
Lassi Haapanen

The Environment Query System and the Spatial Query

System used for AI -agency in games, a comparison

Master’s Thesis in Information Technology

January 14, 2021

University of Jyväskylä

Faculty of Information Technology

Author: Lassi Haapanen

Contact information: lazzikka@gmail.com

Supervisor: Ilkka Pölönen

Title: The Environment Query System and the Spatial Query System used for AI -agency in

games, a comparison

Työn nimi: Vertailu pelien tekoälyjen käytöstä ohjaavien Environment Query Systemin ja

Spatial Query Systemin välillä

Project: Master’s Thesis

Study line: Games and gamification

Page count: 56+0

Abstract: This study compared two systems used in game artificial intelligence that direct

the interaction of AI agents and the game world around them. Based on the evaluation

criteria the more advanced system capable of meeting the needs of modern development was

determined. Based on the literature review we made, scientific literature on the topic seems

scarce. The first of the systems is EQS, the Environment Query System which is part of the

Unreal Engine 4 game engine. The second platform is SQS or Spatial Query System, part

of the Kythera AI middleware. SQS was found to be the system that is a more advanced

and meaningful option for a developer by its design ideals. It is hoped that the results and

rationale behind the comparison will benefit both game developers choosing a game engine

for their project as well as those behind the development such systems.

Keywords: games, artificial intelligence, Environment Query System, Spatial Query System

Suomenkielinen tiivistelmä: Tutkimuksessa verrattiin kahta tekoälyn tukena käytettävää

järjestelmää, joita käytetään ympäristön ja tekoälyagentin välisen vuorovaikutuksen ohjaamisessa,

jotta saataisiin tietää kumpi on vertauskriteerien pohjalta kehittyneempi ja moderneihin tarpeisiin

vastaava järjestelmä. Aiheesta on löydettävissä hyvin vähän tieteellisiä tekstejä. Ensim-

mäinen järjestelmistä on EQS, Environment Query System, joka kuuluu Unreal Engine 4

i

-pelimoottoriin. Toinen järjestelmä on SQS, Spatial Query System, joka on osa Kythera AI-

pelimoottoria. SQS havaittiin kehittyneemmäksi ja suunnitteluaatteiltaan kehittäjälle mielekkääm-

mäksi järjestelmäksi. Vertailun tuloksien ja tulosten perusteluiden toivotaan hyödyttävän

niin pelinkehittäjiä, jotka valitsevat pelimoottoria projektilleen, kuin tällaisten järjestelmien

kehittäjiäkin.

Avainsanat: pelit, tekoäly, Environment Query System, Spatial Query System

ii

Preface

For my master’s thesis I pursued a topic in artificial intelligence used in games, as my can-

didate’s thesis involved the field of game AI as well. I wanted to do something meaningful

in a real environment, so I looked for companies that are doing pioneering work in the field.

Reaching out to the Kythera AI team was the right choice, and I am thankful for the support

and opportunity they’ve given me. I thank Matthew Jack for his guidance and interesting dis-

cussions and Fabio Anderegg and Lucas Musial for their help amidst busy work days as well

as the rest of the Kythera AI team who politely assisted me with my questions and endeav-

our. I am grateful to my family for their support and reflection. My thanks to Antti-Juhani

Kaijanaho for providing a very helpful LATEX-thesis template. Finally, my thanks to Ilkka

Pölönen who gave me valuable feedback and supervised my work on this thesis.

As a hobbyist game developer I have been interested in game AI and the systems governing

it for some time. My candidate’s thesis is about AI implementations used in strategy games.

I am especially interested in AI agents that are believable, immersive and human-like. I

am also interested in the subject as a gamer and esports competitor, and enthusiastic about

games and AI becoming progressively complex and lifelike. Learning about the systems that

govern AI is a necessary step in gaining deeper understanding of how virtual entities and

worlds are simulated, and the convincing and purposeful behaviour of AI agents. Asking

these research questions is something that most game developers might ask themselves when

thinking of which system to use for their project. Furthermore, taking part in and observing

the industry’s pioneering development and study is a pleasure in itself. I am grateful for the

opportunity.

Jyväskylä, January 14, 2021

The Author

iii

Glossary

EQS The Environment Query System (EQS) is a feature within the

Artificial Intelligence system in Unreal Engine 4 (UE4) that is

used to query the environment for data.

SQS The Spatial Query System (SQS), a part of the Kythera AI mid-

dleware, is a powerful general-purpose API to describe and ef-

ficiently process location-based queries.

Artificial Intelligence In the context of games, this term is seen used more broadly

to refer to any sort of algorithm or system that defines the

agency of an entity that interacts with the virtual world around

it. Some might call the scripting of a piece of rock that falls

to block the player’s passage when approached AI, while some

think more of a complex entity learning, reacting to and coun-

tering the player’s strategic moves on a geographical map. In

these cases, each entity requires some sort of intelligence to

define its agency. In the case of the rock it can be a primi-

tive state machine, while a sophisticated neural network might

adapt to a player’s playstyle in a strategy game. In modern

discourse “AI” often refers to the more complex intelligence

behind agents rather than simple scripting.

FPS First-person shooter, a game usually viewed from the eyes of

the character the player is controlling.

Agent A character or entity in a game that is controlled by the AI, and

has some sort of agency. A complementary definition from

Wikipedia’s article, ‘Intelligent Agent’: “In artificial intelli-

gence, an intelligent agent (IA) refers to an autonomous entity

which acts, directing its activity towards achieving goals (i.e.

it is an agent), upon an environment using observation through

sensors and consequent actuators (i.e. it is intelligent)”

NPC Non-playable character, usually an AI-controlled entity in the

iv

game.

Raycast A ray cast from one point to the other to determine if there is

an obstacle or object on the way that the ray intersects with.

v

List of Figures
Figure 1. Setting to be ticked to enable EQS. 15
Figure 2. Folder structure and AI-folder content. 15
Figure 3. Blueprint logic of AIC_Enemy . 16
Figure 4. Blueprint logic of the Update Sight Key -function. 16
Figure 5. Blueprint logic of the Update Target Key -function. 17
Figure 6. Contents of BB_Enemy. 18
Figure 7. Blueprint logic of BT_Enemy. 18
Figure 8. Blueprint logic of BTT_RandomLocation. 19
Figure 9. Blueprint logic of the “ProvideSingleActor”-function. 20
Figure 10. Blueprint logic of EQS_FindPlayer . 20
Figure 11. Details of the ThirdPersonCharacter used as the agent. 21
Figure 12. Details of the ThirdPersonCharacter’s detailed settings in the “Pawn”-tab. 22
Figure 13. Viewport showing the map used for the scenario. 22
Figure 14. Behaviour tree detailing the behaviour “Wander”.. 23
Figure 15. Behaviour tree detailing the behaviour “WanderFollow”. 24
Figure 16. Behaviour “WanderFollow” assigned to NPC. 24
Figure 17. Folder structure and files created for the project. 27
Figure 18. Blueprint logic of NPC_AIC. 28
Figure 19. Contents of NPC_BB. 28
Figure 20. Blueprint logic of NPC_BT. 29
Figure 21. Blueprint logic of PlayerContext.. 30
Figure 22. The leftmost third of the Blueprint logic of the GenerateCompanionCover

query generator. 30
Figure 23. The central third of the Blueprint logic of the GenerateCompanionCover

query generator. 31
Figure 24. The last third of the Blueprint logic of the GenerateCompanionCover query

generator. 31
Figure 25. Blueprint logic of FindCompanionCover. 32
Figure 26. Blueprint logic of GetIntoCompanionCover. 33
Figure 27. The CoverFromReference behaviour tree. 34
Figure 28. Details of the “Threat”-object’s “ThreatPawn”-component. 35
Figure 29. Radar plot of the evaluation scores. 43

