

This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Terhorst, Steven; Prakash Tiwari, Deo; Meister, Daniela; Petran, Benedict; Rissanen, Kari; Bolm, Carsten

Title: Syntheses of Trifluoroethylated N-Heterocycles from Vinyl Azides and Togni's Reagent Involving 1,n-Hydrogen-Atom Transfer Reactions

Year: 2020

Version: Accepted version (Final draft)

Copyright: © 2020 American Chemical Society

Rights: In Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Terhorst, S., Prakash Tiwari, D., Meister, D., Petran, B., Rissanen, K., & Bolm, C. (2020). Syntheses of Trifluoroethylated N-Heterocycles from Vinyl Azides and Togni's Reagent Involving 1,n-Hydrogen-Atom Transfer Reactions. Organic Letters, 22(12), 4766-4770. https://doi.org/10.1021/acs.orglett.0c01566

Syntheses of Trifluoroethylated *N*-Heterocycles from Vinyl Azides and Togni's Reagent Involving 1,n-Hydrogen-Atom Transfer Reactions

Steven Terhorst,[†] Deo Prakash Tiwari,[†] Daniela Meister, [†] Benedict Petran, [†] Kari Rissanen, [‡] and Carsten Bolm [†]*

- † RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
- [‡] University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, FI-40014 Jyväskylä, Finland *Supporting Information Placeholder*

2,2,2-Trifluoroethyl-substituted 3-oxazolines, 3-thiazolines, and 5,6-dihydro-2*H*-1,3-oxazines have been obtained by reacting substituted vinyl azides with a combination of Togni's reagent and substoichiometric amounts of iron(II) chloride. Results of density functional theory (DFT) calculations support the proposed mechanism involving 1,n-Hydrogen-Atom Transfer (HAT) reactions.

Nitrogen-containing heterocycles represent core structures of numerous materials, natural products, pharmaceuticals, and agrochemicals. ^{1–5} Among them, azolines are of particular importance. ⁶ Probably due to synthetic challenges 3-oxazolines are less explored compared to other compounds in this series. ⁷ A typical procedure for their preparation involves N-chlorination of the respective 1,3-oxazolidine followed by elimination of HCl upon treatment with base. ⁸

Recent studies have shown that 1,n-Hydrogen-Atom Transfer (HAT) reactions can be very effective for synthesizing heterocycles. His concept relies on the high reactivity of radicals which allows to selectively functionalize remote C-H bonds. For example, starting from amidoximes, Chen and Chiba generated amidinyl radicals by a redox-neutral copper catalysis, which provided dihydroimidazoles and quinazolines by 1,5-H shift (Scheme 1, top). Is In 2017, Nevado and coworkers applied vinyl azides in such reactions leading to elaborated ketones when reacting with carboxylic acids as radical synthons. Density functional theory (DFT) calculations suggested the formation of azide-derived imine radicals as key intermediates in the 1,5-H shift process.

Fluorinated compounds are important as drugs and agrochemicals as fluoro substituents affect relevant properties such as lipophilicity, metabolic stability, and bioavailability. ^{4,18,19} Consequently, the introduction of trifluoromethyl groups has attracted much attention. ²⁰ In the context of azoline chemistry, the trifluoromethylations of allylamides with Togni's reagent in the presence of alkali metal iodides leading to F₃C-containing 2-oxazolines described by Sodeoka and coworkers are noteworthy (Scheme 1, middle). ²¹

In light of the aforementioned studies we wondered if such concepts could be combined allowing the preparation of 2,2,2-trifluoroethyl-substituted 3-oxazolines and related hetercycles.

Scheme 1. Previous Studies and Work Reported Here

Chen and Chiba (ref. 15)

$$\begin{array}{c} \text{NOAc} \\ \text{H} \\ \text{R}^1 \text{ R}^2 \text{ R}^3 \end{array} \qquad \begin{array}{c} \text{copper-catalyzed} \\ \text{via radicals and 1,5-HAT} \end{array} \qquad \begin{array}{c} \text{R}^1 \\ \text{N} \\ \text{R}^3 \end{array} \qquad \begin{array}{c} \text{Cu(II)} \\ \text{Cu(II)} \end{array} \rightarrow \begin{array}{c} \text{OAc}^- \\ \text{Cu(II)} \\ \text{R}^1 \text{ R}^2 \text{ R}^3 \end{array} \qquad \begin{array}{c} \text{R}^1 \\ \text{R}^2 \text{ R}^3 \end{array} \qquad \begin{array}{c} \text{R}^1 \\ \text{R}^3 \end{array} \qquad \begin{array}{c} \text{R}^$$

Sodeoka and co-workers (ref. 20)

This work

The success of this approach is documented here (Scheme 1, bottom).

