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Highlights 

 ICA decomposition result of fMRI data changes when the model order varies. 

 The consistency of components is distinguishing to tell signals and noises. 

 Across model orders validation helps capture consistent components. 

 Consistency can indicate the stability of the ICA decomposition results. 
 

Abstract 

 

Background: Independent component analysis (ICA) has been widely used for blind 

source separation in the field of medical imaging. However, despite of previous 

substantial efforts, the stability of ICA components remains a critical issue which has 

not been adequately addressed, despite numerous previous efforts. Most critical is the 

inconsistency of some of the extracted components when ICA is run with different 

model orders (MOs). 

New Method: In this study, a novel method of determining the consistency of 

component analysis (CoCA) is proposed to evaluate the consistency of extracted 

components with different model orders. In the method, “consistent components” (CCs) 

are defined as those which can be extracted repeatably over a range of model orders.  

Result: The efficacy of the method was evaluated with simulation data and fMRI 

datasets. With our method, the simulation result showed a clear difference of 

consistency between ground truths and noise. 

Comparison with existing methods: The information criteria were implemented to 

provide suggestions for the optimal model order, where some of the ICs were revealed 

inconsistent in our proposed method. 

Conclusions: This method provided an objective protocol for choosing CCs of an ICA 
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decomposition of a data matrix, independent of model order. This is especially useful 

with high model orders, where noise or other disturbances could possibly lead to an 

instability of the components. 

Keywords: consistency; model order; ICA; fMRI. 

 

1. Introduction 

Independent component analysis (ICA), which separates the input signals into a 

complete set of maximally independent ones (Hyvärinen, 1999; J.Sejnowski, 1995), has 

been widely and increasingly applied in neuroimaging studies for the past two decades. 

ICA is an effective data-driven method, and is also preferred to model-driven methods 

like general linear model (GLM, Flandin and Friston, 2008) or dynamic causal 

modeling (DCM, Friston et al., 2003) when the research paradigm does not include any 

prior knowledge, or a second-level feature data (e.g. ALFF in fMRI, FA in DTI, which 

are features denoting physiology meaning without time course ) is required in magnetic 

resonance imaging (MRI) studies. With the popularity of ICA in neuroimaging studies 

increases, there has been more scrutiny of the stability of extracted ICA components, 

due to the replicability crisis caused by the component instability (Artoni et al., 2014; 

Cong et al., 2014; Himberg et al., 2004; Levin-Schwartz et al., 2017).  

The replicability of the ICA decomposition of a data matrix is a vital (but 

frequently ignored) problem that requires a solution, which has long been ignored. 

Factors, such as covariate effects, noise or disturbance, and differing experimental 

paradigms or neuro-imaging acquisition protocols, can alter the data subtly and cause 

instability of ICA decomposition results. Accumulative efforts have been devoted to 

address this issue by employing soft or aggressive denoising approaches (Griffanti et 

al., 2014; Pruim et al., 2015). In resting state human fMRI data, there has been an effort 

to define stable, reliable components, but in this case, reliability across subjects refers 

to homologous ICs (Celone et al., 2006; Damoiseaux et al., 2006) across subjects or 

reliability within-subjects (Cong et al., 2013; Groppe et al., 2009; Himberg et al., 2004) 

refers to the physiological plausibility and statistical reliability of each IC. Despite of 

the usefulness in the above context, this can only be a workaround, not a solution. 

Addressing the instability issue of ICA results, and allowing the selection of authentic 

and consistent ICs would greatly reduce the efforts for further physiological plausibility 

and statistical reliability analysis. 

MELODIC ICA in FSL (Smith et al., 2004) and GIFT (Group ICA of fMRI 

Toolbox, Calhoun et al., 2010) are two of the most popular ICA software packages. 

However, the ease of use and great convenience provided by them means that they may 

lead to an inappropriate application in the hands of less experienced users who are not 

familiar with the limitation ICA regarding model order selection and reliability. In terms 

of a typical ICA procedure, the model order (the number of ICs to extract) is 

automatically determined using information criterion such as the well-known Akaike’s 
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information criterion (AIC), Kullback Information Criterion (KIC), the minimum 

description length (MDL) criterion (Calhoun et al., 2010), or even straight-forward 

variance explanation percentage, especially when dimension reduction is performed 

using principal component analysis (PCA). However, the MO is likely to vary, even for 

one single dataset processed with different pre-processing protocols, especially when 

the dimensions of neuroimaging datasets are increasing. In addition, even with a small 

change of MO, for example 20 versus 25, some of the resulting ICs may differ 

significantly, for the reason that a larger amount of key information has been retained 

with the increased MO (Remes et al., 2011). Instead of repeatedly adjusting the MO 

when decomposed ICs cannot be properly interpreted by physiological plausibility and 

statistical reliability analysis, or simply accepting the ICA results in one single MO no 

matter how good or bad they are, this study attempts to propose a more comprehensive 

and rigorous method for objectively selecting the correct (and rejecting spurious) ICs.  