List of Tables
Table 1. Scoretable for EQS and SQS . 43

vi

Contents
1 INTRODUCTION . 1

1.1 Structure of the thesis . 1
1.2 Motivation . 2
1.3 Literature review . 2
1.4 Research questions . 5
1.5 Research method . 5

2 THEORETICAL BACKGROUND . 9

3 TECHNICAL INTRODUCTION TO EQS AND SQS . 11
3.1 Environment Query System. 11
3.2 Spatial Query System . 12

4 MATERIAL AND METHODS . 13
4.1 Simple scenario: a wandering AI agent attempts to retain line of sight to

the player after spotting it . 14
4.1.1 EQS Simple Scenario . 14
4.1.2 SQS Simple Scenario . 22

4.2 Complex scenario: An AI agent follows the player using positions covered
from the direction the player faces . 25
4.2.1 EQS Complex Scenario . 26
4.2.2 SQS Complex Scenario. 34

4.3 Qualitative comparison and review of EQS and SQS and the development
environments integrating them. 37

5 RESULTS . 40
5.0.1 EQS Analysis . 40
5.0.2 SQS Analysis . 41

6 DISCUSSION. 44

7 CONCLUSION . 46

BIBLIOGRAPHY . 47

vii

1 Introduction

For those who work in the game industry or develop systems related to game AI the ques-

tion of which engine to use in a project is also becoming more and more about what kind

of benefits and assets it provides concerning the development of artificial intelligence. This

thesis aims to provide answers for that along with associated criteria and reasoning. The

reader will hopefully also receive new insight about evaluating engines by their query sys-

tems and understand more closely the benefits and rationale behind using an advanced query

language. This thesis was partly inspired by input and discussion with the Kythera AI team

(https://www.kythera.ai/) and Moon Collider, the company behind Kythera AI, an industry-

pioneering game engine.

1.1 Structure of the thesis

The first chapter introduces the thesis’ topic and context to the reader without assumptions of

previous knowledge or expertise. The motivation for studying the topic is presented, along

with a literature review of what has been studied before and how these studies relate to the

topic. The research questions are then presented and the methods used to research them

explained after.

The second chapter explains the theoretical background of the two systems, why they exist

and how they function. The challenges and demands developers face and how these sys-

tems help overcome those challenges is discussed. Introductory and technical overviews are

presented in the third chapter.

In the fourth chapter we explain the setup and function of the test scenarios. Should the

reader have rightful concerns about the bias of this study towards Kythera AI, guidance is

given to replicate these test scenarios and repeat the evaluation for oneself. These test sce-

narios are used to test the developer experience and capabilities of the two systems. Four

different aspects, as per qualitative analysis, are evaluated based on both a simple and com-

plex test scenario use case. Finally, the evaluation criteria are justified at length.

1

The fifth chapter reports the results of the analysis and criteria scores yielded by the compar-

ison. We present the results both in text and graphically.

The sixth chapter discusses their implications and combines the results into suggestions and

thoughts about how the systems could be improved and how future systems might benefit

from these results. Additionally, we suggest future research topics and reflect on what could

be improved about this thesis.

The seventh chapter compactly combines what the thesis set out to do, achieved as the results

and the resulting conclusions.

Please note that the use of the pronoun “we” refers solely to the author and not any affiliates.

All opinions stated are those of the author only. While the main research question is about

query systems we also make comments about the behaviour tree systems and UI of both

development environments, as they go hand in hand with the workflow and use of the query

systems.

1.2 Motivation

Research methods were chosen according to the motivator of this thesis, which is to present

useful information for both Kythera AI, a company pioneering the field of AI in games,

and the wider audience, including UE4’s developers, on developing the next generation of

AI control systems and to improve existing ones. Including both a hands-on view on the

systems and a more theoretical comparison was deemed best for highlighting both practical

and theoretical matters of interest. We also hope to present useful information and reasoning

to take into account for readers choosing between different game engines.

1.3 Literature review

An overview on recent research into the different areas of AI in games has been made by Xia,

Ye, and Abuassba (2020). It discusses general game AI and “hybrid intelligence”, which

according to Dellermann et al. (2019) “refers to the ability or technology to accomplish dif-

ficult and complex tasks by merging human intelligence and AI”. A deeper, more technical

2

study on artificial and computational intelligence has been made by Yannakakis and To-

gelius (2015) in their paper titled “A Panorama of Artificial and Computational Intelligence

in Games”, who identify ten main research areas within this field: NPC behaviour learning,

search and planning, player modeling, games as AI benchmarks, procedural content gen-

eration, computational narrative, believable agents, AI-assisted game design, general game

artificial intelligence and AI in commercial games. They note that there are clear imbalances

between the different areas when it comes to attention from developers and researchers. One

such area is the development of believable agents, which are further enabled by the contin-

uous progress of query systems such as SQS. A conference paper by Machado et al. (2019)

details a query system used for debugging games, by allowing developers “to query for game

events in terms of what (was the event), when (did it happen), where (did it happen), and who

(was involved)” to gain, they found, better insight into what really happened during a test-

ing scenario. A crucial material referenced multiple times in this thesis is the Game AI Pro

-book, accessible at http://www.gameaipro.com/ for free. In it, many experts of the field

share insight and ways they have overcome challenges and developed games.

Query systems seem to be a topic not yet delved into by research or the academia. Accessing

multi-disciplinary databases such as Scopus yielded no results of scientific papers for such

keywords as “Environment Query System” or “Spatial Query System”, and led me to the

conclusion that scientific papers even mentioning either of the two systems are rare or non-

existent. Due to the scarcity of research or mentions on the subject matter, even qualitative or

superficial in nature, this thesis seems a warranted and useful approach. Keywords searched

from the Scopus databse to find these sources were such as: “artificial intelligence”, “his-

tory”, “games”, “AI”, “agent”, “learning”, “behaviour tree”, “recent” and “query system”.

The amount of document results for some select pairs have been listed to give some guidance

on the magnitude of scientific papers available.

• “Artificial intelligence AND history” yields 4638 results.

• “games AND artificial intelligence AND agent” yields 3204 results.

• “games AND learning AND artificial intelligence AND agent” yields 1201 results.

• “games AND behaviour tree AND agent” yields 32 results.

• “Spatial Query System” yields 14 results, one of which links to the Game AI Pro

3

-book, while others are unrelated to games.

• “Environment Query System” yields 3 results, one of which is unrelated to games, and

two of which link to the Game AI Pro -book.

• A set of keywords that was hoped to give a wide selection of source material in the

subject was “games AND query system” and yielded 17 results, of which most link to

unrelated subjects such as malware, airline cargo or genome sequencing. Furthermore,

only four of these results both relate to games and are less than five years old.

• Another set of keywords that most closely relate to the subject of this thesis, “games

AND behaviour/behavior tree AND query system” yields a single result, linking to the

Game AI Pro -book.

Based on these findings it was concluded that material on SQS is understandably scarce as

it is a rather new system. Mentions on EQS can be found more readily yet these papers

often simply mention it as a tool used in some study or project, but not in a comparison with

other systems. While the shoulders of giants this thesis must stand on were not prominent

in databases of scientific material, we found them elsewhere. Many articles were found

by asking for source materials from Matthew Jack, CEO of Kythera AI, and by following

the trail of referenced articles from there. Presentations from game-related conferences,

articles, and educational material on the query-based systems can be found and have been

used as material for this thesis. As most of these materials have been presented or written

by experts and pioneers in the field, we consider them similarly trustworthy and solid as

any traditional peer-reviewed scientific material. Some of the experts who have analyzed

relating topics for example during the GDC (Game Developers Conference) presentations

include Eric Johnson, Matthew Jack, Mika Vehkala, Kevin Dill, Richard Evans, Mike Lewis,

Dave Mark, Brian Schwab, Alex Champandard and Philip Dunstan. A great source for these

presentations is the GDC Vault (https://www.gdcvault.com/).

