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Highlights: 

 A deep learning architecture is proposed to automate sleep scoring using multi-modality 
PSG signals. 

 A linear activation function is adopted in the first CNN layer to accommodate different 
numbers of input channels, which helps to addresschannel mismatches. 

 One LSTM module and two CNN moduleswith different kernels sizesare 
employedtocapture information across temporal and spatial scales. 

 The proposed model achieves good performanceon three disparate datasets 
withdifferent subject attributions, thereby demonstrating model generalizabilityon 
different disease populations. 

 Model transferability is demonstrated across three datasetswith different input channels 
and signal modalities. 

 

Abstract 

Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and 

urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning 

architecture to automate sleep scoring using raw polysomnography recordings.  

Method: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-

dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze 

and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-

range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages. 

Result: Model performance is evaluated on three public datasets. For all tasks with different available channels, our model 

achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-

0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of 

multiple polysomnographic signals. 

Comparison: Compared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or 

better performance, and exhibits low computational cost. 

Conclusions: The model demonstrates its transferability among different datasets, without changing model architecture or 

hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies 

with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse 

polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care. 

Keywords: polysomnography; automatic sleep scoring; multi-modality analysis; deep learning  

 

1. Introduction 

Sleep is a vital physiological process as it covers approximately one-third of the human lifespan. Adequate and high-quality 

sleep is essential for physical restoration[1], memory processing[2] and metabolism[3]. Nowadays, probably due to our hectic 

lifestyle in modern society, complaints about sleep problems increase dramatically among people. An effective way to monitor 

sleep quality and diagnose sleep problems is overnight polysomnographic (PSG) test. The PSG test simultaneously records 

dozens of sleep signals, including electroencephalograms (EEG), electrooculogram (EOG), electromyograms (EMG), 
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electrocardiogram (ECG), airflow and respiratory effort. These recorded signals are generally analyzed by sleep experts based 

on the R&K rules[4] and recently updated American Academy of Sleep Medicine (AASM) standard [5]. 

Based on the amplitude and frequency characteristics of PSG signals, the R&K rules divide sleep into five distinct stages: 

non-rapid eye movement (NREM) stages 1, 2, 3 and 4 and rapid eye movement stage (stage R). The most recent AASM standard 

merges NREM stages 3 and 4 into N3 due to their prevalent low-frequency oscillations in EEG signals. Assigning a sleep stage 

to each sleep segment, called sleep scoring, is a very important step in any sleep research. However, the manual sleep scoring is 

labor-intensive and subjective. Previous studies have reported that the annotation of an 8-h recording requires approximately 2-

4 hours[6], and the inter-scorer reliability of sleep scorings is about 0.8[7]. Therefore, automatic scoring is deemed as a promising 

approach due to its cost efficiency and high precision.  

Numerous attempts[8] so far have been made in the field of automatic sleep scoring. Scoring methods based on conventional 

machine-learning were prevalent, which usually included two main components: feature extraction and classification. There 

were wide varieties of techniques for feature extraction, including but not limited to statistic methods[9], Fourier transforms[10], 

wavelet analysis[11] and Hilbert transform[12]. These techniques were responsible for describing sleep signals from multiple 

aspects. In order to obtain an evaluation of sleep stages, these extracted features were then fed to a classifier[13], such as support 

vector machine[14], random forest[15], K-nearest neighbor classifier [16], Naive Bayes[10], artificial neural network[17]. These 

studies’ accuracy ranged from 0.8 to 0.9 and highly depended on the validity of employed features. 

Recently, approaches based on deep learning have sprung up since it avoided explicit feature extractions commonly seen in 

conventional machine-learning methods, and were especially suitable for big data approaches [18]. Mousavi et al. [19] proposed 

a convolutional neural network (CNN) to automate sleep scoring using EEG time series, which achieved competitive 

performance in the classification of 2 to 6 classes of sleep stages. Instead of raw signal inputs, time-frequency images, generated 

by the short-time Fourier transform [20] or the wavelet transform [21], were also explored in several studies. Zhang et al. [22] 

even compared these two different input representations and concluded that the network performance using the spectrogram as 

inputs was superior to that using time series as inputs, which was attributed to the compact information and less artifact in the 

spectrogram. Although CNN gave the most convincing performance in some fields, for example, computer vision and image 

recognition, it still suffered from some problems, such as the selection of hyper-parameters, feature redundancy, and vanishing 

gradients[23], which challenged the construction of deep convolutional networks.  

