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Abstract

Hybrid cloud storage combines cost-effective but inflexible private storage
along with flexible but premium-priced public cloud storage. As a form of
concurrent sourcing, it offers flexibility and cost benefits to organizations by
allowing them to operate at a cost-optimal scale and scope under demand
volume uncertainty. However, the extant literature offers limited analytical
insight into the effect that the non-stationarity (i.e., variability) and non-
determinism (i.e., uncertainty) of the demand volume — in other words, the
demand variation — have on the cost-efficient mix of internal and external
sourcing. In this paper, we focus on the reassessment interval — that is, the
interval at which the organization re-assesses its storage needs and acquires
additional resources —, as well as on the impacts it has on the optimal mix of
sourcing. We introduce an analytical cost model that captures the compound
effect of the reassessment interval and volume variation on the cost-efficiency
of hybrid cloud storage. The model is analytically investigated and empiri-
cally evaluated in simulation studies reflecting real-life scenarios. The results
confirm that shortening the reassessment interval allows volume variability
to be reduced, yielding a reduction of the overall costs. The overall costs are
further reduced if, by shortening the interval, the demand uncertainty is also
reduced.

*Corresponding author
Email addresses: gabriella.laatikainen@jyu.fi (Gabriella Laatikainen),
mazhelis@jyu.fi (Oleksiy Mazhelis), pasi.tyrvainen@jyu.fi (Pasi Tyrvainen)

Preprint submitted to Journal of Systems and Software May 3, 2016



10

15

20

25

30

Keywords: hybrid cloud storage; volume variation; reassessment interval;
acquisition interval; plural governance; concurrent sourcing

1. Introduction

The multi-faceted phenomenon of cloud computing brings together tech-
nological advances in areas such as hardware virtualization, networking, and
multi-tenancy and blends them into highly flexible shared computing re-
sources that are accessible by multiple customers over the Internet (Bab-
cockl, 2010; |Armbrust et al., [2010). The emergence of cloud computing has
changed the way organizations purchase information technology (IT), as well
as the role the IT function has in organizations, especially with respect to
enabling innovativeness and creating new networked business models (Wein-
hardt et al., 2009; Schlagwein et al., [2014). At the core of cloud computing’s
multiple impacts lies the flexibility of shared computing capacity and the
related decrease in capital expenditures that are enabled by, among other
factors, the decreased cost of communicating with external cloud computing
and storage systems (Mazhelis and Tyrvéinen, 2012; Chen and Wu, [2013)).
Without this flexibility to utilize cloud-based capacity, the transformation of
the IT function and the emergence of innovative networked models would be
unlikely to succeed (Venters and Whitley, [2012; Schlagwein et al., 2014).

Hybrid cloud infrastructure, where there is a combination of concur-
rently used private and public cloud infrastructure resources (Armbrust et al.,
2010)), offers further flexibility as well as cost savings (Mazhelis and Tyrvai-
nen, 2012). In this context, the public cloud refers to the computing, stor-
age, and other infrastructure resources provided publicly by an infrastruc-
ture service provider to any organization willing to use these resources, on
demand, over the Internet (Mell and Grancel 2011). These infrastructure
service providers often charge for the use of their resources based on the real
volume of usage. Whereas the pricing for small-scale use is competitive, es-
pecially for small enterprises lacking I'T competences, the high profit margins
of the infrastructure providers (Gauger, [2013)) may make their services overly
expensive for larger enterprises.

Cloud computing, as a form of on-demand computing, represents a special
form of outsourcing (Willcocks and Lacity, [2012; [Venters and Whitley, [2012;
Chen and Wu, [2013;[Son et al., 2014), whereby the property or decision rights
regarding the I'T infrastructure are transferred to an external organization.
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Furthermore, the hybrid cloud infrastructure can be seen as an instantiation
of concurrent sourcing, which is a simultaneous use of market contracting and
vertical integration, that is, a situation in which the same good or service is
produced as well as bought(Parmigiani, [2007; Parmigiani and Mitchell, |2009;
Mols, [2010; Heide et al., 2013).

Outsourcing and make-or-buy decisions have been the subject of extensive
study in the field of information systems (IS) (Gregory et al. 2013} Lacity]
et al., [2011; [Kotlarsky et al., [2014), as well as in strategic management and
operations management research (Freytag and Kirk, 2003; van de Water and|
van Peet, 2006; Weigelt and Sarkar, 2012)). Along with the need to focus
on core capabilities, cost-savings represent the most frequently cited reasons
behind the decisions to outsource in general (Lacity et al., 2009)), and the
decision to use public cloud infrastructure in particular (Venters and Whitley),
2012).

Meanwhile, hybrid cloud infrastructure as a concurrent sourcing phe-
nomenon has attracted little attention from the IS research community.
Whereas concurrent sourcing has been widely studied outside of IS in the
automotive (Gulati et al. 2005)), metal forming (Parmigiani, [2007) and fash-
ion garments industries (Jacobides and Billinger| 2006)), to the best knowl-
edge of the authors, the paper by [Mazhelis and Tyrvéinen| (2012)) is the only
work where the hybrid cloud infrastructure is discussed as an instantiation
of concurrent sourcing. Therefore, research inquiry into cloud-enabled flexi-
bility, and in particular into the hybrid cloud and its impact on future cloud
services, has been indentified as one of the directions for further research
(Venters and Whitley, 2012)).

Concurrent sourcing has been studied from the viewpoint of theories
such as transaction cost economics, agency theory, resource-based theory,
neoclassical economics, life cycle theory, resource and capability view, the-
ories of multi-profit center firms, marketing channels, options theory, and
knowledge-based theory (Mols, [2010; Mols et al. [2012). A widely cited jus-
tification for the use of concurrent sourcing derives from transactional cost
theories and neoclassical economics. Specifically, it is claimed that this form
of governance reduces production costs when firms face so-called volume un-
certainty (Adelman, |1949; [Parmigiani, 2003; Mols, [2010), that is, difficulty
in accurately predicting demand volumes (Parmigiani, 2003, [2007). When
the demand is fluctuating and it is difficult to forecast it accurately, the
risk of diseconomies of scale due to unutilized excess capacity may be mit-
igated by serving the high probability component of demand with in-house
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resources and by using external suppliers for the peak demand only (Heide,
2003; [Puranam et al., [2013). Thus, the degree of uncertainty has an impact
on how much to produce internally versus how much to procure from external
sources, and it determines the volume of cost savings that are attainable by
sourcing concurrently. However, the empirical results on whether the use of
concurrent sourcing is motivated by the presence of volume uncertainty are
contradictory (Parmigiani, [2003; [Krzeminska et al., |2013)).

It has been observed that volume uncertainty reflects the difficulty in
accurately predicting demand volumes and can be defined as the degree of
(in)precision with which volume is predicted (Parmigiani, 2003, 2007). How-
ever, besides this prediction inaccuracy, the natural variation in the volume
of the demand referred to as variability (e.g., seasonal fluctuations) can be
the reason for the diseconomies of scale in case the firm decides to invest
in production for the peak demand (Puranam et al., |2013)). Note that, in
principle, this natural variation may be fully deterministic and perfectly pre-
dictable. Together, the volume uncertainty and volume variability comprise
the variation in the volume of the demand (van Belle, 2008). To the best
knowledge of the authors, the variability aspect of variation has not been
explicitly considered in the concurrent sourcing literature.

A key question in the recent literature on cloud computing as well as
on concurrent sourcing is the optimal mix of internal and external sourcing.
Indeed, the cost-optimal mix of private and public cloud resources has been
one of the crucial themes in cloud computing literature, predominantly focus-
ing on the dynamic allocation of available resources (Trummer et al., [2010;
Shifrin et al., |2013; Wang et al., 2013; Altmann and Kashef] [2014), and to
a lesser extent on proactive resource provisioning (Weinman |2012; Mazhe-
lis and Tyrvainen) 2012). Likewise, in the literature on concurrent sourcing,
multiple factors have been found to affect the optimal mix, including resource
co-specialization, supplier selection as well as the cost and benefits of produc-
ing in-house resources and buying from external parties (Sako et al. [2013;
Puranam et al.,|2013)), with volume uncertainty found among the factors that
warrant additional studies (Sako et al. 2013).

One of the parameters shaping the optimal mix of sourcing is the re-
assessment interval (also referred to as acquisition cycle time), which can be
defined as the time period between successive time points when the orga-
nization reassesses its sourcing needs and acquires additional resources for
in-house use (Laatikainen et al. [2014). For instance, if the company acquires
additional private resources once a year, then the length of the reassessment
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interval is one year. The demand reassessment interval affects the degree of
volume variation, because both the expected change of the demand and the
difficulty of estimating it increase with the length of the interval. Therefore,
it can be hypothesized that the demand reassessment interval, through its
effect on volume variation, impacts on how much to produce internally versus
how much to procure from external sources, and determines the volume of
cost savings that are attainable by hybrid cloud storage.

The objective of this paper is to increase our understanding of the eco-
nomic effect that the reassessment interval and volume variation have on the
cost of hybrid cloud infrastructure. In particular, the paper studies hybrid
cloud storage as a subset of hybrid cloud infrastructure, the popularity of
which has increased dramatically in recent years and which is predicted to
increase even further (TwinStrata, 2013; [McClure, 2014]).

The practical issue addressed in this paper is that of determining how
much storage to provision from in-house resources and how much to pro-
cure on-demand from the public cloud resources. Whereas numerous factors,
including the need to deliver the required level of service and comply with
applicable legislation, have an effect on the cloud sourcing decisions (Fadel
and Fayoumi), 2013 |Andrikopoulos et al., 2013), this paper focuses on the
cost-efficiency of the resulting mix of resources, which is a key factor affect-
ing these decisions (Agarwala et al| 2011) and, thus, is a crucial issue faced
by cloud infrastructure practitioners (Weinman, 2012; Altmann and Kashef,
2014).

In earlier works on hybrid cloud computing, it has been shown that the
cost-optimal time of using public cloud computing resources is the inverse of
the premium charged by the public cloud provider (Weinman, [2012; Mazhe-
lis and Tyrvainen, 2011, 2012)). Once the future workload is known or es-
timated, the cost-optimal time of using the public cloud can be found, and
the cost-optimal portion of the workload to serve in-house can be estimated.
For this, the fluctuating demand curve is re-arranged to be a monotonically
non-decreasing function, and the maximum workload at the time when the
in-house resources only are used indicates the volume of resources to be pro-
visioned in-house (Mazhelis and Tyrvainen, [2012). In the case of storage,
fluctuations are rare; instead, the demand for storage is usually a monotoni-
cally non-decreasing function (Laatikainen et al., [2014)). Nevertheless, within
a single period between subsequent sourcing decisions, the same logic of de-
termining the cost-optimal mix of in-house and external storage resources
can be used, thus suggesting that the use of the hybrid approach yields cost
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benefits in the context of cloud storage resources as well.
The research question addressed in this paper can be formulated as fol-
lows:

How does the demand reassessment interval, through its effect on
the volume variation experienced by the organization, impact the
cost-efficient mix of internal and external sourcing in hybrid cloud
storage?

The following two hypotheses are formulated:

(i) Shortening the reassessment interval leads to smaller unutilized excess
capacity, thereby reducing the inefficiencies of scale.

(ii) Shortening the reassessment interval may reduce the demand estima-
tion error, thereby further reducing inefficiencies of scale by minimizing
the departure from cost-optimal sourcing.

The paper subscribes to the design science research (DSR) paradigm
(Hevner et al.l 2004; [Peffers et al., 2007; |Gregor and Hevner, [2013)) wherein
an innovative artifact — in the form of a conceptual-analytical model — is con-
structed and evaluated, in order to increase our understanding of concurrent
sourcing in the IS domain and to address the practical issue of determining
the cost-optimal mix of internal and external storage resources. This model
is systematically evaluated in the paper, being (i) analytically investigated to
demonstrate the inherent regularities of the model, and then (ii) empirically
evaluated in simulation studies reflecting real-life scenarios.

The contribution of this paper is two-fold. First, by studying the concur-
rent sourcing phenomenon in the context of cloud infrastructure, the specific
aspects of the latter, such as non-decreasing demand for storage and rel-
atively high utility premiums, can be taken into account, thus deepening
our understanding of concurrent sourcing in the IS domain. Second, this
paper contributes to the theoretical foundations of IS management by al-
lowing managers to compare the savings attainable through shortening the
resource acquisition cycle with the cost of acquiring the organizational ca-
pability needed for shortening the cycle. In other words, the paper helps in
applying agile principles to IS management by offering a tool for comparing
the cost savings gained through the flexibility of concurrent sourcing with
the costs of cloud transformation for the purpose of enabling such sourcing.
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Furthermore, the results of the study can be added to the general body of
knowledge of concurrent sourcing, thereby helping to resolve the contradic-
tions present in the contemporary concurrent sourcing literature. Studying
the role of volume uncertainty analytically, as a central concept of concur-
rent sourcing literature, provides previously unknown insights into the role
of volume uncertainty in an organization’s choice of different sourcing forms
as well as the optimal allocation between buy and make, and helps in achiev-
ing one of the goals of concurrent sourcing — maximizing the volume of cost
saving, which is particularly crucial during economic downturns.