For the initial proof-of-concept experiments and the subsequent optimization of the reaction conditions, 2-azidoallyl diphenylmethyl ether (1a) was selected as substrate, and Tog-

ni's trifluomethylating reagent **2** was activated by the addition of FeCl₂ (20 mol %). A short screening (Table 1) revealed that DCM, dichloroethane (DCE), 1,4-dioxane, and DMF were suitable solvents. The reaction temperature could be varied from 80 °C and ambient temperature with the latter being superior. Substituting FeCl₂ by the more commonly used CuI led to product formation as well (Table 1, entry 5). Finally, reacting **1a** with 2.5 equiv of **2** and 20 mol % of FeCl₂ in dry DCM at ambient temperature for 30 min provided 4-(2,2,2-trifluoroethyl)-substituted 3-oxazoline **3a** in 75% yield (Table 1, entry 8). Although an increase in yield of **3a** to 80% was observed when a combination of 3.5 equiv of **2** and 30 mol % of FeCl₂ was applied in DCM at 36 °C (Table 1, entry 6), the former conditions were considered satisfying for the subsequent substrate studies.

Table 1. Optimization Studies

entry	solvent	2 (equiv)	T (°C)	Time (h)	3a (%)
1	DCE	2.5	80	24	45
2	1,4-dioxane	2.5	80	24	55
3	1,4-dioxane	2.5	40	1	70
4	DCM	1.1	36	24	34
5 ^a	DCM	1.5	36	24	33
6^b	DCM	3.5	36	24	80
7	DMF	2.5	rt	0.5	73
8	DCM	2.5	rt	0.5	75

 $^a\mathrm{Use}$ of CuI (20 mol %) instead of FeCl₂. $^b\mathrm{Use}$ of 30 mol % of FeCl₂.

Next, the substrate scope was evaluated (Scheme 2). In the first series, 2-azidoallyl diarylmethyl ethers (1b-e) with two identical 4-substituted aryl groups were applied. While the yields of the resulting 3-oxazolines with 4-chloro-, 4-fluoro-, and 4-methyl substituents (3b, 3c and 3e, respectively) were good (ranging from 75% to 98%), 4-methoxy-substituted product 3d was isolated in only ca. 45% (containing significant amounts of unknown impurities). Hence, the electrondonating effect of the substituent appeared to hamper the formation of the heterocycle presumably by unduly radical or cation stabilization. The use of freshly prepared Togni's reagent proved beneficial. 2-Azidoallyl arylphenylmethyl ethers 1f-k with different substituents on the aryl group showed analogous trends. The position of the aryl substituent was important as revealed by comparing the result of the cyclization of 3-substituted substrate 1h with the one of its 4substituted counterpart 1e. Both starting materials led to the corresponding 3-oxazolines 3h and 3e, respectively, but for the latter product the yield was significanly higher (63% versus 81%). Also 2-azidoallyl 1-phenylalkyl ethers 1j and 1k cyclized illustrating that more alkyl substituents were tolerated. In this manner, 3-oxazolines 3i and 3k bearing trifluoromethyl and methyl groups, respectively, were obtained albeit in only moderate and low yield (64% and 35%). Probably,

these substituents lowered the radical stability and reduced the rate of the 1,5-HAT.²² Also thioether 11 reacted affording 3-thiazoline 31 in 63% yield. The moderate yield of 31 could be due to a general sensitivity of such compounds matching earlier observations reported by Asinger and Offermanns.²³ Starting from 3-azido homoallyl ether 1m and involving a 1,6-HAT, 5,6-dihydro-2*H*-1,3-oxazine 3m was obtained in 98% yield (after 3 h of reaction time). Finally, ether 1n with an additional methyl group at the oxygen-bearing carbon (as compared to 1a) was applied which led to 3-oxazoline 3n in 98% yield after only a few minutes. The molecular structure of this product was confirmed by single crystal X-ray structure analysis.^{24,25}

Scheme 2. Substrate Scope

"Use of freshly prepared batch of Togni's reagent. ^bContaining unidentified impurities. ^cReaction time of 3 h.