The presentations used as source material for this thesis delve into the artificial intelligence

used in such games as Crysis 2, Hitman: Absolution, Lichdom and more. The literature and

presentations mostly concern FPS -games and as such represent a rather narrow scope on the

use of the systems considering that there exist various genres that employ complex AI. FPS

-games however provide a good view on the subject due to the emphasis on individual agents

4

and agency.

1.4 Research questions

The primary research question is: “How do the two systems compare and could they be

improved?” Answering this question both provides, as previously described as the motivators

of this thesis, Kythera AI with useful information on how to perfect their current and next

generation systems as well anyone else in the wider audience with references and material

to evaluate these systems. Therefore, a secondary, or complementing research question is:

“how should newer generation systems be developed to support more complicated future

AI while maintaining the best features of both systems?” Systems such as these have been

used before for example in Crysis 2 (Tactical Position Selection), as explained by Jack (June

2017) and Bulletstorm (Environment Tactical Querying), as discussed by Zielinski (June

2017), among many other games.

A predominantly qualitative approach has been taken since only some factors could be quan-

tified such as hardware requirements and hardware stress caused by the two systems. An

established comparison framework or method for comparing these kind of systems could not

be found either so one has been defined with the help of industry professionals in order to

present a more concise comparison. Moreover, as time passes and both the hardware re-

quirements of the systems and the power offered by modern hardware change, quantitative

measurements become rapidly obsolete. A qualitative approach thus is assumed for the study

to remain relevant for longer. Comparing only two systems allows us to more easily focus on

qualitative rather than quantitative data, of which the latter is often used to better represent

the differences between individual elements of a larger group.

1.5 Research method

The research method of qualitative comparative study with normative analysis is used. As

described by Routio (2007a), the comparative method is often used in the early stages of

the development of a branch of science. While the topics of artificial intelligence and agent

direction in games are by no means new, as shown by the literature review section the topics

5

of query systems and their comparison have not been widely explored. Thus, it was felt that

this method of research would suit the study best. As noted by Routio (2007a) the design

of the method is simple. We take objects, the SQS and EQS, which are similar in some

respects but differ in others. We list aspects defined later in this chapter and then compare,

present and generalize our findings to highlight the invariances and systematic structure of

the systems.

More specifically defined our method of comparison is normative. While a descriptive com-

parison aims to describe and explain the invariances of the objects, it does not attempt to

generate changes in the objects. In fact, it usually tries to avoid them. A special style of re-

search is needed when the aim is not just to detect and explain but also to improve the present

state of the object, or to help improve or develop similar objects in the future. (Routio 2007a)

This method was selected as it fits the motive of providing useful information to both Kythera

AI to use in their development and improvement of their system and anyone else in the field

who develops, studies or uses these systems. While our method conforms to the spirit of nor-

mative comparison, we do not strictly follow all of its steps. For example, as described by

the more in-depth guide by Routio (2007c) the final product of normative analysis is a pro-

posal. We will attempt to present some guidelines on what could be improved and taken into

account in further development of query systems but stricter and more specific guidelines are

avoided. This is because the systems studied often contain genre-specific or otherwise tai-

lored logic and might not benefit from such specificity. Furthermore, we assume that as the

field and the systems within evolve, increasingly specific guidelines tend to become obsolete

increasingly quickly.

The thesis work has been assisted by experts and pioneers in the field and because of this

some tacit knowledge and attitude is expected to be bestowed on the reader via the study as

well. Tacit knowledge, as explained by Routio (2007b), is a type of knowledge only acquired

through experience and often not specifically worded or explained.

Both simple and more complex scenarios were built by using both EQS and SQS -systems.

The use cases were compared and the two systems analyzed according to specific criteria.

These criteria are flexibility, expressivity, rapid iterativity and efficiency. Additional criteria

such as abstraction, readability and extensibility are not included in the scored evaluation of

6

this study, but are important nonetheless are defined below and mentioned alongside other

qualitative comparisons. It was felt that reliably scoring abstraction would require a much

larger sample size of scenarios and testing. Scoring readability convincingly would best be

done via a survey or another kind of more extensive user experience study. An extensibility

scoring would be more persuasive if a more extensive amount of criteria was created and

added to the language, which is not feasible in the scope of this study.

As noted by Matthew Jack in our discussions, the AI agents will be constrained if the queries

are constrained, which in turn leads to the AI and gameplay suffering. The expertise neces-

sary to define the following terms was also provided by Matthew Jack.

Definition of terms:

• Flexibility — The ability to rearrange, tweak and reapply the queries for different

results, and to make continuous iteration easy and quick. Contrast this to writing

custom hard-coded C++ evaluation functions, which may need to be redone due to

iterations, and are hard to extend, recombine and reapply.

• Expressivity — The ability to express the full complexity of what the designers wish

to create, instead of being artificially limited by design to only a small set of actions.

• Rapid iterativity — The speed at which repeated changes, tweaks and new ideas can

be incorporated and implemented.

• Abstraction—The ability to reapply existing criteria (keywords) in new ways.

• Readability—The intent of a query should be understood as easily as possible by de-

velopers.

• Extensibility—The ability to easily add new criteria to the language.

• Efficiency—An efficient language itself should not add overhead to the evaluation.

In the context of this study, the SQS was used as a plugin of UE4, although it could be used in

other ways, for example in conjuction with Lumberyard, Amazon’s game engine (”Amazon

Lumberyard homepage” 2020). The reason for this is that using UE4 as the development

environment controls more of the variables regarding the learning and user experience, in

contrast to using two different environments. We acknowledge this also introduces some

bias towards UE4, but as it is one of the most popular engines used today, we do not consider

7

this a hindrance or source of inaccuracy to the study.

8

2 Theoretical background

Computer games with artificial intelligence (AI) -agents in them must implement a way for

these agents to move in and interact with the world around them. This involves processing

data of entities, objects and actors to decide what, when and how to act. Finding positions

within a game world is a common requirement, chiefly for agents to move to and also for

many other purposes such as spawning or choosing points to attack. During development,

complex demands can evolve for the choice of location, and performance can become crucial

(Jack et al. August 2020). Jack (June 2017) unfurls the developer’s challenge further in

Game AI Pro, chapter 33: “Choosing between positions—and generating those positions to

consider in the first place—is critical to the success of these games. Not only is it key to

an agent’s effectiveness in combat, but it also visibly communicates his role and status in

that combat. More generally in games, an agent’s movement helps define his personality

and often much of the core gameplay.” In the same book, Zielinski (June 2017) additionally

emphasizes that it is a tricky task to create a service that will supply AI with all the data it

needs, at low CPU time cost while being flexible and easy to use at the same time. It needs to

be able to look for different things, filter them, and score them. While many systems capable

of such feats exist, this thesis focuses on comparing the EQS and SQS -systems developed

for Unreal Engine 4 (UE4) and Kythera AI, respectively.

As explained by Johnson (June 2017) in the third version of Game AI Pro the ability of agents

to intelligently analyze the environment to pick the best locations for the next behaviour has

rapidly evolved. These systems governing the positioning of AI were once limited to the

evaluation of static preset markers for such behaviours as finding cover or positions to shoot

from, but today dynamic generation gives developers the ability to represent a much more so-

phisticated and wider range of concepts. Generating these locations at runtime allows gran-

ular sampling of the environment, so that changes in dynamic or destructible environments

can be adapted to. Additionally, when generating short-term directions for AI movement,

rather than a single final destination, complex movement behaviours can be represented.

These behaviours include such as indirect, roundabout approaches to evenly encircle a tar-

get in tandem with teammates, or artificial life algorithms such as Craig Reynold’s boids

9

(Reynolds 1987), all of which can be done while navigating arbitrary terrain.