The paper is organized as follows. In the next section, related research
in the field of hybrid cloud storage is surveyed. Section |3| introduces the an-
alytical model of hybrid cloud storage costs and investigates the regularities
inherited in the model. This model is further empirically evaluated in Sec-
tion [4 using simulation studies reflecting real-life scenarios. In Section [5] the
theoretical and practical implications of the constructed model are discussed,
and the directions for further research are outlined. Finally, conclusions are
presented in Section [6]

2. Related Work

This section provides an overview of related work in the field of cloud
storage in general (subsection , and hybrid cloud storage in particular
(subsection . In subsection , hybrid cloud storage is discussed as an
instantiation of the concurrent sourcing phenomenon. The section ends with
a summary of the applicable cost factors, and it indicates the gaps in research
where further study is needed (subsection [2.4)).

2.1. Cloud Storage

The popularity of using cloud storage services has increased dramatically
in recent years, and it is predicted to increase further, partially due to the fact
that the growth of storage capacity demand outpaces the capacity growth
attainable in-house. For example, 84% of survey respondents attending the
Cloud Computing Expo in New York in June 2013 indicated that they were
planning to use or were already using cloud storage (TwinStrata, [2013).

Generally, data stored in the cloud may be characterized by large ca-
pacity, varying data access patterns, soft performance requirements, online
access from different geographical locations, and low management overhead
(Agarwala et al., |2011). When the application is data intensive, the most
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important requirements are data durability, availability, access performance,
usability, and support for security and privacy (Palankar et all 2008). How-
ever, besides rich functionality, low cost is among the most essential require-
ments (Agarwala et al., 2011)).

Organizations may follow different approaches to maximize the cost-
efficiency of cloud storage. First of all, they may store only the provenance
for the data and regenerate the rest when needed (Borthakur, 2007, |Adams
et al., 2009)). In this case, in addition to deciding upon trading storage for
computing requirements based on a cost-benefit analysis, the organizations
also have to consider whether the stored data can be feasibly computed,
whether the exact result may be replaced with an acceptable approxima-
tion, and whether the legal and security requirements are met (Adams et al.
2009). Different strategies have been proposed in (Yuan et al., 2010a,b} 2011)
to find the best trade-off between storage and computational costs by storing
the appropriate intermediate data in cloud storage. The need for incorpo-
rating the provenance services into cloud storage offerings is also emphasized
by [Muniswamy-Reddy and Seltzer| (2010), who analyze several alternative
implementations that collect provenance data and use the cloud as a back
end.

Another approach to decreasing the costs of cloud data storage is to use
data transformation, such as compression, deduplication, and transcoding
(Agarwala et al., 2011). Compression algorithms offer different trade-offs
between the decrease in storage volume and the increase in resource con-
sumption (memory, CPU cycles) as well as the additional delays in restore
operations (Mao et al., 2014} |Agarwala et al., |2011)). Data deduplication is
a type of data compression that is often used in cloud backup and archiving
systems as well as in primary storage for virtual machine servers to reduce
the amount of storage space consumed (Mao et all 2014). Depending on
the redundancy requirements, by storing only one single instance of each
unique data chunk, storage needs may be reduced by as much as 80% for
VM servers, and backup and archiving applications also benefit significantly
from data deduplication (Mao et al. [2014}; |Clements et al., 2009). Current
storage systems use erasure codes, such as Reed-Solomon codes, for storing
infrequently assessed data (the so-called cold data) to ensure its redundancy
(André et al., 2014; Jiekak et al., 2013), whereas frequently accessed data
(the so-called hot data) is replicated in multiple disk massives to provide
high availability from non-reliable devices (André et al.| 2014; Jiekak et al.,
2013).
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To achieve cost reduction of cloud data centers, data replication mech-
anisms may be used in conjunction with different energy saving strategies
Long et al. (2014). Different algorithms exist to spin down the data nodes
from the high energy consumption mode into a lower standby mode when
they are inactive (Zhu et al., 2005; Long et al., 2014; Xie, [2008; Weddle et al.,
. Storage cost may also be reduced by employing efficient audit services
to ensure data integrity (Zhu et al., 2012)).

The research work outlined above primarily addresses issues pertaining
to public cloud storage, whereas relatively little attention has been devoted
to hybrid cloud storage and its related costs. In the next subsection, the
literature on hybrid cloud infrastructure, with a special focus on hybrid cloud
storage, is surveyed.

2.2. Hybrid cloud storage

Hybrid cloud computing infrastructure is a composition of private and
public clouds where in-house and public resources are concurrently used in
order to enable data and application portability (Armbrust et al., 2010; Mell
and Grancel 2011). In a recent survey, over 70% of enterprises have chosen
to adopt hybrid cloud infrastructure (RightScale, |2014). In light of these
results showing its importance, it is not surprising the hybrid cloud has been
researched widely.

Research has been devoted to the two core technical enablers of hybrid
cloud computing — virtualization and multi-tenancy — that allow cloud re-
sources to be pooled together to serve multiple clients (Smith and Nair| 2005}
Bittencourt and Madeiral |2011; Kabbedijk et al., 2015} (Cai et al., [2010). In
addition, much research work has focused on partitioning, that is, deciding
which applications, application components, or computing jobs must be kept
local, and which ones must be migrated to the public cloud (Fan et al.,|2011}
Huang and Shen| 2015} Tak et al.,2013). In a hybrid environment, different
policies might determine if the application or the workload is assigned to the
private or public cloud, such as application-specific functionalities and re-
quirements (Khajeh-Hosseini et al., 2011} [Fan et al., 2011; |Wang et al., [2012;
Hajjat et al., 2010; Juan-Verdejo and Baars|, 2013), economic, security and
privacy implications (Silva et al. 2013), data sensitivity, and high perfor-
mance requirements (Zhang et all [2014). Alternatively, the placement may
be decided on the fly depending on the current load of the system (Mazhe-
. In this case, organizations can use cloud bursting, the process by
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which excess load is offloaded to public cloud infrastructure if the workload
exceeds a specific threshold.

One of the key research questions in cloud bursting is to determine the
workload or portion of a workload that should be offloaded (Fadel and Fay-
oumi, [2013). It has been shown that the cost-optimal time of using the pub-
lic cloud is the inverse of the premium charged by the public cloud provider
(Weinman), 2012; Mazhelis and Tyrvainen, [2011},2012)). Furthermore, Mazhe-
lis and Tyrvainen| (2011} 2012) have shown that data communication over-
heads as well as the volume discounts set by the public cloud provider affect
the cost-optimal time of using the public cloud. Knowing the future work-
load and the cost-optimal time of using the public cloud, the cost-optimal
portion of the workload to serve in-house can be estimated.

Instead of looking at processes that determine a suitable distribution of
workloads in advance, a related stream of research concentrates on automatic
resource provisioning. This is when application requests are mapped to the
distributed physical resources on the fly and the execution of the appications
are scheduled on the fly (e.g., Calheiros et al., [2011; Andrikopoulos et al.,
2013} [Sun et al., 2015} (Cervino et al., 2013} Trummer et al., 2010)).

The studies on hybrid cloud storage, in particular, may be exemplified
with the model by [Lima et al. (2014), which explicitly takes into account
latency, uptime, free size, and cost when determining the most appropriate
placement of data in a hybrid cloud. In|Abu-Libdeh et al.|(2010), a system is
provided for stripping the data across multiple providers in order to reduce
the cost of vendor lock-in and facilitate switching providers, as well as to bet-
ter tolerate provider outages or failures. In their work, Villari et al. present a
solution for distributing the data across many cloud storage providers while
enforcing long-term availability, data confidentiality, and data redundancy
(Villari et al., 2013, [2014} (Celesti et al., [2016). Furthermore, the use of data
filtering to reduce intercloud data transmission overheads has been explored
by Han et al.| (2013), with the aim of improving the cost-efficiency of appli-
cations where the performance of a hybrid cloud may not be sufficient due
to low bandwidth and high latency of data communications between private
and public clouds. However, to a large extent, the available research either
infuses the storage-related issues as part of comprehensive hybrid cloud con-
siderations (e.g., [Malawski et al., |2013) or focuses on security as a primary
design objective (e.g., Dobre et al., [2014)).

The relative scarcity of the research on hybrid cloud storage can be ex-
plained by the fact that cloud storage services initially relied solely on public
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storage infrastructure. Meanwhile, as the results of a recent survey by Enter-
prise Strategy Group indicate, the majority of IT professionals participating
in the survey are extremely (69%) or somewhat (28%) interested in hybrid
cloud storage (McClure, 2014)). This suggests that hybrid cloud storage will
likely become the subject of increasing interest to the research community in
the near future.

2.3. Hybrid cloud storage as a form of concurrent sourcing

Hybrid cloud infrastructure in general and hybrid cloud storage in par-
ticular can easily be seen as a form of concurrent sourcing. Concurrent
sourcing refers to the simultaneous use of market contracting and vertical
integration, that is, it means producing as well as buying the same good or
service. This phenomenon has gained increasing attention in recent literature
on organization and strategic management, where it has been labeled as, for
example, tapered integration (Porter, 1980), partial integration (Jacobides
and Billinger|, 2006)), concurrent sourcing (Parmigiani, |2007; Parmigiani and
Mitchell, 2009; Heide et al., 2013; |Mols, [2010), plural sourcing (Jacobides
and Billinger, 2006)), and plural governance (Heide, 2003). It has also been
studied from the viewpoint of various theories, including transaction cost eco-
nomics, agency theory, resource-based theory, neoclassical economics, life cy-
cle theory, resource and capability view, theories of multi-profit center firms,
marketing channels, options theory and knowledge-based theory (Mols et al.
2012; Mols, 2010)). For consistency, the term concurrent sourcing will be used
throughout this paper.

The theoretical explanations of concurrent sourcing and the available em-
pirical results shed some light on why some organizations use hybrid cloud
solutions. They suggest, for instance, that volume uncertainty coupled with
the high cost of excess capacity, along with factors such as performance ambi-
guity, technological volatility, and information asymmetry, likely contribute
to the popularity of concurrently using private and public clouds. Further-
more, the open issues that require further studies in concurrent sourcing
literature — including the role of volume uncertainty and variability — are
relevant in the context of the hybrid cloud as well and warrant further inves-
tigation.

When seen through the lens of hybrid cloud research, the concurrent
sourcing literature has two limitations. First, the findings in the extant
literature on concurrent sourcing may not be sufficient for explaining the
concurrent use of private and public cloud infrastructure. This is due to

11
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the fact that the concurrent sourcing research may fail to take into account
some key aspects of the hybrid cloud, such as the possibility to fulfill QoS or
legal requirements (e.g., regarding data availability and confidentiality) with
private cloud resources while benefiting from inexpensive external resources
to execute the components with less stringent requirements (Juan-Verdejo
and Baars| 2013).

Second, it has to be noted that, in the concurrent sourcing literature,
the optimal mix of in-house and external resources has been explained in
terms of market conditions and firm strategy. However, the hybrid cloud
literature also contains a growing body of knowledge that focuses on other
factors affecting optimal dynamic allocation of resources and which takes into
account various requirements and constraints. These factors can be useful
in explaining concurrent sourcing in contexts other than the hybrid cloud,
meaning that the hybrid cloud literature can contribute to a deeper general
understanding of the concurrent sourcing phenomenon.

Overall, the concurrent sourcing literature offers limited analytical and
empirical insight into the role of volume uncertainty in concurrent sourcing.
Therefore, there is a need for analytical inquiry focusing on this subject as
well as for gathering empirical evidence to validate the findings. Hybrid cloud
storage represents a contemporary context for such an inquiry, the specifics
of which (e.g., specific forms of demand curves, quality-of-service require-
ments, or data sensitivity concerns) will provide new insight into concurrent
sourcing.

2.4. Cost factors in hybrid cloud infrastructure

From the perspective of neoclassical economics, the use of hybrid cloud in-
frastructure as a form of concurrent sourcing allows an organization to hedge
against the risks of underutilized excess capacity, and therefore minimize
the infrastructure-related costs. Different cost-based metrics are available to
the decision-makers who are deciding upon the possible adoption of a cloud
solution. A summary of these metrics is provided in Table [1| below, along
with references to the research where these metrics have been developed or
applied.