Recurrent neural networks (RNN) were also important in deep learning networks because of their good performance in 

capturing temporal correlations of inputs[24]. One of the most popular was the long short-term memory network (LSTM) that 

solved the problem of vanishing gradients and long-term dependence in traditional RNN. The LSTM module had made great 

progress in the application of natural language processing[25]. In the field of automatic sleep scoring, some studies had revealed 

that the application of LSTM module helped to capture the inter-segment temporal contexts, thereby improving scoring accuracy 

[26]. However, the LSTM module required to calculate a lot of parameters and was prone to overfitting. In practical applications, 

the LSTM module usually relied on CNN modules[27] or conventional techniques of feature extraction[28] to compress the 

inputs, thereby saving computational cost. 

Moreover, studies based on deep learning had introduced 

some novel classification schemes to mimic the way sleep 

experts performed in manual sleep scoring, such as one-input 

to multi-output schemes[29] and sequence-to-sequence 

models[30]. These novel schemes explicitly utilized the 

dependence of consecutive segments, which were impossible 

for conventional machine learning paradigms. According to 

their experiment results, the long-term dependence between 

segments led to significant performance improvement. In short, 

attempts on deep learning had yielded exciting results, although 

training models from scratch required a huge amount of 

training data and computational resources[31].  

However, in terms of conventional machine-learning 

methods in automatic sleep scoring, their classification 

performances highly rely on extracted features. The elaborate 

features may underperform in other datasets, thus limiting 

model generalizability. For automatic sleep scoring methods 

based on deep learning, most models are designed for specific 

datasets and certain input signals, which require task-specific 

modification when their models are used in different tasks. 

Moreover, that modification is difficult and even inefficient, 

especially for sleep studies focused on a small group because 

of insufficient training data. In practical applications, 

differences of monitor devices and experimental objectives 

Table 1．Subject characteristics. 

Para. SHHS ISRUC Sleep-EDF 

Subjects 100 99 19 

Attribute Near-health Sleep disturbance Health 

Age 46.86 4.22 5116 28.742.99 

Criterion  R&K AASM R&K 

Power 

Frequency 
60Hz 50Hz 50Hz 

Employed 

Channels 

C3, C4, EOGR, 

EOGL, EMG, ECG 

F3, C3, O1, F4, C4, 

O2, ROC, LOC, 

EMG, ECG 

Fpz-Cz, Pz-Oz, 

EOG (horizontal) 

A
m

p
li

tu
d

e
 EEG [-26.0, 20.7] [-149.4, 151.8] [-208.2, 204.5] 

EOG [-17.3, 17.7] [-138.0, 146.1] [-478.5, 449.6] 

EMG [-22.3, 22.0] [-524.7, 518.8] -- 

ECG [-39.0, 44.2] [-145.3, 121.0] -- 

S
a

m
p

li
n

g
  

EEG 125Hz 200Hz 100Hz 

EOG 50Hz 200Hz 100Hz 

EMG 125Hz 200Hz 1Hz 

ECG 125Hz 200Hz -- 

Note: Unless specifically indicated, the above EEG channels were referred 

to the left or the right mastoids (M1 or M2) according to the 10–20 

international electrode placement system. 
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induce channel mismatch, which challenges the application of transfer learning[32]. To tackle the above problems, this work 

proposes a simple but versatile deep learning architecture that does not require task-specific modifications to the model 

architecture or hyper-parameters. The proposed architecture employs very few numbers of layers, thus resulting in low 

computation cost compared to other deep learning approaches. The main contributions of this work are presented as follows. 

a) A deep learning architecture is proposed to automate sleep scoring using multi-modality PSG signals. 

b) A linear activation function is adopted in the first CNN layer to accommodate different numbers of input channels, which 

helps to address channel mismatches. 

c) One LSTM module and two CNN modules with different kernels sizes are employed to capture information across temporal 

and spatial scales. 

d) The proposed model achieves good performance on three disparate datasets with different subject attributions, thereby 

demonstrating model generalizability on different disease populations. 

e) Model transferability is demonstrated across three datasets with different input channels and signal modalities.  

The article is organized as follows: Section 2 presents details of experimental data and the proposed deep learning architecture. 

Section 3 demonstrates the performance of the proposed model. Section 4 discusses the results and limitations of this study. 

Finally, section 5 gives conclusions.  

2. Methodology  

 2.1 Data description 

This study adopted three public datasets to evaluate model performance. The first one was from the Sleep Heart Health Study 

(SHHS)[33], in which only the first round (SHHS-1) was selected in this study. The SHHS dataset recruited thousands of 

participants from nine existing epidemiological studies to investigate the relationship between sleep-disordered breathing and 

various cardiovascular diseases. A total of 100 subjects were selected out by restricting the respiratory disturbance index (RDI3P) 

< 5 to have near-normal characteristics. Besides, the selected subjects did not use beta-blockers, alpha-blockers, inhibitors, and 

did not suffer documented hypertension, heart disease and stroke.  