The extracted components from ICA need to be evaluated before they can be used 

for further analyses. The ICA model usually includes one unmixing matrix and one 

source matrix, which in functional MRI studies also known as the time-course (this 

could be subject serial in second-level feature MRI data) and spatial distribution. Some 

studies (Meindl et al., 2010; Wisner et al., 2013) have proposed other alternative 

methods to evaluate the stability of ICA algorithms, mainly focusing on the spatial 

distribution (used for physiological plausibility); Some study (Hu et al., 2019) 

combined the spatial distribution and time-course (used for statistical reliability) as 

rank-1 spatial-temporal matrix accounting for a more convincing result. Both spatial 

and temporal aspects of the generated independent components could provide 

meaningful information. Therefore, assessment of spatiotemporal stability, via 

hierarchical cluster analysis of spatiotemporal tensors on a multi-dimensional rank-1 

matrix, will provide more complete information regarding the balance between spatial 

and temporal stability, compared with either assessment separately. The tensor 

clustering results can be utilized to determine a reasonable MO range.  

The CoCA method described above proposes that ICA can be implemented over a 

range of MOs and narrowed down to a reasonable range to achieve the goal of finding 

an optimal MO among this range, and then selecting the CCs within the group that is 

sufficiently consistent across all MOs. InfomaxICA (J.Sejnowski, 1995) and FastICA 

(Hyvärinen, 1999) are the two most frequently used ICA algorithms, and are therefore 

chosen for testing the stability performance. The ICA results are evaluated by using a 

correlation coefficient based index Cq (consistency quality, details provided in method 

section). CoCA excludes ICs which do not achieve a certain threshold level of Cq for 

further analyses. 

2. Materials and methods 

2.1. Simulation data 

The simulation data includes 5 subjects comprised of a mixture of 5 time courses, 
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with 284 time points and 5 paired brain networks (shown in Fig. 1), which are generated 

from “standard” resting-state brain networks to simulate realistic fMRI signals 

(Damoiseaux et al., 2006). Gaussian noise was added to each time point to give a signal-

noise ratio of 4 (6dB). A bias baseline was generated for each time point. The SNR is 

defined as the equation below: 

 

where As is the amplitude of the signal and σn is the standard deviation of the noise.  

 

Figure 1 here 

2.2. In vivo clinical data 

A dataset used in this study included 58 participants from 3 groups: 20 designated 

DM (type II diabetes mellitus, 12 females, 8 males, age 60.39 ± 5.18), 20 designated 

SD (type II diabetes mellitus with sleep disorder, 12 females, 8 males, age 60.27 ± 5.89), 

and 18 designated HC (health comparison subjects, 11 females, 7 males, age 

57.28 ± 4.48). All participants signed informed consent forms approved by the ethics 

committee of the Dalian University of Technology and Affiliated Zhongshan Hospital 

of Dalian University. 

MRI scanning was performed on a 3-Tesla (3T) MRI scanner (Verio, Siemens, 

Germany) using a 12-channel phased-array head coil. High-resolution T1-weighted 

images were acquired using a magnetization-prepared rapid gradient echo (MPRAGE) 

sequence, with repetition time (TR) = 2530 ms, echo time (TE) = 2.22 ms, flip angle = 

7°, matrix size = 224 × 224, field of view (FOV) = 224 × 224 mm, voxel size = 1 × 1 × 

1 mm, and slice thickness = 1mm; the scanning time was 5 minutes 28 seconds. Rs-

fMRI data were acquired using an echo-planar image (EPI) pulse sequence with 

parameters as follows: TR = 2000 ms, TE = 30 ms, flip angle = 90◦, FOV = 224 × 224 

mm, and matrix = 64 × 64, the scanning time was 8 minutes. Pre-processing was done 

with DPABI (rfmri.org/dpabi). Functional images were slice-time corrected, realigned 

for head motion correction, registered into the MNI152 standard space template, 

rescaled to 3×3×3 mm3 resolution, and smoothed with a FWHM 6 mm Gaussian kernel. 

In the temporal domain, detrending and a 0.01Hz to 0.1Hz bandpass filter were applied 

to remove the system interference and abnormal frequency components. 