The research on the cost-efficiency of (hybrid) cloud infrastructure sug-
gests that the cost-efficiency of the hybrid cloud is determined by a variety
of cost factors that have a compound non-linear effect on the overall costs.
These costs factors, considered in the extant literature on cloud computing,

12



Table 1: Metrics used in cost-based analysis of cloud deployment alternatives

Net Present Value of money Tak et al| (2013); Brumec and Vréek
(2013));[Walker et al.| (2010); Mastroeni
and Naldi (2011); Mazhelis| (2012)

Total Cost of Ownership Klems et al.| (2009); Koomey et al.
2007); Martens et al| (2012); [Han
2011); [Walterbusch et al| (2013);
Mazhelis et al| (2012b)); Bibi et al]
(2012)); Brumec and Vrcek (2013));

Mazhelis et al.| (2012b

Value-at-Risk Mastroeni and Naldi| 201 1[)

Return On Investment (ROI) Beaty et al.[ (2011); Misra and Mondal
(2011)

can be grouped into several categories (Table in the appendix lists the
references to the publications where these cost factors have been studied):

1. Cost factors related to in-house resources: the cost of acquiring, pro-
visioning and maintaining an in-house data center during its entire
lifecycle, including hardware and server costs, software license fees,
electricity and labor costs, business premises, as well as the adjacent
cost factors related to the strategy and the practices of the organi-
zation (e.g., acquisition and forecasting intervals, the degree of data
center utilization).

2. Cost factors related to public resources: the cost of computations, stor-
age, data communications, load balancing, and other adjacent cost fac-
tors, such as the pricing models of cloud providers, charging period,
volume discount, market and technological trends.

3. Cost factors reflecting the interaction between the private and public
cloud and/or the use of a private and public cloud concurrently: par-
titioning and allocation costs, data communication intensity between
the private and public cloud, the threshold for workload re-allocation
between in-house and external subsystems.

4. Cost factors related to the organizational, environmental, or system
context: the usage pattern of the system or the service, the demand
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growth rate, variability and uncertainty, the type of applications and
their requirements, system architecture, size of the organization.

5. Other cost factors: Costs related to the decision-making on possible
cloud adoption and the selection of a cloud provider; costs of deploy-
ment, integration, migration and configuration; support and mainte-
nance cost; training costs; potential losses due to cloud adoption.

Even though a plethora of cost models with various granularities of cost
factors have been studied, the effect of the demand reassessment interval and
the volume variation on the costs of hybrid cloud storage has not been con-
sidered yet in the literature. The work closest to ours is that by Laatikainen:
et al.|(2014), where the role of the acquisition interval in the cost-efficiency
of the private versus public cloud has been analyzed. Although the acqui-
sition interval has been studied in the context of selecting between private
and public storage, to the best knowledge of the authors no publicly avail-
able research focuses on the role of the reassessment interval and volume
variation in the cost efficiency of hybrid cloud storage. Therefore, below, a
hybrid storage cost model is introduced where the compound effect of the
reassessment interval and volume variation is taken into account.

3. Modeling the Cost of Hybrid Cloud Storage

Let us consider the cost of a hybrid cloud storage system, where a private
and a public cloud infrastructure together serve an organization’s storage
demand. The system can be decomposed into two subsystems: the private
subsystem provided by the in-house resources, and the public subsystem
provided by the public cloud.

3.1. Assumptions

Before introducing the analytical model for hybrid storage costs, several
assumptions have to be made. The core assumptions are listed below, while
the other assumptions are introduced as appropriate later in the paper.

1. First, we assume that the storage demand is a non-decreasing function
in time. Indeed, as opposed to the demand for computing resources
that often exhibits seasonal and other periodic fluctuations, the demand
for storage tends to accumulate over time, due to the fact that newly
created digital content only partially replaces the content already stored
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(Laatikainen et all 2014]). As a result, the digital universe as a whole
grows 40% a year, according to a recent study by IDCE

2. Second, we assume that the organization aims to achieve cost savings
by allocating the cost-optimal amount of resources to the private sub-
system. For this, the organization is assumed to periodically reassess
its future storage needs and proactively acquire additional storage ca-
pacity. To minimize the storage-related costs, the organization may
intentionally decide to acquire the storage resources to fulfill less than
100% of its future storage needs.

3. Third, for the sake of simplifying the analysis, we assume that each
unit of data is atomic in the sense that (i) it bears the same level of
criticalityﬂ and (ii) it is stored on either the public or private portion
of the system. In other words, it is assumed that no unit of data
is distributed between private and public subsystems or replicated in
another cloud infrastructure. As a result, the interaction between the
private and public subsystems can be assumed to be negligible.

4. Finally, the organization is assumed to allocate the storage on a private-
first—public-second basis. Specifically, whenever a need to allocate stor-
age emerges, the required storage space is allocated from the pool of
the organization’s in-house resources, provided that unused storage is
still available in-house. However, when the demand for storage exceeds
the capacities available in-house, the storage space to accommodate the
excess demand is allocated from the public cloud.

Using these assumptions, we can consider the cost components comprising
the hybrid storage cost model. As overviewed in the previous section, differ-
ent cost components are relevant for the private and the public subsystems.
For the private subsystem, the relevant cost constituents include the costs of
hardware and software acquisition, integration, configuration and upgrading,
as well as the recurring costs of renting floor space, power, bandwidth, and
the cost of administration and maintenance. The overall cost of the private
storage subsystem is thus a function of the demand, as well as of its growth
pattern and its predictability, the time interval between storage acquisitions,
and the pricing of the needed equipment, software, and personnel, among

thttp://www.emc.com/leadership/digital-universe/2014iview /executive-summary.htm
2Here, depending on the nature of the organization’s business, the criticality may en-
compass confidentiality, reliability, availability, and other considerations.
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other costs.

On the other hand, for public cloud storage, the cost components include
usage-dependent costs such as, in the case of Amazon S3, the costs of stor-
age capacity, data transfer, and input/output requests. Depending on the
charging policy of the storage service provider, the cost of the storage may be
determined by the maximum or average volume of storage occupied during
the charging period. For instance, Amazon Web Services (AWS) charges its
customers based on the maximum storage capacity used in 12-hour intervals.ﬁ

In the case of hybrid cloud storage, the process of acquiring, provisioning
and paying for the necessary storage resources differs between the private
and public subsystems. On the one hand, the private subsystem’s resources
cannot be added to instantly when the need arises, because there is a def-
inite amount of time for the resources to be provisioned upon request—this
time period is referred to as the provisioning interval (Weinman, |[2011c,2012).
Therefore, the organization has to manage the private subsystem proactively.
It must periodically estimate its future demand and acquire and deploy the
additional resources for the in-house storage infrastructure in advance. The
interval between the subsequent resource acquisitions based on the future
demand estimates is referred to here as the reassessment interval. The cost
of the private storage subsystem is incurred at the beginning of each re-
assessment interval and so it depends on the maximum storage capacity and
estimation accuracy rather than on the actual use of storage resources.

On the other hand, the public subsystem’s resources can be provisioned
with a negligible delay. When the demand for storage exceeds the available
private cloud capacity, the organization can acquire additional resources from
the public cloud provider and then deploy the excess data to the public
subsystem. As opposed to the private subsystem, the organization pays for
the public subsystem’s resources only when they are used and only for the
volume of storage in the public subsystem that is actually used.

As stated above, in this paper we assume that the organization aims to
achieve cost savings by allocating the cost-optimal amount of resources to the
private subsystem. This cost-optimal allocation depends on the forecasted or
known storage demand, the utility premium of the cloud provider, and the
length of the reassessment interval, which are the main subjects of the anal-

3http://aws-portal.amazon.com/gp/aws/developer/common/
amz-storage-usage-type-help.html
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ysis in this section. The total cost of hybrid cloud storage is also affected by
many additional factors, such as the cost of adopting a hybrid infrastructure,
data transfer costs, pricing trends, volume discounts, cost savings achievable
by storing only the provenance data and regenerating the rest when needed,
or cost savings due to data transformations (see Section , among other fac-
tors. Combined, these factors are likely to have a complex, non-linear effect
on the overall costs, making them difficult to analyze (Mazhelis and Tyrvéi-
nen, 2012). In order to simplify the analysis, in this paper it is assumed
that these additional factors either have a minor effect or affect similarly the
costs of both the private and the public storage subsystems, and hence are
left outside of the scope of the analysis.

The remainder of the section is organized as follows. First, in subsection
3.2, we introduce a hybrid cloud storage cost model that captures the role
of the reassessment interval in the hybrid cloud costs under the assumption
that the growth of the storage demand is well-known or that there is no
estimation error. After that, in subsection [3.3] we relax this assumption and
include the volume uncertainty in the model in order to assess the impact of
the reassessment interval on the hybrid cloud storage costs when the demand
is imperfectly estimated.

3.2. General Hybrid Storage Cost Model

Let us define the demand function s(¢) — R that maps from time to quan-
tity of needed resources. As stated above, due to the increasingly growing
nature of storage needs, this function is assumed to be positive and increas-
ing. Note that the form of the demand function s(¢) reflects the former aspect
of the volume variation: variability, meaning the non-stationary nature of the
demand.

Let us consider the total cost of a hybrid storage solution during the
reassessment interval of length w as shown in Figure [I} Since, in a hybrid
solution, the private and public subsystems are used in combination, the
total hybrid cloud storage costs C'yy; are the sum of the private costs C, and
public costs C,.

First, let us evaluate the costs of owning the private storage subsystem
C, during the reassessment interval of length w. As described above, at the
beginning of each reassessment interval, the company estimates the amount
of resources needed during the following reassessment interval and acquires
the necessary storage accordingly. Thus, having denoted the total cost of
owning a unit of private storage capacity v over time ¢ as p,(v), the cost of
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s(t)

vO

to w
Figure 1: Hybrid cloud costs without refinement of reassessment interval

owning in-house capacity C, can be estimated as

Co = vopo(vo) w, (1)

where vy is the maximum private storage capacity to be used within the
next reassessment interval. In case the actual demand s(t) exceeds vy, the
difference s(t) — vg will be served by using public cloud resources.

The cost of the public cloud storage subsystem C), can be evaluated by
calculating the costs of public storage over the period when the public cloud
is used. Let p,(s(t)) denote the price of a unit of storage per unit of time
set by the public storage provider. We will assume for simplicity that the
demand for the public resources is served immediately. Thus, the cost of
public storage C),, accumulated over the reassessment interval of length w is

w

Cp = ], Pp(s(t)s(t)dt = py(vo) vo (w —to), (2)
where t, is the time point when s(ty) = vy and, therefore, w —tq is the length
of the time interval during which the public subsystem is used.

We shall assume that the price of a unit of public storage capacity is
greater than the cost of a unit of private storage. This is justified by the fact
that the public storage provider charges a premium for the organization’s
flexibility in rapidly provisioning and deprovisioning the resources (Weinman,
2011a). As a result, some organizations found it significantly less expensive
to host their own storage facilities than to use the storage capacity of Ama-
zon, with the difference up to the factor of 26 (Nufire, 2011). Thus, it can
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be written that p,(s(t)) = u(s(t))po(s(t)), where u(s(t)) > 1 is the utility
premium ratio, or, in short, the utility premium of the public storage vendor.
To simplify the further analysis, the utility premium shall incorporate (i) the
cost of transferring the excess data to and from the public subsystem and (ii)
the cost of transferring the cumulated public storage capacity to the private
subsystem once the private capacity is increased.

In order to make the analysis tractable, we further assume that the prices
are not subject to volume discounts. Therefore, for brevity, we shall refer to
pp(s(t)) and p,(s(t)) as p, and p,, respectively, and thus, Equation can
be rewritten as follows:

Cp=up, /ws(t)dt—upovo (w —tp). (3)

to

Thus, the total hybrid cloud storage costs Cy; are

O = pyvow +up, ([ s(t)dt = vo (w — t0)). (@)

Let us now consider the cost-impact of shortening the reassessment in-
terval. Specifically, let us consider the case when the reassessment interval is
refined, that is, when it is divided into two adjacent reassessment intervals
P1 and P2 of the lengths z and w — z, respectively (see Figure . Let us
mark the maximum private storage over the period P1 with vy, and over the
period P2 with v,.

s(t) s(t)
v2 v2
7 b ot Ity ¥ ] e e P B i
vl 1 vl

t1 0z 2w tiz t0 2 w

(a)Z>to (b)Z<t0

Figure 2: Hybrid cloud costs with a refinement of the reassessment interval.
A cost-optimal allocation of resources to the private cloud is assumed.
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Using the same notations as introduced above, the total hybrid cloud
storage costs in the period P1 can be expressed as

Crup1 =pov1 2+ up, (/t s(t)dt — vy (2 — t1)), (5)

where s(t1) = v1 and z — t; is the length of the time period where the public
cloud is used.
Similarly, the total hybrid cloud storage costs for the period P2 are

Cpa = pova (w = 2) + upo (| s()dt = v (w — 1))

t2
where s(t3) = vy and w — t5 is the length of the time period when the public
cloud is used.
We will mark the total hybrid costs with Cyo for the case when the
reassessment interval is refined. Cpo can then be calculated as the sum of
the costs for reassessment intervals P1 and P2:

Cr2 = Chp1 + Crpa. (6)

Let us define the cost difference function f = Cy; — Cyo. If f > 0, then
refining the reassessment interval is beneficial costwise. Otherwise, if f < 0,
the hybrid costs are increasing when the reassessment interval is divided into
two smaller intervals.