The second one was ISRUC-Sleep dataset[34], of which subgroup 1 was chosen in the present article. This subgroup included 

100 PSG recordings from healthy subjects, patients with sleep disorders and patients under the effect of sleep medication. Subject 

8 was excluded due to the lack of required channels, and therefore only 99 subjects were analyzed in the following experiments. 

Each recording was visually labelled by two sleep experts according to the AASM standard[5]. To improve signal quality, dataset 

providers had filtered all signals by a 50Hz notch filter. In addition, the signals of EEG and EOG were filtered between 0.3Hz 

and 35Hz, and EMG signals were filtered between 10Hz and 70Hz. 

The third dataset was the Sleep-EDF dataset[35], [36], in which the sleep cassette (SC) subset was adopted. It consisted of 

20 healthy subjects whose age ranged from 25 years old to 34 years old. Each subject had 2 PSG recordings about 20 hours each, 

except for subject 13 who had only the first-night recording. The recorded two PSG recordings for each subject were from two 

consecutive day-night periods at subjects’ home. To avoid “the first night effect”, PSG recordings from the second night were 

employed in the present study, and thus a total of 19 recordings were analyzed. Table 1 summarized the characteristics of 

employed recordings, where the age was shown as mean age ± standard deviation. 

To accommodate data from different datasets, all signals were sampled or resampled to 125Hz. In order to remove noise and 

artefacts, all signals were filtered by a notch filter, a high-pass filter and a low-pass filter. The effective frequency band of EEG 

and ECG signals was limited to 0.5Hz-30Hz, 0.5Hz-10Hz for EOG signals, and only information above 10Hz was retained for 

EMG signals. In addition, for recordings in the Sleep-EDF dataset, the long awake periods before and after sleep were trimmed 

to restrict our analysis to the nocturnal sleep. In order to minimize the variability between recordings, each signal was normalized 

by mapping its mean to 0 and its deviation to 1. Table 1 displayed the amplitude ranges of signals after preprocessing. Afterwards, 

all the signals were divided into 30-second segments, each 

segment corresponding to a single sleep stage. For PSG 

recordings scored using R&K rules, NREM stages 3 and 4 were 

merged into N3 in the present article according to the recently 

updated AASM standard.  

2.2 Model Architecture 

The proposed deep-learning architecture extends the input 

from EEG signals to a fusion of multiple PSG signals. The idea 

imitates the way sleep experts perform manual sleep scoring. 

Besides the characters of EEG signals, sleep experts also check 

eye movements and muscle activities as a reference when they 

label a 30-second PSG segment[4], [5]. For example, Stage R is 

characterized by low-amplitude and mixed-frequency EEG 

activities, rapid eye movements and the lowest EMG activity Figure 1. Overview of the proposed architecture. 
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level; Stage N3 is marked by high-amplitude slow waves and rare eye movement. Recent studies have revealed that analysis of 

cardiac electrophysiological activity enables us to track the transition from wakefulness to sleep[37]. Hence, there is every reason 

to believe that the joint processing of multiple PSG signals is conducive to an accurate scoring performance. 

Figure 1 shows a schematic diagram of the proposed model to provide an intuitive manner to capture the model structure. 

Detailed model parameters and layer outputs are provided in Table 2. As can be seen from Figure 1, the proposed architecture 

comprises several CNN modules and one LSTM module to extract spatial and temporal features from raw PSG signals. The size 

of the input data is T × C × 1 where T is the number of time points and C is the number of input channels. Since the sampling 

rate of employed signals is set to 125Hz and each sample lasts 30 seconds, hence, T = 3750 in the present article. The proposed 

architecture does not restrict the number of input channels C which may be diverse in different datasets.  

The first convolution layer filters the input data using 8 kernels of size C × 1 with the stride size of 1 point. The activation 

function of the first layer is a time-independent linear operation. Similar linear functions have been used as spatial filters in the 

study of Chambon et al. [38]. Here, we use the linear function to accommodate mismatched input channels, and thus subsequent 

model parameters can be free from the influence of varying numbers of input channels. The outputs of the first layer are a set of 

linear combinations of input signals. The optimal combinations can be achieved by adjusting weights and biases of kernels during 

model training. This operation can be considered as a projection that maps diverse inputs into the optimal virtual space, thereby 

compensating channel mismatch. In addition, in order to prevent the model from overfitting[39], we apply a L2 weight 

regularization with a value of 0.01 in the first convolution layer. A permutation layer[38] is followed to hold channel information 

of the virtual space and to transfer subsequent operations to the time domain. 

