
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Surrogate assisted interactive multiobjective optimization in energy system design of
buildings

© The Author(s) 2021

Published version

Aghaei Pour, Pouya; Rodemann, Tobias; Hakanen, Jussi; Miettinen, Kaisa

Aghaei Pour, P., Rodemann, T., Hakanen, J., & Miettinen, K. (2022). Surrogate assisted
interactive multiobjective optimization in energy system design of buildings. Optimization and
Engineering, 23(1), 303-327. https://doi.org/10.1007/s11081-020-09587-8

2022



Vol.:(0123456789)

Optimization and Engineering
https://doi.org/10.1007/s11081-020-09587-8

1 3

REVIEW ARTICLE

Surrogate assisted interactive multiobjective optimization 
in energy system design of buildings

Pouya Aghaei Pour1 · Tobias Rodemann2 · Jussi Hakanen1 · Kaisa Miettinen1

Received: 20 August 2020 / Revised: 4 December 2020 / Accepted: 4 December 2020 
© The Author(s) 2021

Abstract
In this paper, we develop a novel evolutionary interactive method called interactive 
K-RVEA, which is suitable for computationally expensive problems. We use sur-
rogate models to replace the original expensive objective functions to reduce the 
computation time. Typically, in interactive methods, a decision maker provides 
some preferences iteratively and the optimization algorithm narrows the search 
according to those preferences. However, working with surrogate models will intro-
duce some inaccuracy to the preferences, and therefore, it would be desirable that 
the decision maker can work with the solutions that are evaluated with the original 
objective functions. Therefore, we propose a novel model management strategy to 
incorporate the decision maker’s preferences to select some of the solutions for both 
updating the surrogate models (to improve their accuracy) and to show them to the 
decision maker. Moreover, we solve a simulation-based computationally expensive 
optimization problem by finding an optimal configuration for an energy system of 
a heterogeneous business building complex. We demonstrate how a decision maker 
can interact with the method and how the most preferred solution is chosen. Finally, 
we compare our method with another interactive method, which does not have any 
model management strategy, and shows how our model management strategy can 
help the algorithm to follow the decision maker’s preferences.

Keywords  Model management · Evolutionary interactive methods · Surrogate-
assisted optimization · Multiobjective optimization · Computationally expensive 
problems

 *	 Pouya Aghaei Pour 
	 pouya.p.aghaei‑pour@student.jyu.fi

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09587-8&domain=pdf


	 P. Aghaei Pour et al.

1 3

1  Introduction

Real-world optimization problems often contain multiple conflicting objective func-
tions, and we call them multiobjective optimization problems (MOPs). In MOPs, 
instead of having one optimal solution, we have many so-called Pareto optimal 
solutions with different trade-offs. Mathematically, all of the Pareto optimal solu-
tions are equally good if no additional information is available since vectors can-
not be ordered completely. However, one of the Pareto optimal solutions needs to 
be selected as the outcome of the optimization process to be implemented. Here, 
we need an expert known as the decision maker (DM) who knows the properties 
of the problem and can provide preferences and compare different Pareto optimal 
solutions.

Based on the literature (see, e.g., Miettinen 1999; Hwang and Masud 1979), the 
DM can participate in solving MOPs in three different ways. In a priori methods, the 
DM expresses one’s preferences before the solution process. In the second category, 
a posteriori methods, the DM selects the final solution after the method provides 
a set of solutions representing different trade-offs. In the third category, the DM 
actively interacts with the algorithm and provides preferences during an iterative 
solution process. In the literature, the last type is referred to as interactive methods.

By using interactive multiobjective optimization methods that involve a DM’s 
preference information, the DM directs the solution process to the regions that one 
is interested in. A solution pattern is repeated iteratively, and information is pro-
vided to the DM at each iteration, who then needs to provide preferences in order 
to improve solutions from the current iteration. There are many interactive methods 
in the literature that use different types of preferences (see, e.g., Miettinen 1999; 
Miettinen et al. 2016). Using interactive methods can be beneficial in the process of 
problem-solving because as mentioned by Miettinen (1999): 

1.	 The DM learns about the interdependencies between the conflicting objectives 
and the feasibility of one’s preferences.

2.	 The algorithm focuses on those parts of the objective space that are interesting 
to the DM.

Moreover, since the DM’s understanding of the problem grows during the optimiza-
tion process, one will have more confidence in the final selection.

There exist several types of methods to solve a MOP (see e.g., Miettinen 1999; 
Deb 2001). One of the well-known methods is evolutionary multiobjective optimi-
zation (EMO) algorithms. EMO algorithms are population-based a posteriori meth-
ods where a set of solutions approximating the actual Pareto optimal solutions, is 
found (Deb 2001).

Over the years, EMO algorithms have become popular due to certain advan-
tages. For example, they can provide a set of representative solutions in one run, 
they can handle different kinds of decision variables (Deb 2001), and they can 
be applied to objective functions or constraints that are discontinuous or non-
differentiable. Many EMO algorithms have been proposed (see, e.g, Deb 2001; 
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Branke et al. 2008). However, usually, evolutionary algorithms need a consider-
able number of function evaluations. Recently, some interactive EMO algorithms 
have been developed, where the DM provides preferences iteratively during the 
solution process to get a set of solutions that is the most preferable (for reviews, 
see Wang et al. 2017; Xin et al. 2018; Purshouse et al. 2014).

Real-world multiobjective optimization problems may involve functions that 
do not have any analytic formulation. For instance, when we are dealing with 
simulation-based problems (Rodemann 2019; Cheng et  al. 2017), one only gets 
output for a given input. Then, in some cases, we can use the output directly as 
the values of the objective functions, and sometimes some post-processing analy-
sis on the output data is needed to calculate the values of the objective functions. 
Calculating the output may be time-consuming, and such problems are known 
as computationally expensive multiobjective optimization problems. EMO algo-
rithms are viable for simulation-based problems since we do not necessarily know 
the properties of the functions involved, but their need for many function evalua-
tions makes solution processes time-consuming.

In this paper, we focus on finding an optimal configuration for the energy sys-
tem design of buildings, as formulated by Rodemann (2019). The usage of local 
energy production and storage facilities has become increasingly interesting both 
in terms of energy costs and CO2 emissions. Facility management is, therefore, 
looking at how to invest in extensions to the current building energy system opti-
mally. Here a simulator is used that has a time-consuming process to generate the 
outcome (Rodemann 2019).