The cost difference thus can be written as

f:CHl_CH2:

= Po VoW — UPo Vo (W —1g) — Pov1 2+ upv1 (2 —1t1) — po v (W — 2) + upova (W — t3)

+ up, </: s(t)dt — /tlz s(t)dt — /: s(t)dt) . (7)

It can be seen from the equation above that the sign of f depends on the
utility premium charged by the public cloud provider, on the length of time
period when the public cloud is used, on the demand function, and on the
percentage of the actual demand that is allocated to the private cloud.

In order to simplify the analysis, we take into account the above stated
assumption that, at the beginning of each reassessment interval, the organi-
zation acquires storage capacity to the private cloud so as to minimize the
overall hybrid storage costs. According toMazhelis and Tyrvainen (2012) and
Weinman| (2012), the cost-optimal portion of time to use the public cloud is
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the inverse of the premium charged by the cloud provider (see Corollary 1 in
(Mazhelis and Tyrvéinen, [2012))). It follows from this assumption that

u—1
to = 8
0 U w, ()
u—1
t] = 9
1 U zZ, ()
—1
t2:Z+u (w — z). (10)
U

As a result, it can be shown that the cost difference function simplifies to

f:upo(A?ws@Mt—/j%s@Mt—Lzszhddﬂﬂ>. (11)

u

Proposition 3.1. Assuming the allocation of cost-optimal amount of storage
capacity to private cloud and no reassessment costs, re-evaluating the storage
needs more often is always beneficial costwise, that is, f > 0.

Proof. The proof of the proposition is provided in [Appendix B.1| ]

Let us further consider the cost-efficient division of the reassessment inter-
val, by analyzing which division point z allows the cost difference, as reflected
in f, to be maximized.

Lemma 3.1. In the interval (0,w), f(z) has only one extremum point where

g—]; = 0, and this extremum corresponds to the mazimum of f(z) in the region

(0,w).

Proof. The proof of the lemma is provided in [Appendix B.2] O

Note that the value of z,,,, depends on the form of the demand function.
Let us illustrate the cost-efficient division of the reassessment interval in case
of a linear demand function that can be defined as

s(t) = at +b, (12)

where a > 0 (assuming that the demand is monotonically increasing) and
b > 0 (assuming that the demand is positive at the beginning of the storage
period) are real numbers. In this case, the cost difference function f is
simplified to

az(u—1)(w—=z)

f = Do » (13)
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Lemma 3.2. In the case of a linearly growing demand function, the greatest
cost-savings can be achieved when z = w/2.

Proof. The proof of the lemma is provided in [Appendix B.3| O

However, in the case of an exponentially growing demand function, the
largest cost difference is attainable by splitting the reassessment interval into
two, with the latter subinterval being shorter.

Lemma 3.3. In the case of an exponentially growing demand function, the
greatest cost-savings can be achieved when z > w/2.

Proof. The proof of the lemma is provided in [Appendix B.4l n

Let us investigate the impact of the utility premium on the cost difference
function (13]). For this, consider the first derivative of the cost difference
function with respect to the utility premium, which can be written in the
following form:

af _
ou

=powwa—Fw@+Fan—F@»+um(

0
ou ou ou

OF(t;) s OF (to) Ot

(3152 ou 8150 ou

w—z

pdﬂm—F%H%Wﬂ—ﬂm+um<aﬂm—f%@+aF%0

OF(t,) ot

oty

du

= po (F(t2) — F(to) + F(t1) — F(2)) + upo <S(t2) w2 s(to) % + s(t1) ;2) .

(14)

Referring to Equation (B.1]) it can be seen that the first term in the
expression above is positive:

Po (F(t2) — F(to) + F(t1) — F(2)) > 0.

Furthermore, the sign of the term

wp, (s(tg) S () o+ s(t) Z) (15)

U u?

depends on the demand curve s(t) or, more precisely, on how great s(to) -
=.

is in relation to s(t2) “5* + s(t1)
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s(7)

Figure 3: Special case of the demand curve that grows very slowly before t;
and after to but very rapidly in the range (t1,¢ + [0]),0 — 0

Let us now investigate the special case when the demand curve grows very
slowly before ¢; and after ¢, but very rapidly in the range (¢1,¢; +|d]),d — 0
(as shown in Figure[3). In this case, s(t2) ~ s(to) and s(t1) — 0.

Therefore,

po (Flts) = Flto) + F(t1) — F(2)) = po (/t syt — [ s(t)dt> S0,

to t1

whereas

w—z w 2z Do
wp, (s(tg) = s(to) o+ s(t) uz)

As a result, it follows that

However, for more conventional demand growth functions, the value of
the derivative is likely to be positive, and therefore the observation holds
that the greater the utility premium, the greater the cost savings due to the
refinement of the reassessment interval. Let us illustrate it with an example
of linear demand growth.

Lemma 3.4. In the case of linearly growing demand, the greater the utility
premium, the greater the cost savings due to the refinement of the reassess-
ment interval.

Proof. The proof of the lemma is provided in [Appendix B.5| O
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Let us introduce the cost of reassessment c¢,, that is, a cost associated
with each re-assessment event. The reassessment cost includes, among oth-
ers, the cost of demand estimation for the next reassessment interval and the
procurement and deployment of the additional storage resources. Being de-
pendent on the internal practices of the organization, the reassessment cost
is difficult to estimate. However, for the sake of simplicity, we will assume
that the reassessment cost is the same for each reassessment interval within
the same organization and is independent of the volume of the storage, either
available or to be purchased.

Let us calculate the total hybrid cost Cyy (Equation when the reassess-
ment cost is taken into account:

Cit = € + Po Vo + 1P, (/ s(8)dt — vo (w — to)). (16)

to
If the reassessment interval is refined, that is, split into two intervals, the
reassessment cost is incurred twice:

Cua =2¢+ Crp1 + Chpa (17)
In this case, the cost difference function f is the following:

f=Cm—Chy = —cotup, </ o s(t)dt —/ . s(t)at —/ Y )s(t)dt) :
== w ==z 2+t (w—z

(18)

Let us refer to proposition [3.1] and define the cost benefits due to refine-

ment of the reassessment interval as the following term from (Equation :

upo (Jila, s(O)dt = [ix, s(t)dt = [Xucr (. s(E)dt ).

Lemma 3.5. Assuming the allocation of the cost-optimal amount of storage
capacity to the private cloud and non-zero reassessment cost, re-evaluating
the storage needs more often is beneficial costwise if the cost savings due to
reassessment are higher than the cost of reassessment.

Proof. The proof of the lemma is provided in [Appendix B.6| O

Let us now investigate how refining the reassessment interval recursively
affects the overall costs. Indeed, by reducing the length of the reassessment
interval recursively, cost savings can be achieved in line with Proposition [3.1]
However, in line with Lemma [3.5] the reassessment cost associated with each
reassessment event reduces the cost savings. Thus, a stopping criteria for the
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recursive reassessment can be defined where the cost of reassessments exceeds
the benefits achievable through reassessments. Formally, the stopping criteria
can be defined as follows.

Let Cy1, Cha, ... , Cgy, be the total hybrid costs when the reassess-
ment interval is divided into 1,2,...,n intervals. Let fo = Cgxi — Chyo,
f3=Cu2—Chys, ..., fn = Crn-1) — Chn be the corresponding benefits due to
reassessment. It can be shown that if n — oo then f, — 0, that is, at some
point, f, < ¢,., making further refinements economically inferior. Thus, given
the constant reassessment cost ¢,, the refinements are economically justifiable
as long as f; > c,.

3.3. Cost Model Taking into Account Demand Forecasting Errors

Let us now turn to the more realistic case when the demand function s(t)
is not known by the organization, but needs to be estimated instead. The
estimated demand curve §(¢) is likely to diverge from its real value:

§(t) = s(t) (1 +¢), (19)

where the estimation error ¢ = £(t, — t,) is a function of the length of the
forecasting horizon ¢, —t,, the interval between the current time at which the
prediction is made ¢, and the time for which the prediction is made ¢,. Note
that this estimation error manifests the latter aspect of volume variation:
volume uncertainty, meaning the inaccuracy with which the demand volumes
are predicted.

Several assumptions need to be made about the estimation error func-
tion. The estimation error may be additive or multiplicative depending on
the application. In this study, we assume the estimation error to grow as
the amount of estimable storage increases, and hence we use € to denote a
multiplicative error that grows with the storage demand. In addition, the
estimation error increases with the forecasting horizon even if the estimable
storage demand exhibits little change. Accordingly, the error is assumed
to be a non-constant and increasing function of time, although no specific
functional form is assumed. Lastly, the demand function is assumed to have
negligible or no bias.

The estimation error contaminates the estimates of required storage ca-
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pacity v:

@0 = S(to)(l + 80),Whel“€ Eop = E(to);
01 = s(t1)(1 + 1, where g1 = €(t1);
Ug = $(t2)(1 + &2), where 5 = £(ty — 2).

Importantly, the error in the estimates of v; also spreads into the “ef-
fective” value of ¢;, denoted as f;, where 4 = {0,1,2}. For instance, if vy is
overestimated (g9 > 0), it effectively means that the public cloud storage will
start to be used later than originally envisioned, #, > to. Having denoted the
error function impacting t; as £, we can express the “effective” values of ¢; as
follows:

T/f\[) = to(l + fo),where 50 = g(to),
'El = tl(l + 51)7Wh61‘e 51 = S(tl),

fy=z2+4(ty—2)(1+&) =2+ u;l(w —2) (1 + &), where & = &(ty — 2).

Several notes shall be made. First, ¢ is also assumed to act as a multi-
plicative error, in line with €. Second, the errors ¢ and ¢ are covarying, so
if & > 0, then £ > 0, and vice versa, as demonstrated in Figure [] below.
Finally, it is important to observe that 3(t;) = s(&;).

§() s(t)
ds(t) vo s(t)
t t
t0 0 w 0 t0 w

(a) Demand overestimation (g; > 0,7 = (b) Demand underestimation (¢; <
1.3, and & > 0,/ = 1..3) 0,i=1.3 and & <0,j = 1.3)

Figure 4: Dependency between the errors € and ¢
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Taking into account the estimation errors introduced above, for the cost-
optimal storage allocation as specified in Equations (8{10]), the cost difference
function f can be rewritten as

£ = pastto) (L + o)+ up, | [ s(t)dt = s(to)(1 +0)w = o)

to

— pos(t1)(1 4+ 1)z — up, [/z

t1

— pos(ta) (1 + &) (w — 2) — upy [/w s(8)dt — s(t2)(1 + £2)(w — @)} . (20)

to

s(t)dt — s(t)(1+ 1) (2 — fl)]

Having opened #;, it can be rewritten in the form

[ = pos(to)(1 + co)wéo(u — 1) + up, [/w s(t)dt — /EO s(t)dtl

to to

pos(t)(1 4 £0)261(u— 1) — up, [ [ st [ s(t)dt]

t1 t1

— pos(ta)(1 4 e2)(w — 2)(u — 1)& — up, l/: s(t)dt — /£2 s(t)dt} . (21)

t2

or, after regrouping,
=g+ (i)t + cojusatu =1~ up, [ st
- (st ezesta =1 =, [ st

= (st e = St — ) - [ sr) 22

where f* = up, [f;(’j s(t)dt — [7 s(t)dt — [ s(t)dt} is the value of the cost
difference function in case the estimation of demand is free of estimation
e error, as specified in Equation (11)).
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Based on the equation above, the difference f — f* can be expressed as
A=f—f = [pos(to)(l + go)w&o(u — 1) — up, /t:O s(t)dt]
l J(1+e1)z& (u—1) — up, /fl s(t)dt]
[ Y1+ e2)(w — 2)Ea(u — 1) — upy /tt s(t)dt}

= a(eo, o) — ale1, 1) — aler, §2), (23)

where a(eo, &), ale1,&1), and a(eq, &) represent the three terms in square
brackets.

It can be shown that a(eo, &), a(e1,&1), and a(eq, &2) are positive terms.
Therefore, the sign of A depends on the interplay between them. Among
other factors, the absolute values of the estimation errors determine the rel-
ative magnitude of these terms and therefore affect the sign of A.

In particular, if the error terms are declining with the length of the fore-
casting horizon (i.e., |eo| > |ea|, |eo] > el &0l > |&2l, [&o| > [&1]), then
it is likely that a(eo,&) > a(e1,&1) and a(eg, &) > a(e2,&2), and hence
A = f— f* > 0. However, if the errors fail to decline with the length of
the forecasting horizon, then a(gg, &) < a(e1, &) and/or a(eg, o) < a(es, &)
and hence A = f — f* < 0.