For evaluating the assumed intermediacy of radicals and a 1,5-HAT as well as the energy barriers of the underlying mechanism, the reaction path was investigated with density functional theory calculations using Gaussian09 version D.01.²⁶ All calculations were performed with the functional M06-2X and Grimme's D3 dispersion correction.^{27,28} Optimizations were carried out with the def2-SVP basis set.²⁹ For final structures, a single point calculation with the def2-TZVP basis set and the IEFPCM solvent model for DCM was added.^{29,30} A description of the computational details is provided in the Supporting Information. The energy values for barriers and intermediates are presented in Scheme 3.

Most intermediates contain two energetic values: the left one refers to the calculated minimum based on an IRC calculation after the previous transition state, the right value to the minimum calculated based on an IRC calculation of the following transition state. The difference in energy is caused by conformer changes. The transformation is initiated by the

reaction of Togni's reagent with the iron(II) salt generating a trifluoromethyl radical. This redox process also forms an iron(III) intermediate and 2-iodobenzoate.31 The trifluoromethyl radical then attacks the 2-azido allyl fragment at the double bond with a barrier of 7.9 kcal/mol and an energy gain of 32.1 kcal/mol as represented in intermediate A. The radical is located next to the azidyl moiety leading to the release of nitrogen and formation of an iminyl radical, giving intermediate B.³² This step is almost barrierless and leads to an energy gain of 50.4 kcal/mol. The following step is the 1.n-HAT via a 6-membered or 7-membered transition state, respectively, forming an imino group and a carbon-centered radical. For the 6-membered system studied here, the step requires 9.0 kcal/mol and leads to an energy gain of 10.1 kcal/mol. Next, intermediate C is oxidized by the iron(III)-complex. This pathway is described aside from the previously presented pathway because the lack of one electron renders both pathways incomparable. Therefore, compound **D** is set to 0.0 kcal/mol. A conformational change leads to an energy gain of -4.4 kcal/mol. The ring forming transition state requires only 1.6 kcal/mol. Compound E was difficult to optimize, and the energy values given here correspond to two different optimization strategies. Furthermore, E also corresponds to transition state TS5 in which the deprotonation by iodobenzoate takes place. The final product corresponds to both minima of the TS, meaning compound 3a and iodobenzcarboxylic acid (see Supporting Information, Fig. S8). In all cases the energy barriers are low leading to a gain of energy. Hence, both proposed mechanisms are regarded as plausible pathways.

Scheme 3. Plausible Mechanism with Calculated Energy Barriers. The Two Energy Values for a Structure Refer to Different Conformers of the Respective Compound, Related to the Respective Previous (Left Number) or Following (Right Number) Transition State

In summary, by using an iron(II) salt we generated trifluoromethyl radicals from Togni's reagent and allowed them to react with substituted vinyl azides. The newly generated iminyl radicals undergo 1,n-HAT reactions. Subsequent redox

steps lead to heterocycles, which are difficult to prepare by other means. The proposed reaction pathway was supported by results from DFT calculations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

General experimental procedure, list of unsuitable substrates, computational details, analytical data including NMR spectra (PDF)

Accession Codes

CCDC 1983428 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Carsten.Bolm@oc.rwth-aachen.de

ORCID

Steven Terhorst: 0000-0002-2103-8716 Kari Rissanen: 0000-0002-7282-8419 Carsten Bolm: 0000-0001-9415-9917

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the Alexander von Humboldt Foundation for support of K.R. (AvH research award) and D. P. T. (AvH postdoctoral fellowship). The simulations were performed with computing resources granted by RWTH Aachen University under project rwth0354.