The third layer is an integration block with three key components: a “squeeze and excitation” block to estimate channel 

weights, a convolution layer with a smaller kernel size to capture local features and a convolution layer with a larger kernel size 

for capturing the big context. In view of the local receptive field of convolution operations[40], global information is required to 

evaluate channel weights, which is achieved by a global average pooling. Two fully-connected layers followed the global average 

pooling are to excite the nonlinearity of among weights[40]. We employ two CNNs with small and large filter sizes to extract 

nonlinear features from its input. The previous study[39] has found that smaller kernels are better to capture local contexts (i.e., 

when certain of EEG patterns appear), while larger kernels are conducive to capturing big contexts. The outputs of the two CNN 

modules are weighted by channel-wise statistics and then concatenated into the final output of the integration block. Two 

integration modules are adopted, each followed by a max-pooling layer with a size of (1, 16), a dropout layer with a drop rate of 

0.15 and a batch-normalization layer. Here, the large pooling size is to compress temporal information, thereby reducing model 

parameters and memory requirements. The layers of dropout and batch-normalization help to control overfitting. 

The long short-term memory (LSTM) module is arranged before the decision layer to dig up long-range contextual 

information. A typical LSTM unit has a memory cell and three gates, namely an input gate, an output gate and a forget gate, to 

regulate the retention or discard of information flow. The unique mechanism allows LSTM units to selectively remember the 

previous information, thereby facilitating the current decision. Previous studies[39] have revealed that the context information 

helps to capture the transition rules among sleep stages. The conclusion is consistent with manual scoring rules[4], [5]. The 

transition rules allow sleep experts to predict possible sleep stages for the current segment based on a sequence of PSG segments. 

These transition rules are especially helpful for decision-making 

when signal characters of the current segment are ambiguous. 

The final layer is the decision layer, which is a fully-

connected layer activated by the softmax function. The number 

of units is equal to the number of classes. In the present article, 

we split sleep segments into five sleep stages, namely W, N1, 

N2, N3 and R, and therefore S = 5, The output of the decision 

layer is a probability matrix with a size of N × S, where N is the 

number of samples (or sleep segments) and S is the number of 

sleep stages. The stage prediction for each sample corresponds 

to the stage with the maximum probability. 

2.3 Hyper-parameter optimization 

The selection of hyper-parameters was carried out on only 

the SHHS dataset via 5-fold cross-validation. The whole dataset 

was split into five subsets, each with 20 subjects. For a given 

hyper-parameter set, the proposed model was trained on data 

from 4 subsets and tested on data from the remaining subset. In 

addition, we used 20% of training data for model validation. 

This process was repeated 5 times, with each subset being used 

as test data once. The final performance on this hyper-parameter 

set was determined by the aggregated test performance across 

all five folds. It should be noted that once the optimal hyper-

parameter set determined, it would be used in all experiments. 

Table 2. Architecture detail 

Layer Type Units Size Stride Activation Output size 

Input      (3750, C, 1) 

1 Conv2D 8 (1, C) (1, 1) linear (3750, 1, 8) 

2 Permute     (8, 3750, 1) 

3 Integration block     (8, 3750, 8) 

4 Max-pooling  (1, 16)   (8, 234, 8) 

5 Dropout (0.15)     (8, 234, 8) 

6 Batch normalization     (8, 234, 8) 

7 Integration block     (8, 234, 8) 

8 Max-pooling  (1, 16)   (8, 14, 8) 

9 Dropout (0.15)     (8, 14, 8) 

10 Batch normalization     (8, 14, 8) 

11 Permute     (14, 8, 8) 

12 Reshape     (14, 64) 

13 LSTM 16   tanh 16 

14 Dense 5   softmax 5 
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Therefore, there was no task-specific modification to model 

structure and hyper-parameters, except for the kernel size of the 

first convolution layer that was determined by the number of 

input channels.  

In order to find the best hyper-parameters for the proposed 

architecture, we performed a random search using a Python 

package named hyperopt[41]. The number of iteration was set 

to 50. The search space of hyper-parameters was summarized in 

Table 3. The parameter set leading to the highest accuracy and 

the lowest variability was adopted as the optimal parameters. If 

two sets of parameters gave a similar performance, the one with 

lower computational costs would be selected. Finally, the 

optimal model was achieved by using Adam optimizer with a 

learning rate of 0.002 and a batch size of 256. The network was 

trained by minimizing categorical cross-entropy. The code was 

written using the Keras package[42] with the Tensorflow 

backend[43].  

3. Performance assessment 

Model performance is evaluated by accuracy, precision, recall, 

F1 score and Cohen’s kappa.  

Accuracy (Acc.) measures the proportion of samples that the 

model correctly predicted. 

Precision (P) is the fraction between true positives and the 

predicted positives. 

Recall (R), also named sensitivity, calculates the percentage of 

actual positives that the model correctly identified. 

F1 score (F1) represents the harmonic mean between precision 

and sensitivity. 

Kappa (K) is an agreement measure between the proposed 

model and a human expert, which takes into account the chances 

of random agreement. A Large value indicates a high agreement 

between two classification results, and the perfect agreement gets 

a value of 1. 

