä, Joni; Araya, Roberto; Hämäläinen, Raija; Jimenez,
Abelino; Gormaz, Raul; Viiri, Jouni

Espinoza, C., Lämsä, J., Araya, R., Hämäläinen, R., Jimenez, A., Gormaz, R., & Viiri, J. (2019).
Automatic content analysis in collaborative inquiry-based learning.  In O. Levrini, & G. Tasquier
(Eds.), Proceedings of ESERA 2019 : The Beauty and Pleasure of Understanding : Engaging with
Contemporary Challenges Through Science Education (pp. 2041-2050). University of Bologna.
https://www.esera.org/publications/esera-conference-proceedings/esera-2019

2019



 
AUTOMATIC CONTENT ANALYSIS IN COLLABORATIVE 

INQUIRY-BASED LEARNING 

Catalina Espinoza¹, Joni Lämsä2, Roberto Araya1, Raija Hämäläinen2, Abelino 
Jiménez1, Raúl Gormaz1, Jouni Viiri3 

 
1Centre for Advanced Research in Education (CIAE) – University of Chile, Santiago, Chile 

2 University of Jyväskylä, Department of Education, Jyväskylä, Finland 
3 University of Jyväskylä, Department of Teacher Education, Jyväskylä, Finland 

 

In the field of science education, content analysis is a popular way to analyse collaborative 
inquiry-based learning (CIBL) processes. However, content analysis is time-consuming when 
conducted by humans. In this paper, we introduce an automatic content analysis method to 
identify the different inquiry-based learning (IBL) phases from authentic student face-to-face 
discussions. We illustrate the potential of automatic content analysis by comparing the results 
of manual content analysis (conducted by humans) and automatic content analysis (conducted 
by computers). Both the manual and automatic content analyses were based on manual 
transcriptions of 11 groups’ CIBL processes. Two researchers performed the manual content 
analysis, in which each utterance of the groups’ discussions was coded to an IBL phase. First, 
an algorithm was trained with some of the manually coded utterances to prepare the automatic 
content analysis. Second, the researchers tested the ability of the algorithm to automatically 
code the utterances that were not used in the training. The algorithm was a linear support 
vector machine (SVM) classifier. Since the input of the SVM must be a numerical vector of 
constant size, we used a topic model to build a feature vector representation for each utterance. 
The correspondence of the manual and automatic content analyses was 52.9%. The precision 
of the classifier varied from 49% to 68%, depending on the IBL phase. We discuss issues to 
consider in the future when improving automatic content analysis methods. We also highlight 
the potential benefits of automatic content analysis from the viewpoint of science teachers and 
science education researchers. 
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INTRODUCTION 

In the field of science education, content analysis is a popular method for analysing 
collaborative inquiry-based learning (CIBL) processes (e.g., Lämsä et al., 2018, 2020; Wang 
et al., 2014). Typically, researchers have pre-defined codes, such as the phases of inquiry-based 
learning (IBL), on which the content analysis is based. Identification of different phases of IBL 
is needed when designing scaffolds for CIBL processes. For instance, previous research has 
shown that students need support, especially in the first phases of IBL (Lämsä et al., 2018; 
Wang et al., 2014). However, it is known that optimal scaffolding is context-specific, so there 
is a need to study CIBL processes in various contexts. Due to the vast human resources that 
content analysis of CIBL processes requires, in this study, we illustrate the potential of 



 
automatic content analysis for analysing CIBL processes. In the following, we briefly present 
how automatic content analysis has been applied in learning sciences so far. 

 

Automatic content analysis in learning sciences 

A major challenge in building a practical tool that supports teachers in the classroom is the 
need to analyse students’ discussions in each group. Hence, we need novel methods to process 
and analyse massive amounts of data. This is not only time-consuming when performed by 
humans, but also requires the analysis of parallel speech produced in each group of students. 
Moreover, the analysis needs to be done in real time in order to be useful to the 
teacher. Furthermore, it is not straightforward to produce a robust diagnosis, as trained human 
raters must agree on coding. Specifically, in order to provide a robust analysis, it is necessary 
to have at least two raters and ensure sufficient inter-rater and intra-rater agreement. 