In other words, if the refinement of the reassessment interval allows the
volume uncertainty to be reduced, as reflected in the declining values of
the estimation errors, then the economic benefit of the refinement is greater
when the volume uncertainty is present. On the other hand, if the interval
refinement fails to reduce the volume uncertainty, then the economic surplus
due to the refinement becomes smaller. Let us illustrate it with the special
case of the linearly growing demand function.

In the case of linear growth specified by the demand function in Equa-
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tion , the cost difference f is in the form

[ =f"+polaty +b)(1 + go)w(u — 1)&
—polaty +b)(1 +e1)z(u — 1)&
— polate +0)(1 + &) (w — 2)(u — 1)&

+up, x (<5t (S0 +2) = béoto + B (61 +2) + ity
+5 (24 = (14 ) + 22(t2 = 2)(1+ &) = ) + b=+ (t2 = 2) (1 + &) — 1))
(24)

which can be rewritten as

f=1"+po(u—1)

« lgow [m“ — Lo+ B)(1 4 £0) — w(éo + 2)‘2““;1) _ b]

¢y l(a“ - L B +e) — 26+ 2)‘2’(“;1) _ b]

6w 2) [+ =) ) +e) - 5 (- 2)e + 2 +22) -]
(25)

or, equally, as

-1
f=7r"4+p(u—1)x [{uw [au2u w(2e9 — &) + bso}
u—1
—&1z {a 5o 2(2e1 — &) + bal}
—&(w — 2) {auz_u (w—2)(2e0 — &) + (az + 6)52” :
(26)
Observe that, for the linear growth function, it holds that
b=l ) = ke, (27)
T é\’L at - 7167/7

where k; = 1 + % is a function of ¢, ¢+ = 1..3. Further, let the errors €; and
€9 be expressed as functions of gg, i.e. €1 = c1e9 and g5 = e, where ¢; and
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co are real-valued coefficients. Then, the equation above can be rewritten as

1w(2 — ko) + b}

u—
f=1 +po(u— 1)5(2)>< kow {a 5

201(2 — ]{71) + Clb:|

U
—kijeiz [a
u

u—1
2u

—koco(w — 2) [a (w— 2)ca(2 — ko) + co(az + b)” :

(28)

Thus, if we assume that ¢; and ¢y are independent of gy, then f — f* is
a quadratic function of 5 with an extremum at (0,0). Among other factors,
the sign of f — f* depends on a and ¢y: if ¢ < 1 (i.e., if the errors are
non-declining functions of the length of the forecasting horizon), then it is
likely that f — f* > 0. However, when ¢y > 1 and a > 0, then the last term
in the equation above likely dominates, resulting in f — f* < 0.

4. Numerical Experiment: Simulating an Archival System

In the previous section, an artifact in the form of a hybrid cloud storage
cost model has been introduced and analytically investigated, with the aim of
revealing its inherent properties. This section expands our effort at evaluating
this model by means of numerical simulations that take into account the
context of a real-world organization.

4.1. Design of Numerical Experiments

Numerical simulation is a kind of simulation that relies on numerical
methods to quantitatively represent the evolution of a physical system (Colombo
and Rizzo,|2009). By analogy with laboratory experiments, these calculations
with numerical models are referred to as numerical experiments (Bowman
et all [1993; Bacour et al.| 2002; Winsberg, 2003)). Each numerical experi-
ment studies how a particular combination of input parameters affects the
output parameter of interest, and the set of the experiments is designed to
maximize the amount of relevant information from a limited number of simu-
lation runs (Hunter et all|1978]). In order to resemble reality, the simulation
needs to rely on the real demand for storage experienced by a real-world
organization as well as on the real pricing for the private and public storage
resources, as described below.
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Demand for storage. The real demand for storage as experienced by the
archival system of the National Center for Atmospheric Research and Uni-
versity Corporation for Atmospheric Research (NCAR & UCAR) is utilized
in the experiments. This organization has been chosen for the study for three
reasons. First, NCAR is an example of a real-world organization that main-
tains and develops a large-scale storage solution whose storage demand and
its growth can be considered to be representative. Second, a long-time trace
of storage massives in use at NCAR allows the historic developments of stor-
age needs to be observed. Finally, as opposite to commercial organizations
that keep their infrastructure details secret, the traces of storage growth at
NCAR were publicly available for this study.

The historical development of the Archival System at NCAR is docu-
mented on the organization’s website[] The NCAR’s archival systems have
their roots in the mid-1960s. Over the years, a number of developments
were made to accommodate the growing needs for storage, either by ex-
panding the available storage massives or by replacing them with more ef-
ficient solutions. Due to a constant need to evolve while providing service
continuity, multiple storage technologies have co-existed within the NCAR’s
archival systems.E] At present, the archival system represents a combination
of the new tape libraries of High Performance Storage System (HPSS),E] and
the legacy tape libraries maintained by a subcontractor[] This tape-based
archival storage is used in concert with the GLobally Accessible Data En-
vironment (GLADE), the centralized disk-based storage service using high-
performance GPFS shared file system technologyf]

For the purposes of this study, we use the storage metrics with monthly
granularity that were kindly provided by NCAR. In Figure [5 the growth
profile of the NCAR’s archival system during the period 1 September 19861
April 2014 is shown. As evidenced by the figure, the demand for data storage
exhibited exponential growth during these years, rising from 2TB in 1986 to
over 30PB in 2014.

4See the annual reports of the Computational & Information Systems Laboratory that
manages the archival system; these are available at http://nar.ucar.edu/.

5See the mass storage technologies used at NCAR by 2006 at http://www.cisl.ucar.
edu/nar/2006/1inks/2.3.mss.1g. jspl

Yhttps://www2.cisl.ucar.edu/docs/hpss

"http://www.nar.ucar.edu/2009/CISL/1comp/1.3.6.amstar.php

Shttps://www2.cisl.ucar.edu/resources/glade
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Figure 5: Growth of the NCAR archiving storage during 1986-2014

Public storage. The unit price of public storage can be estimated by, for
example, consulting the price list of Amazon Web Services (AWS), one of
the leading providers of public cloud infrastructure services (Leong et al.,
2014).

Assuming that Reduced Redundancy Storage (RRS) is used as a public
storage equivalent ] it costs $0.024, $0.0236, and $0.0232 per GB per month
to store the first TB, the next 49TB, and the next 450 TB of data, respec-
tively. Further, transferring the data out of the cloud costs $0.12, $0.09, and
$0.07 per GB for the first 10TB, next 40TB, and the next 100TB, respec-
tively. Note that, for simplicity, the request pricing has not been taken into
account, because the contribution of the request-based charges to the overall
cost is rather modest in the case of the archival solutions.

Instead of RRS, Amazon Glacier could have been used as an inexpensive
public tape storage equivalent that only costs $0.01 to store 1GB for a month.
However, significant costs are incurred for transferring the data out of the
service because, in addition to the data transfer fee above, the transfer may
incur a significant retrieval fee that depends on the desired retrieval rate.

9The details of RRS pricing are available at http://aws.amazon.com/s3/ the prices
used in the research are for US Standard region and are valid on 2.8.2014.
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Deleting files stored for less than three months incurs fees as well. All this
makes the use of Glacier economically inefficient in cases where the data is
stored for short periods of time, as is considered in the paper.

Private storage. The unit price of the private storage for newly designed
storage solutions can be approximated using the costs incurred by Back-
blaze (Nufire [2011)). Specifically, in order to provision a PB of storage, in
2011 Backblaze was reportedly spending $94 563 over three years for hard-
ware, space, power, bandwidth, and maintenance, which corresponds to $2.57
per TB per month. By 2014, the cost of storage hardware declined from
$0.055 per GB in 2011 to $0.0517 per GB in 2014, owing to more efficient de-
sign and declining component prices (Klein) 2014)); however, we will assume
the total cost per TB unchanged due to a likely increase in other costs, such
as rents and labor costs.

It should be noted that, along with the storage hardware, the software
solutions for managing the storage (e.g., IBM Tivoli Storage Manager) and
related services are also likely to be needed, thus increasing the cost of the
storage solution further. However, we assume that these software and service
costs are minor when compared to the other storage-related costs, and hence
may be neglected for the sake of simplicity.

Utility premium. The value of the utility premium w varies depending on the
type and the volume of storage to be provisioned as well as on the pricing
set by the public cloud storage provider and the cost-efficiency of the private
solution. For instance, storing 100 TB of data on disk over a six-month
period cost: (i) $1 539 if the data is stored in-house using Backblaze’s type of
storage, and (ii) $22 878 if the data is stored in Amazon Reduced Redundancy
Storage and transferred at the end of the storage period; this results in a
utility premium value of $22 878/$1 539=14.9.

Storing the same volume of data on tape will cost (i) $2 550 if the in-house
tape storage is used as described in (Reine and Kahn|, 2013)), and (ii) $16 786
if Amazon Glacier is used instead[?| thus resulting in a utility premium of
$16 786/%2 550=6.6.

A couple of issues should be noted at this point. The costs of the pri-
vate storage solutions may be underestimated. First, additional labor costs

10We further assume that the data is transferred from Amazon Glacier to the in-house
storage solution at the end of the storage period, reserving two weeks for the retrieval.
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are incurred to design, implement, and maintain growing in-house storage
facilities. Second, additional costs will be required if higher redundancy level
is needed, especially if geographically distributed facilities are deployed. Fi-
nally, for lower-scale data storage solutions, the absence of volume discounts
is likely to increase the prices for the components. Due to these and possibly
other factors, the value of the utility premium may be lower, but still no-
tably greater than oneE We will therefore explore a set of different values
of utility premium in the range of u € [4; 20].

It should also be mentioned that the reassessment cost (i.e., the cost asso-
ciated with estimating the future demand for the next reassessment interval
and acquiring and deploying additional in-house storage resources) greatly
depends on the internal practices of the organization; its value therefore is
difficult to estimate. Due to this, and also because this cost is likely to be
insignificant in the case under consideration when compared with the overall
storage costs for the case organization, in the numerical experiments below
we assume the reassessment cost to be zero.

Finally, it should be pointed out that the prices for storage components
and storage services tend to decline with time (Walker et al.l 2010; |[Reine
and Kahn| [2013; |Jackson), 2014). However, we assume that approximately
the same decline rate applies to both the private and the public portions.
Likewise, the time value of money is not taken into account in the cost
estimates, because, within a single reassessment interval, the present value
of money changes insignificantly and has a limited effect on the overall costs.

In the simulation below, we compare the costs incurred by an organization
facing the growing demand for storage as experienced by NCAR (i) in the
case that the organization is re-estimating its storage needs and acquiring
additional in-house resources on a yearly basis, and (ii) in the case when the
organization is conducting the reassessment twice a year at different time
points measured in months, z € {2,3,...,11}.

4.2. Results

Let us consider the compound effect of the reassessment interval and
the volume variation — reflected in the changing demand function and its
forecasting inaccuracy — on the total cost of the hybrid cloud storage.

1 Otherwise, the in-house storage solutions would not be economically justifiable, as was
shown analytically by Weinman| (2011al)
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4.2.1. Known demand for storage

We first estimate the cost of hybrid cloud storage under the assumption
that the future changes of the demand for storage are known in advance. In
this case, as explained in the preceding section, both the time of using public
cloud resources and the volume of the private storage to be acquired can be
set to minimize the overall cost.

The cost estimate includes both the cost of storage as well as the data
transfer cost. The data transfer cost is estimated based on the pricing of
Amazon EC2, assuming that 5% of the stored data is requested and trans-
ferred monthly, and that the whole volume of the data in the public subsys-
tem is transferred to the private subsystem. Furthermore, the effective value
of the utility premium is estimated based on the total monthly volumes of
storage. This estimate varies between 2.27 and 10.29, so the median value of
u = 2.88 is therefore used in the cost calculations unless explicitly specified
otherwise.

In Figure [0 the total yearly costs of hybrid cloud storage are shown
for the reassessment intervals of six and twelve months. In order to make
the figure more readable, only the costs over the last six years (2008-2013)
are shown. As the figure shows, the total hybrid storage costs are lower if
the organization reassesses its storage needs more often, that is, once every
six months instead of once a year. This is in line with Proposition [3.1]
which claims that the more frequent re-evaluation of storage needs to be
cost-beneficial.

According to Lemma [3.1] the cost saving function f(z) has a single ex-
tremum in the interval (0, w), which corresponds to the maximum of f(z)
in the region (0,w). This is visible in Figure , where the cost savings are
portrayed as a function of the refinement point z. Furthermore, in line with
Lemma [3.2] for linearly growing demand function, the greatest cost saving is
expected when z,,,, = w/2, whereas for exponentially growing demand func-
tion, in line with Lemma , the value of z,,,, shifts to the right, 2,4, > w/2.