3.1 Classification performance 

In order to illustrate model performance, Table 4 showed the 

aggregated confusion matrix from 5-fold cross-validation on the 

SHHS dataset. The confusion matrix clarified the distribution of 

samples that were correctly or incorrectly classified. From Table 

4, we can see that the total classification accuracy was 0.87, 

which exceeded the accepted benchmark 𝐴𝑐𝑐 = 80%  among 

trained human scorers[7]. The best classification was 

wakefulness with the precision of 0.93. It followed by N2 (0.87), 

N3 (0.87) and R (0.83). Stage N1 was the hardest class to 

classify, with 31% of samples correctly assigned. There were 

25% of N1 samples misclassified as R, 25% as N2 and 19% as 

W. The low precision of N1 stage was common in studies. Stage 

N1 was considered a transition state between wakefulness and 

"real" sleep, thereby including information from two or three 

sleep stages. As a result, the scoring of N1 was quite obscure, 

even for sleep scoring experts[44]. Closer inspection of Table 4 

showed that most misclassifications occurred in contiguous 

stages in the sleep cycle. For example, N3 was often 

misclassified as N2, and rarely misclassified as N1. These 

misclassifications were mainly due to similar or mixed 

electrophysiological characteristics between adjacent stages, 

rather than the defect of model design. 

Table 6. Confusion matrix for test recordings from the ISRUC 

dataset. 

 Technologists’ score stage 
P R F1  

 Stage W N1 N2 N3 R 

P
r
o
p

o
se

d
 

W 22804 905 174 19 127 0.95 0.94 0.94  

N1 1091 7021 1708 13 631 0.67 0.68 0.67  

N2 166 1703 24175 2196 410 0.84 0.88 0.86  

N3 18 19 865 12637 7 0.93 0.84 0.89  

R 246 749 612 132 7723 0.82 0.87 0.84  

Accuracy 0.86 

Kappa 0.82 

 

Table 5. Confusion matrix for test recordings from the Sleep-

EDF dataset. 

 Technologists’ score stage 
P R F1  

 Stage W N1 N2 N3 R 
P

r
o
p

o
se

d
 

W 2347 81 22 3 8 0.95 0.84 0.89  

N1 232 901 333 6 107 0.57 0.58 0.57  

N2 34 227 7430 234 95 0.93 0.86 0.89  

N3 5 8 392 2476 1 0.86 0.91 0.88  

R 166 347 422 3 3750 0.80 0.95 0.87  

Accuracy 0.86 

Kappa  0.81 

 

Table 3. Search set for hyper-parameters 

Hyper-parameter Distribution 

F
ir

st
 

C
N

N
 

Filters [4, 6, 8, 16, 32] 

Strides [1, 2, 3, 5, 7] 

In
te

g
ra

ti
o

n
 

B
lo

ck
 

Filters [4, 8, 16, 32, 64, 128] 

Smaller Kernel size [2, 4, 8, 16, 32] 

Bigger Kernel size [32, 64, 128, 256, 512] 

Strides [1, 2, 3, 5, 7] 

LSTM 
Unit [6, 8, 16, 32, 64, 128] 

Activation {‘relu’,’ tanh’} 

Pooling Size [2, 3, 4,...,15, 16] 

Dropout Rate [0.05, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5] 

Learning Rate [0.001, 0.002, 0.003, 0.004, 0.005, 0.01] 

Optimizer {‘Adam’, ‘SGD’} 

Batch Size [64, 128, 256, 512] 

 

Table 4. Confusion matrix for test recordings from the SHHS 

dataset. 

 Technologists’ score stage 
P R F1  

 Stage W N1 N2 N3 R 

P
r
o
p

o
se

d
 

W 18925 575 456 9 281 0.93 0.93 0.93  

N1 330 937 493 0 224 0.47 0.31 0.37  

N2 712 740 38442 3599 882 0.87 0.90 0.88  

N3 21 0 1512 10662 1 0.87 0.75 0.81  

R 433 762 1947 2 15569 0.83 0.92 0.87  

Accuracy 0.87 

Kappa 0.81 
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To test the generalization capability, the proposed model was 

further evaluated on two independent datasets, the Sleep-EDF 

and the ISRUC dataset, in which subjects in the ISRUC study 

suffered from diverse sleep disorders. As shown in Table 1, the 

available channels, amplitude distributions and acquisition 

environments were significantly different among these three 

datasets. Besides, the model architecture and hyper-parameters 

were determined by recordings from the SHHS dataset, and they 

would remain unchanged in the classification of sleep segments 

from the other two datasets. In terms of the Sleep-EDF dataset, 

signals from three available channels (FpzCz, PzOz, EOG) were 

employed as model inputs, and a leave-one-out cross-validation 

was performed to evaluate model performance. For the ISRUC 

dataset, 10 available channels were adopted including six EEG, 

two EOG channels, one EMG channel and one ECG channel. 