2.3. In 7T HCP Datasets 

The performance of our proposed method was also evaluated on the 7T HCP 

dataset (Human Connectome Project: www.humanconnectome.org). We selected 10 

subjects (10 females, 27.6±1.6) with a “minimally preprocessing” procedure (Glasser 

et al., 2013) including gradient unwarping, motion correction, fieldmap-based EPI 

distortion correction, brain-boundary-based registration of EPI to structural T1-

weighted scan, non-linear registration into MNI152 space, and grand-mean intensity 

normalization. For details of the data acquisition parameters see (Van Essen et al., 2013). 

SNR = (
As

σn
)

2

= 20log (
As

σn
) 
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We did smooth the data with a kernel of FWHM of 8mm with FSL (Smith et al., 2004, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), but besides that, no further processing was 

applied on the data so that preprocessing would not affect the results. The brain mask 

was generated by average 10 subjects and was used to transfer the 113 x 136 x 113 

matrix into a length 408678 vector. 

2.4. Spatial-temporal components stability index 

ICA, as a well-established method for determining networks of neuronal 

connectivity, was applied to the fMRI data for the effectiveness as a solution for the 

problem of blind source separation. If we take brain functional networks as the sources, 

the noise-free model will be: 

𝐗 = 𝐀𝐒 = 𝐚1 ∘ 𝐬1 + ⋯ + 𝐚r ∘ 𝐬r + ⋯ + 𝐚R ∘ 𝐬R, 

where 𝐒 ∈ ℝR×M is the source component, 𝐀 ∈ ℝN×R is the mixing matrix, and 𝐗 ∈

ℝN×M is the observation.  

The stability of spatial and temporal components was evaluated by using a 

hierarchical cluster analysis of tensors via the tensor clustering toolbox (Himberg et al., 

2004; Hu et al., 2019). In the toolbox, a rank-1 matrix 𝐄r was calculated by the outer-

product of rth  independent component’s spatial map 𝐚r  and corresponding time 

course 𝐬r. The clustering quality Iq and similarity matrix of 𝐒ij in Tensor Clustering 

were defined as below: 

𝐒ij = ∑(𝐄i ⨀𝐄j) = ∑[(𝐚i ∘ 𝐬i) ∙ (𝐚j ∘ 𝐬j)], 

Iq(r) = S̅(r)in − S̅(r)ex, 

where S̅(r)in and S̅(r)ex respectively stand for the mean intra-class and inter-class 

similarity of rth cluster. 

After tensor clustering, the rank-1 matrices could be used to stand for the reliability 

of each spatial-temporal component within the specific MO. That is to say, each single 

IC will have its own clustering quality index, i.e. Iq. 

2.5. Consistent component stability index 

The proposed CoCA method requires a range of MOs, over which the ICA 

algorithm could run for multiple times, for each MO. The “ideal” number of runs varies 

substantially in different literatures (Groppe et al., 2009; Meinecke et al., 2002). We 

recommend the number of runs for single MO larger than 50, which we believe is an 

acceptable compromise between computation cost (using CPU methods, which is the 

most common) and accuracy. Multiple MOs are required to measure the consistency of 

each component, which allow visual comparison between MOs and components and 

allow selection of both sets of consistent components and the optimal model order. 

The flowchart of CoCA is demonstrated in Fig. 2. The process includes two stages: 

stage one focuses on single MO assessment to determine a reasonable MO range; stage 

two implements the core steps of CoCA - calculating the component consistency indices 
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and doing consistency assessments across model order. Stage one has already been well 

understood, as it is a standard part of ICA analysis. Stage two is relatively novel, and is 

summarized with the following detailed description. If MO ranges from 2 to K, there 

will be a k ∈ [2, K] which yields the best performance among the tensor clustering 

results, and denotes that these k  ICs will have consistent quality for any further 

analysis. The consistency of components in optimal MO across all MOs was evaluated 

with the procedure below for all k ∈ [2, K]:  

1) Recover the time-courses 𝐓𝐜 ∈ ℝN×k  from the mixing matrix 𝐀 = 𝐕𝐖−𝟏 

( 𝐕 is the orthonormal matrix in PCA for dimension reduction); 

2) Recover the spatial maps 𝐒𝐦 ∈ ℝk×M from the source matrix 𝐒 = 𝐖𝐕𝐓𝐗; 

3) Calculate the correlation coefficients of the spatial-temporal components 

(combined 𝐓𝐜 and 𝐒𝐦) between MO k and other MO 2 to MO R, which then will 

result in a mapped correlation coefficient matrix 𝐂𝐦𝐚𝐩 ∈ ℝR×R×k ; 

4) Pair each MO component with one and only one of the k components in MO 

k based on the maximum correlation coefficient, forming a binary index matrix 𝐈𝐡𝐜 ∈

ℝ𝐑×𝐤; 

5) Based on the 𝐈𝐡𝐜  indexing out two matrixes  Iq and 𝑟max  from tensor 

clustering results and correlation coefficients ergodic results; 

6) Assess consistent quality (Cq) based on Iq and 𝑟max in the two phases, for MO 

less than and greater than MO k. 