Even though interactive methods have desirable properties, applying them in 
computationally expensive problems is not straightforward since the DM must 
wait for solutions corresponding to one’s preferences to be generated, which can 
take hours. Waiting too long may become exhausting for the DM, and this is why 
it is desirable to speed up the calculation in such problems. One way to reduce the 
computing time is to approximate the objective functions by analytic functions. In 
the literature, this is known as surrogate (meta-model)-assisted optimization (see 
e.g., Jin 2011; Chugh et al. 2019).

As far as we know, there has been no attempt to tackle the prob-
lem  addressed  by Rodemann (2019) by any interactive methods. Besides, there 
are only few interactive evolutionary methods in the literature that are suited 
for computationally expensive problems. Therefore, we develop an interactive 
method that is suitable for solving computationally expensive multiobjective opti-
mization problems, like  the one addressed by Rodemann (2019), to show how 
it provides decision support for the DM in computationally expensive problems. 
Moreover, there are some algorithms in the literature that motivated our novel 
interactive method. The first algorithm is the reference vector guided evolution-
ary algorithm (RVEA) (Cheng et al. 2016) since it has got good results in similar 
simulation-based problems like  the one  presented by Cheng et  al. (2017). The 
second algorithm is the surrogate assisted version of RVEA (K-RVEA) presented 
by Chugh et al. (2018) where the Kriging models (Sacks et al. 1989) have been 
used to reduce the computation time. The final method that inspired us is the 
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interactive version of RVEA (Hakanen et al. 2016) in which RVEA is modified to 
be able to incorporate the DM’s preferences.

Typically, in surrogate-assisted optimization problems, model management (i.e., 
how to select solutions to evaluate with a computationally expensive function) is used 
to improve the accuracy of the surrogate models with updating them. Model manage-
ment is a very crucial part of surrogate-assisted optimization. For instance, solutions 
computed by the surrogate functions might deviate substantially from the true values, 
and it is desirable to find the solutions that are following the DM’s preferences when 
they are evaluated by the original objective functions. A good model management strat-
egy can help the surrogate models to make such selection.

The contributions of this paper are two-fold. First, we develop a novel model man-
agement strategy that has a smart selection process, where the solutions, which are 
generated by the surrogate models, will be examined and the ones that have the high-
est chance of following the DM’s preferences are selected to be shown to the DM and 
update the surrogate models. The second contribution is to show how model manage-
ment can help an interactive method to follow the DM’s preferences better than when 
there is no model management involved. In other words, we show that by reserving 
some of the computational resources that we have available for updating the surrogate 
models, we can provide several solutions that reflect the DM’s preferences well.

The rest of this paper is structured as follows. In Sect. 2, the energy system design 
problem is briefly described, along with relevant background information. In Sect. 3, 
we present a new interactive method for solving computationally expensive problems. 
In Sect. 4, we solve the problem presented in Sect. 2 with our new interactive method 
and demonstrate the importance of having a model management strategy with some 
comparisons. Finally, conclusions are drawn and future research directions mentioned 
in Sect. 5.

2 � Background

Next, we provide some background about notation and terminology, the energy man-
agement problem we consider, and the supporting materials for developing our new 
interactive method.

2.1 � Terminology and notation

The general form of a multiobjective optimization problem (for minimization) is as 
follows:

where the set S is called the feasible region which is a subset of the decision space 
ℝ

n . We consider k(≥ 2 ) objective functions fi ∶ S → ℝ . For every feasible decision 
variable vector x, there is a corresponding objective vector f (x) = (f1(x),… , fk(x))

T , 

(1)
minimize {f1(x), f2(x), … , fk(x)}

subject to x ∈ S,
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and f(S) is called the feasible objective region which is a subset of the objective 
space ℝk.

As mentioned earlier in Sect. 1, usually, the objective functions in problem (1) 
conflict with each other. Hence, not all the objective functions can achieve their opti-
mal values simultaneously. A feasible solution x∗ ∈ S and the corresponding f (x∗) 
are called Pareto optimal, if there does not exist another feasible solution x ∈ S such 
that fi(x) ≤ fi(x

∗) for all i = 1,… , k , and fj(x) < fj(x
∗) for at least one index j. The 

set of all Pareto optimal objective vectors is called a Pareto front (PF). A feasible 
solution x∗ ∈ S and the corresponding f (x∗) are called weakly Pareto optimal, if 
there does not exist another feasible solution x ∈ S such that fi(x) < fi(x

∗) for all 
i = 1,… , k.

Assume that the set X = {x1,… , xm} is an arbitrary subset of feasible solutions 
in S, and F = {f (x1),… , f (xm)} the corresponding objective vectors in the objective 
space. A solution xi for i = 1,… ,m that satisfies the definition of Pareto optimality 
within the set X, is called a nondominated solution in X (Miettinen 1999). Note that 
sometimes in the EMO literature, Pareto optimality and nondominance are regarded 
as synonyms, but this is a more precise distinction. By definition, a Pareto optimal 
solution is always nondominated but not necessarily vice versa.

In this paper, we have two important concepts, iteration, and interaction. By an 
iteration, we mean a fixed number of generations, and in this paper, we update the 
surrogate models at the end of each iteration. Whenever the DM provides prefer-
ences, we call it an interaction, and it happens after a fixed number of iterations. 
For simplicity, every time we evaluate a decision variable vector with the surrogate 
models, we refer to it as a surrogate evaluation, and every time we use the original 
expensive objective functions, we use the term function evaluation.

In the method to be proposed, we use an achievement scalarizing function (ASF) 
proposed by Wierzbicki (1980) to order nondominated solutions based on a given 
reference point ẑ . It consists of aspiration levels ẑi ( i = 1,… , k ) provided by the DM. 
There are different ways to formulate an ASF. Here, we use the following formula-
tion to be minimized:

where k is the number of objective functions, w is some weighting vector with posi-
tive fixed values, and 𝜌

∑k

i=1
wi(fi(x) − ẑi) with 𝜌 > 0 is the augmentation term to 

avoid finding weakly Pareto optimal solutions (Miettinen 1999).
In this paper, we use an ASF as an indicator of how well a given solution is fol-

lowing the DM’s preferences (given as a reference point). The lower the ASF value 
for a given x, the better it is following the DM’s preferences (Wierzbicki 1980).

2.2 � Simulation‑based problem considered

Managers of large buildings are confronted with complex investment decisions 
concerning possible extensions of the energy system, like photovoltaics, stationary 

(2)max
i=1,…,k

[wi(fi(x) − ẑi)] + 𝜌

k∑

i=1

wi(fi(x) − ẑi),
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batteries, or heat storage. They have to consider a multitude of objectives, for exam-
ple, investment and annual operation costs and CO2 emissions.