Model performance was evaluated using 5-fold cross-validation 

to provide a generalized model evaluation. Table 5 and Table 6 

presented the confusion matrix obtained on test recordings from the datasets of Sleep-EDF and ISRUC, respectively.  

Comparing Table 4, Table 5 and Table 6, we can get that the proposed model gave outstanding performance on three disparate 

datasets, no matter healthy subjects from the Sleep-EDF dataset or patients with complex sleep disturbances from the ISRUC 

dataset. For recordings from the ISRUC dataset or Sleep-EDF dataset, the N1 stage got acceptable precision despite its small 

sample size, which further demonstrated that our method could tackle the problem of unbalanced classes. 

Furthermore, we displayed the learning curves of the proposed model on three datasets. Figure 2 showed the changes of 

accuracy versus the number of iterations for training data and validation data. As it is seen, the network accuracy improved with 

increasing numbers of iteration (indicating by “Epoch Number” in Figure 2). Since model hyper-parameters were selected based 

on the data from the SHHS dataset, the convergence speed of the network was the fastest on the SHHS dataset, followed by the 

ISRUC dataset, and that on the Sleep-EDF dataset was the slowest. Nevertheless, using early stopping with a patience of 10 

epochs to monitor the validation loss, the model training could complete within 100 iterations. Given the limited sample amount, 

the final accuracy on the Sleep-EDF dataset was inferior to those on the SHHS dataset and the ISRUC dataset. In order to improve 

classification accuracy of the Sleep-EDF dataset, we applied a fine-tuning strategy, which would be introduced in detailed in 

section 3.4.  

 

Figure 2. Train curve of three datasets 
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3.2 Model performance under different signals’ fusions  

In order to explore the effect of signal type on classification performance, we investigated different fusions of PSG signals. 

The analyzed signals included EEG, EOG, EMG and ECG. This experiment was performed on the ISRUC dataset due to its 

abundant channels. To provide an unbiased estimate of the model performance, we conducted a subject independent 5-fold cross-

validation on 99 recordings. The results were shown in Figure 3, where the column represented the average accuracy of 5-fold 

cross-validation and the bar denoted the standard deviation. For the fusions of more than two signals, the signal name was 

abbreviated to its middle letter, such as C&E denoted the fusion of ECG signals and EEG signals, and M&O&E meant the fusion 

of signals of EMG, EOG and EEG. 

As can be seen from Figure 3, abundant signals were conducive to improving accuracy and reducing uncertainty. Specifically, 

in the perspective of single-channel EEG inputs, time series from the C4 channel achieved the best performance with the mean 

accuracy of 0.78 and the standard deviation of 0.004. Time series from the O2 channel performed the worst, which may be 

attributed to the poor signal quality caused by the uncomfortable electrode locations. Adding EEG channels or other PSG 

modalities enhanced model performance, but up to a certain extent. The fusion of EEG, EOG and EMG signals produced the 

best performance in this experiment, with the average accuracy of 0.87 and the standard deviation of 0.002. In terms of signal 

types, the performance of EMG signals and EOG signals was superior to ECG signals, likely due to the morphological difference 

of ECG signals.  

3.3 Performance comparison  

The performance of the proposed model was compared with 

recent studies that used the same datasets. Table 7 showed model 

performance, together with model architectures, their 

approaches, input channels, input types, subject numbers and 

other parameters for comparison. What stood out in Table 7 was 

that our method achieved a comparable or better performance 

compared to the state-of-the-art methods that used the same 

dataset but more complex model structure.  

More specifically, for studies on the Sleep-EDF dataset, our 

model achieved an accuracy of 0.86 and a kappa value of 0.81, 

which exceeded 2% on accuracy and 3% on kappa value 

compared to the “many to one” classification scheme proposed 

by Back et al.[45]. For studies on the ISRUC dataset, there was 

Table 7. Performance comparison 

Ref. Dataset Subjects Input Channel Input Type 
Architecture 

Approach 
Result 

Structure Layers Acc. Kappa 

Ref[48] SHHS 1000 

EEG: C3, C4 

EOG: ROC, LOC 

EMG 

Time series 1DCNN 37 CNN One-to-one 0.78 0.83 

Ref [47] SHHS-1 5728 C4-A1 Time series 1DCNN 12 CNN Many-to-one 0.87 0.81 

Ref [45] Sleep-EDF 20 Fpz-Cz Time series CNN+LSTM -- Many-to-one 0.84 0.78 

Ref [29] Sleep-EDF 20 
EEG 

EOG 
Spectrogram 2DCNN 2 CNN One-to-many 0.82 0.75 

Ref[46] ISRUC 40 

EEG: F3, C3, O1, 

F4, C4, O2 

EOG: ROC, LOC 

EMG 

Features Random forest -- -- 0.82 -- 

P
r
o
p

o
se

d
 

SHHS 100 

EEG: C3, C4 

EOG: ROC, LOC 

EMG 

ECG 

Time series 2DCNN+LSTM 5 CNN One-to-one 

0.87 0.81 

ISRUC 99 

EEG: F3, C3, O1, 

F4, C4, O2 

EOG: ROC, LOC 

EMG 

ECG 

0.86 0.82 

Sleep-EDF 19 
EEG: FpzCz, PzOz 

EOG 
0.86 0.81 

Note: Unless specifically indicated, the above EEG channels were referred to the left or the right mastoids (M1 or M2) according to the 10–20 international 

electrode placement system. 