The consistency quality (Cq, take rmax as an example) is based on the Iq and rmax, 

combining the appearance of the components to address the consistency of one specific 

component. For phase one, as MO is less than k, there are not enough paired IC’s for 

all k components. Because certain consistent components will appear over the range 

of 2 to k while some will not. In contrast to the consistent components, we define those 

inconsistent components as‘broken’ ICs. A ‘broken’ IC has the tendency to appear and 

disappear in the paired components, which helps us to set up penalty terms by the 

number (Lb) and frequencies (Lf) of being absent since the first time it appears in the 

model. High values of these terms would indicate inconsistent ICs. The definition is 

shown below: 

Cq = βri̅ 

β =  1 −
LbLf

k2
, 

where β is the punishment parameter, ri̅  (i = 1,2, ⋯ , k) is the average correlation 

coefficient of all the component paired with the ith IC in MO k, Lb, Lf stands for the 

number and frequencies of those ‘broken’ ICs. As for phase two, Cq is easier to assess, 

since there are no absent IC’s. Here, the standard deviation of the slope of ri, which 

represents the fluctuation of r, is subtracted as the punishment. Cq is therefore defined 

as below:  
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Cq = ri̅ − std(ri,j − ri,j−1), j = k + 1, ⋯ , R. 

 

Figure 2 here 

 

3. Results 

3.1. Simulated data 

For the sake of generality, both FastICA and InfomaxICA were both run 50 times. 

The proposed scheme was used to obtain the optimal MO and detect consistent 

components. According to the tensor clustering results, the optimal MO was determined, 

and further stability and consistency analyses are shown in Fig. 3 and Fig. 4. For the 

FastICA results, the 5 ground truth components stand out at the optimal MO = 7, and 

the consistency analysis demonstrates exactly how the noise signal corrupts the 

components with increasing MO. As for the InfomaxICA result, the rank-1 spatial-

temporal matrix tensor clustering reveals the decreasing Iq  index for noise 

components. In the InfomaxICA algorithm analysis, the noise signal looks somewhat 

consistent for the rank-1 matrix, based on the spatial maps and time courses through 

the different MOs; however, the consistent Iq does not conceal the fact that the noise 

is unstable. This shows that such noise has the potential to give rise to consistent 

components, especially when the InfomaxICA algorithm works to maximize the 

information from data. The consistent performance contrast between the source signal 

and noise is clear and bounded - the stubborn noise and artifacts in real fMRI data can 

highly exhibit the same nature. In this case, further physiological plausibility analyses 

would be needed to reveal the difference.   

Figure 3 here 

Figure 4 here 

 

3.2. In vivo clinical data  

Stability analysis for consistent components 

The convergence of ICA (Fig. 5a) results shows that when model order (MO) is 

over 30, the convergence drops dramatically. Based on the rank-1 matrix tensor 

clustering quality index Iq (Fig. 5b), all averaged Iq values were larger than 0.8 before 

MO = 30, which set a lower bound for the MO range (less than 25) with good 

performance in 50 runs. 

 

Figure 5 here 

 

The results of the tensor clustering are displayed using 2D-projection visualization, 

as shown in Fig. 6. It shows clearly that some connection between clusters appears, and 

the density of some clusters decreases as the MO is increased. What’s more interesting 
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is that some badly shaped and overlapped clusters in MO 25 perform better in MO 30 

(IC#19 and IC#25 in MO 25). With the criteria mentioned above, MO 21 was chosen 

to be the optimal, resulting in a set of 21 ICs with consistent quality. Several commonly 

used information criteria were implemented to represent its irrational suggestion, and 

the estimation results of AIC, KIC and MDL indicated that the optimal model order 

goes to 11, 9 and 2. It is obvious that ICs decomposed in these so-called optimal model 

orders are basically inconsistent (Fig. 7). 