In earlier decades and to this day the methods for directing AI agents in games have included

methods such as state machines, fuzzy logic, swarm intelligence or even evolutionary al-

gorithms to name but a few. While the AI systems utilizing these methods in games have

potentially become very complex and highly refined in their own right, less attention has

been paid towards the languages or methods used during development. Indeed, most games

have developed, tested and implemented these systems by writing pure code during each

phase of production. However, with the advent of query systems such as TPS (CryEngine),

EQS (UE4) and SQS (Kythera AI) the rapidity of development, intuitiveness and expressiv-

ity among other factors have advanced significantly. Naturally, as the power and ease of use

of these tools grows, so do the complexity and capabilities of their products, the AI agents,

expand. As noted by Yannakakis and Togelius (2015), there have been a plethora of ways to

use AI in games in general. This is why it is crucial that new ways and tools are invented to

make development as rapid and easy as possible. Additionally, games have had and continue

to have a pioneering role in many applications of artificial intelligence. AI itself will be a

driving and revolutionary force as we advance as a technological society.

10

3 Technical introduction to EQS and SQS

Activities of AI agents can range from simple routines like patrolling between points, chas-

ing the player or guarding an area and then carrying out specific activities when hostiles are

perceived, to more complex behaviour. Adding nuance to activities like these however is

how AI agents can be made more believable, immersive and human. Additionally, making

the developer user experience smooth and intuitive, enabling rapid development and maxi-

mizing the developer’s ability to bring their imagination to life are some of the ways a query

system can truly shine. To begin seeing the connections between the strengths, weaknesses

and creative potential of these systems and how they arise from their technical design and

ideologies, one must understand the terms and core concepts used by the systems.

3.1 Environment Query System

The Environment Query System, EQS for short, is Unreal Engine 4’s AI Tools feature. Made

by Epic Games Interactive, UE4’s EQS is used for collecting environmental data from the

virtual game world and translating it into positions or Items to direct an AI with. First, a

generator is used to generate sample data, which is then processed through a variety of user-

defined Tests, returning the best Item that fits the parameters of the process. (”Environment

Query System”, no date) For example, a group of locations could be generated around the

player at regular intervals, in the shape of a circle. Then, tests could be used to filter out the

positions in the circle that are as far away from the player as possible. This would result in

Items on the circle’s circumference.

In the the EQS workflow one first adds a generator node either from the default templates or

makes a custom one in blueprint or C++. The generator produces the locations or Actors,

referred to as Items, that will be actually tested and weighted. The generator is also supplied

with Contexts which are a frame of reference for the various Tests and Generators. Tests are

then used by the Environment Query to decide which Items from the Generator are the win-

ning, or best options. The best options can then be fed to the rest of the engine’s components

to use and work with.

11

3.2 Spatial Query System

The description of SQS at first does not seem that different from EQS. As explained by the

Kythera AI documentation, when, for example, an agent needs to select a position to move

to, it can do so by executing a Spatial Query which will return the best position for a given

set of criteria. The query itself is described in a specialized query language and comprises

Generators to produce a set of positions to consider, Conditions for testing to exclude in-

appropriate positions and Scores to rank the appropriate positions in order to find the best

candidate. One can also define fallback queries that are used if no position passed all the con-

ditions of the query. A query is first constructed and then executed any number of times by

the Spatial Query System. The system handles queuing, time-slicing and asynchronous pro-

cessing over a number of frames and multiple queries at once. When a query is completed,

it uses the Kythera AI signal mechanism to communicate back to the original caller.

One of the developer’s main tools when using Kythera AI is the Inspector, which allows

for the rapid iteration of behaviour trees and deep, comprehensive debugging information

on everything that is going on in the editor. Spatial Queries are defined in another file for

example with a simple text editor. Changes made in the Inspector or spatial queries file are

immediately available for testing which supports rapid development.

12

4 Material and methods

Unreal Engine 4.21.2 was used for the projects containing the simple and complex EQS

scenarios. The default UE4 template for a third-person shooter was selected. UE4’s own

documentation was used in the setup, as well as various tutorials found in Youtube by chan-

nels such as “Ryan Laley Games”. The videos can be found for example by searching for

“UE4 EQS Tutorial”.

Unreal Engine 4.25.4 was used for the projects containing the simple and complex SQS

scenarios. Kythera AI generously provided me with a current development version of their

software which comes with a UE4 plugin. The software also contains example maps, be-

haviours, meshes and spatial queries to name some of the content more important in the

context of this study. While online tutorials were neither found or used, Kythera AI pro-

vided me with extensive documentation, a Slack channel and a few online sessions with their

developers for me to ask questions.

Both EQS and SQS were tested with a simple and a more complex scenario. The simple

scenario is a small map with flat walls as obstacles and an AI agent that wanders around.

After spotting the player the agent follows it at a distance and attempts to retain line of

sight. If line of sight is broken the agent resumes wandering. The basis for the design of this

simple scenario is to test a use case scenario, where a developer with little to no experience of

UE4’s EQS or Kythera AI’s SQS sets up simple AI behaviour, navigating the UI and using

mostly default settings and logic templates provided by the systems. This provides us an

understanding of the time, overhead and effort needed to produce something meaningful and

get in touch with the UI and workflow. In the complex scenario the AI agent moves from

cover to cover while following the player. The AI agent acts as a companion character and

attempts to remain covered from the direction the player is facing. The basis of the design

of the more complex scenario was to test how user-friendly and powerful the tools are for

creating something new that is not achieved by simply chaining together default building

blocks provided by the systems. The emphasis of this testing was on the query language and

creation of the queries fed to the systems. While the scenarios were not as complex as real-

world applications in games commonly are, we are confident that they provide an adequate

13

level of familiarity with the systems for us to apply the evaluation criteria on them. This

confidence was also backed up by discussion with experts, including those of the Kythera AI

team.

To make it easier for the reader to replicate the scenario, screenshots have been provided of

the essential settings and setup for the scenarios. Basic UE4 editor knowledge is necessary

to set up the environment and fully understand the pictures, but for anyone to follow the

EQS blueprint’s logic it is mostly sufficient to know that the white line between components

denotes the flow of execution logic. For the SQS examples, Kythera AI documentation and

some familiarity with the plugin environment is required if the reader attempts to replicate the

study. Not every step or detail is provided but basic tutorials provided by UE4 documentation

should fill in any potential gaps in setup knowledge.

4.1 Simple scenario: a wandering AI agent attempts to retain line of

sight to the player after spotting it

The scenario has two main ideas implemented in it. The first is an AI agent walking between

random points selected around it and, second, after perceiving the player, following it and

attempting to retain line of sight. If sight is lost for an extended time it resumes wandering.

While relatively simple, the AI agent has two states to it and already provides meaningful

behaviour commonly seen in games.

4.1.1 EQS Simple Scenario

For the UE4 EQS setup the guides at ”Unreal Engine 4 EQS Start Page” (2020) and ”Unreal

Engine 4 EQS Quickstart Page” (2020) were followed and they proved a reliable and easy

way to set up the scenario. Setting up was straightforward in UE4 (4.21.2) with the help of

the guide. The documentation explains the basics well as the tutorial advances.

First we enabled the EQS in UE4’s editor preferences. From “General” settings, in the

“Experimental” sidetab, inside the “AI” section by ticking the “Environment Query System”

option as shown in Figure 1.

14

Figure 1. Setting to be ticked to enable EQS.

Next, we created the necessary objects in the folder of our choosing, named “AI” in this

instance. The folder structure and files used are shown in the following Figure 2. We go

through each item and explain their use next.

Figure 2. Folder structure and AI-folder content.