Here, we want to find an optimal configuration for an energy system of a hetero-
geneous business building complex. Because of the complex nature of the problem, 
it is possible to consider different numbers of objective functions and decision vari-
ables. For example, the problem considered by Rodemann (2019) consisted of five 
objective functions and ten decision variables, and a building simulator based on 
Modelica Fritzson and Bunus (2002); Yang and Wang (2012) was used, which is 
capable of modeling the most relevant real-world effects. Several EMO algorithms 
were applied to solve this problem (Rodemann 2019). However, no analysis of the 
final set of solutions was done to determine the DM’s most preferred solution. This 
can be a difficult task since the DM has to choose a solution from a big pool of solu-
tions with different trade-offs.

We have ten real-valued decision variables (see Appendix for more details) whose 
values are given to the same simulator that was used by Rodemann (2019) as input. 
Here, we consider four objective functions:

f1 : minimize initial investment cost (in euros),
f2 : minimize annual operation cost (in euros),
f3 : minimize annual CO2 emissions (in tons), and
f4 : maximize resilience (in seconds),

where resilience is defined as the time the facility can run without grid power. Here, 
f1 is independent of the simulator and it is computationally cheap to calculate f1(x) . 
On the other hand, the other objective functions are computationally expensive, and 
we need to post-process the simulator’s output to calculate them (for more details, 
see Rodemann 2019).

We formulate our multiobjective optimization problem as:

where fi for i = 2,… , 4 are derived from the output of the simulator and xi for 
i = 1,… , 10 are the decision variables which only have box-constraints. In what fol-
lows, we consider and solve problem (3).

2.3 � Related Work

As we mentioned in the previous section, our method is inspired by RVEA, 
K-RVEA, and interactive version of RVEA. Here, we provide some background on 
these algorithms.

(3)

minimize {f1(x), f2(x), f3(x)},

maximize {f4(x)}

subject to 0 ≤ xi ≤ 1, i = 1,… , 10,
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2.3.1 � RVEA

RVEA (Cheng et  al. 2016) is a decomposition-based algorithm which divides the 
objective space into a number of subspaces using reference vectors. The reference 
vectors are initially generated so that they are uniformly distributed in the feasible 
objective space, and they are adjusted within the algorithm based on the structure 
of the PF. RVEA balances between the diversity of the solutions and the conver-
gence towards Pareto optimality by using an angle penalized distance (APD) scalari-
zation (Cheng et al. 2016) to select solutions from different subspaces for the next 
generation.

RVEA has three main steps. First, generating a set of uniformly distributed refer-
ence vectors to divide the objective space to a number of subspaces. Second, using 
a heuristic algorithm to find solutions in the created subspaces. Third, assigning the 
solutions found in the previous step to the reference vectors by using APD and then 
adjusting the positions of reference vectors based on those solutions.

2.3.2 � K‑RVEA

As mentioned in Sect. 1, it takes much time to solve a computationally expensive 
problem with EMO algorithms. A widely used approach for solving computation-
ally expensive problems is to use surrogate functions to approximate the original 
ones (Jin 2011; Chugh et  al. 2019). A surrogate-assisted version of RVEA called 
K-RVEA was proposed by  Chugh et  al. (2018). K-RVEA assumes that all the 
objective functions are computationally expensive, and uses Kriging (also known 
as Gaussian process regression) as a surrogate model. The main idea of Kriging is 
to predict the values of a function for a given decision variable vector by generat-
ing weighted coefficients of the true values of the function in the neighborhood of 
the decision variable vector. Typically, the computation time for training the Krig-
ing models in population-based EMO is quite high and there might be a need for 
a model management strategy to limit the size of the training samples like the one 
mentioned by Chugh et al. (2018).

A major difference between K-RVEA and RVEA is that in RVEA, the final popu-
lation is examined to measure the quality of solutions. However, in K-RVEA, an 
archive is used to store all the function evaluations, and in the end, the solutions that 
are stored in the archive are examined to determine the quality of the solutions.

K-RVEA consists of three main steps. First, in the initialization step, a sampling 
method is used to create a training data set in the decision space. Then, the collected 
samples are evaluated with the original objective functions, and the data, which is 
stored in an archive, is used to train a surrogate model for each objective function. 
Second, RVEA is run with the surrogate models instead of the original objective 
functions. Third, the surrogate models are updated after a certain number of gen-
erations by using both APD and uncertainty information, which is provided by the 
Kriging models (see Chugh et al. 2018 for more details).
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2.3.3 � Interactive RVEA

As mentioned earlier, in interactive methods, the DM guides the algorithm to find 
one’s most preferred solution by providing preference information. There are many 
types of preferences, for example, reference points, classification, pairwise com-
parisons, and selecting preferred solutions, see, e.g., (Miettinen 1999; Hwang and 
Masud 1979). An interactive version of RVEA, to be referred to as iRVEA, was pro-
posed by Hakanen et al. (2016). In iRVEA, the preference information given by the 
DM is used to adjust reference vectors V = {v1,… , vm} so that the search focuses 
on solutions reflecting the preferences. For example, if the DM provides a reference 
point ẑ = (ẑ1,… , ẑk) , an adjusted reference vector v̄i is created from vi by the follow-
ing formula (Hakanen et al. 2016):

where i = 1,… , k , ||ẑ|| ≥ 0 is the Euclidean norm of the reference point which is 
used for normalization, and vc

j
=

ẑj

||ẑ|| . If ||ẑ|| = 0 , then it means that all the objective 
functions have the same amount of desirability, and we can use the unit vector as the 
reference vector. The parameter r ∈ (0, 1) controls how much the reference vectors 
are adjusted towards the reference point. If r is close to 1, then the reference point 
has less effect on the reference vectors, and if it is close to 0, they will get closer to 
the reference point.

3 � Interactive K‑RVEA

We selected RVEA as the EMO algorithm that we use in our interactive method 
(called interactive K-RVEA) because it had reasonable results in similar problems 
(Rodemann 2019; Cheng et al. 2017). Moreover, we used Kriging models because 
they provide uncertainty information that is useful for our model management strat-
egy. Kriging models have been used with a priori EMO algorithms before (Chugh 
et al. 2018) to approximate the whole PF. However, to the best of our knowledge, 
they have never been used to incorporate the DM’s preferences to focus on particular 
regions of the objective space. To consider Kriging models when applying interac-
tive methods, we must incorporate DM’s preferences in model management, which 
has some challenges. Here, the main point of our model management strategy is that 
it improves the ability of the method to follow the preferences with respect to (2).