 

Figure 3. The classification accuracy for different signal 

fusions 
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a significant improvement (+4% on accuracy) between the 

proposed model and Khalighi et al.’s methods[46]. For studies 

on the SHHS dataset, our model obtained comparable 

performance with Sors et al.’s study. However, the deep-

learning architecture proposed in Sors et al.’s study[47] 

employed 12 convolution layers and two fully-connected layers 

with about 106 parameters, while the proposed model exhibited 

about 104 parameters. Note that this was at least two order of 

magnitude lower than the model proposed by Sors and his 

colleagues. The compact structure helped saving training time 

and computational cost, thus facilitating clinical practice.  

Moreover, few studies [29], [45]–[48] had tested their 

model on diverse datasets with different sample attributes, input 

channels and disease populations. The proposed model shows 

stable performance on three datasets with completely different 

attributes, indicating good model generalization in different 

datasets and sample populations. 

3.4 Evaluation of model transferability 

In order to test classification performance of the trained 

model against data that the model had never seen before, we 

tested model transferability among three datasets. In terms of 

channel-matched cases, six matched channels were extracted 

from the datasets of SHHS and ISRUC in this experiment. After 

the model was trained on one dataset, the trained model was 

directly used to predict sleep stages for recordings from the other 

dataset. It was worth noting that the trained model did not suffer 

any modification for test data. Table 8 showed the classification 

results. As can be seen from Table 8, the direct prediction 

achieved moderate classification accuracy, which may be 

attributed to the lack of huge training dataset. Nevertheless, fine-

tuning the trained model with a small amount of test data, the accuracy can be significantly improved. In addition, the SHHS 

dataset contained near-healthy participants, while the ISRUC dataset involved patients with complex sleep disturbance. The 

results indicated good model transferability between different disease populations.  

In the case with channel mismatch, the direct prediction was impossible. Here, we tried two classification strategies on the 

Sleep-EDF dataset: fine-tuning a trained model or training a new model from scratch. For a fair comparison, we used leave-one-

out cross-validation and the same set of model parameters for these two classification strategies. The adopted model parameters 

were the same as those described in Section 2 and those used in previous experiments. The model for fine-tuning was trained on 

the SHHS dataset. Figure 4 displayed the learning curve of these two classification strategies. As can be seen from Figure 4, the 

fine-tuning strategy resulted in a faster and smoother convergence curve compared to that of the model trained from scratch. 

Classification performance improved by 1.6% on accuracy and 2.7% on kappa using the fine-tuning strategy. Table 5 showed 

the detailed confusion matrix under the fine-tuning strategy.  

 

Figure 4. Train curve comparison between fine-tuning mode 

and scratch mode on the Sleep-EDF dataset 

 

 

Table 8. Model generalizability 

Model 

Direct 

predict 

Fine tuning with 

20 subjects 

Acc. K Acc. K 

Training SHHS 
0.73 0.64 0.84 0.79 

Testing ISRUC 

Training ISRUC 
0.66 0.55 0.84 0.77 

Testing SHHS 
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3.5 Model visualization  

In order to illustrate how well each layer distinguished sleep stages, we visualized layer outputs using t-Distributed Stochastic 

Neighbor Embedding (t-SNE)[49]. The t-SNE can transform high-dimensional data into two-dimensional data to facilitate data 

visualization. Figure 5 displayed compressed layer outputs when the trained model predicted subject “shhs1-204846” from the 

SHHS dataset.  

It can be seen from the first map in Figure 5 that the distribution of input data was random. The first layer with linear activation 

functions regularized the inputs. As moving forward from the integration block 1 to the decision layer, five sleep stages were 

more clearly separated. In particular, the LSMT layer led to a significant increase in separability, and the decision layer resulted 

in further clear separation. 