REFERENCES

- (1) Chen, D.; Su, S.-J.; Cao, Y. Nitrogen Heterocycles-Containing Materials for Highly Efficient Phosphorescent OLEDs with Low Operating Voltage. *J. Mater. Chem. C* **2014**, *2*, 9565–9578.
- (2) Taylor, A. P.; Robinson, R. P.; Fobian, Y. M.; Blakemore, D. C.; Jones, L. H.; Fadeyi, O. Modern Advances in Heterocyclic Chemistry in Drug Discovery. *Org. Biomol. Chem.* **2016**, *14*, 6611–6637.
- (3) Akhtar, J.; Khan, A. A.; Ali, Z.; Haider, R.; Yar, M. S. Structure-Activity Relationship (SAR) Study and Design Strategies of Nitrogen-Containing Heterocyclic Moieties for Their Anticancer Activities. *Eur. J. Med. Chem.* **2017**, *125*, 143–189.
- (4) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. *J. Med. Chem.* **2014**, *57*, 10257–10274.
- (5) Lamberth, C. Heterocyclic Chemistry in Crop Protection. *Pest Manag. Sci.* **2013**, *69*, 1106–1106.

- (6) Azolines are five-membered heterocycles with a single double bond in the ring and a nitrogen as well as another heteroatom in positions 1 and 3. For a review, see: Reyes-Arellano, A.; Gómez-García, O.; Torres-Jaramillo, J. Synthesis of Azolines and Imidazoles and their Use in Drug Design. *Med. Chem.* **2016**, *6*, 561–570.
- (7) Frump, J. A. Oxazolines. Their Preparation, Reactions, and Applications. *Chem. Rev.* **1971**, *71*, 483–505.
- (8) Favreau, S.; Lizzani-Cuvelier, L.; Loiseau, M.; Duñach, E.; Fellous, R. Novel Synthesis of 3-Oxazolines. *Tetrahedron Lett.* **2000**, *41*, 9787–9790.
- (9) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. *Eur. J. Org. Chem.* **2017**, 2056–2071.
- (10) Nechab, M.; Mondal, S.; Bertrand, M. P. 1,n-Hydrogen-Atom Transfer (HAT) Reactions in Which N≠5: An Updated Inventory. *Chem. Eur. J.* **2014**, *20*, 16034–16059.
- (11) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Remote C–H Functionalization via Selective Hydrogen Atom Transfer. *Synthesis* **2018**, *50*, 1569–1586.
- (12) Protti, S.; Fagnoni, M.; Ravelli, D. Photocatalytic C–H Activation by Hydrogen-Atom Transfer in Synthesis. *ChemCatChem* **2015**, *7*, 1516–1523.
- (13) Chen, J.-Q.; Wei, Y.-L.; Xu, G.-Q.; Liang, Y.-M.; Xu, P.-F. Intramolecular 1,5-H Transfer Reaction of Aryl Iodides through Visible-Light Photoredox Catalysis: A Concise Method for the Synthesis of the Natural Product Scaffolds. *Chem. Commun.* **2016**, *52*, 6455–6458.
- (14) Jin, W.; Zhou, Y.; Zhao, Y.; Ma, Q.; Kong, L.; Zhu, G. Nickel-Catalyzed Remote Arylation of Alkenyl Aldehydes Initiated by Radical Alkylation with Tertiary α –Carbonyl Alkyl Bromides. *Org. Lett.* **2018**, *20*, 1435–1438.
- (15) Chen, H.; Chiba, S. Copper-Catalyzed Redox-Neutral C-H Amination with Amidoximes. *Org. Biomol. Chem.* **2014**, *12*, 42–46.
- (16) Shu, W.; Lorente, A.; Gómez-Bengoa, E.; Nevado, C. Expeditious Diastereoselective Synthesis of Elaborated Ketones via Remote Csp³–H Functionalization. *Nat. Commun.* **2017**, *8*, 13832.
- (17) For photocatalytic F_3C radical additions to vinyl azides leading to ketones, see: Qin, H.-T.; Wu, S.-W.; Liu, J.-L.; Liu, F. Photoredox-catalysed Redox-Neutral Trifluoromethylation of Vinyl Azides for the Synthesis of α -Trifluoromethylated Ketones. *Chem. Commun.* **2017**, *53*, 1696–1699.
- (18) (a) Böhm, H.-J..; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in Medicinal Chemistry. *ChemBioChem* **2004**, *5*, 637–643. (b) Hagmann, W. K. The Many Roles for Fluorine in Medicinal Chemistry. *J. Med. Chem.* **2008**, *51*, 4359–4369. (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. *Chem. Rev.* **2016**, *116*, 422–518.
- (19) Fujiwara, T.; O'Hagan, D. Successful Fluorine-Containing Herbicide Agrochemicals. *J. Fluorine Chem.* **2014**, *167*, 16–29.
- (10) For selected reviews, see: (a) Merino, E.; Nevado, C. Addition of CF₃ across Unsaturated Moieties: A Powerful Functionalization Tool. Chem. Soc. Rev. 2014, 43, 6598–6608. (b) Alonso, C.; Martinez de Marigota, E.; Rubiales, G.; Palacios, F. Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes. Chem. Rev. 2015, 115, 1847–1935. (c) Koike, T.; Akita, M. Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon–Carbon Multiple Bonds. Acc. Chem. Res. 2016, 49, 1937–1945. (d) Yang, C.; Hassanpour, A.; Ghorbanpour, K.; Abdolmohammadi, S.; Vessally, E. Recent Advances in Direct Trifluoromethylation of Olefinic C–H Bonds. RCS-4dv. 2019, 9, 27625–27639.
- (21) Kawamura, S.; Sekine, D.; Sodeoka, M. Synthesis of CF₃-Containing Oxazolines via Trifluoromethylation of Allylamides with Togni Reagent in the Presence of Alkali Metal Iodides. *J. Fluor. Chem.* **2017**, *203*, 115–121.
- (22) DeZutter, C. B.; Horner, J. H.; Newcomb, M. Rate Constants for 1,5- and 1,6-Hydrogen Atom Transfer Reactions of Mono-, Di-, and Tri-