Figure 1 presents a flowchart of the main steps of interactive K-RVEA. First, we 
generate the initial population, evaluate it using the original objective functions, and 
train a Kriging model for each expensive objective function. Next, the DM provides 
preferences, and we solve a multiobjective optimization problem (by incorporating 
the preferences) by replacing original objective functions with the Kriging mod-
els. After generating an approximation of a part of the Pareto optimal set reflect-
ing preferences, the accuracy of the Kriging models must be improved to get a bet-
ter approximation. We propose a model management strategy based on the DM’s 

(4)v̄i =
r ⋅ vi + (1 − r) ⋅ vc

||r ⋅ vi + (1 − r) ⋅ vc||
,
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preferences to update the Kriging models, which is done by selecting solutions that 
follow the DM’s preferences best. The solutions for updating the Kriging models 
must be evaluated with the original objective functions. Based on how many solu-
tions the DM wants to see at a time, we show to the DM the corresponding number 
of solutions reflecting the preferences among those evaluated by the original objec-
tive functions. Finally, if the DM is satisfied, he/she selects the most preferred solu-
tion and the algorithm stops.

As mentioned earlier, there are only few interactive methods that are suited for 
computationally expensive problems. In this section, we use Kriging models to 
reduce the computation time and RVEA as an EMO algorithm to build the basis of a 
new interactive method called interactive K-RVEA. The main contribution to devel-
oping interactive K-RVEA is a model management strategy to incorporate the DM’s 
preferences while using the Kriging models.

We have two main steps in developing interactive K-RVEA. First, we must select 
the type of preferences that the DM is expected to provide, and second, we must 
select some of the solutions that are found by using Kriging models in a way that 
when they are evaluated by the original objective functions, they follow best the 
DM’s preferences (at least they are following the DM’s preferences better than other 
available solutions). For the first task, we mentioned in Sect. 2 that there exist dif-
ferent ways to express one’s preferences for interactive methods. After consulting 
with experts, who deal with problem (3) regularly, we decided to use a reference 
point to develop our model management strategy because it is intuitive, and they 
were comfortable with this kind of preference information. Reference vectors could 

Fig. 1   Flowchart of interactive K-RVEA
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be adapted based on other types of preference information as done by Hakanen et al. 
(2016), if so desired.

As for the second step, we have to select the solutions that have the highest 
chance of following the DM’s preferences when they are evaluated with the original 
objective functions. When a solution is evaluated with the original objective func-
tions, it may have different values than with the surrogate models because surro-
gates tend to contain some approximation error. Besides, evaluating all the solutions 
that the Kriging models find is not computationally efficient, especially in cases that 
some of these solutions are not following the DM’s preferences. For example, due 
to the error of surrogate models, a surrogate evaluation of a given decision variable 
vector could follow the DM’s preferences much better (lower ASF value) than when 
it is evaluated by the original objective functions. Therefore, these kinds of solu-
tions may not be interesting to the DM, and it is ideal to avoid them. Furthermore, 
in problems like (3), we usually have a particular budget for the number of function 
evaluations, and it should be spent carefully on the solutions that have a higher prob-
ability of following the DM’s preferences.

To increase our chances of selecting the best possible solutions for updating the 
Kriging models, we use two criteria. First, we use ASF to calculate how close each 
of the nondominated solutions, which are found by using the Kriging models, are 
to the DM’s reference point. Then, we sort the solutions based on the ASF values, 
and we select 2 ∗ NU solutions ( NU is the number of solutions to update the Kriging 
models) that are the closest to the DM’s preferences. In other words, we select the 
solutions that have the lowest values in ASF.

So far, we have selected some solutions which have the lowest ASF value. How-
ever, since Kriging models provide uncertainty information, we use this additional 
information as our second criterion. Typically, when the uncertainty information of 
generated solutions is available, those which have the highest uncertainty are chosen 
to improve the accuracy of the Kriging model globally (Chugh et al. 2018). How-
ever, in interactive methods, we are looking to search specific parts of the objec-
tive space that the DM has shown interest in. Therefore, after selecting the solutions 
that have lower ASF value, we select NU solutions among those that have the lowest 
uncertainty values to update the Kriging models. By incorporating the DM’s prefer-
ences in the model management strategy along with the uncertainty information, we 
increase our chances to select the solutions that are following the DM’s preferences, 
both with the Kriging models and the original objective functions. Algorithm  3 
shows the main steps of the interactive K-RVEA algorithm, which are discussed in 
more detail in the following subsections. 
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3.1 � Inputs

The first input for interactive K-RVEA is the number of reference vectors NV . In 
RVEA, the method called simplex-lattice design method (Cornell 2011) is used to 
generate a given number of reference vectors. In RVEA, as the number of objective 
functions increases, the number of reference vectors increases as well. For instance, 
for a problem with three objective functions, 105 reference vectors were used  by 
Cheng et  al. (2016). In iRVEA, on the other hand, a lower number of reference 
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vectors was used compared to RVEA (Hakanen et  al. 2016). For example, for a 
problem with five objective functions, only 15 reference vectors were used. The rea-
son for choosing a low number of reference vectors in iRVEA is that there is no 
model management to select the solutions that the algorithm finds, and all of them 
are shown to the DM. Therefore, if the number of reference vectors increases, the 
number of solutions that the DM sees will increase as well, and the cognitive load 
set on the DM grows.

In interactive K-RVEA, we develop a model management strategy that enables 
the algorithm to choose the solutions that the DM is most interested in. Here, we are 
not limited to a low number of reference vectors. In fact, we are more interested in 
increasing the size of NV because we will have more solutions to choose from, and 
the chance of finding solutions that follow the DM’s preferences increases. Besides, 
surrogate evaluations are computationally cheap, and therefore, we do not need to 
worry about the number of solutions that are found by using the Kriging models.

The number of generations ( tmax ) and the number of solutions to update Kriging 
models ( NU ) can be set based on the sensitivity analysis by Chugh et al. (2018). The 
number of updates between each interaction ( Nupdate ) can be set based on how much 
time it takes to evaluate NU solutions with original objective functions. Since FEmax 
is based on Nupdate and NU , we can use the following formulas to calculate an estima-
tion of FEmax

and

where FEint is the number of function evaluations that we need for one interaction, 
and � is the estimation of the number of interactions that the DM wants to have.