So far, studies have investigated the potential for automatic content analysis in developing a 
better understanding of computer-mediated student–student interaction as well as teacher–
student interaction. In the context of student–student interaction, Rosé et al. (2008) presented 
an overview of work on automatic analysis of computer-supported collaborative learning 
(CSCL) in which the authors stated, ‘Our specific goal has been to extend and apply current 
text classification technology to CSCL, exploring which classification techniques are most 
effective for improving the performance on different types of coding dimensions used in the 
CSCL community.’ They found that some discourse processes in educational psychology could 
be automatically detected in text messages at a level of agreement comparable to that between 
human coders. Dowell et al. (2018) also developed a group communication analysis by 
combining automated computational linguistic techniques with analyses of the sequential 
interactions of online group communications to detect emergent roles in group interactions. 

Text analysis also allows the study of the effect of questions posed by the teacher. This is a 
subject of great importance in teaching practice and in the preparation of teachers. More than 
a century ago, Stevens (1912) emphasised the realisation of questions as a fundamental 
component in teacher training. Araya et al. (2018) analysed written responses to open-ended 
questions of students from various elementary school classes and built an automatic predictor 
of the length of the answers of each student based on the presence of keywords in the teacher’s 
questions. Donnelly et al. (2017) used an automatic speech recognition (ASR) algorithm to 
automatically detect teachers’ questions, and Caballero et al. (2017) used an ASR algorithm to 
automatically provide teachers with a visualisation of the structure of concepts present in their 
discourse in science classrooms. Araya et al. (2012) built an automatic classifier of estimations 
of teacher practices using ratings of a subset of transcriptions made by trained raters. The 
agreements between the automatic classifiers and the corresponding raters that were computed 
for transcriptions from an independent subset were better than the agreements between the 
human raters. More recently, Kelly et al. (2018) compared human coding and semi-automated 
computer coding of the authenticity of teacher questions. They concluded that the correlations 
were sufficiently high to provide a valuable complement to human coding in research efforts. 



 
These examples show that automatic content analysis has been applied to the study of 
computer-mediated communication between students and teachers in CSCL classrooms. CSCL 
research could benefit from the opportunities afforded by technological and methodological 
development. So far, the results of automatic content analysis have been encouraging. In this 
paper, we apply automatic content analysis to authentic student face-to-face interactions taking 
place in computer-supported settings in order to identify the different IBL phases in students’ 
discussions. We address the research question (RQ): How similar are the results of the proposed 
automatic and manual content analyses in a CIBL context? 

METHODS 

Our study was conducted in introductory university physics courses on thermodynamics at a 
Finnish university. The participants were divided into groups of five students at the beginning 
of the course. Here, we focus on face-to-face discussions as the groups solved problems 
collaboratively in a technology-enhanced learning environment with shared laptop computers. 
Eleven groups screen-captured and audio-recorded their group-work sessions. First, we 
manually transcribed these sessions as they solved an inquiry problem (on average, 180 
utterances per group). The inquiry problem was a study of how the displacement of an atom in 
a two-dimensional gas depends on time. The groups had a Python programme that calculated 
the displacement of an atom with different values of the number of collisions and then plotted 
the atom’s path. Based on the output of the Python programme, the groups inferred the 
relationship between the displacement and time. 

Second, we conducted theory-driven content analysis (Neuendorf, 2002) in which two 
researchers coded the transcriptions based on the IBL framework presented by Pedaste et al. 
(2015), i.e., each utterance was coded to one of the IBL phases (orientation, conceptualisation, 
investigation, conclusion, and discussion). In the orientation phase, the students became 
familiar with the given assignment, its main variables, and technological resources (in this case, 
the Python programme). In the conceptualisation phase, the students identified the dependent 
and independent variables of the problems and proposed research questions or hypotheses. In 
the investigation phase, the students planned the data collection and collected, analysed, and 
interpreted the data. In the conclusion phase, the students drew conclusions and offered 
solutions to the research questions or hypotheses. In the discussion phase, the students could 
communicate and reflect on the process at the end of the inquiry or in relation to an IBL phase. 
The inter-rater agreement was 67.7%, and any disagreements were discussed and resolved. 

After this manual content analysis, we performed automatic content analysis to identify the 
IBL phase from a given utterance. All the analysed transcriptions were written in Finnish. We 
approached this task as a text classification problem—finding a characterisation of utterances 
(vector representation) and building an automatic classifier. Figure 1 shows the four stages of 
the automatic content analysis that we conducted, describing the process for each stage and the 
corresponding input and output. 