From the “Add New” menu we added a “Blueprint Class” and then created an AI Controller

named “AIC_Enemy” with blueprint logic shown in Figure 3. Inside the controller two func-

tions were created, “UpdateSightKey”, shown in Figure 4 and “UpdateTargetKey”, shown in

Figure 5.

15

Figure 3. Blueprint logic of AIC_Enemy

Figure 4. Blueprint logic of the Update Sight Key -function.

16

Figure 5. Blueprint logic of the Update Target Key -function.

The AI Controller specifies the behaviour tree to be ran and also what to do when another

actor, in our case the player, is perceived. Perception occurs via UE4’s perception system,

and is based only on vision in our scenarios. The two functions simply update the necessary

blackboard keys, “TargetActor”, and “HasLineOfSight”.

17

A blackboard was created and named “BB_Enemy”. Its content is shown in Figure 6.

Figure 6. Contents of BB_Enemy.

The blackboard key types are:

• “HasLineOfSight” : Boolean

• “MoveToLocation” : Vector

• “TargetActor” : Object

• “SelfActor” : Object

We then created a behaviour tree named BT_Enemy. Its content is shown in Figure 7.

Figure 7. Blueprint logic of BT_Enemy.

18

Using the number at the top right corner of each node as the node numberer we specify

certain settings not visible in the picture:

• Node 1 : Notify observer on result change

• Node 3 : Notify observer on value change

• Node 5 : Precision: 10

• Node 7 : Run mode: Single best item

From within the behaviour tree UI we create a new task called BTT_RandomLocation. This

task will be responsible for generating a random location to patrol to when the agent is not

following the player. The location is then saved in the variable “MoveToLocation”, which is

visible for other blueprint components to use.

Figure 8. Blueprint logic of BTT_RandomLocation.

Next we created an environment query context called the EQC_PlayerContext. We clicked

the plus-sign in the functions sidetab to override the “ProvideSingleActor”-function. Its

contents are shown in Figure 9. This context is used to give EQS a reference to the player

character.

19

Figure 9. Blueprint logic of the “ProvideSingleActor”-function.

We then created the environment query itself as “EQS_FindPlayer”. The contents are shown

in Figure 10. Settings not visible in the picture were defined and listed next to the figure.

Figure 10. Blueprint logic of EQS_FindPlayer

• Trace : filter only

• Distance : score only, scoring

factor = -1, scoring equation =

linear.

Lastly we dragged a ThirdPersonCharacter from the “ThirdPersonBP/Blueprints/” -folder to

the AI-folder. Details of this AI agent are shown in Figure 11.

20

Figure 11. Details of the ThirdPersonCharacter used as the agent.

The ThirdPersonCharacter’s detail panel also shows settings for the “Pawn”. The AI con-

troller must be attached here as shown in Figure 12.

21

Figure 12. Details of the ThirdPersonCharacter’s detailed settings in the “Pawn”-tab.

4.1.2 SQS Simple Scenario

To prepare the map an example map was used, called “AutoCoverPerceptionSignals”. Flat

slab-like covers were placed as shown in Figure 13. Automatically generated cover can also

be seen around each obstacle. These cover-rails are not used in the simple scenario but are

used in the complex scenario.

Figure 13. Viewport showing the map used for the scenario.

22

Using the Kythera AI documentation provided and learning from the examples of default

maps and behaviours included with Kythera AI a behaviour tree and spatial query were

constructed. The contents of the behaviour trees used are shown in Figure 14 and Figure 15.

Figure 14. Behaviour tree detailing the behaviour “Wander”.

23

Figure 15. Behaviour tree detailing the behaviour “WanderFollow”.

The NPC was set to use the intended behaviour in the “Details” tab as shown in Figure 16.

Figure 16. Behaviour “WanderFollow” assigned to NPC.

24

This is the spatial query used to find locations with line of sight to the player when following

it. It contains a generator that creates a grid of points with the radius of the grid and space

between each point as the parameters. The condition for the acceptable points are set which

in this case are points with line of sight to the player. Lastly, the points are weighted so

that points closer to the querier are prioritized. The condition uses a NavRaycast, but for

this scenario a Raycast could have been used as both are supported by Kythera. The use

of NavRaycast is simply an artifact left over from the template used for this spatial query,

and while it enabled desired agent behaviour in the scenario, a Raycast would be the more

correct choice in general.

// Query to find a spot where the player is visible from

SpatialQuery {

Name("RetainLOS"),

Generators{

GridPointGenerator(SpatialQueryObject::Reference, 1600.f,300.f)

},

Conditions{

NavRaycast(SpatialQueryObject::Reference, 1),

},

Scores{

Weight(-0.5f, Distance3D(SpatialQueryObject::Querier))

}

}

4.2 Complex scenario: An AI agent follows the player using positions

covered from the direction the player faces

The complex scenario in the perspective of games in general is not that complex, but “A

Somewhat More Complex Scenario” did not have the same ring to it at the time of writing

this paper. The complexity it does have however comes from the AI agent’s imperative to

weigh environmental factors to make decisions about its movement. The agent takes into

25

account both the player’s location, but also locations that function as cover from the same

direction the player is facing.

4.2.1 EQS Complex Scenario

Combining knowledge from various tutorials a more complex scenario was constructed. The

AI agent would use environment queries to search for and weigh different positions with

strong emphasis to retaining cover while following the player around. The direction the

agent must remain covered from was specified by the direction the player is facing. As there

are no other characters on the map, and thus no enemies or threats to reference, this was

accomplished by creating an abstract threat point a specified distance away from the player,

towards the direction the player is facing. Raycasts were then cast from around that point,

towards that point, a set distance away. When a ray failed to reach the threat point due to an

obstacle, a point on the opposing side of that obstacle from the perspective of the threat point

could be then considered covered from it. These points were afterwards filtered and scored

so that only those close to the player remained. The best of these points was then given for

the AI agent to traverse to.

Screenshots showing the essential setup and content of the files required are shown below. It

is assumed that preliminary setup of the UE4 editor environment has already been done, such

as enabling of the EQS component, and setting up the ThirdPersonCharacter as described in

the setup of the simple scenario.

The folder structure and files created for the project are shown in Figure 17.

26

Figure 17. Folder structure and files created for the project.

The types of the file objects listed in Figure 17 are as follows:

• FindCompanionCover : Environment query, found under “Artificial Intelligence” in

the “Add New” -button menu.

• GenerateCompanionCover : EnvQueryGenerator_BlueprintBase, by adding a new blueprint

class.

• GetIntoCompanionCover : A behaviour tree task, added from the behaviour tree editor.

• NPC : ThirdPersonCharacter, created similarly as in the simple scenario.

• NPC_AIC : AIController, by adding a new blueprint class.

• NPC_BB : Blackboard, found under “Artificial Intelligence” in the “Add New” -button

menu.

• NPC_BT : Behaviour tree, found under “Artificial Intelligence” in the “Add New”

-button menu.

• PlayerContext : Environment query context, by adding a new blueprint class.

The contents of the AI Controller “NPC_AI” are shown in Figure 18.

27

Figure 18. Blueprint logic of NPC_AIC.

The AI Controller specifies the behaviour tree being ran and also updates the variable “CanSeePlayer”

based on visual stimulus.

The blackboard and its keys are shown in Figure 19.

Figure 19. Contents of NPC_BB.

The blackboard key types are:

• “TargetLocation” : Vector

• “CanSeePlayer” : Boolean

• “SelfActor” : Object

• “ThreatLocation” : Vector

• “ThreatRange” : Float

28

The contents of the behaviour tree are shown in Figure 20.

Figure 20. Blueprint logic of NPC_BT.

Using the number at the top right corner of each node as the node numberer, we specify

certain settings not visible in the picture:

• Node 2: Run mode: Single best item

• Node 4: Observer aborts: none, Filter class: NavFilter_AIControllerDefault

The PlayerContext is defined as follows in Figure 21. We use the plus-sign in the functions

side tab to override the “ProvideActorsSet”-function. This context is used to give EQS a

reference to the player character.