Figure 6 here 

Figure 7 here 

 

The correlation coefficients of the paired ICs in MO 21 (Fig. 7a) indicate that not 

every IC has a good consistency, as some may be ‘broken’. The reason could be that 

the increasing number of the MO brings a larger amount of information into the ICA 

iterations, which could induce instability in some ICs. The Cq based on correlation 

coefficients for every IC in MO 21 (Fig. 7b) shows that consistent components (CC) 

could be clearly addressed with a higher mean Cq above 0.8 like CC#1, CC#2, CC#3. 

 

Figure 8 here 

 

In Fig.8, Iq values are obviously higher in phase one, because the ICs with MO 

less than 21 are in good condition, as seen from the tensor clustering results shown in 

Fig. 6. In phase two, some ICs with ‘unpleasant’ Iq values emerge as a prediction of 

instability. Then, we could tell the Cq , based on Iq , should be larger than 0.9 as a 

threshold for consistency, namely, CC#1, CC#2, CC#3 and some other ICs stand out. 

So far, correlation coefficient and Iq based on Cq are equally important; one stands 

for the validity of phase one and the other of phase two. It is obvious that correlation 

coefficients are more sensitive to larger differences than smaller ones (our interest is to 

exclude the inconsistent ICs, so the Fisher z transformation is not applied to differ 

higher correlation), which are often detected in phase one. In contrast, the index Iq 

refers to the clustering result of components, and the performance would be good if the 

estimated model order is less than the ideal one. Empirically and theoretically, Iq 

varies more easily when MO is higher, thus it is more sensitive in phase two. However, 

the final decision cannot be made without combining both of them. In this study, IC#1, 

IC#2, IC#3, IC#5, IC#7, IC#8, IC#12, and IC#19 are picked out as CCs fulfilling the 

requirement that Cq values are larger than the threshold of 0.9 for Iq and 0.8 for the 

correlation coefficients. 

Spatial map plausibility and statistical analyses 

Group ICA was applied in this study, and the first time PCA was employed for 

single subject data to reduce dimensionality, with the criteria of retaining enough 
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components to explain 95% of the variance. Then the second time PCA was employed 

for model order determination. After ICA decomposition, time-courses of each subject 

were recovered, and the Fourier transform was applied to measure the amplitude of 

low-frequency fluctuation (ALFF, Di et al., 2012). Then, an overall 3 x 1 ANOVA was 

used to examine statistical significance with the p-value less than 0.05. Meanwhile, the 

spatial maps were recovered and converted to Z-values (by dividing by the standard 

deviation of the source) and thresholded at |Z| > 2.3 for display.  

After excluding some ICs with irrational spatial maps (e.g. a lower correlation 

coefficient with ‘standard’ resting networks or a noisy distribution with excessive 

scattered clusters) or uncorrectable p-value, among the qualified results, IC#2 (p = 0.02) 

and IC#5 (p = 0.0159), were picked out for the demonstration. The spatial maps of the 

two ICs are displayed in Fig. 9. However, the multiple comparison results showed that 

major effects were from the difference between two diabetes mellitus groups and the 

HC group. Both the Calcarine area in IC#2, and the Middle Frontal and Inferior Parietal 

areas in IC#5, have previously been found associated with the changes in vision and 

cognition. Furthermore, the Montreal Cognitive Assessment (MoCA) was performed 

for each subject. The correlation between ALFF (IC#5, Middle Frontal area) and MoCA 

index was shown in Fig.10. The positive correlation between MoCA and the mean value 

of ALFF was found in the Middle Frontal area in IC#5 for both SD and DM groups. 

However, only the DM group showed a significant result with a p-value less than 0.05. 

 

Figure 9 here 

Figure 10 here 

3.3. In 7T HCP Datasets 

The 7T HCP datasets are high-resolution fMRI datasets and only included healthy 

subjects. It is helpful to evaluate the performance of CoCA by focusing on the stability 

or consistency of rest-state networks. Considering the memory and computing efficacy, 

we adjusted the ratio of dimensionality reduction in the first PCA from 95% to 80% of 

explained variance and the second PCA result was a big matrix sized as 408678*912. 

To compare with a traditional fixed model order ICA, the model order estimation 

algorithm AIC, KIC, and MDL were used to estimate the second PCA result, and the 

suggesting model orders were AIC for 25, KIC for 10, and MDL for 1. The estimation 

results were not coherent and the later consistency analyses proved our method was 

more rational than such information-theoretic criteria. Compared to the clinical datasets, 

we assessed the 7T HCP dataset in a more comprehensive and perspective way. 