 

 

 



 

 

Figure 1. Stages for training and assessing the automatic content analysis. 

Stage 1: Train an LDA 

In order to build a characterisation of utterances, we trained a latent Dirichlet allocation (LDA) 
topic model (Blei et al., 2003). Topic models are statistical models that are used to find topics 
in large document collections in a wide range of applications, e.g., analysing historical 
documents, understanding scientific publications, or machine translation (Boyd-Graber et al., 
2017; Dowell et al. 2018). The term topic—in the topic models context—is used to refer to 
groups of words that usually appear together in a document collection. The assumption behind 
topic models is that documents have a mixture of topics, and the words in a single document 
will depend on the topics that comprise the document. Applying a topic model to a large 
collection of documents allows the identification of topics and the description of documents in 
terms of the topics present in each document. 

Table 1. Example of seven topics found by applying the LDA model to physics textbooks. These topics were 
common in the CIBL group-work sessions. For each topic, the top four words are shown. 

Topic 8 Topic 13 Topic 17 Topic 19 Topic 27 Topic 33 Topic 39 

[number] v = so T ? [proportional to] 

a R + for example l a measurement 

b voltage R same o how increase 

m l o or R b measure 

Topic models need a large collection of documents to find topics that are formed by coherent 
groups of words. In learning sciences, there are usually learning materials available for 
different contexts, subjects, and languages. Our assumption was that we could use relevant 
topics from upper secondary school physics textbooks if we wanted to describe the discussions 
of undergraduate physics students. Thus, the first stage consisted of using 31 Finnish physics 
textbooks to train the LDA model. We trained the model to identify 60 topics, which allowed 
us to represent an utterance as a mixture of 60 topic proportions. Table 1 shows the words most 
relevant to seven of the topics. We have translated the words from Finnish to English. Topic 



 
19 relates to words used in explanations. Topic 39 relates to words describing measurements. 
The other topics refer to numbers, units, name of variables and symbols. 

Stage 2: Build feature vectors grouped by CIBL group-work session 

In the second stage, we built a feature vector, or an enhanced representation of each utterance 
in the CIBL group-work sessions. The feature vector was used to train the automatic classifier 
in the next stage. Each utterance of the CIBL sessions was pre-processed (removing stopwords, 
symbols, and infrequent words). The LDA model was then used to obtain, for each utterance, 
a vector of 60 topic proportions. The output of this stage was a 182-dimensional feature vector 
representing each utterance: 60 components of the topic proportions for the utterance, 60 for 
the previous utterance, and 60 for the following utterance. The two additional dimensions 
corresponded to the number of words and the relative position of the utterance in the group-
work session. It is important to note that each feature vector was related to the corresponding 
human-coded phase. 

For the third and fourth stages, we grouped the feature vectors into two sets: a training set with 
the feature vectors from nine group-work sessions and a test set with the feature vectors from 
two group-work sessions. The training set would be the input for the third stage and the test set 
would be the input for the fourth stage. 

Stage 3: Train the SVM classifier 

In the third stage, we trained a linear support vector machine (SVM) classifier (Burges, 1998). 
SVMs are one of the most popular automatic classifiers (e.g., Araya et al., 2012; Rosé et al., 
2008). The training of the SVM consisted of adjusting a function to optimise the number of 
utterances in the training set that were automatically coded to be the same as the manual code. 
By the end of Stage 3, a workflow had been created that allowed automatic coding of an 
utterance with an IBL phase. The following are examples of utterances coded with the SVM 
classifier: 

Yes, it was something like 20, approximately [the number of collisions N = 300 in the Python 
programme]. Then it was a little bit more than 30. Let’s now try when it [N] is 500. I’ll try a 
couple of times: 11, 15, 25, 21, 15 … [manual coding: investigation; automatic coding: 
investigation] 

... 

Would someone else like to tap [run the Python programme]? [manual coding: discussion; 
automatic coding: orientation] 

 

Stage 4: Compare the manual and automatic content analyses 

In the fourth stage, we used the test set to compare the manual coding with the phase 
automatically assigned by the SVM (see the previous examples). The output of the fourth stage 
was a confusion matrix, i.e., a 5×5 matrix that summarises the number of utterances that were 
manually coded as the phase indicated by the row and automatically coded as the phase 
indicated by the column. 