As can be seen from the graphs in Figure [7 the greatest cost savings
are achieved when the company reassesses its storage needs at the middle
of the original reassessment period, in other words, if the refinement is done
at z = 6 months given the original reassessment interval of w = 12 months.
Thus, albeit the storage demand does exhibit an exponential growth and
hence 2z, > w/2 is expected, in practice, z,.. = w/2 predicted for the
linear growth is observed. This can be explained by the fact that, within
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Figure 6: The total yearly cost of a hybrid cloud storage for reassessment

intervals of six and twelve months

a single year, the growth rate is relatively low (circa 0.03 in average), and
hence the growth can be relatively well approximated with a linear function.

Finally, let us turn to the effect of the utility premium u on the cost
savings. As stated in Lemma [3.4] the cost savings due to the refinement of
the reassessment interval increase with the value of . In order to investigate
this dependency, Figure [§ plots the dependency between the cost savings
function f and the utility premium.

The graphs in the figure reflect the overall regularity expressed in Lemma 3.4}
in the cost-optimal allocation of storage to the private and public cloud, the
more expensive the public cloud is compared to the private cloud, the greater
are the cost savings that can be achieved with reassessing the storage needs
more often. Meanwhile, as can be seen from the figure, for some subregions
of utility premium values the cost savings may remain constant or even de-
crease temporarily (e.g., consider the case of z = 9 and 8 < u < 17). Such
temporal declines are caused by the rounding of the time of public cloud
storage use. Specifically, small changes in u induce a small change in the
cost-optimal time of using the public cloud resources (i.e., w — t;). However,
since w — t; is calculated with monthly granularity and hence needs to be
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Figure 7: Cost savings due to the refinement of the reassessment interval for
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rounded to the nearest month, this results in suboptimal values of w —t;, and
consequently may result in a cost saving that is (temporally) decreasing with
u. Note that the effect of this rounding is also visible in Figure [7] where, for
U =2, Zmaz = 9, While z,,,. > 6 is expected.

4.2.2. Forecasted demand for storage

Let us now turn to the case when the future demand for storage is not
known and is therefore forecasted based on the traces of demand observed
in the past. As in the previous experiment, here we consider the compound
effect of the reassessment interval and the volume variation on the total cost
of the hybrid cloud storage. However, whereas in the preceding experiment
the volume variation was limited to the changing demand function, in this
numerical experiment, the more realistic settings are studied by considering
the volume variation as reflected in both the changing demand function and
its forecasting inaccuracy.

Specifically, this experiment relies on forecasting the future demand at
the beginning of every reassessment period based on the historical data.
The forecasting is performed by using the non-linear least square fitting to
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estimate the parameters of an exponential growth function. The forecasted
and the original data for yearly reassessment interval are shown in Figure [9]
As can be seen from the figure, the forecasted demand curve largely follows
the original demand, although there are periods when the demand is under-
or overestimated. In the results presented next, we have excluded the data
for the first year because there was no historical data to base the forecast
on. We have also excluded the data for the final year (2014) because the
available data for that year were incomplete.

As was analytically shown in the previous section, the effect of the refine-
ment of the reassessment interval on the cost savings depends on whether the
forecasting inaccuracy decreases with the refinement. Indeed, as Figure [10]
and Table |2 show, the change in the cost savings A greatly correlates with
the change in the estimation errors: for 21 years out of 26, the sign of A
matches the sign of €9 — £5. Furthermore, in the cases when gy =~ &5 (i.e.,
more formally, when |eg — 5| < 0.01), the sign of A depends on the change of
the time estimation error £: when £ declines or remains the same after refine-
ment (& — & < 0), the cost difference increases (in 2001 and 2002), whereas
for the years when the error increases (§y — & > 0), the cost difference de-
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Figure 9: Forecasted and real storage growth

clines (in 2011 and 2012). Thus, in line with the analytical considerations
in subsection [3.3] it can be observed that, while the refinement of the re-
assessment interval does cut the cost of hybrid storage, the magnitude of
the cost cut further depends on the inaccuracy of the demand forecasting; in
particular, when the refinement allows the estimation errors to be reduced,
the cost reduction increases. Otherwise, it decreases.

There is also an interesting phenomenon worth mentioning. In the case
that (i) the demand function is growing stepwise, (ii) the stepwise growth
co-occurs with ¢;, and (iii) a small overestimation of demand is present, then
the presence of the overestimation has no impact on the estimation of ;.
Specifically, given two consecutive steps of the demand function s, and s,
occurring at t;, and given a small estimation error €; s.t. s,(1 4 &;) < Sy41,
the cost impact of the overestimation can be expressed as:

- u—1
DoSa(l+ €)W —upesy(14;)(w —t;) = posz(1+&;)(w —u(w —

w)) = 0.

u

As a result, whenever such conditions occur, the corresponding term in Equa-
tion nullifies (i.e., a(e;, &) = 0), which may have a decisive effect on the
sign of A. This is the case, for instance, for 2004 and 2008, when «(g¢, &) = 0,
resulting in A < 0, as well as for 1992 and 2010, when (g9, &) = 0, resulting
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Table 2: Estimation errors and the change in cost savings

Year | &g €1 £9 §o & 3 A
1988 || 0.620 | 0.325 | 0.192 || 0.50 | 0.50 | 0.50 2062.88
1989 || 0.096 | 0.097 | 0.044 || 0.50 | 0.25 | 0.50 186.97
1990 || 0.158 | 0.067 | 0.126 || 0.50 | 0.50 | 0.50 501.39
1991 || 0.136 | 0.107 | 0.056 || 0.50 | 0.50 | 0.50 259.59
1992 || 0.036 | 0.010 | 0.023 || 0.13 | 0.00 | 0.00 63.12
1993 || 0.019 | 0.007 | 0.050 || 0.13 | 0.00 | 0.50 -16.17
1994 || 0.104 | 0.074 | 0.067 || 0.50 | 0.50 | 0.50 -144.51
1995 || 0.091 | 0.069 | 0.049 || 0.38 | 0.50 | 0.50 183.90
1996 || 0.045 | 0.036 | 0.032 || 0.25 | 0.25 | 0.25 123.04
1997 || -0.013 | 0.036 | -0.027 || -0.13 | 0.25 | -0.50 90.20
1998 || -0.031 | -0.007 | -0.273 || -0.25 | -0.25 | -0.50 || -20252.56
1999 || -0.292 | -0.253 | -0.143 || 0.50 | -1.00 | -1.00 15570.07
2000 || -0.026 | -0.058 | 0.023 || -0.25 | -0.50 | 0.00 -4537.85
2001 || 0.066 | 0.047 | 0.064 || 0.25 | 0.25 | 0.25 2478.82
2002 || 0.112 | 0.055 | 0.117 || 0.50 | 0.25 | 0.50 5247.23
2003 || -0.005 | 0.040 | -0.032 || -0.13 | 0.00 | -0.25 -8441.47
2004 || 0.013 | -0.002 | 0.002 || 0.00 | -0.25 | 0.00 -580.63
2005 || 0.159 | 0.085 | 0.138 || 0.50 | 0.50 | 0.50 50074.42
2006 || 0.226 | 0.167 | 0.150 || 0.50 | 0.50 | 0.50 || 115820.24
2007 || 0.093 | 0.095 | 0.032 || 0.25 | 0.50 | 0.25 -10105.75
2008 {| 0.005 | -0.015 | 0.018 || 0.00 | -0.25 | 0.00 || -16279.51
2009 || -0.005 | -0.023 | 0.009 || -0.25 | -0.50 | 0.00 || -27617.11
2010 || 0.038 | 0.016 | 0.019 || 0.13 | 0.00 | 0.00 24527.86
2011 || -0.023 | 0.016 | -0.030 || -0.13 | 0.00 | -0.50 || -60162.71
2012 || 0.050 | 0.024 | 0.043 || 0.25 | 0.50 | 0.50 || -41240.11
2013 || 0.000 | 0.048 | -0.073 || -0.13 | 0.00 | -0.50 || -527163.54
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in A > 0.

5. Discussion

Neoclassical economics can provide an apt characterization for the case
of concurrent sourcing in the cloud storage domain. In it, the technology
is commonly available with little asset specificity, partner behavior is pre-
dictable and so requires little protection against supplier opportunism, per-
formance is predictable, and one of the central problems is how to operate
at optimal scale and scope under volume uncertainty. Harrigan (1986), for
instance, suggests that a mix of internal production and external suppliers is
a low-risk strategy when demand is erratic and uncertain. Likewise, Carlton
(1979) argues that it is advantageous to integrate in order to save costs for
the high probability component of demand and use external suppliers for the
low-probability demand.

In fact, the cloud storage domain represents a case which Parmigiani hy-
pothesized but did not confirm in her study (Parmigiani, 2007)). That is, a
greater scope of economies for both the firm and its suppliers to produce the
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good was hypothesized to encourage the firm to concurrently source part of
the demand. On the one hand, making everything internally would require
prior investment based on estimated demand and create extra costs for un-
used capacity, while unpredictable volumes raise costs and hurt performance
(cf. |Wagner and Bode, 2006). On the other hand, the premium charged
by the external suppliers for the surplus capacity is high: The standard
neoclassical economic explanation for concurrent sourcing involves hedging
against demand uncertainty. In this case, a firm can keep its internal plant at
full production by using suppliers to handle fluctuating additional volumes,
thereby running more efficiently due to having this flexibility in capacity
(Adelman, 1949; |Carlton, |1979; [Porter, 1980)). This position assumes a ro-
bust spot market with a large number of qualified external suppliers vying for
the firm’s business, although these suppliers will have higher base costs (Adel-
man), |1949). The actual prices they charge the firm may be even higher, due
to the risk they are bearing by having unused capacity during slack times
and by not knowing when the ‘low probability’ demand will occur (Carl-
ton, 1979). Indeed, suppliers may charge premiums for lower volumes and
short lead times since they know they are merely ‘overflow outlets’ for the
firm (Harrigan, 1986; Hill, [1994)). Firms may be willing to pay these premi-
ums rather than invest in additional, and potentially underutilized, capacity.
(Parmigiani, 2007) In fact, unlike many other previous studies summarized in
(Mols, 2010)) and (Parmigiani, 2007), the neoclassical theory alone seems to
provide the most applicable explanation for the concurrent sourcing problem
in hybrid cloud storage.

Prior literature has shown that concurrent sourcing in the context of cloud
resources, referred to as the hybrid cloud, can reduce costs by combining
in-house processing and storage capacity with premium-priced public cloud
capacity. This paper has shown that the cost of hybrid cloud storage in
concurrent sourcing may be reduced even more by refining the reassessment
interval. Furthermore, the magnitude of the cost cut depends on two distinct
dimensions of volume variation: on the non-stationary (demand variability)
and on the non-deterministic nature of the demand volume (demand volume
uncertainty). The findings are the following:

e For demand variability: The maximum cost cut is achieved when the
refinement is at the middle of the sourcing period, for linear growth,
and the cost cut grows with the utility premium.

e For demand volume uncertainty: If the refinement allows the forecast-
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ing inaccuracy to be reduced, then the economic benefit of the refine-
ment increases. Otherwise, it decreases.

Note that the results on demand variability are specific to hybrid cloud
storage and they do not necessarily hold true, for example, in the context of
hybrid cloud computing resources. This is due to the monotonically growing
nature of the storage demand, which makes the variability decline if the re-
assessment interval gets shorter. Meanwhile, the results regarding demand
volume uncertainty are generally applicable to hybrid cloud computing re-
sources as well, and are likely to be applicable to the other domains where
concurrent sourcing is used.

Based on the analytical findings (see Lemma , re-estimating future
storage needs more often and acquiring additional in-house resources accord-
ingly reduces the total hybrid cost, assuming no additional cost associated
with the reassessment. However, this additional cost — the reassessment cost
— reduces the cost benefits. It follows that refining the reassessment interval
can be recursively continued and cost-benefits achieved until the cost associ-
ated with demand estimation and additional in-house resource provisioning
exceed these benefits.

Based on the numerical example with NCAR’s archival system data, mov-
ing from twelve-month cycles in storage capacity acquisition of hybrid cloud
storage resources to six-month cycles would decrease the annual costs by
about $1M, representing about 5% of the annual $23M in costs for 2013.
Meanwhile, when compared to the costs of acquiring new resources only, the
cost benefit of shortening the acquisition interval grows to about 15% of the
acquisition expenses. In this example, the demand estimation errors were
relatively small, in most years resulting in an impact on the savings volume
that was between plus or minus $ 50K (i.e., less than 3%). However, due to
the nature of a business, the estimation error can easily be much higher than
in this example.