29

Figure 21. Blueprint logic of PlayerContext.

Most importantly, we then defined the environment query generator responsible for finding

the desired cover points. The blueprint is shown in three different figures due to its size,

Figure 22, Figure 23 and Figure 24.

Figure 22. The leftmost third of the Blueprint logic of the GenerateCompanionCover query

generator.

30

Figure 23. The central third of the Blueprint logic of the GenerateCompanionCover query

generator.

Figure 24. The last third of the Blueprint logic of the GenerateCompanionCover query gen-

erator.

31

The environment query generator is then used in the environment query itself, shown below

in Figure 25:

Figure 25. Blueprint logic of FindCompanionCover.

We specify certain settings not visible in Figure 25 as follows:

GenerateCompanionCover-node:

• Generated Item Type : Point

• Threat range : 600

• Cover scan radius : 800

• CoverLocationSet : Vector Array

Distance-test:

• Filter only

• Float min: 120

• Float max: 600

Lastly, the component responsible for executing the movement to the selected point is de-

tailed below in Figure 26:

32

Figure 26. Blueprint logic of GetIntoCompanionCover.

The TargetLocation-variable is set as visible to editor, so that other components can access

it.

33

4.2.2 SQS Complex Scenario

The same map was used as for the simple SQS scenario, and the settings from that scenario

prevailed, such as the “Player”-tag on the player character.

The contents of the behaviour tree used by the AI agent are shown in Figure 27.

Figure 27. The CoverFromReference behaviour tree.

A KytheraTarget-object was placed as a child of the player character, about 800 units of dis-

tance away directly in front of the player. It was named “Threat”, given a Pawn-component

named “ThreatPawn” and configured as shown in Figure 28.

34

Figure 28. Details of the “Threat”-object’s “ThreatPawn”-component.

Code of the spatial query used is shown next. A generator generates points along cover rails

around the reference object, the threat. Cover rails are created around obstacles that provide

cover. Conditions are set so that the distance to the target, the player, is between two limits

and that the acceptable points have no line of sight to the reference, or threat. Finally the

points are weighted so that the ones closest to the player are preferred.

// Take cover while keeping close to the player.

SpatialQuery {

Name("TakeCoverFromReference"),

35

Generators{

CoverRailGenerator(SpatialQueryObject::Reference,

"Full",1600.0f,400.f)

},

Conditions{

LessThan(Distance3D(SpatialQueryObject::Target), 800.f),

GreaterThan(Distance3D(SpatialQueryObject::Target), 200.f),

NavRaycast(SpatialQueryObject::Reference, 0, 0.f, 0.f)

},

Scores{

Weight(-1.0f, Distance3D(SpatialQueryObject::Target))

}

}

A NavRaycast was erroneously used in the spatial query as it was an artifact left over from a

previous query used as template. The error does not manifest in undesired agent behaviour

however as all cover used in the scenario is full cover and there is no difference between a

Raycast and NavRaycast. We suggest using a Raycast for this kind of scenario however.

36

4.3 Qualitative comparison and review of EQS and SQS and the devel-

opment environments integrating them

Establishing and constructing two control scenarios allows us to observe what the use cases

are like regarding the workflow and user experience in each scenario and what could be

improved upon. The comparison and analysis in this thesis undoubtedly go hand in hand with

a specific perspective, bias and background. The perspective and bias are that of a beginner

UE4-, EQS- and SQS -user with little prior knowledge and experience of UE4 and no prior

experience in EQS or SQS. The author’s background is in IT, programming and hobbyist

game development, but not in the use of these tools and development environments. The

study itself does not contain a realistically complex scenario that could be found in today’s

released games, but touches the true potential of either system rather superficially. It would

require an expert of both systems to deeply evaluate their strengths and weaknesses, and

attempts to compensate for this have been made by citing the work of experts and asking for

guidance from the field’s pioneers. Furthermore, an important aspect such systems should

strive to have is to be easily approached and understood by newer users and while powerful,

should not be overwhelming to would-be developers. It could also be argued that within

their feedback, expert users tend to ignore problems that they have learned to work around.

Inexperienced eyes sometimes see potential for improvements in places where veteran users

have internalized improvable aspects as a normal feature of the system.

In context of testing the EQS, while following the UE4 tutorials makes setting up the simple

scenario rather easy it was noticed that power rarely comes without complexity. Certain

blueprint blocks and selections were not very intuitive and a significantly larger amount of

time would have gone into finding out the correct ways to build the blueprints without the

tutorials. The blueprint tools, while powerful also present the user with large amounts of

possible selections with little guidance. When creating blueprint logic and selecting the next

blueprint part it was commonly one of three things that guided us to select a meaningful and

correct one from the vast amount of selections the system offers. First, intuitiveness, or in

other words the description and name of the piece would suggest it be selected. Second, the

system itself suggesting what would fit via the context-sensitive menu. Third, the tutorial

or guide associated with what was being designed. The more complex the design the less

37

often the two latter ones can be found available, thus it is important for the user themselves

to be able to quickly assess the implications of each available selection from their name

and description. Problems with making the correct selections are however assumed to be

somewhat compounded by the inexperience of the author.

Use of the blueprint system alongside EQS seems intuitive, as it is well integrated into the

environment and there are no extra considerations necessary when creating EQS queries.

Some small steps took a moment to figure out due to ambiguities, but overall the official

guide is well-detailed. Within thirty minutes we had a simple scenario running where one

can play with the AI and observe its behaviour. The debugging tools and how the debug

information is drawn on the screen are at first sight understandable and responsive, they

are powerful in beginner hands as well. The connection between the environment query

and associated debug spheres could clearly be seen and their implications understood. An

example of this is when a green sphere among red spheres could be seen near the player, but

not too close, on the same side of a separate adjacent cover wall as the player. This is clear

indication of a successful result of an environment query that was designed to find the best

location for the agent to move to while being covered from the direction the player is facing

from behind their own cover, with an additional condition that it must not be too close to

the player. The EQS debug coloring scheme of green for winning position, red for losing

position and blue for a position culled by conditions is fine, although a color such as grey

would be more intuitive instead of blue for a culled position.

Both development environments let the developer easily stack different tests, weights and

conditions in their queries. For UE4’s behaviour trees the developer can use tests pertaining

to distance, dot product, gameplay tags, spatial overlap, pathfinding, projection or trace to

more strctly and precisely select the winner for the query. For Kythera and its behaviour

trees the options are more extensive and too numerous to list here. The selection of default

behaviour tree nodes and query functions and parameters also suggests a stronger conceptual

connection to what is usually used and required in FPS-games. Examples of this are nodes

(and their associated tooltips) named “Character_IsPointReachableNow”, which “succeeds

if there is a valid path from the start point or entity to the end point or entity and fails if not”,

“Character_PredictPosition”, which “predicts where an entity will be in x seconds assuming

38

they continue to move at constant velocity on the navmesh”, and “HasCoverType”, which

“checks whether a cover point supports a particular cover type”. The last one is a crucial

property of cover in first-person shooters: cover could for example either be full, partial or

soft cover.

Using criteria from Jack (June 2017), further defined in our discussions of said criteria, we

can evaluate each system in a systematic way. Placing these definitions into a table format

we can bestow a score of 1-3 for each criterion, accompanied by reasoning to justify the

evaluation. While we attempt to be as objective and unbiased as possible to provide a result

as useful as possible, it should be taken into consideration that the scoring is still based on

the author’s subjective evaluation and is meant to provide an easily digestible guideline of

the system’s ability to meet the criteria. A score of one is given if the attribute is found

significantly lacking in relation to the defined criteria. A score of two is given if notable

improvements to the attribute have been identified, but the criterion is still mostly met by

modern standards and in comparison to the other system. A score of three is given if the cri-

terion is mostly or fully met with no significant improvements identified. Any system used

for choosing movement locations faces design pressures from many directions and must be

flexible and expressive, as it will define the movement possible for the AI agents. It must be

capable of rapid, iterative development, and it must include powerful tools as these will limit

the quality of the final behaviours (Jack June 2017). In the next chapter, the EQS is analyzed

and scored first, followed by SQS. A radar plot is also provided to condense the evaluation

into one graphic.