4. Discussion 

 In this work, we develop a deep learning network for the automatic classification of sleep stages. Most of the automatic 

methods reported so far are based on human-engineered features or designed for a specific dataset. Thus, these models are hard 

to generalize correctly and easily to other datasets, especially when the channels do not match. To address these problems, we 

propose a compact and versatile end-to-end architecture to automate sleep scoring. We think two characteristics propel our model 

better than state-of-the-art methods. The first is good generalization and transferability. The above experiments have 

demonstrated that our model achieves strong classification performance on three disparate datasets, no matter whether it is from 

the healthy or the patients with sleep disturbance. This indicates good model transferability and generalization among different 

datasets and disease populations. The characteristic avoids cumbersome task-specific adjustments to model architecture and 

hyper-parameters, thereby facilitating clinical applications. Moreover, the proposed structure is conducive to the fine-tuning 

strategy, especially in the cases with limited training data and mismatched channels, which can significantly improve 

classification accuracy. Secondly, the proposed model exhibits a relatively low number of parameters, which drastically reduces 

training time, thereby saving computational resources. 

The proposed architecture takes raw PSG signals as input without any human-engineered features, thereby preserving the 

coherence among multi-modality signals. There is no elaborate processing on raw PSG signals, except for a simple filtering 

process to improve the signal-to-noise ratio. Besides, the whole PSG recording is fully included in the analysis without discarding 

any recorded segments, even severely contaminated segments. The crude pre-processing enhances model robustness, and 

therefore the proposed model is more easily adaptable to noisy clinical applications. We have noticed that some studies claimed 

the network using raw PSG signals as inputs showed inferior performance[22] and was more prone to overfitting [32], compared 

with that using spectrograms as inputs. Therefore, we adopt several strategies to control overfitting, such as the L2-regularization 

Figure 5. Model visualization using t-SNE method. 
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in the first CNN layer, dropout layer and batch-normalization. To improve model performance, CNN modules with different 

kernel sizes and LSTM modules are employed to capture information across spatial and temporal scales. Experimental results 

prove the feasibility of these strategies. 

The proposed model is capable of coping with multiple PSG signals. Experiments have demonstrated that the input of multi-

modality signals is conducive to the improvement of model performance. This conclusion is consistent with the findings of our 

previous research[15] and the manual scoring standards[4], [5]. Sleep experts inspect multiple PSG channels, including EEG 

(records of brain activity), EOG (records of eye movement) and EMG (records of muscle activity). The additional EOG and 

EMG channels usually provide important information to distinguish sleep stages, especially when EEG activity is ambiguous, 

such as wakefulness and REM stages. The results in Figure 3 show that the addition of EMG and EOG produces a better and 

more stable model performance. 

Although ECG is not recommended for manual sleep scoring in the scoring standards of AASM or R&K, it is undeniable 

that ECG is one of the most commonly used tools in clinical to monitor vital signs. In sleep scoring, the application of ECG 

channels facilitates to distinguish signal artifacts. Besides, according to our previous research[15], ECG signals perform well in 

distinguishing sleep and wakefulness. Given that, we train the model to recognize ECG signals so that it can contribute to the 

discrimination of sleep stages in different classification problems, for example, binary classification of sleep segments. In 

addition, by changing the number of units in the decision layer, the proposed model can be easily applied to different 

classification problems of sleep stages, such as distinguishing sleep state and awake state, the recognition of light sleep and deep 

sleep.  

Few studies tested their model on PSG recordings collected from a variety of recording environments and hardware platforms. 

Zhang et al. [22] did so, where they trained a model on 461 recordings from the SOF dataset and then tested the trained model 

on the SHHS dataset, achieving a kappa value of 0.53. In the present article, direct testing of a trained model on different datasets 

yielded moderate accuracy, which was less satisfactory. A possible reason is the lack of sufficient training data since we cannot 

train the model on a huge dataset due to limited computation resource. In addition, model performance on independent datasets 

depends on the similarity between the training set and the test set, while the employed three datasets have disparate attributes, as 

shown in Table 1. Nevertheless, our model is promising and worthwhile to train it on a huge and high-quality dataset in our 

future research, which helps to improve model generalization. Moreover, it would be interesting to explore model performance 

on large populations with diverse sleep problems, given the complex and diverse clinical symptoms of suspected patients. 

5. Conclusion 

The present paper proposed a deep learning model for automatic sleep scoring, which took raw PSG signals as input without 

any human-engineered features. The model employed two parallel convolution layers with different filter sizes and one LSTM 

layer to exploit information across spatial and temporal scales, thereby enhancing model performance. Moreover, the unique 

structure allowed the model to cope with various input channels and several signal modalities from different datasets without 

task-specific modifications to model architecture and hyper-parameters. Model generalization and model transferability were 

tested on participants with distinct attributes, even subjects with complex sleep disturbances. Results evaluated on three public 

datasets showed that the model achieved a comparable or better performance compared to the state-of-the-art methods, and the 

highest classification accuracy was achieved by the fusion of multiple PSG signals. Future work will require huge and high-

quality datasets to improve the robustness and generalization of the proposed model. 
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