- Aryl-Substituted Donors, Models for Hydrogen Atom Transfers in Polyunsaturated Fatty Acid Radicals. *J. Phys. Chem. A* **2008**, *112*, 1891–1896
- (23) Asinger, F.; Offermanns, H. Syntheses with Ketones, Sulfur, and Ammonia or Amines at Room Temperature. *Angew. Chem.* **1967**, *79*, 953–965; *Angew. Chem., Int. Ed.* **1967**, *6*, 907–919.
- (24) Crystal data for **3n** (as determined for crystals obtained by slow evaporation of a benzene solution): $C_{18}H_{16}F_3NO$, M=319.32 g/mol, colorless block, 0.24 x 0.20 x 0.16 mm³, triclinic, space group P-1, a=7.696(1) Å, b=8.217(1) Å, c=13.488(2) Å, $\alpha=80.58(1)^\circ$, $\beta=85.19(1)^\circ$, $\gamma=64.54(2)^\circ$, V=759.6(2) ų, Z=2, $D_{calc}=1.396$ g/cm³, F000=332, $\mu=0.948$ mm⁻¹, T=120.0(1) K, $\theta_{max}=67.68^\circ$, 3108 total reflections, 2663 with $Io>2\sigma(Io)$, 210 parameters, no restraints, GooF=1.044, R=0.0429 and wR= 0.1113 $[Io>2\sigma(Io)]$, R=0.0500 and wR= 0.1184 (all reflections), $0.341<\Delta\rho<-0.272$ e/ų.
- (25) For details of additional experiments and unsuccessfully applied substrates, see the Supporting Information.
- (26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09, Revision D.01, Gaussian Inc., Wallingford, CT, 2009.
- (27) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215–241.
- (28) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *Ab Initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104–154104-19.
- (29) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- (30) (a) Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. *J. Chem. Phys.* **1997**, *107*, 3032–3041. (b) Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. *J. Phys. Chem. B* **1997**, *101*, 10506–10517. (c) Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. *J. Mol. Struct.: THEOCHEM* **1999**, *464*, 211–226.
- (31) In light of the already existing extensive work in this area, the influence of the metal complex was not investigated here. For a representative references, see: Ling, L.; Liu, K.; Li, X.; Li, Y. General Reaction Mode of Hypervalent Iodine Trifluoromethylation Reagent: A Density Functional Theory Study. *ACS Catal.* **2015**, *5*, 2458–2468.
- (32) Chiba, S. Application of Organic Azides for the Synthesis of Nitrogen-Containing Molecules. *Synlett* **2012**, 21–44.