As the dataset was small, the results were highly dependent on the test set selected. To get a 
more robust estimation of the SVM classifier’s errors, we independently ran the third and fourth 



 
stages while varying the input with all the possible combinations of nine and two group-work 
sessions in order to build the training and test sets. With 55 combinations in total, we obtained 
55 confusion matrices. As different test sets had different numbers of utterances, each matrix 
was standardised to total 100. The output of the overall process was then an average confusion 
matrix of the 55 standardised matrices. This procedure allowed us to answer the RQ, as the 
confusion matrix described how well the IBL classifier was performing for each IBL phase. 

Baseline 

To test whether the classifier was gaining information from the text features, we defined two 
baselines that did not require the extraction of information from the utterances. The first 
baseline was a classifier that classified all the utterances as the more frequent phase. In this 
study, the discussion phase was the most frequent and represented 36.1% of the utterances in 
the CIBL sessions. The second baseline was a classifier that, in the first part of the sessions, 
classified the utterances as orientation, and, in the second part of the sessions, classified them 
as discussion. To define where in the transcription the baseline classifier should start to classify 
utterances as discussion, we used the training dataset to find the optimal threshold for each run 
of the third and fourth stage. The average threshold used for the second baseline was to classify 
the first 40% of the session as orientation and the remainder as discussion. The second baseline 
had an accuracy of 42.7%. 

RESULTS 

A comparison of the results of the manual and automatic content analyses is presented in the 
confusion matrix (Table 2). Each cell Ci,j in the confusion matrix is the average number of 
utterances that were manually coded to IBL phase i and automatically coded to IBL phase j. 
Each cell Ci,j represents an average across all the independent runs of the third and fourth stages 
of the automatic content analysis. The accuracy of the classifiers are the coincidences between 
the manual and automatic content analyses. As the resulting matrix in Table 2 is standardised 
to a total of 100, the accuracy is obtained by adding up the diagonal. The overall accuracy was 
52.9% (SD = 4.8%). The precision of the classifier for each phase is the number of times that 
the automatically coded phase was the same as the manually coded phase. The precision of 
automatic coding of different IBL phases varied from 49% to 68% (orientation 50%, 
conceptualisation 49%, investigation 68%, conclusion 49%, and discussion 51%). 

Table 2. Comparison of the results of the manual and automatic content analyses. The rows refer to the 
manual content analysis, and the columns refer to the automatic content analysis. 

 Predicted 
Orientation 

Predicted 
Conceptualisation 

Predicted 
Investigation 

Predicted 
Conclusion 

Predicted 
Discussion 

Orientation 16.3 0.4 1.1 0.0 6.8 

Conceptualisation 2.8 2.2 0.8 0.0 5.7 

Investigation 5.8 0.3 9.6 0.0 8.6 

Conclusion 0.1 0.6 0.2 0.4 2.5 

Discussion 7.6 0.9 2.5 0.4 24.4 

 



 
In addition to the precision of the classifiers, there are other indexes that can be used to measure 
the reliability of the automatic coding. For example, the recall for each phase is the number of 
times that the automatic coding agreed with the manual coding, divided by the frequency of 
the phase. The recall of the automatic coding varied from 10% to 68% (orientation 66%, 
conceptualisation 19%, investigation 39%, conclusion 10%, and discussion 68%). These 
results show that the recall was rather low in the investigation phase compared to the orientation 
and discussion phases. This demonstrates that utterances manually coded to the investigation 
phase were automatically coded to the orientation and discussion phases many times, as shown 
in Table 2. 

The results show that the precision of the automatic coding varied depending on the IBL phase. 
In particular, the precision of the investigation phase was higher than the precision of the other 
phases, i.e., when the utterance was automatically coded to the investigation phase, the 
utterance was also manually coded to the investigation phase with 68% probability (even 
though the recall was 39% for the investigation phase). The following is an utterance that was 
coded to the investigation phase both manually and automatically: 

Yes, it was something like 20, approximately [the number of collisions N = 300 in the Python 
programme]. Then it was a little bit more than 30. Let’s now try when it [N] is 500. I’ll try a 
couple of times: 11, 15, 25, 21, 15 … [manual coding: investigation; automatic coding: 
investigation] 

In the investigation phase, the students had to, amongst other things, collect data to address the 
inquiry problem. The previous utterance shows an example of the data collection. During that 
collection, students collected the values of the displacement of an atom with different values 
of the number of collisions so they could infer the relationship between the displacement and 
time. Numbers were thus a characteristic of the investigation phase (cf. Topic 8 in Table 1). 
The following utterance demonstrates a challenge for the automatic coding: the utterance was 
manually coded to the discussion phase but automatically coded to the orientation phase. 