We should note that the demand for storage in the case of NCAR exhibits
annual growth of 40%, a figure in line with the general growth trend reported
for digital storage (IDC, 2014)). Therefore, the results are expected to be
applicable to other organizations engaging in the adoption of hybrid cloud
storage. However, care should be taken when extrapolating the findings
above to other domains of concurrent sourcing, where the specifics of these
domains, including the growth trend and its predictability as well as the
utility premium values, should be taken into account.
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The case considered in this paper further connects concurrent sourcing to
the literature on strategic flexibility (Sanchez, [1995), especially that regard-
ing resource flexibility (Sanchez, 2004) and real options (Brydon, 2006) as
well as relates to transaction cost economics (Williamson), 1985). As long as
we assume no extra cost from repeating the capacity estimation and acqui-
sition cycle more often, the faster cycle provides an option to minimize the
sum of volume diseconomies and utility premium of resource vendors as well
as revise the acquisition plan to mitigate estimation errors. The additional
costs related to extra acquisition cycles can in this case be compared with
the savings representing 15% or $1M for halving the cycle for the case orga-
nization. However, even though in an organization of this size, the benefits
exceed the costs, for a small organization the savings could easily be smaller
than the resource acquisition costs, thus recommending the use of an annual
capacity acquisition cycle.

6. Conclusions

The core benefit of cloud computing can be attributed to the business
flexibility achievable by converting capital I'T expenditures to on-demand
operational expenditures. As compared with traditional in-house IT infras-
tructure, this provides both a low-cost option to scale a business and the
ability to make frequent and rapid changes in business models. This flexibil-
ity has been essential to the emergent trend to utilize cloud-based capacity,
transform the I'T function to cloud-compatible systems, and utilize agile net-
worked business models. In order to deliver such flexibility, public cloud
providers have to be capable of guaranteeing scalability for services whose
demand grows by factors of 100 or even 1000 in a few months. In response,
these providers may request utility premiums as high as 2 to 20 times the
in-house costs.

The hybrid cloud solutions combining fixed in-house cloud resources and
flexible public cloud resources provide cost-optimal solutions when the vol-
ume variation is high. In such cases, the cost can be minimized by serving
the high probability component of demand with in-house resources and by
using the public cloud for the peak demand only. Significantly, the need to
communicate between in-house cloud resources and public cloud resources
reduces the benefit of using public cloud resources. This implies that the
cloud storage associated with cloud computing capacity may be a critical
factor limiting the benefits of cloud adoption.
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This paper contributes to the cloud storage economics literature by an-
alyzing hybrid cloud storage, which combines in-house storage and public
cloud storage. A general hybrid storage cost model was constructed to ana-
lyze the cost benefits of using hybrid cloud storage in the presence of volume
variation. Specifically, these cost benefits were analyzed in the presence of
demand variability, as manifested in seasonal changes, and in the presence
of volume uncertainty, as manifested in the volume estimation errors. This
analysis shows that shortening the reassessment interval and more frequent
acquisition of private cloud storage capacity allows the volume variability
to be reduced, yielding a reduction of the overall costs. We further showed
that splitting an in-house resource acquisition interval into equal subintervals
maximizes the cost saving, assuming that the demand needs grow linearly.
The analytical part was validated with a numerical example from a conven-
tional storage organization. Namely, the data from NCAR’s archival system
showed that cutting the resource acquisition cycle from twelve months to
six months would provide 15% acquisition cost savings, with the assumption
that there would be no costs for speeding up the storage acquisition cycle.

Importantly, this paper sheds some light on the economic viability of or-
ganizational transformation towards cloud adoption through re-engineering
or replacing an organization’s information systems to become hybrid cloud-
enabled. Indeed, the economical viability of cloud transformation can be
questioned for a number of reasons: the renewal of information systems
incurs costs, using cloud-enabled software includes a performance penalty
(5-15%), and the use of public cloud offerings is associated with high utility
premiums. Such a high premium is tolerable for small firms with no in-house
IT capability, but for larger enterprises with in-house IT capabilities the use
of the resources available in-house may prove less expensive in the longer
term.

When we assume no costs for such a cloud transformation, this paper’s an-
alytical model explains how the optimal cost of cloud storage can be achieved
by using concurrent sourcing (i.e., the combination of in-house private cloud
and a limited volume of public cloud). In the numerical example from a con-
ventional storage organization, cutting the annual resource acquisition cycle
to six months would provide 15% savings on cloud storage costs, assuming
no costs for speeding up the storage acquisition cycle and executing it twice a
year. This cost saving may represent an incentive for an enterprise to acquire
the capability needed for concurrent sourcing in cloud environments, that is,
for adopting a cloud platform internally to be able to gain the cost benefit
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of the hybrid cloud solution through concurrent sourcing. In short, the cost
benefit of flexibility in concurrent sourcing could motivate an enterprise to
carry out a cloud transformation.

These results encourage enterprises to enable the use of a hybrid cloud
approach through conformance to standards and the development of in-house
competences, and thus promote the development of capability for performing
cost-efficient cloud storage acquisition. From the perspective of |Schlagwein
et al. (2014)), the results support the trend toward ensuring technological
cloud readiness in enterprises. This readiness can support immediate or
long-term migration of applications to the cloud as well as enable flexible,
short-term contracts with cloud providers while allowing enterprises to retain
internal capabilities in their IT functions and become competent IT brokers
able to integrate external and internal I'T resources. In other words, they
become able to support hybrid cloud storage solutions.

While this paper showed that the cost benefit of flexibility in concurrent
sourcing motivates an enterprise like the case organization to adopt a hybrid
cloud approach which requires in-house cloud capability and cloud transfor-
mation of incumbents, the case could be somewhat different in new ventures
with extreme volume variation. They need not carry the legacy I'T with them
and can build cloud-enabled IT infrastructure from the beginning, leading to
a reduction in the cost of the transformation. For small firms the overhead of
establishing in-house information systems, maintaining in-house servers, and
so on may also be a capital-intensive cost factor that can or even must be
avoided. They may therefore have the tendency to use only the public cloud
until the storage demand has increased substantially and the cost benefit of
a hybrid cloud approach overrules the capital expanditure and inflexibility of
in-house storage. To further understanding of this practice, we suggest that
future research address the economic view on the flexibility and premium
costs of the public cloud-only approach in comparision to the cost-optimal
hybrid cloud solution in quickly growing small enterprises with high volume
variation.

Appendix A. Cost Factors in Hybrid Cloud Infrastructure
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Table A.3: Cost factors reported in the literature on hybrid cloud infrastruc-

ture

Cost factor

References

Cost factors related to the use of in-house resources

hardware (servers, network de-
vices, lifetime of hardware, re-
placement costs of different hard-
ware components)

Khajeh-Hosseini et al| (2012, 2011); [Risch

and Altmann| (2008)); [Kashef and Altmann

2012

; [Tak et al| (2011); Kondo et al.

2009

; Opitz et al.| (2008); (Greenberg et al.

2008

; [Koomey et al| (2007); [Han

2011));

Brumec and Vréek| (2013); [Bibi et al

2012);

Mastroeni and Naldi (2011)); Walker

et al,

(2010); Mazhelis and Tyrviinen| (2011,

2012);

Mazhelis et al| (2012b)); Beaty et al|

2011);

Laatikainen

et al| (2014)); Mazhelis et al,

(2012a)); |Gonzalez et al.

2013)

electricity (cooling,
electronic devices)

lightning,

Khajeh-Hosseini et al.|

2012, [2011)); Risch

and Altmann| (2008); Kashef and Altmann

2012

; [Tak et al| (2011);

Kondo et al.

2009

; Armbrust et al| (2010); Opitz et al.

2008

: |Greenberg et al| (2008); [Koomey

et al,

(2007);

Han| (2011); Bibi et al] (2012);

Mastroeni and Naldi

(2011); Walker et al.

2010

; H_\/Iazhelis et a

| (2012D)); Beaty et al.

2011

; [Laatikainen et al| (2014); Mazhelis

et al| (2012a); |Gonzalez et al.| (2013)

software costs (basic server soft-
ware, middleware, application
software)

Andrikopoulos et al.|(2013); Kashef and Alt-

mann, (2012

; [Risch and Altmannl (2008]);

Kondo et al.

(2009); [Opitz et al] (2008); Tak!

et al| (2013

; Bibi et al| (2012); Mazhelis

and Tyrviinen| (2011} [2012); Mazhelis et al.

(2012D); Beaty et al| (2011));

Laatikainen

et al.| (2014));

|Mazhelis et al.] (]20].2&[)

Continued on next page
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Cost factor

References

labor costs (software and hard-

Kashef and Altmann| 12012i Tak et al

ware maintenance, other sup- | (2011)); Kondo et al| (2 , Opitz et al.

port) 2008)); [Koomey et al.| (2007); Han| (2011));
Bibi et al| (2012); Mastroeni and Naldi
2011)); Walker et al| (2010); Beaty et al.
2011)); [Laatikainen et al| (2014); Mazhelis
et al.| (2012a)); Gonzalez et al. (2013)

business premises (air condi- | Kashef and Altmann (2012); Tak et al.

tioner, rack, cabling, facility, in-
ternet connectivity, land, inter-
est during construction, architec-
tural and engineering fees, secu-
rity, taxes, lifetime of data cen-
ter, tier level of functionality, us-
able uninterruptible power sup-
ply (UPS) output, the electri-
cally active floor area, insurance,
etc.)

2011)); [Kondo et al. (2009); [Armbrust et al.
2010); Hajjat et al| (2010); [Truong and

Dustdar| (2010); Greenberg et al| (2008);
Koomey et al] (2007); [Opitz et al| (2008);
Han| (2011); [Bibi et al| (2012); |Turner
and Seader| (2006); Mazhelis and Tyrviinen
(2011}, 2012)); Mazhelis et al.| (2012a)

in-house resource utilization de-
gree

Opitz et al| (2008); Mazhelis (2012); Tak|
et al| (2013); |Greenberg et al| (2008);
Koomey et al| (2007)

acquisition interval (time period
between two acquisitions of addi-
tional in-house resources)

Mazhelis (2012); [Laatikainen et al. (2014);
Mazhelis et al.| (2012a)

forecasting, provisioning, de-
provisioning and demand moni-
toring interval

|Weinman| (]20 11 CHE[)

Cost factors related to the use of public resources

Continued on next page
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Cost factor

References

(running

hours/CPU

computation  costs
virtual  machine
hours/server usage)

Khajeh-Hosseini et al,

(2012, [2011)); Risch:

and Altmann| (2008);

Andrikopoulos et al.

(2013)); [Kashef and Altmann

(2012); [Tak

et al.| (2011)); [ Kondo et al| (2009

;[Hajjat et al.

(2010); [Truong and Dustdar| (2010); Hernan-

dez et al.

(2013); Martens et al| (2012);
(2012); Han, (2011)); Martens and

Teuteberg| (2012); Brumec and Vréek! (2013));

Kratzke

2012));

; Bibi et al. (2012)); Mazhelis|

(2012)); Mazheli

is and Tyrvéinen| (2011}, 2012);

Mazhelis et

al| (2012b); [Weinman| (2011blal);

Truong and Dustdar]

2010)); Agarwala et al.

2011

; \Gonzalez et al. (2013)); Adams et al.

2009

storage costs

Khajeh-Hosseini et al,

(2012, [2011)); Risch:

and Altmann| (2008);

Andrikopoulos et al.

(2013

; [Kashef and Altmann| (2012)); [Kondo

et al.

(2009); [Armbrust et al. (2010); Ha-]

jjat et al| (2010); [Truong and Dustdar

2010); Hernandez et al| (2013); Martens
et al| (2012); Mian et al| (2012); Martens

and Teuteberg| (2012); [Kratzke (2012)); Mas-

troeni and Naldi| (2011)); Walker et al| (2010);

Mazhelis| (2012)); Mazhelis and Tyrvéinen

(2011, 2012

;[Mazhelis et al(2012D)); [Truong

and Dustd

ar| (2010); [Laatikainen et al.

(2014); Mazhelis et al| (2012a); Agarwala
et al. (2011); Ruiz-Alvarez and Humphrey
(2011}, 2012); [Gonzalez et al| (2013); [Adams
et al. qmb

Continued on next page
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Cost factor

References

cost of input/output requests

Khajeh-Hosseini et al,

(2012, [2011)); Risch:

and Altmann| (2008);

Andrikopoulos et al.

(2013); [Kashef and Altmann| (2012); Kondo

et al.| (2009); [Martens et al.

(2012); Martens

and Teuteberg

(2012); |Kratzke] (2012);

Mazhelis| (2012));

Mazhelis and Tyrvainen

(2011}, [2012)); Mazhelis et al.

(2012Db); [Truong

and Dustdar] (2010); [Mazhe

is et al.| (2012al);

Agarwala

et al| (2011); Gonzalez et al|

(2013); |Adams et al.| (2009)

cost of data in/out

Khajeh-Hosseini et al,

(2012, [2011)); Risch:

and Altmann| (2008);

Andrikopoulos et al.