Based on the tensor clustering results listed in Fig. 11, we selected the MO 20 as 

the optimal order, and the model order ranged from 10 to 30. The consistent analysis 

results based on correlation coefficients and Iq were separately shown in Fig. 12 and 

Fig. 13. We could find out that several ICs, from IC#4 to IC#10, have represented a 

very good consistency. IC#1, IC#2, IC#3, IC#14, IC#15, and IC#19, these components 
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with a Cq  higher than 0.8 could also be regarded as the consistent components. 

Therefore, it will be more comprehensive to address the variation of this metric by 

giving some examples. Some inconsistent components here, IC#11, IC#12, IC#13, and 

so on, have a tragic dropdown in MO 23. So, we recovered the spatial maps of IC#11 

and IC#12 from MO 20 and their paired components IC#22 and IC#14 in MO 23 for 

comparison (Fig. 14). All the spatial maps were scaled with z-score transformation and 

thresholded at |Z| > 1.6. According to Fig. 13, it was noticeable that the differences 

between spatial maps were coherent with the differences between the correlation 

coefficients. For IC#11, its correlation difference between MO 20 and MO 23 (IC#22 

in MO 23) was much smaller than IC#12, and so does the variation of the spatial maps.  

To make the result much clearer and easier to follow, we increased the MO range 

to 50 on optimal model order 20 and 23 (Fig. 15). Meanwhile, by separating the spatial-

temporal matrix into spatial maps and temporal courses, we could have a perceptual 

perspective in understanding why the consistent analysis is crucial and important. In 

Fig. 14, the ICs with strong consistency might persist along with model order (IC#5, in 

MO 20 when no specification) and some could also be slightly changed (IC#9 and 

IC#19). The consistency, it required the spatial maps and temporal courses both kept 

on the same paving. Because corruption happened in any one of them would result in 

poor consistency. On the other hand, some inconsistent ICs may become more 

consistent when MO increasing brought more information, and their spatial maps or 

temporal courses would not always stay the same or simply fractionate. Actually, they 

evolved along with the MO until enough information served its consistency or stability 

(IC#2 and IC#3). However, IC#14 in MO 23 contained more structural noise 

components compared to IC#12 in MO 20 as shown in Fig. 14, but its spatial maps only 

were incidental or unstable results, because we could find out that it quickly evolved 

after several model orders. The consistency of spatial maps or temporal courses might 

not keep in the same pave, but well-performed ICs always scored high in both 

perspectives as shown in Fig. 15. The above results indicated that the CoCA could 

contribute in giving more confidence in the ICA decomposition results, no matter under 

what kind of applications, using ideal model order supported by prior knowledge or 

estimated by any methods. 

Figure 11-15 here 

 

4. Discussion 

The consistency of independent components over model orders has not received 

adequate study as an assessment factor to establish the stability of the ICA 

decomposition. In (Groves et al., 2012; Ray et al., 2013), a similar scheme was used for 

reproducibility test, however, they chose only two dimensions to pair components. Our 

method not only evaluates the consistency across all model orders, but also quantifies 

it with Cq index. Our protocol can also bcre used to distinguish cases of components 
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splitting as dimensionality increases, cases of new components appearing carrying 

additional information, and stubborn structural noise components. Along with the 

model range detection for consistency, evolving components could be detected through 

correlation coefficient changes; for example, in the in vivo data, IC#10 had a clear up-

down gradient fluctuation. Cq, based on Iq, can be utilized to identity the clustering 

results, and is an interesting index to show when one component splits or two 

components merge as the MO increases. Our method also has a potential to trace ICA 

decomposition progress and provide a metric for interrupting ICA with a priori 

knowledge. 

In our vivo clinical data test, two chosen ICs were typical brain regions that have 

been found in many previous studies(Cui et al., 2014; Hu et al., 2019; Wang et al., 2014). 

There were additional ICs that could be used to represent the significant difference 

between diabetes mellitus groups and healthy groups, but we presented only these two 

for clarity. As for those inconsistent components in the result, not all of them are noise, 

as we had originally thought (for example, scattered clusters, gaussian noise throughout 

the brain, etc.)  Empirically, we would expect that the dominant components would be 

brain networks. However, the most common, and disturbing, situation encountered in 

the ICA results are the presence of compound components (i.e. the brain network we 

are interested combined with noise components). The independence constraint only 

requires that consistent components (e.g., IC#1 and IC#2) be exactly that - independent 

components. Our proposed method will perfectly do its job detecting consistent 

components and has no bias for or against any IC, whether it is signal or noise. For 

stubborn structural noise components, there is a highly chance that they may become a 

single IC, or part of an IC that consistently exists over model orders, while fragile and 

vulnerable noise, or signal/noise mixed components, are more sensitive to model order. 