Would someone else like to tap [run the Python programme]? [manual coding: discussion; 
automatic coding: orientation] 

Even though the classifier on which the automatic coding is based accounts for the previous 
and subsequent utterances as well as the relative position of the utterance in the whole 
discussion, the consideration of the overall context of the utterances is difficult to automatise. 
This specific utterance was manually coded to the discussion phase as it is about 
communicating and suggesting a new way to proceed with the inquiry problem (changing the 
student in charge of working with the Python programme). As can be seen from Table 2, the 
conceptualisation and conclusion phases were rare in the students’ discussions compared to the 
other IBL phases, and there is thus not a representative example that illustrates inter-rater 
agreement between the manual and automatic coding in these phases. 

DISCUSSION AND CONCLUSION 

This study was a novel attempt to automate content analysis in authentic CIBL contexts in 
which students were working face-to-face in computer-supported settings. We compared the 
results of the manual and automatic content analyses, which were based on an SVM classifier. 



 
The average accuracy of the SVM classifier (52.9%, SD = 4.8%) was 15% lower than the 
agreement between human coders (67.7%). Regarding the baselines, the first classified all the 
utterances as discussion and had an accuracy of 36.1% (SD = 5.8%). The second baseline 
classified the first part of the IBL sessions as orientation and the rest as discussion and had an 
accuracy of 42.7% (SD = 5.3%). The SVM classifier performed significantly better than the 
baselines; therefore, the topic description of the sentences provided information that enabled 
the SVM classifier to distinguish the IBL phases. Overall, these results highlight the potential 
for using automatic content analysis both in CIBL contexts and in face-to-face interaction in 
general. 

There are still issues that future research should consider. First, the results for the recall and 
precision per phase indicate that the SVM classifier was biased against the most frequent 
phases. This is known as an unbalanced dataset problem. In our study, the precision was 
notably higher in the investigation phase than in the other phases. The recall of investigation 
was 39%, and the classifier frequently confused the investigation phase with orientation or 
discussion. When the classifier correctly coded investigation, topics 8 (numbers and units), 19 
(so, for example, same, or, …) and 33 (question mark, units, how, large, calculate, ...) were 
present. In the future, this bias could be addressed by gathering more examples of the less-
frequent phases (conceptualisation and conclusion). 

Second, we treated the results of the manual content analysis as reliable so they could be 
compared with the results of the automatic content analysis. However, inter-rater agreement in 
the manual content analysis indicated that the codes for many utterances were not 
unambiguous, but were decided after careful joint consideration. In future, research could 
check whether disagreement between computer coding and human coding appears more 
frequently in utterances in which there is disagreement between the human coders. Third, to 
build the numerical representation of the utterances, we used an LDA model. As our dataset 
was small (11 group discussions), we trained the LDA model with physics textbooks, which 
contained only some of the language that appears in authentic face-to-face discussions. In the 
future, we will integrate transcriptions from student discussions into the LDA training. 

Combining emerging automatic content analysis methods with ASR applications could be 
beneficial for both researchers and teachers. Automatic content analysis could support 
researchers with preliminary coding so they can focus more on tasks that cannot be automated, 
such as designing experiments and the interpretation of results, instead of time-consuming data 
transcription and coding. As productive CIBL activities do not necessarily emerge without 
assistance (Alfieri et al., 2010; Kobbe et al., 2007), a tool that can detect the stage of group 
discussions in real time could help in adapting support to the needs of different groups. An 
advantage of building the feature vectors based on LDA and using the SVM classifier is that 
the analysis is not necessarily language-specific. Even though we trained the LDA model using 
Finnish textbooks, our novel methodological approach is applicable to automatising content 
analysis in any language in which there are available textbooks (or other similar materials to 
train the LDA model) matching the language and subject of the CIBL activities. 
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