3.2 � Initialization

Before the DM starts interacting with the algorithm, the Kriging models should be 
trained with an initial population. The size of the initial population ( N0 ) should be 
set based on the type of problem that we are dealing with and the function evaluation 
budget that we have. Moreover, since the algorithm has no preferences at the begin-
ning, the Kriging models should be trained globally. Therefore, the initial population 
( P0 ) is generated by using a method (e.g., using Latin hypercube sampling used by 
McKay et al. 2000). These samples are evaluated by the original objective functions, 
and then they are stored in the archive A (along with their corresponding decision 
variables). Then, the samples in A are used to train independent Kriging models for 
each expensive objective function.

After training the Kriging models, it is time for the DM to set the first reference 
point. If the DM does not have information about the problem to be confident about 
her/his preferences, then, we provide three alternatives to the DM. First, to see all 
the nondominated solutions in the initial population. Second, to see only the ranges 
of each objective function for the nondominated solutions in the initial population. 

(5)FEint = NU ∗ Nupdate,

(6)FEmax = N0 + � ∗ FEint,
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Third, to proceed without any further information. The purpose of the first two alter-
natives is to give some idea to the DM of the feasible solutions and speed up the 
learning process. However, one should note that no optimization has been done in 
this stage, and this information is not accurate enough to represent the trade-offs 
between different objective functions. Finally, after the DM provides the first refer-
ence point, the reference vectors are adjusted by using (4) to focus on the regions 
that the DM is interested in.

3.3 � Loops

In Algorithm 3, we have three main loops. The inner loop runs RVEA, the middle 
loop updates the Kriging models after each iteration, and the outer loop interacts 
with the DM after each interaction.

In the middle and outer loops, we mostly focus on the model management strat-
egy that was mentioned earlier in this section. As it was mentioned earlier, because 
Kriging models are not completely accurate, it is possible that some of the solutions 
that are found are not appealing to the DM. In these two loops, we identify and 
select the solutions which have the highest chance of following the DM’s prefer-
ences when they are evaluated with the original objective functions. Then, we use 
the selected solutions to update the Kriging models.

3.3.1 � Inner loop

In the inner loop, we use Kriging models to replace original objective functions. We 
run RVEA with the Kriging models for a fixed number of generations ( tmax ), and this 
parameter should be set high enough so that RVEA can perform a sufficient search 
of the Pareto optimal set.

3.3.2 � Middle loop

In the middle loop, we select the solutions that we want to evaluate with the origi-
nal objective functions to update the Kriging models. The selected solutions should 
improve the Kriging models in regions that the DM is interested in. Here, we man-
age the solutions that are found by the Kriging models in two phases. In the first 
phase, we select a number of solutions ( NASF ) that are following the DM’s prefer-
ences while using the Kriging models. If the solutions are not close to the DM’s 
preferences even with the Kriging models, then our selection will involve too much 
randomness, and the model management becomes unstable. In the second phase, 
we use the uncertainty information that Kriging provides to select the most accu-
rate solutions (solutions with the lowest uncertainty) from the previously selected 
solutions and store them in U and A to update the Kriging models. Based on our 
tests, Kriging models can properly approximate the objective functions of problem 
(3) (see Appendix). However, the surrogate models have inevitably some error and 
by going through the two phases mentioned, we increase the probability of selecting 
solutions that are following the DM’s preferences.
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3.3.3 � Outer loop

Unlike iRVEA, where the number of solutions shown to the DM ( NS ) is the same 
as the number of reference vectors, here NS is an independent parameter defined 
by the DM. Once the Kriging models are updated, ASF is used to select NS solu-
tions from U, and then they are shown to the DM. Then, the DM has the option of 
separating the best solutions (with respect to (2)) generated in the current iteration 
visually ( N̄S ). Next, either the DM decides to finish the solution process by selecting 
the most preferred solution or set a new reference point to search for more preferred 
solutions. At the end of this loop, we reset U to the empty set to prepare it for the 
next interaction. Note that if NS > NU , then the algorithm cannot provide enough 
solutions to be shown to the DM, and all the solutions in NU are shown to the DM.

These three loops keep running until the function evaluation budget runs out, or 
the DM terminates the algorithm by finding the most preferred solution. In the first 
case, if the budget of function evaluations runs out and the DM is not satisfied, he/
she can either increase FEmax , or as the final alternative (step 24), the DM can ask to 
see all the nondominated solutions that have been generated so far, which are stored 
in archive A. Then, one can use visualization tools, such as parallel coordinate plots, 
to study these solutions, or to provide new value to N̄S to see the closest solutions to 
the final reference point visually, and then select the most preferred solution from 
there.

In the next section, we use interactive K-RVEA to solve problem (3). Besides, we 
show how the model management strategy that we proposed can provide better deci-
sion support for the DM by comparing our algorithm with iRVEA.

4 � Numerical results

Here we describe how we can design an energy system for buildings by using inter-
active K-RVEA. In what follows, we first describe how we set the parameters of 
interactive K-RVEA, and then how the DM can interact with this algorithm to solve 
problem (3). We also incorporate visualizations to support the DM in providing 
preferences and comparing solutions. To show the results, we used the web-based 
parallel coordinate plots tool https​://dgold​ri25.githu​b.io/Categ​orica​l-Paral​lelCo​
ordin​atePl​ot/.

For parameters that are shared between K-RVEA and interactive K-RVEA such as 
the number of generations before each iteration ( tmax = 20 ), the number of samples 
to update the Kriging models with ( NU = 5 ), and the number of reference vectors 
( NV = 109 ), we used the same values that have been used when the K-RVEA algo-
rithm was proposed by Chugh et al. (2018). Furthermore, determining the number 
of iterations before each interaction is one of the important parameters. According to 
private discussions with experts in the domain of problem (3), DMs should not wait 
more than three minutes before each interaction. Each time we call the simulator, it 
takes about ten seconds, and since we update the models with five new solutions (c.f. 
NU above), each update takes about one minute (including the training time). Conse-
quently, to have at most three minutes waiting time before each interaction, we can 

https://dgoldri25.github.io/Categorical-ParallelCoordinatePlot/
https://dgoldri25.github.io/Categorical-ParallelCoordinatePlot/
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update the models three times ( Nupdate = 3 ). Based on Step 21 of Algorithm 3, the 
DM can increase the maximum number of function evaluations ( FEMAX ) or termi-
nate the algorithm at any time. Here, we need 109 function evaluations to generate 
the initial population ( FEinit = 109 ), and based on equation (5), we set FEmin = 15 . 
Due to the time limitation that we had, we decided to have six interactions ( � = 6 ), 
and hence, based on Eq. (6), we set FEMAX = 199.