Our proposed method as a stability or reproducibility analyses method, the main target 

is to distinguish consistent and stable components from those inconsistent ones with 

consistency metrics.  

Some ICA applications use much higher MO in decomposition (Abou-Elseoud et 

al., 2010; Allen et al., 2011; Groves et al., 2012; Iraji et al., 2019; Kiviniemi et al., 2009; 

Li et al., 2007; Wei et al., 2017; Ystad et al., 2010). The reproducibility, stability or 

consistency concerns for higher MO cannot be fulfilled by doing a comparison between 

one lower and one higher MO or simply check the existence of some key components. 

No matter how fragile the ICs are, the ICA tends to separate statistically significant 

independent sources with effectively i.i.d. samples from the dependent data(Li et al., 

2007). And some vital or interesting components like the subnetworks of DMN(Hu et 

al., 2016), may only be distinguished when the MO is high enough. Under such 

circumstances, a well-performed, objective stability analyses is critical. Our proposed 

scheme can help to evaluate any potential interesting component over a range of MO 

to determine its stability, and how it evolves with increasing model order, as the ICs 
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split and merged. 

Another key factor of the reliability method is the ‘stable’ index threshold (Artoni 

et al., 2014; Remes et al., 2011). Usually, extracted components and coefficients of 

adaptive iteration algorithms (e.g., ICA) run the risk of being unstable because of model 

order selection. So reproducibility or stable analyses increase the confidence in the 

results of a study. But the appropriate threshold for these indices may be different in 

various applications. To address this issue, the proposed method, CoCA, takes into 

consideration that the index of stability should involve not only the single MO but also 

a certain MO range. Moreover, CoCA provides the index of all paired ICs between MO, 

which means the correlation coefficient and Iq of all ICs are traceable. Any ambiguous 

ICs can be identified via visual inspection or can be subjected to further analysis to 

decide if it should be kept or ruled out. 

In sum, the CoCA is a consistency analysis based on correlation coefficients and 

tensor clustering indices, which combines the ICASSO and rank-1 spatial-temporal 

matrix, deriving from a cross-MO ergodic strategy. Such a strategy is potentially 

suitable for any other adaptive iteration algorithm to evaluate their stability. Our 

software is available in https://github.com/WeiZhao04/CoCA.git. 
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Appendix 

Time-course and spatial map recovery  

Group ICA is used in this study, and the first level PCA is applied to the pre-

processed data of each subject, and then temporally concatenated into a group-wise 

dataset. Then, based on the basic assumption of temporal concatenated Group ICA, all 

subjects share the same spatial maps but different mixing matrices as below: 

𝐗(i) = 𝐀(i)𝐒 

𝐙(i) = 𝐕T(i)𝐗(i) = 𝐕T(i)𝐀(i)𝐒 

where i = 1,2, ⋯ , P, denotes the ith subject in a total of P subjects, and 𝐕T(i) is the 

transformation matrix for dimension reduction. After temporal concatenation, a second 

level PCA is applied for model estimation reduction. 

𝐙𝐆 = 𝐕𝐆𝐃𝐆𝐒𝐆 

𝐃𝐆 = [
𝐕T(1)𝐀(1) ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝐕T(P)𝐀(P)

] ,  𝐒𝐆 = [
𝐒
⋮
𝐒

], 

where 𝐙𝐆 ∈ ℝ𝐍𝐏×𝐌  and 𝐕𝐆 ∈ ℝ𝐍𝐏×𝐍𝐏  are the group-wise observations and group 

orthonormal matrix. 𝐃𝐆 is a block diagonal matrix consisting of 𝐕T(i)𝐀(i). 

Finally, 𝐙𝐆 was inputted into the ICA model and the formulation could be denoted 

using the unmixing matrix 𝐖𝐆 as follow: 

 𝐘𝐆 = 𝐖𝐆𝐙𝐆 = 𝐖𝐆𝐕𝐆
𝐓𝐃𝐆𝐒𝐆 

where 𝐘𝐆 is the estimation of sources. As for the noise-free model, it should equal to 

𝐒𝐆 with the polarity and variance indeterminacy discarded already. If we take the stack 

of data into consideration, then 𝐖𝐆𝐕𝐆 can be divided into blocks for each subject. The 

bi denotes the block of the ith subject as follow: 

(𝐖𝐆𝐕𝐆
𝐓)

bi
𝐕T(i)𝐀(i) = 𝐈, 

And the time-course of each subject can be recovered as the formula below: 

A(i) = ((WGVG
T)

bi
VT(i))

−1

. 
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Fig. 1. (a) Five source maps are created from the resting state network. (b) Five 

timecourses with 284 points are shown as specific colors to corresponding source maps. 