(2013

; [Kashef and Altmann! (2012)); [Kondo

et al.

2009);

Armbrust et al.| (2010)); Haj-

jat et a

] (2010);

Truong and Dustdar| (2010));

Opitz et al| (2008); Martens et all
Mian et al. (2012)); Martens and Teuteberg]

2012);

(2012); Kratzkel (2012); Mazhelis (2012);

Mazhelis and Tyrvéinen| (2011}, 2012);

Mazhe-|

lis et al.| (2012D)); [Truong and Dustdar

(2010));

Mazhelis et al| (2012al);

Agarwala et al.

2011

; \Gonzalez et al.|

2013)); |Adams et al.

2009

cost of message queuing service,
such as Amazon Simple Queue
Service (decoupling the compo-
nents of a cloud application)

|Hernéndez

et al.l (]2013[)

cost of load balancing

Hernandez

et al| (2013); [Mazhelis (2012)

cost of Domain Name System
(DNS) web service, such as Ama-
zon Route 53

Hernandez

et al. (2013

pricing models and utility pre-
mium of the cloud provider

Mazhelis|

2012); Mazhelis and Tyrviinen

(2012);

We

einman

(2011blla)); [Laatikainen

et al| (2014); Mazhelis et al| (2012a); Agar-

wala et al.|

(2011)

charging/billing period of the
cloud provider

Mazhelis| (2012); [Laatikainen et al. (2014);

|Mazhelis et al| (2012al)

Continued on next page
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Cost factor

References

data compression method (incl.
compression ratio, compression
and decompression time)

Agarwala et al| (2011)

geographical redundancy, audit-
ing and monitoring systems

|Gonza1ez et a1.| q2013[)

volume discount

Brumec and Vréek (2013)); Mazhelis (2012);
Mazhelis and Tyrvainen| (2012)

Costs factors depending on the in

teraction between the private and public cloud

allocation and partitioning costs

Tak et al.| (2013); [Martens and Teuteberg
(2012)

split between the private and
public portions of the infrastruc-
ture

Mazhelis| (2012)

intensity of data communication
between private and public por-
tion of the cloud

Mazhelis| (2012); Mazhelis and Tyrviinen|

12011|, 2012)

time of using the public portion
of the cloud

Mazhelis| (2012)); Mazhelis and Tyrviinen
| ' (2012); | |
(2011} 2012)); WVeinman| (]2011b|,|5[)

Cost factors related to the org

anizational/environmental/system context

system and service usage pattern
(demand, usage duration and in-
tensity, workload intensity and
variance in workload intensity,
infrastructure resource require-
ments, number of users, num-
ber of requests, data access fre-

quency)

'Andrikopoulos et al. (2013); [Kondo et al.
(2009)); Klems et al. (2009); Kratzke] (2012));
Bibi et al| (2012); Mastroeni and Naldi
(2011); Mazhelis (2012); [Mazhelis and
Tyrvéinen (2011, [2012); Mazhelis et al.

(2012b)); Weinman (20110; Laatikainen
et al. ; Mazhelis et al.| (2012a)); @

et al| (2013)); [Risch and Altmann| (2008);
Truong and Dustdar| (2010); [Kashef and Alt-
mann| (2012)); Klems et al| (2009); Misra

and Mondal (2011); [Agarwala et al. (2011);
Adams et al.| (2009)

storage growth rate Tak et al.| (2013); Brumec and Vréek (2013);
Mastroeni and Naldi (2011); [Laatikainen

et al| (2014); Mazhelis et al/| (2012a); [Gon-

zalez et al. (2013)

Continued on next page
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Cost factor

References

demand predictability

Mazhelis  (2012); |Weinman  (2011cla);

Laatikainen et al. (2014); Mazhelis et al.

(20124)); [Kashef and Altmann| (2012); [Klems

et al.| (2009); Adams et al.| (2009)

application type (Sequential or
multi-threaded program, Par-
allel/MPI programs on multi-
ple machines, workflows), appli-
cation complexity, performance
changes, possible security vulner-
ability, various time delay

Truong and Dustdar| (]2010 ; |Tak et a1.| q2013[)

application requirements (e.g.
runtime environment, database
technology,  software, load-
balancing and  redundancy
requirements,  security, data
availability, reliability, scala-
bility, Quality of Service, data
sensitivity, work criticality,
likelihood of reuse the data)

|_Klems et al.| (2009); Laatikainen et al. (2014);

Mazhelis et al| (2012a)); Misra and Mondal

2011); |Gonzalez et al| (2013); Adams et al.

2009

system architecture (loadbalanc-
ing, autoscaling, processing, stor-
age and backup tier structure,
service dependency)

Kratzke (2012); Truong and Dustdar| (2010)

enterprise size / size of IT re-
sources

Walker et al.| (2010); Misra and Mondal

(2011)

technological — advances/trends
(e.g. growing disk capacity)

|]3rumec and

Vréek (2013); Mastroeni and|

Naldi (2011);

Adams et al.| (2009)

pricing/market trends

'Walker et al.

(2010); Mastroeni and Naldi

(2011); Mazhelis (2012); [Mazhelis and

Tyrvéinen| (2012); [Adams et al| (2009)

Other cost factors pertaining to the lifecycle of a cloud-based system

Continued on next page
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Cost factor

References

cost of strategic decision mak-
ing (incl. identifying the ap-
plication and infrastructure re-
quirements, technology suitabil-
ity analysis and stakeholder im-
pact analysis) on adopting the
hybrid cloud

Martens et al.| (2012); Khajeh-Hosseini et al.
(2012); Mazhelis et al.| (2012Db)); Brumec and

Vrcek| (2013)

cost of evaluation and selection
of service provider, SLA analysis
and negotiation costs

Martens et al.| (2012); Martens and Teuteberg]

(2012)); [Brumec and Vréek (2013); Mazhelis
et al| (2012b)); |Adams et al.| (2009)

costs related to implementation,
configuration, customization, in-
tegration and migration (incl.
cost of migrating an application
to cloud on infrastructure level,
cost of software porting to the
programming API exposed by a
cloud, cost related to the transi-
tion period when both legacy and
cloud environment co-exist)

Sun and Li (2013); Tak et al. (2013)); Martens|
et al. (2012); Martens and Teuteberg] (2012);

Bibi et al| (2012)); Mazhelis et al| (2012b);
Beaty et al.| (2011); [Gonzalez et al| (2013)

costs related to support and
maintenance (hardware, soft-
ware, ex post administration and
coordination of the sourcing con-
tracts and SLAs)

Martens et al.| (2012); Martens and Teuteberg;
2012); Bibi et al| (2012); Walker et al.
2010); Mazhelis et al| (2012b); [Gonzalez

et al.| (2013)

costs related to user training

Bibi et al| (2012);

Martens et al| (2012);

Mazhelis et al. (2012b

losses/benefits related to change
in QoS (e.g. productivity gains
or losses, confidentiality loss,
availability loss, integrity loss
due to system failure, downtime,
security incidents)

Martens et al.| (2012); Martens and Teuteberg
2012)); Mazhelis et al.| (2012D)); Beaty et al.
2011); Mian et al.| (2012); [Khajeh-Hosseini
et al| (2011); Misra and Mondal (2011);
Adams et al.| (2009)

cost of vendor lock-in, cost of
switching providers

'Abu-Libdeh et (2010); Mastroeni and
Naldi| (2012); |Ru1z Alvarez and Humphrey

(2011} 2012)

Continued on next page
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Cost factor References
cost of backsourcing or discard- | Martens et al.| (2012)
ing

Appendix B. Proofs of the propositions

Appendixz B.1. Proof of Proposition|3.1
Proof. Let F(t) be an antiderivative of s(t). In this case, Equation can
be rewritten as follows:

f:upo(F(w)—F(u;1w)—F(Z)—i—F(u_1z)—F(w)—i—F(z—l—u_1

" w2 - P )+ (U

u u

(w = 2)))

=up, (F(z+

— up, (/jiuu(wZ)s(t)dt—/zl s(t)dt). (B.1)

- w _—z
u u

Having introduced an auxiliary function g(t) = s(t + “=* (w — z)), Equa-
tion (B.1)) can be further rewritten in the form

f=upo ([, ot~ [ s(tyd). (B.2)

r—2 r—2 5
u u

Since w > z, it follows that g(t) > s(¢). Using the property of integral
monotonicity, it further follows that f > 0, and thus re-evaluating the storage
needs more often reduces the overall hybrid cloud storage cost.

[]

Appendix B.2. Proof of Lemma 3.1

Proof. Based on Equation (B.1)), the first derivative of f with respect to z
can be obtained:

0 0 0 0 1 u—1
(9sz =up, ((%F(tQ) + gF(tl) - %F(z)> =up, (us(tg) + s(ty) — s(z)) .
(B.3)
It can be shown that, in the interval (0,w), f has only one extremum
point where % = 0.

o4



Let us rewrite the partial derivative in the form:

of _ up, s(z) <1S(t2) pulsty) 1) : (B.4)

0z u s(2) u  s(z)

It can be seen that % = 0 iff the condition holds that

1s(ta) i 1s(tq)

= 1. B.5
u s(z) u  s(z) (B5)
1155 Observe that if z — 0, then ¢; — 0 and s(t1) =~ s(z). Furthermore, since
s(t2) > s(z), it can be easily seen that
1 s(t —1 s(t
Lolte) ju-lsth) (B.6)
u s(z) u  s(2)

and therefore % > 0.
Similarly, if z — w, then t; — w and s(t2) ~ s(w) =~ s(z). In this case,

since s(t1) < s(w), it can be easily seen that
Ls(ty) u—1s(t) 1  u—1s(w)

(B.7)

u s(2) u  s(z) w u  s(z)’

and therefore | ol | s
— S( 2) + U — S( 1) < 1’ (BS)
u s(z) u  s(z)
and it follows that % < 0.
Given a monotonically increasing demand function s(t), the left part of

o the equation (B.5) is a monotonically decreasing function in the range (£ +

1
”7_12((1;)) ,q), where - 4 “T_l% < 1 and g > 1. Therefore, there exists a single
value Zmax in the interval (0,w) satisfying Equation (B.5)). Furthermore,
since the derivative changes its sign, f > 0 (based on Proposition (3.1])) and
since a single extremum point exists at zy., it follows that this extremum

ues  corresponds to the maximum of f in the region (0, w).

O

Appendixz B.3. Proof of Lemma
Proof. Taking the derivative of the function in Equation with respect
to the refinement point z, we get
af a(u—1)(w—2z
0 (u—1)( ) (B.9)

e u
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Taking the second derivative of the function Equation ((13)) with respect

to the refinement point z, we get
0 f
072

= —9p, 7 (“u_ D) (B.10)

Since p, > 0, a > 0 and u > 1, it follows that gif; < 0 and f is concave.
The critical point z,,,, where % = (0 is a maximum point:

w
maz = —- B.11
man = 3 (B.11)

Because the function f is positive for every 0 < z < w, at this point the
cost savings are the greatest.

]
Appendiz B.4. Proof of Lemma|[3.3
Proof. Consider the exponentially growing demand function in the form
s(t) = et TTOHD, (B.12)

where 7 is the beginning of the reassessment interval prior to refinement, and
where a > 1 (if the demand is monotonically increasing) and b > —1 (if the
demand is positive at the beginning of the storage period) are real numbers.
Given the demand function above, the equation for z,,,, specified in Equa-
tion (B.5|) can be rewritten as
u—1

1w
“etw w2 4 e u% = 1. (B.13)
u u

Observe that for z = w/2, the left part of the equation above simplifies
to

1 aw aw
ST (e fu—1)> 1. (B.14)
u

Thus, the left part of Equation (B.13)) in the region (w/2,w) is monoton-
ically decreasing from Le~%2u (e +u—1) > 1to 142t ss((lzu)) < 1. Therefore,

there exists a value of zyay € (w/2,w), satisfying Equation (B.13)). O
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Appendix B.5. Proof of Lemma

Proof. Let us calculate the derivative of the cost difference function in Equa-
tion (13|) with respect to the utility premium u:

df az(w—z)

@ = Do U2 .

Since p, > 0, a > 0 and 0 < z < w, it follows that the function is

monotonically increasing. In addition, since the function f is positive for

every 0 < z < w, the cost savings are increasing as the utility premium
increases.

(B.15)

]

Appendiz B.6. Proof of Lemma[3.5
Proof. 1t can be easily seen that f > 0 iff

Do (/wlws(t)dt—/les(t)dt—/zw s(t)dt) > e, (B.16)

= = +"771 (w—2)

The left part of the equation reflects the benefits achievable through the
refinement of the reassessment interval, in line with Equation [I8 Thus, re-
evaluating the storage needs more often reduces the overall hybrid storage
cost if the cost benefits due to reassessment are higher than the cost of
reassessment.

]
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