The number of solutions that the DM wants to see at each interaction ( NS ) is the 
next parameter that must be set. As we mentioned above, we update the Kriging 
models three times before we ask for a new reference point, and it means that we 
can show a maximum of 15 solutions to the DM in one interaction. Here, the DM 
decided to see all of the solutions that interactive K-RVEA finds in each interaction 
( NS = 15).

As mentioned in Sect.  2, in problem (3), calculating the outcome of the first 
objective function (initial investment cost) is not computationally expensive. There-
fore, we use Kriging models only for the other three objective functions. Note that 
based on discussions with real DMs, one of the authors (TR) provided feedback on 
presented solutions similar to what we would expect from a real DM.

4.1 � Interactive solution process

To get started, we generated the initial population randomly and trained Kriging 
models for expensive objective functions. Then, the DM was asked to provide the 
first reference point. To support the DM in providing the first reference point, inter-
active K-RVEA has different options (c.f. step 4). First, he asked to visually see non-
dominated solutions of the initial population (see Fig.  2). Note that the solutions 
provided in Fig. 2 are nondominated solutions from the random initial population, 
which have not yet been optimized, and they can only give a rough idea of feasi-
ble solutions. In addition to the visualization, the DM can naturally always see the 
numerical values of the selected solutions ( NS ) in the form of a table at each interac-
tion. However, in this paper, we only show the parallel coordinate plots during the 
interactive solution process for compactness. Note that the figures in this section 
have different scales so that the changes between the solutions can be better seen.

Here, based on the objective functions’ ranges shown in Fig.  2, and 
the prior knowledge that f1 and f3 (initial investment cost and CO2 emis-
sion) are regarded as the most important objective functions, the DM sets 
RP1 = (298806, 377430, 2194, 28) as the first reference point since he believes it 

Fig. 2   The nondominated solutions in the initial population. Red crosses are the aspiration levels forming 
the first reference point
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is a good compromise for f1 . Components of the reference point are indicated 
by red crosses in Fig.  2. Based on the solutions that were generated after pro-
viding RP1 (see Fig. 3), the DM provides RP2 = (47950, 382509, 2215, 12) as the 
second reference point because the values of f1 for the generated solutions are all 
in this range and he also wants to improve the trade-offs between f1 and the rest of 
objective functions.The corresponding aspiration levels are depicted in Figure 3 
with red crosses and the previous aspiration levels with orange dots.

Next, the solutions in Fig. 4 were generated and presented to the DM. This time, 
the generated solutions are well spread at around RP2 . However, the trade-offs 
between f1 and the rest of the objective functions still are not satisfying. The DM 
decides not to make a significant change in the reference point to continue search-
ing this region of objective space. He chooses RP3 = (37192, 382426, 2219, 152) 
as the third reference point (denoted by red crosses in Fig. 4) because based on 
the generated solutions he knows such a solution is achievable, and it is quite 
cheaper (it has smaller value for f1 ) than RP2 and it only produces a little more 
CO2 than RP2.

Figure  5 shows the solution set that was generated after the third inter-
action. Now, the DM finds out that the aspiration level for f1 in RP2 and 
RP3 is too small, and therefore, the trade-offs cannot improve significantly. 
As for the fourth reference point, the DM makes a compromise and sets 
RP4 = (156067, 377696, 2202, 500) to find a more balanced solution.

Figure 6 shows the the results corresponding to RP4 . Here, the DM was satis-
fied with the trade-offs and selects (149886, 380764, 2211, 561) as the most pre-
ferred solution since it has the same trade-offs as RP4 but with lower value for f1.

Fig. 3   Solutions after the first interaction of interactive K-RVEA. The orange dots are the aspiration lev-
els forming the first reference point, and the red crosses are the aspiration levels forming the second 
reference point.

Fig. 4   Solutions after the second interaction of interactive K-RVEA. The orange dots are the aspiration 
levels forming the second reference point, and the red crosses are the aspiration levels forming the third 
reference point
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4.2 � Performance evaluation

As mentioned earlier, in this paper, we show how using model management in sur-
rogate models can incorporate DM’s preferences in an interactive method to get sat-
isfactory solutions. To show the importance of model management strategies used 
in this paper, we applied iRVEA with the Kriging models as objective functions and 
compared the results. However, comparing interactive methods is not a trivial task 
in the field of multiobjective optimization, and there is no widely accepted way for 
this.

We used the same reference points ( RP1 , RP2 , RP3 , and RP4 ) that were used in 
interactive K-RVEA. Note that interactive K-RVEA used 60 function evaluations to 
update the Kriging models, and since iRVEA does not update them, we increased 
the size of the initial population by 60 to have the same number of function evalu-
ations as interactive K-RVEA. Next, we evaluated the final solutions that iRVEA 
generated with the original objective functions and present the nondominated ones 
in Fig. 7. The final set of solutions generated by iRVEA are more scatter than inter-
active K-RVEA around the final reference point ( RP3 ) in Fig.  5. Finally, the DM 
chooses (367142, 380138, 2273, 45) as the final solution since it has the best com-
promise between the objective functions.

None of the final solutions dominate each other. However, the final solution for 
interactive K-RVEA has better values than iRVEA for f1 , f3 , and f4 objective func-
tion and only slightly worst value for f2.

To compare interactive K-RVEA and iRVEA in terms of following the DM’s 
preferences, we ran both algorithms with the same configuration ten times and used 
three different ways (ASF, domination and R-metric Li et al. 2017) to evaluate their 

Fig. 5   Solutions after the third interaction of interactive K-RVEA. The orange dots are the aspiration 
levels forming the third reference point, and the red crosses are the aspiration levels forming the third 
reference point

Fig. 6   Solutions after the fourth interaction of interactive K-RVEA. The orange dots are the aspiration 
levels forming the fourth reference point, and the red line is the most preferred solution selected by the 
DM
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performance. Experiments were run on a laptop with core i7 CPU, using 16 GB of 
RAM, and the running OS was Linux (Ubuntu).

4.2.1 � Computation time

In Table 1, we present the total computation times for both algorithms without con-
sidering the decision making time. Interactive K-RVEA and iRVEA included the 
same number of function evaluations. However, interactive K-RVEA had the model 
management, where Kriging models were updated. On the other hand, iRVEA used 
all the function evaluations for the initial population and the solution process only 
used the surrogate evaluations. Therefore, the computation time for interactive 
K-RVEA was a bit higher than for iRVEA.

As far as waiting time is concerned, we updated the Kriging models iteratively in 
interactive K-RVEA. On the other hand, there was no update for iRVEA, and there-
fore, the waiting time of iRVEA was shorter. However, the waiting time for both 
methods was under three minutes, that met the DM’s time limitation.