39

5 Results

5.0.1 EQS Analysis

Flexibility - Tweaking and rearranging the logic and contents of the environment queries and

the order of the tests within is easy, and their attributes are easily accessible in the graphical

UI. Testing a change is a matter of clicking a drop-down menu or tweaking a value, saving

the query, and launching the gameplay simulation. Changing the generator however requires

deleting the query node. Tests can be dragged from a query to another, but only one by one.

This is where a text-based editor is faster as you can easily copy and move text, but the same

cannot be said for UI elements. When a custom generator or test is required, the developer

needs to write C++ code and test it to add the generator to the list of generators. A slightly

easier way is to generate the points via the blueprint system as we did for the EQS complex

scenario which still requires significant effort. (”Unreal Engine: Custom EQS Generators”

2019). This slows down iterativity and makes extending, recombining and reapplying tests

and generators harder, adding to the developer’s workload. A score of 1 is assigned.

Expressivity - EQS offers generators that generate points in various basic shapes such as a

circle, cone, donut, grid or pathing grid as well as ones that generate actors of a certain class,

or the current location of the querier. One can also make composite generators, that contain

multiple generators inside. While these generators cover a variety of uses developers might

have, they remain basic, are restricted to flat planes and lack the context-specific generators

SQS offers. Additional generators need to be written by the developers to satisfy more

complex needs which takes development time and slows down iterativity. A score of 2 is

assigned.

Rapid iterativity - As mentioned above, EQS’ iterativity is affected by the work required

to make new generators and tests. As a major part of the workload around creating a query

comprises of the work on generators and tests, this is a major point for future improvement

and highlights the necessity of a powerful query language. As a minor point, the variables,

values and details of the query are behind drop-down menus and different panels of the

graphical blueprint system. Being able to see everything at once, as is the case is with a text

40

editor would help the developer think and work faster. A score of 2 is assigned.

Efficiency - While the EQS’ development environment gives the developer good control of

the parameters defining the spatial extents of the query and the context it centers around,

the small selection of default generators can easily lead to an unnecessarily large amount

of generated points, each which needs to be tested and weighed. The location or entity

around which the points are generated matters significantly in relation to efficiency. EQS

seems to only accept Context-objects as these locations. While the queries are executed

asynchronously, the filtering and scoring are executed synchronously, limiting efficiency. A

score of 2 is assigned.

5.0.2 SQS Analysis

Flexibility - Rearranging and making changes to the spatial queries is a matter of rewriting,

reorganizing, copying and pasting text. As the same file can contain multiple queries, being

able to see examples of other similar functional queries while working on one is useful. The

SQS documentation, unavailable for public citing at the time of writing this thesis, provides

a vast array of generators, logical functions and operation functions to manipulate the pa-

rameters of the query with. Compared to those available in EQS, the difference is that of

an order of magnitude. These options to manipulate the query contain both context-specific

and spatially specific options in 2D and 3D space. The amount of options provided before

any C++ needs to be written and the ease at which the query can be extended, recombined

and quickly reapplied indicates that SQS is a good benchmark for flexibility. A score of 3 is

assigned.

Expressivity - The large amount of options for a query’s parameters compared to EQS and

their context-specific nature allows for a developer to manifest and test new ideas quickly.

The context-specificity of the language works in favor of at least first-person shooters, flight

simulators, MMORPGs and perhaps even games of the strategy genre. Points can not only

be created in various shapes, but also a cover rail system is in place. Cover rails are generated

along the edges of obstacles to provide positions of cover. This is one of the ways in which

SQS shows its context-specificity: in first-person shooters it is often a given that characters

41

position themselves next to obstacles to break line of sight from hostile characters and take

cover from incoming fire. The cover rail system was noted as one of major timesavers during

testing. A score of 3 is assigned.

Rapid iterativity - After approximately an hour of working on spatial queries and the simple

scenario the workflow and time spent on cycles of tweaking the spatial query and behaviour

tree was already reduced. This was further assisted by the powerful yet accessible debug-

draw options of the Kythera AI Inspector view, where settings could be turned on to display

useful information on practically any entity or variable that exists, and show the progression

of behaviour trees, spatial queries and the results of the queries in real-time. Having all vari-

ables and values visible at once both in the text file and behaviour tree benefit the cognitive

process and creativity of the developer. The previously mentioned amount of generators and

testing options made it unnecessary to write any C++ code for the scenarios and working on

the behaviour trees felt intuitive. In fact, no help, tutorial or consultation was needed for the

final version of either the simple or complex scenario, a feat by the system that surprised the

author. A score of 3 is assigned.

Efficiency - Asynchronous execution and context-specific features such as the cover rail

system contribute to making generators in SQS efficient. As noted by Jack (June 2017),

efficient queries go hand in hand with generators that generate points in specific locations that

the developer is interested in. These reference points include the querier and any reference

of entity or position provided to the query. Additionally, in comparison to EQS, which

seems to only accept Contexts which must be pre-designed and assigned entities or locations

as the generator’s reference point, SQS uses a Target Selection system which extends the

selection of valid references to those the AI agent perceives as its current target. Combined

with behaviour trees one can search for any entity with a certain ID and feed it to the query,

enabling low-effort and specific queries which ultimately results in high efficiency. A score

of 3 is assigned.

42

Criterion EQS Score SQS Score

Flexibility 1 3

Expressivity 2 3

Rapid iterativity 2 3

Efficiency 2 3

Table 1. Scoretable for EQS and SQS

Figure 29. Radar plot of the evaluation scores.

43

6 Discussion

The results paint a noticeable difference between EQS and SQS. While the results are based

on the evaluation by one person, the evaluation itself is based on expert definitions and

criteria derived from literature on the topic. Because previous scientific literature and reviews

were found to be scarce, we are not able to provide a convincing contrast between what this

paper and previous research have found. Many of the articles in the Game AI Pro -book,

the latest magnum opus of AI and AI design in games, deal with query systems and query

languages. This gives us an indication of the direction that AI development is taking in the

modern industry. Taking this into account, it is no surprise that SQS, being the more modern

system, seems to tackle these modern problems more adequately according to the results.

The main improvement for EQS suggested by the results is to integrate a query language,

so that the developer can to an extent avoid working on C++ code and instead write new

queries in a query language. A query language is both easier to read for non-developers

and humans in general, but it also contributes to quicker iterations and expressivity. The

reduced effort required to implement changes and tweaks also encourages developers to be

creative without the worry of having to see substantial effort for little change. The main

improvement suggested for SQS is to increase the debugging information presented when

processing a query file and to keep expanding the query language’s “vocabulary”.

We surmise that part of EQS’ shortcomings stem from it being an experimental addition to

the UE4 engine, while SQS has been built from the ground up as a full commercial feature.

Regardless of the results, they relay useful signals of both what could be improved upon and

what has been a success.

It is expected that people of different perspectives, expertise and experience might have a

differing or opposite view on how the two systems rank by the defined criteria. The results

produced here should at least serve as a stepping stone on the grander path of discussion

about query systems, artificial intelligence and game development. We hope that developers

of either system, or completely other systems found useful pointers, reasoning and sources

by reading this thesis. We also hope that continued research into the topic encourages others

44

to provide additional comparison and discussion to accelerate the development of systems

like these.