 

Fig. 2. The flowchart of CoCA. (A) The progress of model order range determination. 

(B) The indexes calculation and consistence analysis progress. 

 

Fig. 3. The results and index figures of FastICA. (a) The tensor clustering result 

of MO = 7 over 50 runs.  Consistent components (in this case 1-5) are compact in this 

space – the large spatial extent of components 6 and 7 show that their values are not 

highly consistent. (b) Correlation coefficients paired results (c) Rank-1 components 

index paired results. (d) Consistence index of correlation coefficients. (e) Consistence 

index of Iq index. 

 

Fig. 4. The results and index figures of InfomaxICA. (a) The tensor clustering results for 

MO = 7 over 50 runs.  Consistent components (in this case 1-5) are compact in this space – 

the large spatial extent of components 6 and 7 show that their values are not highly consistent.  

(b) Correlation coefficients paired results (c) Rank-1 components index of paired results. (d) 

Consistence index of correlation coefficients. (e) Consistence index of Iq index. 

 

Fig. 5. (a) Number of convergences runs in a total of 50 runs from model order 2-50 and 

(b) the tensor clustering result of the spatial-temporal rank-1 matrix in the same range. 

 

Fig. 6. Visualization for the tensor clustering result in MO 10, MO 15, MO18, MO 21, 

MO 25 and MO 30. Blue numbers label the extracted ICs, and the black dots (ICs) are clustered 

within convex hulls. And the centroid is highlighted using blue circle. Red lines connected dots 

denotes the similarity of them. 

 

Fig. 7. (a) Paired correlation coefficient results for all IC's found in the optimal MO 21 

with components found in model orders over the range from 2-30. Model order increases from 

left to right. Some components are consistent over all runs–IC#2 and IC#11 appear at MO 2 

and persist over all model orders.  IC #s 5, 8, 14, 16, 20, and 21 appear in some lower order 

fits, disappear with increasing model order, and then reappear and persist. Component 18 does 

not appear until MO 21. The black vertical line shows MO 21 on the y axis–all correlation 

coefficients are 1 along this line. (b) Consistence quality coefficient in MO 21 address the 

reliability for each IC. It is clear that there is no Cq for IC#18 in phase one because it’s a new 

IC just appeared since MO 21. 

 

Fig. 8. (a) Iq paired result in optimal MO 21 divided by the black line as the boundary of 

phase one and phase two. (b) Consistency quality coefficients in MO 21 address the reliability 

for each IC. 

 

Fig. 9. Spatial maps of IC#2 and IC#5 results (ALFF) in MO#21. Calcarine area in IC#2 
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and Middle Frontal and Inferior Parietal areas in IC#5. 

Fig. 10. Tow groups showed positive correlation between MoCA and ALFF of Middle 

Frontal area in IC#5, and DM is significant with a p-value lower than 0.05. 

 

Fig. 11. Visualization for the tensor clustering result in MO 15, MO 17, MO 20, and MO 

23. Blue numbers label the extracted ICs, and the black dots (ICs) are clustered within convex 

hulls. And the centroid is highlighted using blue circle. Red lines connected dots denotes the 

similarity of them. 

 

Fig. 12. (a) Paired correlation coefficient results for all IC's found in the optimal MO 20 

with components found in model orders over the range from 10-30. Model order increases from 

left to right. The black vertical line shows MO 20 on the y axis–all correlation coefficients are 

1 along this line. (b) Consistence quality coefficient in MO 20 address the reliability for each 

IC. 

 

Fig. 13. (a) Iq paired result in optimal MO 20 divided by the black line as the boundary of 

phase one and phase two. (b) Consistency quality coefficients in MO 20 address the reliability 

for each IC. 

 

Fig. 14. Spatial maps of IC#11 and IC#12 in MO 20 ICA and their paired components 

IC#22 and IC#14 in MO 23. The spatial maps were scaled with z-score transformation and 

thresholded at |Z|<1.6. 

 

Fig. 15.  Paired correlation coefficient results of spatial maps for all IC's found in the 

optimal MO 20 (a) and in MO 23 (b) with components found in model orders over the range 

from 10-50. Paired correlation coefficient results of temporal courses for all IC's found in the 

optimal MO 20 (c) and MO 23 (d) with components found in model orders over the range from 

10-50. 
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