4.2.2 � ASF

We recorded the ASF values for the final set of solutions (see Table 2) to measure 
how close they were to the final reference point. In all of the independent runs, inter-
active K-RVEA had lower ASF values than iRVEA, which means that interactive 
K-RVEA had a better convergence towards DM’s preferences than iRVEA.

Fig. 7   The final solutions of iRVEA. The orange dots are the aspiration levels forming the fourth refer-
ence point, and the red line is the most preferred solution selected by the DM

Table 1   Average of computation time of interactive K-RVEA and iRVEA between interactions (in sec-
onds). The best results are highlighted in boldface

Algorithm min mean max

Interactive K-RVEA 520 552 575
iRVEA 511 535 567

Table 2   ASF values for the 
10 independent runs with 
interactive K-RVEA and 
iRVEA. The best results are 
highlighted

Best Mean Worst

Interactive K-RVEA 0.41 0.53 0.59
iRVEA 0.71 0.77 0.82
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4.2.3 � Domination

Here, we checked to see if iRVEA solutions dominate the final set of solutions gen-
erated by interactive K-RVEA. In all ten runs, none of the solutions provided by 
iRVEA dominated any of the solutions that were generated by interactive K-RVEA. 
However, this was not the case when we checked the inverse situation. In other 
words, in all ten runs, we could find at least one solution generated by iRVEA that 
was dominated by one or multiple solutions that interactive K-RVEA generated. In 
Table 3, we show how many of the final solutions of iRVEA were dominated by the 
final solutions of interactive K-RVEA for ten independent runs.

Moreover, we merged all the solutions generated in the ten independent runs for 
both methods and checked how many nondominated solutions were generated with 
each method. Furthermore, iRVEA had 108 nondominated solutions and domi-
nated only seven solutions generated by interactive K-RVEA. On the other hand, 
interactive K-RVEA had 117 nondominated solutions and dominated 31 solutions 
that were generated by iRVEA. The number of nondominated solutions generated 
by interactive K-RVEA is still more significant than iRVEA, which shows that the 
model management strategy used in interactive K-RVEA helps the method provide 
more nondominated solutions than iRVEA.

As we showed in Fig.  7 and Table  2, the solutions generated by iRVEA were 
more scattered than by interactive K-RVEA, which means that interactive K-RVEA 
followed the DM’s preferences better than iRVEA. Besides, when the DM interacts 
with interactive K-RVEA, all the solutions that he works with are evaluated with the 
original objective functions, but when the DM interacts with iRVEA, the solutions 
are evaluated by the Kriging models. Hence, the DM cannot be sure that when the 
final set of solutions (generated with iRVEA) is evaluated with the original objec-
tive functions, it will follow the DM’s preferences and before (when it was evaluated 
with surrogate functions).

4.2.4 � R‑metric

Finally, we used a well-known R-metric indicator, which evaluates the quality 
of a set of solutions with respect to a reference point. Originally, R-metric was 
developed for a priori methods to compare different sets of solutions, but since 
it includes a reference point, we apply it for the final set of solutions of interac-
tive K-RVEA and iRVEA. To compare two sets of solutions, R-metric takes four 
main steps. First, we remove the common solutions between the two sets. Second, 

Table 3   iRVEA final solutions 
that are dominated by interactive 
K-RVEA

Number of dominated solutions by 
the other algorithm

Best Mean Worst

Interactive K-RVEA 0 0 0
iRVEA 7 4.7 2
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based on the closeness of solutions to DM’s reference point ( Δ ), we remove some 
of the solutions that do not represent the region of interest in the objective space. 
Third, we transfer the solutions into a virtual position concerning the reference 
point using ASF, and finally, we use an indicator like hypervolume to evaluate the 
quality of the solutions. For details, see Li et al. (2017).

For the second step of R-metric, we must set a value for Δ . Initially, the value 
of Δ is set as an arbitrary number by Li et al. (2017). However, since there does 
not exist a widely accepted way to set this value, we decided to analyze the results 
with three different values of Δ with respect to the last reference point ( RP4 ), and 
create a vector for Δ , representing separate exploration rates for each objective 
function. Here, we add 10, 15, and 20 percent to the aspiration levels of RP4 to 
create the vector Δ . Note that we remove the solutions that are exceeding Δ in at 
least one objective function. We calculated the R-metric by using the hypervolume 
indicator for each method’s ten independent runs, normalized the hypervolume 
values, and present the results in Table 4. Moreover, a pairwise two-tailed t-test 
(Derrac et  al. 2011) was conducted between the two interactive methods for the 
R-metric results. The significance level of our testing was set at %5 . In Table 4, ↑ 
indicates that the statistical significance of the pairwise comparison between inter-
active K-RVEA and iRVEA is significant in favor of interactive K-RVEA.

As it is shown in Table 4, interactive K-RVEA is performing better than iRVEA. 
Table  4 shows that for the first value of Δ , iRVEA might generate zero solutions 
(for the worst case), which means none of the solutions generated by iRVEA were 
in the region determined by Δ . Moreover, for the first and second values of Δ , inter-
active K-RVEA is getting much higher R-metric values than iRVEA, which shows 
that more solutions are generated by interactive K-RVEA that are concentrating on 
the regions around RP4 . In addition, for the third value of Δ , iRVEA’s performance 
gets much better than the previous values of Δ , which is in line with the fact that 
solutions are generated with iRVEA are more scattered than interactive K-RVEA. 
However, interactive K-RVEA is still obtaining much higher R-metric values than 
iRVEA. We did not continue with higher values of Δ since we wanted to analyze 
how each method can generate solutions close to the DM’s reference point, and 
based on the results above, interactive K-RVEA is doing a better job than iRVEA.

5 � Conclusions

In this paper, we developed a novel evolutionary interactive multiobjective opti-
mization method, called interactive K-RVEA, that is suitable for real-world com-
putationally expensive problems. As integral elements of the new method, we 

Table 4   Results of R-metric 
for interactive K-RVEA and 
iRVEA. The best results are 
highlighted

Δ Interactive K-RVEA iRVEA

Best Mean Worst Best Mean Worst

1.10 ∗ RP
4

0.81 0.71 0.65 ↑ 0.23 0.11 0.00
1.15 ∗ RP

4
0.88 0.79 0.72 ↑ 0.28 0.19 0.12

1.20 ∗ RP
4

0.98 0.90 0.82 ↑ 0.42 0.35 0.27
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chose the RVEA algorithm as our optimizer and the Kriging models as surrogate 
models. We developed a novel model management strategy that incorporates the 
DM’s preferences (reference point in our case) in the Kriging models.