It is also necessary to consider any potential bias of this thesis towards Kythera AI. The eval-

uation criteria have been formed with assistance from Kythera AI and because of this it was

thought paramount to be both transparent and open about the connection. However, we assert

that the criteria are also universal and agreed on by experts in the AI field, most likely also

by the UE4 developers. Virtues such as “flexibility”, “rapid iterativity”, “expressivity” and

“efficiency”, as they are defined in this thesis, we think can be seen as important attributes in

their own right regardless of reference to a particular firm, team or game engine.

Many aspects of this thesis could have been refined and extended with additional learning

and expertise on the development environments and the two systems. However, we believe

that the perspective of a new user and developer would have been diluted in the process and

changed to a different, yet useful perspective. Also, what initially seemed a complex task

was simpler, and the complex scenario could have been made even more complex to better

demonstrate the power and capabilities of both systems. Initially the author was also intimi-

dated by the lack of scientific papers found and it was considered that such a study might not

have the proper academic legs to stand on. Fortunately, these worries were ballasted by the

encouragement of industry professionals and pioneers indicating the need for such research

and review.

For further research, a thesis dedicated solely to bring together and review the current lit-

erature and material on game AI environment queries and agency would be very useful for

researchers of the field of artificial intelligence in games. Another branch of interesting

research we suggest is the use of these systems and their extensions in other genres such

as strategy games. Finally, industry professionals are encouraged to engage the scientific

community to spark more interest for proper academic research.

45

7 Conclusion

The theoretical background and literature surrounding the query systems EQS and SQS were

presented and the two systems compared with the help of criteria based on expert consulta-

tion. The Spatial Query System was found to be a more sophisticated and powerful system

according to these criteria, while the Environment Query System could still serve developers

with simpler needs adequately. The study also identified a need for more research in the

topic and topics surrounding it.

46

Bibliography

”Amazon Lumberyard homepage”. 2020. Visited on November 28, 2020. https://aws.amazo

n.com/lumberyard/.

Dellermann, D., P. Ebel, M. Söllner, and J. M. Leimeister. 2019. ”Hybrid Intelligence”. Busi-

ness & Information Systems Engineering 61 (5): 637–643. https://doi.org/10.1007/s12599-

019-00595-2.

”Environment Query System: Overview”. No date. Visited on October 12, 2020. https://docs.

unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSOverview/index.html.

Jack, Matthew. June 2017. Tactical Position Selection, An Architecture and Query Language:

Introduction. Version 2017-06. Visited on October 3, 2020. http: / /www.gameaipro.com/

GameAIPro/GameAIPro_Chapter26_Tactical_Position_Selection.pdf.

Jack, Matthew, et al. August 2020. ”Spatial Query System: Overivew”. Visited on October 1,

2020. https : / / kythera . atlassian . net / wiki / spaces / KYTDOC / pages / 254738436 / Spatial +

Query+System.

Johnson, Eric. June 2017. Guide to Effective Auto-Generated Spatial Queries: Introduction.

Version 2017-06. Visited on November 29, 2020. http://www.gameaipro.com/GameAIPro3/

GameAIPro3_Chapter26_Guide_to_Effective_Auto-Generated_Spatial_Queries.pdf.

Machado, Tiago, Daniel Gopstein, Andy Nealen, and Julian Togelius. 2019. ”Kwiri - What,

When, Where and Who: Everything you ever wanted to know about your game but didn’t

know how to ask”. 2nd Workshop on Knowledge Extraction from Games, KEG 2019 ; Con-

ference date: 27-01-2019, CEUR Workshop Proceedings 2313:43–50. ISSN: 1613-0073.

Routio, P. 2007a. ”Comparative Study”. Visited on November 24, 2020. http://www2.uiah.

fi/projects/metodi/172.htm.

. 2007b. ”Modes of Knowing”. Visited on November 24, 2020. http://www2.uiah.fi/

projects/metodi/148.htm.

47

https://aws.amazon.com/lumberyard/
https://aws.amazon.com/lumberyard/
https://doi.org/10.1007/s12599-019-00595-2
https://doi.org/10.1007/s12599-019-00595-2
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSOverview/index.html
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter26_Tactical_Position_Selection.pdf
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter26_Tactical_Position_Selection.pdf
https://kythera.atlassian.net/wiki/spaces/KYTDOC/pages/254738436/Spatial+Query+System
https://kythera.atlassian.net/wiki/spaces/KYTDOC/pages/254738436/Spatial+Query+System
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter26_Guide_to_Effective_Auto-Generated_Spatial_Queries.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter26_Guide_to_Effective_Auto-Generated_Spatial_Queries.pdf
http://www2.uiah.fi/projects/metodi/172.htm
http://www2.uiah.fi/projects/metodi/172.htm
http://www2.uiah.fi/projects/metodi/148.htm
http://www2.uiah.fi/projects/metodi/148.htm

Routio, P. 2007c. ”Normative Analysis and Preparing the Proposal”. Visited on Novem-

ber 24, 2020. http://www2.uiah.fi/projects/metodi/179.htm.

”Unreal Engine 4 EQS Quickstart Page”. 2020. Visited on November 27, 2020. https://docs.

unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html.

”Unreal Engine 4 EQS Start Page”. 2020. Visited on November 27, 2020. https : / / docs .

unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/index.html.

”Unreal Engine: Custom EQS Generators”. 2019. Visited on November 30, 2020. https :

//www.thinkandbuild.it/unreal-engine-custom-eqs-generators/.

Xia, B., X. Ye, and A. O. M. Abuassba. 2020. ”Recent Research on AI in Games”. In 2020

International Wireless Communications and Mobile Computing (IWCMC), 505–510. https:

//doi.org/10.1109/IWCMC48107.2020.9148327.

Yannakakis, G. N., and J. Togelius. 2015. ”A Panorama of Artificial and Computational

Intelligence in Games”. IEEE Transactions on Computational Intelligence and AI in Games

7 (4): 317–335. https://doi.org/10.1109/TCIAIG.2014.2339221.

Zielinski, Mieszko. June 2017. Asking the Environment Smart Questions: Introduction. Ver-

sion 2017-06. Visited on October 1, 2020. http : / / www . gameaipro . com / GameAIPro /

GameAIPro_Chapter33_Asking_the_Environment_Smart_Questions.pdf.

48

http://www2.uiah.fi/projects/metodi/179.htm
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/EQSQuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/EQS/index.html
https://www.thinkandbuild.it/unreal-engine-custom-eqs-generators/
https://www.thinkandbuild.it/unreal-engine-custom-eqs-generators/
https://doi.org/10.1109/IWCMC48107.2020.9148327
https://doi.org/10.1109/IWCMC48107.2020.9148327
https://doi.org/10.1109/TCIAIG.2014.2339221
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter33_Asking_the_Environment_Smart_Questions.pdf
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter33_Asking_the_Environment_Smart_Questions.pdf

	1 Introduction
	1.1 Structure of the thesis
	1.2 Motivation
	1.3 Literature review
	1.4 Research questions
	1.5 Research method

	2 Theoretical background
	3 Technical introduction to EQS and SQS
	3.1 Environment Query System
	3.2 Spatial Query System

	4 Material and methods
	4.1 Simple scenario: a wandering AI agent attempts to retain line of sight to the player after spotting it
	4.1.1 EQS Simple Scenario
	4.1.2 SQS Simple Scenario

	4.2 Complex scenario: An AI agent follows the player using positions covered from the direction the player faces
	4.2.1 EQS Complex Scenario
	4.2.2 SQS Complex Scenario

	4.3 Qualitative comparison and review of EQS and SQS and the development environments integrating them

	5 Results
	5.0.1 EQS Analysis
	5.0.2 SQS Analysis

	6 Discussion
	7 Conclusion
	Bibliography