We demonstrated the performance of the developed method by solving a com-
putationally expensive simulation-based problem where our goal was to find an 
optimal configuration for an energy system of a heterogeneous business building 
complex, and we were able to generate a reasonable solution, which had better 
values than the final reference point provided by the DM except for the second 
objective. We demonstrated how the decision maker can interact with the method 
and how the most preferred solution is chosen. Then, we compared the results 
produced by interactive RVEA that has no model management strategy. We ran 
both algorithms for ten independent runs and considered three different perfor-
mance indicators (achievement scalarizing function, domination, and R-metric). 
We showed the importance of having a model management strategy for computa-
tionally expensive problems. Besides, we demonstrated that interactive K-RVEA 
followed the decision maker’s preferences better than interactive RVEA. Thanks 
to interactive K-RVEA, very good results were generated without spending too 
much of computational resources.

In this paper, we fixed the values of most of the parameters in interactive 
K-RVEA, and developing an adaptive method to change these values during opti-
mization is one of our future research directions. Another possible future research 
topic is to address different types of preferences and make interactive K-RVEA 
compatible with them. Here, the challenge is how to develop a model manage-
ment strategy that can use different preferences and incorporate them within the 
surrogate models.
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Appendix

In this Appendix, first, we describe the decision variables of the simulation-based 
problem (3). Then, we show the performance of Kriging models for problem (3).

https://desdeo.it.jyu.fi/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Decision variables

The simulator uses decision variables to calculate parameters of four different 
investment options. Then, based on the parameters and the investment options, 
we can calculate the objective functions values ( f2 , f3 and f4 ). The investment 
options are as follows: 

1.	 A photovoltaic (PV) system on the building roof or carport.
2.	 An extension of the internal heat storage.
3.	 A stationary battery.
4.	 Optimization of the operation of co-generator for heat and power (CHP).

The first three decision variables are related to the PV system: x1 is the inclination 
angle, x2 is the orientation angle, and x3 is the peak output power of the PV system. 
The next two decision variables, x4 and x5 , control the stationary battery’s capacity 
and the maximum charging/discharging power. The minimum and maximum battery 
state of charge are maintained by x6 . Then, the battery has a charging and discharg-
ing threshold connected to the next two decision variables x7 and x8 . Next, the deci-
sion variable x9 is used to calculate the size of the heat storage. Finally, the CHP 
generator will only turn on if the ambient temperature is below a certain level, which 
defines the final decision variable x10 . For a full explanation of the decision vari-
ables, see Rodemann (2019).

Surrogate models

Here, we show that Kriging models are suitable for problem (3) with different ini-
tial population sizes. We tested different Kriging models (with different kernels) 
along with five other well known surrogate models (Chugh et al. 2019; Bartz-Beiel-
stein and Zaefferer 2017). First, we used Kriging with normal, radial basis func-
tion (RBF), rational quadratic (RQ), exponential sine squared (ESS) and Matern 
kernels. Second, we used support vector regression (SVR) by Drucker et al. (1997) 
with linear, RBF and polynomial kernels. Last, we used random forest (Liaw and 
Wiener 2002) and Bayesian surrogates (Fornalski 2015). We tested these surrogates 
with different training sample sizes. The first sample size was set as 35 (Rodemann 
2019). Then, we doubled the sample size. According to Knowles (2006) and Zhang 
et al. (2010), for n decision variables, the initial population should be 11n − 1 . So we 
used the same logic to choose the third sample size, which was 109.

In Tables  5, 6 and 7, one can see the results for different sample sizes for all 
the surrogate models that were tested (the best results are highlighted in boldface 
in each table). It is worth mentioning that each model was trained ten times, where 
each time the training sample was selected randomly (in the feasible space), and the 
R2 value (Torrie 1960; Glantz and Slinker 1990) was used to evaluate how accurate 
the surrogates were. In the tables we show the average of these ten runs. Besides, a 
random assign algorithm was used to create a sample pool (for all sample sizes) for 
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Table 5   Average of the R2 
values for different surrogate 
models with sample size 35

Annual opera-
tion cost

Annual CO
2
 

emissions
Resilience

Bayesian 0.711 0.856 0.618
Random forest 0.626 0.687 0.802
SVR-linear 0.454 0.368 0.516
SVR-RBF 0.498 0.435 0.482
SVR-polynomial 0.457 0.625 0.664
Kriging-Default 0.734 0.904 0.523
Kriging-RBF 0.756 0.908 0.540
Kriging-Matern 0.768 0.911 0.625
Kriging-ESS 0.768 0.914 0.600
Kriging-RQ 0.765 0.911 0.265

Table 6   Average of the R2 
values for different surrogate 
models with sample size 70

Annual opera-
tion cost

Annual CO
2
 

emissions
Resilience

Bayesian 0.912 0.921 0.788
Random forest 0.869 0.922 0.768
SVR-linear 0.498 0.400 0.498
SVR-RBF 0.645 0.578 0.651
SVR-polynomial 0.747 0.704 0.784
Kriging-Default 0.764 0.914 0.632
Kriging-RBF 0.788 0.917 0.592
Kriging-Matern 0.883 0.901 0.816
Kriging-ESS 0.760 0.810 0.762
Kriging-RQ 0.775 0.921 0.545

Table 7   Average of the R2 
values for different surrogate 
models with sample size 109

Annual opera-
tion cost

Annual CO
2
 

emissions
Resilience

Bayesian 0.827 0.887 0.788
Random forest 0.836 0.864 0.768
SVR-linear 0.476 0.471 0.516
SVR-RBF 0.745 0.564 0.683
SVR-polynomial 0.765 0726 0.767
Kriging-Default 0.689 0.723 0.727
Kriging-RBF 0.689 0.834 0.727
Kriging-Matern 0.825 0.893 0.800
Kriging-ESS 0.754 0.854 0.762
Kriging-RQ 0.795 0.891 0.698
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training the surrogate models. Here, 70 percent of the sample size was used to train 
the surrogates, and the remaining 30 percent was used to test them.

As one can see, SVR surrogates did not perform as well as the others. This could 
be because of their hyper-parameter tuning. On the other hand, Kriging had the best 
performance for at least two objectives with different training sample sizes. Besides, 
the uncertainty information that Kriging provides can be utilized in interactive 
K-RVEA. Moreover, these results are only based on the initial populations, and the 
performance of Kriging models will improve as we update them during the solu-
tion process. Based on the results provided, we could conclude that Kriging models 
have competitive performance, and we selected them to be used in the interactive 
K-RVEA method.
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